Particle-resolved simulations for quantifying black carbon climate impact and model uncertainty

Nicole Riemer

Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign

with Matthew West

November 13, 2014

Simulated aerosol distributions

Underlying conceptual model of aerosol particles

External mixture of different aerosol types

Real particles in the ambient atmosphere

Li et al., Atmospheric Environment, 45, 2488-2495, 2011

Revised underlying model of aerosol particles

Transformation of black carbon in the atmosphere

"aged" diesel soot

Internal

Buseck and Pósfai, 1999

- Freshly emitted soot is hydrophobic.
- Aging due to coagulation and condensation.
- This changes optical properties and hygroscopicity, hence climate impacts.

Are these details important?

Scatter and absorb solar radiation

Are these details important?

Change in equilibrium annual mean surface air temperature (K)

"[...] These results confirm that the mixing state of BC with other aerosols is important in determining its climate effect."

Are these details important?

Table 2. GISS model sensitivity studies.

Description	Emission $Tg yr^{-1}$	$_{\rm mgm^{-2}}^{\rm Burden}$	Lifetime, d	AAOD x100 550 nm
Standard run, see text	7.2 (4.4 energy, 2.8 biomass burning)	0.36	9.2	0.55
EDGAR32 emission	7.5	0.37	9.3	0.58
IIASA emission	8.1	0.41	9.5	0.60
BB 1998	8.2	0.38	8.7	0.58
2x (Faster aging)	7.2	0.29	7.6	0.50
2x (Slower aging)	7.2	0.51	13	0.67
2x More ice-out	7.2	0.33	8.5	0.52
2x Less ice-out	7.2	0.38	9.8	0.57
Reff =0.1 μ m	7.2	0.35	9.1	0.47
Reff =0.06 μ m	7.2	0.36	9.3	0.70

Source: Koch et al., ACP 2009

Central research question and strategy

Central research question and strategy

Model aerosol representation

- Evolution of mixing state is challenging to represent.
- Each mode or size bin is treated as internally mixed.

What are particle-resolved aerosol models?

- No bins or modes
- · Particles as vectors
- Treating multidimensional size distribution

Riemer et al., J. Geophys. Res., 114, D09202, 2009

Benefits of particle-resolved models

No approximation needed for mixing state.

- Coarse graining tool: deriving parameters for more approximate models (e.g. BC aging).
- Benchmark and error quantification for more approximate models (e.g. QMOM¹, MADE3², MATRIX, MOSAIC-ext).
- Detailed studies on the particle scale and experimental intercomparison.

McGraw et al., Journal of Physics: Conference Series, 2008

²Kaiser et al., Geosci. Model Dev., 7, 1137–1157, 2014

Limitation of particle-resolved models

- Resolution: Only finite number of computational particles available per grid cell $(10^4 10^7)$.
- On-going research to develop more efficient algorithms, e.g. "weighted particles" (DeVille et al., *J. Comp. Phys.*, 2011) and parallel methods.

Typical model setup

Zaveri, Easter, Riemer, West, JGR 2010

Multiscale model hierarchy

Central research question and strategy

Hypothesis: Error versus mixing state metric

Hypothesis: Error versus mixing state metric

Mixing state terminology

- Population mixing state and Morphological mixing state
- Here we will only consider the population mixing state.

- How "complex" are the particles, i.e. how many species are present in one particle?
- 2 How different are the particles from each other?

Problem solved in ecology: Species diversity

Externally mixed waterholes

Internally mixed waterholes

Good. Biometrika. 1953 MacArthur, Ecology, 1955 Whittaker, Ecol. Monogr., 1960; Science 1965; Taxon, 1972

Single-particle diversity

- $p_i^a = \text{mass fraction of species } a \text{ in particle } i$
- mixing entropy of *i*th particle: $H_i = -\sum_a p_i^a \ln p_i^a$
- diversity of *i*th particle: $D_i = e^{H_i}$ (units of *effective species*)

- average particle diversity: $D_{\alpha} = e^{H_{\alpha}}$, $H_{\alpha} = \sum_{i} p_{i} H_{i}$
- bulk population diversity: $D_{\gamma}=e^{H_{\gamma}}$, $H_{\gamma}=-\sum_{a}p^{a}\ln p^{a}$
- Mixing state index: $\chi = \frac{D_{\alpha}-1}{D_{\alpha}-1}$
- \mathbf{x} varies between 0 (externally mixed) to 1 (internally mixed).

Mixing state diagram

Application to field data: MEGAPOLI

- Collaboration with Robert Healy, University of Toronto.
- Paris, France, winter 2010.
- Mass fractions estimated based on ATOFMS data. supplemented by AMS, SMPS and MAAP.
- Five species: OA, BC, SO₄, NO_3 , NH_4 .

Healy et al., Atmos. Chem. Phys., 4, 6289-6299, 2014

Mixing state parameters during the campaign

Average diurnal cycle

Back to the hypothesis

Quantifying the importance of mixing state

Here: for CCN properties

Error ϵ and mixing state parameter χ

Central research question and strategy

Real-world scenarios

Library of idealized scenarios

CCN-based aging criterion

 $N_{\rm f} = {\sf number fresh}$ au = aging time-scale $S_* =$ threshold supersat.

$$\left(\frac{dN_{\rm f}}{dt}\right)_{\rm aging} = -\frac{1}{\tau(t,S_*)}N_{\rm f}(t,S_*)$$

Distribution of aging time-scales

Central research question and strategy

Impacts on community

Preliminary conclusions and current work

How important is BC mixing state for predicting BC climate impacts?

- Depends on target quantity: CCN properties or optical properties? (Zaveri, Barnard, Easter, Riemer, West, JGR, 115, D17210, 2010)
- Good news—sometimes—regarding CCN properties.
- Optical properties more complicated.

