

So you have an impairment...

• Goal of this talk:

- How do you set a numeric target for TMDLs to protect/restore designated use?
- And how to do so in the context of simultaneous criteria development?
- Complementary Approaches

Complementary Approaches

TMDL Nutrient Guidance

- Causal
 - P
 - N
- Response
 - Chl a/Biomass
 - Clarity
 - DO
 - macrophyte coverage/biomass
 - biological indicators
 - pH
 - nutrient ratios

Figure 4-1. Factors for determining indicators and target values

Complementary Approaches

Nutrient Criteria Guidance

- Nutrient
 - P
 - N
- Biological
 - TOC
 - Chl a/Biomass
 - Clarity
 - DO
 - macrophyte coverage/biomass
 - biological indicators
- Could add
 - User perception endpoints
 - Nuisance algal abundances
 - Toxin/other chemical levels (e.g., MIB)

Figure 1.2. Flowchart of the nutrient criteria development process,

Complementary Approaches: Setting Targets

• TMDL Guidance

- Reference
- User surveys
- Trophic classification
- **o** Literature
- o BPJ
- All of these are elements of Criteria Guidance

- Nutrient Criteria Guidance
 - Classification
 - <u>Reference Condition</u> <u>Approaches</u>
 - Stressor-Response Approaches
 - <u>Scientific Literature and</u> <u>Expert Judgment</u>
 - Mechanistic Models
 - Multiple Lines of Evidence
- Some of these under TMDL Guidance
- Multiple uses

General Approach: Classification

Classification

- Apples and Oranges
- Separate waterbodies into ones expected to exhibit similar nutrient dynamics and biological responses in the absence of human impacts
 - × A priori
 - o Flow, climate, geology, hydrology
 - Ecoregions, physiographic provinces
 - × A posteriori
 - Analyze nutrient/response dynamics in reference sites across landscape
- For TMDLs, important to know that this is factored into target development, may not be necessary for a single waterbody

General Approach: Reference

Reference

- Ideally natural or nearnatural
 - × Integrity
- Often "least disturbed"
- May need to use all sites
- Select a percentile
 - Management decision that involves risk/acceptability of reference
 - Will depend on quality of reference, sampling, and risk acceptability

General Approach: Reference

Modeling Reference

- Model the reference condition based on disturbance
- Also can incorporate classification into this
 - Add factors for ecological setting, size, date, etc.

General Approach: Stressor-response

- Identify that concentration associated with an adverse response condition
 - Is this just kicking the can? What is an "adverse condition"?
 - × Can be an existing criterion (DO, pH)
 - × Could be an existing translator (biocriteria)
 - × Can be BPJ (seagrass coverage)
 - **×** Can be estimated from reference
 - × Can be identified from S-R relationship
 - Can use a series of S-R models to get from something with an existing value to nutrient criteria?

General Approach: Stressor-response

- Empirical Modeling
 - Change points may be informative

General Approach: Stressor-response

- Controlling for covariation/other variables
 - Classification (e.g., splitting, clustering, propensity classes)

General Approach: Scientific Literature/Expert Judgment

- Voluminous literature on nutrient effects on aquatic systems
 - For example, 9,300 citations in NSTEPS bibliography alone
 - Some of this may help identify management endpoints, surely

Scientific expertise

- Criteria development guidance encourages development of technical advisory groups
- Accumulated knowledge is useful

General Approach: Mechanistic Models

- Mechanistic and/or Process Models
 - E.g., WASP, QUAL-2k, EFDC, CE-QUAL, HSPF, MIKE...
 - Model specific endpoints to generate nutrient goals
 - Still need a desired endpoint for something...kicking the can, again
 - Primarily chemical endpoints (DO, clarity, pH), some biological endpoints (Chl a, some species)
 - × AQUATOX can do ecological endpoints
 - Run these to back out nutrient concentrations/loads to meet response endpoint
 - Site specific application has limited the utility for regional criteria

Multiple Lines of Evidence

- Generate candidate endpoints
- Weight qualitatively/quantitatively
- Final target is a result of multiple lines

 "A weight of evidence approach that combines one or more of the three approaches described below will produce criteria of greater scientific validity." – USEPA Streams and Rivers Guidance

So you have an impairment...

Goal of this talk:

- How do you set a numeric target for TMDLs to protect/restore designated use?
 - Complementary approaches
 - Especially if you know criteria are coming (or riding alongside...)
 - Site specific models have the potential to be more precise for a specific site
 - Well calibrated/validated
 - Still need a response endpoint if not using an existing criterion (DO, pH)

Some Very Good Examples

- 9:30 Pennsylvania Nutrient TMDLs Using a Weight of Evidence Approach Elizabeth Gaige, US EPA Region 3
- 10:00 Michigan Approach to Setting Nutrient Targets Based on Biological Impairments Sylvia Heaton, Michigan Department of Environmental Quality
- 10:30 Break
- 10:45 Identification of Nutrient Concentrations and Enrichment Indicators for Application in a Weight- of-Evidence Based Nutrient Water Quality Standard for Ohio Bob Miltner, Ohio Environmental Protection Agency
- 11:15 Development of Biologically Based Total Maximum Daily Loads for Nutrients in the Upper Midwest Shivi Selvaratnam, Indiana Department of Environmental Management and Jeff Frey, USGS