

Energy Self-Assessment Tools and Energy Audits for Water and Wastewater Utilities

James Horne, US EPA Office of Wastewater Management Jason Turgeon, US EPA Region 1 Eric Byous, US EPA Region 9

Energy Use and Water Utilities

- Water and Wastewater treatment represents about 2% of the nation's energy consumption
 - About \$4.7 billion is spent annually for energy costs to run drinking water and wastewater utilities¹
 - Equivalent to approximately 69 billion kilowatt hours (kWh)²
 - Equates to adding approximately 52 million tons of greenhouse gas to the atmosphere³
- Energy represents the largest controllable cost of providing water or wastewater services to the public
 - About 15,000 municipal treatment plants and 51,000 community water systems in the US⁴
 - Energy costs often one of the top 3 O&M costs in this sector

4 EPRI

¹ Based on EIA's average utility electric rate per kWh for industrial customers, 2013 data

² Electric Power Research Institute, Electricity Use and Management in the Municipal Water Supply and Wastewater Industries, November 2013 (EPRI) 3 Calculated from EPRI figures using EPA GHG emissions calculator: <u>http://www.epa.gov/cleanenergy/energy-resources/calculator.htm</u>

Energy Reduction at Water Utilities

- Water and Energy Efficiency at Utilities =
 - Reduced energy usage
 - Reduced operating costs
 - Reduced climate impacts/carbon footprint
 - Sustainability of water infrastructure
 - Save Water

Why Focus on Management?

- Energy issues are here to stay and will only get more serious—no quick fixes!
- Individual projects and technologies are fine, but something is needed to pull it all together (a system)
- Systematic management will ensure continuing focus on energy efficiency
- The Plan-Do-Check-Act management systems approach has worked in many different sectors

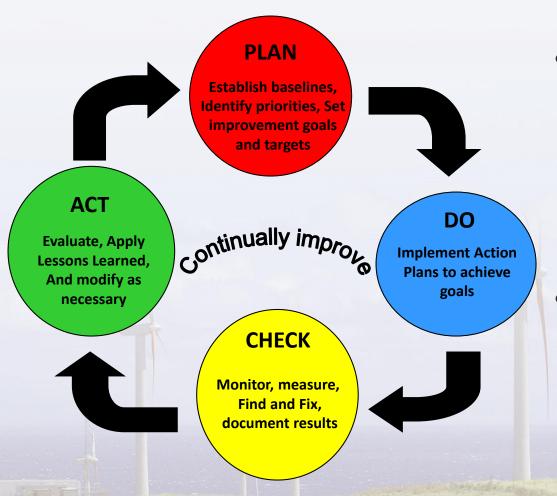
Managing to Maximize Energy Efficiency

Designed to help utilities:

- Systematically assess current energy costs and practices
- Set measurable performance improvement goals
- Monitor and measure progress over time

Uses a management system approach for energy conservation, based on the successful Plan-Do-Check- Act process

[based on Environmental Management Systems (EMS)


http://water.epa.gov/infrastructure/sustain/cut_energy.cfm

Ensuring a Sustainable Future: An Energy Management Guidebook for Wastewater and Water Utilities

The Plan-Do-Check-Act Approach

- Allows utilities to systematically assess and manage energy opportunities and take action
- NOT a project—a system to manage for the long haul

Energy Audit Approaches

- Conduct a Self-Assessment of your utility's energy use
- Conduct a Level II or III energy audit at your facility
- Start an energy management program to implement audit recommendations

Section 1: Self-Assessment Tools

- Free
- Easy to Use for Operators of Any Size Facility
- Available Online
- Do Not Require Outside Assistance

Energy Self-Assessment Tools For Small Utilities

- EPA Office of Groundwater and Drinking Water Energy Use Assessment Tool
- EPA Energy Management Planning Self-Assessment worksheet (aka "radar graph")
- NYSERDA/CEE Checklists
- Mass Energy Insight (available to local governments in Massachusetts)

EPA's Energy Use Assessment Tool

- What is the Energy Use Assessment Tool?
 - Free of charge, downloadable tool based in Excel that can be used by small and medium water and wastewater systems
 - Allows a utility to conduct a utility bill analysis to assess baseline energy use and costs
 - Use prior to a full-scale energy audit
 - Drills down to equipment level
 - Printable summary report
 - Presentation of energy consumption & costs (broad to detail,
 - Graphs energy use over time
 - Highlights areas of energy efficiency

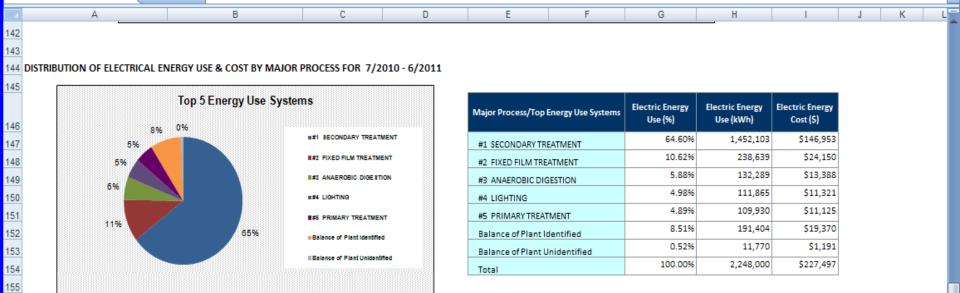
How the Energy Use Tool can Help Drinking Water And Wastewater Systems

Wet-well and Piping

Credit: Jackson, SC

• The tool:

- Acts as a repository of up to 5 years of your energy use, cost, equipment and operational data
- Analyzes your data and displays
 cost and energy use trends
- Includes lighting and HVAC
- Compiles equipment data


EPA's Energy Use Assessment Tool: Information Needed to Enter in the Tool

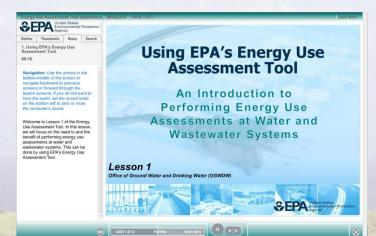
- All plant utility data (use and cost information) by month (minimum of 12 months) for up to 5 years of analysis
 - Collect from utility bills such as electric, natural gas, water/sewer, fuel oil, alternative energy, and other utilities
- Non-process information (by building)
 - List of lighting fixtures
 - HVAC equipment

Drinking water and/or Wastewater treatment plant information

- Monthly treatment/discharge volumes
- Pump and motor nameplate data (horsepower, efficiency rating, full load amp rating)
- Average motor operating amperage

8) 🖪	-17 -	(°" →) ∓			EnergyUseAss	essmentTool	v1.0_Examp	le.xls [Com	patibility Mo	de] - Microso	ft Excel				-	X
U	н	ome	Insert	Page Lay	out Formu	las Data Rev	iew View	Acrobat							(0 - 🗖)
Pas	te 🥩		ial I <u>U</u> -	• 10 •			Wrap Text		eral		ditional Form		Insert Delete			Find &	
Clipb	oard	5	F	Font	G.	Alignmer	nt	G.	Number	G	Styles	ie styles	Cells		Editing		
	GIDe	efault	· • (6	fx												;
4			A		В	С	D	E	F	G	Н	1	J	К	L	М	
	PD		·				1474		0							1	
1	EP	AE	inergy	Use A	Assessm	ient Tool fo	r wast	ewater	Systen	ns	Select/Swi	tch Template					
2		Ge	neral Inf	formati	on			Building Data	Plant En	ergy Usage	Reset Data	Save					
51				S	Specify Other U	tility Type (if any)	Propane										F
52			Specify Un	nits for Oth	er Energy Con	sumption (if any)	GAL	[ſ
53 54 2	011	_	_	_	_		_	_	_	_	_	_		_	_	_	
55			Electri	c (\$/kWh)	\$0.1018	Natural	Gas (\$/CCF)	\$1.1504	No 2 Fu	uel Oil (\$/CCF)	\$1.0618	Water	/Sewer (\$/GAL)	\$0.0056	Alt. En	ergy: (\$/C	CF
56	20.44		-														_
<u> </u>	2011		•t (\$) 2011		January Ato 104,00	February	March	April #10.704.10	May 400.000.40	June	July	August	September	October	November	Decemb	er
			(kWh) 2011		\$18,184.32 196,800	\$19,492.46 189,800	\$19,247.76 187,600	\$19,704.16 192,800	\$20,930.40 204,000	\$19,997.44 183,800							
			ost (\$) 2011		\$6,146.54	\$5,556.68	\$5,015.30	\$3,292.82	\$1,525.44	\$1,428.90							
			(CCF) 2011		5,276	4,782	4,331	2,914	1,362	1,299							-
			Cost (\$) 2011		\$16,231.03	\$11,166.71	\$8,587.05	\$5,077.59	\$534.92	\$43.09							
63	Consur	mption	(CCF) 2011		14,260	10,279	8,478	5,237	562	400							
64	ater &	Sewer	Cost (\$) 20	11	\$12,320.06	\$12,320.06	\$11,741.82	\$11,741.82	\$11,741.82	\$16,794.47							
65	Consur	mption	(GAL) 2011		2,210,986	2,210,986	2,107,257	2,107,257	2,107,257	3,013,644							
66 A	lternati	ive En	ergy Cost (\$) 2011	\$1,914.90	\$2,035.80	\$2,571.40	\$2,394.60	\$2,012.40	\$25,071.20							4
	Consur	mption	(CCF) 2011		1,473,000	1,566,000	1,978,000	1,842,000	1,548,000	229,400						L	
			ie Cost (\$) 2	2011	\$1,070.30	\$1,535.60	\$2,324.30	\$3,180.10	\$2,017.40	\$1,923.90							4
			(GAL) 2011		973,000	1,396,000	2,113,000	2,891,000	1,834,000	1,749,000							-
		_	ost 2011 ume (MGAL)	2011	\$55,867.15 112.240	\$52,107.31 107.500	\$49,487.63 116.700	\$45,391.09 118.400	\$38,762.38 111.200	\$65,259.00 94.700							
			eatment ¥olu		\$497.75	\$484.72	\$424.06	\$383.37	\$348.58	\$689.11							
	-		tion (k¥h/M		1,753.39	1,765.58	1,607.54	1,628.38	1,834.53	1,940.87							
74																	
75	040																
_	010		Fleetei	- (611-31/1-3	60.4000	Network		64,0004	No. 0. Fr		64,0040	Mata	10 (\$10 A I)	80.0050	Alth Em	1010	
77 78			Electric	c (\$/kWh)	\$0.1020	Natural	Gas (\$/CCF)	\$1.0894	NO 2 FU	iel Oil (\$/CCF)	\$1.0610	water	/Sewer (\$/GAL)	\$0.0056	Alt. Ene	ergy: (\$/C(-1
	2010		-		January	February	March	April	May	June	July	August	September	October	November	Decemb	er
80 E	lectrici	ity Cos	st (\$) 2010		\$16,711.68	\$17,684.94	\$15,451.56	\$15,268.68	\$16,374.96	\$18,996.48	\$19,939.92	\$18,041.58	\$17,689.84	\$18,057.60	\$17,876.28	\$18,335.7	2
81	Consur	mption	(k¥h) 2010		163,200	172,200	150,600	149,400	159,600	174,600	182,600	177,400	173,600	182,400	186,600	190,600	
82 N	latural (Gas Co	ost (\$) 2010		\$5,571.01	\$5,059.70	\$6,072.54	\$3,619.31	\$1,307.83	\$1,207.72	\$1,188.00	\$888.13	\$1,018.35	\$1,324.23	\$2,209.15	\$6,538.9	0
83 I			(CCF) 2010		4.918 Ruilding 1 Dat	4.659 ta 🖌 Building 2 Data	5.769 Ruilding	3.601	1.276 Wilding 4 Da	1.108	1.080	875 Wilding & Dat	930 Ruilding 7	1.193	1.955 Wildings	5.686	
Read		2 de		macion	Dullarly 1 Dal				ounding 7 Da]	Œ

160 EQUIPMENT INVENTORY: BREAKDOWN OF ELECTRICAL ENERGY USE FOR MAJOR/ENERGY INTENSIVE EQUIPMENT


161	Major Process/Top Systems	Energy Use Motor Efficiency (%)	Efficiency Rating	Electric Energy Use (%)	Electric Energy Use (kWh)	Electric Energy Cost (\$)
162	Anaerobic Digestio	n				
163	Mixer - Gas Mixe	r 88	Medium	2.48%	55,696	\$5,636.40
64	Other kW Load -	Mixer Heater N/A	N/A	0.80%	18,000	\$1,821.60
65	Pump - Ht Wtr Pu	umps 85	Medium	0.56%	12,581	\$1,273.16
66	Pump - Sludge Ht	t Wtr Pumps 85	Medium	0.62%	13,979	\$1,414.63
67	Pump - Sludge Re	ecir Pump 85	Medium	1.43%	32,034	\$3,241.85
68	Effluent Pumping/St	torage				
69	Pump - Effluent F	91 Pumps	High	0.91%	20,363	\$2,060.77
70	Fixed Film Treatmen	nt				
	Building 6 Data / Building 7 Data	/ Building & Data / Building	n 9 Data 📝 Buildir	ng 10 Data 🖉 W	WTP Energy Usa	ne Summary

Result is a report format for the utility to share with decision makers

Energy Use Assessment Tool Training

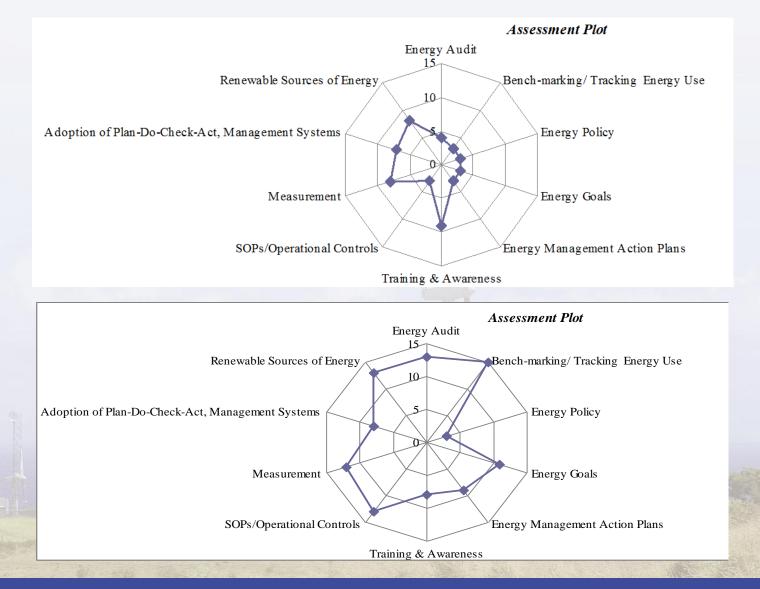
- *COMING SOON:* Online Self-paced training modules
 - Introduction to Performing Energy Use Assessments at Water and Wastewater Systems
 - The first module focuses on the need to and the benefit of performing energy use assessments at water and wastewater systems.
 - The second module focuses on performing energy use assessments at water and wastewater systems using EPA's Energy Use Assessment Tool.

http://water.epa.gov/infrastructure/sustain/energy_use.cfm

Energy Use Assessment Tool Guidance

Current Guidance Available at :

http://water.epa.gov/infrastructure/sustain/energy_use.cfm


Click on:

"<u>Energy Use Assessment Tool User's Guide</u>" (full version) "<u>Energy Use Assessments at Water and Wastewater</u> <u>Utilities</u>" (pocket guide)

EPA Energy Management Planning Self-Assessment Worksheet

- Standalone worksheet included in "Ensuring a Sustainable Future" guidebook.
- 30 questions quickly allow users to evaluate strengths and weaknesses in existing energy management plans across 10 areas
- Intended to be used periodically to check progress on PDCA cycle
- Available on request: <u>turgeon.jason@epa.gov</u>

Before & After Roundtables: Town A

NYSERDA Water Energy Program

- Water and Wastewater Focus Program:
 - Water and Wastewater Best Practices Handbook
 - 10 Steps to Energy Efficiency for Water and Wastewater Treatment Facilities
 - Payback Analysis Tool
 - Wastewater Check List
 - Wastewater Benchmarking Tool
 - Water Treatment Check List
 - Water Treatment Benchmarking Tool
 - <u>http://www.nyserda.ny.gov/Energy-Efficiency-and-Renewable-</u> <u>Programs/Commercial-and-Industrial/Sectors/Municipal-Water-and-</u> <u>Wastewater.aspx</u>

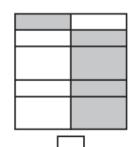
NYSERDA Self-Audit Checklists

- Designed for small water and wastewater facilities
- Simple Yes/No questions designed to point to opportunities for efficiency in operation and equipment
- Download with other NYSERDA tools at
 http://www.nyserda.ny.gov/Energy-Efficiency-and-Renewable-Programs/Commercial-and-Industrial/Sectors/Municipal-Water-and-Wastewater/MWWT-Tools-and-Materials.aspx

Focus on Municipal Water and Wastewater

NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY'S

Nen York Energy Smart


SMALL WASTEWATER TREATMENT PLANT CHECKLIST

(If any are not applicable, do not provide a response for that particular question)

1. INFLUENT/EFFLUENT PUMPING

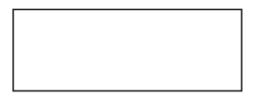
- A. Do you have influent and/or effluent pumps?
- B. If yes, do you have variable speed control on the influent pumps?
- C. If yes, are premium-efficiency motors currently installed on the influent pumps?
- D. If yes, do you have variable speed control on the effluent pumps?
- E. If yes, are premium-efficiency motors currently installed on the effluent pumps?

Subtotal Grayed

NO

YES

2. PRE-AERATION/POST-AERATION


- A. Does your plant utilize aeration blowers/compressors for preaeration, post-aeration or other aerated channels?
- B. If yes, are there currently means to throttle the amount of air delivered or otherwise adjust output?

Subtotal Grayed

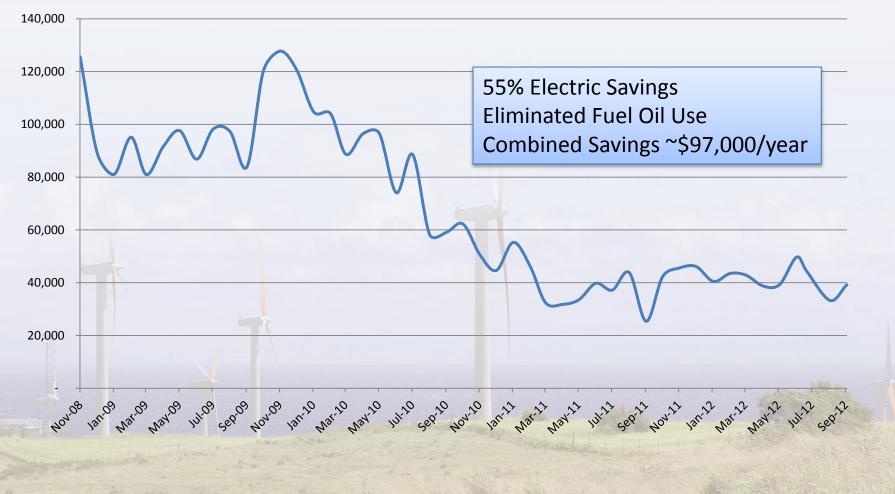
3. INTERMEDIATE PUMPING

- A. Do you have intermediate pumps to convey flow from primary to secondary processes or from secondary to tertiary treatment processes?
- B. If yes, do you have variable speed control on the intermediate pumps?
- C. If yes, are premium-efficiency motors currently installed on the intermediate pumps?

Subtotal Grayed

4. BIOLOGICAL PROCESSES - ACTIVATED SLUDGE PROCESSES

CEE Self-Audit Checklists


- Adapted from NYSERDA Checklists
- Designed for small water and wastewater facilities
- Simple Yes/No questions designed to point to opportunities for efficiency in operation and equipment
- Available from Efficiency Vermont: https://www.efficiencyvermont.com/For-My-Business/Solutions-For/Water-Wastewater-Facilities

Mass Energy Insight

- Available to any Massachusetts government entity including water/wastewater districts
- Data automatically uploaded from electric/gas utilities
- Provides a variety of built-in reports for water/wastewater industries
- Ability to interface automatically with ENERGY STAR Portfolio Manager
- www.massenergyinsight.net/

CASE STUDY 1: Freeport, ME

Freeport Sewerage District Electricity Use (kWh)

Section 2: Energy Audits

- Conducted by outside experts
- Available in a variety of costs from free to high 5 figures
- Available in a variety of levels from walkthrough to "investment-grade"

Image: CC-licensed by kqedquest http://flic.kr/p/KyS8o

Energy Audits

- Types of Audits
- Costs & Providers
- Results
- Examples

Energy Audits

- Typically identify capital improvements (motors, blowers, variable frequency drives, etc) and operational improvements
- Operational improvements can result in substantial savings with little to no cost
 - Time of operation, load demand contracts, unnecessary equipment, energy management systems, etc.
- Audits can be conducted on plant designs very cost effective
- Can identify renewable energy opportunities

Types of Energy Audits DEMAND vs SUPPLY

- ASHRAE Tiered Energy Audits
 - Level I (Walk-Through Analysis)
 - Level II (Energy Survey & Analysis)
 - Level III (Detailed Analysis of Capital Intensive Modifications, aka Process Audit)
- Renewable Energy Assessments
 - Simple Discussion of Alternatives
 - Desktop Analysis
 - Feasibility Study

EPA Goals: Address Both Demand & Supply

- All facilities will benefit from Level II or Level III audit
 - Uncover operational and equipment changes for efficiency
 - These audits are NOT free, but have very fast paybacks
- All facilities should discuss renewable energy options and have a desktop analysis of promising alternatives
 - Feasibility studies performed where potential exists for significant energy production
- All facilities should use BOTH to develop a prioritized action list to guide their next steps!

Other names/types of audits

- Evaluate existing power consumption and metrics
 - Utility bill analysis
 - Benchmarking
- HVAC/Mechanical system audit
 - Evaluate gas requirements (process & heating systems)
 - Evaluate ventilation (efficiency & effectiveness)
 - Controls (programmable thermostats, etc.)
- Electrical system audit
 - Motor efficiency / type
 - Variable frequency drives
 - Lighting (systems, bulb type, controls)
- Process system audit
 - Process improvement
 - Operations optimization
 - Efficiency planning

Important Terms in Utility-Funded Audits

- Utility = Not you! The energy (electric or gas) provider.
- PA = Program Administrator = Utility Energy Efficiency personnel. Your new best friend can help pay for audits and provide incentives (\$\$\$) for projects!
- Identification of Energy Efficiency
 Opportunities = ~ Level I audits

Audit Costs and Providers

- PAs can and will fund audits in many service territories across the country
 - Audit costs usually split 50/50
 - You may be able to negotiate with PAs to develop something that works for you
 - PAs will often do a free walk-through with a simple checklist (aka Identification of EE Opportunities)

Audit Costs and Providers (cont'd)

- Find your PA by contacting your utility or visiting <u>www.dsireusa.org</u> and selecting your state.
- Some states have state-run efficiency programs instead of utility contacts (VT, WI, OR, ME, NY, NJ) but your utility can always tell you who to contact
- Some utilities, especially when owned by a municipality, may not offer assistance
- US DOE funds a network of Industrial Assessment Centers (IACs). Some IACs will work with water/wastewater clients at no cost.

www1.eere.energy.gov/industry/bestpractices/about iac.html

ASHRAE Audit Levels

- Preliminary Energy- Use Analysis
 - Calculate kBtu/sf
 - Compare to similar

Level 1: Walk-through

- Rough Costs and Savings for EEMs
- Identify Capital Projects

Level 2: Energy Survey & Analysis

- End-use Breakdown
- Detailed Analysis
- Cost & Savings for EEMs
- O&M Changes

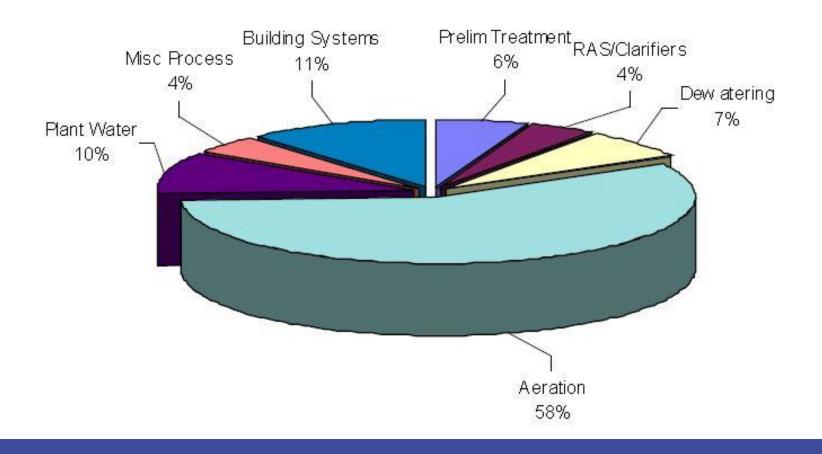
Level 3: Detailed Survey & Analysis

- Refined analysis
- Additional Measurements
- Hourly Simulation

Renewable Energy Assessments

- Start small (discussion) and end large (\$100k+ feasibility studies)
- Some energy auditors will do some level of renewable energy assessment, usually discussion and desktop analysis with recommendations for further study
- Renewable energy projects usually only cost-effective AFTER all energy efficiency projects are completed.
- Some states have programs to fund assessments for certain types of projects

Audit Results: One Size Does Not Fit All


FACILITY NAME	AUDIT TYPE, LENGTH	AUDIT COST (free audits no longer standard)	ANNUAL ENERGY COST	ANNUAL SAVINGS
Barnestable	Level I-II, 8 pgs	Free via utility	Not calculated	\$32,422
Edgartown (audit 1)	Level II, 56 pgs	Free via utility	\$209, <mark>3</mark> 28	\$17,728
Edgartown (audit 2)	Level II, 170 pgs w/specs	Free via utility	Not calculated	\$42,082
GLSD	Level III, 117 pgs	~\$50,000 (split with utility)	\$3,286,000	\$1,028,000
Name Withheld (CT Water Facility)	Level III plus Desktop Renewables	~\$25,000	\$319,000	\$55,000 efficiency, additional potential from up to 530 KW renewables

CASE STUDY 2

- Rural New Hampshire wastewater facility
 - 0.15 MGD average daily flow
 - Designed for 0.29 MGD average flow and 1.1 peak flow
 - Average annual electric use 462,000 kWh at a total cost of \$63,000

Energy Balance example

Figure 1.1: 2011 WWTP Energy Use Breakdown

Table 1.2RECOMMENDED COST SAVING PROJECTS

No	Cost Saving Measures	Fuel Savings (therms)	Annual Energy Savings (kWh)	First Year Annual Savings (\$)	Initial Cost (\$)	PSNH Incentive	Adjusted Simple Payback (yrs)
	ENERGY MANAGEMENT PRACTICES	- -	-				
EMP 1	Formalize Energy Management Program			S (2000		
EMP 2	Benchmark System Performance	::		c	20		
	Total for EMPs			()	. (11	(111)	
	OPERATIONAL MEASURES		š				2
OM 1	Temperature & Boiler Controls	2,286	11,000	\$4,867	\$1,650	8 <u>111</u> 8)	< 1
OM 2	Cycle Grinder & Grit Blower		3,504	\$480	\$600		1.1
OM 3	Discontinue Use of RAS Grinder	1070701	5,256	\$720	i interio	1000	1.00
OM 4	Cycle Odor Control Blower	1	4,380	\$600	\$400	1.000	1.1
	Total for OMs		24,140	\$6,66 7	\$2,650		< 1
	ENERGY CONSERVATION MEASURES		a				26. 20
ECM 1	Install Fine Bubble Diffusers/Reduce DO/ Reduce Blower Sheave		156,987	\$21,057	\$74,100	TBD	3.5
ECM 2	Install New Plant Water Pump		34,952	\$4,788	\$5,750	TBD	1.2
	Total for ECMs		191,139	\$25,845	\$79,850	TBD	3.1
	ENERGY SUPPLY MEASURES				G2		8
ESM 1	Operate Sludge Blower Off Peak			\$2,173			
	Total for ESMs			\$2,173			
	Electric Energy Savings & Cost		215,279	\$31,325	\$81,250	TBD	2.6
	Natural Gas Energy Savings & Cost	2,286		\$3,360	\$1,250	(111 1)	< 1
	Total	2,286	215,279	\$34,685	\$82,500	TBD	2.4

Review

- All facilities will benefit from an audit
- Audits vary in size, scope, complexity, and cost
- PAs will help you fund audits and projects
- Renewable energy assessments are important but should come after efficiency projects
- Audits that don't lead to completed projects don't save any energy!

Two Tools to Help with Audits

- Maine DEP Sample Audit RFP Language
 - MS Word based to allow for easy cut-and-paste
 - Designed to incorporate most important elements of Level III audits at lowest cost
 - Available at <u>http://www.epa.gov/region1/eco/energy/designing-</u> <u>rfps-contracts.html</u>
- EPRI Energy Audit Manual for Water/WW Facilities
 - Older (1994) but still relevant
 - www.cee1.org/ind/mot-sys/ww/epri-audit.pdf

Questions

Section 3: Evaluation of Energy Audit Pilot Program Results in AZ, CA, HI, and NV

EPA Region 9's Auditing Pilot Program

- Water and wastewater utilities that received ARRA funding were eligible to receive Level II/III energy audits...15 were selected
- Results show recommendations with a maximum 7.5 yr payback have potential:
 - \$1.4 million/yr cost savings with a 4.5 yr payback
 (16% ROI)
 - 6,900 megawatt hours/yr reductions

EPA Region 9's Auditing Pilot Program

- 15 recommendations with <1 yr payback period, with total annual savings of \$190K/yr (>100% ROI)
- Non-capital improvements such as rate modifications, time-of-use, depowering equipment, and shutting down unnecessary processes
- These could likely be identified with low cost self-assessments or walk-through audits

EPA Region 9's Auditing Pilot Program

- Recommendations identified an average: 17% savings in energy use 26% savings in energy costs
- Critical to note these audits were not prioritized to "ideal" candidates due to limited duration of funding
- Interestingly, no statistical differences between small and large utility results

Lessons Learned – Audit Process

- Target proper level of audit
- Discuss your payback period thresholds with auditor
- Request an initial simple draft report with brief summary of recommendations
- Discuss draft report with contractor to determine where further detail is required
- Leads to an effective final report...expensive contractor time not wasted on unwanted info

Energy Conservation Opportunities (total # identified during Pilot Project)	Payback Period (yrs.)	Costs (Implementation)	Annual Savings (\$)	Annual Energy Cost Savings	MWh/ Year Savings
Electric Rate Modifications (2): modifying rate schedules to be most efficient during peak and non-peak hours	avg = 0.12 0.1 to 0.14	\$500	\$3,600 - \$10,000	13 - 48%	N/A
Electrical Demand Management (5) : monitoring total energy use/demand with installation of electrical metering, maximizing off-peak operations	avg = 0.2 0 to 1	\$0 - \$75,000	\$1,000 - \$115,800	0.7 - 7.3%	N/A
Operational Improvements (11): Noncapital improvements to optimize treatment	avg = 1.7 0.7 to 5	\$0 - \$220,000	\$100 - \$35,700	0.1 - 26.5%	1 - 284
Pump Modification (6): adjusting effluent pumping, inline flow meters in collection/distribution systems, and pump controls	avg = 4.1 0 to 10.7	\$0 - \$35,600	\$250 - \$7,000	0.5 - 7.2%	2 - 26
Motor Efficiency Upgrades (4): replacing inefficient motors with high efficiency motors	avg = 4.9 0.7 to 8.2	\$3,100 - \$175,000	\$2,800 - \$44,300	1.3 - 7.6%	9.6 - 136.4
Component System Upgrades (5): Capital and operational improvements on UV, process water, scrubber, and compressed air systems	avg = 5.1 4 to 6.3	\$130,000 - \$500,000	\$20,500 - \$98,000	2.2 - 28.3%	105.7 - 441.5
Efficient Lighting Fixtures (5): implementation of more efficient lighting; includes reduced use and sensors	avg = 6.6 2.6 to 11.2	\$7,000 - \$154,000	\$2,650 - \$24,700	0.5 - 2.9%	9.1 - 122.1
Variable Frequency Drive Installation (3)	avg = 7.2 2.4 to 12	\$15,700 - 126,500	\$1,620 - \$51,600	0.4 - 4.2%	15.4 - 482
Aeration Control/Improvements (4): smaller blower installation, operation changes, better control with meter installation	avg = 8.3 4.7 to 13.3	\$5,000 - \$244,000	\$760 - \$24,400	1.6 - 26.9%	6 - 200

CASE STUDY 3

- Selma-Kingsburg-Fowler County Sanitation District (Fresno County, CA)
 - Serves a population of 40,000
 - Aeration improvements (blower and fine bubble diffuser replacement)
 - SCADA installation improved controls, including dissolved oxygen in aeration basins
 - Verified savings of \$500,000 (6.1 year payback) and 4,544,688 kWh per year

Renewable Energy Highlight

Utility	Treatment Capacity (MGD)	Solar Generating Capacity	Annual Savings
Moorpark WWTP (Moorpark, CA)	3	0.958 MW	\$250,000
Santa Rosa WRF (Murrieta, CA)	5	1.1 MW	\$152,000
Kihei WWTF (Kihei, HI)	7.5	1.9 MW	\$500,000

Section 4: Suggested Next Steps

- Conduct a Self-Assessment of your utility's energy use
 - EPA's EUAT and self-assessment checklists available at
 http://water.epa.gov/infrastructure/sustain/energy_use.cfm
 http://www.epa.gov/region9/waterinfrastructure/audit.html
- Conduct a Level II or III energy audit at your facility
- Initiate an energy management program to implement audit recommendations

Resources for Funding Audits

- Add energy audit to your next capital improvement project grant/loan/bond (or amend scope of existing project)
- Your utility operations budget
- State Revolving Fund Programs (Clean Water and Drinking Water)
- USDA Rural Development
- US Bureau of Reclamation's WaterSMART Program
- Your energy provider
- Additional opportunities can be found at -<u>http://www.epa.gov/region9/waterinfrastructure</u> (Funding tab)
 <u>http://water.epa.gov/infrastructure/sustain/energy_use.cfm</u>

Water Efficiency for Energy Savings

- Water Utilities Keep in mind substantial energy benefits can be realized by reducing the real losses in your water system
- AWWA's Free Water Audit Software is a widelyused and effective tool to help you identify costeffective water savings opportunities

Questions

Contact Information

- Jim Horne, EPA Office of Wastewater Management
 - horne.james@epa.gov (202) 564-0571
- Jason Turgeon, EPA Region 1
 - <u>turgeon.jason@epa.gov</u> (617) 918-1637
- Eric Byous, EPA Region 9
 - byous.eric@epa.gov (415) 972-3531