Action in Minnesota to Address PAH-Contaminated Stormwater Pond Sediments by Restricting Usage of Coal Tar-Based Sealants

Judy L. Crane, Ph.D.

Environmental Analysis and Outcomes Division Minnesota Pollution Control Agency (MPCA) St. Paul, MN

EPA's Stormwater Pollution Prevention Webinar June 14, 2012

Overview

- Why are we concerned about polycyclic aromatic hydrocarbons (PAHs) in stormwater pond sediments?
- How are the Minnesota Legislature, Minnesota Pollution Control Agency (MPCA), and municipalities addressing this issue?
- What are the most likely sources of PAHs to stormwater pond sediments in Minnesota?
- What actions have been taken to reduce usage of coal tar-based sealants in Minnesota?

Problem: Stormwater ponds in the Twin Cities are filling up with sediment, some of which are highly contaminated with PAHs.

Nonfunctioning stormwater ponds in Woodbury, MN

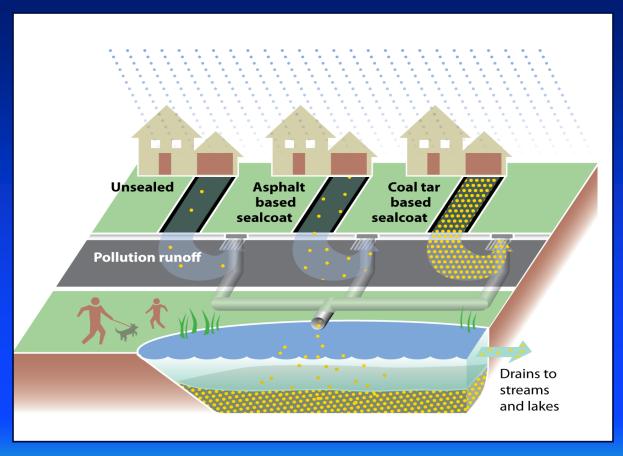
Removal of PAH-Contaminated Sediments Can be Expensive

- Most cities in Minnesota slowed maintenance dredging of their stormwater ponds after White Bear Lake, MN received cost estimates of \$250,000 to clean out two stormwater ponds in 2007;
- Cities are hampered by limited reuse options and disposal cost issues; and
- Cities have requested a solution from the Minnesota Legislature and MPCA.

What are the Costs for Disposal?

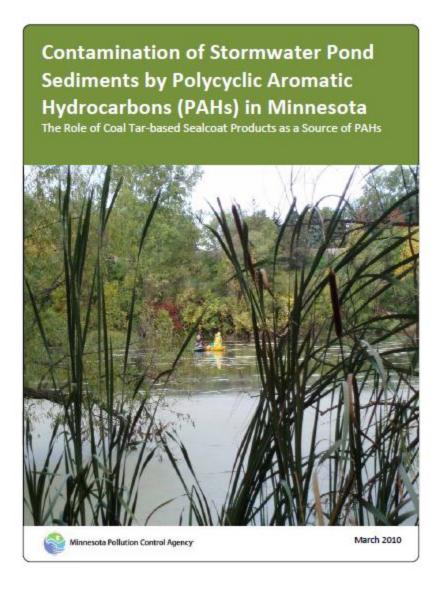
- In Minnesota, the most contaminated Level 3 dredged material must be disposed of in specially lined landfills or other approved options.
- Disposal costs vary with landfill.

Cost/cubic	Buffalo	Elk River	Rosemount
yard	\$12.00	\$10.50	\$22.50


Wetland delineation and/or surveying costs not included.

Total cost = \$40 to \$50/cubic yard

(Testing + Mobilization/overhead + Excavation + Transportation + Disposal) Tipping fees to dispose of sediment as waste instead of cover material is even more expensive.



Coal Tar-based Sealants have Emerged as an Important Source of PAHs to Stormwater Ponds

PAH White Paper available at:
http://www.pca.state
.mn.us/publications/
tdr-g1-07.pdf

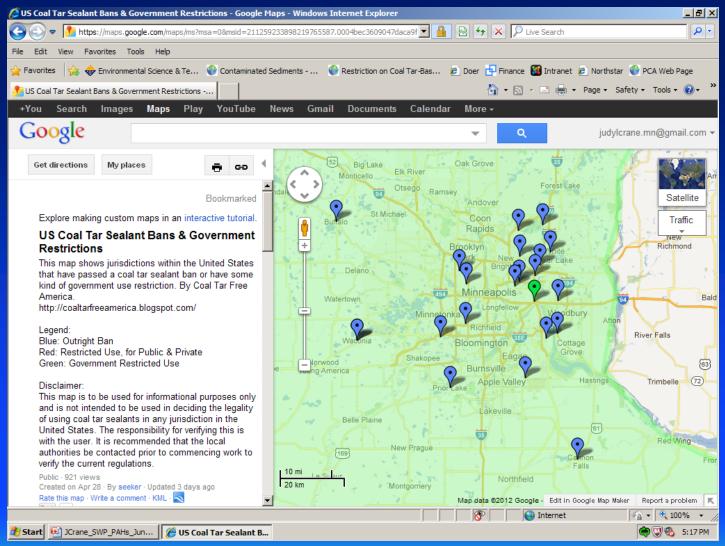
This report received a national award from the Legislative Research Librarians Section of the National Conference of State Legislatures.

Asphalt-based Sealants are a Suitable Alternative to Coal Tar-based Sealants

Ace Hardware, Agway, Do It Best, Lowe's, Menards, The Home Depot, True Value, and United Hardware no longer sell coal tar-based sealants.

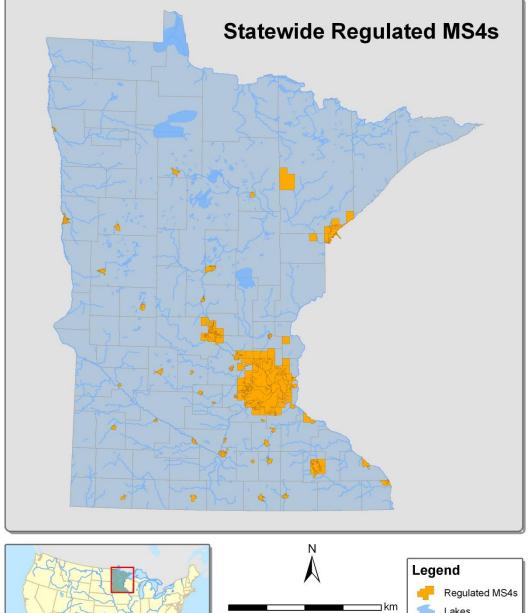
Legislative Response to Issue

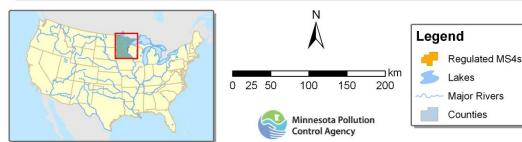
- The Minnesota Legislature provided the MPCA with funding to study this issue on July 1, 2009.
- The legislation directed the MPCA to conduct several tasks as detailed at: http://www.pca.state.mn.us/ktqha7e.
- The Legislature banned state agencies from purchasing undiluted coal tar-based sealant after July 1, 2010.


Incentive for Municipalities from 2009 Legislation

Local units of government must pass an ordinance prohibiting and/or restricting the use of coal tar-based sealants to be considered for a grant to treat contaminated sediments in their stormwater ponds.

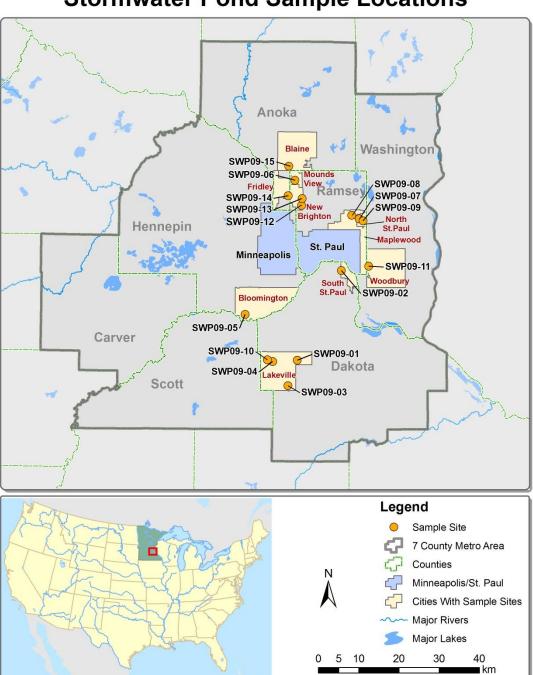
20 Municipalities in Minnesota have Passed Ordinances


From: Coal Tar Free America Website (http://coaltarfreeamerica.blogspot.com/p/cts bans.html)


Legislative Funding for Stormwater Pond Sediment Study

- Part of the 2009 legislative funding related to developing best management practices. This included funds for a study of stormwater pond sediments in different land use categories (residential, commercial, and industrial areas) for PAHs and other contaminants of potential concern.
- Another component of this study included evaluating sampling and screening methods for good, cost-effective techniques.

Municipal Separate Storm Sewer System (MS4) Areas Regulated by the **MPCA**


Residential Land Use

Commercial (up); Industrial (down)

Stormwater Pond Sample Locations

Field Sampling During October 2009

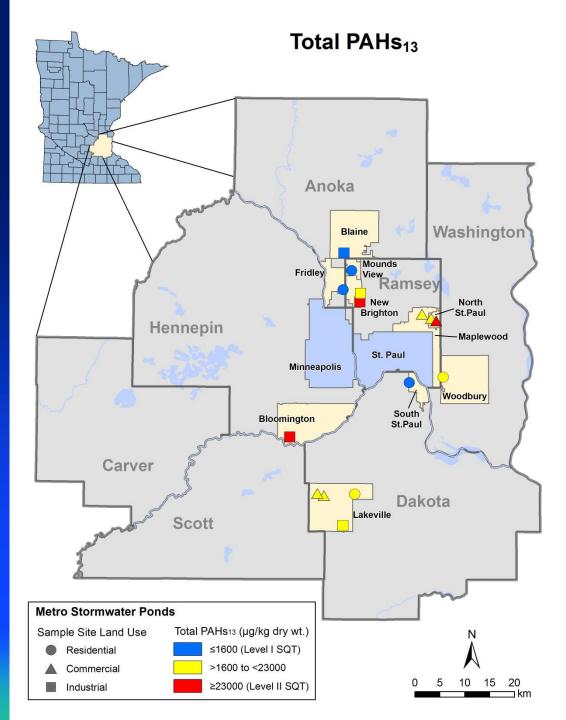
Photo by Anna Kerr (MPCA)

Photo by Judy Crane (MPCA)

Photo by Tim Nelson (Minnesota Public Radio)

PAH Analyses

- Parent and 24 carcinogenic PAHs (cPAHs) were analyzed on all samples by Pace Analytical Services, Inc.; and
- Parent and alkylated PAHs (p-alkPAHs) were analyzed on composite samples by Battelle.



Results

Two industrial ponds and one commercial pond exceeded the Level II sediment quality target (SQT) value for total PAH₁₃. These three ponds also exceeded ESB toxic units of 1.0, indicating detrimental impacts to bottom-dwelling invertebrates.

Ranges of Human Health-based Benzo[a]Pyrene (B[a]P) Equivalents for Study Ponds*

	B[a]P Equivalents (mg/kg)			
	≤2.0 >2.0 to ≤3.0 >3.0			>3.0
		(Level 1	(Level 2	(Level 3
Calculation Procedure	ND	Dredged Mat'l)	Dredged Mat'l)	Dredged Mat'l)
Using MPCA Potency				
Equivalency Factors**	4	2	0	9

ND = not detected

^{*}Based on the 24 cPAHs analyzed in composite samples by Pace Analytical; field replicate data were excluded; n = 15 ponds.

^{**}Kaplan-Meier statistics were used when ≤50% of samples had nondetect data.

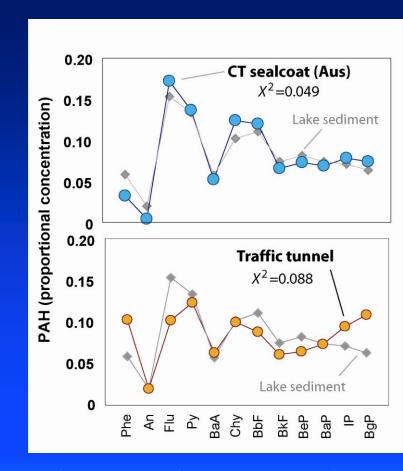
Identifying Sources of PAHs with Environmental Forensic Techniques

Solving Mysteries

Source Apportionment of p-alkPAH Data from Composite Samples

Statistical Summary	% Diagenic (natural) PAHs	% Petrogenic (oil-based) PAHs	% Pyrogenic (combustion) PAHs
Mean	2.4	15.0	82.6
SD	2.7	7.2	9.6
Minimum	1.1	7.4	50.0
Maximum	12.0	38.0	91.3

N = 15 composite samples analyzed by Battelle for 34 p-alkPAHs. Yellow shading denotes results for SWP09-02-C (LeVander Pond).



Quantitative techniques, like the U.S. EPA's contaminant mass balance model (CMB) version 8.2, provide a rigorous method for apportioning sources of PAHs.

How does the CMB8.2 Model Work?

- Incorporates published source profiles (fingerprints) for 12 PAHs;
- Figures out the best combination of sources to best match the sediment sample by minimizing Chi-squared; and
- Provides estimated mass loading and uncertainty for each source.

Coal Tar-based Sealants and Traffic Tunnel Air are the Most Prevalent Sources of PAHs in Metro Stormwater Pond Sediments (n = 15)

Summary Statistics	Coal Tar-based Sealant Sum (%)	Traffic Tunnel Air (%)
Mean	70.5	17.8
SD	17.9	12.9

Model includes 12 of the 34 p-alkPAHs measured by Battelle. Statistical results of model: $R^2 = 0.981$, Chi-squared = 0.213, % Mass = 100.6%; T value >2 for 10 ponds for coal tar sealant scrapings.

Mean relative percent difference between measured and calculated total PAH₁₂ concentrations was 0.87%.

Ran the CMB8.2 Model on the Met Council's Twin Cities Stormwater Pond Sediment Data Set (Polta *et al.* 2006)

- Excluded samples that either didn't meet their data quality objectives or were from a pond that had completely filled in (i.e., were soil samples);
- Used PAH data from 26 of the 50 sediment samples collected from 10 stormwater ponds in the Twin Cities metropolitan area; and
- The depth of individual sediment samples in this study varied from 15.2 45.7 cm.

Source Apportionment of Total PAHs₁₂ for Acceptable Met Council Data

	Coal Tar- based Sealant	Pine Wood		Traffic Tunnel	Oil	Residen.
Summary	Sum	Combus.	Coal	Air	Burner	Air
Statistics*	%	%	%	%	%	%
Weighted						
Mean	69.4	10.0	7.0	6.0	3.9	2.9
SD	14.7	10.7	11.7	8.6	6.6	4.2

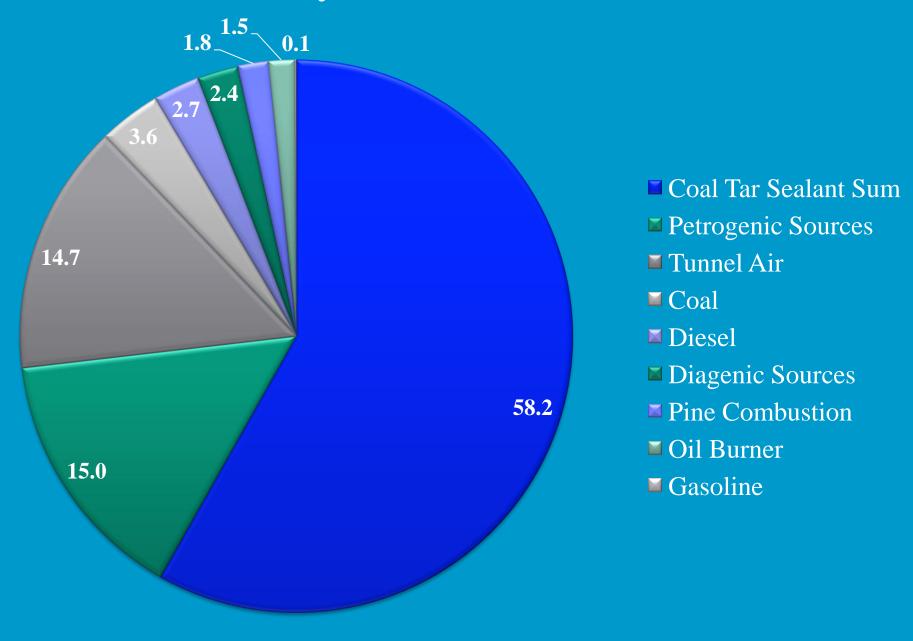
*n = 26 samples

Statistical results of model: $R^2 = 0.970$, Chi-square = 0.422, % Mass = 93.1; T value >2 for 13 samples for coal tar-based sealant sources.

Mean relative percent difference between measured and calculated total PAH₁₂ concentrations was 7.8%.

Coal Tar-based Sealants are the Biggest Source of PAHs to Stormwater Pond and Lake Sediments in the Twin Cities

Study	Mean % Coal Tar-based Sealant Source*
MPCA Study	70.5
Met Council Study	69.4**
Palmer Lake in Brooklyn Center, MN (Van Metre and Mahler 2010)	72.2
Lake Harriet in Minneapolis, MN (Van Metre and Mahler 2010)	51.9



CMB8.2 Model Results Provide a Better Estimate of Pyrogenic (Combustion) Sources of PAHs

- Used the results of the model and the mean percent pyrogenic PAHs (82.6%) calculated from the total PAH₃₄ data set to calculate the percent of total PAHs₃₄ from:
 - Coal tar-based sealant sources = 0.705 x 82.6% = 58.2%
 - Traffic tunnel source = $0.178 \times 82.6\% = 14.7\%$
 - Other model sources = $0.117 \times 82.6\% = 9.7\%$

MPCA Study: PAH Sources (mean %)

Other Efforts by the MPCA to Reduce Usage of Coal Tar-based Sealants

Great Lakes Restoration Initiative Grant to Promote Phase-out of Coal Tar-based Sealants

- MPCA lead (Al Innes) with Michigan and Wisconsin collaboration;
- Grant duration: 10/1/2011 to 9/30/2014;
- Work tasks:
 - Implement voluntary phase-out of the product in Minnesota in partnership with coatings and asphalt associations (partnerships could not be negotiated),
 - Contact retailers to determine where the product is still sold and promote voluntary phase-outs (in progress),

Other Grant Work Tasks in Progress

- Promote switch in sealant products by applicators (Jet-Black has committed to switch from coal tarbased to asphalt-based sealants in 2012-13 in MN/WI and is promoting in 10 other states),
- Work with other users (cities, property managers, schools/colleges, airports, etc.) to phase out coal tarbased sealants where still in use,
- Work with suppliers/researchers to promote feasible low or no PAH alternatives, and
- Share strategies and products with other states.

For Further Information

- Scientific technical issues: Judy Crane, Ph.D., Research Scientist 3 (MPCA), 651-757-2293 (phone) or judy.crane@state.mn.us.
- Policy/management issues: Marni Karnowski, Supervisor of Municipal Stormwater Unit (MPCA), 651-757- 2495 (phone) or marni.karnowski@state.mn.us.
- Pollution prevention issues: Al Innes (MPCA), 651-757-2457 (phone) or <u>alister.innes@state.mn.us</u>.
- MPCA webpage on "Restriction on Coal Tar-Based Sealants" at: http://www.pca.state.mn.us/ktqha7e.

