EPA 440/1-76/083A

INTERIM FINAL Supplement For PRETREATMENT to the Development Document for the **PETROLEUM REFINING** INDUSTRY

Existing Point Source Category

U.S. ENVIRONMENTAL PROTECTION AGENCY

MARCH 1977

INTERIM FINAL SUPPLEMENT FOR PRETREATMENT TO THE DEVELOPMENT DOCUMENT FOR THE PETROLEUM REFINING INDUSTRY EXISTING POINT SOURCE CATEGORY

> Douglas M. Costle Administrator

Thomas C. Jorling Assistant Administrator for Water & Hazardous Materials

Albert J. Erickson Acting Deputy Assistant Administrator for Water Planning & Standards

Robert B. Schaffer Director, Effluent Guidelines Division

> Dennis Ruddy Project Officer

> > MARCH, 1977

Effluent Guidelines Division Office of Water & Hazardous Materials U.S. Environmental Protection Agency Washington, D.C. 20460

ABSTRACT

This development document presents the findings of an extensive study of the existing source pretreatment segment of the petroleum refining industry for the purposes of developing pretreatment standards pursuant to Section 307(b) of the Federal Water Pollution Control Act Amendments of 1972 (P.L. 92-500). This document is a supplement to the "Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Petroleum Refining Point Source Category" (April, 1974). Interim final pretreatment standards are present for the industrial segment discharging to publicly owned treatment works (POTW).

The interim final pretreatment standards contained herein are based upon treatment technologies analogous to the application of best practicable control technology currently available (BPCTCA). Selection of pollutant parameters included an evaluation of potential for pass through or interference with the operation of POTW. Supporting data and rationale for the development of the interim final pretreatment standards are contained in this development document.

i

CONTENTS

Section

Page

I	Conclusions	1
II	Recommendations	5
	Pretreatment Standards for Existing Sources	5
III	Introduction	9
	Purpose and Authority	9
	Pretreatment Standards Development Procedure	10
	General Description of Industry Segment Utilizing POTW	13
IV	Industry Subcategorization	15
	Introduction	15
	Factors Considered in Subcategorization	16
	Summary	21
v	Waste Characterization	25
	Introduction	25
	Pretreatment Effluent Characteristics	25
	API Separator Effluent Characteristics	29
	Sour Water Waste Stream Characteristics	29
VI	Selection of Pollutant Parameters	35
	Introduction	35
	Selected Pollutant Parameters	35
VII	Control and Treatment Technology	39
	Introduction	39
	Disposition of Waste Streams	39

iii

.

	In-Plant Control Technology	41
	At-Source PretreatmentSegregation	43
	Treatment Technology	45
VIII	Cost, Energy, and Non-Water Quality Aspects	69
	Introduction	69
	Cost and Energy	69
	Non-Water Quality Aspects	83
IX	Pretreatment Standards	89
	Introduction	89
	Existing Local Pretreatment Require- ments	89
	Subcategorization	90
	Rationale for Development of Pretreatm Standards for Selected Pollutant Para- meters Parameters	ent 90
	Summary	97
x	Acknowledgments	99
XI	References	103
XII	Glossary and Abbreviations	109
	Glossary	109
	Abbreviations	114

TABLES

Table No.	Title	Page
III-l	Inventory of Petroleum Refineries Discharging to Municipal Systems	11
IV-1	Distribution of Refineries by Crude Capacity	19
IV-2	API Separator Effluent Characteristics for Subcategory B - CrackingIndirect Discharge Refineries vs. Total Industry	20
IV-3	Distribution of Refineries by Sub- category	22
IV-4	Process SummaryIndirect Discharge Refineries	23
V-1	Summary of Indirect Discharge Refineries' Effluent Data	27
V-2	Summary of Indirect Discharge Refineries' API Separator Effluent Quality	30
V-3	Data Summary of Indirect Discharge Refineries' Stripped Sour Water	32
V-4	Average Quality of Sour Water Stripper Bottoms - Steam Stripping - Refluxed	33
V- 5	Average Quality of Sour Water Stripper Bottoms - Steam Stripping - Non-Refluxed	34
VI-1	Effects of Chromium on Biological Treatment Processes	38
VII-1	Wastewater Operations at Indirect Discharge Refineries	40
VII-2	Description of Existing POTW Receiving Refinery Effluent	42
VII-3	Summary of Operating DataSour Water Strippers - Steam Stripping - Refluxed	46
VII-4	Summary of Operating DataSour Water Strippers - Steam Stripping - Non-Refluxed	51

Table No.	Title	Page
VII-5	Summary of Operating DataSour Water Strippers - Flue Gas and Fuel Gas Strippers	57
VII-6	Sour Water Stripper Operating Data for Refinery #17	59
VII-7	Summary of Operating DataSour Water Oxidizers	61
VII-8	Operating Data for the Removal of Phenols in the DesalterRefinery #18	62
VIII-l	Costs for Installing Sour Water Strippers for Ammonia Removal	74
VIII-2	Operating CostsSour Water Strippers	75
VIII-3	Capital CostsPretreatment for Phenol Removal	76
VIII-4	Operating CostsPhenol Removal Systems	78
VIII-5	Capital CostsChromium Removal Systems	80
VIII-6	Operating CostsChromium Removal Systems	81
VIII-7	Capital CostsDissolved Air Flotation	84
VIII-8	Total Capital CostsDissolved Air Flotation	85
VIII-9	Operating CostsDissolved Air Flotation	86

FIGURES

Figure No.	Title	Page
IV-1	Geographic Distribution of Refineries	17
V-1	Waste Characterization Procedure for Indirect Discharge Refineries	26
VII-1	Influent Phenol Concentration to Bio- Unit at Plant 52	64
VII-2	Effluent Phenol Concentration from Bio-Unit at Plant 52	65
VIII-1	Capital CostSour Water Stripping	70
VIII-2	Refinery Capacity vs. Sour Water Flow Rate	71
VIII-3	Capital Costs vs. Flow RateDissolved Air Flotation	82
IX-1	Oil and Grease Effluent Data for Selected Indirect Discharge Refineries	93
IX-2	Sulfide Effluent Data for Selected Indirect Discharge Refineries	95
IX-3	Ammonia-N Effluent Data for Selected Indirect Discharge Refineries	96

SECTION I

CONCLUSIONS

There are presently 26 refineries that have been identified whose process wastewater is discharged to municipal treatment systems. Generally, the geographic distribution of these indirect dischargers is similar to that of the industry as a whole, with the majority being located in California and Texas. Analyses of location, age, economic status, size, wastewater characteristics, and manufacturing processes of indirect versus direct dischargers shows that there are no fundamental differences that would warrant а different method of subcategorization for the indirect discharging segment of the petroleum refining industry. Tt. was determined in this study that the subcategorization scheme for indirect dischargers should be the same as the 1974 Development Document (3). defined in This subcategorization scheme is as follows:

- A Topping;
- B Cracking;
- C Petrochemical;
- D Lube; and
- E Integrated.

Quantitative data describing the effluent characteristics of indirect discharging refineries, industry-wide API separator effluent characteristics, and sour water stripper effluent characteristics were collected and are presented in Section V of this document. The criteria for selection of pollutants to be considered in this study included the ability of a particular pollutant to interfere with or pass through a publicly owned treatment works (POTW). Upon analyses of the available data, the following pollutant parameters were selected for further study:

Ammonia; Sulfide; Oil and Grease; Phenol; and Chromium

It is concluded that all indirect dischargers should be subject to the same pretreatment standards. Pretreatment standards are imposed on a concentration basis as compared to a mass basis characteristic of effluent limitations and standards of performance for new sources for the petroleum refining point source category (direct dischargers). Additionally, the pollutants of concern for pretreatment purposes are common to all refineries' wastewaters. The treatment technologies available for controlling these pollutants are applicable to refinery wastes in general.

Information on the control and treatment technologies presented in the 1974 Development Document included discussions of the capability of removing the pollutants selected for regulation. This same approach has been applied to the indirect discharging segment of the petroleum refining industry in this document. The technologies discussed herein consider those processes capable of removing pollutant parameters selected for further study (sulfides, ammonia, phenols, oil and grease, and chromium). Analyses of the available data confirm that the major source of ammonia, sulfide, and phenol is the sour water waste stream. Therefore, segregation and treatment of sour waters are immediate concern relative to pretreatment. of Discussion of other significant wastewater sources is also presented in this document. The sources and concentrations of the selected pollutants are generally equivalent between subcategories: therefore, available treatment technologies are applicable to all subcategories.

Based on the effluent data collected, the available control and treatment technologies, and the effect of each pollutant parameter on POTW operations, it was concluded that pretreatment standards should be established for ammonia and oil and grease. Uniform national pretreatment standards for phenol, sulfide, and chromium were judged at this time to be inappropriate for all indirect dischargers. However, this document provides guidance to the operators of POTW relative to chromium, sulfides, and phenolic compounds should these be determined, on an individual basis, to be harmful to or not adequately treated by POTW. The indirect discharging segment of the industry has been specifically identified relative to their current pretreatment operations. Therefore, total costs for implementation of pretreatment standards have been estimated based on a plant-by-plant evaluation. Model plant evaluations have been utilized to supplement this approach where necessary. The estimated total capital costs for all indirect discharging refineries are summarized by pollutant parameter as follows:

Ammonia	\$3,560,000
Oil and Grease	2,370,000
Total	\$ 5,930,000

These estimates represent maximum costs that would be experienced if it were necessary that all indirect discharging refineries not having pretreatment technology in-place install facilities for ammonia and secondary oil removal. In actuality, the economic impact of pretreatment standards on the industry should be significantly less than the total costs shown, since many refineries may not require additional facilities in order to meet pretreatment standards for these parameters. It is not anticipated that any serious energy impact or non-water quality environmental impact will result from the implementation of the recommended pretreatment standards.

SECTION II

RECOMMENDATIONS

PRETREATMENT STANDARDS FOR EXISTING SOURCES

It is recommended that the following be established as the pretreatment standards for existing sources within the petroleum refining point source category. They should be applicable to discharges to publicly owned treatment works (POTW) from petroleum refineries, including refineries within the Topping subcategory (subcategory A), the Cracking subcategory (subcategory B), the Petrochemical subcategory (subcategory C), the Lube subcategory (subcategory D), and the Integrated subcategory (subcategory E).

Pretreatment Standards for Existing Sources within the Petroleum Refining Point Source Category (Subparts 419.14, 419.24, 419.34, 419.44, and 419.54)

For the purpose of establishing pretreatment standards under Section 307(b) of the Act for a source within the petroleum refining point source category, the provisions of 40 CFR 128 shall not apply. The recommended pretreatment standards for an existing source within the petroleum refining point source category are set forth below.

(a) No pollutant (or pollutant property) introduced into a publicly owned treatment works shall interfere with the operation or performance of the works. Specifically, the following wastes shall not be introduced into the publicly owned treatment works:

(1) Pollutants which create a fire or explosion hazard in the publicly owned treatment works.

(2) Pollutants which will cause corrosive structural damage to treatment works, but in no case pollutants with a pH lower than 5.0, unless the works is designed to accommodate such pollutants.

(3) Solid or viscous pollutants in amounts which would cause obstruction to the flow in sewers, or other interference with the proper operation of the publicly owned treatment works.

(4) Pollutants at either a hydraulic flow rate or pollutant flow rate which is excessive over relatively short

time periods so that there is a treatment process upset and subsequent loss of treatment efficiency.

(b) In addition to the general prohibitions set forth in paragraph (a) above, the following pretreatment standard establishes the quality or quantity of pollutants or pollutant properties controlled by this subsection which may be introduced into a publicly owned treatment works by a source subject to the provisions of this subpart.

Pollutant or	Pretreatment
Pollutant Property	<u>Standard</u>
	Maximum for any one day (milligrams _per_liter)
Ammonia (as N)	100
Oil and grease	100

(c) Any owner or operator of any source to which the pretreatment standards required by paragraph (a) above are applicable, shall be in compliance with such standards upon the effective date of such standards. The time for compliance with standards required by paragraph (b) above shall be within the shortest time but not later than three years from the effective date of such standards.

<u>Guidance to Assist Local Authorities in Implementing</u> <u>Pretreatment Standards for Existing Sources within the</u> <u>Petroleum Refining Point Source Category (Subparts 419.14,</u> <u>419.24, 419.34, 419.44 and 419.54) in those Individual Cases</u> <u>Where Chromium, Sulfides, or Phenol are Found to Have a</u> <u>Detrimental Effect on POTW</u>

Should it be determined on an individual basis by local authority that sulfides, phenol, or chromium discharged from petroleum refineries have a significant detrimental effect on a POTW, by creating either upset or pass-through problems, the following limitations can be achieved by the application of existing technology. These limitations are meant to serve as guidance to assist local authorities in dealing with their individual problems.

Pollutant	or	Guidance
Pollutant	Property	Standard

Maximum for any one day

	(milligrams <u>per liter)</u>
Total Chromium	1.0
Sulfides	3.0
Phenol	0.35

SECTION III

INTRODUCTION

PURPOSE AND AUTHORITY

The Federal Water Pollution Control Act Amendments of 1972 "Act") were designed by Congress to achieve an (the important objective -- to "restore and maintain the chemical, physical, and biological integrity of the Nation's waters." Primary emphasis for attainment of this goal is placed upon technology-based regulations. Industrial point sources which discharge into navigable waters must achieve limitations based on best practicable control technology currently available (BPCTCA) by July 1, 1977, and best available technology economically achievable (BATEA) by July 1, 1983, in accordance with sections 301(b) and 304(b) of the Act. New sources must comply with new source performance standards (NSPS) based on best available demonstrated control technology under section 306 of the Act. Publicly owned treatment works (POTW) must meet "secondary treatment" by 1977 and best practicable waste treatment technology by 1983 in accordance with sections 301(b), 304(d), and 201(g) (2) (A) of the Act.

Users of POTW also fall within the statutory scheme as set forth in section 301(b). Such sources must comply with pretreatment standards promulgated pursuant to section 307.

Sections 307(b) and (c) are the key sections of the Act with regard to pretreatment. The intent is to require treatment at the point of discharge complementary to the treatment performed by the POTW. Duplication of treatment is not the goal; as stated in the Conference Report (H.R. Rept. No. 92-130), "In no event is it intended that 1465. page pretreatment facilities be required for compatible wastes as a substitute for adequate municipal waste treatment works." the other hand, pretreatment by the industrial user of a On POTW of pollutants which are not susceptible to treatment in a POTW is absolutely critical to attainment of the overall objective of the Act. Pretreatment of pollutants can serve two useful functions -- protecting the POTW from process upset or other interference and preventing discharge of pollutants which would pass through or otherwise remain untreated after treatment at such works. Thus, the fact that an industrial source utilizes a POTW does not relieve it of substantial obligations under the Act.

Section 307(b) of the Act requires the Administrator to promulgate regulations establishing pretreatment standards for the introduction of pollutants into treatment works which are publicly owned for those pollutants which are determined not to be susceptible to treatment by such treatment works, or which would interfere with the operation of such treatment works. Pretreatment standards established under this section shall be established to prevent the discharge of any pollutant through treatment works which are publicly owned which pollutant interferes with, passes through, or otherwise is incompatible with such works.

Section 307(c) provides that the Administrator shall promulgate pretreatment standards for any source which would be a new source subject to section 306 if it were to discharge pollutants to navigable waters. The promulgation of pretreatment standards for new sources is to be simultaneous to the promulgation of standards of performance under section 306 for the equivalent category of new sources. Such pretreatment standards shall prevent the discharge of any pollutant into such treatment works which pollutant may interfere with, pass through, or otherwise be incompatible with such works.

The purpose of this study was to obtain data on that portion of the petroleum refining industry that utilizes POTW as part of its waste management program. Specifically, the study sought to obtain definitive information from the literature, to analyze previous reports relative to the petroleum industry published by the Effluent Guidelines Division of EPA and the National Commission on Water Quality, and to obtain further detailed information through visits of representative plants discharging their effluents to POTW. The data obtained in this manner provided the basis for pretreatment standards for that segment of the industry utilizing POTW (i.e., the indirect discharging segment).

PRETREATMENT STANDARDS DEVELOPMENT PROCEDURE

The information presented in this document relative to petroleum refineries which are indirect dischargers was developed in the following manner.

The 1974 Development Document and the associated supplemental information were reviewed. The indirect discharging segment of the petroleum refining industry was identified through an inventory of refineries discharging to POTW (Table III-1). Data on these plants, including process unit operations (Table IV-1), wastewater characteristics

TABLE III-1

INVENTORY OF PETROLEUM REFINERIES DISCHARGING TO MUNICIPAL SYSTEMS

п

11

..

11

**

11

EPA Region IV Delta Refining Co., Memphis, Tenn.

EPA Region V Ashland Petroleum Co., Findlay, Ohio Clark Oil & Refining Corp., Blue Island, Ill.

EPA Region VI Atlantic Richfield Co., Houston, Tex Crown Central Petroleum Corp., Houston, Tex. LaGloria Oil & Gas Co., Tyler, Tex. Pride Refining, Inc., Abilene, Tex. Quintana-Howell, Corpus Christi, Tex.

EPA Region VII Derby Refining Co., Wichita, Kan.

EPA Region VIII Amoco Oil Co., Salt Lake City, Utah Husky Oil Co., North Salt Lake, Utah

EPA Region IX

11

Atlantic Richfield Co., Carson, Cal. Douglas Oil Co. of Cal., Paramount, Cal. Edgington Oil Co., Long Beach, Cal. Fletcher Oil & Refining Co., Carson, Cal. Golden Eagle Refining Co., Carson, Cal. Powerine Oil Co., Santa Fe Springs, Cal. Shell Oil Co., Wilmington, Cal. Texaco, Inc., Wilmington, Cal. Union Oil Co. of Cal., Los Angeles, Cal. Lunday-Thagard Oil Co., South Gate, Cal. MacMillan Ring-Free Oil Co., Long Beach, Cal. Mobil Oil Corp., Torrence, Cal. Gulf Oil Co., Santa Fe Springs, Cal. Beacon Oil Co., Hanford, Cal.

POTW (Publicly Owned Treatment Works)

Memphis (south) Wastewater Treatment Plant

Findlay Wastewater Treatment Plant Chicago MSD - Calumet Plant

Gulf Coast Waste Disposal Authority^{*} Gulf Coast Waste Disposal Authority^{*} City of Tyler Sewer System - West Plant Abilene Wastewater Reclamation Plant Corpus Christi Wastewater Treatment Works - West Plant

Wichita Sewage Treatment Plant

Salt Lake City Wastewater Reclamation Plant South Davis County - S. Plant

L.A. County Sanitary District (LACSD) (Joint Water Pollution Control Plant)

Los Coyotes Water Renovation Plant (LACSD) Hanford Municipal System

EPA Region X Standard Oil of Cal., Portland, Ore.

City of Portland Sewer System

NOTE: Inventory excludes those refineries with only sanitary sewer connections to POTW's. *GCWDA treats only industrial wastewaters (total plant, raw waste, and major waste streams - Tables V-1, 2, and 3), and pretreatment operations (Table VII-1) were then obtained. POTW receiving refinery wastewater (excluding those receiving only sanitary wastes) were identified and characterized in terms of location (Table III-1), flow, pretreatment operations, and refinery pretreatment requirements (Table VII-2).

This additional information was obtained from a literature search and from direct contact with representatives of industry and the respective municipalities. Twenty-six indirect discharging refineries were identified (see Table III-1). Eleven of these indirect discharging refineries were visited. Representatives of the remaining 15 were contacted by telephone. A visit was made to the County Sanitation Districts of Los Angeles County which receive the effluent from 12 of the 26 refineries that discharge to POTW. Representatives of other refineries (direct discharge refineries) and representatives of the EPA and State and local agencies were also contacted in this endeavor.

The indirect discharging segment was studied to determine whether separate pretreatment standards were appropriate for the different subcategories within the point source category. This analysis included a review of the data base developed as background to the 1974 Development Document and of the newly aquired data to determine whether differences in raw materials used, products produced, manufacturing processes employed, equipment employed, age and size of the facilities, wastewater constituents, or other factors would require development of separate pretreatment standards for different subcategories within the point source category.

The raw waste characteristics of the indirect discharging segment were identified and included in the analysis. The analysis included consideration of: 1) the sources and volume of water used in the processes employed and the sources of pollutants and wastewaters in the refinery, and 2) the constituents of all wastewaters generated at indirect discharging refineries. The constituents of wastewaters to be considered for pretreatment standards were identified.

The full range of control and pretreatment technologies existing within the point source category were identified. This included identification of each distinct control and treatment technology, including an identification in terms of the amounts of constituents and the chemical, physical, and biological characteristics of pollutants, and of the effluent level resulting from the application of each of the pretreatment and control technologies. The problems,

limitations, and reliability of each treatment and control technology and the required implementation time were also identified. In addition, the nonwater quality environmental impacts, such as the effects of the application of such technologies upon other pollution problems, including air, solid waste, and noise were also identified. The energy requirements of each control and treatment technology were identified as well as the cost of the application of such technology.

The information gathered and the analysis of this information form the basis of the pretreatment standards presented in Section IX of this document. The goal of this study was to develop pretreatment standards on a technologybasis. The study centered on technology currently in use and readily available to the industry for the purpose of controlling selected pollutant parameters which interfere with, are inadequately treated by, or pass through POTW.

GENERAL DESCRIPTION OF THE INDUSTRY SEGMENT UTILIZING POTW

That portion of the petroleum refining industry which discharges to municipal treatment systems represents approximately 10 percent of the total number of refineries in the United States. These plants are generally similar to those representative of the industry as a whole, with the exception of the feasibility of indirect discharge due to plant location (accessibility to a POTW). A general description of the entire industry is contained in the 1974 Development Document (see pages 14-54 of the 1974 Development Document) and is equally applicable to both direct and indirect dischargers.

SECTION IV

INDUSTRY SUBCATEGORIZATION

INTRODUCTION

The petroleum refining point source category was subcategorized during the development of effluent limitations and guidelines and new source performance standards (see the 1974 Development Document). The subcategorization is process oriented; the delineation between subcategories is based upon raw waste load characteristics in relation to the complexity of refinery operations. It is identified in the 1974 Development Document (3) as follows:

Subcategory Basic Refinery Operations Included

- A Topping Topping and catalytic reforming whether or not the facility includes any other process in addition to topping and catalytic reforming. This subcategory is not applicable to facilities which include thermal processes (coking, visbreaking, etc.) or catalytic cracking.
- B Cracking Topping and cracking, whether or not the facility includes any processes in addition to topping and cracking, unless specified in one of the subcategories listed below.
- C Petrochemical Topping, cracking, and petrochemical operations, whether or not the facility includes any process in addition to topping, cracking and petrochemical operations,* except lube oil manufacturing operations.

*The term "petrochemical operations" shall mean the production of second generation petrochemicals (i.e., alcohols, ketones, cumene, styrene, etc.) or first generation petrochemicals and isomerization products (i.e., BTX, olefins, cyclohexane, etc.) when 15% or more of refinery production is as first generation petrochemicals and isomerization products.

D - Lube Topping, cracking and lube oil manufacturing processes, whether or not the facility includes any process in addition to topping, cracking and lube oil manufacturing processes, except petrochemical (*see note on previous page) and integrated operations.

E - Integrated Topping, cracking, lube oil manufacturing, and petrochemical operations, whether or not the facility includes any processes in addition to topping, cracking, lube oil manufacturing, and petrochemical operations (*see note on previous page).

In developing pretreatment standards for the industry, a comparison of characteristics of indirect dischargers with those of the industry as a whole was made to determine whether or not the subcategorization presented above is applicable to those refineries discharging wastewaters to POTW. The factors considered were:

- 1. Refinery characteristics
- 2. Volume and characteristics of wastewater
- 3. Manufacturing processes employed

FACTORS CONSIDERED IN SUBCATEGORIZATION

Refinery Characteristics

Within the United States, petroleum refineries are concentrated in areas of major crude production (Texas, California, Louisiana, Oklahoma, Illinois, Kansas) and in major population areas (Illinois, Indiana, New Jersey, Ohio, Texas, California). Of the total of 256 operating refineries as of January 1, 1976 (19), 26 refineries were identified that discharge process waste waters to POTW. As shown in Figure IV-1, the geographic distribution of these indirect discharging refineries is similar to that of the industry as a whole, with the majority being located in California and Texas. It is therefore concluded that geographic location is not a significant factor affecting subcategorization.

Most indirect discharging refineries surveyed were first constructed decades ago, as is the case with many facilities throughout the industry. Initial construction, however, is a meaningless characteristic for comparison, since additions to and modifications of existing refineries are the

FIGURE IV-1

GEOGRAPHIC DISTRIBUTION OF REFINERIES industry's principal form of expansion. The age of existing plants does not determine either the volume or the quality of wastewater discharged to a POTW and, therefore, is not a valid factor affecting subcategorization.

During the technical study, no general trend was recognized in terms of the economic stature of refineries discharging to municipal treatment systems. There is no reasonable basis for assuming that refineries utilizing POTW for disposal of wastes are significantly different economically than their counterparts that discharge wastewaters directly to navigable waters. (The economic study, which parallels the technical study, has determined that even with the implementation of pretreatment standards for ammonia and oil and grease, indirect discharging refineries have a competitive advantage over direct discharging refineries. See <u>Federal Register</u>, Vol. 42, No. 56, March 23, 1976, p. 15685).

The combined crude throughput of indirect dischargers amounts to about 10% of the 15.7 million barrels/day total capacity of all U.S. petroleum refineries operating in 1976(19). These range in size from a small, 5000 bbl/day topping facility to a large, integrated complex with a 233,500 bbl/day capacity. Table IV-1 indicates that the size distribution of indirect discharging facilities is approximately the same as that for the industry as a whole.

Volume and Characteristics of Wastewater

During the development of effluent limitations for the petroleum refining point source category, it was determined that raw waste loading was the most significant factor affecting subcategorization (see 1974 Development Document at pages 56-62). The 1972 "Petroleum Industry Raw Waste Load Survey" (1) provides a useful tool for comparing raw wastewater characteristics between direct and indirect dischargers. The 1972 study included a survey of API separator effluents from 135 refineries. Table IV-2 presents information obtained in that survey for refineries within the Cracking subcategory (subcategory B). A comparison of median raw waste load values for the identified indirect dischargers to those for the total industry indicates a close similarity for certain key parameters--flow (gal/bbl crude), TOC, oil and grease, and sulfide. Recognizing the limited quantity of data available, the data tend to confirm that raw waste water quality for indirect dischargers does not differ in any significant way from that of the entire industry. A further comparison with raw waste load data gathered for the

TABLE IV-1

DISTRIBUTION OF REFINERIES BY CRUDE CAPACITY

	Cruđe	Capacity	(1000	bbl/day)
	< 40	40	0-100	>100
Indirect Dischargers:				
Number of refineries	13		7	6
Percentage of total	50		27	23
Total Industry*:				
Number of refineries	139		68	49
Percentage of total	54		27	19

*Reference 19

.

TABLE IV-2

API SEPARATOR EFFLUENT CHARACTERISTICS FOR SUBCATEGORY B-CRACKING INDIRECT DISCHARGE REFINERIES VS. TOTAL INDUSTRY (Reference #26)

API	Separator	Effluent	Load	(lbs./day	per	1000	bbl.	crude)

Indirect Discharge	Effluen	t Volume								
Refinery Code	Total MGD	Gal./Bbl Crude	BOD(5)	COD	TOC	O&G	Phenolics	Sulfide	Chromium	Ammonia
2	7.96	85.82	-	, -	-	-	22.21	0.18	-	21.63
3	3.35	47.86	255.95	598.88	140.34	38.35	12.66	0.03	0.18	127.77
7	3.46	26.62	365.37	1432.58	89.23	203.20	0.60	0.40	0.45	103.95
10	0.48	11.21	67.41	211.15	21.44	13.74	17.69	0.00	0.00	56.16
15	0.08	6.93	2.17	17.84	4.12	3.82	0.37	0.03	0.12	0.86
17	0.25	24.49	329.97	590.95	6.45	3.31	3.58	17.48	0.00	3.36
18	1.22	32.71	42.69	148,86	46.67	4.72	0.66	14.22	-0.05	1.56
19	0.22	8.46	-	0.03	20.19	12.00	1.83	0.42	0.01	6.45
25	3.41	36.54	57 . 99	131.78	20.24	2.81	15.47	1.82	7.68	48.24
4	4.96	5 5.7 3	16448	565,55	73.48	22.68	4 3.0 5	0.0 0	0.1 3	3 8.2 5
Median	2,2 8	2 9.6 7	115,95	211.15	2144	1200	8.1 2	0.2 9	0.1 2	3494
Total Industry										
Median	1.31	40.73	37.96	105.29	18.21	14.52	1.66	0.34	0.03	7.86

.

establishment of effluent limitations (see Development Document, Table 19, page 65) shows that the data for indirect discharging refineries (Table IV-2) are within the range of values anticipated. Although no comparable data were obtained during this study from indirect dischargers within other subcategories, it is not expected that raw waste water quality will differ in any significant way from that of the industry as a whole. It is expected that additional data will be available to enable further evaluation as a result of the BATEA review for the petroleum refining industry which is being conducted as a result of the order of the U.S. District Court for the District of Columbia entered in <u>Natural Resources Defense Council, et</u> al., v. Train, 8 E.R.C. 2120 (D.D.C. 1976).

Manufacturing Processes Employed

Today's petroleum refinery is a complex combination of interdependent operations which involve the separation of crude molecular constituents, molecular cracking, molecular rebuilding, and solvent finishing to produce a diverse range of products. As shown in Table IV-3, the distribution of indirect discharge refineries in each subcategory is similar to that for the entire industry. Table IV-4 is a summary of the types of manufacturing processes employed by those refineries identified in this study as discharging wastewaters to POTW. No major differences were identified between the refining methods used by these facilities and those employed by the industry in general.

SUMMARY

The subcategorization presented in the 1974 Development Document (3) allows for the definition of logical segments within the refining industry based on factors which affect raw waste load. Further analysis of these factors has shown that there are no fundamental differences between the indirect discharging portion of the industry and the petroleum refining industry as a whole. Therefore, the same method of subcategorization can be used to characterize those refineries discharging to POTW.

TABLE IV-3

DISTRIBUTION OF REFINERIES BY SUBCATEGORY

		Subcategory								
		<u> </u>	<u> </u>	_ <u>C</u>	D	<u>_</u>				
Indirect	Dischargers:									
	Number of refineries	10	13	2	0	1				
	Percentage of total	38	50	8	0	4				
Total Ind	ustry*:									
	Number of refineries	96	111	19	22	8				
	Percentage of total	38	43	7	9	3				

*References 19,29

1

TABLE IV-4

PROCESS SUMMARY INDIRECT DISCHARGE REFINERIES

Refinery	Region	Sub- Category	Refinery Capacity 1000 bbl/day	Crude Processes 1000 bb1/day	Cracking Processes 1000 bbl/day	Lube Processes 1000 bbl/day	Asphalt Production 1000 bbl/day	Data Source
Standard Oil Co. of Cal. Portland, Ore.	10	A	15.0	D 15.0 A 15.0 V 15.0			8.6	3,29
Union Oil Co. of Cal. Los Angeles, Cal.	9	В	111.0	D 86.0 A 111.0 V 83.0	F 52.0 H 21.0 V 20.0		10.0	3
Texaco Inc. Wilmington, Cal.	9	В	75.0	D 22.0 A 75.0	d 48.0 F 28.0 H 20.0			3,29
Shell Oil Co. Wilmington, Cal.	9	В	101.0	D 101.0 A 101.0 V 60.0	d 37.0 F 40.0	C 7.8 D 24.3 E 1.8 G 18.6 M 7.8		3, RC
Powerine Oil Co. Santa Fe Springs, Cal.	9	В	44*0	D 44.0 A 44.0 V 15.0	F 12.0		5.0	3,19,RC
Mobil Oil Corp. Torrance, Cal.	9	В	123.5	D 100.0 A 123.5 V 95.0	D 46.6 F 56.0 H 18.0 V 16.0			3,RC
MacMillan Ring-Free Oil Co. Long Beach, Cal.	9	A	12.2	A 12.2 V 12.2				19 ,29
Lunday-Thagard Oil Co. South Gate, Cal.	9	A	5.0	D 5.0 A 5.0 V 3.0			2.15	19 ,29, RC
Gulf Oil Co. Santa Fe Springs, Cal.	9	В	53.8	D 53.8 A 53.8 V 25.0	F 13.8 H 11.0 V 13.8		4.0	3
Golden Eagle Refining Co. Carson, Cal.	9	A	15.0	D 15.0 A 15.0				19,29,RC
Fletcher Oil & Refining Co. Carson, Cal.	9	A	20.0	D 20.0 A 20.0				19
Edgington Oil Co. Long Beach, Cal.	9	A	30.0	D 30.0 A 30.0 V 19.0			12.0	19,29

Refinery	Region	Sub- Category	Refinery Capacity 1000 bbl/day	1 10	Crude Processes DOO bbl/day		Crs Prc 1000	acking ocesses) bb1/day		Lube Processes 00 bb1/day	Asphalt Production 1000 bbl/day	Data Source
Douglas Oil Cc. of Cal. Paramount, Cal.	9	A	46.5	D A V	46.5 46.5 21.0						18.0	19,29,RC
Beacon Oil Co. Hanford, Cal.	9	В	12.4	D A	12.4 12.4		G V	0.5 2.75				3,19,29
Atlantic Richfield Co. Carson, Cal.	9	с	186.4	D A V	186.4 186.4 93.0		D 3 F 6 G 1 H 1 V 4	30.0 55.0 12.5 19.7 +2.0				3,29,RC
Husky Oil Co. North Salt Lake City, Utah	8	B	24.0	D A V	24.0 24.0 4.6							3.19.PC
Amoco Oil Co. Salt Lake City, Utah	8	В	39.0	D A	39.0 39.0		F	22.0			2.5	3
Derby Refining Co. Wichita, Kan.	7	В	27.65	D A V	27.65 27.65 8.8		D T	3.8 12.55				3,19
Quintana-Howell Corpus Christi, Tex.	6	А	44.5	D A	44.5 44.5							3,19
Pride Refining Inc. Abilene, Tex.	6	А	37.96	D A	37.96 37.96							3,19
LaGloria Gas & Oil Co. Tyler, Tex.	6	В	29.7	D A	29.7 29.7		D F G	12.0 15.0 3.0				3,19
Crown Central Petroleum Corp. Houston, Tex.	6	В	103.0	D A V	103.0 103.0 38.0		D F	9.5 52.0				3
Atlantic Richfield Co. Houston, Tex.	6	E	233.5	D A V	233.5 233.5 70.0		D F H	27.0 74.0 4.5	A C D G Q	5.2 3.4 0.6 4.0 6.2		3
Clark Oil & Refining Corp. Blue Island, Ill.	5	с	70.0	D A V	70.0 70.0 27.0]	F H	25.0 11.0			4.5	3
Ashland Petroleum Co. Findlay, Ohio	5	A	21.0	D A V	21.0 21.0 8.0						6.5	19,29
Delta Refining Co. Memphis, Tenn.	4	В	44.8	D A V	44.8 44.8 15.0	1	F T	12.0 12.0			8.0	3,19,29
LEGEND												
Crude Processes D - Desalting A - Atmospheric distillation V - Vacuum distillation	n	Cracking Processes D - Delayed cok F - Fluid catal G - Gas-oil cra H - Hydrocracki T - Thermal cra V - Visbreaking	ing ytic cracking cking ng cking	Lube (I I (M	Processes A - Lube hydrofin C - Propane - dew D - Duo sol, solv E - Lube vac. tow G - MEK dewaxing M - Furfural extra Q - Phenol extrac	ning waxing, vent de wer, we raction ction	dea waxi ux tr	asphalting ing ract.	Dat	a Source RC - Refinery	contact	

SECTION V

WASTE CHARACTERIZATION

INTRODUCTION

The purpose of this section of the document is to present quantitative data which describe the effluent characteristics of petroleum refineries which discharge to POTW. In addition, available data on API separator effluent characteristics from all petroleum refineries are included. Finally, sour water stripper effluent characteristics are discussed; this waste stream represents a major source of pollutants which may pass through or interfere with municipal treatment plants. Figure V-1 is a schematic diagram of the relationship of the waste characterization data presented herein.

PRETREATMENT EFFLUENT CHARACTERISTICS

Table V-1 is the summary of available effluent data collected either from representatives of the indirect discharging refineries or the receiving POTW, as indicated. This table includes all pertinent data obtained on indirect dischargers in the industry. It represents the results of specific data requests (in most cases by both telephone and formal letter) to the refineries and/or the receiving POTW listed in the inventory (Table III-1). The data presented is as received from the refinery or the POTW; verification sampling has not been conducted because of the time constraints imposed on completion of this study.

Data collected on the effluent from indirect discharging refineries within the Topping subcategory (subcategory A) are characterized from Table V-1 as follows:

				# of Plants
	Max	Min	Median	Reporting
Flow (MGD)	.258	.006	0.127	6
BOD5 (mg/1)	323	205	I.D.	1
COD (mg/1)	905	71	2 7 5	6
TOC (mg/l)	No Data			
0&G (mg/1)	195	. 8	32	6
Phenolics (mg/l)	63.4	LT .05	1.96	6
Sulfides (mg/l)	75.3	LT .01	0.05	6
Total Chromium (mg/1) 8	LT.005	0.62	6
Ammonia (mg/l)	12 7	.617	34.0	5
Notes: ID	- Insuffi	icient data	a.	
LT	- Less th	nan.		

WASTE CHARACTERIZATION PROCEDURE FOR INDIRECT DISCHARGE REFINERIES

*Waste Characterization data described in this section

TABLE V-1

SUMMARY OF INDIRECT DISCHARGE REFINERIES' EFFLUENT DATA

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) Total	(9)	(10)
Refinery Code	Flow (MGD)	$\frac{BOD5}{(mg/1)}$	$\left(\frac{\text{COD}}{\text{mg/l}}\right)$	$\left(\frac{\text{TOC}}{\text{mg/l}}\right)$	$\left(\frac{0\&G}{mg/1}\right)$	$\frac{\text{Phenolics}}{(\text{mg}/1)}$	Sulfides (mg/l)	Chromium (mg/1)	$\frac{\text{Ammonia}}{(\text{mg}/1)}$	Comments
Category A - Topping 8	0,006	:	234 680	:	128 80	<0.05 50	<0.10 <0.10	<0.20 2.8	75 22.4	Column #1 from reference 29 Columns #2 - 9 obtained from
14	0.258	-	-	-	-	0 .14/0.10/ 4.2/2.5/5.1/ 5.5/0.7	<1.0/<0.05/ <0.05/<0.05/ <0.05/<0.05/	-	58/64/67/56/ 86/127/34	Data for Column #1 and the first seven sets of data from individual
	0.216	-	470	-	135	0.65	<0.01	2.75	34	Data for the last set from a single quarterly grab sample (POTW)
11	0.033 -	-	200 98	-	12.1 7.1	0.70 0.25 0.50	<0.1 <0.1	<0.05 <0.05 <0.05	30 17 23	All data from individual grab sample analyses-the first fur-
21	0.14	- 205 323	494 905	-	195 22.3	- 3.2	75.3 54.6	8 0.03	23	nished by the POTW, and the second and third by the refinery. Column #1-General data (POTW) Columns #2-9 - Individual grab
12	0.0432 0.0446 0.0687	-	390 400 240	-	32 11 49	2.0 7.5	<0.02 <0.02 <0.02	0.66 1.7 0.62	35 28 9,3	samples (POTW) All data from quarterly grab samples (POTW)
13	0.127 0.136	-	127 275	-	34.5 11.0	1.96 63.4	0.78	6 <0.01	32.3 0.617	(POTW)
Category B - Cracking										
27 ³⁰	0.604 0.401 0.476	553 525 657	-	-	109.9 87.5 73.6	10.5-58(33.5) 15-33.5(22.0) 13-60 (32.7)	-	-	-	Data for the first four sets of values from monthly averages (POTW) For Column #6 average
22	0.323	756 175	- 321	-	66.0	16-61 (33.7) 4.1	37.0	-	-	in parentheses. Data for Column #1 from POTW
	-	- 234 154	275 265	-	-	3.5 4.5	45.0 50.0 51.3	-	-	from monthly averages of weekly (on file) grab samples (POTW)
	-	104 106 112	285 268 275	-	-	2.9 3.2	24.9 51.6 26.6	-	-	Data for Column #2 from monthly grab samples (POIW)
	-	146 123	258 179	-	-	4.14 2.75	36.6 22.2	-	-	
	-	123 - -	226 <503 237	-		4.15 3.62 3.03	24.1 23.6 47.1	-	-	
19	- 0.25-0.40	167	187 423-1300	-	- 14-23(19.5)	2.87 11-88 (49.5)	2.45 nil	- 0.03-0.63	(0.33)32-105(68.5)	All data given only as range
18	1.32 1.35	58 48	-	:	25 21	18 19	2.9 1.1	45 56	5.9 15.2	(FOIW) (Averages by Bek) Data for Column #1 from daily averages for each month. Data
	1.78	53 47	-	-	21 17	16 15	0.7	51 48	8.4 11.2	monthly grab samples. Data for Columns #6, 7 & (from monthly
	1.30 1.32 1.40	50 51 57	-	-	10 18 24	10 23 20	2.7 1.1 0.8	46 210 230	14.0 - 3.2	averages of weekly samples (on file). All data obtained from the refinery.
	1.39 1.41 1.31 1.57	67 70 68 72	-	-	24 25 17 20	16 8.3 6.4 33	0.6 0.5 3.0 16	330 212 198 167	3.9 5.8 6.0 22	-

TABLE V-1 (Cont.)

SUMMARY OF INDIRECT DISCHARGE REFINERIES' EFFLUENT DATA

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) Total	(9)	(10)
Refinery Code	<u>Flow</u> (MGD)	<u>BOD5</u> (mg/1)	<u>COD</u> (mg/l)	$\frac{\text{TOC}}{(\text{mg}/1)}$	0&G (mg/1)	Phenolics (mg/l)	Sulfides (mg/l)	Chromium (mg/1)	Ammonia (mg/l)	Comments
Category B - Cracking (Cont.))									
17	0.220	-	-	-	-	0.21	0.21	0.48	5.2	Data for Column #1 from
	-	-	-	-	-	0.31	0.29	0.38	14.0	reference #29.
	-	-	-	-	-	0.45	0.67	0.42	14.0	Data for Column #8 from
	-	-	-	-	-	0.85	0.47	0.39	21.4	monthly grab samples
	-	-	-	-	-	1.5	1.0	-	17.0	(refinery).
	-	-	-	-	-	1.25	1.0	-	11.0	Data for Columns #6, 7 & 9
	-	+	-	-	-	1.4	2.3	0.19	17.0	from monthly averages of
	-	-	-	-	-	1.31	2.4	0.25	17.0	8 samples/month (refinery).
	-	-	-	-	-	1.4	2.4	0.21	18	
	-	-	-	-	-	1.41	2.3	0.29	23	
	-	-	-	-	-	1.44	2.8	0.35	18	
	0.385	75	-	-	37	-	-	-	-	Last flow and Columns
	-	38	-	-	13	-	-	-	-	2 & 4 from POTW.
	-	56	-	-	~	-	-	-	-	
15	0.080	47	-	-	-	~	-	-	-	Data for the first two sets
	0.097	103	-	-	50	0.19	-	0.08	-	from single grab samples
	-	-	-	-	-	8.50	1.00	2.79	20.00	(POTW). Data for the third set from information
	0 5 3 0		746		16 7	13.5	_	09	51	Data from quarterly grab
10	0.530	-	740		40.7	52	60.1	0.44	57	sample (POTW)
	0.480	-	123	-	43	94	<0.1	1.0	75	Sampie (1010);
-	0.540	-	1546	-	346	105	0.1	0.07	460	Three sets of data from one
5	0.243	-	2900	-	340	105	< 0 1	0.15	100	date but three different out-
	-	-	100	-	<1.0	<0.05 <0.05	X 0.1 X 0.1	< 0.03	2.0	falls. Data not sufficient to obtain total concentrations thus not used in data analysis.
7	4 20					65			10	
,	4.39	-	1113 1094	-	81 53.9	65 76.2	< 0.015	1.05	42 39	All data from quarterly grab samples (POTW).
	4.42	-	1394	-	51.2	88.5	0.315	0.887	167	
	3.73	-	1008	-	50.1	71.7	0.08	0.59	85	
4	2.92	-	1228	-	96	80	<0.10	1.05	538	All data from quarterly grab
	2.90	-	1231	-	90	147	< 0.05	2.47	232	samples (POTW)
	3.00	-	1938	-	69	37	< 0.10	1.62	412	
	3,12	-	1186	-	113	6Ũ	< 0.02	1.08	141	
3	0.58	-	2618	-	51	199	0	0.14	-	All data from guarterly grab
	0.70	-	4150	-	120	178	0	0.09	162	sample (POTW).
	0.36	-	5967	-	101	150	Ō	0.10	1130	
	0.72	-	5890	-	160	213	0	0.10	953	
2	3.30	-	383	-	5	18.5	< 0.10	0.69	92	All data from guarterly grab
	3.12	-	378	-	2	5.5	< 0.10	0.40	41	sample (POTW).
	3.40	-	370	-	7	4.0	< 0.10	1.0	45	
	4.16	-	329	-	3	2.2	< 0.10	0.8	21	
Category C - Petrochemical					-					
16	5.51	-	774	-	31	32	<0.10	0.78	35	All data from quarterly grab
	4.03	-	790	_	19	57	< 0.10	0.32	27	samples (POTW)
	5,63	-	971	-	57	59	4 0.10	0.86	18 5	compres (1018).
	5.68	_	679	-	31	10	< 0.10	<1.52	_	
27	1.5	200-375	500-800	_	25-807	52.5) -	-	1.74-0	56 -	All data given only as range
		0.0			23-00((2.15)		(POTW) (Average by B&R)

Data collected on the effluent from indirect discharging refineries within the Cracking subcategory (subcategory B) are characterized from Table V-1 as follows:

				Number of Plants
	Max	Min	<u>Median</u>	Reporting
Flow (MGD)	4.42	.080	1.34	11
BOD5 (mg/1)	756	38	75	5
COD (mg/1)	596 7	179	463	7
TOC (mg/1)	No Data			
O&G (mg/1)	160	2	40	10
Phenolics (mg/l)	213	0.19	10.5	11
Sulfides (mg/l)	51.6	0	0.9	10
Total Chromium (mg/l)	330	.03	.844	9
Ammonia (mg/l)	1130	3.2	21.4	9

The number of indirect discharging refineries within the Petrochemical subcategory (subcategory C) and the Integrated subcategory (subcategory E) is limited. Therefore, no characterization is presented beyond that data presented in Table V-1 for subcategories C and E. There have been no indirect discharging refineries identified within the Lube (subcategory D). The Agency solicits input regarding the identification of additional refineries discharging to POTW other than those identified in Table III-1.

API SEPARATOR EFFLUENT CHARACTERISTICS

Table V-2 presents a summary of API separator effluent quality data (26) and is based on the 1972 "Petroleum Industry Raw Waste Load Survey" (1). Data pertaining to those refineries identified in this study as being indirect dischargers are summarized. These data represent the refinery waste water quality after passage through an API separator, but before any subsequent pretreatment prior to discharge to the municipal system. Median data for all plants reported in the survey, both direct and indirect dischargers, are also included in the table for purposes of comparison.

SOUR WATER WASTE STREAM CHARACTERISTICS

Refinery wastewater condensates containing sulfides, ammonia, and phenolics are termed sour water. These sour water waste streams constitute the major source of pollutants discharged from petroleum refineries which might be expected to pass through or interfere with POTW. The most significant sources of sour water are condensates from accumulators, reflux drums, flare drums, and knockout pots

SUMMARY OF INDIRECT DISCHARGE Refineries' Api separator effluent quality (Reference #26)									
Refinery Code	BOD5 (mg/l)	<u>COD</u> (mg/1)	<u>TOC</u> (mg/1)	08G (mg/1)	Phenolics (mg/l)	<u>Sulfide</u> (mg/l)	<u>Chromium</u> (mg/l)	Ammonia (mg/l)	
Category A - Topping (*Median)	23.3	107	20.0	25.0	0.080	0.240	0	2.72	
Category B - Cracking 25	190	432	66.4	9.22	50.8	5.97	25.2	158	
19	-	0.425	286	170	25.9	5.95	0.142	91.4	
18	156	546	171	17.3	2.42	52.1	-0.183	5.72	
17	1615	2893	31.6	16 .2	17.5	85.6	0	16.5	
15	· 37.5	309	71.2	66.1	6.40	0.519	2.08	14.9	
10	720	2258	229	147	189	0	o	600	
7	1646	6453	401	915	2.70	1.90	2.02	468	
4	354	1217	158	48.8	92.6	0	0.280	82.3	
3	641	1500	352	96.1	31.7	0.075	0.451	320	
2	-	-	-	-	31.0	0.25	-	30.2	
*Median	138	383	66.3	52.8	6.04	1.24	0.109	28.6	
Category C - Petrochemical									
16	202	1096	-	11.9	29.1	0	0.284	353	
*Median	144	418	135	44.9	10.0	176	0.471	42.1	
Category E - Integrated	•								
26	94.4	442	167	57.0	0.063	8.93	1.19	15.1	
*Median	114	261	51.5	44.1	2.25	1.24	0.272	14.5	

TABLE V-2

*Median data for all plants reporting (municipal dischargers and direct dischargers).

in catalytic reformers, cracking, hydrocracking, coking, and crude distillation units (2). Since most refineries provide sour water stripping for sulfide and ammonia reduction prior to biological treatment, characterization of the effluent quality from stripping units is significant. Data on the quality of stripped sour water was requested for all of the indirect discharging refineries identified in Table III-1. Table V-3 is a summary of the responses received.

Additional data on the quality of stripped sour water waste streams can be found in the "1972 Sour Water Stripping Survey Evaluation" (24). This information is presented in Tables V-4 and V-5. The refineries which provided this data have not been identified as discharging to POTW, and, therefore, are assumed to be primarily direct dischargers. However, the characteristics of stripped sour water waste streams are equally applicable to indirect as well as direct dischargers.
TABLE V-3

Refinery Code	Flow (gpm)	Ammonia (mg/l)	Sulfide (mg/l)	Phenol (mg/l)	Thio Sulfate (mg/l)	Comments
17	-	Max 58 Min 40	2 0	-	-	Monthly sampling 6/74 - 12/75
16	-	Max 75 Min 35	5 1	-	-	operating conditions
5	100	2710	0	650	76	design conditions
14	14	138	11	-	-	average performance

DATA SUMMARY OF INDIRECT DISCHARGE REFINERIES' STRIPPED SOUR WATER

Additional data on stripped sour water quality from an API Sour Water Stripper Survey (Reference 24) is presented in Tables V-4 and V-5. The facilities providing this data have not been identified as dischargers to POTW's and consequently can be assumed to be primarily direct dischargers. However, the wastewater characteristics of stripped sour water from direct dischargers is applicable to indirect dischargers as well.

TABLE V-4

AVERAGE QUALITY OF SOUR WATER STRIPPER BOTTOMS -STEAM STRIPPING-REFLUXED (Reference #24)

Stripper Code	Flow (gpm)	$\frac{\mathrm{NH}_3}{(\mathrm{ppm})}$	H ₂ S (ppm)	$\frac{\text{Phenols}}{(\text{ppm})}$
3 12 13B 14 15 19 20A 20B 22A 22B 22C 23 25 26A 27 28 34 36 37A 37B 38A 38B 41 42 43 44 55 56 60 61	140 22 - 85 270 80 53 175 - - 700 290 38 280 562 170 250 305 259 199 95 435 90 45 108 74 - 154 119	78 250 25 284 188 340 2,055 3,159 68 64 63 100 65 45 200 5000 80 80 800 800 850 200 5000 80	1.5 1.0 4 2.8 3.5 2 696 665 1 0.1 0.1 1 16 28 20 1500 15 5 50 100 60 100 200 30 Trace 20 1 255 65 Nil	- 290 10.7 582 116 155 311 521 - - 400 90 - 150 1000 280 200 - - - 90 600 - 375 239 250 410 Nil 28
Mean Max Min Median	200 700 22 154	590 5000 15 188	128 1500 Nil 16	290 1000 Nil 250

TABLE V-5

AVERAGE QUALITY OF SOUR WATER STRIPPER BOTTOMS -STEAM STRIPPING-NON-REFLUXED (Reference #24)

Stripper	Flow	$rac{\mathrm{NH}_{3}}{(\mathrm{ppm})}$	H2S	Phenols
Code	(gpm)		(ppm)	(ppm)
5	45	208	3	-
7	57	49.5	30.3	45
8	47	-	20	350
9	177	380	90	400
10	-	96	16	-
13A	120	400	6	200
18	56	265	2	45
21A	427	300	90	479
21B	90	300	300	310
29	53	2600	3000	-
31	80	408	13	31
32	80	65	0.2	20
33	307	200	8	320
47	52	115	5	225
48	80	115	-	-
51	56.3	1017	88	455
52	16.4	56	1	147
53	218	9.8	4.5	-
54A	53	76	6	13
54B	143	350	22	250
57	13.4	860	202	280
58	32.0	11	1	150
59	64	250	10	140
63	101	580	291	63
Mean	103	379	183	206
Max	427	2600	3000	479
Min	13.4	9.8	0.2	13
Median	64	250	13	200

SECTION VI

SELECTION OF POLLUTANT PARAMETERS

INTRODUCTION

Petroleum refinery wastewaters have been characterized in the previous section and in the 1974 Development Document with regard to significant pollutant parameters present in refinery effluents. Certain pollutants, namely BOD, COD, and TOC, are treatable in POTW (BPCTCA for these parameters is based on biological treatment of petroleum refinery waste waters) and, consequently, have not been further considered in this document. Therefore, the pollutant parameters selected for further consideration in the establishment of pretreatment standards for the petroleum refining industry are those pollutants which might be considered to pass through or interfere with POTW.

SELECTED POLLUTANT PARAMETERS

Presented below is a listing of those pollutants present in refinery effluents which may pass through or interfere with the operation of POTW.

Ammonia Sulfides Oil and grease Phenols Chromium

The environmental significance and sources of these wastewater parameters are discussed in the 1974 Development Document on pages 71 through 90. These discussions are adequate and, therefore, are not repeated in this document. The following discussions consider the removability of the selected parameters by POTW and the effects of the selected parameters on POTW (see reference 37).

Ammonia

Evidence exists that ammonia exerts a toxic effect on all aquatic life depending on the pH, dissolved oxygen level, and the total ammonia concentration in the water. A significant oxygen demand can result from the microbial oxidation of ammonia. Approximately 4.5 grams of oxygen are required for every gram of ammonia to be oxidized.

35

At low concentration levels, ammonia serves as an important nutrient in a healthy biological oxidation system. No adverse effects on oxygen consumption are noted at concentrations of up to 100 mg/1. At excessively high levels (about 480 mg/1) ammonia exhibits inhibitory effects on the activated sludge process (see references 42, 44, 46 and 48).

<u>Sulfides</u>

Sulfides can be converted to sulfuric acid in sewers, causing corrosion of concrete pipes used to convey effluent to the treatment plant (i.e., POTW). Sulfides do not pass through biological treatment systems; rather, they are oxidized to sulfates. Therefore, excessive levels of sulfide can interfere with the activated sludge process by depleting the dissolved oxygen transferred in the aeration process. Limited data indicates that 25 to 50 mg/l of sulfide is sufficient to cause interference with the activated sludge process (see references 45, 46, 49, and 55).

Oil and Grease

In addition to partially passing through a biological treatment plant, oil and grease of petroleum origin has been reported to interfere with the aerobic processes of a POTW. It is believed that the principal interference is caused by attachment of floc particles, resulting in a slower settling rate, loss of solids by carryover out of the settling basin, and excessive release of BOD from the POTW to the environment. Additionally, in activated sludge units, oil and grease may coat the biomass, interfering with oxygen transfer. As a consequence of this "smothering" action, a lower degree of treatment may be achieved. Oil and grease may also cause other problems in POTW operation, such as clogging screens and interfering with skimming and pumping operations (see reference 37). Therefore, many municipalities limit the quantity of oil and grease that can be discharged to their treatment systems by industry.

Phenols

There is an extremely diverse reaction caused by the discharge of phenolic wastes to biological treatment systems. This reaction depends upon whether the sludge has been acclimated to this material. Relatively small amounts of phenolics can be inhibitory to unacclimated sludge. However, with acclimation and use of the complete mixing mode of operation, high concentrations of phenol can be tolerated in biological treatment systems (see reference 37).

Chromium

Chromium in its various valence states is hazardous to man. It can produce lung tumors when inhaled and can induce skin sensitizations. Large doses of chromates have corrosive effects on the intestinal tract and can cause inflammation of the kidneys. Levels of chromate ions that have no effect on man appear to be so low as to prohibit determination. The recommendation for public water supplies is that such supplies contain a maximum of .05 mg/l of total chromium.

The toxicity of chromium salts to fish and other aquatic life varies widely with the species, pH, temperature, valence of the chromium, and synergistic or antagonistic effects. Studies have shown that trivalent chromium is more toxic to fish of some types than hexavalent chromium. Other studies report the opposite effect. Fish food organisms and other lower forms of aquatic life are extremely sensitive to chromium. Chromium also inhibits the growth of algae.

Interferences with biological processes are reported at the 1 mg/l concentration level of hexavalent chromium. However, in the concentration range of 1 to 50 mg/l, the published literature is quite confusing and contradictory, indicating effects ranging from serious interference to insignificant effects. Table VI-1 summarizes the conclusions reached in an earlier study (37) concerning the effects of chromium on biological treatment processes.

EFFECTS OF CHROMIUM ON BIOLOGICAL TREATMENT PROCESSES

Concentration		Effect On			·
mg/l	Activated Sludge Processes	Anaerobic Digestion Processes	Nitrifi- cation Processes	Comments	References
0.005 0.05 0.25 1 1 1.5 2.5 5 5	B N I T	T	ו ט U	K ₂ Cr ₂ 07	40 54 40 40 38 38 43,48,52 38 38
7 8.8 5-10 10 10 15 4 0-50	I I T I		I I	25% Loss in BOD Removal 25 mg/l K ₂ Cr ₂ 0 ₇ 29% Loss in BOD Removal Cr III Cr III, No Effect on Trickling Filter Operation	38 41 48,50 48,50 47 48 48 44 48
50 50 50 50 100	I	N U	I	3% Loss in BOD Removal Reduced Nitrifi- cation by	53 51 39 53,50 40
100 300 300 500 500 430 & 1440	I	ม บ บ	I	66-78% 3% Loss in BOD Removal	53 53 53 53 48 48

NOTES:

B = Beneficial

N = No Effect T = Threshold for Inhibitory Effects

I = Inhibitory

U = Upset

Concentrations represent influent to the unit processes.

SECTION VII

CONTROL AND TREATMENT TECHNOLOGY

INTRODUCTION

Pollution abatement and control technologies applicable to this industry are presented in detail in the Development Document (at pages 91 through 112). The technologies that generally apply to indirect discharge facilities are summarized in this section.

The control and treatment technologies considered in the Development Document were based on their capabilities for removing the parameters selected for limitations. This same philosophy applies to this document, in that the technologies presented herein are limited to those treatment techniques capable of removing pollutants which may pass through or interfere with POTW. These pollutants include sulfides, ammonia, phenols, oil and grease, and chromium.

Analysis of the data collected shows that the major source of sulfide, ammonia, and phenols is the sour water waste stream (see Section V). Therefore, segregation and treatment of sour waters are the major areas of concern for pretreatment.

In addition, discussions of other significant wastewater sources are presented. The sources and concentrations of selected pollutants are generally similar between subcategories. Therefore, the treatment technologies available within the various subcategories are identical; the discussions presented herein are applicable throughout the industry without regard to subcategorization.

DISPOSITION OF WASTE STREAMS

Refineries that discharge to POTW do not necessarily discharge all of their waste streams to the sewer. Other discharge outlets are available at some of these refineries and are used for discharging wastewaters such as cooling water and utility blowdown.

Table VII-1 summarizes the disposition of the wastewaters emanating from indirect dischargers and presents other information relating to pretreatment operations employed and flow rates to POTW. The column labeled "Pretreatment Waste Streams" includes those waste streams that are known to be

WASTEWATER OPERATIONS AT INDIRECT DISCHARGE REFINERIES

						Pretreatment Operations			
		Refinery Code	Effluent Flow to POTW (MGD)	Pretreatment Waste Streams to POTW	Final Disposition of Other Wastewater Streams	Sour Water Stripping	Other	Data Source	
	Category A - Topping	28	0.18	Process water, contaminated runoff	Local stream	None	PSEPAR, OSDISA, OSDTEQ	29*	
		21	0.14	All, except stormwater	Local creek, Surface con- tainment. Evaporation	None	PSEPAR, OSDITEO, OSSETTE	29*	
		20		Cooling tower blowdown, Boiler blowdown, Contaminated runoff	Local channel	None	PSEPAR, OSDTEQ	29*	
		14	0.258	All. except stormwater		SWS, OX	PSKIMC, PSEPAR	29*	
		13	0 132	A11		SWS	PSEPAR, PSEDIM	29 *	
		12	0.052	Frocess water, Cooling tower blowdown, Boiler blowdown, tank bottoms	Evaporation, Septic tanks	None	PSEPAR, PSKIMC	29*	
		11	0.033	All, except stormwater	Evaporation, Ground perco- lation	OX	PSEPAR, OSFILT, OSDTEQ	29 *	
		9	This information	on not requested of this refinery		None	PSEPAR	29*	
		á	0.006	Process water, Cooling tower blowdown, Boiler blowdown, Contaminated runoff	Evaporation, Consumption	None	PSEPAR, OSDISA, OSFILT, OSDTEQ, OSAERT	29*	
		1		All, except stormwater		None	PSEPAR	29*	
	Category B - Cracking	30	0.443	All, except stormwater		SWS	PSEPAR, OSDISA, OSDTEQ	29*	
		25		All	Evaporation	SWS	PSEPAR	29,1	
		22	1.42	All, except stormwater	Evaporation, Local creek	SWS	PSEPAR, OSDTEQ	29 ,1	
4		19	0.25-0.40			SWS	PSEPAR, OSSETB	29,1*	
ō		18	1,42	Sour water, Oily water		SWS	PSEPAR, OSDISA, OSFILT	29.1*	
-		17	0.220	Process water, Sour water, Cooling tower blowdown, Boiler blowdown	Evaporation	SWS	PSEPAR	29,1*	
		15	0.088	Process water, Cooling water, Cooling tower blowdown, Boiler blowdown, Stormwater	Evaporation	None	PDETPD, PSKIMC, PSEPAR, OSDISA	29,1*	
		10	0,53	All, except stormwater	Evaporation	SWS, OX	PSEPAR, OSDISA	29,1*	
		7	4.1¥	Process water, Cooling tower blowdown, Utility blowdowns, Tank botoms, Contaminated runoff	Local channel, Evaporation	SWS, OX	PSEPAR,OSDTEQ, PSKIMC OSDISA	29*	
		5	0.33	Frocess water, Sour water, Cooling tower blowdown, Boiler blowdown	Local channel, Evaporation	SWS, OX	PCORRP, PSEPAR, PSKIMC, PSEDIM, OSDTEQ	29*	
		3	0.70	Sour water	Local channel	SWS. OX	PDETPD	29.1*	
		2	3.5	Process water	Evaporation, Local harbor, Contract disposal	SWS	PSEPAR, OSDISA, OSDTEQ	29*	
		4	2.98	Process water, Sour water, Contaminated runoff	Local channel, Evaporation, Contract disposal	SWS, OX	PCORRP, PSEPAR, OSDISA, OSDTEQ	29*	
	Category C - Petrochemical	27	1.5	LIA		None	PSEPAR	29*	
		16	5.21	Process water, Sour water, Contaminated runoff	Local channel, Evaporation	SWS, OX	PSKIMC, PSEPAR, OSFLOC, OSDISA, OSDETQ	29,1*	
	Category E - Integrated	26	7.64	All	Evaporation	SWS	PDETPD, PSEPAR, PSEDIM, OSAERL	29,1	

*Refinery or POTW contact

Codes for Pretreatment Operations

.

Sour Water Stripping		Additional Oil and Solids Removal	
Sour Water Stripper	SWS	Dissolved Air Flotation	OSDISA
Oxidation	OX	Detention or Equalizing	OSDTEO
Primary Separation		Filtration	OSFILT
Detention, Holding Tank	PDETPD	Chemical Flocculation	OSFLOC
API Separator	PSEPAR	Settling Basin	OSSETB
Corrugated Plate Interceptor	PCORRP	Aeration Tank	OSAERT
Oil Skimmer, Trap or Tank	PSKIMC	Aerated Lagoon	OSAERL
		Stabilization Pond	ORSTBQ

without aerators

discharged to the sewer. The column headed "Final Disposition of Other Wastewater Streams" lists additional outlets available to indirect dischargers. These include evaporation ponds, local rivers and channels, and contract disposal operations. For refineries discharging process waste waters to POTW, there are no known instances where sour waters are segregated and discharged directly or disposed of in another manner.

Table VII-1 also provides information as to which refineries are presently treating sour water with a sour water stripper (SWS) or by oxidation. There are 17 indirect discharging refineries in this segment of the industry known to have sour water treatment. Nine refineries have been identified that do not have SWS's; however, it has been reported that no sour waters are produced by refinery operations at eight of the nine refineries. Therefore, there has been only one refinery identified that is discharging untreated sour waters to a municipal sewer.

Table VII-2 presents a summary of information gathered relative to the fourteen POTW which are currently receiving refinery wastewaters. Data relative to the refinery average discharge flow versus the total POTW average daily flow, treatment processes employed at the POTW, and effluent limitations required of petroleum refineries by the POTW are included.

IN-PLANT CONTROL TECHNOLOGY

Many newer refineries are being designed or modified with reduction of water use and pollutant loading as a major part of the design criteria. These advances include:

- 1. Use of improved catalysts that require less regeneration.
- 2. Replacement of barometric condensers with surface condensers, thereby reducing a major oil-water emulsion source.
- 3. Substitution of water cooling with air coolers to reduce cooling water requirements.
- 4. Newer hydrocracking and hydrotreating processes which produce lower waste loadings than the units they replace.
- 5. Increased use of improved drying, sweetening, and finishing procedures to minimize the production of

DESCRIPTION OF EXISTING POTW RECEIVING REFINERY EFFLUENT

								<u>Refinery E</u>	ffluent Limitations (I	ppun)	
	POTW Code	Refinery Code	Category	Average POTW (N	Daily Flow IGD) Refinery	POTW Treatment Operations	Phenol	Ammonia	H-Hex T-Total Chromium	Sulfides	O&G
	M1.	30	В	80-150	0.443	COL	None	None	None	None	None
	M3 M4	28 27	A C	7.5 220	1.5	COL	None	None	10(H) 25(T)	None	100
	M5	26	Е		7.64				-/(-/		
	M5	25	В		- •-						(1)
	M8 M9	22 21	B A	7 10.5	1.42 0.14	BO2 COL	0.10 None	None	5.0 5.0	5.0 None	100 (1)
	OIM	20	А	3.03		B02			<i></i>	None	100
	M11	19	B	32	0.25-0.40	BOL	None	100	Less than Harmful	1.0	100
	M12	18	В	42	1.42	B05	0.1	1.0	T-1.81b/day H.0.005 mg/1	0.3	10
	M13	16	с	351	5.21	AOL	Less	than excessive	quantities	0.1	75
	M13	14	A	351	0.258	AOL		**	•	0.1	75
	MIJ	13	A	351	0.132	AO1.		83		0.1	75
	MIJ	12	A	351	0.052	AOL		11		0.1	75
	м13	ш	A	351	0.033	AOL		**		0.1	75
	M13	9	A	351	Not requested	AOL				0.1	75
	MI3	8	A	351	0,006	AOL		ŧt		0.1	75
	M13	7	В	351	4.14	AOL		11		0.1	75
4	M13	5	В	351	0.33	AOL		11		0.1	75
N	M13	4	B	351	2.98	AOL		11		0.1	75
	M13	3	В	351	0.70	AOL		"		0.1	75
	M13	2	В	351	3.5	AOL		Ħ		0.1	75
	M14	15	В	1.7	0.088	BO2	1.0	None	1.0(H)	None	200
	M16	1	A	100		COL					
	M17	17	B	2.35	0.220	BO4					
	MTQ	10	В	19	0.53	COL	Less	than excessive	quantities	0.1	75

CODES FOR POTW TREATMENT OPERATIONS

- AO1 Conventional Primary Sedimentation Process
- BOL AO1 plus Trickling Filter, Clarifier
- BO2 A01 plus High Rate Trickling Filter, Clarifier
- BO4 A01 plus 2 Trickling Filters in Series, Clarifier
- B05 A01 plus 2 High Rate Trickling Filters in Series, Clarifier
- CO1 AO1 plus Activated Sludge, Clarifier
- CO6 AO1 plus High Rate Activated Sludge, Clarifier

(1) New proposed ordinance sets limit at 50 ppm

spent caustics and acids, water washes, and filter solids requiring disposal.

Additionally, traditional methods utilized in the refining industry for reducing flow and pollutant loading are equally applicable to indirect dischargers. These methods include recycle and reuse of various waste streams and improved housekeeping. A detailed discussion of these procedures is provided in the Development Document (at pages 91 through 95).

AT-SOURCE PRETREATMENT--SEGREGATION

The first step in good pretreatment practice is the segregation of major wastewater streams. Each stream can require individual treatment of a different nature; therefore, segregation can drastically reduce the size of equipment needed for pretreatment. A discussion of some of the significant process waste streams that should be segregated from the oily sewer system is presented below.

Storm Water Runoff

Large volumes of stormwater runoff must be handled at relatively infrequent intervals of varying duration. There are several techniques available and in practice that refiners can employ to minimize storm water loads. In all cases, clean and contaminated storm waters should be kept separated from each other. This ensures that the size of the treatment facilities for handling oily process wastes and contaminated storm water can be kept to a minimum.

One consideration is the use of a separate clean storm water sewer and holding system that provides separate collection facilities for storm water runoff. By controlling hydraulic load, protection is provided relative to the operation of the oil/water separator.

An alternate to the separate sewer system would be the provision of a storm surge pond that would receive polluted waters when the flow to the oil/water separator exceeds design conditions. During non-rainfall conditions, the combined storm water and refinery effluent can be diverted to the oil/water separator and discharged to the treatment system (i.e., POTW).

The design of storm water detention facilities must be determined on an individual basis. The requirements of POTW receiving refinery wastewaters vary greatly and have a significant effect on the design. In many cases, POTW do not accept stormwater runoff either treated or untreated. For example, the County Sanitation Districts of Los Angeles County will accept only the first 15 minutes of a storm; the remainder must be discharged elsewhere.

The degree of pollution by storm water runoff is influenced to a large extent by the degree of housekeeping practiced within the refinery confine. This aspect was discussed in the Development Document (page 100), including specific preventative measures to be utilized to avoid contamination of storm water to the greatest extent possible.

Spent Caustic

Caustic solutions are widely used in refining. Typical uses are to neutralize and extract:

- a. acidic materials that may occur naturally in crude oil,
- b. acidic reaction products that may be produced by various chemical treating processes, and
- c. acidic materials formed during thermal and catalytic cracking such as hydrogen sulfide, phenolics, and organic acids.

Spent caustic solutions may, therefore, contain sulfides, mercaptides, sulfates, sulfonates, phenolates, naphthenates, and other similar organic and inorganic compounds.

Spent caustics usually originate as batch dumps. The batches may be combined and equalized before being treated and discharged with the general refinery waste waters. Spent caustic solutions can also be treated by neutralization with flue gas.

Some refiners process spent caustics to market the phenolics and the sodium hyposulfide. However, the market is limited and most of the spent caustics are very dilute; the cost of shipping the water can make this operation uneconomical. Some refiners neutralize the caustic with spent sulfuric acid from other refining processes and charge it to the sour water stripper where the hydrogen sulfide is removed.

Spent caustic solutions can also be oxidized to transform the sulfides to thiosulfates. This is a similar process to the one described in more detail for the treatment of sour waters. Indirect dischargers have been identified using all of the technologies described above. In addition, two refineries have been identified from which spent caustics are sent to a landfill. It should be noted that fluidized bed incineration is now being used in some refineries, but no indirect dischargers have been identified as using this process.

Sour Waters

Sour or acid waters are produced in a refinery when steam is used as a stripping medium in the various cracking processes. The hydrogen sulfide, ammonia, and phenols distribute themselves between the water and hydrocarbon phases in the condensate. Historically, the purpose of the treatment of sour water has been the remove sulfides to protect process equipment. Emphasis on the control of waste water pollutants has caused an increased emphasis on the removal of ammonia as well. Sour waters are generally treated by stripping of sulfide with steam or flue gas, or by conversion of hydrogen sulfide to thiosulfates by air oxidation. A discussion of each process is provided in the following section on applicable treatment technologies.

TREATMENT TECHNOLOGY

Sour Water Treatment Systems

Sour Water Stripping. Sour water stripping is a gas/liquid separation process that uses steam or flue gas to remove impurities (i.e., sulfides and ammonia) from the wastewater. The stripper itself is a distillation type column containing either trays or packing material. Columns range from simple pass systems to sophisticated refluxed columns with one reboilers. Some refineries have a number of units operating in parallel, while others use two columns in series to (i.e., Chevron WWT facilitate high ammonia removals process). The vast majority of units used in this country utilize steam as the stripping medium. No indirect discharge refineries have been identified that use anything other than steam as the stripping medium.

There have been a number of major studies done on sour water stripper operations (24,28,29). These projects have addressed removal efficiencies and costs of SWS's. Tables VII-3 through VII-5 have been extracted from the "1972 Sour Water Stripping Survey Evaluation" prepared by the American Petroleum Institute (24). These tables present operating data for sour water strippers that are (1) steam/refluxed

SUMMARY OF OPERATING DATA SOUR WATER STRIPPERS (Reference #24) STEAM STRIPPING - REFLUXED

CODE NO.	3	12	13 B	14	15	19	20A	20 B
REMARKS	-		l test	l test				
			run	run				
PHCONTROL	None	None	None	None	None	None	None	None
RAW FLED:	120	21.5	170		2:2		60	
Flow - gpm	120	21,5	200			224	200	172
NHa Min as nom	1 660	2 200	200	235	1 950		2 000	2 500
NH3, Max ppm	2,970	b. 950			2.000		8,500	5,600
NH3, Avg ppm	2.500	4,900	1.200	1,200	1,975	2,510	3.720	4,390
H2S, Min ppm	2,640	1, 550	-	•	3,000	-	2,500	2,400
H2S, Max ppm	5.720	3,700		•	3,400		10,000	5.500
H2S, Avg ppm	3,770	2, 475	1,470	2,000	3,200	3,080	4,460	4,250
Phenols, Min ppm		215	-	-	167	-	225	175
Phenols, Max ppm	-	406	-		174	•	700	700
Phenols, Avg ppm	-	315	24.3	608	171	174	375	554
Cyanides, Min ppm			• •		•		•	<u> </u>
Cyanides, Max ppm		<u> </u>				-		· · · · · · · · · · · · · · · · · · ·
Cyanides, Avg ppm	<u>`</u>			<1	11			
PROVOUS:	9.4	8.7	·:	•	•	8.1	8.8	8.9
RECICLE:				e				
Temperature - "F	238	185	210	223	223	219		
NH3. Avy ++ ppm	20.000	3,900				13,200		49.220
H2S. Avg ppm	13.600	1,300		*	-	5,820		66,900
Phenols, Avg ppm	-	270	-	-	-	350	-	110
pH	13.5	-	+	-	•	9.6	-	8.9
Disposition	top tray	feed line	feed	feed line	feed	feed line	feed	feed
-			drum		drum		drum	drum
STRIPPER OFF-GAS								
lemperature - "F	238	185		223	225	219	·····	120
NH3, Avg - lb/hr	180	<u>-</u>	<u> </u>		•	76		90
1125, Avg - 16/hr	241	· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · ·	110	<u> </u>	400
Phenols, Avg - lb/hr		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	•	0		<u> </u>
Cyanides, Avg - 1b/hr			*					
Water Vapor - lb/hr	1,200			- <u></u> -		360	-	150
	lurnace	Turnace	liare	llare	liare	lurnace	5. Plant	S. Plant
Flow - com	140	22		65	270	80	53	175
Tennerature - "F		225	230	240	230	230	230	230
NH3. Min ppm	25	160	•		130		970	1.420
NH3, Max - ppm		300	-		246		-	<u> </u>
NH3. Ave - ppm	75	250	25	284	188	340	2,055	3,159
H2S, Min - ppin	0	0.2	-	•	2	•	400	280
H2S, Max - ppm		5.0	-	•	5	•	-	<u> </u>
H2S, Ave - ppm	1.5	1.0	4	2.8	3.5	2	696	665
Phenols, Min - ppm	_	275			107		214	120
Phenols, Max - ppm		300		-	125			
Cyanides Min - pom		290	10.7	382	110	155	311	521
Cyanides, Max - ppm								
Cvanides, Avg - ppm				<1	<u>(1</u>)	•	-	
pH Avg	9.4	8.4	•			9.15	9.5	9.7
Disposition	Sewer	Desalter	Desalter	Sewer	Cooling	Desalter	Desalter	Desalter
					Tower	· · · · · · · · · · · · · · · · · · ·		
REMOVAL:								
NH3- %	96.9	94.9	97.9	76.33	90.5	86.45	44.8	38.1
<u>H2S-%</u>	99.96	99.96	99.7	99.86	99.89	99.94	84.4	+4.5
Phenols - 74		1.9	56.0	4.28	52.2	10.9	17.1	6.0
Cyanides - "				0				
Heating - Mib/ba	1 5 /3		2 6 13	0 2 ()	9.0	0.9.0	0 5 /11	18(1)
Stripping - Mild/hr	10 (4	· · · · · · · · · · · · · · · · · · ·	0 8 (4	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{55}{14}$	16 -	3.8 (1	$\frac{0.6(1)}{3.2(4)}$	1.5 (1)
Total - Mth/hr	11.5	·	12.4	1 75	25.6	4.7	+ 0	3.4
Stripping + lb/gal of raw feer	1 1.4		1.0	1.0	1.1	0.9	1,1	0.5
Total - lb/gal of raw feed	1.0		1.2	1.0	1.7	1.1 -	13	0.3
TOWER								
Diameter - ft.	+	3	5	5	6	3.5	+	6
Height - ft.	39.5	25.5	24.5	28	24	42	10	33
No. of Trays	10	12	8	6			-	5
Type of Trays	Valve Car	s Sieve	Valve	Bubble Cap		-	-	Bubble Cap
Depth of Packing - it.	· · ·	·····			13	10	3	
Type of Packing	-	-	•.	-	1" CS	-3" Raschi	g l''Raschi	g Raschig
					Rings	Rings	Rings	lings
Top Person	<u> </u>	<u>دان</u>				10 7	10	
Lop rress psig	-	,	+	10		111.1	4.55	

ODE	22A	22B	230	23	25_	
EMARKS	Phenolic	or Phenolic	Desalter		1st Stage	2nd Stage
	S.ripper	Stripper	Water			
			Stripper			
H Control	None	None	None	None	None	None
AW FEED						
Flow - gpm	210	68	206	700	250	290
Temp 'F, Tower Entrance	198	213	198	195	240	240
NH3, Min ppm	-	300	5		· · · · · · · · · · · · · · · · · · ·	•
NH3, Max ppm	-	500	100	-	- -	•
NH3, Avg ppm	1.720	430	74	4,000	1,600	890
H2S, Min ppm	-	-	•	•	-	-
H2S, Max ppm	-	-	•	-	-	-
H2S, Avg ppm	1,650	570	32	5,000	3,500	180
Phanols Min - ppm	100				•	•
Phenole Max - nom	200					
Phanole Avg - ppm				800	140	
Cussides Min - nom			1.5			
Cyanides, Min - port			2.0			
Cyanides, Max - ppm			1.0			
Cyanides, Avg - ppm						10.0
pH - Avg	8.0	0.7	<u> </u>	9.1	0.1	10.0
EUTULE:						
Flow - gpm	14.5	19.5	1.5	120		
Temperature - 'F		-	·	190		
NH3, Avg - ppm		•	-	60,000	-	-
H2S, Avg - ppm	·		-	40,000		
Phenols, Avg - ppm		-	<u> </u>	1,000	•	
pH			-	9.9	*	
Disposition	Top Tray	Top Tray	Top Tray	feed drum	tower	
TRIPPER OFF-GAS						
Temperature - "F	190	205	236	190	240	240
NH3. Avg - 1b/hr	-	-	• •	1,400	46	170
H2S. Avg - lb/hr	-	+	-	1.750	440	15
Phonols Ave - 1h/hr			-		•	
Cyanides Avg . lb/br			······			*
Water Vapor - lb/hr				2 000	······	
Dispesition	5 Diant	S Plant	S Plant	S Plant	Flare	Furnace
Disposition	a. Fienc	<u></u>		J.Flam	FILLE	rutuace
OWER BOTTOMS						
Flow - gpm	<u> </u>			700	290	• • • • • • • • • • • • • • • • • • •
Temperature - *F	243	244	250	245*		<u> </u>
NH3, Min - ppm	<u> </u>	<u> </u>	·		•	<u> </u>
NH3, Max - ppm		•	-		•	-
NH3, Avg - ppm	68	64	63	100	890	65
H2S, Min - ppm	-	-	-	0.2		
H2S, Max - ppm		-	-	-	•	•
H2S, Avg - ppm	1	0.1	0.1	1	180	16
Phenols, Min - ppm	100	25	30	250	-	•
Phenols, Max - ppm	200	65	65	•	•	•
Phenols, Avg - ppm	-		•	400	•	90
Cyanides, Min - pom	2	+	-		-	
Cvanides. Max - nom				· ······		·····
Cvanides, Avg - ppm	3.5	-				<u> </u>
DH Ave					10.0	
Disposition	the salt ar	FCC Unit	Bio-Unit	Sewa-	To 2nd Shart	7.6 Savian
EMOVAL:	Liceutter	700 0m	D10-0111	Jewer	LO LAG Stage	Jewer
NH1 - %	0 49	85 1	14 0	07 5	44 7	07 7
HoS - %	00.01	00 0		77.7	4.3	76.3
Phenole - %	77.74	-7.0	77.07	77.70	74.80	- 75 7
Cyanides - %				30.0		37.1
					•	·
ILAM:						
Heating - Mlb/hr	Reboiler	Reboiler	Reboiler	Reboiler	<u> </u>	
Stripping - Mlb/hr	<u> </u>		•		<u> </u>	
Total - Mlb/hr	13.6	10.2	7.0	80		
Stripping - Ib/gal of raw feed	-	•	-1	•	-	-
Total - Ib/gal of raw feed	1.1	2.5	0.6	1.9		-
OWER:				- · ·		
Diameter - ft	4.5	4.5	4	8.5	6	6
Height - ft	70	70	60	50	70.75	78.1
No. of Trays	30	30	24	23	22	30
Type of Travs	Sieve	Sieve	Sieve	Sieve	Valve	Valve
Depth of Packing - ft.						
Type of Packing		······································				
Ton Tomp - *F	270					,
Top Temp + P		1 63	240		·····	<u> </u>
Lop Press psig	· ·	-	-	·	-	•

TABLE VII-3 (Cont.)

CODE NO.	26A	27 P.	27	28	34	36
REMARKS				2-parallel		
				stripper		
PAW EVED.	None	<u>` uñe</u>	None	None	None	None
Flow + gpm	35	50	255	113	150	280
Temp "F, Tower Intrance	190	220	230	120	200	245
NH3, Min - ppm	735	433	1,500	5,000	1,200	•
NH3, Max - ppm	9,440	8,660	2,450	6,000	3,000	
NH3. Avg - ppm	5,410	3,550	2,000	5,500	1,400	19,000
H2S, Min - ppm	2,900	925	3,500	10,000	2,400	
H2S, Max - ppm	14,500	7,800	5,800	17,000	0,900	
Phenols, Min + npm		4,002	200	800	230	17.000
Phenols, Max - ppm	-	-	.400	1,100	610	
Phenols, Avg - ppm	-	•	300	1,000	440	750
Cyanides, Min - ppm	-		2	•	-	
Cyanides, Max - ppm			5			*
Cyanides, Avg - ppm	· · · · · · · · · · · · · · · · · · ·		3	10		-
BECYCLE	8.0	8.3	9.0	8.5		
Flow - rom			30		22	83
Temperature - *F	•	•	175	•		190
NH3, Avg - ppm	-	· · ·	80,000	•	•	90,000
H2S, Avg - ppm	•	+	115,000			56,000
Phenols, Avg - ppm	<u> </u>	-				1,000
	-	-	10.0			-
STRIDDER OFF CAS	Feed Drum	10 lower	Feed Line	lop Tray	reed Line	Feed lank
Temperature + 'F	<u> </u>	•			200	190
NH3, Avg - lb/hr		-	225		377	2,710
H2S, Avg - lb/hr	-	-	550	-	446	2,411
Phenols, Avg - lb/hr	-	•		-	19	71
Cyanides, Avg - lb/hr					<u> </u>	•
Water Vapor - lb/hr	<u>.</u>	-			900	1,308
TOWER BOTTOMS	iurnace	iurnace	FIATE	Furnace	Furnace	5. Plant
Flow - com	36 (1)		280 (5)	562 (5)	170 (5)	250
Temperature - *F	230	-	270	170	230	278
NH3, Min - ppm	19	37	25	4,000	7	*
NII3, Max - ppm	71	3,200	300	5,000	*	-
NH3, Avg - ppm	45	•	200 •	5,000	80	80
H2S, Min - ppm		106	. 5	· · · · · · · · · · · · · · · · · · ·		
Has Avg - nom	28	400	20	1 500		<u> </u>
Phenols, Min - ppm		•	100	800	140	
Phenols, Max - ppm	-	-	200	1,000	•	······································
Phenols, Avg - ppm	-	•	150	1,000	280	200
Cyanides, Min - ppm	•	1 •	2	•	•	<u> </u>
Cyanides, Max - ppm			<u></u>	<u> </u>	·····	
DH - Avg		9.3	<u>,</u>			······································
Disposition	Sewer	Sewer	Bio-Unit	Oxidizer	Sewer	Desalter
REMOVAL						
NH3 - %	99.2		90.0	9.1	94.3	99.6
H2S - %	99.75		99.54	87.5	99.53	99.97
Phenols - %			50.0	0	36,4	
STEAM:	·		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Heating - Mlb/hr	0.7	• · ·	3.3	12 (1)	3,1 (3)	Reboiler
Stripping - Mib/hr	16.3	-	26.7	4 (4)	13.7	• •
Total - Mlb/hr		4	30	16	16.8	• <u> </u>
Stripping - Ib/gal of raw feed	7.8		1.8	0.1	1.5	
Total - Ib/gal of raw feed	8.1	1, 3	2.0	0.5	1.9	
Diamater - ft	<u> </u>	2 5	·····		7	7
Beight - ft.	23.1	55	35	34	35	
No. of Trave	<u> </u>	<u>.</u>	10	15		18
Type of Trays	Glitsch	<u> </u>	Flexitrays	Bubble Cap	•	•
Depth of Packing - ft.		20	······································	-	15	•
Type of Packing	•	3" Raschig	-	•	3" Raschig	•
		Rings	260	334	Rings	25.9
Top Press	<u> </u>		<u> </u>		<u> </u>	29
Lop rices, sparg						

CODE NO.	37A	37E	38 A	37 B	41	42
PH CONTROL	None	None	None	None	None	Nore
Flow + com	285	245	186	80	400	÷4)
.Temp F. Tower Latrance	149	195	170	109	210	165
NH3, Min - ppm			-	-		200
NH3, Max - ppm			-	-		4,300
NH3, Avg - ppm	1,400	1,500	270	3,000	1,400	1,900
H2S, Min - ppm			·			8 000
H2S, Avg - ppm	2.575	2.800	400	3,800	1.700	3,400
Phenols, Min - ppm			. .			-
Phenols, Max - ppm	-	-	-	-		•
Phenols, Avg - ppm			544	1,000	975	•
Cyanides, Min - ppm				<u> </u>	<u> </u>	`
Cyanides, Max - ppm	<u> </u>				_	<u> </u>
Cyanides, Avg - ppm				8.0	_	
BECYCLE	<u> </u>	0.5	- 0.0	<u> </u>		
Flow - gpm	· · ·	•	5		50	······································
Temperature - 'F		-	173		170	-
NH3, Avg - ppm		-	-	•	85,000	-
H2S, Avg - ppm		-	-		85,000	-
Phenols, Avg - ppm					2,700	
pH				<u>-</u>		
Disposition	Feed Tank	Feed Tank	Feed Line	Feed Line	Feed Line	Feed Line
Temperature - 'F	710	225	173		170	······
NH3. Avg - 1b/hr	-		5	100	200	
H2S. Avg - lb/hr	-		31	150	300	
Phenols, Avg - lb/hr	-			35	75	·····
Cyanides, Avg - 1b/hr	•	•	-			-
Water Vapor - 1b/hr	-	-	13	3,900	225	-
Disposition	S. Plant	S. Plant	Furnace	CO boiler	Absorber	Scrubber
TOWER BOTTOMS						·
Flow - gpm	305 (5)	259	199 (1)	95 (1)	435 (1) (5)	90
lemperature - F	225	235	210	236	240	233
NH2 Max - nom						10
NH3, Avg - ppm	600	850	200	500	400	187
H2S, Min - ppm		-	•	•	•	0
H ₂ S, Max - ppm	-	-	-	-	-	175
H ₂ S, Avg - ppm	50	100	60	100	200	30
Phenols, Min - ppm	<u> </u>	·			••	<u> </u>
Phenols, Max - ppm				-	<u> </u>	<u> </u>
Phenois, Avg - ppm	-		· · · · · · · · · · · · · · · · · · ·	90	600	·
Cyanides, Min - ppm					••	
Cyanides, Avg - nom						<u> </u>
pH - Avg	10	10	9.5	9.7	9.5	
Disposition	Sewer	Desalter	Bio-Unit	Bio-Unit	Desalter	Desalter
REMOVAL						
<u>NH3- %</u>	57.2	43.3	18.5	83.3	74.4	90.2
Phenole #	98.06	96.43	85.0	97.37	88.24	99.12
Cvanides - %					38.5	
STEAM:						
Heating - Mib/hr	11.1 (1)	4.9	4.1 (1)	5.3.(1) 6.2 (1)	2.7(3)
Stripping - Mlb/hr	13.9 (4)	4.1 (~1	2.3 (4)	3.9 (4) 22.6 (4)	1.9
Total - Mlb/hr	+25	9	6.4	9.2	28.8	4.6
	0.8	0.3		0.8	0.9	0.5
TOWER-	1.5	V.B	10.0	1.9	1,2	··
Diameter - ft	6	4	5	5	6.5	3.5
Height - ft.	-				40	72
No. of Trays		18	20	20	16	24
Type of Trays			Shower	Shower	Valve	Bubble Cap
Depth of Packing - ft.	35		· · · · · · · · · · · · · · · · · · ·			
Top Tomp . *5	2" Al Rings			_		
Top Press Daig	2.5	4.5	0.7	8.8		4.3

CODE NO.	43	44	55	56	60	61
REMARKS		Feed +				Caustic
	·	Recycle				in Feed
pH Control	None	None	Caustic	None	None	Acut
RAW FEED		675	73	·····		117
Temp - 't' Tower Entrance		130		100	141	225
NH3. Min - ppm	1.500		1.200	647		
NH3. Max - ppm	2,500	+	3,100	1,733	-	
NH3, Avg - ppm	2,000	32,200	1,600	1, 384	10	1,440
H2S, Min - ppm	2,000	-	1,600	874	•	-
H2S, Max - ppm	4, 900	•	3,400	2, 293	-	•
H2S, Avg - ppm	3,000	45,000	2,300	874	4,080	1,200
Phenols, Min - ppen	300	<u> </u>		484	•	<u> </u>
Phenols, Max - ppm	500			580		
Phenols, Avg - ppm	400	278	440	532	< 10	71
Cyanides, Min - ppm	·			•	•	<u> </u>
Cyanides, Max - ppm				07		
pH + Avg	9.2	9.8	8.3		9.0	9.4
RECYCLE:						// .
Flow - gpm	•	23	11.7	-	22	-
Temperature - "F	-	105	180	180	135	-
NH3. Avg - ppm	-	150,000		•	61,000	•
H2S, Avg - ppm	+	182,000	-	-	121,600	
Phenois, Avg - ppen		12,000	-		•	•
pH	<u> </u>	•	9,4	•	9.6	-
Disposition	Feed Drum	Feed Drum	Feed Linc	Feed Drum	Feed Line	Feed Drum
STRIPPER OFF-GAS:	·····					
Temperature - *F		180	180	· · · ·	•	180
NH3, Avg - 15/hr	40		56.5	•		
Pizo, Avg - 10/nr	60		90.0		• • • • • • • • • • • • • • • • • • •	34.3
Cyanidas Avg - 10/ar						
Water Vapor - Ibenr			77	·		3. 400
Disposition	Furnace	Flare	Furnace	Flare	S. Plant	-
TOWER BOTTOMS:						
Flow - gpm	45	108 (1)	74	-	154	119 (5)
Temperature - "F	-	-	235	224	230	270
NH3, Min - ppm	10	-	7	287	1,000	
NII1, Max - ppm	•	<u> </u>	· · · · · · · · · · · · · · · · · · ·	908	2,000	-
NH3, Avg - ppm	15	56	25	693	1,470	555
H25, Min - ppm	<u> </u>	·····	0	129	50	
Has Avg - ppm		20		755	65	Nil
Phenols, Min + nom				299	<u> </u>	
Phonols, Max - purn	-		-	695	•	-
Phenols, Avg - ppen	375	239	250	410	Nil	28
Cyanides, Min - ppm		•		•	+	-
Cyanides, Max - ppm	•	•	•	•	-	
Cyanides, Avg - ppm		· · · · · ·	<u> </u>	0.3	•	
PH - Avg	7.3	8.5	9.0	9.6	9.7	8.4
Disposition	Desalter	Desalter	Desalter	Desalter	Sewer	Sewer
NUL E	00.3		04 A'	40.0		61.5
Has - 70	99.02		90.4	70 R	98 41	99.92
Phenols - %	6.3		43.2	22.9		60.6
Cyanides - %		•		57.1		•
STEAM:						
Heating - Mlb/hr	0	4.7	Reboiler	0.3	-	2.7.
Stripping - Mlb/hr	•	6.6	-	-		4.1
Total - Mlb/hr	4.5	11.3	•	•	10.2	6.8
Stripping - Ib/gal of raw feed	·····	1.2		•		0.6
Total - ib/gal of raw feed	•	2.1	<u>f</u>	••••••	1.2	1.0
Diamater (A - E	
Height - (t	3.3	11 6	2.3	<u></u>		36 '
No. of Trave	20.5	12	20		10	10
Type of Trave	Bubble Can	Socony	Sieve	Dual Flow	Bubble Can	Koch
Depth of Packing - ft			· · · · ·			•
Type of Packing	· .	-	-		-	*
Top Temp - "F	220	215	225	222	221	252
Top Press Date	3.0	15	5.3	3.5	3	29

:

SUMMARY OF OPERATING DATA SOUR WATER STRIPPERS (Reference #24) STEAM STRIPPING - NON-REFLUXED

CODE NO.	5	7	<u></u> b	9	10	13A
REMARKS	I-Sample				Data 18	1-Sample
					Design	•
pH CONTROL	None	None	None	None	None	None
RAW FEED:						
Flow - gpm	40	54	45	167	95	120
Temp °F, Tower Entrance	160	143	170	234,		-
NH3, Min - ppm	1,000	900	-	-		
NH3, Max - ppm	2,000	1,250	•	-	-	-
NH3, Avg - ppm	1.700	960	<u> </u>	2.150	.1.850	1.700
H ₂ S. Min - ppm	1.000	1.500	2.000			
HoS. Max - ppm	14.000	4,000	6.000			
HaS Avg - nom		2,600	3 000	2 560	1 070	2 080
Phenols Min - nnm	200	76	200			2,000
Phenols Max - ppm	600	215	900			
Phenole Avg nom		128	700	500		220
Phenois, Avg - ppm		120	100	500		330
Cyanides, Min - ppm		<u> </u>				ه محمد المحمد ا
Cyanides, Max - ppm		<u> </u>	•			-
Cyanides, Avg - ppm	0.5	3.3			-	<u> </u>
pH Avg.	8.0	8.4	8.5	8.3		
TOWER BOTTOMS:						
Flow - gpm	45	57 (5)	4/	1 /7 (1) (5	<u>) </u>	120 (5)
Temp F	230	204	212	240	•	225
NH3, Min - ppm		29.8		<u> </u>	-	-
NH3, Max - ppm	-	-	-	-	-	-
NH ₃ , Avg - ppm	208	49.5		380	96	400
H ₂ S, Min - ppm	0	29.2		-	•	-
H2S, Max - ppm	9	-	•	-	-	-
H ₂ S, Avg - ppm	3	30.3	20	90	16	6
Phenols, Min - ppm	150	-	100	-	-	
Phenols, Max - ppm	450		600	•		•
Phenols, Ave ppm		45	350	400	-	200
Cyanides, Min - ppm				-	•	
Cyanides Max - nnm			•			
Cyanides Ave - nom	1.2	0.3				
nu Aug	8 5	<u> </u>	7 1	8.0		
Disposition	Hio-L'nit	Dusaltor	Sower	Desalter	Decalter	Saure
DISPOSITION	Bio-Cint	Desallog	Sewer	Desauer	Desalter	Jewer
NU2 T	89	96.9		97 5	04 4	76 5
		70.7	00 33	06.5		
H25 - %		90.00	77.33	90.3	90.5	99.1
Phenols - %	•	64.8	50:0	20.0	<u> </u>	39.4
Cyanides - %	<u> </u>	90.9	<u> </u>	••		
STRIPPER OFF-GAS:						
Temp °F	215	201	-	254		224
NH3, Avg - lb/hr	- <u> </u>	24.6	-	150	81	
H2S, Avg - lb/hr		70.2		222	51	<u> </u>
Phenols, Avg lb/hr	<u> </u>	2.2.	-	22	•	
Cyanides, Avg - lb/hr		-	-		-	
Water Vapor - 1b/hr	-	4,800	-	10,400	-	
Disposition	CO-boiler	CO-boiler	CO-boiler	Furnace	Flare	Flare
STEAM:						
Heating - Mlb/hr	1.30	1.6 (3)	0.9(3)	0.4(3)	-	-
Stripping - Mlb/hr	1.34	4.8 (4)	3.6 (4)	10.6 (4)	-	
Total - Mlb/hr	2.7	6.4	4.5	11.0	1.7	4.1
Stripping - lb/gal of raw feed	0.0	1.5	1.3	1.1	· -	•
Total - lb/gal of raw feed	1.1	2.0	1.7	1.1	0.3	0.6
TOWER						
Diameter - ft.	5.5	4.5	3		2	3.5
Height - ft.	3.7	· 23	39.7	48	15	20
No. of Trays	12		12	10	6	•
Type of Trave	Clitech	Bubble Can	Glitsch	Value	Shower	
Duuth of paging ft	<u> </u>	Louve Cap		10140	UNOWEL	
Two of Doolyst		-				10 -inge
		201	·			t rings
1 op 1 emp F	215	201	212		-	
Bot. Temp - "F	230	204	212		696	245
lop Fressure - psig	5	-	-	17	-	4

.

CODE NO.	18	21Å	ZIA	21 B	29	31
REMARKS		1st stage	2nd Stage			I-sample
PH CONTROL	None	None .	None	None	None	None
RAW FEED:						
Flow - gpm	40	403	403	86	50	73
'Temp 'F, Tower Entrance	170	216	227	210	220	210
NH3, Min - ppm	2,400	1,900	1,500	-	-	-
NH3, Max - ppm	4,500	3,900	2,600	-	-	-
NH3, Avg - ppn	4,460	2,800	2,000	2,500	3,700	5,305
H2S, Min - ppm	2,400	2,800	200		-	· -
H2S, Max - ppm	5,200	5,900	800		-	-
H2S, Avg - ppm	2,480	4,000	500	1,300	8,750	21,760
Phenols, Min - ppm	180	360	- 380			-
Phenols, Max - ppm	400	740	700		-	-
Phenols, Avg ppm	188	629	584	2,400	-	232
Cyanides, Min - ppm	-	-	-		-	-
Cyanides, Max - ppm	-	-	· -		-	-
Cyanides, Avg - ppm	< 15		•		-	28
pH Avg.	8.6	8.9	-	9.7	9.1	8.7
TOWER BOTTOMS:						
Flow - gpm	56 (5)	407 (5)	427 (5)	90 (5)	53 (5)	80 (5)
Temp °F	209	227	272	235	273	238
NH3, Min - ppm	150	1,500	200	•	-	-
NH3, Max - ppm	500	2,600	1,300	<u>.</u> `		-
NH3, Avg ppm	265	2,000	300	300	2,600	408
H ₂ S, Min - ppm	2	200	10	-	-	
H2S, Max - ppm	9	800	300	-	-	-
H2S, Avg - ppm	2	500	90	300	3,000	13
Phenols, Min - ppm	45	380	320	-	-	
Phenols, Max - ppm	150	700	700	-		-
Phenols, Avg - ppm	45	584	479	310	-	31
Cyanides, Min - ppm	-	-	•	-	-	-
Cyanides, Max - ppm	-	-	-	-	•	-
Cyanides, Avg - ppm		-				. F1.6
pH Avg.	-	-	-	5.3	9.5	9.0
Disposition	Desalter	2nd Stage	Desalter	Bio-Unit	Sewer	Desalter
REMOVAL:						
NH3, - %	94.1	28.6	85.0	88.0	29.7	92.3
H2S - %	99.92	87.5	82.0	,76.9	65.7	99.94
Phenols - To	76.1	7.2	18.00	87.1		86.6
Cyanides - %	-		-		<u> </u>	58.6
STRIPPER OFF-GAS:	· · · · · · · · · · · · · · · · · · ·					
Temp - °F	218	220	266	237	-	230
NH3, Avg - lb/hr	101.9	158	342	93	•	_
H2S, Avg - lb/hr	51.4	704	83	42		
Phenols, Avg lb/hr	2.9	7	17			
Cyanides, Avg - 1b/hr					+	•
Water Vapor - 1b/hr	9,570	3, 392	7,987	1,616		
Disposition	CO-boiler	S. Plant	CO-boiler	rurnace	rurnace	Furnace
STEAM:				1 0 (2)		1.0.(1)
Heating - Mlb/hr	1.03	2.3 (1	9.5 (1)	1.0 (3)	1.1 (3)	1.0 (1)
Stripping - Mlb/hr	9.23	1. ((4	12.0 (4)	2.9 (4)		<u> </u>
Total - MID/hr	10.3	4.0	21.5		0.1	1.2
Stripping - Ib/gal of raw feed		0.07	0.5	<u> </u>		1.4
lotal - Ib/gal of faw feed	4.5	0.2	0.9	0.8	0.7	1.0
TOWER			4 5	2 5	2 5	c
Diameter - it.	<u> </u>	0	0.5	<u>, , , , , , , , , , , , , , , , , , , </u>	22	29
Height - ft.			41	46.5	٤٢	
No. of Trays		9	15 Rellere	1.5		0
Type of Trays	·	Bubble Cap	Bailast	Sleve		ruch
Depth of Packing - ft.	16				14	
Type of Packing	3" Saddles				13 Saddles	- 230
Top Temp - °F	218	220	200	231		230
Bot. Temp - 'F		227	212	<u> </u>	<u> </u>	
Top Pressure - psig	-	7	55	8.1	<u> </u>	14

,

CODE NO.	32	33	47	48	48	51
REMARKS				lst Stage	2nd Stage	
-U CONTROL	Nore	Nono	None	Nana	Nono	None
RAW FEED	None	None	None	None	None	None
Flow - gpm	75	283	50	80	80	55
Temp - °F. Tower Entrance	118	190	210	205	225	242
NH3, Min - ppm	1,110	2,300	600	2,000	-	-
NH3, Max - ppm	1,310	3,000	1,350	5,000	-	
NH3, Avg - ppm	1,200	2,600	1,000	2,500	1,050	4,400
H ₂ S, Min - ppm	300	4,350	2,100	3,000		
H ₂ S, Max - ppm	1,200	5,400	2,900	6,000		-
H2S, Avg - ppm	<u> </u>	5,250	2,550	3,800	215 .	3, 743
Phenois, Min - ppm		570	270			
Phonole Avg - ppm	75	530	550			398
Cyanides Min - ppm				-		
Cyanides, Max - ppm			-	••••••••••••••••••••••••••••••••••••••	-	
Cyanides, Avg ppm	·	-	-	· •	-	0.45
pH Avg.	8.3	8.6	7.5	8.5	- •	9.1
TOWER BOTTOMS:						
Flow - gpm	80 (5)	307 (1)	52 (5)	86 (1)	80 (5)	36,3(1)
Temp - °F	215	225	225	223	235	208
NH3, Min - ppm	36	34	115	<u> </u>	•	
NH3, Max - ppm	124	250	280			
<u>NH3, Avg - ppm</u>		200		1,050	115	1,017
H2S, Min - ppm		12	100			
H2S, Max - ppm			5	215		68
Phenols Min - ppm	14	310	225			
Phenols, Max - ppm	39	390	450	-	•	
Phenols, Avg - ppm	20	320	225	-	-	455
Cyanides, Min - ppm	-	-	•	-	*	**
Cyanides, Max - ppm		-		•	-	•.
···· Cyanities, Avg - ppn	1.21 a. + . # . + .	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a star af a second	<u> </u>	· · · · · · · · · · · · · · · · · · ·	• • 0.35 •
pli Avg.		8.6	8.0	-	• •	
Disposition	Desalter	Lagoon	Desalter	2nd Stage	Desalter	Bio-Pond
REMOVAL:	<u> </u>	_	00 F			
<u>NH3- %</u>	94.0	92.5	00.8	19.0	89.1	07.65
75 • 76	73.3	39.6	59.1	• 74.5		91.03
Cvanides - 7					····	22
STRIPPER OFF-GAS:						
Temp - *F	180	225	215	210	230	224
NH3, Avg - lb/hr	-	119	22	55	41	88
H2S, Avg - 1b/hr		242	64	143	9	83
Phenols, Avg - lb/hr	<u> </u>	15	8		•	<u> </u>
Cyanides, Avg - lb/hr			•			
Water Vapor - 10/hr	B D Stack	CO-boiler	- CO-boiler	To Atmos	To Atmos	2, 390 Euroace
STEAM	D.D. Slack	CO-boller	CO-boner	TO Atinos,	TO Atmos.	Furnace
Heating - Mlb/hr	3.7 (1)	5.1(1)	0,4(1)	0.8(1)	0,4(1)	
Stripping - Mlb/hr	2.8 (4)	2.9 (4)	5.6 (4)	2.1 (4)	4.3 (4)	-
Total - Mlb/hr	6.5	8.0	6.0	2.9	4.7	2.6
Stripping - 1b/gal of raw feed	0.6	0.2	. 1. 9	0.4	0.9	-
Total - 1b/gal of raw feed	1.4	0.5	2.0	0.6	1.0	0.8
TOWER:					·	•
Diameter - ft.	4	3.5	5	3.5	4	4
Height - ft.	20.8	29	48.5	31.5	47.1	36.5
No. 01 1 rays			19 Rubble Cee		12 V anid	
Depth of Packing - ft			Bubble Cap	- 20	v-gria	10
Type of Packing	3" Ringe	3" Saddles	·	3" Raschig	•	3" Raschig
vike of theory.R		- Juddies	-	Rings	-	Rings
Top Temp °F	150	225	215	210	230	224
Bot. Temp °F	200	230	225	. 225	235	242
Top Pressure - psig	1	8	1.5	1	7	4.5

ł

CODE NO.	52	53	53	54.4	54B	54 B
REMARKS		1st Stage	2nd Stage	Crude Unit	1st Stage	2nd Stage
	News	N1	Countin	Stripper	A1	
PAW FEED	none	ivone	Caustic	None	None	None
Flow - gpm	14	231	2015	50	135	137
Temp - "F. Tower Entrance	90	171	212	224	210	225
NH ₃ , Min - ppm	• •				-	•
NH3, Max - ppm	-	-		+	-	-
NH3, Avg - ppm	5,450	2,625.	1,425	215	2,500	2,330
H2S, Min - ppm	•	-	-	-	-	*
H2S, Max - ppm	-	-		*	-	-
H ₂ S, Avg - ppm	5,215	3,400	375	417	4,200	425
Phenols, Min - ppm				·		_
Phenois, Max - ppm	-					
Phenois, Avg - ppm	202	······································	• <u>•</u> ••••••••••••••••••••••••••••••••••	20	390	330
Cyanides, Min - ppm						
Cyanides, Max - ppm	1 2	-				
nH Avg	9.1	8.3	96	73	8.6	
TOWER BOTTOMS:						
Flow - gpm	16.4	231 (5)	218 (1)	53 (1)	137 (5)	143 (1)
Temp °F	222	212	234	224	225	218
NH3, Min - ppm	-	-	*	-	e	
NH3, Max - ppm	-	-		-	-	-
NH3, Avg - ppm	56	1,425	9.8	76	2,330	350
H ₂ S, Min - ppm	-	•	- 1	-	-	•
H ₂ S, Max - ppm	-	-	•	-	-	<u> </u>
H ₂ S, Avg - ppm	. 1	375	4.5	6	425	22
Phenols, Min - ppm				-	•	
Phenols, Max - ppm					226	
Phenois, Avg ppm	147			13		250
Cyanides, Min - ppm					· _ · · · · · · · · · · · · · · · · · ·	······
Cyanides Avg ppm	1.23					
pH Ave.	8.6	9.6		9.3		9.7
Disposition	Bio-Pond	2nd Stage	Desalter	Wash Water	Desalter	Desalter
REMOVAL:		······································			•	
NH3 -50	98.9	45.7	99.3	64.6	6.8	85.0
H2S - %	99.98	89.0	98.8	• 98.56	89.88	17.7
Phenols - 🦏	27.2			35.0	13.9	25.6
Cyanides - %		<u> </u>	<u> </u>			
STRIPPER OFF-GAS:		104		276	214	214
lemp P	220	194	156	225	10	137
$\frac{1}{1}$ $\frac{1}$	37	334	41	10.3	255	27.5
Phenola, Avg lb/hr	0.3			0,1	0.6	5.9
Cvanides, Avg lb/hr				•	-	-
Water Vapor - 1b/hr	1,610			1,350	975	6,000
Disposition	Furnace	Gas Plant	Vent Stack	Eurnace	Furnace	Furnace
STEAM:						
Heating - Mlb/hr	0.9	4.8(1)	2.0(1)	0.2(1)	1.2(1)	•
Stripping - Mlb/hr	1.6	0.9(4)	9.4 (4)	1,2(4)	0.8 (4)	
Total - Mlb/hr	2.5	5.7		1.4	2.0	6.0
Stripping - 10/gal of raw feed	<u> </u>	0.07	0.8	0.4		
Total - 1b/gal of raw feed	3.0	0.4	0.9	0,5	0.3	0.7
TOWER:		<u>_</u>	3 5	2 5		3
Diameter - it.	21.3	25	55.5	18	25	24.7
No. of Trave			20	5		10
Type of Travs	Valve	Bubble Can	Bubble Cap	Valve	-	Bubble Cap
Depth of Packing - ft.	-	P	_	-	15	
Type of Packing	•	•	-	•	2" Raschig	-
					Rings	
Top Temp °F	220	194	223	225	216	214
Bot. Temp °F	222	212	234	230	227	221
Top Pressure - psig	3	3	5	6	6	11

,

TABLE VII-4 (Cont.)

CODE NO.	57	58	59	63	
REMARKS					
PHCONTROL	None	None .	None	None	
RAW FEED:					
Flow - gpm	-	21	57	94	
•Temp °F. Tower Entrance	145	145	137	214	
NH3. Min - ppm		1.000	1.375		
NH3. Max - ppm		8,100	1 630	806	
NH2 Avg - ppm	3 842	4 100	1 518	767	
Has Min - pam		6.00	1,545		
Has Max nom		2 730	3 042	1 550	
H25, Max - ppm	2 005	2,150	2 300	1,000	
H2S, Avg ppm	2,885	2,300	2,300	1, 345	
Phenols, Min - ppm		175	152		
Phenols, Max - ppm		225	270	71	
Phenols, Avg ppm	260	190	210	68	
Cyanides, Min - ppm	-	•	7	•	
Cyanides, Max - ppm	-	~	• 9	-	
Cvanides. Avg - ppm	0.6	1.01	8	-	· · · · · · · · · · · · · · · · · · ·
pH Avg.	9.2	8.8	7.8	8.1	
TOWER BOTTOMS		· · · · · · · · · · · · · · · · · · ·			
Flow - gpm	13 4	32 0 (1)	64 (1)	101 (1)	
Temp - *F	200	215	207	235	
Nute Mine and	200	10	102		
NH3, MIN - ppm		10	103		
NH3, Max - ppm		45	324	890	
NH3, Avg ppm	860		250	580	
H ₂ S, Min - ppm	-	0 .	0	-	
H2S, Max - ppm	-	10	20	582	
H ₂ S, Avg ppm	202	1	10	291	
Phonols, Min - nom		100	94		
Phonola Max - ppm		400	184	·····	·····
Phonola Aug - ppm	280	150	140	63	
Filenois, Avg ppm	200	1,0	140		
Cyanides, Min - ppm					
Cyanides, Max - ppm					
Cyanides, Avg ppm	0.3	1.05	<u> </u>	-	
pli Avg.		8.3	9.0	9.0	
Disposition	Lagoon	Bio-Unit	Bio-Pond	Sewer	
REMOVAL:					
<u>NH3-%</u>	77.6	99.8	83.6	24.4	
H2S - 70	93.0	99.96	99.57	78.0	
Phenols - %	-	21.1	33.3.	7.4	
Cyanides - %	50.0	•	75.0	-	
STRIPPER OFF-GAS:					
Temp °F	*	213	205	232	
NH2, Avg lb/hr	18.5	77	35	25	
Has Avg - lb/hr	16.9	35	57	2.000	
Phenole Avg - lb/hr		0.15	1.4		
Cyanides Aug - 1b/hr					
Water Vaner - lb/hr		3 840	1 300		- <u> </u>
Disposition	To Atmos	Burnor	Vent Stack	S Dlant	
Disposition CT PANA	To Adnos.	Durner	Vent Stack	5. F 1411	
SILAM:			1 / /15	·····	
Heating - Mib/nr		1.4	1.6 (1)	0.9 (1)	
Stripping - Mlb/hr		4.5	2.4 (4)	0.5 (4)	
Total - Mlb/hr		5.7	4.0	1.4	
Stripping - lb/gal of raw feed	-	2.7	0.7	0.09	
Total - 1b/gal of raw feed		3.4	1.2	0.3	
TOWER:					
Diameter - ít.	2.5	3	4	5.7	
Height - ft.	18.1	23	25	48.3	
No. of Trays			-	22	
Type of Leaves	-	Koch	······································	Bubble Can	
Deuth of Parling - fr.	10		18	-	
Ture of Proving	1' Raechur		3" Raechia		
Type of Yacking	- Nascurg Binge	-	Pinge	-	
Ton Tunon 65	itings	712	205	232	
Lop Lomp. ~ P				235	
$\underline{\text{Bot. Lemp }}$	200	<u> </u>		<u> </u>	·
Top Pressure - psig	-	U.5	0.1	8	

ч

- (1) Calculated bottoms rate or steam rates. See explanation in Notes (2) and (4) below.
- (2) Heating steam rates designated as calculated were determined by taking the enthalpy change in raising the feet at the temperature entering the tower to the tower operating temperature and converting it to a steam rate based on the indicated steam temperature and pressure.
- (3) The reported steam rate does not equal the calculated rate.
- (4) Stripping steam rates were determined by taking the difference between the total steam and the heating steam.
- (5) The reported bottoms rate does not equal the sum of the feed plus the condensed heating steam. The reported bottoms rates should not be used as a basis for estimating the stripping steam rate.
- (6) The following strippers are presently not in service: 13B, 27, 10, and 31.

SUMMARY OF OPERATING DATA SOUR WATER STRIPPERS (Reference #24) FLUE GAS AND FUEL GAS STRIPPERS

CODE NO.	4	11	35	-40	6.2	2	39A
REMARKS		Feed includ	e s				-
		KO Pot					
PH CONTROL	None	None	None	None	None	None	Acid
RAW FEED:							
Flow - gpm	200	24	235	49			
lemp P	140	175	1 900	3 300	190	4 050	
Nri3, Min • ppm	· · · · · · · · · · · · · · · · · · ·		1,900	3, 500	400	4,000	
NH3, Max - ppm		3 800	2,300	3,600	700	5 320	1 800
His Min - Dom		3,800	2 900	3,600	500	5,520	1,800
H2S. Max - porp	3.736		4, 100	3,900	1.600	10,000	
H2S. Avg - ppm	2.176	6.000	3.840	3,800	1.700	8,590	2,500
Phenols, Min - ppm				100	00	91	-
Phenols, Max - ppm			-	150	135	181	-
Phenols, Avg - ppm	220	330	491	110	100	143	
Cyanides, Avg. pom	0.29	•	5	nıl		· ·	•
pH Avg	8.5	8.5	8.1	9.3	8.7	9.0	6.7
TOWER BOTTOMS						· · · · · · · · · · · · · · · · · · ·	
Flow - gpm	200	24	225	51		53	276
Temp *F	204	200	105	141	180	236	285
NH3, Min - ppm	· · · · · · · · · · · · · · · · · · ·	<u> </u>	410	780	·	431	
NII3, Max - ppm						637	
NH3. Avg - ppm	<u> </u>	1,500		870	100		1,670
H2S, Min - ppm	0	0	6	nıl	•	11	<u> </u>
H2S, Max - ppm	4	20	•	•	-	22	
H2S, Avg - ppm	4	-	12	nıl	65	15	6
Phenols, Min - ppm	· · ·	*	<u> </u>	80	•	68	
Phenols, Max - ppm	<u> </u>	<u> </u>			·	136	<u> </u>
Phenols, Avg - ppm	130	250	422	90	100	101	·
Cyanides, Avg - ppm	0.25			<u></u>			
ph Avg.	<u> </u>	8.3	/. 4	94	8.7	9.6	
Disposition	Sewer	D10-011	Sewer	Pona	Sewer	Sewer	Desaller
NUL T		60.5	75 7	75 5	0	60.0	
H25 - 1	99.62	99.83	99.69	99.95	96.18	19.83	99.76
Phenols - %	40.9	24.2	14.1	18.2	0	29.4	
Cyanides - Th	13.8						
STRIPPER OFF-GAS							
Temp *F	<u> </u>	160	165	· 156	200	233	205
NH3, Avg - lb/hr	<u> </u>	33.5	•	64	-	146	nil
H2S, Avg - lb/hr		87.5		92		230	312
Phenols, Avg - 1b/hr	`	1.2	<u> </u>	0.34		<u> </u>	<u> </u>
Cyanides, Avg - ib/hr			_	<u>nil</u>		<u> </u>	_
Water Vapor - 1b/hr		200		1,180		3,730	250
Disposition	CO-Boyler	Incinerator	CO-Boile	r Stack	Incinerator	Furnace	Coker
2.0000000							Fractionator
STRIPPING MEDIUM:	······································					······································	
Stripping Gas	Flue Gas	Flue Gas	Flue Gas	Flue Gas	Flue Gas	Fuel Gas	Fuel Gas
Quality							
CO2 - %	9.1	8.0	10	8.3	10	<u> </u>	
CO - 7/2	12.5	13.0	12		9	<u> </u>	
02- %	0	0.1	Trace	2.5	<u> </u>	<u> </u>	<u> </u>
<u>N2- %</u>		78.9	65	72.5	71		
H2O - %	<u> </u>	· · · · · · · · · · · · · · · · · · ·	14	16.7			
Quantity - 10/hr		4,000					200
Diantity - SCFR	278,300	£ 10		80,150	25,000		
Temp + 'F	856	300	1 275	115	600		
STEAM.							
Temp. • F	<u> </u>	350	•			430	285
Pressure - psig	45		70		-	144	35.3
Lb/Hr	5,100	200	6,700	Z,098		5,084	13,000
TOWER							
Diameter - ít.	5	2.5	6	6	2.7	3	4
Height - Ft.	40	33	40	21.7	30	31	
No. of Trays	10	13	13		·····	18	16
Type of Trays	Valve	Bubble Car	5 Sieve		<u> </u>	Baffle	<u> </u>
Depth of Packing	<u>.</u>			10	22		
Type of Packing	-	-	-	I' Raschig	i}"Saddlee	-	-
Teo Pressure out				Rings		, <u>-</u>	<u>, ,</u>
iop rressure - psig			۷	<u> </u>	-	14	

٢

(2) steam/non-refluxed, and (3) flue gas and fuel gas stripped, respectively.

The results of this survey show that 18 of the 31 refluxed and 11 of the 24 non-refluxed SWS's and 6 of the 7 SWS's using flue or fuel gas as the stripping medium achieve greater than 99% removal of sulfides. In addition, nine refluxed and three non-refluxed units achieve greater than 99% removal of sulfides and 95% or greater removal of ammonia in the same unit. It should be noted that many other columns are performing nearly as well as the removals indicated. It is interesting to note that of the five twostage units for which data are reported, only one unit achieves high removals of both parameters. From the data, it appears that refluxed columns are yielding better overall removals of both pollutants.

The average effluent of all units that are achieving greater than 99% sulfide removal is 5.8 mg/l. The average effluent from all units achieving 95% or greater ammonia removal is 62.5 mg/l. These averages are based upon a wide range of influent and effluent values.

Table VII-6 presents the data collected during this study for the sour water stripper at indirect discharging refinery #17.

Sour Water Oxidizers. Another way of treating sour water is to oxidize by aeration. Compressed air is injected into the waste with sufficient steam to raise the reaction temperature to at least 190 degrees F. Reaction pressure of 50 - 100 psig is required. Oxidation proceeds rapidly and converts practically all of the sulfides to thiosulfates and about 10% of the thiosulfates to sulfates. Air oxidation, however, is much less effective than stripping in regard to reduction of the oxygen demand of sour waters, since the remaining thiosulfates can later be oxidized to sulfates by aquatic microorganisms.

Oxidation systems using peroxide and chlorine have also been identified during this project. These systems operate in open tanks, without the use of steam.

Due to the very low limits required by the County Sanitation Districts of Los Angeles County, refineries discharging to this sewer system use both sour water strippers and sour water oxidizers, in series. Levels of less than 0.1 mg/l sulfides in the effluent are consistently maintained by these refineries. Los Angeles County also maintains a

SOUR WATER STRIPPER OPERATING DATA FOR Refinery #17

Operating Data

Date	Hydroge: <u>In</u>	n Sulfide <u>Out</u>	Ammon In	nia <u>Out</u>
6/74	126	2	112	52
7/74	120	1	105	50
8/74	100	3	95	48
9/74	104	0	100	50
10/74	95	0	90	46
11/74	112	1	102	51
12/74	102	1	98	47
1/75	80	0	85	40
2/75	86	0	87	44
3/75	78	0	84	46
4/75	92	1	98	50
5/75	100	1	110	55
6/75	98	0	110	56
7/75	115	1	120	58
8/75	110	2	118	58
9/75	120	1	124	55
10/75	116	0	120	56
11/75	98	1	104	48
12/75	80	1	92	44

•

restriction of 50 mg/l of thiosulfates to control the chlorine demand at the sewage treatment plant.

Table VII-7 has been extracted from the "1972 API Sour Water Stripping Survey Evaluation" (24). As can readily be seen, these treatment systems are capable of removing virtually all of the sulfides present in the wastewater regardless of the raw feed concentration.

Phenol Removal Systems

The removal of phenols by end-of-pipe treatment systems has been demonstrated in this as well as in other industries. Phenol removal as a pretreatment operation involves the treatment of sour waters prior to dilution by other process waste streams. There are two major techniques practiced by the refining industry for the pretreatment of phenols-biological treatment and the use of sour waters as make-up to the desalter.

<u>Recycling to the Desalter</u>. The use of sour waters as makeup to the desalter is a proven technology in the industry. Phenol removal efficiencies will vary greatly depending on a number of factors, but the most important factor is the type of crude being refined.

Data were obtained on the removal efficiencies accomplished through the application of this technology at Refinery #18 and are presented in Table VII-8. A total of three indirect discharge refineries (numbers 17, 18 and 22) have been identified that treat their sour waters by recycling to the desalter after stripping.

Industry has suggested that the crude source can have a significant effect on the practicality of recycling sour water stripper bottoms to the desalter. For example, it has been contended that the use of sour waters to desalt heavy California crudes can lead to the formation of emulsions in the desalter effluent. The Agency solicits information relative to this contention such that the existence of desalter effluent emulsions and their effects on end-of-pipe treatment can be quantified.

<u>Biological Treatment</u>. Biological oxidation has been used successfully to treat industrial wastes containing phenol at various concentrations. Since phenol is a bactericide, it can have the effect of inhibiting biological action in a treatment plant not acclimated to phenolic wastes. However, biota can become acclimated to the phenol by developing strains of organisms resistant to phenol that are able to

60

٠

SUMMARY OF OPERATING DATA SOUR WATER OXIDIZERS (Reference #24)

CODE NO.	16		<u>39B</u>	45	46
REMARKS	lst Stage Oxidizer	2nd Stage Ammonia Stripper			2 parallel Oxidizers
pH Control	Caustic	None		Caustic	Caustic
RAW FEED					
Flow - gpm	29	19.6	175	110	530
Temp - °F	100	210	-	110	109
NH3, Avg ppm	2,000	1,700	9,000	3,550	6,510
H2S, Avg - ppm	1,160	0	10,000	4,740	8,800
Phenols, Avg - ppm	38	34	-	1,100	141
pH, Avg	12	10	9.5	8.2	-
TREATED WATER					
Flow - gpm	31.8	20.4	185	115	-
Temp °F	210	245	200	200	198
NH3, Avg ppm	1,700	200	7,100	2,760	3,800
H2S, Avg ppm	0	0	0	<1	0
Phenols, Avg ppm	34	32		1,000	141
Thiosulfate - ppm	2,800	-	÷	-	8,800
pH Avg.	10		10	9	-
Disposition	2nd Stage	Sewer	Storage	Sewer	Sewer
STEAM					
Flow - SCFM	23	-	-	-	-
Flow - lb/hr		1,500	3,300	3,000	8,350
AIR					
Flow - SCFM	217		-	500	5,600
Flow - lb/hr	-	-	5,400	•	-
TOWER					
Diameter	4.5	3	7	6	9.5
Height	50	40	50	83	50
No. of Trays	-	15	-	26	
Type of Trays	-	Valve	-	Bubble Cap) –
Stages	4	-	4	-	4
Temp. Top	210	235	220	200	210
Temp. Bot.	200	245	200	187	200
Pressure Top	37	10	85	40	40
Pressure Bot.	85.	15	140	72	85

L

OPERATING DATA FOR THE REMOVAL OF PHENOLS IN THE DESALTER

Refinery #18

Phenol Concentration, mg/l

Date	Influent	Effluent
5/13/76	55	8
5/14/76	55	10
5/17/76	104	14
5/18/76	93	25
5/21/76	63	8

J

utilize phenol as food material. Biological treatment systems can thrive on phenolic-bearing wastes and oxidize the phenols to innocuous substances. The most effective technique for biological treatment appears to be the completely mixed activated sludge process with detention times of about 24 hours in the aeration tank. This technique tends to minimize the adverse effects of sudden changes in concentration (i.e., shock loads) of phenols or other pollutant parameters. It is also possible to minimize these fluctuations in influent phenol concentrations by the use of waste water equalization techniques.

Biological treatment for phenol removal is practiced in a number of refineries at which the combined plant effluent is treated biologically for removal of oxygen demand in addition to phenol reduction. However, treatment for specific removal of phenol in the sour water stream by biological means has been identified to be in use at only one refinery. This refinery is a direct discharger and is coded #52 in the "1972 API Sour Water Stripping Survey Evaluation" (24) discussed previously. No refineries that are presently discharging to a POTW have been identified as using this technology.

The phenol pretreatment system at plant #52 consists of an aeration tank with a detention time of 3.6 days at the design flow rate of 100 gpm. Two 20 HP surface aeraters are used to supply the oxygen.

Figures VII-1 and VII-2 present probability plots for the phenol concentrations entering and exiting the bio unit. This facility is averaging 99% removal of phenols. It should be noted that the unit has experienced foaming problems that have affected the plant's operations periodically. The data presented in the probability plots are based upon approximately 150 daily samples taken over an eight month period.

<u>Activated Carbon</u>. The capability of activated carbon to adsorb phenol is well established in the literature. However, the pollutant category of "phenol" can include many compounds with widely varying rates of adsorption on carbon. Activated carbon is in general a nonselective adsorbent. It will adsorb other organics as well as phenols; important factors to the effectiveness and economics of the process are the relative concentration of the various organic compounds, the rate of adsorption, the equilibrium concentration, and the capacity of the carbon.

.

63

INFLUENT PHENOL CONCENTRATION TO BIO-UNIT AT PLANT 52 (API STRIPPER SURVEY CODE)

FIGURE VII-1

PROBABILITY PLOT

FIGURE VII-2

FROM BIO-UNIT AT PLANT 52 (API STRIPPER SURVEY CODE)

EFFLUENT PHENOL CONCENTRATION

PROBABILITY PLOT

ł

The use of activated carbon for phenol removal is not widely practiced in the refining industry. There were no indirect dischargers identified that used activated carbon pretreatment for phenol reduction prior to discharge to the POTW.

<u>Chemical Oxidation</u>. A number of relatively common oxidizing agents are capable of oxidizing phenol. These include ozone, hydrogen peroxide, chlorine, chlorine dioxide, and potassium permanganate.

Ozone is a powerful oxidizing agent capable of destroying most of the organic compounds, including phenols, which contribute to pollutants such as BOD, COD, and TOC. Since ozone is too unstable to ship and store, it must be generated on site with an ozone generator. The generator produces ozone by passing air or oxygen through an electrical discharge. While the use of oxygen results in a more efficient generation of ozone than the use of air, its use can usually be justified only in larger installations.

Aside from ozone, hydrogen peroxide is the preferred oxidizing agent in the remaining group of chemicals. Chlorine and chlorine dioxide are relatively low cost commercial chemicals, but could tend to form chlorophenols which may be more toxic than unchlorinated phenols. Potassium permanganate is significantly more costly than hydrogen peroxide for equivalent oxidation capacity.

Chemical oxidation is not widely utilized for phenol reduction, and no indirect discharge refineries were identified that employ this technology.

Removal of Chromium

Chromium will appear in the wastewaters from oil refineries when it is used as a scale preventative and biocide in cooling towers. This type of cooling tower treatment is prevalent throughout the industry and is used by many indirect dischargers.

Chromium will be present in the wastewater in both the trivalent and hexavalent forms. The first step in chromium removal involves the reduction of hexavalent chromium to the trivalent state. This is usually accomplished through the addition to the waste water of a reducing agent, such as sulfur dioxide, ferrous sulfate, or sodium bisulfite, and agitating for an appropriate period of time. The trivalent chromium is then precipitated by adding lime or caustic to the wastewater to raise the pH to alkaline conditions, at

£

which chromium has the least solubility in water. Flocculants and flocculant aids, such as ferric chloride, alum, and polymers, can be added to increase removal efficiencies. The wastewater is then fed to a clarifier where adequate detention time must be afforded to allow the flocculated metallic hydroxide particles to settle out of the wastewater. Filtration would usually follow the clarification unit to remove suspended solids.

There are no pretreatment techniques for chromium removal presently being used by indirect discharging refineries; therefore, removal efficiency data are not available.

Removal of Oil and Grease

A major waste emanating from oil refineries is commonly referred to as the oily stream. These wastewaters are normally generated from many sources and operations within a refinery, including pad washings, tank bottom washings, and contaminated storm runoff. This waste stream can either be treated separately or in combination with the other refinery wastewaters. The control and treatment technology for oil and grease removal is well known and has been widely demonstrated throughout the industry (see Development Document, pages 101, 102, and 107).

Gravity separation is the unit operation employed for primary oil and grease removal. The most common piece of equipment used in this industry is the API separator. Gravity separation is universally utilized in petroleum refineries and is described in considerable detail in the Development Document (pages 101 and 102). All indirect dischargers presently have gravity oil separators as part of their pretreatment systems.

Another type of separator finding increasing use in refineries is the parallel plate separator. This technology is described in the Development Document (page 102). Refineries #4 and #5 are the only indirect dischargers that have been identified that use this type of treatment unit as part of their pretreatment systems.

Secondary oil and grease removal may be achieved by several unit processes. One of the most effective and widely used in petroleum refineries is dissolved air flotation (DAF) (see Development Document, page 107). Thirteen indirect discharging refineries have been identified that pretreat their wastewaters with DAF systems. It is also possible to employ multi-media filtration as a pretreatment technique to further reduce oil and grease discharges (see Development

67
Document, pages 102, 110, and 111). No indirect discharging refineries have been identified that employ filtration as pretreatment prior to discharge to POTW.

SECTION VIII

COST, ENERGY, AND NON-WATER QUALITY ASPECTS

INTRODUCTION

This section addresses the costs, energy requirements, and non-water quality environmental impacts associated with the control and treatment technology presented in Section VII. The cost estimates presented do not include land costs. It space is available for the assumed that ample is any necessary pretreatment systems. construction of In addition, the estimates are based on the assumption that no unusual foundation or site preparation problems exist. These factors are not included in the estimates because they are site specific. Land costs and site conditions may vary from one refinery to another. Land requirements are relatively minimal compared to those for refinery process equipment and the land areas required for installation of systems are expected to be available to pretreatment indirect discharging petroleum refineries.

The entire segment of the industry discharging to POTW has been identified and, except for a few instances, the pretreatment systems presently employed at these refineries are known. Total costs can be calculated for all indirect discharging refineries and are presented in this section. In some cases, costs are based on a model plant approach, while in other cases, a plant by plant evaluation is made.

COST AND ENERGY

Sour Water Strippers

As discussed in Section VII, the major pretreatment process available to the petroleum refining industry for removal of sulfides and ammonia from sour waters is stripping.

The source of cost data for this technology is the "Economics of Refinery Wastewater Treatment" prepared by the American Petroleum Institute (31). The estimates of total capital cost as presented in the reference document are shown in Figure VIII-1. These estimates include the costs of sour water collection and steam supply to the stripper as well as the cost of the stripping facilities themselves. The costs shown in Figure VIII-1 are presented in 1972 dollars; therefore, costs were adjusted by a factor of 1.35

CAPITAL COST SOUR WATER STRIPPING

LEGEND:

1- High nitrogen crude installations

- 2- New installations for H_2S stripping 3- Revisions for NH_3 stripping

Reference 31

FIGURE VIII-2 REFINERY CAPACITY VS. SOUR WATER FLOW RATE

(calculated from Consumer Price Index) to update the figures to 1976 costs.

In order to verify the relationship between sour water stripping capital cost and refinery capacity, sour water flow rate data obtained during this project were plotted against corresponding refinery throughput. This plot is shown in Figure VIII-2. The results indicate an adequate correlation between these two parameters for the purpose of estimating capital costs associated with the installation of sour water strippers for removal of hydrogen sulfide and ammonia.

<u>Sulfide Removal</u>. Nine refineries were identified that do not have a sour water stripper as part of their pretreatment operations. It was determined that at eight of these refineries stripping technology was not required since there are no sour waters produced by their operations.

Based on this analysis, only one refinery could be affected to any significant degree by the requirement of pretreatment standards for sulfides. The following table summarizes the capital costs associated with the installation of sour water stripping at this refinery:

Refinery Code	Refinery Capacity 1000 BBL/Day	Capital Cost Dollars	
27	70	\$785,000	
Total	70	\$7 85,000	

Minor costs may be experienced at the remaining refineries to revamp certain portions of their stripping systems to improve the effluent quality. The costs, however, are generally not major and are expected to be on the same order of magnitude as maintenance costs.

<u>Ammonia</u> <u>Removal</u>. The refineries that are presently discharging to municipal sewers are not required by the POTW to meet ammonia limitations. Therefore, it is assumed that the SWS's at the refineries contacted are not being operated for optimum ammonia removals. Within the scope and time constraints of this study, it was not possible to determine how many of the present systems can be easily modified to meet ammonia pretreatment standards or at how many refineries it will be required that a second stripper be

installed to remove ammonia. Because there is no available method of determining which refineries definitely need to install ammonia removal equipment, it was assumed that all indirect discharging refineries that generate sour waters will need to install additional equipment to meet ammonia This approach results in an estimate of the standards. maximum cost possible. Table VIII-1 presents estimated capital expenditures for the 26 refineries in the indirect discharging segment to attain pretreatment standards for ammonia. The estimates are based on the assumption that at all refineries where sour waters are generated, add ammonia removal facilities will be installed. additional These estimates are taken from the "Revisions for Ammonia Removal" curve on Figure VIII-1. The estimated total costs to the indirect discharging portion of the industry are also presented in Table VIII-1.

<u>Operating Costs and Energy Requirements</u>. The estimated operating costs for sour water strippers are shown in Table VIII-2. Three typical sizes were chosen that represent the size range of refineries that are presently discharging to POTW.

Costs incurred by individual refineries can vary for reasons that are site specific such as the amount of steam used, the redundancy of equipment, and the distance that waste waters are pumped. Other operating costs, such as the treatment of off-gases and pH adjustment of the sour waters are not included in the estimates presented in Table VIII-2, because it is extremely difficult to determine costs for these items that are representative of the entire industry. However, these factors, if applicable, could have a significant effect on the total operating cost of sour water stripping. The Agency solicits specific information relative to these factors.

The energy requirements associated with sour water stripping are: (1) electrical power for pumping, and (2) the energy associated with the production of steam. Total energy consumption can range from 1,000,000 BTU/hour for a 20,000 BBL/ Day refinery to 33,000,000 BTU/hour for a 150,000 BBL/Day refinery.

Phenol Removal

The technology most likely to be used in a refinery for phenol removal is biological treatment. For the purpose of determining the costs for pretreatment, the use of packaged biological treatment plants has been assumed. Table VIII-3 presents the estimated capital costs for biological

TABLE VIII-1 COSTS FOR INSTALLING SOUR WATER STRIPPERS FOR AMMONIA REMOVAL

111.0 75.0 101.0 44.0 123.5	\$ 260,000 212,000 243,000 158,000
53.8 15.0 30.0 46.5 186.4 24.0 39.0 27.65 29.7 103.0	273,000 176,000 89,000 130,000 162,000 338,000 115,000 149,000 126,000 130,000 250,000
233.5 70.0 44.8	203,000 161,000
	30.0 46.5 186.4 24.0 39.0 27.65 29.7 103.0 233.5 70.0 44.8 1358

OPERATING COSTS SOUR WATER STRIPPERS

Sulfide Removal

	Annual Cost, Dollars				
Description	20,000	95,000	150,000		
	DD1/day_	DD1/day_	DD1/Uay_		
Steam - \$3.00/1000 lbs.	\$ 50,000	\$620 , 000	\$860,000		
Pumping06 hp/gpm \$0.04/kwh	500	5,000	8,000		
Labor (1/2 man-year)	10,000	10,000	10,000		
Depreciation (20% of total capital cost)	86,500	185,000	230,000		
Maintenance (3% of total capital cost)	13,000	28,000	35,000		
Total Annual Cost	\$160,000	\$848,000	\$1,143,000		

	Ammonia Removal				
Steam	\$ 50,000	\$620 , 000	\$860,000		
Pumping	500	5,000	8,000		
Labor	0	0	0		
Depreciation	21,600	48,600	62,000		
Maintenance	3,400	7,400	9,000		
Total Annual Cost	\$75,500	\$681,000	\$939,000		

TABLE VIII-3

CAPITAL COSTS PRETREATMENT FOR PHENOL REMOVAL

.

Description	Cost,	Dollars
	0.02 MGD	0.4 MGD
	20,000 BBL/Day	95,000 BBL/Day
Biological Treatment Unit		
with Sludge Holding Tank	\$ 30,000	\$ 120,000
Pumps and Wetwell	10,000	20,000
Subtotal	40,000	140,000
Piping (10%)	4,000	14,000
Other Auxiliary Equipment (10%)	4,000	14,000
Total Equipment Cost	48,000	168,000
Installation (50%)	24,000	84,000
Total Constructed Cost	72,000	252,000
Engineering (15%)	10,800	37,800
Contingency Cost	12,200	40,200
Total Capital Cost	\$ 95,000	\$ 330,000

treatment systems at different flow rates. Each flow rate has been correlated to a refinery capacity, based upon the sour water flow rate information provided in Figure VIII-2. The two model sizes were determined by dividing the indirect discharge refineries into two capacity ranges, those with capacities greater than 40,000 BBL/Day, and those with less than 40,000 BBL/Day capacity. The average of the refinery capacities in the former range is 21,000 BBL/Day, whereas the average capacity of the latter range is 95,000 BBL/Day.

The total cost for all of the indirect discharging refineries to pretreat their sour waters for phenol removal is estimated as follows:

<u>Cost Per Refinery</u>	<u>No. of Refineries</u>	Total Capital Cost
\$ 95,000 per small system	13	\$ 1, 235,000
\$330,000 per larger system	13	\$ 4,290,000
Total	26	\$ 5,525,000

Estimated operating costs for the phenol removal systems are shown in Table VIII-4. Items included in the operating costs are electrical power for aeration and pumping, labor, depreciation, and maintenance. As can be seen by the data presented, depreciation is the largest factor in determining the total operating costs for each facility.

The major uses of energy are associated with the aeration and pumping systems. Total energy requirements for the 20,000 BBL/Day model refinery are estimated to be 3.5 H.P.; the total energy requirement for the 95,000 BBL/Day model refinery is estimated at 30 H.P.

Chromium Removal

Most refineries should be able to take advantage of the reducing environment in sewers and the detention time and settling capabilities of oil removal systems to effect reductions in chromium discharges. However, no data are available at the present time to enable a quantification of these phenomena. In the development of cost estimates, it was assumed that it would be necessary that treatment technology be installed to effect removal of chromium. The technology on which the cost estimates are based is that described in Section VII--the reduction of hexavalent

TABLE VIII-4

OPERATING COSTS PHENOL REMOVAL SYSTEMS

Description	Annual Cost, Dollars			
	20,000	BBL/Day	95,	000 BBL/Day
Aeration	\$	750	Ş	5,500
Pumping		750		5,500
Labor (1/2 manyear)	10,	,000		10,000
Depreciation (20% of total capital cost)	19,	,000		66,000
Maintenance (3% of total capital cost)	3,	,000		10,000
Total Annual Cost	\$33,	,500	\$	97,000

chromium to trivalent chromium followed by precipitation and clarification.

Cost estimates require meaningful determinations of the flow associated with segregated cooling tower blowdown. Model flow rate data were obtained from the "Economics of Refinery Waste Water Treatment" (31). Costs associated with the installation of chromium removal technology at three typical sized refineries were determined. The three model refineries are representative of the size distribution of indirect discharging refineries. The characteristics of the three model refineries are:

Refinery Capacity (M Bbl/day)	Typical Subcategory	Cooling Tower Flow Rate (gpm)	
15	А	31	
39	A/B	160	
119	В	720	

Table VIII-5 presents capital cost estimates for chromium removal for the three refineries described above. Table VIII-6 presents estimates of operating costs for the chromium removal systems.

The only energy uses are associated with chemical feed pumps and mixers. Total energy requirements are estimated to range from approximately 2 hp for the 15,000 bbl/day refinery to roughly 10 hp for the 119,000 bbl/day refinery.

Oil and Grease Removal

All identified indirect dischargers have gravity oil separation as part of their pretreatment systems. Therefore, cost estimates associated with the installation of this type of treatment facility are not presented.

Dissolved air flotation is presently being used at 13 refineries that are discharging to POTW. Of the remaining 13 refineries, it is not known at how many the installation of DAF systems would be required to comply with pretreatment standards for oil and grease. The costs associated with the installation of DAF systems at four model refineries were

TABLE VIII-5

CAPITAL COSTS

Chromium Removal Systems

	Cost, Dollars					
	15,000	39,000	119,000			
Description	bb1/day	bbl/day	bbl/day			
Detention Tank (45 minutes),						
with Mixer	\$ 5,000	\$ 15,000	\$ 35,000			
Acid and SO $_2$ Feed Systems	15,000	25,000	40,000			
pH and ORP Control Systems	10,000	10,000	10,000			
Solids Contact Clarifier						
(0.6 gpm/ft ² settling rate)	30,000	40,000	80,000			
Caustic Feed System	10,000	15,000	20,000			
Pumps	5,000	10,000	15,000			
Subtotal	75,000	115,000	200,000			
Misc. Auxiliary Equipment (10%)	7,500	11,500	20,000			
Piping (10%	7,500	11,500	20,000			
Total Equipment Cost	90,000	138,000	240,000			
Installation (50%)	45,000	69,000	120,000			
Total Construction Cost	135,000	207,000	360,000			
Engineering (15%)	20,000	31,000	54,000			
Contingency	20,000	31,000	54,000			
TOTAL CAPITAL COST	\$175,000	\$269,000	\$468,000			

TABLE VIII-6

OPERATING COSTS

Chromium Removal Systems

	Annual Costs, Dolla		
	15,000	39,000	119,000
Description	bbl/day	bbl/day	bbl/day
Energy and Chemical Costs	\$ 2,000	\$ 11,000	\$ 47,000
Labor (.25 man-year)	5,000	5,000	5,000
Depreciation (20% of total capital cost)	35,000	54,000	94,000
Maintenance (3% of total capital cost)	5,000	8,000	14,000
TOTAL ANNUAL COST	\$47,000	\$78 , 000	\$160,000

-

FIGURE VIII-3

FLOW (M.G.D.)

estimated. These cost data are presented in Table VIII-7. Figure VIII-3 presents the relationship between capital cost of installing DAF systems and total effluent flow rate. Table VIII-8 presents the total cost to the industry if all 13 remaining refineries were to install new DAF systems. The estimates shown in this table are based on Figure VIII-3. A minimum capital cost of \$50,000 has been assumed regardless of flow rate.

Table VIII-9 presents operating costs for the four model DAF systems. Operating costs include chemical addition, power requirements, labor, depreciation, and maintenance. The two major cost items for DAF systems are electric power and depreciation.

Energy consumption for DAF systems consists of the horsepower requirements for skimming and for the recirculation of wastewater within the unit itself. In most cases pumping between the gravity oil separator and the DAF unit is not necessary.

Total energy requirements for DAF units are estimated to range from six H.P. for a 20,000 BBL/Day refinery to 180 H.P. for a 200,000 BBL/Day refinery.

NON-WATER QUALITY ASPECTS

Non-water quality considerations associated with in-plant controls and end-of-pipe treatment in petroleum refineries were discussed in the Development Document (see pages 111, 112, and 141). The specific non-water quality environmental impact of the installation of the pretreatment facilities discussed herein relate to the following:

- 1. Gaseous hydrogen sulfide and ammonia streams created by new or additional sour water stripping facilities.
- 2. Sludges generated by the use of biological treatment for phenol removal.
- 3. Sludge and oily froth from DAF systems.

Generally the gaseous stream from a sour water stripper is either incinerated or directed to a recovery facility. If a second stripper is added in series for ammonia removal, it is not anticipated that the disposition of the gaseous stream will create serious problems within the refinery. In fact, the use of two strippers in series allows for the

CAPITAL COSTS DISSOLVED AIR FLOTATION

Description	MGE	Cost, 0.08	Dollars,	at Selected 4.4	Flow Rates 6.2
Dissolved Air Flotation Unit with instruments and controls		\$35,000	\$80,000	\$130,000	\$150,000
Chemical Injection equipme	ent	15,000	30,000	45,000	55,000
Subtotal		50,000	110,000	175,000	205,000
Piping (10%)		5,000	11,000	17,500	20,500
Total Equipment Cost		55,000	121,000	192,500	225,500
Installation (50%)		27,500	60,500	96,500	112,500
Total Constructed Cos	st	82,500	181,500	289,000	338,000
Engineering (15%)		12,500	27,300	43,500	51,000
Contingency		15,000	26,200	42,500	51,000
Total Capital Cost	Ş	\$110,000	\$235,000	\$375,000	\$440,000

TABLE VIII-8

TOTAL CAPITAL COSTS DISSOLVED AIR FLOTATION

Refinery Code		<u>Capacity</u> 1000 BBL/Day	Effluent <u>Flow Rate</u> MGD	<u>Capital Cost</u> Dollars
1		15.0	.05 (1)	\$ 85,000
5		44.0	0.33	150,000
9		5.0	.03 (1)	65,000
11		15.0	.033	65,000
12		20.0	.052	85,000
13		30.0	.132	112,000
17		24.0	.220	130.000
20		44.5	.833 (1)	220,000
21		37.96	.14	115.000
22		29.7	1.42	263,000
25		103.0	3.2 (1)	340,000
26		233.5	7.64	465.000
27		70.0	1.5	270,000
	TOTAL	671.7	15.58	\$2,370,000

(1) No flow data available; estimate based on flow of similar sized refineries.

OPERATING COSTS DISSOLVED AIR FLOTATION

Description	Annual	Costs, Doll Flow R	ars, For ates	Selected
	4GD .08	1	4.4	6.2
Chemicals				
Alum	\$1,000	\$14,000	\$62 , 000	\$86,000
Polyelectrolyte	500	6,000	27,000	39,000
Power (Electricity)				
DAF Unit Requirements	1,400	8,000	35,000	50,000
Chemical Feed Pumps and Mixers	a 200	400	2,000	3,000
Labor (.25 man-years)	5,000	5,000	5,000	5,000
Depreciation (20%)	22,000	47,000	75,000	88,000
Maintenance (3% of total capital cost)	3,500	7,000	11,000	13,000
Total Annual Cost	\$ <mark>33,600</mark>	\$87,400	\$2 17,000	\$284,000

production of high purity sulfide and ammonia off-gases which can be recovered and disposed of more readily. In some refineries, ammonia is recovered in the aqueous or anhydrous form and sold as a by-product of the stripping operation (9). The Agency solicits information which provides cost and other data regarding sulfide and ammonia off-gas recovery and disposal.

Sludges created by biological treatment systems removing phenol could be combined with other semi-solid wastes generated in the refinery. This sludge should not be offensive in nature, since it will not contain sanitary sewage. Similarly, sludge generated by a DAF system could be combined with separator sludge for treatment and disposal. The oily froth could be directed to the refinery slop oil system or disposed of by incineration.

most cases the sludges described above are nonhazardous In substances requiring only minimal custodial care. However, some constituents may be hazardous and may require special consideration. In order to ensure long term protection of environment from these hazardous or harmful the constituents, special consideration of disposal sites must be made. All landfill sites where such hazardous wastes are disposed should be selected so as to prevent horizontal and vertical migration of these contaminants to ground or surface waters. In cases where geologic conditions may not reasonably ensure this, adequate legal and mechanical precautions (i.e., impervious liners) should be taken to ensure long term protection to the environment from hazardous materials. Where appropriate, the location of solid, hazardous materials disposal sites should be permanently recorded in the appropriate office of legal jurisdiction.

Other nonwater quality aspects, such as noise levels, will not be perceptibly affected. Most refineries generate fairly high noise levels (85-95 dB(A)) within the battery limits because of equipment such as pumps, compressors, steam jets, flare stacks, etc. Equipment associated with in-process or end-of-pipe control systems would not add significantly to these levels. There are no radioactive in the industry, other than Thus, no radiation problems will used nuclides than in instrumentation. be Compared to the odor emissions possible from expected. other refinery sources, odors from the waste water treatment plants are not expected to create a significant problem. However, odors are possible from the wastewater facilities, especially from the possible stripping of ammonia and sulfides in the air flotation units.

In summary, it is not anticipated that any serious non-water quality environmental impact will result from the implementation of the pretreatment operations described herein.

SECTION IX

PRETREATMENT STANDARDS

INTRODUCTION

The purpose of this section is to present pretreatment standards for indirect discharging refineries in accordance with the requirements of Section 307 (b) of Public Law 92-500. Earlier sections of this document covering waste characterization, selection of pollutant parameters, control and treatment technology, and cost and non-water quality aspects, form the basis for the recommended pretreatment standards. The following discussion includes an analysis of existing conditions in terms of local pretreatment requirements now in effect and the rationale for the development of pretreatment standards for selected pollutant parameters.

EXISTING LOCAL PRETREATMENT REQUIREMENTS

Existing pretreatment standards for selected pollutant parameters as reported for nine of the 15 POTW receiving waste waters from indirect discharging refineries are summarized below:

Pollutant	Number of	Existing Pre-
Parameter	POTW Reporting	treatment Standards
Phenol	3	0.01 - 1.0 mg/l
	5	None or LTEQ
Ammonia	2	1.0 - 100 mg/l
	6	None or LTEQ
Chromium (Hex.)	3	0.005 - 10 mg/l
	4	None, LTEQ, or LTH
(Total)	4	5 - 25 mg/l
	4	None, LTEQ, or LTH
Sulfide	5	0.1 - 5 mg/l
	4	None
Oil and Grease	8	10 - 200 mg/l
	1	None
Notes: LTEO -	- less than excessive	quantities
LTH -	- less than harmful	1

89

Existing treatment operations reported at 13 of the 14 POTW receiving refinery process wastewaters are summarized below:

Type of Treat- ment Employed	Number of POTW Reporting	Number of Refineries Accepted
Primary Sedimentation	n 1	12
Trickling Filter	6	6
Activated Sludge	6	6

The table indicates that only one of the POTW currently accepting refinery process wastewaters is at the primary treatment level. It should be noted that this plant has secondary treatment facilities planned for the near future.

In conversations with the operators of the POTW employing biological treatment, it was noted that refinery wastewater, within the limits of local pretreatment requirements, is essentially compatible and does not create significant plant upset or pass-through conditions. However, it should be pointed out that because of dilution effects, the passthrough of pollutants may not be readily apparent.

SUBCATEGORIZATION

The petroleum refining point source category was subcategorized primarily on the basis of process considerations during the development of effluent limitations and guidelines. In the course of establishing a subcategorization scheme for the indirect discharging segment of this industry, it has been determined that, on the basis of location, age, economic status, size, waste water characteristics, and manufacturing processes, no fundamental differences exist that would warrant a different method of subcategorization (see Section IV).

RATIONALE FOR DEVELOPMENT OF PRETREATMENT STANDARDS FOR SELECTED POLLUTANT PARAMETERS

The following discussions relate to the parameters chosen for consideration as to the establishment of uniform national pretreatment standards--ammonia, oil and grease, phenolics, chromium, and sulfides (see Section VI).

It has been determined that all indirect dischargers should be subject to the same pretreatment standards, regardless of subcategory. The pollutants under consideration for pretreatment standards are common to all refineries' waste waters, regardless of subcategorization. Additionally, pretreatment standards are based on an attainable concentration rather than the mass basis used in the establishment of effluent limitations and guidelines for direct dischargers.

Phenolics

Phenolic compounds are biodgradable by biota that become acclimated to them. Many POTW are able to accept industrial effluents containing phenolic compounds without experiencing either upset or pass-through problems. The limited data available indicate that the efficiency of removal of phenolics by individual POTW should be considered in the development of pretreatment standards for this parameter.

It is, therefore, recommended that pretreatment standards for phenolics be established on an individual basis by POTW receiving refinery waste waters. The promulgated BPCTCA effluent limitation for phenol can be used as a guide by POTW. In those cases where it is determined that the POTW is unable to adequately treat phenolics in a specific refinery's waste waters, a phenolics limitation of 0.35 mg/l (daily maximum) can be achieved (see Development Document, pages 144-149). The model technology which supports this limitation is biological treatment of segregated sour water stripper bottoms (see Section VII).

Chromium

None of the indirect discharging refineries were identified as having specific treatment technology for the removal of chromium. Therefore, removal data for specific technologies were not available from the industry. Removal of chromium by POTW utilizing biological treatment has been reported. In a recent survey of 112 POTW, the mean chromium removal was 42 percent, with a mean effluent concentration of 218 ug/1.

The best practicable control technology currently available effluent limitations for chromium were based on the observed discharge of chromium subsequent to biological treatment. Therefore, the logic used in the establishment of best practicable pretreatment standards for existing sources, to be consistent with direct discharge standards, would be biological treatment as represented by the POTW. The establishment of a specific national pretreatment standard for chromium discharged in wastewaters from petroleum refineries is judged to be inappropriate at this time. This pollutant will be studied more thoroughly in light of the order of the U.S. District Court for the District of Columbia entered in <u>Natural Resources Defense</u> <u>Council, et al. v. Train</u>, 8 E.R.C. 2120 (D.D.C. 1976). The Agency solicits additional information relating to the effects of chromium on POTW in terms of both treatability and sludge disposal.

In those individual cases where chromium levels are determined to be having a significant detrimental effect on a POTW, by creating either upset or pass-through problems, a total chromium limitation of 1.0 mg/l (daily maximum) can be achieved and is included as guidance for the purpose of assisting local authorities. The model technology which supports this limitation is the treatment of segregated cooling tower blowdown by clarification, subsequent to reduction of hexavalent chromium to trivalent chromium with the addition of sulfur dioxide (see Section VII).

Oil and Grease

BPCTCA has been identified to include both primary oil removal (API separators or baffle plate separators) and secondary oil removal (dissolved air flotation or its equivalent) (see Development Document, page 143). These technologies are employed to ensure effective removal of oil and grease prior to biological treatment. Oil/water separation techniques equivalent to those employed at direct discharging refineries should be employed at indirect discharging refineries to ensure protection of POTW from slug loadings of oil and grease.

Available effluent data for oil and grease discharges from those indirect discharging refineries with dissolved air flotation or an equivalent treatment technology installed are presented in Figure IX-1. Data for refineries No. 2, 4, 7, 8, 10, 15, 16, 18, and 30 are included. Due to the time constraints imposed, no attempt has been made to screen this data to verify that the treatment facilities have been properly maintained and operated; all data from refineries that have the recommended pretreatment technology installed are presented.

The recommended pretreatment standard for oil and grease is 100 mg/l (daily maximum). This standard is based on the necessity to minimize to possibility of slug loadings of oil and grease being discharged to POTW. The capability for PERCENTAGES

Oil and Grease (mg/l + 18.98)

consistent reduction of oil and grease below this recommended standard by use of the identified pretreatment technologies (API separators and DAF units) is wellestablished in the petroleum refining industry (1,26).

Sulfides and Ammonia

The available data for sulfide and ammonia discharges from refineries after the application of sour water stripping and/or oxidation are presented in Figures IX-2 and IX-3 respectively. The lack of availability of influent data relative to sour water treatment did not permit a selection of sour water teratment systems exhibiting the best performance. Refineries with obvious poor performance (based on effluent data) were excluded from presentation. Figure IX-2 includes data relating to sour water treatment system performance at Refineries 2, 7, 10, 11, 13, 14, 16, 17, and 18.

<u>Sulfides</u>. Sulfides discharged by refineries may interfere with the operation of a POTW, particularly with regard to corrosion of concrete pipes that are used to convey effluent to the treatment plant itself. Sulfide removal techniques are universally employed at refineries to protect process equipment from corrosion. However, if sulfide levels discharged by refineries are determined, for the individual case, to have a significant detrimental effect on a POTW, a sulfide standard of 3 mg/l (daily maximum) can be achieved. This number is included as guidance to assist local authorities. This recommended standard represents the highest reported value at the refineries whose data are presented in Figure IX-2. This standard is also supported by the results of the 1972 API sour water stripping survey (see Section VII).

Ammonia. High concentrations of ammonia can exhibit inhibitory effects on the activated sludge process (see Section VI). At concentrations of up to 100 mg/l, no adverse effects on oxygen consumption are noted. It is recommended that pretreatment for ammonia be implemented to the extent that it is employed by direct discharging refineries--steam stripping of ammonia prior to discharge to biological treatment. It is well-documented that the application of steam stripping techniques for ammonia removal can ensure that ammonia levels in excess of 100 mg/l (daily maximum) can be avoided. This standard is also supported by the data presented in Figure IX-3 which are representative of indirect discharging refineries. Ninetysix percent of the reported values upon which Figure IX-3 is based are less than 100 mg/l. Better operation, the

Sulfide (mg/l - 0.004)

Ammonia-N (mg/l + 3.9)

.

addition of more steam, and increasing the number of trays or the height of packing are ways in which refineries experiencing poor ammonia removal can obtain better performance.

SUMMARY

The recommended pretreatment standards for existing sources within the petroleum refining category are based on those pretreatment techniques employed at direct discharging refineries. These pretreatment steps employed to protect biological treatment systems from upset conditions include (1) oil and grease removal through the application of API separators and dissolved air flotation or other similar processes and (2) ammonia removal through the application of steam stripping of sour water waste streams.

The recommended standards are:

Oil and grease:	100	mg/1	(daily	maximum)
Ammonia:	100	mg/1	(daily	maximum)

In addition, the Agency recommends that sulfides, phenol, and chromium be controlled as needed on an individual basis by local authorities. The data available to the Agency at the present time do not support the implementation of uniform national pretreatment standards for these pollutants. Should it be determined that either sulfides, phenol, or chromium create either upset or pass-through problems, the application of appropriate pretreatment technology will allow the attainment of the following standards:

Chromium (total): Phenol: Sulfides: 1 mg/l (daily maximum) 0.35 mg/l (daily maximum) 3 mg/l (daily maximum)

SECTION X

ACKNOWLEDGMENTS

The preparation of the initial draft of this report was accomplished through a contract with Burns and Roe Industrial Services Corporation. The following members of the Burns and Roe technical staff made significant contributions to the overall project effort.

Arnold S. Vernick, P.E.	-	Project Manager
Tom H. Fieldsend	-	Civil Engineer
Barry S. Langer, P.E.	-	Chemical Engineer
Paul D. Lanik, P.E.	-	Environmental Engineer
Gary C. Martin	-	Civil Engineer

Acknowledgment is made to all Environmental Protection Agency personnel contributing to this effort. Included were Robert Schaffer, Carl Schafer, Lamar Miller, Martin Halper, Elwood Forsht, Nancy Zrubeck, and Carol Swann, Effluent Guidelines Division; Lee Breckenridge and Pam Quinn, Office of General Counsel; Charles Cook and Louis DuPuis, Office of Analysis and Evaluation, and Madeleine Nawar, Office of Enforcement.

Special appreciation is expressed to Robert W. Dellinger of the Effluent Guidelines Division who participated in editing of the final report. His major contribution was to ensure that this document is consistent with the interim final standards published on March 23, 1977 (Federal Register, Vol. 42, No. 56, March 23, 1977, p. 15684).

Representatives of the following oil companies, publicly owned treatment systems, and other organizations are specifically acknowledged for their cooperation and assistance in furnishing requested information and data upon which this report is based:

Amoco Oil Co.	Edgington Oil Co.
Salt Lake City, Utah	Long Beach, California
Ashland Oil Inc.	Exxon Co., U.S.A.
Ashland, Kentucky	Billings, Montana
Atlantic Richfield Co.	Fletcher Oil & Refining Co
Carson, California	Carson, California

99

Beacon Oil Co. Golden Eagle Refining Co. Carson, California Hanford, California Chevron Oil Co. Gulf Oil Co. Salt Lake City, Utah Philadelphia, Pennsylvania Clark Oil & Refining Corp. Gulf Oil Co. Blue Island, Illinois Santa Fe Springs, California Gulf Oil Co. Delta Refining Co. Memphis, Tennessee Toledo, Ohio Douglas Oil Co. of California Husky Oil Co. Paramount, California North Salt Lake, Utah LaGloria Oil & Gas Co. City of Abilene Water Utilities Tyler, Texas Abilene, Texas MacMillan Ring-Free Oil Co. City of Hanford Long Beach, California Dept. of Public Works Hanford, California Mobil Oil Corp. New York, New York City of Memphis Division of Public Works Memphis, Tennessee Mobil Oil Corp. Torrance, California City of Portland Phillips Petroleum Portland, Oregan Woods Cross, Utah City of Tyler Sanitary Sewer Powerine Oil Co. System Santa Fe Springs, California Tyler, Texas City of Wichita Water Dept. Pride Refining Inc. Wichita, Kansas Abilene, Texas Ouintana-Howell Corpus Christi Wastewater Corpus Christi, Texas Services Corpus Christi, Texas Shell Oil Co. Carson, California County Sanitation Districts of Los Angeles, County Shell Oil Co. Whittier, California Houston, Texas Metropolitan Sanitary District of Greater Chicago Texaco, Inc. Chicago, Illinois Lockport, Illinois

1

Texaco, Inc. Wilmington, California

South Davis County Sewer Improvement District Woods Cross, Utah

American Petroleum Institute Washington, D.C. Salt Lake City Wastewater Reclamation Plant Salt Lake City, Utah

Engineering-Science, Inc. Austin, Texas

¥

SECTION XI

REFERENCES

- American Petroleum Institute, "Petroleum Industry Raw Waste Load Survey", December, 1972.
- American Petroleum Institute, "Disposal of Refinery Wastes - Manual, Volume of Liquid Wastes", Washington, D.C., 1969.
- 3. "Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Petroleum Refining Point Source Category", Environmental Protection Agency, Washington, D.C., April, 1974.
- 4. Bush, Kenneth E., "Refinery Wastewater Treatment and Reuse", <u>Chemical Engineering</u>, April 12, 1976.
- 5. Wigren, A.A. and Burton, F.L., "Refinery Wastewater Control", <u>Journal of the Water Pollution Control</u> <u>Federation</u>, Vol. 44, No. 1, January, 1972.
- Armstrong, T.A., "There's a Profit in Processing Sour Water", <u>The Oil and Gas Journal</u>, June 17, 1968, pp. 96-98.
- 7. Easthagen, J.H., Skrylov, F., and Purvis, A.L., "Development of Refinery Waste Water Control at Pascagoula, Mississippi", <u>JWPCF</u>, 37 (12), 1965, pp. 1671-1678.
- 8. Beychock, M.R., <u>Aqueous Wastes from Petroleum and Petro-</u> chemical Plants, John Wiley & Sons, New York, 1967.
- 9. Klett, R.J., "Treat Sour Water for Profit", <u>Hydrocarbon</u> <u>Processing</u>, October, 1972, pp. 97-99.
- Brunet, M.J., and Parsons, R.H., "Mobil Solves Fouling Problem Sour Water Stripper", <u>The Oil and Gas Journal</u>, Nov. 20, 1972, pp. 62-64.
- 11. "Phenols in Refinery Waste Water Can be Oxidized with Hydrogen Peroxide", <u>The Oil and Gas Journal</u>, January 20, 1975, pp. 84-86.

•

κ.

- 12. Short, Thomas E. Jr., et al., "Controlling Phenols in Refinery Waste Waters", <u>The Oil and Gas Journal</u>, November 25, 1974, pp. 119-124.
- 13. Congram, Gary E., "Refiners Zero In on Better Desalting", <u>The Oil and Gas Journal</u>, December 30, 1974, pp. 153-154.
- 14. Beychock, M.R., "Wastewater Treatment", <u>Hydrocarbon</u> <u>Processing</u>, December, 1974, pp. 109-112.
- Ewing, R.C., "Modern Waste-Treatment Plant on Stream in Texaco Refinery", <u>The Oil and Gas Journal</u>, September 28, 1970, pp. 66-69.
- 16. "New Ion-Exchange System Treats Sour Water", The Oil and Gas Journal, February 22, 1971, pp. 88-89.
- 17. Pollio, F.X. and Kunin, R., "Ion Exchange Resins Treat Sour Water", <u>The Oil and Gas Journal</u>, May 19, 1969, pp.126-130.
- Melin, G.A., et al., "Optimum Design of Sour Water Strippers", <u>Chemical Engineering Progress</u>, Vol. 71, No. 6, June, 1975.
- 19. Contrell, Aileen, "Annual Refining Survey", The Oil and Gas Journal, March 29, 1976, pp. 125-152.
- 20. Gantz, Ronald G., "API Sour Water Stripper Studies", <u>Proceedings American Petroleum Institute, Section III</u> <u>Refining</u>, V54, 1975, pp. 39-66.
- 21. Short, T.E., DePrater, B.L., and Myers, L.H., "Petroleum Refining Phenolic Wastewaters", American Chemical Society, Div. of Fuel Chemistry, paper presented at 168th National Meeting, Sept. 8 - 13, 1974.
- 22. Norwood, B.E., "Application of Biological Trickling Filter for Treatment of Effluent Water at Shell Oil Company's Houston Refinery", paper presented at the Petroleum and Petrochemicals Session of the National Pollution Control Exposition & Conference, April 4 and 5, 1968.
- 23. Congram, Gary E., "Biodisk Improves Effluent-Water-Treating Operation", <u>The Oil and Gas Journal</u>, February 23, 1976.

•

- 24. "1972 Sour Water Stripping Survey Evaluation", Publication No. 927, prepared for American Petroleum Institute, Washington, D.C., June, 1972.
- 25. Annessen, R.J. and Gould, G.D., "Sour Water Processing Turns Problem Into Payout", <u>Chemical Engineering</u>, March 22, 1971, pp. 67-69.
- 26. Brown & Root, Inc., "Analysis of the 1972 API-EPA Raw Waste Load Survey Data", API publication No. 4200, July, 1974.
- 27. Diehl, Douglas S., Denbo, Robert T., Bhatla, Mannohan, and Sitman, William D., "Effluent Quality Control at a Large Oil Refinery", Journal Water Pollution Control Federation, Vol. 43, No. 11, November, 1971, p. 2254.
- 28. "Sour Water Stripping Project", Committee on Refinery Environmental Control, American Petroleum Institute, prepared by Environmental Services Department, Bechtel Corporation, API publication No. 946, June, 1975.
- 29. "Petroleum Refining Industry, Technology and Costs of Wastewater Control", prepared for the National Commission on Water Quality, by Engineering Science, Inc., June, 1975.
- 30. "Granular Media Filtration of Petroleum Refinery Effluent Waters", prepared by the EIMCO BSP Division of Envirotech Corporation for the American Petroleum Institute, API publication No. 947, October, 1975.
- 31. "Economics of Refinery Waste Water Treatment", prepared by Brown & Root, Inc. for the American Petroleum Institute, API publication No. 4199, August, 1973.
- 32. "Economic Impact of EPA's Regulations on the Petroleum Refining Industry", Sobotka & Company, Inc., for the U.S. Environmental Protection Agency, April, 1976.
- 33. Mitchell, G.E., "Environmental Protection Benecia Refinery", API 35th Midyear Meeting, Division of Refining, Houston, May, 1970.
- 34. Ewing, Robert C., "Shell Refinery Uses Pollution-Abatement Units", <u>The Oil and Gas Journal</u>, March 8, 1971.

105
- 35. Aalund, Leo A., "Cherry Point Refinery A Story of Air, Water, and Fuel", <u>The Oil and Gas Journal</u>, January 24, 1972.
- 36. Maguire, W.F., "Reuse Sour Water Stripper Bottoms", <u>Hydrocarbon Processing</u>, September, 1975, pp. 151-152.
- 37. "State and Local Pretreatment Programs, Federal Guidelines (Draft)", U.S. Environmental Protection Agency, Washington, D.C., August, 1975.
- 38. Nemerow, Nelson Leonard, <u>Theories and Practices of</u> <u>Industrial Waste Treatment</u>, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1963.
- 39. Kugelman, I.J. and Chin, K.K., "Toxicity, Synergism, and Antagonism in Anaerobic Waste Treatment Processes", <u>Advanced Chemistry</u>, Series 105, Vol. 55, 1971, p. 55.
- 40. Rudolfs W., et al., "Review of Literature on Toxic Materials Affecting Sewage Treatment Processes, Streams, and BOD Determinations", <u>Sewage and Industrial Wastes</u>, Vol. 22, No. 9, September, 1950, p. 1157.
- 41. <u>Environmental Effect of Photoprocessing Chemicals, Vol.</u> <u>1</u>, Report by the National Association of Photographic Manufacturers, Inc., 600 Mamaroneck Ave., Harrison, NY 10528, 1974.
- 42. Ghosh, S., "Anaerobic Processes Literature Review", <u>Journal of the Water Pollution Control Federation</u>, Vol. 44, No. 6, June 1972, p. 948.
- 43. Wheatland, A.B., et al., "Pilot Plant Experiments on the Effects of Some Constituents of Industrial Waste Waters on Sewage Treatment", <u>Water Pollution Control</u>, Vol. 70, 1971, p. 626.
- 44. Pohland, F.G. and Kang, S. J., "Anaerobic Processes", <u>Journal of the Water Pollution Control Federation</u>, Vol. 43, No. 6, June, 1971, p. 1129.
- 45. Rudolfs, William and Amberg, H.R., "White Water Treatment", <u>Sewage and Industrial Wastes</u>, Vol. 24, No. 10, October, 1952, p. 1278.
- 46. Dague, Richard R., et al., "Digestion Fundamentals Applied to Digester Recovery - Two Case Studies", Journal of the Water Pollution Control Federation, Vol. 42, No. 9, September, 1970, p. 1666.

τ

- 47. Brinsko, G.A., "Annual Report Control of Toxic and Hazardous Material Spills in Municipalities", <u>Allegheny</u> <u>County Sanitary Authority</u>, November 4, 1974.
- 48. <u>A Handbook on the Effects of Toxic and Hazardous</u> <u>Materials on Secondary Biological Treatment Processes, A</u> <u>Literature Review</u>, Environmental Quality Systems, Inc., Rockville, Maryland, prepared for the Allegheny County Sanitary Authority and the EPA, Sept. 1973, unpublished.
- 49 Lawrence, Alonzo W., et al., "The Effects of Sulfides on Anaerobic Treatment", <u>Proceedings of 19th Industrial</u> <u>Waste Conference</u>, Purdue University, 1964, p. 343.
- 50. Reid, George W., et al., "Effects of Metallic Ions on Biological Waste Treatment Processes," <u>Water and Sewage</u> <u>Works</u>, Vol. 115, No. 7, July, 1968, p. 320.
- 51. Bailey, D.A., et al., "The Influence of Trivalent Chromium on the Biological Treatment of Domestic Sewage," <u>Water Pollution Control</u>, Vol. 69, No. 2, 1970, p. 100.
- 52. Ludzack, F.J. and Ettinger, M.B., "Industrial Wastes-Chemical Structures Resistant to Aerobic Biochemical Stabilization," Journal of the Water Pollution Control Federation, Vol. 32, No. 11, November, 1960, p. 1173.
- 53. <u>Interaction of Heavy Metals and Biological Sewage</u> <u>Treatment Processes</u>, U.S. Department of Health, Education and Welfare, Environmental Health Series, Water Supply and Pollution Control, Pub. No. 999-WP-22, May, 1965.
- 54. Beckman, Wallace J. and Avendt, Raymond J., <u>Correlation</u> of <u>Advanced Wastewater Treatment and</u> <u>Groundwater</u> <u>Recharge</u>, Environmental Protection Agency, Project R-801478, Program Element 1BB043, Roap/Task 21 ASB-30.
- 55. McCarty, P.L., "Anaerobic Waste Treatment Fundamentals; Part III, Toxic Materials and Their Control," <u>Journal of</u> <u>Public Works</u>, November, 1964.

.

SECTION XII

GLOSSARY AND ABBREVIATIONS

GLOSSARY

Acid Oil - Straight chain and cyclic hydrocarbon with carboxyl group(s) attached.

Act - The Federal Water Pollution Act Amendments of 1972.

Aerobic - In the presence of oxygen.

Anaerobic - Living or active in absence of free oxygen.

- Best Available Demonstrated Control Technology (BADT) -Treatment required for new sources as defined by section 306 of the Act.
- Best Available Technology Economically Achievable (BATEA) -Treatment required by July 1, 1983 for industrial discharge to surface waters as defined by section 301 (b) (2) (A) of the Act.
- Best Practicable Control Technology Currently Available (BPCTCA) - Treatment required by July 1, 1977 for industrial discharge to surface waters as defined by section 304 (b) (1) (A) of the Act.
- Biochemical Oxygen Demand (BOD<u>5</u>) Oxygen used by bacteria in consuming a waste substance (Measured in a five-day BOD test).
- Blowdown A discharge from a system designed to prevent a buildup of some material, as in boiler and cooling tower to control dissolved solids.
- By-Product Material which, if recovered, would accrue some economic benefit, but not necessarily enough to cover the cost of recovery.
- Capital Costs Financial charges which are computed as the cost of capital times the capital expenditures for pollution control. The cost of capital is based upon a weighted average of the separate costs of debt and equity.

109

- Catalyst A substance which can change the rate of a chemical reaction, but which is not itself involved in the reaction.
- Category and Subcategory Delineation of all industries (categories) and divisions within specific industries (subcategories) which possess different traits that affect water quality and treatability.
- Chemical Oxygen Demand (COD) Oxygen consumed through chemical oxidation of a waste.
- Clarification The process of removing undissolved materials from a liquid. Specifically, removal of solids either by settling or filtration.
- Coke Petroleum Solid residue, 90 to 95 percent of which is fixed carbon.
- Compatible Pollutants Parameters of organic pollution (namely, BOD, COD and TOC) which are treatable by POTW.
- Cracking Plant Refinery having basic operations of topping and cracking.
- Depletion or Loss The volume of water which is evaporated, embodied in product, or otherwise disposed of in such a way that it is no longer available for reuse in the plant or available for reuse by others outside the plant.
- Depreciation The cost reflecting the deterioration of a capital asset over its useful life.
- Direct Discharger Refinery which disposes of its wastewater directly to the environment without discharging any industrial wastewater to a municipal treatment system.
- Emulsion A liquid system in which one liquid is finely dispersed in another liquid in such a manner that the two will not separate through the action of gravity alone.
- End-of-Pipe Treatment Treatment of overall refinery wastes, as distinguished from treatment at individual processing units.

- Filtration Removal of solid particles or liquids from other liquids or gas streams by passing the liquid or gas stream through a filter media.
- Fractionator A generally cylindrical tower in which a mixture of liquid components is vaporized and the components separated by carefully varying the temperature and sometimes pressure along the length of the tower.
- Gasoline A mixture of hydrocarbon compounds with a boiling range between 100 and 400 degrees F.
- Grease A solid or semi-solid composition made up of animal fats, alkali, water, oil and various additives.
- Hydrocarbon A compound consisting of carbon and hydrogen.
- Hydrogenation The contacting of unsaturated or impure hydrocarbons with hydrogen gas at controlled temperatures and pressures for the purpose of obtaining saturated hydrocarbons and/or removing various impurities such as sulfur and nitrogen.
- Incompatible Pollutants Pollution parameters which may pass through POTW or which may, in sufficient quantity, interfere with the operation of a POTW.
- Indirect Discharger Refinery which disposes of its industrial wastewater to the environment through a municipal treatment system.
- Industrial Waste All wastes streams within a plant. Included are contact and non-contact waters. Not included are wastes typically considered to be sanitary wastes.
- Integrated Plant Refinery including the following basic operations: Topping, cracking, lube oil manufacturing processes, and petrochemical operations.
- Investment Costs The capital expenditures required to bring the treatment or control technology into operation. These include the traditional expenditures such as design, purchase of land and materials, site preparation, construction and installation, etc., plus any additional expenses required to bring the technology into operation including expenditures to establish related necessary solid waste disposal.

- Isomer A chemical compound that has the same number, and kinds of atoms as another compound, but a different structural arrangement of the atoms.
- Lube Plant Refinery including the following basic operations: Topping, cracking, and lube oil manufacturing processes.
- New Source Any building, structure, facility, or installation from which there is or may be a discharge of pollutants and whose construction is commenced after the publication of the proposed standards.
- No Discharge of Pollutants No net increase (or detectable gross concentration if the situation dictates) of any parameter designated as a pollutant to the accuracy that can be determined from the designated analytical method.
- Olefins Unsaturated straight-chain hydrocarbon compounds seldom present in crude oil, but frequently present after the application of cracking processes.
- Operation and Maintenance Costs required to operate and maintain pollution abatement equipment. They include labor, material, insurance, taxes, solid waste disposal, etc.
- Overhead Accumulator A tank in which the condensed vapors from the tops of the fractionators, steam strippers, or stabilizers are collected.
- Petrochemical Operations Production of second generation petrochemicals (i.e., alcohols, ketones, cumene, styrene, etc.) or first generation petrochemicals and isomerization products (i.e., BTX, olefins, cyclohexene, etc.) when 15% or more of refinery production is as first generation petrochemicals and isomerization products.
- Petrochemical Plant Refinery including the following basic operations: Topping, cracking and petrochemical operations.
- Petroleum A complex liquid mixture of hydrocarbons and small quantities of nitrogen, sulfur, and oxygen.

- pH A measure of the relative acidity or alkalinity of water. A pH of 7.0 indicates a neutral condition. A greater pH indicates alkalinity and lower pH indicates acidity. A one unit change in pH indicates a 10 fold change in acidity and alkalinity.
- Phenolics Class of cyclic organic derivatives with the basic formula C6H5OH.
- Plant Effluent or Discharge After Treatment The volume of wastewater discharge from the industrial plant. In this definition, any waste treatment device is considered part of the industrial plant.
- Pretreatment Treatment provided prior to discharge to a publicly owned treatment works (POTW).
- Process Effluent or Discharge The volume of water emerging from a particular use in the plant.
- Process Upset Disruption of the operation of a POTW as the result of the introduction of excessive concentration of incompatible pollutants.
- Publicly Owned Treatment Works A municipal facility whose function is the final treatment of wastewater to be discharged to the environment.
- Raw Untreated or unprocessed.
- Reduced Crude The thick, dark, high-boiling residue remaining after crude oil has undergone atmospheric and/or vacuum fractionation.
- Secondary Treatment Biological treatment provided beyond primary clarification.
- Sludge The settled solids from a thickener or clarifier. Generally, almost any flocculated settled mass.
- Sour Denotes the presence of sulfur compounds, such as sulfides and mercaptans, that cause bad odors.
- Spent Caustic Aqueous solution of sodium hydroxide that has been used to remove sulfides, mercaptans, and organic acids from petroleum fractions.
- Stabilizer A type of fractionator used to remove dissolved gaseous hydrocarbons from liquid hydrocarbon products.

- Stripper A unit in which certain components are removed from a liquid hydrocarbon mixture by passing a gas, usually steam, through the mixture.
- Supernatant The layer floating above the surface of a layer of solids.
- Surface Waters Navigable waters. The waters of the United States, including the territorial seas.
- Sweet Denotes the absence of odor-causing sulfur compounds, such as sulfides and mercaptans.
- Topping Plant Refinery having the basic operations of topping and catalytic reforming.
- Total Suspended Solids (TSS) Any solids found in wastewater or in the stream which in most cases can be removed by filtration. The origin of suspended matter may be man-made wastes or natural sources such as silt from erosion.
- Waste Discharged The amount (usually expressed as weight) of some residual substance which is suspended or dissolved in the plant effluent after treatment, if any.
- Waste Generated The amount (usually expressed as weight) of some residual substance generated by a plant process or the plant as a whole that is suspended or dissolved in water. This quantity is measured before treatment.
- Waste Loading Total amount of pollutant substance, generally expressed as pounds per day or pounds per unit of production.

ABBREVIATIONS

- API American Petroleum Institute
- BADT Best Available Demonstrated Technology
- BATEA Best Available Technology Economically Achievable
- bbl Barrel
- BOD Biochemical Oxygen Demand
- bpcd Barrels per calendar day

BPCTCA	-	Best Practicable Control Technology Currently Available				
bpsd	-	Barrels per stream day (operating day)				
COD	-	Chemical Oxygen Demand				
cu m	-	cubic meter(s)				
DAF	-	Dissolved Air Flotation				
gpm	-	gallons per minute				
k	-	thousand (i.e., thousand cubic meters)				
kg	-	kilogram(s)				
1	-	liter				
lb	-	pound (s)				
М	-	Thousand (i.e., thousand barrels)				
MBCD	-	Thousand Barrels per Calendar Day				
MBSD	-	Thousand Barrels per Stream Day				
mgd	-	million gallons per day				
mg/l	-	milligrams per liter (parts per million)				
ММ	-	Million (i.e., million pounds)				
08G	-	Oil and Grease				
POTW	-	Publicly Owned Treatment Works				
ppm	-	parts per million				
psig	-	pounds per square inch, gauge				
scf	-	standard cubic feet of gas at 60 degrees F and 14.7 psig				
SWS	-	Sour Water Strippers				
TOC	-	Total Organic Carbon				

,

2

.

CONVERSION TABLE

MULTIPLY (ENGLISH UNITS)

by

TO OBTAIN (METRIC UNITS)

ENGLISH UNIT	ABBREVIATION	CONVERSION A	BBREVIATION `	METRIC UNIT
acre	ac	0.405	ha	hectares
acre - feet	ac ft	1233.5	cu m	cubic meters
British Thermal				
Unit	BTU	0.252	kg cal	kilogram - calories
British Thermal			-	-
Unit/pound	BTU/1b	0.555	kg cal/kg	kilogram calories/kilogram
cubic feet/minute	cfm	0.028	cu m/min	cubic meters/minute
cubic feet/second	cfs	1.7	cu m/min	cubic meters/minute
cubic feet	cu ft	0.028	cu m	cubic meters
cubic feet	cu ft	28.32	1	liters
cubic inches	cu in	16.39	çu cm	cubic centimeters
degree Fahrenheit	F ^O	0.555([°] F-32)*	°c	degree Centigrade
feet	ft	0.3048	m	meters
gallon	gal	3.785	1	liters
gallon/minute	gpm	0.0631	l/sec	liters/second
horsepower	hp	0.7457	kw	killowatts
inches	in	2.54	cm	centimeters
inches of mercury	in Hg	0.03342	atm	atmospheres
pounds	lb	0.454	kg	kilograms
million gallons/day	mgd	3,785	cu m/day	cubic meters/day
mile	mi	1.609	km	kilometer
pound/square				
inch (gauge)	psig (0.00	5805 psig +1)*	atm	atmospheres (absolute)
square feet	sq ft	0.0929	sq m	square meters
square inches	sq in	6.452	sq cm	square centimeters
tons (short)	t	0.907	kkg	metric tons (1000 kilograms)
yard	У	0.9144	m	meters

*Actual conversion, not a multiplier

.)*^{*}