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CHAPTER 1  |  INTRODUCTION 

Section 812 of the Clean Air Act Amendments of 1990 (CAAA) established a 
requirement that the U.S. Environmental Protection Agency (EPA) develop periodic 
reports that estimate the benefits and costs of the Clean Air Act (CAA).  The first analysis 
conducted was a retrospective analysis, addressing the original CAA and covering the 
period 1970 to 1990.  The retrospective analysis was completed in 1997.  The second 
Section 812 report was completed in 1999 and addressed the incremental costs and 
benefits of the CAAA.  This first prospective analysis covered implementation of the 
CAAA over the period 1990 to 2010. 

EPA’s Office of Air and Radiation (OAR) began work on the second prospective with the 
drafting of an analytical plan for the study.  This analytical plan was reviewed by a 
statutorily-mandated outside peer review group, the Advisory Council for Clean Air 
Compliance Analysis (Council), and the Council provided comments, which have been 
incorporated into the technical analysis planning.  This report explores and provides some 
perspective on uncertainties associated with the benefits and costs estimated for the 
second prospective section 812 analysis. 

1.1 PURPOSE AND SCOPE 

The second prospective analysis of the CAA provides a comprehensive economic 
analysis of air regulations using the best available methods and data.  Nonetheless, as 
with any complex policy analysis, the costs and benefits generated by this analysis 
are estimated with uncertainty.  This uncertainty reflects an array of issues: data and 
model limitations, measurement error, and the various modeling assumptions and 
choices necessary to implement such a sophisticated and large-scale analysis.  The 
identification and appropriate characterization of these uncertainties is an integral 
part of the second prospective analysis because it provides appropriate context for the 
results, highlights key limitations of the current analysis, and helps readers to 
understand the potential impact of alternative analytical choices on benefits and costs. 

This uncertainty analysis reflects some significant new efforts on the part of EPA to more 
rigorously investigate and in some cases quantify an array of factors that contribute to 
uncertainty.  Most of these analyses focus on key uncertainties in the estimation and 
monetization of avoided mortality benefits, which is appropriate given they represent a 
majority of the monetized benefits estimates associated with the CAAA.  These analyses 
include a more expansive analysis of particulate matter (PM)-mortality concentration-
response (C-R), alternative means of modeling mortality risk changes and how they are 
realized over time, and the sensitivity of monetized benefits to the choice of alternative 
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distributions for the metric used to value avoided mortalities, the value of statistical life 
(VSL).  This study also includes updated assessments of uncertainties in the “upstream” 
analytical elements of emission estimation and air quality modeling, an analysis of 
uncertainties in visibility benefits of the CAAA, and targeted cost uncertainty analyses 
addressing the impacts of key analytical assumptions on cost projections.   

Conducting a comprehensive uncertainty analysis for a national-scale study with a scope 
as expansive as the Section 812 Benefit-Cost Analysis is a challenging task.  The 
complexity of the air quality modeling system used in the analysis, and the time and 
resources needed to run it, make it impractical to employ simulation techniques that use 
statistical sampling to analyze the impact of upstream uncertainties in emissions and air 
quality modeling inputs on the criteria pollutant concentration outputs.  Both the National 
Research Council (NRC) in its 2002 report evaluating EPA’s air quality benefits analysis 
procedures and the EPA Science Advisory Board’s Advisory Council on Clean Air 
Compliance Analysis (the Council) in numerous advisories have encouraged more 
comprehensive analysis of uncertainties in benefits analyses for air quality regulations.1  
While the NRC report presents ambitious and laudable long-tem goals for Agency 
analysis, the data and methodologies required to meet many of these goals are not 
available for application in the current 812 analysis.   

To make progress toward improved treatment of analytical uncertainty, the 812 Project 
Team (the Project Team) pursued a more incremental strategy in the second 812 
prospective, guided by four objectives that we shared with the Council in 2007: 

 Identify reasonable incremental advances in uncertainty analysis suitable for 
application within a complex national-scale study; 

 Conduct sensitivity analyses that provide policy-relevant insights concerning 
impacts of alternative assumptions on benefit and cost estimates for the CAA; 

 Where appropriate, incorporate EPA’s latest tools and data for uncertainty 
analysis (e.g. the PM mortality expert elicitation, EPA’s Response Surface Model 
(RSM) for PM); and 

 Enhance presentation of results and uncertainty through the use of graphics to 
complement tabular summaries.  

Before providing an overview of the Project Team’s approach to uncertainty analysis, we 
review the approach taken in the First Prospective Study.  

                                                      
1 National Research Council (2002). Estimating the Public Health Benefits of Proposed Air Pollution Regulations. National 

Academies Press, Washington ,D.C. 
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1.2 OVERVIEW OF UNCERTAINTY ANALYSIS  APPROACH IN THE FIRST PROSPECTIVE 

EPA made use of four methods for characterizing uncertainty in the first prospective: 
probabilistic modeling; sensitivity tests; alternative paradigms; and qualitative 
characterizations. 

1.2.1  PROBABIL ISTIC MODELING 

In the first prospective, the Project Team used probabilistic analysis to model uncertainty 
in the human health effects of criteria pollutants and in the economic valuation of human 
health effects.  For example, the VSL input was based on analysis of results of 26 
mortality risk valuation studies.  In order to characterize uncertainty in this important 
input parameter, we used the "discrete distribution of the best available estimates [i.e., the 
26 studies] as a basis for quantitatively characterizing the probability of alternative 
values."   

The probabilistic approach in the first prospective was limited in scope to those portions 
of the analysis where the Project Team could readily generate probabilistic 
characterizations of uncertainty - this included the C-R and valuation steps.  In addition, 
the quantitative characterizations largely reflected measurement uncertainty and cross-
study variability in those steps, and did not extend to model or paradigm uncertainty.  The 
scope of the quantitative results also did not include quantitative characterizations of 
uncertainty in emissions, air quality modeling, or cost estimates.     

1.2.2  ALTERNATIVE PARADIGMS 

The Project Team used the alternative paradigms approach in the first prospective to 
examine the impact of several key methodological choices, including: the choice to use a 
statistical life approach, rather than a statistical life years approach, to estimate the 
economic benefits of reduced mortality; the choice of a single study to characterize the 
relationship between PM exposure and premature mortality; and the choice to omit 
several quantifiable but less well-supported categories of environmental benefits (e.g., 
residential visibility).  Ideally, we would have liked to examine these model choices using 
some sort of probabilistic analysis.  Short of an expert elicitation approach, however, we 
found no reliable means to assess the relative likelihood of these model choices being 
“correct.”  As a result, the direction and magnitude of the uncertainty in these model 
choices was considered by examining the effects of employing alternative paradigms or 
models.  

1.2.3  SENSITIVITY TESTS 

The Project Team applied sensitivity analysis in a number of different sections of the first 
prospective.  One of the most prominent examples was in the cost estimates, where 
sensitivity analysis was used to evaluate the effect of altering certain key input 
parameters.  Sensitivity tests were used to examine the impact of key assumptions and 
data limitations on estimates of direct costs of six major cost-driving provisions, and 
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qualitative characterizations were used to examine the potential impact of other factors on 
the overall uncertainty in cost estimates. The six provisions were: California 
Reformulated Gasoline, PM National Ambient Air Quality Standards (NAAQS) controls, 
the Low Emissions Vehicle (LEV) program (the National and California programs 
combined), Non-utility Stationary Source NOx controls, and the Tailpipe/Extended 
Useful Life standard.  In each of these sections, we found it difficult to assign a 
quantitative distribution to some of the input parameters, in part because resource and 
time limitations precluded even informal expert elicitation of variability and uncertainty.   
Although this approach enabled us to characterize some of the important but uncertain 
inputs to the cost estimates, it did not allow us to describe either the likelihood of 
obtaining a given result or the probability distribution of results.   

Sensitivity tests were also used to examine the effect of different assumptions regarding 
the discount rate.  The analysis found that changes in the discount rate had only a small 
effect on annual cost and benefit estimates.  Although changes in the discount rate had a 
larger effect on the net present value calculations, and a substantial effect on the Title VI 
results, the study's central conclusion that the benefits of the CAA exceed its costs 
remained robust to alternative discount rate assumptions.    

Sensitivity analyses were also conducted to evaluate the potential effect of a threshold in 
the PM-mortality relationship, and the effect of introducing a new procedure for 
estimating changes in willingness-to-pay (WTP) as individual real income changes over 
time.  Both of these sensitivity tests were confined to appendices in the First Prospective.  
The income elasticity adjustment, however, is now standard practice for primary benefits 
estimation throughout the Agency, with sensitivity analyses using alternative estimates of 
the income elasticity also being conducted in many of the Agency’s benefits analyses.  

1.2.4  QUALITATIVE APPROACHES 

Qualitative approaches to characterizing uncertainty were used in virtually every 
component of the first prospective, in an effort to be comprehensive in the identification 
of sources of uncertainty.  They were used in the summaries of uncertainty in the cost 
analysis to examine the uncertainty associated with learning curves and tax-interaction 
effects and also to examine uncertainty regarding model specification.   In addition, 
qualitative tables were used extensively in the benefits analysis.  For example, while it 
was impractical to quantitatively model uncertainty in the emissions estimation and air 
quality modeling components of the analysis, several specific uncertainties in these steps 
were assessed qualitatively, with estimates of the direction and magnitude of the 
uncertainty (e.g., the effect of incomplete characterizations of direct PM and precursor 
emissions composition).  Qualitative tables were also used in the first prospective to 
characterize uncertainty in the valuation of ecological benefits.  Appendix A presents the 
qualitative uncertainty summary tables from the first prospective Report to Congress. 
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1.3 OVERVIEW OF UNCERTAINTY ANALYSIS  PLAN FOR SECOND PROSPECTIVE 

Exhibit 1-1 illustrates the Project Team’s approach to uncertainty analysis in the second 
prospective Section 812 study. The grey box represents the extent of uncertainty analysis 
in the first section 812 prospective analysis.  As noted above the modifications employed 
in the current analysis included both “online” analyses (shown in color), that feed 
information on uncertainty into the analytical chain at various points and propagate it 
through the remaining steps in the chain, and separate “offline” analyses and research that 
will provide insights into the uncertainty, sensitivity, and robustness of results to 
alternative assumptions that are currently most easily modeled outside the main analytical 
process.     

The online analyses consist of the selection of alternative inputs for mortality C-R and 
valuation in BenMAP, as well as a “modified” online analysis of the effect on benefits of 
sector specific, marginal changes in PM-related emissions from the core scenarios.  This 
modified online analysis substitutes EPA’s RSM for CMAQ, a less resource intensive 
meta-model of CMAQ used to rapidly approximate PM concentrations. 

The bottom box in Exhibit 1-1 lists additional offline research and analysis that we 
incorporated into the current 812 study, and Exhibit 1-2 provides additional information 
on each analysis.  As with the online analyses, these analyses were chosen because they 
address uncertainty in key analytical elements or choices that may significantly influence 
benefit or cost estimates.  Also, as in the first prospective, each analytical element 
(starting with emissions profile development) features a comprehensive qualitative 
evaluation of key uncertainties, presented in Appendix C of this report.  

1.4 RELATIONSHIP OF THIS DOCUMENT TO OTHER SECOND PROSPECTIVE ANALYSES 

This report describes the analyses conducted by the Project Team to assess and 
characterize uncertainty in the estimated benefits and costs of the CAAA presented in the 
full integrated report.  The analyses are designed to assess these uncertainties typically by 
re-running benefit or cost analyses, changing specific model parameters, employing 
alternative scenarios or varying key assumptions, and even substituting alternative 
models.  As such, the benefit and cost estimates presented in this report rely on results 
generated in prior analytic components of the second prospective study.  As illustrated in 
Exhibit 1-1, EPA conducted both emissions estimation and air quality modeling analyses 
to generate data that underlies the benefits estimation approaches.  EPA plans to make 
full reports on each of these major analytic steps available to the public online at the 
project website, www.epa.gov/oar/sect812.     

The results presented in this report do not represent EPA’s primary benefits or costs, 
except where such results are presented (and identified as such) for the purposes of 
comparison to alternative estimates.  EPA’s primary benefits estimates are based on 
EPA’s preferred set of analytic assumptions, models, and data sources, many of which 
have been explicitly reviewed by the Council over the course of many years and have 
been embodied in standard benefits estimation practice as carried out by EPA’s Office of 
Air and Radiation in Regulatory Impact Analyses. Details surrounding the methods used 
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to derive the primary benefit and costs results are described in separate reports, Benefits 
Analyses to Support the Second Section 812 Prospective Benefit-Cost Analysis of the 
Clean Air Act, and Cost Analyses to Support the Second Section 812 Prospective Benefit-
Cost Analysis of the Clean Air Act.   

EXHIBIT 1-1.  UNCERTAINTY ANALYSIS  PLAN FOR SECOND PROSPECTIVE SECTION 812 BENEFIT 

COST ANALYSIS  OF THE CLEAN AIR ACT AMENDMENTS OF 1990 
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EXHIBIT 1-2.   "OFFLINE" UNCERTAINTY ANALYSES 

ISSUE APPROACH 

ANALYTICAL 

ELEMENTS 

AFFECTED OUTPUT 

Emissions/Air 
Quality Parameter 
Uncertainty 

Identification of key factors 
through extensive literature 
review 

Emissions and air 
quality modeling 

Characterization of current state 
of knowledge concerning 
uncertainty assessment for large-
scale air quality modeling 
applications. 

Emissions 
Scenario 
Uncertainty 

Model effects on benefits of 
incremental changes to emissions 
from individual emissions sectors. 

Benefits side 
elements (PM 
only) 

Dollar per ton estimates of 
marginal benefits from 
incremental changes in each of 
the major emitting sectors in 2010 
and 2020. 

Emissions 
Scenario 
Uncertainty 

Examine effects of alternative 
modeling of emissions in 2000 
from EGU sources. Use continuous 
emissions monitoring (CEM) data 
instead of IPM results, coupled 
with alternative counterfactual 
consistent with CEM approach. 

Benefits side 
elements (PM 
only) 

Alternative year 2000 benefit 
results for comparison with output 
from IPM-based results from main 
analysis. 

Benefits 
“Cessation Lag” 

As a post-processing step to  
BenMAP, apply alternative 
approaches to describe  how 
mortality risk in a population 
changes over time following a 
reduction in air pollution, as the 
population moves from its initial 
steady-state risk level to its new 
level (all other factors being held 
constant). 

Benefits side 
elements (PM  
mortality only) 

Alternative net present value 
results for avoided premature 
mortality due to PM reductions in 
2000, 2010, and 2020. 

Dynamic 
Population 
Modeling 

Evaluate the impact of estimating 
benefits using a dynamic rather 
than static population modeling 
approach, by applying a life-table 
based air quality risk assessment 
tool.  

Benefits side 
elements (PM  
mortality only) 

Changes in numbers of deaths per 
year, life years gained, and 
changes in period conditional life 
expectancy due to PM reductions 
in 2000, 2010, and 2020. 

Differential 
Toxicity of PM 
Components 

Review of feasibility and policy 
relevance of potential notional 
analysis of evidence-based 
alternative assumptions 
concerning the relative toxicity of 
major PM components. 

Benefits side 
elements (PM  
mortality only) 

Review concluded that available 
data do not support a policy 
relevant notional analysis at this 
time. 

Unidentified 
Controls 

Develop cost estimates using 
alternative assumptions about the 
threshold for, and cost of, 
applying unidentified local 
controls to achieve NAAQS 
compliance. 

Direct Costs 

Alternative direct cost estimates 
for each target year reflecting 
sensitivity of costs to these 
assumptions. 
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ISSUE APPROACH 

ANALYTICAL 

ELEMENTS 

AFFECTED OUTPUT 

Fleet Composition 
and I&M Failure 
Rates 

Develop cost estimates for mobile 
source sector using alternative 
assumptions about 1) future fleet 
composition and fuel efficiency; 
and 2) alternative failure rates for 
I&M program testing. 

Direct Costs 

Alternative direct cost estimates 
for each target year reflecting 
sensitivity of costs to these 
assumptions. 

Learning Curve 
Assumptions 

Develop cost estimates using 
alternative assumptions about the 
degree to which learning effects 
reduce costs of pollution control 
over time, focusing on industries 
lacking published learning effect 
estimates in the peer-reviewed 
literature.  

Direct Costs 

Alternative direct cost estimates 
for each target year reflecting 
sensitivity of costs to these 
assumptions. 

Unquantified 
Uncertainties 

Comprehensive qualitative 
uncertainty analysis All 

Summary tables describing key 
uncertainties and the size and 
direction of their likely impact on 
results (if known). 

 

The Agency has prepared an integrated report for the entire project.2  The integrated 
report addresses each of the major analytic components, and presents comparisons of 
benefits and costs for each of the target years. It also integrates the implications of 
uncertainty analyses that characterize confidence in these results. 

1.5 ORGANIZATION OF DOCUMENT 

The remainder of the document is split into eight chapters:   

 Chapter 2:  Direct Cost-Related Uncertainty – This chapter explores the 
uncertainty surrounding key inputs to the direct cost estimates, including local 
controls, composition of motor vehicle sales and fleet fuel efficiency, inspection 
failure rates and learning rates.   

 Chapter 3:  Emissions and Air Quality Modeling Uncertainty – This chapter 
describes our analysis of uncertainty in emissions estimates and air quality 
modeling.  This includes sensitivity analyses of the emitting sector and 
characterizing model uncertainty in the EGU sector emissions estimation 
approach. 

 Chapter 4:  Concentration-Response Function Uncertainty – This chapter 
provides estimates of CAAA-related avoided deaths resulting from application of 
alternative C-R functions for both PM and ozone. 

                                                      

2 U.S. Environmental Protection Agency (2011). The Benefits and Costs of the Clean Air Act from 1990 to 2020. Final Report, 

March 2011. Office of Air and Radiation.  
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 Chapter 5:  Differential Toxicity of PM Components – This chapter provides 
our assessment of potential approaches to account for differential toxicity of PM 
components. 

 Chapter 6:  Particulate Matter/Mortality Cessation Lag – This chapter 
explores uncertainty in the assumption of the cessation lag between CAAA-
related PM exposure changes and the resulting avoided mortality. 

 Chapter 7:  Dynamic Population Modeling – This chapter provides a 
comparison between the benefits results from BenMAP, which does not take into 
account previous air pollution changes, and a dynamic population simulation 
model which tracks the effects of air pollution changes in the U.S. population 
over time. 

 Chapter 8:  Valuation Uncertainty – This chapter describes our analysis of 
uncertainty in monetary valuation of benefits, including a presentation of 
estimates resulting from different assumptions of VSL and discount rates. 

 Chapter 9: Conclusions – This chapter provides our overall conclusions about 
the uncertainty analyses presented in the report. 
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CHAPTER 2  |  DIRECT COST-RELATED UNCERTAINTY 

2.1 INTRODUCTION 

Most of this document addresses uncertainties in the benefits of the 1990 Clean Air Act 
Amendments (CAAA).  The Project Team also assessed various uncertainties associated 
with the costs of the Amendments.  The key uncertainties that we examined include the 
following: 

 Local Controls: As indicated in Chapter 7 of the Second Prospective Cost 
Report, the Project Team used a cost cap of $15,000 per ton to estimate the costs 
of identified local controls and also applied a cost of $15,000 per ton to 
unidentified controls. To assess the sensitivity of the local controls analysis to 
changes in these values, we estimated the costs of local controls based on a 
$10,000 per ton cost cap for identified controls and a $10,000 per ton cost for 
unidentified controls. 

 Composition of Motor Vehicle Sales and Fleet Fuel Efficiency: In Chapter 3 of 
the Second Prospective Cost Report, the 812 Project Team estimated CAAA-
related costs for the on-road sector based on projections of vehicle sales and fuel 
consumption derived from the Department of Energy’s (DOE’s) Annual Energy 
Outlook 2005 (AEO 2005).  To examine the sensitivity of the Project Team’s on-
road sector cost estimates to alternative assumptions about the composition of 
light-duty vehicle sales and the fuel economy of the light-duty vehicle fleet, we 
developed alternative cost estimates based on AEO 2008, which contains more 
up-to-date projections of both these variables. 

 Inspection Failure Rates: To estimate the repair costs associated with vehicle 
inspection and maintenance (I&M) programs mandated by the CAAA, the 
Project Team used failure rate estimates derived from 2003 and 2004 Wisconsin 
I&M program data.  A 2001 National Research Council (NRC) report on I&M 
programs, however, presents failure rates much lower than those suggested by the 
Wisconsin data.3  As a sensitivity analysis, we estimated the total costs of I&M 
programs using failure rates derived from the NRC report. 

 Learning Rates: Throughout the Second Prospective Cost Report, the Project 
Team used a series of “learning rates” to capture the extent to which costs decline 

                                                      
3 Committee on Vehicle Emission Inspection and Maintenance Programs, Board on Environmental Studies and Toxicology, 

Transportation Research Board, National Research Council, Evaluating Vehicle Emissions Inspection and Maintenance 

Programs. 2001. 
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as firms gain experience with air pollution control technologies.  The learning 
rate for a technology represents the percentage reduction in costs associated with 
each doubling in the cumulative production of that technology.  Where possible, 
the Project Team used published estimates of technology- or industry-specific 
learning rates.  For sectors and control technologies for which no empirical 
estimates of the learning rate were readily available, the Project Team employed 
a default learning rate of 10 percent based on advice provided by the EPA 
Science Advisory Board’s Advisory Council on Clean Air Compliance Analysis.4  
To assess the extent to which this default rate influences the results of the cost 
analysis, we estimated the costs of the Amendments using alternative default 
learning rates of 5 and 20 percent. 

2.2 METHODS 

In the following four sections, we present our approach for analyzing each of the 
uncertainties described above. 

2.2.1  LOCAL CONTROLS ANALYSIS  

As indicated above, the Project Team’s analysis of local controls assumed a $15,000 per 
ton cost cap for identified controls (i.e., the analysis assumed that local air quality 
managers would not require the implementation of controls costing more than $15,000 
per ton of emissions controlled).5  In addition, in areas where these identifiable control 
measures would be insufficient for attainment with the 8-hour ozone National Ambient 
Air Quality Standards (NAAQS), the Project Team assumed a fixed cost of $15,000 per 
ton for unidentified volatile organic compound (VOC) and nitrogen oxide (NOx) controls.  
To assess the sensitivity of the local controls cost analysis to an alternative cost cap and 
an alternative fixed cost per ton for unidentified controls, we estimated the total cost of 
local controls based on a cost cap of $10,000 per ton for identified controls and a fixed 
cost of $10,000 per ton for unidentified measures. 

2.2.2  COMPOSITION OF MOTOR VEHICLE SALES AND FLEET FUEL EFFICIENCY 

The Project Team’s analysis of the costs associated with motor vehicle tailpipe and fuel 
rules is based on sales and fuel efficiency projections from the 2005 version of DOE’s 
Annual Energy Outlook.  Since the release of AEO 2005, however, fuel prices have been 
more volatile than in previous years, leading many consumers to shift to more fuel 
efficient vehicles, and the Department of Transportation revised the Federal Corporate 
Average Fuel Economy (CAFE) standards.  Given these developments, AEO 2008 
projects that passenger cars will make up a greater portion of light-duty vehicle sales in 
2010 and 2020 than is projected by AEO 2005.  AEO 2008 also assumes that the light-

                                                      
4 U.S. Environmental Protection Agency Science Advisory Board, EPA-SAB-COUNCIL-ADV-07-002, "Benefits and Costs of Clean 

Air Act – Direct Costs and Uncertainty Analysis", Advisory Letter, June 8, 2007.  Available at 

http://www.epa.gov/sab/pdf/council-07-002.pdf. 

5 E.H. Pechan & Associates, Inc. and Industrial Economics, Inc., Direct Cost Estimates for the Clean Air Act Second Section 

812 Prospective Analysis: Draft Report, prepared for U.S. EPA, Office of Air and Radiation, October 31, 2008. 
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duty vehicle fleet will be more fuel efficient relative to the projections in AEO 2005.  As 
indicated in Exhibit 2-1, AEO 2008 estimates that the light-duty vehicle fleet in 2020 will 
be nearly 15 percent more fuel efficient than was projected by AEO 2005.  In addition, 
whereas sales projections derived from AEO 2005 suggest that passenger cars will make 
up 42 percent of light-duty vehicle sales in 2020, AEO 2008 suggests that passenger cars 
will represent 49 percent of light-duty vehicle sales in 2020.6 

EXHIBIT 2-1.  L IGHT DUTY VEHICLE FUEL EFFICIENCY, CAR SALES,  AND TRUCK SALES FOR 2010 

AND 2020 BASED ON AEO 2005 AND AEO 2008 

 

AEO 2005 (PRIMARY 

ESTIMATES)A 

AEO 2008 

(ALTERNATIVE 

ESTIMATES)B 

FLEET AVERAGE VEHICLE FUEL EFFICIENCY (MPG) 

     2010 20.14 20.30 
     2020 20.73 23.75 

2010 LIGHT-DUTY VEHICLE SALES (THOUSANDS) 

     Passenger Cars 8,417 8,542 
     Light-Duty Trucks 8,172 8,046 

2020 LIGHT-DUTY VEHICLE SALES (THOUSANDS) 

     Passenger Cars 7,377 8,548 
     Light-Duty Trucks 10,106 8,935 
Sources: 
a.  Light-duty vehicle fuel efficiency values obtained from Table 47 of AEO 2005.  Light-duty 
vehicle sales values derived from the sales data presented in Table 45 of AEO 2005 using the 
methodology described in Chapter 3 of E.H. Pechan & Associates, Inc. and Industrial 
Economics, Inc., Direct Cost Estimates for the Clean Air Act Second Section 812 Prospective 
Analysis: Draft Report, prepared for U.S. EPA, Office of Air and Radiation, October 31, 2008. 
b.  Light-duty vehicle fuel efficiency values obtained from Table 49 of AEO 2008.  Sales 
estimates for passenger cars and light-duty trucks based on the primary (AEO 2005-based) 
estimate of total light-duty vehicle sales, re-distributed between passenger cars and light-duty 
trucks based on the distribution of sales between these vehicle categories presented in Table 
47 of AEO 2008.  

 

To assess the extent to which the Project Team’s cost estimates for the on-road sector 
would change under the alternative AEO 2008 assumptions, we estimated the cost of 
motor vehicle tailpipe and fuel rules for both the 2010 and 2020 target years based on the 
AEO 2008 data.   

                                                      
6 It is important to note that Exhibit 2-3 does not present the sales estimates reported in AEO 2008.  Because our goal is to 

examine the sensitivity of the cost analysis to the composition of light-duty vehicle sales rather than to the total number of 

vehicles sold, we use the AEO 2008 data to estimate the distribution of light-duty vehicle sales between passenger cars and 

light-duty trucks.  We then apply this distribution to the total light-duty vehicle sales estimates derived from AEO 2005. 
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2.2.3  VEHICLE INSPECTION FAILURE RATE 

In the Second Prospective Cost Report, the Project Team’s estimates of the repair costs 
associated with motor vehicle I&M programs employed program- and year-specific 
inspection failure rates derived from 2003 and 2004 data for Wisconsin I&M programs.  
The Wisconsin data suggested that the failure rate associated with annual dynamometer-
based I&M programs is 14 percent, and the Project Team used this rate to derive failure 
rates for annual idle, biennial idle, and biennial dynamometer-based I&M programs.  In 
its June 2007 review of the Draft Direct Cost Report, the Science Advisory Board 
Advisory Council on Clean Air Compliance Analysis (the Council) noted that a 2001 
NRC report referenced a failure rate of 2.1 percent for annual dynamometer-based 
programs, which is approximately one-seventh the value derived from the Wisconsin 
data.7    

To assess the sensitivity of the I&M cost analysis to the assumed failure rate for annual 
dynamometer-based programs, we developed alternative cost estimates for CAAA-
mandated I&M programs based on the failure rate reported by the NRC.  Because the 
Project Team used the estimated failure rate for annual dynamometer-based programs as 
a basis for estimating the failure rates for annual idle, biennial idle, and biennial 
dynamometer-based I&M programs, an initial step in this sensitivity analysis was re-
estimation of the failure rates for these program types.  We generated these values using 
the same approach as employed in the Second Prospective Cost Report and the 2.1 
percent failure rate for annual dynamometer-based programs reported by the NRC.  
Exhibit 2-2 presents the adjusted failure rates for each program type and the 
corresponding values used in the Second Prospective Cost Report.   

2.2.4  DEFAULT LEARNING RATE 

In the Second Prospective Cost Report, the Project Team adjusted total program costs to 
account for “learning curve” impacts ( i.e., the extent to which the costs of a technology 
decline as experience with that technology increases over time).  Wherever possible, the 
Project Team employed technology- or industry-specific learning rates obtained from the 
literature.  Where industry-specific learning rates were not readily available, the Council 
advised the Project Team to employ a default learning rate of 5 to 10 percent.  Based on 
this advice, the Project Team applied a default rate of 10 percent to the following 
technologies: 

 Selective non-catalytic reduction at electric generating units (EGUs) (O&M costs 
only); 

 Activated carbon injection at EGUs; 

 
                                                      
7 Committee on Vehicle Emission Inspection and Maintenance Programs, Board on Environmental Studies and Toxicology, 

Transportation Research Board, National Research Council. Evaluating Vehicle Emissions Inspection and Maintenance 

Programs. 2001. 



Second Section 812 Prospective Analysis 
March 2011 

 

 

 

2-5

EXHIBIT 2-2.  SUMMARY OF PRIMARY AND ALTERNATIVE FAILURE RATES FOR MOTOR VEHICLE INSPECTION AND MAINTENANCE 

PROGRAMS  

PROGRAM 

FAILURE RATES (PERCENT) 

2000 2010 2020 

Primary Failure 
Rate Estimates 

(based on 
Wisconsin data) 

Alternative 
Failure Rate 

Estimates 
(based on NRC-
reported value) 

Primary Failure 
Rate Estimates 

(based on 
Wisconsin data) 

Alternative 
Failure Rate 

Estimates (based 
on NRC-reported 

value) 

Primary Failure 
Rate Estimates 

(based on 
Wisconsin data) 

Alternative 
Failure Rate 

Estimates (based 
on NRC-reported 

value) 

Annual Idle 7.00  1.05 13.09 1.96 14.00 2.10 
Biennial Idle 9.25 1.16 17.30 2.18 18.50 2.33 
Annual Dynamometer 14.00 2.10 14.00 2.10 14.00 2.10 
Biennial Dynamometer 18.50 2.33 18.50 2.33 18.50 2.33 
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 Motor vehicle fuel rules; 

 Non-road engine and fuel rules; 

 Non-EGU point source controls; 

 Nonpoint source controls; and 

 Local controls: EGU, non-EGU point source, and nonpoint source. 

We tested the sensitivity of the cost analysis to the choice of a default learning rate by re-
estimating the total costs of the Amendments using alternative default learning rates of 
five and 20 percent for the program areas listed above.  The five percent default rate 
represents the low end of the range recommended by the Council, while the 20 percent 
value represents the central tendency presented in the peer-reviewed literature for several 
technologies.8  For the program areas not listed above (i.e., those for which technology- 
or industry specific learning rates were available), we left cost estimates unchanged.   

2.2.5  OTHER UNCERTAINTIES 

In addition to the uncertainties outlined above, we identified several other areas of 
uncertainty related to the costs of the Amendments that we did not address quantitatively.  
These include the Project Team’s projections of economic activity, the impact of CAAA 
compliance on productivity, the influence of technological innovation on CAAA 
compliance costs, the impact of input substitution on the costs of complying with the 
Amendments and the effects of the CAAA on product quality. 

 Economic Activity Projections: The cost of the Amendments in 2010 and 2020 
will depend in large part on the future size and composition of the U.S. economy.  
If the AEO 2005 economic growth projections employed by the Project Team 
underestimate economic activity in 2010 and 2020, the Project Team most likely 
underestimated the costs of the Amendments.  Conversely, the Project Team may 
have overestimated CAAA compliance costs if AEO 2005 overestimates 
economic activity in 2010 and 2020.  In addition, to the extent that the 
composition of economic output in 2010 and 2020 deviates from the AEO 2005 
projections, the Project Team’s cost projections may not reflect the actual costs 
of the Amendments.  A priori, it is unclear whether the Project Team would have 
underestimated or overestimated costs under these circumstances.   

 Industrial Productivity: The Project Team’s cost estimates represent the direct 
costs of the Amendments (i.e., the expected expenditures of regulated facilities to 
comply with the Amendments).  Several peer-reviewed studies have suggested, 
however, that the direct costs of pollution control measures do not adequately 
represent the total costs of environmental protection, due to the effects of 

                                                      
8 For an analysis of the learning rates estimated in the empirical literature, see John M. Dutton and Annie Thomas, "Treating 

Progress Functions as a Managerial Opportunity," Academy of Management Review, Vol 9, No. 2, 1984. 
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pollution abatement on industrial productivity.9  Although the Project Team’s 
cost estimates do not capture these productivity effects, the literature is not clear 
on the magnitude and direction of these effects.  While some studies have found 
that pollution control negatively affects productivity, others have found that the 
productivity impact is positive or ambiguous.10  

 Technological Innovation: As indicated above, the Project Team’s cost estimates 
reflect the impact of learning (i.e., technological change) as it relates to existing 
control technologies.  The Amendments, however, could serve as in impetus for 
technological innovation in the development of new, low-cost technologies or 
processes to reduce emissions.  Because the Project Team did not attempt to 
model these technological innovations, the Second Prospective Cost Report may 
overestimate costs.  

 Input Substitution: To minimize the cost of complying with the Amendments, 
regulated facilities may alter the mix of inputs used in the production of goods 
and services.  With the exception of fuel switching by EGUs, the Project Team 
did not capture input substitution as a control strategy in the Second Prospective 
Cost Report.  Accordingly, the Project Team may overestimate the costs of the 
Amendments.  

 Effects of the CAAA on Product Quality: In addition to increasing the cost of 
producing goods and services, CAAA requirements may also affect product 
quality.  For example, motor vehicle emission control requirements may reduce 
the performance of automobiles, and changes in paint formulations (to reduce 
VOC emissions) may adversely affect how well paint adheres to unfinished 
surfaces.  On the other hand, changes in product quality may also have 
unquantified benefits – while we capture the fuel saving benefits of many motor 
vehicle engine changes, the benefits of low-VOC paint in improving indoor air 
quality and human health are not captured in our estimates.  As a result, product 
quality effects may reduce the welfare of households that consume products 
affected by the CAAA, or they may improve welfare.  Households that substitute 
to other products due to CAAA-related quality changes (e.g., households that 

                                                      
9 Barbera, A.J. and McConnell, V.D. (1986) “Effects of Pollution Control on Industry Productivity: A Factor Demand 

Approach.” The Journal of Industrial Economics. Vol. XXXV, 161-172.   

Barbera, A.J. and McConnell, V.D. (1990) “The Impact of Environmental Regulations on Industry Productivity: Direct and 

Indirect Effects.” Journal of Environmental Economics and Management. Vol. 18, 50-65. 

Gray, W.B. and Shadbegian, R.J. (1994) “Pollution Abatement Costs, Regulation, and Plant-Level Productivity.” Center for 

Economic Studies. 

Morgenstern, R.D., Pizer, W.A., and Shih, J-S. (1998) “The Cost of Environmental Protection.” Discussion Paper 98-36. 

Resources for the Future. 

10 Barbera and McConnell (1986) found a negative impact of pollution control on productivity, while Barbera and McConnell 

(1990) and Gray and Shadbegian (1994) found an ambiguous impact, and Morgenstern et al. (1998) found a positive impact. 
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substitute from automobiles to light-duty trucks due to CAAA requirements that 
affect the performance of automobiles more than light-duty trucks) may also 
experience welfare losses or gains, as they would have otherwise preferred the 
product(s) that they would have consumed in the absence of the CAAA but may, 
in the balance, experience previously unrecognized gains. 

2.3 RESULTS 

The following four sections present the results obtained using the analytic approach 
described above for the key cost-related uncertainties.  

2.3.1  LOCAL CONTROLS ANALYSIS  

The Project Team used a cost cap of $15,000 per ton to estimate the costs of identified 
local controls and also applied a cost of $15,000 per ton to unidentified controls. To 
assess the sensitivity of the local controls analysis to changes in these values, we 
estimated the costs of local controls based on a $10,000 per ton cost cap for identified 
controls and a $10,000 per ton cost for unidentified controls. As indicated in Exhibits 2-3 
and 2-4, this alternative approach yields lower cost estimates for both identified local 
controls and unidentified measures. The estimated costs of identified controls decline 
when the $10,000 cap is applied because controls that cost between $10,000 and $15,000 
per ton are assumed not to be implemented. In addition, although the application of the 
$10,000 cost cap increases the emissions reductions to be achieved through unidentified 
controls (relative to when the $15,000 cost cap is used), reducing the cost of unidentified 
controls to $10,000 per ton more than offsets the costs associated with these additional 
emissions reductions. 

EXHIBIT 2-3.  2010 LOCAL CONTROLS SENSIT IVITY ANALYSIS  

PROGRAM AND SECTOR 

2010:  $15,000/TON CAP 

AND $15,000/TON FOR 

UNIDENTIFIED CONTROLS 

(MILLION 1999$) 

2010:  $10,000/TON CAP 

AND $10,000/TON FOR 

UNIDENTIFIED CONTROLS 

(MILLION 1999$) 

Identified Controls  $4,564.7  $3,380.0  
     Ozone NAAQS  $3,729.6  $2,629.4  
     PM NAAQS  $835.1  $750.6  
Unidentified Controls  $7,581.5  $6,959  

Total Cost of Local 
Controls   $12,146.2  $10,339.0  

Notes: 
The cost estimates presented in this exhibit do not reflect the Project Team’s cost 
adjustments for learning curve effects.  As indicated in the Second Prospective Cost 
Report, these adjustments are not applied to unidentified controls and do not have a 
significant impact on the estimated cost of identified controls. 
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EXHIBIT 2-4.  2020 LOCAL CONTROLS SENSIT IVITY ANALYSIS  

PROGRAM AND SECTOR  

2020:  $15,000/TON CAP 

AND $15,000/TON FOR 

UNIDENTIFIED CONTROLS 

(MILLION 1999$) 

2020:  $10,000/TON CAP 

AND $10,000/TON FOR 

UNIDENTIFIED CONTROLS 

(MILLION 1999$) 

Identified Controls  $5,757.8  $4,387.2  
     Ozone NAAQS  $4,130.3  $2,849.2  
     PM NAAQS  $618.5  $541.6  
     CAVR  $1,009.0  $996.4  
Unidentified Controls  $11,368.7  $9,725  

Total Cost of Local 
Controls $17,126.5  $14,112.2  

Notes: 
The cost estimates presented in this exhibit do not reflect the Project Team’s cost 
adjustments for learning curve effects.  As indicated in the Second Prospective Cost 
Report, these adjustments are not applied to unidentified controls and do not have a 
significant impact on the estimated cost of identified controls. 

2.3.2  COMPOSITION OF MOTOR VEHICLE SALES AND FLEET FUEL EFFICIENCY 

To assess the extent to which cost estimates for the on-road sector would change under 
the alternative AEO 2008 assumptions, the Project Team estimated the cost of motor 
vehicle tailpipe and fuel rules for both the 2010 and 2020 target years based on the AEO 
2008 data.  As indicated in Exhibit 2-5, this would increase the estimated cost of motor 
vehicle tailpipe standards and reduce the estimated cost of motor vehicle fuel rules, with 
each effect more pronounced in 2020 than in 2010.  In proportional terms, these 
adjustments would have the most significant effect on the estimated cost of motor vehicle 
fuel rules in 2020, which would decline by 9 percent relative to the primary cost estimates 
presented in the Second Prospective Cost Report. Overall, however, the fuel efficiency 
and sales adjustments would not have a significant effect on the estimated costs of CAAA 
motor vehicle programs in aggregate.  Combined, the sales and fuel efficiency 
adjustments would reduce the estimated cost of these programs by 0.2 percent in 2010 
and by 3.6 percent in 2020.  
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EXHIBIT 2-5.  CAAA-RELATED ON-ROAD SECTOR COSTS BASED ON AEO 2005 AND AEO 2008 

ASSUMPTIONS  

PROGRAM 

TOTAL PROGRAM COSTS (MILLION 1999$) 

2010 2020 

PRIMARY 

ESTIMATE 

(BASED ON 

AEO 2005) 

ALTERNATIVE 

ESTIMATE 

(BASED ON 

AEO 2008) 

PERCENT 

DIFFERENCE 

PRIMARY 

ESTIMATE 

(BASED ON 

AEO 2005) 

ALTERNATIVE 

ESTIMATE 

(BASED ON 

AEO 2008) 

PERCENT 

DIFFERENCE 

Tailpipe Rules $8,137 $8,140 0.03% $8,282 $8,292 0.12% 

Fuel Rules $8,262 $8,216 -0.56% $9,375 $8,512 -9.20% 
Inspection and 
Maintenance (I/M) 
Rules $5,251 $5,251 0.00% $6,099 $6,099 0.00% 
Total On-road 
Sector Costs $21,650 $21,606 -0.20% $23,757 $22,904 -3.59% 

 

2.3.3  VEHICLE INSPECTION FAILURE RATE 

To assess the sensitivity of the I&M cost analysis to the assumed failure rate for annual 
dynamometer-based programs, the Project Team developed alternative cost estimates for 
CAAA-mandated I&M programs based on the failure rate reported by the NRC.  Exhibit 
2-6 shows the impact of the alternative failure rates on the estimated cost of CAAA-
related I&M programs.  As indicated in the exhibit, the estimated cost of these programs 
declines by more than 40 percent when the alternative failure rates are used in place of 
those supporting the Second Prospective Cost Report.   In addition, using these 
alternative values reduces total CAAA-related costs for the on-road sector by 11 to 14 
percent, depending on the target year.  This suggests that the cost estimates for the on-
road sector are fairly sensitive to the assumed failure rate for I&M programs, given the 
range of failure rates obtained from readily available data sources. 

2.3.4  DEFAULT LEARNING RATE 

The Project Team tested the sensitivity of the cost analysis to the choice of a default 
learning rate by re-estimating the total costs of the Amendments using alternative default 
learning rates of five and 20 percent for the program areas listed above.  Exhibit 2-7 
presents our estimates of total CAAA compliance costs, by sector, using the primary 
default learning rate of 10 percent and the alternate default learning rates of five and 20 
percent.  As indicated in the exhibit, the use of alternative default learning rates has only 
a small effect on the estimated costs of the Amendments.  The effect is most pronounced 
for the 2020 target year.  Using a five percent default learning rate in 2020 increases the 
estimated cost of the Amendments by 3.2 percent, while a 20 percent default learning rate 
reduces costs by six percent. 
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EXHIBIT 2-6.  CAAA-RELATED ON-ROAD SECTOR COSTS UNDER PRIMARY AND ALTERNATIVE FAILURE RATE ASSUMPTIONS 

PROGRAM 

TOTAL PROGRAM COSTS (MILLION 1999$) 

2000 2010 2020 

PRIMARY 

ESTIMATE 

ALTERNATE 

ESTIMATE 

PERCENT 

DIFFERENCE 

PRIMARY 

ESTIMATE 

ALTERNATE 

ESTIMATE 

PERCENT 

DIFFERENCE 

PRIMARY 

ESTIMATE 

ALTERNATE 

ESTIMATE 

PERCENT 

DIFFERENCE 

Tailpipe and Fuel Rules $8,219 $8,219 0.00% $16,399 $16,399 0.00% $17,657 $17,657 0.00% 
Inspection and Maintenance 
(I/M) Rules $3,888 $2,217 -42.97% $5,251 $2,801 -46.66% $6,099 $3,201 -47.52% 

Total On-road Sector Costs $12,107 $10,436 -13.80% $21,650 $19,200 -11.32% $23,757 $20,858 -12.20% 



Second Section 812 Prospective Analysis 
March 2011 

 

 2-12 

 

EXHIBIT 2-7. SENSITIVITY OF CAAA COMPLIANCE COST ESTIMATES TO ALTERNATIVE DEFAULT LEARNING RATES 

 

ANNUAL COST (MILLION 1999$) 

2000 2010 2020 

5% 

LEARNING 

RATE 

(ALTERNATE 

ESTIMATE) 

10% 

LEARNING 

RATE 

(PRIMARY 

ESTIMATE) 

20% 

LEARNING 

RATE 

(ALTERNATE 

ESTIMATE) 

5% 

LEARNING 

RATE 

(ALTERNATE 

ESTIMATE) 

10% 

LEARNING 

RATE 

(PRIMARY 

ESTIMATE) 

20% 

LEARNING 

RATE 

(ALTERNATE 

ESTIMATE) 

5% 

LEARNING 

RATE 

(ALTERNATE 

ESTIMATE) 

10% 

LEARNING 

RATE 

(PRIMARY 

ESTIMATE) 

20% 

LEARNING 

RATE 

(ALTERNATE 

ESTIMATE) 

Electric Utilities   $1,154  $1,154  $1,154 $5,583  $5,583  $5,583 $8,836  $8,772  $8,671 

On-road Vehicles and Fuels $12,458 $12,107  $11,462 $22,483 $21,650  $20,119 $24,692 $23,757  $22,039 
Non-road Engines and Fuels   $280  $250  $196 $520  $302  -$100 $1,292  $967  $369 
Non-EGU Point Sources   $2,561  $2,630  $2,787 $4,407  $4,356  $4,247 $4,448  $4,323  $4,070 
Nonpoint Sources   $529  $557  $624 $596  $582  $552 $691  $644  $553 

Local Controls   $0  $0  $0 $4,491  $4,415  $4,256 $5,475  $5,194  $4,638 

Sub-Total, Excl. Unidentified Measures   $16,981 $16,699 $16,223 $38,082 $36,888 $34,657 $45,434 $43,657 $40,340 

ADDITIONAL COSTS FOR UNIDENTIFIED CONTROLS FOR 8-HOUR OZONE COMPLIANCE   

Non-California areas   $0   $7,315   $7,137  

California areas   $0   $267   $4,232  
 TOTAL   $16,981 $16,698 $16,223 $45,664 $44,470 $42,239 $56,803 $55,025 $51,709 
Percent Difference from Primary Estimate 1.7% - -2.8% 2.7% - -5.0% 3.2% - -6.0% 
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CHAPTER 3  |  EMISSIONS AND AIR QUALITY MODELING 
UNCERTAINTY 

3.1  INTRODUCTION 

This chapter summarizes results from two quantitative sensitivity tests that characterize 
uncertainty in the emissions and air quality modeling steps of the second prospective 
analysis.   

 Sectoral emissions sensitivity analyses: These analyses are designed to explore 
the relative importance of the emitting sector in marginal benefits estimates, 
provide a sense of the shape of the marginal benefits curve around the point 
represented by the with-Clean Air Act Amendments (CAAA) scenario emissions 
inventory, and explore spatial variability in benefits estimates with respect to the 
emitting sector.  The approach adopted is to develop a standardized emissions 
increment for each of the five major emitting sectors (electric generating units 
(EGUs); non-EGU point sources; on-road vehicles; nonroad engines; and area 
sources), and run the alternative scenarios through a reduced form air quality 
modeling tool and EPA’s Environmental Benefits Mapping and Analysis Program 
(BenMAP) to estimate changes in benefit estimates. 

 EGU sector alternative emissions model:  This analysis estimates model 
uncertainty for the EGU sector emissions estimation approach, using an 
alternative emissions estimation approach described in Appendix B of the primary 
emissions report, Emission Projections for the Clean Air Act Second Section 812 
Prospective Analysis.  The analysis compares the benefits estimates using the 
Integrated Planning Model (IPM)-based emissions outputs with comparable 
estimates using Continuous Emissions Monitor (CEM) data and an alternative 
approach to estimating counter-factual scenario emissions. 

Note that, in addition to these quantitative analyses, IEc subcontractor Sonoma 
Technology, Inc (STI) conducted a three part literature review relating to the 
uncertainties in Integrated Air Quality Modeling Systems (IAQMSs).  The first part of 
this literature review looks at the source of uncertainty and methods for quantifying these 
uncertainties.  The second part looks at the literature relating to the evaluation and overall 
reliability of IAQMSs.  The third part discusses the uncertainties specifically relating to 
the IAQM used in the Second Prospective Analysis (i.e., the Community Multiscale Air 
Quality (CMAQ) modeling system).  This literature review can be found in its entirety in 
Appendix B.  The literature review is part of our overall suite of uncertainty analyses that 
inform characterization of the costs and benefits of CAAA programs. 
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3.2  DESCRIPTION OF ANALYTICAL TOOLS 

The main tools used to develop these analyses are EPA’s Particulate Matter Response 
Surface Model (PM RSM), a reduced form air quality estimation tool, and BenMAP.  PM 
RSM estimates air quality outcomes from emissions inputs, and BenMAP estimates 
health effects and economic benefits outcomes from air quality inputs.  The two tools are 
linked in our analyses to estimate the impact of uncertainties in emissions estimates. 

3.2.1 RESPONSE SURFACE MODEL  

The description of this tool is largely taken from EPA’s Technical Support Document for 
the Proposed PM NAAQS Rule: Response Surface Modeling.11  Response surface 
modeling provides a means to address the limitations of using complex air quality models 
for policy analysis.  Air quality models such as CMAQ typically require complicated 
emission inputs and processing, and the resources needed to conduct model runs can be 
substantial.  These requirements make such sophisticated models less well-suited for 
uncertainty analysis, where the analyst may want to conduct multiple model runs while 
varying key inputs or assumptions.  Response surface modeling builds reduced form 
modeling tools by using advanced statistical techniques to characterize, in a more 
parsimonious manner, the relationship between the outputs of a complex model and its 
input parameters.  The result is a more flexible, less resource intensive model of the 
original model (a “meta-model) that can be used as a reasonable proxy for conducting 
uncertainty analysis within the calibration range of the meta-model.  This analysis makes 
use of a PM RSM developed by EPA to estimate results from the CMAQ Modeling 
System.   

CMAQ is a three-dimensional regional grid-based air quality model designed to simulate 
particulate matter and ozone concentrations and deposition over large spatial scales (e.g., 
over the contiguous U.S.) over an extended period of time (e.g., up to a year).  The 
CMAQ model includes state-of-the-science capabilities for conducting urban to regional 
scale simulations of multiple air quality issues, including tropospheric ozone, fine 
particles, air toxics, acid deposition, and visibility degradation.  The PM RSM used in this 
analysis is based on air quality modeling using CMAQ version 4.4.   

Response surface models are typically developed using a limited number of runs of the 
complex model at a set of statistically selected points in the design space.  A total of 180 
CMAQ model runs, meant to cover a change in baseline precursor emissions of zero to 
120 percent, were conducted for development of the PM RSM.  The response-surface 
method uses statistical techniques to relate a response variable from these runs (in this 
case, PM2.5 concentration output from CMAQ) to a set of factors (in this case, PM2.5 
precursor pollutants from particular sources and locations).  To develop a response 
surface approximation for CMAQ, EPA used an interpolation approach, implemented 
through the MIXED procedure in SAS software.  The PM RSM models changes in PM2.5 

                                                      
11 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Technical Support Document for the 

Proposed PM NAAQS Rule: Response Surface Modeling. February 2006. 
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concentration at the grid cell level as a function of the weighted average of the modeled 
responses from the 180 CMAQ runs.  Weights were assigned based on the distance 
between the factor levels defining the policy to be predicted and the factors defining the 
CMAQ experimental run.   

The main purpose of the PM RSM is to demonstrate the impact on ambient PM2.5 
concentrations of reductions in PM2.5 precursor emissions from different sources.  EPA 
selected the precursor emission type and source combinations used as input factors into 
the model to provide maximum information for use in comparing relative effectiveness of 
different emission control strategies.  Emission input factors are expressed as a percent of 
a 2015 baseline scenario that includes the Clean Air Interstate Rule (CAIR), Clean Air 
Non-Road Diesel Rule, Heavy Duty Diesel Rule, Tier 2, and the NOx SIP Call.  EPA 
selected the following 12 emission input factors for use in the PM RSM; users of the PM 
RSM can adjust these at a local or regional scale: 

1) NOx EGU – Nitrogen oxide (NOx) emissions from EGU point sources 
forecast using the Integrated Planning Model (IPM); 

2) NOx Non-EGU and Area – NOx emissions from Non-EGU point sources 
forecast using IPM and from area sources, including agricultural sources; 

3) NOx Mobile – NOx emissions from non-road and on-road mobile sources; 

4) SOx EGU – Sulfur oxide (SOx) emissions from EGU point sources forecast 
using IPM; 

5) SOx Non-EGU – SOx emissions from Non-EGU point sources forecast using 
IPM; 

6) SOx Area – SOx emissions from area sources, including agricultural sources, 
and from non-road and on-road mobile sources12; 

7) NH3 Area – Ammonia (NH3) emissions from area source, including 
agricultural sources; 

8) NH3 Mobile – Ammonia emissions from non-road and on-road mobile 
sources; 

9) POC/PEC Point – Particulate organic carbon (POC) and Particulate elemental 
carbon (PEC) emissions from EGU and Non-EGU point sources forecast 
using IPM; 

10) POC/PEC Mobile – POC and PEC emissions from non-road and on-road 
mobile sources; 

11) POC/PEC Area – POC and PEC emissions from area sources, including 
agricultural sources; and 

                                                      
12 When it was developed by EPA this factor included only area-source emissions and mobile-source SOx emissions were not 

included as an emission input factor in the model.  Feeling that these emissions were significant, the Project Team elected 

to include them as part of this factor rather than leave them out of the model. 
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12) VOC All – Volatile organic carbon (VOC) emissions from EGU point 
sources, non-EGU point sources, area sources including agricultural sources, 
non-road and on-road mobile sources. 

The PM RSM includes an independent response surface for particular urban areas, as well 
as a generalized response surface for all other locations.  A rigorous area-of-influence 
analysis was conducted for selection of PM RSM urban locations to discern the degree of 
overlap between different urban areas in terms of air quality impacts, and to tease out 
local versus regional impacts.  The analysis concluded that ambient PM2.5 in each of the 
nine selected urban areas is largely independent of the precursor emissions in all other 
included urban areas.  The nine selected urban areas are New York/Philadelphia 
(combined), Chicago, Atlanta, Dallas, San Joaquin, Salt Lake City, Phoenix, Seattle, and 
Denver.   

Potential limitations of the PM RSM are that: 

 The PM RSM is designed to estimate PM2.5 concentrations resulting from changes 
in precursor emissions between zero and 120 percent of 2015 baseline emission 
levels.  The model has not been validated for accuracy outside of these bounds.  
The overall second prospective analysis does in many cases look at changes in 
precursor emission greater than 120 percent.  The Project Team limits changes to 
500 percent of the baseline to avoid straying too far outside the calibrated bounds 
of the PM RSM.  The 500 percent limitation was developed based on Project 
Team analysis of results and inspection of the marginal response curves for PM 
outcomes relative to each of the twelve emissions inputs. 

 The PM RSM is only capable of dealing with geographical differentiation of 
emission policies within the nine local areas.  In general, our analysis is focused 
on National-level emissions policy, but the emissions changes are not uniform at 
the county-level resolution of our emissions inventories.  Our sectoral emissions 
sensitivity analyses therefore focus on relative comparisons of uniform emissions 
changes, rather than absolute differences in PM RSM outcomes.   

One result of these limitations is that core scenario air quality and benefit results are very 
different for PM RSM and CMAQ.  For the same 2010 emissions scenarios, PM RSM 
results yield an estimated 31,000 avoided premature mortalities, while CMAQ results 
yield 102,000, a difference of more than three-fold.13  This large discrepancy in results is 
the main reason that our analyses focus mainly on relative comparisons of PM RSM runs, 
rather than hypotheses that depend on absolute air quality or benefits outcomes. 

                                                      

13 These avoided premature mortality estimates are based on the PM/mortality concentration-response (C-R) function from 

Pope et al. (2002).  The integrated report and the remainder of this report rely on an alternative C-R function (i.e., a 

Weibull distribution based on epidemiological evidence and expert elicitation results) that was recommended by the Council 

following the completion of this emissions uncertainty analysis.  Despite this discrepancy, we believe the relative results of 

this analysis compared across sectors provide useful insights. 
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3.2.2  BENMAP 

EPA’s BenMAP benefits modeling tool generates national-level estimates of avoided 
health effects due to changes in PM2.5 between a baseline scenario (i.e., air pollution 
levels in the absence of control regulations) and a control scenario (i.e., air pollution 
levels after a control regulation is put into place).  BenMAP applies health impact 
functions relating the change in PM2.5 concentration to the change in the incidence of a 
health endpoint, taking into consideration the baseline incidence rate of the health 
endpoint and the exposed population in the target year of the analysis.  BenMAP then 
applies valuation functions to estimate the economic benefits of the changes in the 
incidence of the health effect. 

The PM2.5 concentration output from CMAQ and PM RSM was used as input for 
BenMAP to generate health impacts and associated economic values for each emissions 
and air quality modeling scenario.  Exhibit 3-1 presents the 27 BenMAP runs undertaken 
for this analysis grouped by scenario type.  The PM RSM and/or CMAQ output for each 
scenario was converted into air quality grids that could be uploaded into BenMAP.  
Exhibit 3-1 also shows which scenario was used for the baseline and control scenarios in 
BenMAP.  The Project Team then ran BenMAP using incidence and pooling/aggregation 
configuration files patterned after those used in the PM National Ambient Air Quality 
Standards (NAAQS) Regulatory Impact Analysis (RIA).14  However, we did not 
incorporate a population-level threshold in the PM2.5 mortality impact functions from the 
Pope et al. (2002) and Laden et al. (2006) studies, as was done in that analysis.15,16 

3.3 METHODS FOR QUANTITATIVE EMISSIONS UNCERTAINTY ANALYSES 

The Project Team quantitatively analyzed uncertainty related to emissions by running 
various emissions scenarios through PM RSM and BenMAP and analyzing the results.  
We grouped these into three categories:   

 Core scenarios – with- and without-CAAA scenarios for the three target years 
(2000, 2010, and 2020).  These were essentially “control runs” to examine how 
PM RSM performed relative to the CMAQ. 

 Sector-specific emission scenarios – these scenarios were developed in an 
attempt to estimate changes in PM2.5 concentration and corresponding health 
benefits associated with small incremental changes in sector-specific emissions. 

                                                      
14 U.S. Environmental Protection Agency. (2006). Final Regulatory Impact Analysis: PM2.5 NAAQS. Office of Air and Radiation, 

Research Triangle Park, NC. 

15 Pope, C. A., R. T. Burnett, et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine 

particulate air pollution. Journal of the American Medical Association 287(9): 1132-1141. 

16 Laden, F., J. Schwartz, et al. (2006). Reduction in Fine Particulate Air Pollution and Mortality: Extended Follow-up of the 

Harvard Six Cities Study. American Journal of Respiratory and Critical Care Medicine 173: 667-672. 
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 Alternative EGU emission scenarios – these scenarios assess model uncertainty 
by evaluating benefits results for an alternative method of estimating EGU 
emissions. 

We describe each of these scenario categories in more detail below. 

EXHIBIT 3-1.  BENMAP RUNS FOR THE 812 UNCERTAINTY ANALYSIS  

BENMAP SCENARIO 

AIR QUALITY 

MODEL USED BASELINE SCENARIO CONTROL SCENARIO 

CORE SCENARIOS 

2000 CMAQ and PM RSM 2000 without CAAA 2000 with CAAA 
2010 CMAQ and PM RSM 2010 without CAAA 2010 with CAAA 
2020 CMAQ and PM RSM 2020 without CAAA 2020 with CAAA 

ALTERNATIVE EGU SCENARIOS 

2000 Alt EGU PM RSM 
2000 Ellerman 
Counterfactual 2000 CEM data 

SECTOR-SPECIFIC EMISSION SCENARIOS 

2010 EGU hi PM RSM 2010 with CAAA 2010 with CAAA, EGU hi 
2010 Non-EGU hi PM RSM 2010 with CAAA 2010 with CAAA, Non-EGU hi 
2010 Area hi PM RSM 2010 with CAAA 2010 with CAAA, Area hi 
2010 On-Road hi PM RSM 2010 with CAAA 2010 with CAAA, On-Road hi 
2010 Non-Road hi PM RSM 2010 with CAAA 2010 with CAAA, Non-Road hi 
2010 EGU lo PM RSM 2010 with CAAA 2010 with CAAA, EGU lo 
2010 Non-EGU lo PM RSM 2010 with CAAA 2010 with CAAA, Non-EGU lo 
2010 Area lo PM RSM 2010 with CAAA 2010 with CAAA, Area lo 
2010 On-Road lo PM RSM 2010 with CAAA 2010 with CAAA, On-Road lo 
2010 Non-Road lo PM RSM 2010 with CAAA 2010 with CAAA, Non-Road lo 
2020 EGU hi PM RSM 2020 with CAAA 2020 with CAAA, EGU hi 
2020 Non-EGU hi PM RSM 2020 with CAAA 2020 with CAAA, Non-EGU hi 
2020 Area hi PM RSM 2020 with CAAA 2020 with CAAA, Area hi 
2020 On-Road hi PM RSM 2020 with CAAA 2020 with CAAA, On-Road hi 
2020 Non-Road hi PM RSM 2020 with CAAA 2020 with CAAA, Non-Road hi 
2020 EGU lo PM RSM 2020 with CAAA 2020 with CAAA, EGU lo 
2020 Non-EGU lo PM RSM 2020 with CAAA 2020 with CAAA, Non-EGU lo 
2020 Area lo PM RSM 2020 with CAAA 2020 with CAAA, Area lo 
2020 On-Road lo PM RSM 2020 with CAAA 2020 with CAAA, On-Road lo 
2020 Non-Road lo PM RSM 2020 with CAAA 2020 with CAAA, Non-Road lo 

 

3.3.1  CORE SCENARIOS 

The Project Team generated six “core scenarios” representing the ambient PM2.5 
concentrations in three target years (2000, 2010, and 2020) under each of two scenarios (a 
“with-CAAA” scenario and a “without-CAAA” scenario).  The with-CAAA scenarios rely 
on emissions input data that reflects expected or likely future measures implemented 
since the 1990 CAAA.  The counterfactual without-CAAA scenarios utilize emission input 
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data that is derived by freezing the scope and stringency of emissions controls at their 
1990 levels, while allowing for growth in population and economic activity.  The core 
scenarios were also run through CMAQ and provide a base from which to compare the 
other scenarios used to gauge emission uncertainty.  The CMAQ results provide the basis 
for the primary benefits estimates generated for the study.  Because the PM RSM is much 
less resource-intensive to run, we use the PM RSM runs to evaluate a much broader range 
of alternative emissions outcomes.17 

3.3.2  SECTOR-SPECIFIC EMISS ION SCENARIOS 

The sector scenarios attempt to estimate changes in PM2.5 concentration and 
corresponding health benefits associated with small incremental changes in sector-
specific emissions both above and below the emissions estimates used in the 2010 and 
2020 core with-CAAA scenarios.  It was difficult to select a fixed amount to increase or 
decrease emissions within each sector because emission levels and pollutant mix vary 
greatly over the five emitting sectors.  For example, 2010 SOx emissions from non-road 
sources equal approximately 16,900 tons, while SOx emissions from EGU sources equal 
approximately 6,370,000 tons.  Because of this variation, incremental changes were 
determined as a percentage of sector-specific emissions.   

The Project Team determined that increasing/decreasing sector-specific emissions by ten 
percent results in changes large enough to impact PM2.5 concentrations for all sectors, yet 
small enough to be considered incremental.  The Project Team also determined that 
changes in precursor emissions should be limited to five times the 2015 baseline emission 
levels (i.e., limited factors to a value of five).18  As is described above, the PM RSM is 
designed to cover changes in the baseline precursor emissions between zero and 120 
percent.  EPA has not validated the model for changes outside these bounds and the 
Project Team has found that changes above 500 percent may lead to unexpected results. 

After determining how to calculate the incremental change, it was necessary to determine 
how to distribute the change over the local (Atlanta, Chicago, NYC/Philadelphia, Dallas, 
Denver, Salt Lake City, Phoenix, San Joaquin, and Seattle) and regional (East and West) 
PM RSM domains.  The most straightforward manner in which to distribute the 
incremental change is based on a local area or region’s share of the total sector-specific 
emissions.  For example, if the Atlanta area has 25 percent of the SOx EGU emissions in 
2010, then 25 percent of the incremental change in SOx EGU emissions was applied to 
the Atlanta area.   

                                                      
17 Note that the PM RSM was originally calibrated to CMAQ, but for a more limited range of emissions inputs than we 

ultimately need for the core comparison of the with-CAAA and without-CAAA scenario.  As a result, it remains limited in its 

ability to assess the emissions changes implied by the without-CAAA core scenarios, because the absolute emissions in those 

scenarios are outside the range of calibration for the tool.  As a result, in this chapter we rely on PM RSM only for those 

scenarios that most closely match its range of calibration. 

18 The Project Team initially analyzed scenarios that increased/decreased sector-specific emissions by 25 percent and limited 

emission input factor levels to ten times the 2015 baseline level (i.e., limited factors to a value of ten).  After conducting 

this analysis, we determined that a smaller percentage change could be used and that, in some cases, factors above five 

lead to unexpected results. 
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Applying the ten percent incremental change both above and below the emissions 
estimates used in the 2010 and 2020 core with-CAAA scenarios resulted in 20 sector 
scenario PM RSM runs (five sectors per scenario per year).  Exhibit 3-2 provides the 
resulting emissions changes for pollutant/sector combinations used to develop PM RSM 
inputs. 

EXHIBIT 3-2 10 PERCENT CHANGE IN  PRECURSOR EMISSIONS FROM WITH-CAAA  SCENARIO 

EMISSIONS LEVELS (TONS) 

SCENARIO VOC NOX SO2 NH3 POC AND PEC TOTAL 

2010 

EGU 4,266  243,722  636,546  82  3,096  890,809  

NonEGU 143,550  224,660  217,706  17,392  4,078  611,462  

Area 887,228  368,831  187,765  371,317  86,673  1,988,486  

OnRoad 261,401  434,906  2,995  33,442  8,236  749,216  

NonRoad 187,472  164,341  1,693  204  14,132  381,974  

2020 

EGU 4,699  198,646  427,013  56  4,313  639,040  

NonEGU 164,756  250,903  238,732  20,163  4,661  683,877  

Area 971,557  372,498  194,175  398,677  88,595  2,114,096  

OnRoad 167,062  191,584  3,646  39,532  5,732  413,288  

NonRoad 148,964  99,892  275  240  9,164  267,698  

 

3.3.3  ALTERNATIVE EGU EMISS ION SCENARIOS 

In response to differences between the spatial distribution of emissions as modeled by 
IPM and the actual spatial distribution from CEM data, and differences in modeled versus 
actual fuel and allowance prices for the historical (with-CAAA) case, the Project Team has 
developed an alternative approach for modeling the effect of the CAAA on the EGU 
sector in the year 2000.  The Project Team generated EGU point source emissions data 
for the with-CAAA scenario using continuous CEM data available on EPA’s Clean Air 
Markets website.19  We estimated EGU data for the without-CAAA scenario using an 
alternative counterfactual approach based on work done by Dr. A. Denny Ellerman of 
Massachusetts Institute of Technology.20  The data for all other emission sources (non-
EGU, on-road, non-road, and area) were held constant at levels consistent with the with-
CAAA 2000 core scenario level. 

                                                      
19 U.S. Environmental Protection Agency. Clean Air Markets – Data and Maps <http://camddataandmaps.epa.gov/gdm/> 

Accessed March 2009. 

20 Dr. A. Denny Ellerman’s approach relies on multiplying a “baseline” pre-Title IV emissions rate by 2001 CEM heat input 

observations for each electric generating unit. 
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3.4 RESULTS 

3.4.1  CORE SCENARIOS 

Exhibit 3-3 depicts the PM RSM results for each of the core scenarios.  The core scenario 
PM RSM results are presented here mainly for context, because the results of the with-
CAAA scenario are used as a baseline in evaluating the marginal effect of changes in 
emissions from major emitting sectors.   

The PM RSM results match the general trends in the emissions inputs, as follows: 

1. As expected, for each year in the analysis the without-CAAA scenario has higher 
PM2.5 concentrations than the with-CAAA scenario.   

2. Overall and on average PM2.5 concentrations gradually decrease over time for the 
with-CAAA scenarios and the without-CAAA scenarios.   

3. Over time, the gap between PM2.5 concentrations in the with-CAAA and without-
CAAA scenario widens.   

The PM RSM results also provide a reasonable approximation of the results based on 
CMAQ, a much more complex and highly resolved model.  There are nonetheless some 
important differences in the PM RSM and CMAQ results, as illustrated in Exhibit 3-4 for 
the target year 2010.21  First, the PM RSM with-CAAA results indicate higher PM 
concentrations than CMAQ.  This suggests that PM RSM may be somewhat less 
responsive to input changes than CMAQ, at least for our scenario.  Second, PM RSM 
shows lower PM concentrations in the East, and higher concentrations in the West, 
particularly California, than CMAQ.  This may be attributable to PM RSM’s more 
limited ability to reflect complex interactive effects among pollutants, which could be 
important in the East where SOx is affected by the ammonium levels, and in the West 
where precursors contribute to high levels of both PM and ozone (the PM RSM does not 
simulate ozone formation).  Third, although differences between the two scenarios are not 
presented in Exhibit 3-4, the impact of the first two factors is that CMAQ estimates a 
much greater impact of the CAAA on air quality differences.   

These factors suggestion caution is warranted in drawing conclusions based on the PM 
RSM estimates.  We believe that comparisons of PM RSM runs provide insights into the 
marginal effect of emissions, and relative effect among emitting sectors, but also that PM 
RSM in general is likely to be less sensitive to emissions changes.  As a result, the results 
we present in this chapter likely understate the absolute value of emissions differences 
among scenarios.   

  

                                                      
21 The CMAQ results presented in Exhibit 3-4 reflect the impact of the MATS calibration procedure. 
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EXHIBIT 3-3 CORE SCENARIO PM RSM RESULTS FOR 2000, 2010,  AND 2020 
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EXHIBIT 3-4 2010 PM RSM AND CMAQ RESULTS22 

2010 with CAAA     2010 without CAAA 

 

PM RSM  

 

CMAQ  

 

                                                      

22 Note that these results do not take into account the PM adjustment factors that were applied to 

the PM2.5 concentrations in the integrated report and the results reflected in the other chapters of 

this report.  However, the purpose of these figures is to make relative comparisons between 

CMAQ and RSM rather than to represent absolute PM2.5 results. 
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EXHIBIT 3-5 PM BENEFITS OF CAAA DERIVED USING RSM OUTPUT 

ENDPOINT GROUP 
INCIDENCE VALUATION (MILLION 2006$) 

PERCENTILE 5 MEAN PERCENTILE 95 PERCENTILE 5 MEAN PERCENTILE 95 

2000 

Mortality – Pope et al., 2002 4,540 12,300 20,100 $32,700 $83,100 $141,000 

Total $34,200 $89,200 $158,000 

2010 

Mortality – Pope et al., 2002 11,600 31,300 51,000 $89,100 $225,000 $380,000 

Total $93,100 $241,000 $426,000 

2020 

Mortality – Pope et al., 2002 12,500 38,900 65,100 $109,000 $303,000 $525,000 

Total $114,000 $324,000 $587,000 

Notes: 
1. Results are rounded to three significant figures. 
2. The valuation totals represent low, central, and high estimates. The low and high estimates were calculated by taking the sum of the 5th and 95th percentiles 

of the valuation estimates for each health endpoint.  An alternative would be to calculate actual percentiles for the aggregated valuation estimates, but this is 
not what is presented here. 

3. 20-year distributed lag and five percent discount rate applied to mortality results. 
4. These results are based on the PM-mortality C-R function from Pope et al. (2002) rather than the primary estimate (Weibull distribution) used in the integrated 

and benefits reports as well as in the remainder of this report.  In addition, these results have not been adjusted using the PM adjustment factors to correct 
analytical issues affecting the PM2.5 concentration values.  However, these results are intended to provide a relative comparison of RSM with CMAQ, rather 
than absolute benefits results. 
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We generated benefits results for the PM RSM core scenarios as well, using PM RSM air 
quality outputs as BenMAP inputs.23  The summary results are illustrated in Exhibit 3-5. 
As expected, mortality benefits dominate the health benefit results.  In addition, health 
benefits of the CAAA increase over time.  This result is consistent with the increasing 
gap in PM2.5 concentrations observed in the PM RSM results.  Also consistent with the 
PM RSM results is the fact that there is a large increase in the number of avoided deaths 
(as well as other health benefits) between 2000 and 2010, but only a moderate increase 
between 2010 and 2020.  Overall and on average the difference between PM2.5 
concentrations in the with- and without-CAAA scenarios also increases steeply between 
2000 and 2010, but only moderately between 2010 and 2020.  Comparing these PM RSM 
results to CMAQ results in Chapter 2 of the Second Prospective Benefits Report, 
however, it is clear that PM RSM estimates much smaller benefits of the CAAA than 
CMAQ for the same emissions scenarios.  This result provides further reason for 
interpreting the absolute PM RSM results with caution. 

3.4.2  SECTOR-SPECIFIC EMISS ION SCENARIOS 

Exhibit 3-6 depicts the difference in PM2.5 concentrations between each of the 10 sector 
scenarios for 2020 and the corresponding core with-CAAA scenario.  Difference maps are 
used to depict these results because the differences in actual PM2.5 concentrations over the 
scenarios are not noticeable on a map.  In this exhibit, shades of green indicate that PM2.5 

concentrations are lower in the sector scenario than in the corresponding core scenario 
and shades of yellow, orange, and red indicate that PM2.5 concentrations are higher in the 
sector scenario than in the corresponding core scenario.   

These maps indicate that increasing/decreasing EGU and Area emissions seem to have 
the greatest impact on PM2.5 concentrations.  These results are not surprising because the 
overall level of Area- and EGU-specific emissions are higher than the other sector-
specific emissions (Non-EGU, On-Road, and Non-Road) and thus a 10 percent change 
will necessarily lead to greater impacts. 

Exhibit 3-7 provides the mean incidence and valuation results for sector-specific emission 
increases and decreases in 2010 and 2020.  The BenMAP results are in line with the PM 
RSM results in that increases in Area- and EGU-specific emissions lead to the greatest 
damages, while conversely, decreases in these sector-specific emissions lead to the 
greatest benefits, consistent with the overall greater level of Area- and EGU-specific 
emissions.  Damages and benefits are of approximately the same scale of magnitude, but 
differ across years and sector in a curious pattern.  In 2010, the EGU and non-EGU 
sectors show very close agreement between damages and benefits, but in the non-road, 
onroad, and area source sectors, decreases in emissions yield larger benefits than the 

                                                      

23 The benefits results are based on the PM-mortality C-R function from Pope et al. (2002) rather than the primary estimate 

(Weibull distribution) used in the integrated and benefits reports as well as in the remainder of this report.  In addition, 

these results have not been adjusted using the PM adjustment factors to correct analytical issues affecting the PM2.5 

concentration values.  However, these results are intended to provide a relative comparison of RSM with CMAQ, rather than 

absolute benefits results. 
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comparable increase in emissions yields damages.  This might suggest that, at the margin 
in 2010, there is an increasing marginal benefit curve for additional reductions for these 
three sectors.  By 2020, all the sectors except for area sources emissions show close 
agreement between damages from a 10 percent increase and benefits from a 10 percent 
decrease, which may suggest that the marginal benefits curve for most sectors is flat, but 
for area sources remains upward sloping. 
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EXHIBIT 3-6 2020 SECTOR-SPECIF IC EMISS ION SCENARIO DIFFERENCE MAPS 
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 EXHIBIT 3-7 MEAN DAMAGES/BENEFITS ARIS ING FROM A 10% INCREASE/DECREASE IN SECTOR-SPECIFIC EMISSIONS 

ENDPOINT GROUP 

EGU NON-ROAD ON-ROAD NON-EGU AREA 

INCIDENCE VALUATION 

(MIL 2006$) 

INCIDENCE VALUATION 

(MIL 2006$) 

INCIDENCE VALUATION 

(MIL 2006$) 

INCIDENCE VALUATION 

(MIL 2006$) 

INCIDENCE VALUATION 

(MIL 2006$) 

2010 – INCREASE 

Mortality – Pope et al., 2002 -2,860 -$19,400 -472 -$3,150 -648 -$4,380 -1,110 -$7,490 -4,050 -$27,200 

Total --  -$20,900 -- -$3,400 -- -$4,740 -- -$8,040 -- -$29,400 

2010 – DECREASE 

Mortality – Pope et al., 2002 2,800 $20,200 450 $3,230 688 $4,970 1,170 $8,500 4,300 $31,100 

Total --  $21,600 --  $3,470 --  $5,350 --  $9,080 --  $33,400 

2020 – INCREASE 

Mortality – Pope et al., 2002 -2,420 -$18,800 -388 -$3,000 -554 -$4,320 -1,570 -$12,200 -4,610 -$35,900 

Total --  -$20,100 -- -$3,210 -- -$4,640 -- -$13,000 --  -$38,500 

2020 – DECREASE 

Mortality – Pope et al., 2002 2,310 $18,100 343 $2,650 557 $4,350 1,480 $11,600 5,050 $39,300 

Total --  $19,300 --  $2,840 --  $4,670 --  $12,300 --  $41,100 
Notes: 

1. Results are rounded to three significant figures. 
2. The valuation totals represent low, central, and high estimates. The low and high estimates were calculated by taking the sum of the 5th and 95th percentiles of the 

valuation estimates for each health endpoint.  An alternative would be to calculate actual percentiles for the aggregated valuation estimates, but this is not what is 
presented here. 

3. 20-year distributed lag and five percent discount rate applied to mortality results. 
4. Negative values reflect damages relative to the baseline and are the result of higher PM 2.5 ambient air quality concentrations in the control scenario than in the 

baseline.  Control scenarios with lower concentrations than the baseline yield positive benefits. 
5. These results are based on the PM-mortality C-R function from Pope et al. (2002) rather than the primary estimate (Weibull distribution) used in the full integrated and 

benefits report as well as in the remainder of this report.  In addition, these results have not been adjusted using the PM adjustment factors to correct analytical issues 
affecting the PM2.5 concentration values.  However, these results are intended to provide a relative comparison of sector-specific emissions using RSM, rather than 
absolute benefits results. 
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In order to better compare the relative damages/benefits associated with changes in 
sector-specific emissions the Project Team calculated dollar per ton values.  The 
methodology used to calculate dollar per ton values is similar to that used in the Ozone 
NAAQS RIA to calculate benefit per-ton metrics that were used as the basis for 
estimating the PM2.5 co-benefits.24  After benefits/damaged were calculated using 
BenMAP, the Project Team divided these monetized values by the total precursor 
emission reductions/increases for each scenario.   

Exhibit 3-8a presents a graph of the dollar per ton benefits associated with a 10 percent 
change in sector-specific emissions for 2010; Exhibit 3-8b shows comparable results for 
2020.  Overall, dollar per ton benefits are greater in 2020 than 2010.  This means that 
further reducing emissions yields a greater benefit per ton in 2020 than 2010.  
Conversely, increasing emissions in 2020 leads to greater damages per ton than 
increasing emissions in 2010.  In both 2010 and 2020 decreasing EGU-specific emissions 
has the highest dollar per ton value, followed by Area-specific and then Non-EGU 
specific.  In 2010, decreasing Non-road-specific emissions has a higher dollar per ton 
value than on-road-specific, but the opposite is true in 2020.   

EXHIBIT 3-8A MEAN DOLLAR PER TON DAMAGES/BENEFITS  ARIS ING FROM A 10% 

INCREASE/DECREASE IN  SECTOR SPECIFIC  EMISS IONS IN  2010 (2006$)  

 

                                                      
24 U.S. Environmental Protection Agency. Technical Support Document: Calculating Benefit Per-ton Estimates. Final Ozone 

Regulatory Impact Analysis. 
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EXHIBIT 3-8B MEAN DOLLAR PER TON DAMAGES/BENEFITS  ARIS ING FROM A 10% 

INCREASE/DECREASE IN  SECTOR SPECIFIC  EMISS IONS IN  2020 (2006$)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.4.3  ALTERNATIVE EGU EMISS ION SCENARIOS 

Exhibit 3-9 depicts the PM RSM results for the 2000 alternative EGU scenarios, and 
Exhibit 3-10 shows the differences in PM RSM estimated air quality between the primary 
and alternative EGU emissions estimation methods.  The results in Exhibit 3-9 using the 
alternative EGU data appear very similar to the results using the IPM EGU data, but the 
difference maps indicate that overall and on average PM2.5 concentrations are slightly 
lower using the CEM data for the with-CAAA scenario in 2000, and slightly higher using 
the data derived using the Ellerman counterfactual method for the without-CAAA scenario 
compared to the corresponding core scenarios.   

These results carry over into the benefits calculations.  Exhibit 3-11 provides summary 
BenMAP results for the alternative EGU scenarios, and provides a comparison of the 
mean BenMAP incidence and valuation results for the 2000 core scenario and the 2000 
scenario using the alternative EGU data.  This exhibit shows that the health benefits of 
the CAAA in 2000 estimated with the alternative EGU emissions are approximately 50 
percent greater than the benefits in the 2000 core scenario.  This result is consistent with 
the PM RSM results. 
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EXHIBIT 3-9 ALTERNATIVE EGU EMISS ION SCENARIOS PM RSM RESULTS 
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EXHIBIT 3-10 DIFFERENCE BETWEEN ALTERNATIVE EGU AND PRIMARY EGU RSM REULTS 
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EXHIBIT 3-11 COMPARISON OF MEAN VALUES FOR 2000 CORE AND ALTERNATIVE EGU SCENARIOS 

ENDPOINT GROUP 

2000 CORE SCENARIO 2000 ALTERNATIVE EGU SCENARIO PERCENT DIFFERENCE 

INCIDENCE 

VALUATION       

(MIL 2006$) INCIDENCE 

VALUATION        

(MIL 2006$) VALUATION 

Mortality 

Mortality – Pope et al., 2002 12,300 $83,100 18,600 $125,000 50.4% 

Morbidity 
Infant Mortality – Woodruff et al, 
1997 33 $252 48 $368 46.0% 

Chronic Bronchitis 7,250 $2,990 10,700 $4,410 47.5% 

Nonfatal Myocardial Infarction 17,400 $1,780 25,900 $2,650 48.9% 

Hospital Admissions, Respiratory 2,770 $38.6 4,210 $58.7 52.1% 

Hospital Admissions, Cardiovascular 5,340 $153 8,200 $238 55.6% 

Emergency Room Visits, Respiratory 13,000 $4.79 19,300 $7.12 48.6% 

Acute Bronchitis 21,200 $9.23 30,200 $13.1 41.9% 

Lower Respiratory Symptoms 255,000 $4.69 365,000 $6.70 42.9% 

Upper Respiratory Symptoms 196,000 $6.01 282,000 $8.63 43.6% 

Asthma Exacerbation 230,000 $11.8 330,000 $16.9 43.2% 

Minor Restricted Activity Days 9,420,000 $557 13,900,000 $820 47.2% 

Work Loss Days 1,620,000 $244 2,380,000 $359 47.1% 

TOTAL  $89,200  $134,000 50.2% 

Note: These mortality benefits results are based on the PM-mortality C-R function from Pope et al. (2002) rather than the primary 
estimate (Weibull distribution) used in the integrated and benefits reports as well as in the remainder of this report.  In addition, 
these results have not been adjusted using the PM adjustment factors to correct analytical issues affecting the PM2.5 concentration 
values.  However, these results are intended to provide a relative comparison between the core and alternative EGU scenarios using 
RSM, rather than absolute benefits results. 
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3.5 DISCUSSION 

The sector scenario results suggest the following broad conclusions: 

 The marginal benefits of additional reductions are greatest in the EGU, non-EGU 
point source, and area source emitting sectors, largely because the pollutant mix 
in those sectors yields a high benefit per ton of pollutant reduced. 

 The spatial pattern of emissions, and therefore of proportional emissions 
reductions, across major emitting sectors show some differences, but they are not 
dramatic.  The maps in Exhibit 3-6 indicate that, in 2020, most of the remaining 
emissions remain concentrated in the Northeast and in California, with non-EGU 
emissions concentrating more in the Southeast, and nonroad emissions 
concentrated in the agriculturally oriented North Central and California areas of 
the country. 

 Benefits per ton of emissions across all sectors are higher in 2020 than 2010.  The 
reason appears to be that, for all sectors, the with-CAAA emissions mix in 2020 
includes a higher percentage of direct particulate emissions (POC and PEC) than 
in 2010.  Other EPA analyses conducted with PM RSM have suggested that 
reductions of directly emitted particulates have a higher benefit per ton than other 
reductions of other pollutants. 

 The shape of the marginal benefits curves across sectors are generally flat for the 
EGU and non-EGU sectors, somewhat positive for the non-road and onroad 
sectors, and much more positive for the area source sector.  The shape of 
marginal pollutant response curves in PM RSM can differ dramatically across 
pollutants, across space, and across levels of pollutant emissions.  The reason 
marginal benefits of pollutant reduction exceed marginal damages of pollutant 
increases for the area source sector may therefore be a complex combination of 
factors.  Further analysis of the reasons underlying these marginal benefits results 
could yield further policy-relevant insights that could be used to target future 
emissions strategies beyond the “on the books” CAAA regulations that are the 
subject of the second prospective. 

 For the alternative EGU emissions scenarios, the substantial, 50 percent 
difference in air quality outcomes and benefits results is the result of our 
construction of a substantially different without-CAAA scenario.  The original 
motivation of the analysis was concern that the spatial pattern of emissions for 
the with-CAAA scenario for 2000 predicted by an IPM run for a historical year 
differed from the spatial pattern observed in the emissions monitor data for the 
same year.  Exhibits 3-9 through 3-11 above illustrate that the difference in 
benefits results is instead due primarily to differences in the without-CAAA 
scenario among the two alternative scenario specifications.  The result probably 
suggests that IPM performs reasonably well in estimating the 2000 with-CAAA 
scenario, but it appears uncertainty in estimating a counterfactual scenario is 
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much larger than uncertainty in estimating the factual case.  While we can clearly 
conclude that the alternative counterfactuals assumptions have a large effect on 
results, we are left without a clear answer to the question of which method of 
estimating emissions without the CAAA regulations in place is superior. 
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CHAPTER 4  |  CONCENTRATION-RESPONSE FUNCTION 
UNCERTAINTY 

4.1 INTRODUCTION 

One key source of uncertainty in Clean Air Act Amendment (CAAA)-related avoided 
mortality estimates is the true shape and slope of the concentration-response (C-R) 
function linking air pollutant exposures with premature mortality.  Since the completion 
of the First Prospective Study, significant advances have occurred that allow for a more 
thorough evaluation of uncertainties in both particulate matter (PM) and ozone mortality 
C-R.  On the PM side, follow-up studies for both the American Cancer Society (ACS) 
(Pope et al., 2002) and Six Cities (Laden et al., 2006) cohorts have enhanced our 
understanding of the potential mortality impacts of  changes in annual fine PM (i.e., 
PM2.5) exposures over broad geographical areas.25,26  In addition, EPA’s 12-expert PM-
mortality expert elicitation (EE) study provided EPA with 12 comprehensive probabilistic 
characterizations of statistical, methodological, and scientific uncertainties in the PM-
mortality relationship.27  On the ozone side, advances include the growing literature 
linking short-term ozone exposures with mortality, including multi-city studies 
(Schwartz, 2005; Bell et al., 2004; Huang et al., 2005) and three meta-analyses (Ito et al., 
2005; Levy et al., 2005; Bell et al., 2005); a cohort study examining long-term effects of 
ozone (Jerrett et al., 2009); and the 2008 National Research Council (NRC) 
review.28,29,30,31,32,33,34,35  The Project Team assessed the sensitivity of the Second 

                                                      
25 Pope, CA III, et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air 

pollution. JAMA 287: 1132-1141. 

26 Laden, F., J. Schwartz, et al. (2006). Reduction in Fine Particulate Air Pollution and Mortality: Extended Follow-up of the 

Harvard Six Cities Study. American Journal of Respiratory and Critical Care Medicine 173: 667-672. 

27 Industrial Economics, Inc. (2006). Expanded Expert Judgment Study of the Concentration-Response Relationship Between 

PM2.5 Exposure and Mortality. Prepared for the Office of Air Quality Planning and Standards, U.S. Environmental Protection 

Agency, September. 

28 Ito, K., S. F. De Leon and M. Lippmann, 2005. Associations between ozone and daily mortality: analysis and meta-analysis. 

Epidemiology. Vol. 16 (4): 446-57. 

29 Schwartz, J., 2005. How sensitive is the association between ozone and daily deaths to control for temperature? Am J 

Respir Crit Care Med. Vol. 171 (6): 627-31. 

30 Bell, M.L., et al., 2004. Ozone and short-term mortality in 95 US urban communities, 1987-2000. Jama, 2004. 292(19): p. 

2372-8. 

31 Bell, M. L., F. Dominici and J. M. Samet, 2005. A meta-analysis of time-series studies of ozone and mortality with 

comparison to the national morbidity, mortality, and air pollution study. Epidemiology. Vol. 16 (4): 436-45. 

32 Levy, J. I., S. M. Chemerynski and J. A. Sarnat, 2005. Ozone exposure and mortality: an empiric bayes metaregression 

analysis. Epidemiology. Vol. 16 (4): 458-68. 
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Prospective 812 estimates of PM- and ozone-related mortality incidence to C-R function 
uncertainty by substituting alternative PM and ozone C-R functions in BenMAP and 
reanalyzing benefits with the core scenario CMAQ air quality grids for each target year.36   

4.2 SELECTION OF ALTERNATIVE C-R FUNCTIONS 

4.2.1  PARTICULATE MATTER CONCENTRATION-RESPONSE FUNCTIONS 

The primary estimate of the second prospective study is based on a Weibull distribution 
of C-R coefficients with a mean of 1.06 percent decrease in annual all-cause mortality per 
1 g/m3 and an interquartile range bracketed by the Pope et al. (2002) ACS estimate (0.55 
percent) on the low end and the Six Cities Laden et al. (2006) extended follow-up 
estimate (1.5 percent) at the high end.37  We conducted a sensitivity analysis by first 
substituting the primary C-R distribution with two alternative C-R functions, one based 
on the Pope et al. (2002) ACS study and the other based on the Laden et al. (2006) Six 
Cities cohort study.  In addition, we used results from the Expanded Expert Judgment 
Assessment of the Concentration-Response Relationship Between PM2.5 Exposure and 
Mortality.  This EE study obtained from a panel of 12 leading experts in the field their 
subjective judgment of the true C-R function relating exposure to PM2.5 and mortality in 
the US.  Exhibit 4-1 presents each expert’s C-R function uncertainty distribution. We 
generated 12 estimates of CAAA-related avoided mortality incidence based on the C-R 
distributions provided by each of the 12 EE study experts.

                                                                                                                                                 
33 Huang, Y., F. Dominici and M. L. Bell, 2005. Bayesian hierarchical distributed lag models for summer ozone exposure and 

cardio-respiratory mortality. Environmetrics. Vol. 16: 547–562. 

34 Jerrett M. et al., 2009. Long-term Ozone Exposure and Mortality. JAMA 360 (11): 1085-1095. 

35 National Research Council of the National Academies, 2008. Estimating Mortality Risk Reduction and Economic Benefits 

from Controlling Ozone Air Pollution. Committee on Estimating Mortality Risk Reduction Benefits from Decreasing 

Tropospheric Ozone Exposure, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies. National 

Academies Press, Washington, D.C. 

36 The alternate C-R functions used in our analysis are programmed into BenMAP, as explained in the BenMAP manual in 

Appendices F and G (Abt Associates, Inc. (2008). BenMAP User’s Manual.  Prepared for the U.S. EPA’s Office of Air Quality 

Planning and Standards, Research Triangle Park, NC. September).   

37 The parameters for the Weibull distribution are mean = 0.0106, α = 0.0119, and β = 1.622173.   
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EXHIBIT 4-1.  UNCERTAINTY DISTRIBUTIONS FOR THE PM 2 . 5 -MORTALITY C-R COEFFICIENT FOR ANNUAL AVERAGE PM2 . 5  

CONCENTRATIONS OF 4  TO 30 g/m 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Box plots represent distributions as provided by the experts to the elicitation team.  Experts in Group 1 preferred to give conditional distributions and keep their 
probabilistic judgment about the likelihood of a causal or non-causal relationship separate.  Experts in Group 2 preferred to give distributions that incorporate their likelihood that 
the PM2.5 mortality association may be non-causal.  Therefore, the expert distributions from these two groups are not directly comparable. 
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4.2.2  OZONE CONCENTRATION-RESPONSE FUNCTIONS 

The primary estimate used to quantify CAAA-related reductions in ozone-related 
mortality in the integrated report is a pooled estimate that equally weights the C-R 
functions from six short-term ozone mortality studies, three of which are meta-analyses 
(Ito et al., 2005; Levy et al., 2005; Bell et al., 2005), and three of which are individual 
studies reporting estimates based on data from multiple cities (multi-city studies).  Two of 
the multi-city estimates are derived from the National Morbidity, Mortality, and Air 
Pollution Study (NMMAPS) (Bell et al., 2004 and Huang et al., 2005) and one is an 
analysis of 14 U.S. cities (Schwartz, 2005). 

We generated results for seven alternative ozone/mortality C-R functions to compare with 
our primary pooled estimate.  Exhibit 4-2 summarizes the ozone mortality C-R functions 
included in our uncertainty analysis.  The first six generate estimates of CAAA-related 
avoided mortality incidence based on each of the six short-term ozone mortality studies 
included in the pooled primary estimate.  The seventh estimate is based on the results of a 
recent analysis of the ACS cohort (Jerrett et al., 2009), as recommended by the Council 
Health Effects Subcommittee (HES).38  Exhibit 4-2 indicates the type of study, the 
geographic scope, the specific type of mortality examined, the averaging time of the 
estimate and the percent change in mortality per 10-ppb change in ozone. 

                                                      
38 U.S. Environmental Protection Agency Advisory Council on Clean Air Act Compliance Analysis, Health Effects Subcommittee 

(2010). Review of EPA’s Draft Health Benefits of the Second Section 812 Prospective Study of the Clean Air Act, EPA-

COUNCIL-10-001, June 16, 2010, available at http://yosemite.epa.gov/sab/sabpeople.nsf/WebCommittees/COUNCIL. 
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EXHIBIT 4-2.  OZONE/MORTALITY CONCENTRATION-RESPONSE FUNCTIONS INCLUDED IN 812 

UNCERTAINTY ANALYSIS  

 STUDY TYPE 

GEOGRAPHIC 

COVERAGE 

HEALTH 

ENDPOINT AVERAGING TIME 

PERCENT 

CHANGE IN 

MORTALITY 

PER 10 PPB 

CHANGE IN 

OZONE 

Ito et al. 
(2005) 

Meta-analysis of 
short-term Studies 

43 U.S. and 
international 
studies 

Non-accidental 
mortality 

8-hour max from 
24-hour mean for 
warm season  

1.17%a 

Levy et al. 
(2005) 

Meta-analysis of 
short-term studies 

28 U.S. and 
international 
studies 

All-cause 
mortality 

8-hour max from 
1-hour max for 
warm season 

1.12%b 

Bell et al. 
(2005) 

Meta-analysis of 
short-term studies 

39 U.S. and 
international 
studies 

All-cause 
mortality 

8-hour max from 
24-hour mean for 
warm season 

0.80% c 

Schwartz 
(2005) 

Short-term study 14 U.S. cities Non-accidental 
mortality 

8-hour max from 
1-hour max for 
warm season 

0.43% d 

Bell et al. 
(2004) 

Short-term study 95 U.S. cities 
from NMMAPS 

Non-accidental 
mortality 

8-hour max from 
24-hour mean for 
warm season 

0.26% e 

Huang et al. 
(2005) 

Short-term study 19 U.S. cities 
from NMMAPS 

Cardiopulmonary 
mortality 

8-hour max from 
24-hour mean for 
warm season 

0.81% f 

Jerrett et al. 
(2009) 

Long-term cohort 
(analysis of the 
ACS cohort) 

86 U.S. 
metropolitan 
statistical areas 
(MSAs) 

Respiratory 
mortality 

8-hour max from 
1-hour max for 
warm season  

4.47%g 

Note: All estimates have been converted to an 8-hour max using ratios of 8-hour max to either 24-hour mean or 1-
hour max.  See the BenMAP manual for further details (USEPA, 2008). 

a This estimate represents the combined random-effects estimate for warmer seasons (see page 448 of Ito et al., 
2005). 
b This estimate is based on the single-pollutant grand mean for summer (see page 462 of Levy et al., 2005). 
c This estimate represents the total mortality effects for U.S. and non-U.S. locations for warmer time periods (see 
Table 6 of Bell et al., 2005). 
d This estimate represents the results using the temperature-matched controls for the warm season (see Table 2 
of Schwartz, 2005). 
e This estimate represents the results generated with the constrained distributed-lag model for all communities 
for days from April to October (see page 2376 of Bell et al., 2004). 
f This estimate represents the results using summer ozone levels over the previous week (see page 554 of Huang 
et al., 2005). 
g This estimate is from the two-pollutant model, which also included particulate matter (PM2.5) (Table 3 in Jerrett 
et al., 2009).   
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4.3 RESULTS 

We present below the results of the alternative C-R function analyses, first for PM and 
then for ozone. 

4.3.1  EFFECTS OF ALTERNATIVE PM CONCENTRATION-RESPONSE FUNCTIONS 

Exhibit 4-3 presents the incidence results using the primary C-R function for PM 
mortality for each target year (2000, 2010, and 2020) as well as the relative changes in 
mortality incidence associated with using the alternative C-R functions (Pope et al., 2002; 
Laden et al., 2006; and the EE study results).  Exhibit 4-4 compares box plots of the 
primary and alternative results distributions.  These two exhibits show the following:   

 The mean benefits estimates generated from the Pope et al. (2002) study are 44 
percent lower than the primary estimate, while the Laden et al. (2006) study 
results are roughly 40 percent higher, due to the difference in the magnitude of the 
relative risks (RRs) from these two studies. 

 The mean estimates of annual avoided deaths due to CAAA generated from the 
PM EE results vary by expert and range between 83 percent lower than the mean 
primary estimate up to 76 percent higher at the extremes.  The rest of the estimates 
are within approximately 40 percent or less of the primary estimate. 

 As shown in Exhibit 4-4, the spread of the confidence bounds of the alternative C-
R function estimates of avoided mortality results vary, with the largest spread 
found in the distribution provided by Expert A from the EE study and the smallest 
spread associated with the Pope et al., 2002, which only estimates statistical 
uncertainty.  However, there is some overlap between the confidence bounds of all 
of the alternate C-R functions, implying that the results are not all statistically 
significantly different from each other. 

4.3.2  EFFECTS OF ALTERNATIVE OZONE CONCENTRATION-RESPONSE FUNCTIONS 

Exhibit 4-5 presents changes in mortality incidence based on the primary C-R function 
for ozone mortality for each target year (2000, 2010, and 2020), as well as the relative 
changes in mortality incidence associated with using the alternative C-R functions.  
Exhibit 4-6 is a box plot that illustrates the primary and alternative results distributions.  
These exhibits show the following: 

 The mean benefits estimates generated from the Levy et al. (2005) study are the 
largest; they are roughly 66 percent higher than the primary estimate, though 
these are very similar to the Ito et al. estimates.  The mean benefits estimates 
generated from the Bell et al. (2004) study are the lowest, roughly 63 percent 
lower than the primary estimate. 

 In general, the results derived from the three meta-analyses (Ito et al. (2005), 
Levy et al. (2005), Bell et al. (2005)) are greater than the results derived from 
three multi-city studies (Schwartz (2005), Bell et al. (2004), Huang et al. (2005)).  
The results derived from Jerrett et al. (2009) are similar to the results derived 
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from the meta-analyses and greater than the results derived from the NMMAPS-
based studies.39 

 As shown in Exhibit 4-6, the spread of the confidence bounds of the alternative 
C-R function estimates incidence results vary, with the largest spread found in 
the distribution associated with Jerrett et al. (2009) and the smallest spread 
associated with Bell et al. (2004).  The distribution associated with Jerrett et al. 
(2009) is very similar to that of our primary estimate (the pooling of all six 
studies).  There is some overlap between the confidence bounds of all of the 
alternate C-R functions, implying that the results are not all statistically 
significantly different from each other. 

EXHIBIT 4-3.  ALTERNATIVE C-R FUNCTION MORTALITY INCIDENCE RESULTS FOR PM 2 . 5  

MORTALITY C-R 

FUNCTION PERCENTILE 5 MEAN PERCENTILE 95 

Primary Estimate – 
2000 20,000 110,000 230,000 
Primary Estimate – 
2010 31,000 160,000 350,000 
Primary Estimate - 
2020 44,000 230,000 480,000 

 Percent Change from Mean Primary Estimate  

Pope et al. (2002) -77% -44% -11% 

Laden et al. (2006) -22% 40% 98% 

Expert A -71% 38% 150% 

Expert B -87% 1% 95% 

Expert C -59% 10% 79% 

Expert D -95% -21% 28% 

Expert E -9% 76% 156% 

Expert F -41% -9% 24% 

Expert G -100% -34% 20% 

Expert H -100% -21% 83% 

Expert I -90% 10% 83% 

Expert J -86% -11% 83% 

Expert K -100% -83% -24% 

Expert L -99% -28% 24% 
Note: All values in the table represent the percent change from the mean primary estimate.  
Percent change estimates do not vary by target year. 

 

                                                      

39 Although the coefficient from the study is much higher than those reported in the meta-analyses or multi-city studies, the 

endpoint is restricted to respiratory mortality and therefore the avoided mortality results are similar to the meta-analyses, 

which are based on non-accidental or all-cause mortality. 
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EXHIBIT 4-4.  BOX-PLOT OF 90 PERCENT CONFIDENCE BOUNDS FOR ALTERNATIVE C-R FUNCTION 
MORTALITY INCIDENCE 
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EXHIBIT 4-5.  ALTERNATIVE C-R FUNCTION MORTALITY INCIDENCE RESULTS FOR OZONE  

MORTALITY C-R FUNCTION PERCENTILE 5 MEAN PERCENTILE 95 

Primary Estimate - 2000 210 1,400 2,800 

Primary Estimate – 2010 790 4,300 8,700 

Primary Estimate - 2020 1,200 7,100 15,000 

 Percent Change from Mean Primary Estimate 

Meta-Analyses (short-term)  

     Ito et al. (2005) 1% 63% 123% 

     Levy et al. (2005) 17% 66% 113% 

     Bell et al. (2005) -41% 17% 76% 

Multi-City Studies (short-term)    

     Schwartz (2005) -81% -45% -8% 

     Bell et al. (2004) -87% -63% -41% 

     Huang et al. (2005) -75% -40% -5% 

Cohort Study (long-term)    

     Jerrett et al. (2009) -41% 52% 138% 

Note:  Incidence results are rounded to two significant figures. 
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EXHIB IT 4-6.  BOX-PLOT OF THE 90 PERCENT CONFIDENCE BOUNDS FOR ALTERNATIVE C-R 

FUNCTION RESULTS FOR OZONE 
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CHAPTER 5  |  DIFFERENTIAL TOXICITY OF PM COMPONENTS40 

5.1 INTRODUCTION 

In the current 812 prospective analysis, EPA estimates particulate matter (PM)-related 
health benefits using functions that relate these effects with changes in PM2.5 or PM10 as a 
whole, measured as the total mass of particles.  This approach is consistent with historical 
EPA practice and with past Advisory Council for Clean Air Compliance Analysis 
(Council) advice (see below).  However, the mass of PM includes a number of different 
components, and these components may vary in their toxicity and therefore in the degree 
to which they contribute to the mortality and other adverse health effects observed in the 
epidemiological literature. The assumption that all particle components have identical 
toxicity (or, for that matter, any assumption regarding the relative toxicity of various 
particle components without a strong empirical basis) may introduce bias to estimates of 
health benefits, if the health benefits of PM reductions depend specifically on the types of 
particles being reduced. More generally, even if no systematic biases can be identified, 
the issue of differential toxicity contributes to increased uncertainty in the estimates of 
health benefits. 

It is important to recognize that our ability to address the issue of differential toxicity in 
quantitative health benefits analysis is limited for a variety of reasons.  While some of the 
limitations will likely decrease over time given improvements in scientific understanding, 
others are intrinsic to the question and will remain. Specifically, while increasing 
availability of speciation network data allow for epidemiological studies addressing 
individual components, many components covary in the atmosphere to such a degree that 
it would make it difficult to separate their effects. In some respects, this issue is a variant 
of an issue that EPA has addressed successfully in other settings, when attempting to 
separate the health effects of individual criteria pollutants from one another based on 
epidemiological evidence. However, the case of PM components extends beyond this 
domain (which is generally addressed through a combination of multivariate statistical 
analyses and study designs/locations that help to isolate the effects of individual 
pollutants), as particles in the atmosphere are often complex agglomerations of a variety 
of components. This indicates that the topic of differential toxicity is not only a statistical 
issue, but also a physical interpretability issue. The composition of the atmosphere also 
varies considerably over time and space, making it challenging to determine (for 
example) whether a reduction in sulfate concentrations in Massachusetts in 2010 is 

                                                      
40 We gratefully acknowledge the substantial contributions of Dr. Jonathan Levy of the Harvard School of Public Health in the 

development and review of this chapter. 
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functionally equivalent to the same unit reduction in sulfate concentrations in California 
in 2020. These and other limitations are discussed in more detail below.   

From a practical standpoint, the relevant question is whether uncertainty related to 
differential toxicity would be significant enough in magnitude to invalidate results of 
benefits analyses. While this uncertainty could be substantial for control strategies only 
addressing a single component on the margin, many control measures under consideration 
by EPA are “blended” strategies addressing multiple PM sources and components 
simultaneously, which will tend to reduce errors in the aggregate benefits estimates.   

This chapter describes some of the significant questions and challenges that remain to be 
addressed before differential toxicity could be meaningfully introduced into benefits 
analysis, either through adjustments to component-specific concentration-response (C-R) 
functions or through addition of uncertainty analyses that go beyond hypothetical “what 
if” scenarios. Currently, EPA and its Council support the use of PM mass as the most 
defensible means of estimating benefits and believe the results of any uncertainty analysis 
should be interpreted with caution. While we agree that the use of PM mass remains the 
most defensible strategy and that there is neither an empirical nor logical basis for 
incorporating quantitative differential toxicity at this time, in this chapter, we formally 
evaluate the evidence for differential toxicity, considering the nature of the evidence that 
would be required to address this topic and the way in which this evidence would need to 
be structured and analyzed. This discussion is intended to explore the approaches that can 
be taken to quantify differential toxicity and the challenges in conducting such analyses.     

The remainder of this chapter reviews how this issue has been addressed in past 812 
analyses, discusses the importance of this uncertainty and the nature of the evidence 
needed to incorporate quantitative differential toxicity into benefits analyses, gives a brief 
overview of our current understanding of the issue, lays out key challenges to a 
meaningful uncertainty analysis of differential toxicity, and discusses key data gaps that 
need to be addressed before a policy relevant analysis can be conducted. 

5.2 HISTORICAL APPROACH 

EPA’s approach to estimating avoided mortality and morbidity associated with reductions 
in fine particles uses estimates of changes in exposure to PM2.5 mass as the exposure 
input in the damage function.  The implication of this approach is that we assume that all 
fine particles, regardless of their chemical composition, are equally potent per unit 
concentration in producing premature mortality and other health outcomes.  More 
precisely, we assume that the most credible quantitative estimate for policy decision-
making involves using the same toxicity value for all fine PM mass components, given an 
insufficient basis to quantitatively deviate from this assumption. Uncertainty surrounding 
this assumption is not generally quantified, but is usually discussed.  

This approach reflects several considerations.  First, it is worth recognizing that there is a 
biological rationale for a focus on particulate mass below a specified aerodynamic 
diameter, as size has clearly been demonstrated to influence deposition patterns in the 
lung, with fine particles penetrating more deeply and being less likely to be cleared than 
coarser particles. Thus, even if chemical composition has an influence on the resulting 
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toxicity, the size of the particle is clearly important (and, indeed, this is the primary 
rationale for a regulatory system oriented around particle size). 

Second, the equal toxicity approach reflects the consistency of findings in 
epidemiological studies conducted across countries, states, and cities that PM2.5 
concentrations are associated with increased mortality and morbidity rates, despite 
geographic variations in composition. If there were stark differences in the toxicity of 
various particle components, epidemiological findings would be expected to be far more 
discordant. For example, time-series studies in the US, Europe, Australia, and Asia have 
all yielded statistical significant effects of PM on premature mortality (Pope and Dockery 
2006), in spite of substantial differences in diesel fuel utilization, coal combustion, and 
other activities that would influence the chemical composition of fine particles in these 
varied settings.41  

Not only are the findings qualitatively similar (with statistical significance in diverse 
geographic settings), but the C-R functions do not appear to be substantially different 
across different countries or regions of the US. Meta-analyses and multi-city studies of 
the PM-mortality literature to date have found some spatial heterogeneity by region, but 
have not found large systematic differences that would exonerate specific components or 
support direct quantitative estimation of differential toxicity among specific particle 
components. For example, the National Morbidity Mortality and Air Pollution Study 
(NMMAPS) found higher C-R functions for PM10 in the Northeast (where sulfates 
predominate) and in Southern California (which nitrates and organic carbon 
predominate), relative to other regions (Dominici et al., 2005).42 A more recent multi-city 
study of PM2.5 morbidity concluded that C-R functions for respiratory and cardiovascular 
hospital admissions were higher in the Northeast for a same-day effect, but were higher in 
the Southwest for a two-day lag for respiratory hospital admissions (Bell et al., 2008).43 
More generally, this study concluded that there was significant spatial heterogeneity for 
cardiovascular but not respiratory hospital admissions. Another multi-city study of PM2.5 
mortality (Franklin et al., 2007) found higher C-R functions in the East than in the West, 
but the difference was not significant and was best explained by air conditioning 
prevalence.44 

Thus, there do not appear to be stark geographic patterns in C-R functions, making 
extreme differential toxicity outcomes (e.g., that toxicity is due solely to a single PM 
component) appear unlikely. Further, any spatial variations in the PM C-R function may 

                                                      
41 Pope, C.A. and Dockery, D.W., 2006. Health Effects of Fine Particulate Air Pollution: Lines that Connect. Air Waste 

Management Association. Vol. 56: 709-742. 

42  Dominici, F. et al., 2005. Revised Analyses of the National Morbidity, Mortality, and Air Pollution Study: Mortality Among 

Residents of 90 Cities. Journal of Toxicology and Environmental Health. Vol. 68 (13): 1071-1092) 

43 Bell ML, Ebisu K, Peng RD, Walker J, Samet JM, Zeger SL, Dominici F. 2008.  Seasonal and regional short-term effects of 

fine particles on hospital admissions in 202 US counties, 1999–2005. Am J Epidemiol Vol. 168:1301–1310. 

44 Franklin M, Zeka A, Schwartz J.  2007.  Association between PM2.5 and all-cause and specific-cause mortality in 27 US 

communities.  J Expo Sci Environ Epidemiol. Vol. 17(3):279-87. 
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be attributable to factors beyond the chemical composition of the fine particles, including 
concentration-exposure relationships and vulnerability characteristics. This evidence 
reinforces the suggestion that an assumption that the same C-R function is applicable to 
all control strategies (especially blended PM reduction strategies) in all settings is a 
reasonable one. This evidence also reflects the judgment of EPA and its Council that the 
research conducted to date does not yet provide sufficiently clear evidence for 
quantification of particle mortality impacts at a finer level than total PM2.5 mass.   

The Council has supported this approach in the past two 812 analyses and also in its 
review of plans for the current analysis, while encouraging EPA to explore the possible 
implications of differential toxicity uncertainties on results.  In its March 2004 review of 
the analytical blueprint, the 812 Council Health Effect Subcommittee (HES) provided 
advice to EPA on this issue.  First, in response to a charge question regarding a potential 
expert elicitation initiative on PM mortality that included questions on relative 
component toxicity, the committee states: 

“Regarding the question of component relative toxicity, the evidence at this time 
supporting differential toxicities based on particle chemistry is provided by a few 
studies of short-term exposure (e.g., Laden et al., 2000). Currently, there is little 
evidence from the long-term exposure studies to suggest differential toxicity. 
Therefore, it is appropriate at this time for EPA to assume equal toxicity across 
particle components and it is reasonable to explore alternative possible implications 
of differential particle component potency in supplementary sensitivity analyses.”45    

The HES commented further on a relative toxicity sensitivity analysis in their response to 
a charge question on aggregation and presentation of results: 

“There are only a few C-R functions for source-specific health effects and therefore 
limited information for sector-specific PM health benefits or for apportioning health 
benefits among sources or sectors other than as a function of source-specific 
contributions to ambient PM mass. With the exception of particle size considerations, 
the toxicity of all PM is treated as equivalent regardless of its origin. There is limited 
evidence (i.e., Laden et. al., 2000) to suggest some differential toxicity of PM, at least 
regarding mortality and daily PM exposures. If the data are available on source-
specific changes in PM, EPA should consider conducting a limited sensitivity 
analysis utilizing some of this evidence.” 46   

                                                      
45 U.S. Environmental Protection Agency, Science Advisory Board. 2004.  Advisory on Plans for Health Effects Analysis in the 

Analytical Plan for EPA’s Second Prospective Analysis - Benefits and Costs of the Clean Air Act, 1990-2020; Advisory by the 

Health Effects Subcommittee of the Advisory Council on Clean Air Compliance Analysis.  EPA-SAB-COUNCIL-ADV-04-002, 

page 20. 

46 Ibid. page 37. 
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5.3 IMPORTANCE OF DIFFERENTIAL TOXICITY FOR BENEFITS  ANALYSIS  

From a benefits analysis perspective, treatment of all PM2.5 mass as equally toxic may 
lead to biases in benefits estimates. Likewise, any arbitrary assumption about the 
differential toxicities of particle components may also lead to biases in benefits estimates. 
Any of these biases may mask important spatial variation in the distribution of benefits of 
Clean Air Act (CAA) programs across the U.S. due to regional variation in PM 
speciation, which could affect selection of the most health beneficial measures to meet 
CAA requirements such as the National Ambient Air Quality Standards (NAAQS). 

The significance of the uncertainty related to differential toxicity will likely differ 
substantially by application.  An analysis of the entire CAA Amendments or of the 
benefits of attaining the NAAQS (which would likely use a blended strategy) would 
likely be affected less by these uncertainties than an analysis of the Clean Air Interstate 
Rule (CAIR) or non-road diesel rule which focus on more narrow emissions control 
strategies. Similarly, an analysis of CAIR or other multi-pollutant power plant control 
strategies would be less uncertain than an analysis of SO2 controls exclusively. However, 
even more “narrow” emissions control strategies invariably result in control of multiple 
pollutants, either by design (e.g., CAIR and the non-road diesel rule each reduced NOx, 
SO2, and directly-emitted PM) or due to the nature of the emission reduction strategies 
that would be implemented, which often do not influence only one pollutant at a time. 
Even in cases where a single pollutant may be reduced, the ultimate effect on ambient 
particles is more complicated, because of the complex atmospheric chemistry involved in 
particle formation. For example, reductions in SO2 can affect not only sulfate, but also 
nitrate and ammonium particle levels, and can affect transport and form of metals in 
particle mixtures. 

A focus on benefits analysis also influences the type of evidence that would be necessary 
to incorporate differential toxicity. Within benefits analysis of fine PM control strategies, 
C-R functions are developed from epidemiological evidence, reflecting the anticipated 
change in health outcomes across the human population (including sensitive 
subpopulations) associated with changes in ambient air pollution levels. As this reflects a 
population C-R function (a combination of individual functions that reflects variability in 
individual response thresholds), this captures aspects of human vulnerability to PM2.5-
related health effects. The ideal study of differential toxicity would therefore be an 
epidemiological investigation with sufficient information about particle composition and 
related exposures (varying over both time and space), good characterization of vulnerable 
populations, and good specificity in health outcomes.  

Clearly, toxicological studies are important for determining the health effects of 
pollutants and for providing an understanding of the biological underpinnings of the 
associations observed in epidemiological studies. However, in the specific context of 
differential toxicity for health benefits analysis, it is necessary but not sufficient to 
establish mechanisms, even if they appear to be differential by component. For 
toxicological studies to be directly and quantitatively applicable to health benefits 
analysis, they would need to be conducted in animal populations with disease models that 
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appropriately capture the vulnerable individuals at the lower end of the C-R function; 
they would need to provide quantitative outputs that can be translated directly into 
outcomes such as cardiovascular hospital admissions or premature mortality from long-
term exposure; and they would need to utilize exposure measures that are directly 
translatable to the exposure measures used in epidemiological studies, both considering 
the level of exposure and the type of exposure. Even a toxicological study that uses 
ambient-derived aerosols in animal models of cardiovascular disease and provides 
quantitative estimates of effects on heart rate variability or measures of atherosclerosis 
would not be directly applicable to benefits analysis, given the difficulty in linking high-
concentration pre-clinical effects in animals with quantitative low-concentration health 
outcomes in humans. Moreover, even if models could be developed to link this 
toxicological insight to the human population, identical translation would need to occur 
for a variety of mixtures of components, including consideration of the marginal effects 
of changes in the mixture. 

Because of these issues, it is likely that the relative contributions of epidemiology and 
toxicology would be similar in a differential toxicity analysis as in a benefits analysis for 
PM2.5 as a whole – the quantitative functions would be solely based on epidemiology, 
with toxicology providing corroboration of biological plausibility and mechanisms of 
disease, and perhaps eventually contributing to expert opinions within elicitation 
protocols. More specifically, in the absence of epidemiological evidence for differential 
toxicity, it would be exceedingly difficult to determine quantitative C-R functions for 
individual particle components that would be applicable to human populations.  

5.4 CURRENT UNDERSTANDING OF DIFFERENTIAL TOXICITY  

The following section provides a general overview of the strength of epidemiological and 
toxicological evidence examining possible differential toxicity of PM components and 
sources.  We first provide an illustrative discussion of some of the key epidemiological 
and toxicological evidence linking specific PM components to health outcomes and then 
examine source-oriented evaluations.   

5.4.1 COMPONENT-ORIENTED EVALUATIONS 

This section briefly reviews the current state of knowledge on the differential toxicity of 
specific PM components. The aim of this section is not to be exhaustive, but the evidence 
below does reflect the nature and size of the epidemiological literature on PM 
components to date. 

The major components of PM, some or all of which may contribute to its toxicity, include 
metals (e.g., iron, vanadium, nickel, copper), organic compounds that are either adsorbed 
onto other particles or may form particles themselves, biologic elements (e.g., viruses, 
bacteria), ions such as sulfate (SO4

2-), nitrate (NO3
-), and acidity (H+), reactive gases 

(e.g., ozone, aldehydes) adsorbed to particles, and carbonaceous material that constitutes 
the particle core (HEI, 2002; NRC, 2004).47,48 Of note, some of the above-mentioned 
                                                      
47 Health Effects Institute, 2002. Understanding the Health Effects of Components of the Particulate Matter Mix: Progress and 

Next Steps. Boston, MA. 
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components are particle components that may be differentially affected by common 
control strategies (such as sulfate and nitrate particles), while others (such as reactive 
gases adsorbed to particles or biologic elements) reflect factors that complicate the 
assessment of differential toxicity for the components conventionally evaluated in a 
differential toxicity analysis of PM.  

A study by Bell et al. (2007) analyzed EPA monitoring data on 52 PM2.5 components in 
187 U.S. counties between February 2000 and December 2005 to identify PM2.5 
components that would be important to target in future epidemiological studies.49  The 
study found that only seven of the 52 components contributed at least 1 percent to total 
mass for yearly or seasonal averages.  This included ammonium (NH4

+), elemental carbon 
(EC), organic carbon matter (OCM), nitrate (NO3

-), silicon, sodium (Na+), and sulfate 
(SO4

2-).  The study also postulated that in order for a component to be a mediator of the 
risk associated with total PM2.5 mass, the concentration of the component must co-vary 
with the concentration of PM2.5.  The authors found six components that met this 
criterion: NH4

+, SO4
2-, OCM, NO3

-, bromine, and EC.  Therefore, it is likely that these 
components would be of greatest interest in explaining the health risks seen from 
exposure to PM2.5 in epidemiological studies.  

It is important to recognize that this does not imply that other components would not be 
toxic or exhibit health effects at current levels of exposure, but rather that the 
epidemiological findings of health effects of PM2.5 could not be explained by components 
that did not covary with PM2.5. While it is not impossible for low-mass components to 
explain all of the observed effects (if such components were highly toxic and covaried 
with PM2.5), it is also unlikely that the totality of the epidemiological effects could be 
explained by components that contribute minimal mass. In addition, from a practical 
standpoint, control strategies to meet the NAAQS would tend to target the high-mass 
components as the only viable strategies to achieve attainment. Examining the 
intersection of the high-mass and high-correlation compounds, and considering the fact 
that ammonium is generally bound to either sulfate or nitrate, this study emphasizes that 
the primary components of interest would likely include sulfate, nitrate, OCM, and EC. In 
the context of differential toxicity, the key question is whether the health risks of fine 
particles can be plausibly apportioned among these (and other) components, in such a 
way that is consistent with the evidence for PM2.5 as a whole.  

As a general point, a number of epidemiological studies, mostly time-series studies, have 
associated one or more of these PM2.5 components with mortality, but no clear picture has 
emerged.  The National Research Council (NRC) in its report entitled “Research 
Priorities for Airborne Particulate Matter” indicated that:   

                                                                                                                                                 
48 National Research Council.  2004.  Research Priorities for Airborne Particulate Matter: IV. Continuing Research Progress.  

National Academies Press: Washington, DC. 

49 Bell, M.L. et al., 2007. Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health 

Effects Studies. Environmental Health Perspectives. Vo. 115(7): 989-995. 
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“Although substantial relevant research has been carried out on this topic, the [NRC] 
committee’s review showed a collection of evidence with little convergence … This 
topic has proved particularly challenging because of the many aspects of particles 
that might plausibly determine toxicity and the strong possibility that different 
characteristics of particles could be relevant to different health outcomes.”50  

The following sections provide a brief overview of epidemiological and toxicological 
evidence regarding the relative toxicity of various PM components, focusing on sulfate, 
nitrate, OCM, and EC, but also considering metals, which do not contribute substantial 
mass to the total but remain of interest given evidence about their effects and potential 
interactions with the high-mass components (e.g., the tendency of metals to bind with 
sulfates and potentially become more bioavailable).   

5.4.1.1  Su l fate   

Sulfate is the PM component with the greatest body of literature examining its toxicity to 
date.  Epidemiological studies (both time-series and long-term cohort) as well as 
toxicological studies have been conducted that include effect estimates for PM and 
sulfates, allowing (in theory) for assessments that evaluate the toxicity of sulfate relative 
to the total mass.  In a recently published paper reviewing studies on sulfates, Reiss et al. 
(2007) found 48 risk estimates for PM2.5 and sulfate across 11 time-series 
epidemiological studies.51  Five of the 11 studies had at least one statistically significant 
endpoint for sulfate (versus 8 of the 11 studies for PM2.5), so from a significance 
standpoint, the evidence appears weaker for sulfate than for PM2.5.  

However, statistical significance is only one component of the type of comparison that 
would be necessary, with the size of the C-R function also being of great interest. 
Focusing on all-cause mortality, the magnitude of effects with sulfate from the time-
series studies reported in Reiss et al. (2007) range from no association up to a relative risk 
(RR) of 1.2 for a 10 µg/m3 change in sulfate, a generally similar range as observed for 
PM2.5 as a whole in those same studies. Taking the eight studies listed in Reiss et al. that 
had quantified sulfate relative risks and PM2.5 relative risks, one can perform an inverse-
variance weighted pooling, using methods to account for potential heterogeneity in effect 
estimates.52  This results in a pooled central estimate of a 1.2% increase in mortality per 
10 g/m3 increase in PM2.5 (95% CI: 0.7%, 1.7%) vs. a 2.0% increase in mortality per 10 
g/m3 increase in sulfate (95% CI: 0.3%, 3.8%), which shows that sulfate has a higher 
central estimate than PM2.5 as a whole, but with wider confidence intervals (and 
overlapping confidence intervals for both C-R functions). 

Some subsequent time-series studies not included in Reiss et al. (2007) have shown 
effects of sulfate on mortality (i.e., Maynard et al., 2007; Franklin and Schwartz, 

                                                      
50 National Research Council., op. cit. 

51 Reiss, R. et al., 2007. Evidence of Health Impacts of Sulfate-and-Nitrate-Containing Particles in Ambient Air. Inhalation 

Toxicology. Vol.  19(5): 419-449.  

52 DerSimonian, R., Laird, N. (1986). Meta-Analysis in Clinical Trials. Controlled Clinical Trials, 7: 177-188. 
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2008).53,54 A multi-city study examining factors explaining variability in the relationship 
between PM2.5 and mortality concluded that cities with a higher proportion of sulfate (as 
well as aluminum and nickel) tended to have higher PM2.5 C-R functions (Franklin et al., 
2008).55 However, a multi-city study focusing on hospital admissions found no 
associations between sulfate and either respiratory or cardiovascular admissions (Bell et 
al., 2009).56 In addition, panel studies have found associations between short-term 
exposures to sulfate and markers of cardiovascular disease (e.g., Luttmann-Gibson et al., 
2006; Sarnat et al., 2006; and O’Neill et al., 2005).57,58,59 

Some evidence also exists for an association between mortality and sulfates in long-term 
cohort epidemiological studies.  Positive relative risks for sulfate in relation to all-cause 
mortality were found in the American Cancer Society (ACS) cohort study (Pope et al., 
1995) and its extended analysis (Pope et al., 2002).60,61 Within the ACS study, the relative 
risk for sulfate was generally slightly greater than that for PM2.5 per unit concentration. 
Similarly, in the Harvard Six Cities study (Dockery et al, 1993; Krewski et al., 2000), 
effects for sulfate were similar to those for PM2.5 as a whole, with a greater C-R function 
per unit concentration, although with a smaller number of sites and high correlations 
between sulfate and PM2.5, it would be difficult to separate out the effects.62,63  

                                                      
53 Maynard, D.,  B.A. Coull, A.Gryparis, and J. Schwartz.  2007. Mortality Risk Associated with Short-Term Exposure to Traffic 

Particles and Sulfates.  Environ Health Perspect. Vol. 115(5): 751–755. 

54 Franklin, M. and Schwartz, J. 2008.  The Impact of Secondary Particles on the Association Between Ambient Ozone and 

Mortality.   Environ Health Perspect. Vol. 116(4):453-8. 

55 Franklin, M. et al., 2008. The Role of Particle Composition on the Association Between PM2.5 and Mortality. Epidemiology. 

Vol. 19(5): 680-689. 
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Thus, the epidemiological evidence to date appears supportive of an effect of sulfate 
particles on health outcomes, with modest but inconsistent evidence that the C-R 
functions per unit concentration may be slightly greater than for PM2.5 as a whole. 
However, these results have not generally been supported by the toxicological database 
consisting of controlled animal and human clinical exposure studies.  A comprehensive 
review of such literature by Schlesinger and Cassee (2003) concluded that “[e]valuation 
of the toxicological database suggest that [sulfates] have little biological potency in 
normal humans or animals, or in the limited compromised animal models studied at 
environmentally relevant levels.”64  That being said, Schlesinger and Cassee temper their 
conclusion somewhat by raising the important point that the physicochemical 
characteristics of sulfates in these controlled studies differ somewhat from those to which 
humans are exposed. In addition, the controlled human exposure studies within this 
review do not (and generally could not) include the most sensitive subpopulations, who 
may be responsive at different levels or in different ways when compared with healthy 
populations. That being said, other recent review studies have made similar conclusions, 
indicating that the toxicological data linking sulfates to health effects have not found 
significant toxicity at ambient exposure levels (Schwarze et al., 2006; Grahame and 
Schlesinger, 2007).65,66  

A portion of this inconsistency between the epidemiological and toxicological evidence 
may be attributable to the fact that exposures to ambient sulfate invariably occur in 
combination with a variety of other components, which are often not captured in 
toxicological studies. Beyond the usual complications of finding concordance between 
epidemiology and toxicology, this reflects the specific difficulty in trying to assign 
relative toxicity values to each individual component given that people are exposed to 
numerous components simultaneously. Hypothetically, if it were true that sulfates were 
not toxic when people were exposed to them in isolation, but that they enhanced the 
potency of metals that were ubiquitous in the atmosphere, reductions in sulfate 
concentrations would tend to lead to public health benefits, and this would need to be 
addressed within health benefits analysis.  

5.4.1.2  N itrate   

Nitrate has not been as extensively studied as sulfate in terms of epidemiological or 
toxicological evidence.  The limited time-series studies that have included nitrates in their 
analyses have found statistically significant results for all-cause and/or cardiovascular 
mortality (Fairley 2003; Ostro et al., 2007; Hoek, 2003).67,68,69 A recent study of 
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cardiovascular mortality in southern California did find a significant effect of nitrate with 
a nearly identical C-R function as PM2.5 as a whole, although interpretation is 
complicated by the high correlation between nitrate and PM2.5 in California (Ostro et al., 
2008).70 A multi-city study focusing on hospital admissions found a weak positive 
association with cardiovascular hospital admissions and no association with respiratory 
hospital admissions (Bell et al., 2009).71  Nitrate has not been included in large, long-term 
cohort studies.  

An extensive review study examining toxicological data on the health effects of nitrate 
concluded that these studies have not found effects at ambient exposure levels 
(Schlesinger and Cassee, 2003).72  However, the limited database for nitrate makes it 
difficult to make conclusions about its possible effects, and similar issues exist in 
interpreting toxicological evidence for nitrate as described for sulfate above. 

5.4.1.3  EC/OC 

There is limited epidemiological evidence supporting the development of C-R functions 
between elemental or organic carbon and mortality or morbidity.  Cardiovascular 
mortality was found to be associated with EC and OC in California in Ostro et al. (2007) 
and with EC in Phoenix in Mar et al. (2000 & 2003).73,74 EC and OC showed effects in a 
recent study of cardiovascular mortality in southern California that were slightly weaker 
than those of PM2.5 as a whole (Ostro et al., 2008).75 Coefficient of haze (CoH) was used 
as a proxy for EC in a study in Canada, which found a positive but statistically weak 
association between CoH and daily mortality (Burnett 2000 & 2003).76 In a multi-city 
study, EC was associated with increased cardiovascular and respiratory hospital 
admissions, while OC was weakly associated with respiratory hospital admissions and not 
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with cardiovascular admissions (Bell et al., 2009).77 No association has been found in 
some panel studies looking at markers of cardiovascular health (e.g., Luttmann-Gibson et 
al., 2006; Sarnat et al, 2006), although other studies have demonstrated links with ST-
segment depression (Gold et al., 2005) and myocardial repolarization (Henneberger et al., 
2005).78,79,80,81  

Thus, this literature does not demonstrate either the size or consistency necessary to 
determine quantitative relative toxicity values, but there is clearly no basis to exonerate 
EC or OC as a contributor to PM2.5 health effects.  

Studies examining the health effects of diesel exhaust from on-road and non-road 
vehicles may provide some additional insight into the health effects of EC and OC.  The 
exhaust from new diesel vehicles (post-1990) has been found to be comprised of 75 
percent (33- 90 percent) EC and 19 percent OC (7-49 percent) (USEPA, 2002).82  In 
2002, EPA published the “Health Assessment Document for Diesel Engine Exhaust,” 
which was a comprehensive review of potential health effects from ambient exposure to 
exhaust from diesel engines (USEPA, 2002).83  This document indicates that there is 
limited animal and human data showing short-term effects, such as neurophysiological 
symptoms (lightheadedness, nausea) and respiratory symptoms (cough, phlegm) as well 
as exacerbation of allergic responses and asthma-like symptoms.   

Chronic effects of diesel exhaust have been studied in occupational cohort studies.  
Results of these studies show increased risk of respiratory symptoms (Gamble et al., 
1987; Reger et al., 1982; Attfield et al., 1978) but do not indicate a consistent effect on 
pulmonary function (Battigelli et al., 1964; Ames et al., 1984; Attfield et al., 1982; 
Gamble et al., 1983).84,85,86,87,88,89,90  However, these studies suffer from a number of 
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methodological issues such as incomplete information on diesel exhaust exposure, the 
presence of confounding factors, and short duration and low intensity of exposures.  
Several occupational cohort studies have also found a relationship between diesel exhaust 
and lung cancer mortality (e.g., Saverin et al., 1999; Hansen et al., 1993; Gustavsson et 
al., 1990).91,92,93 However, it is difficult to directly apply findings from occupational 
cohort studies to the general population, especially for outcomes such as chronic 
respiratory disease and given the goal to establish quantitative population C-R functions. 

5.4.1.4  Meta ls  

According to the HEI report, “Understanding the Health Effects of Components of the 
Particulate Matter Mix: Progress and Next Steps,” metals are an important component of 
the PM mass of urban air in many settings (HEI, 2002).94  Even though they generally 
constitute a small fraction of the total PM mass in most US settings, this component could 
be important to investigate given a small but growing base of epidemiological and 
toxicological evidence, and given that metals may be bound to other components 
comprising a greater portion of the total mass. 

Limited epidemiological evidence exists examining the health effects of metals.  Burnett 
et al. (2000) found that iron, nickel, and zinc were associated with increased mortality.95 
In fact, these metals were better predictors for mortality than total mass.  In addition, 
Ostro et al. (2007) found positive statistically significant associations between daily 
mortality and iron, copper, vanadium, and zinc.96 Franklin et al. (2008) determined that 
PM2.5 mortality C-R functions were higher when the mass contained more aluminum, 
arsenic, and nickel.97 Bell et al. (2009) found that communities with higher levels of 
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nickel and vanadium had elevated C-R functions for PM-related hospitalizations, a 
finding supported by others (Lippmann et al., 2006).98,99  

Experimental studies on humans and animals suggest that metals could play an important 
role in both pulmonary inflammation and cardiovascular effects induced by PM 
(Schwarze et al, 2006).100  For instance, in vitro and in vivo studies performed on PM 
filter extracts from Utah Valley in an area near a steel mill have documented pulmonary 
injury or inflammation (Ghio et al., 2004; Dye et al., 2001; Frampton et al., 
1999).101,102,103  These particles have been found to contain high levels of iron, copper, 
nickel, lead and zinc.  In addition, several experimental studies suggest that metals could 
play a role in PM-induced cardiovascular effects.  For example, copper, zinc and 
vanadium have been shown to induce a range of cardiovascular effects, such as 
vasoconstriction and vasodilation (Graff et al., 2004; Li et al., 2005; Bagate et al., 2004). 
104,105,106 

According to Schwarze et al. (2006) in a review of the effects of metals, study approaches 
to date have not been able to pinpoint a specific metal or group of metals responsible for 
the health effects of PM; however, “vanadium, zinc, iron, copper and nickel stand out as 
potentially more important than other metals.”107 

5.4.1.5 Summary 

There is a limited but growing literature addressing the health effects of various PM 
components, including (but not limited to) sulfate, nitrate, EC, OC, and metals. The 
conclusions are generally mixed for all individual components, with none either showing 
consistently greater effects than PM as a whole or demonstrating that they should not be 
assigned any toxicity. However, the epidemiological evidence base is clearly limited by 
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the high correlations among many PM components (and between those components and 
PM as a whole), and it is difficult to corroborate this evidence toxicologically given the 
fact that human exposure to single particle components is not a realistic scenario. More 
generally, for this evidence base to be applicable to a differential toxicity analysis, it 
would need to be able to provide quantitative C-R functions for all of the key 
components, derived in a manner so that the total reflected the observed effects of PM2.5 
and so that the estimates reflected possible interactions among components. The evidence 
base cannot currently support this sort of assessment.  

5.4.2  SOURCE-ORIENTED EVALUATIONS 

In light of the high correlations among various particle components, often owing to 
common sources, a smaller number of studies have used factor analyses and other 
techniques to determine latent source contributions that can be related with health 
outcomes (Laden et al, 2000; Mar et al., 2000). 108,109 These studies typically relate daily 
concentrations of PM components and gaseous co-pollutants to underlying source types 
(e.g., motor vehicle emissions, soil, etc.), using weighted linear combinations of 
associated individual variables. Although the results differ somewhat across studies, coal 
and oil combustion, vegetation burning, and motor vehicle emissions tend to be positively 
associated with mortality, whereas crustal particles tend to have a lesser association with 
mortality.  

This approach is appealing in many respects, as EPA is evaluating the benefits of control 
strategies targeting specific sources, and these sorts of analyses can provide insight about 
which sources are most strongly associated with health outcomes. However, from a 
benefits analysis perspective, these evaluations have a number of limitations, and are 
unlikely to yield the evidence necessary for a quantitative differential toxicity analysis.  

For example, emissions controls and technological changes may lead to changes in 
relative concentrations of components over time, complicating the application of a factor-
specific C-R function to prospective analyses. For example, the study by Laden et al. 
(2000) used monitoring data from 1979-1988, at which point lead still served as a 
reasonable target element for a motor vehicle factor. 110 This term would not be directly 
applicable to the 812 prospective analysis, whose study period post-dates the phase-out of 
lead in gasoline. With the numerous regulations that have been implemented or 
promulgated over the years, it is unlikely that a “source” characterized at a given point in 
time would be directly applicable to a future scenario.  

More generally, it is impractical to link the results of these studies with the outputs 
obtained from a dispersion model, a necessary condition for application in health benefits 
analysis. For example, if a study predicted a coal-related PM factor loading heavily on 
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sulfur and selenium, characterizing those emissions and modeling those concentrations 
can prove challenging. Relatedly, the relative contribution of components from a source 
would vary by distance, complicating the application of a source-specific signature at a 
given receptor, which would not be the same as the composition of emissions or the 
signature at a different distance from a source.  

Also, any individual PM component may come from a variety of sources. Correlated 
concentrations and multiple sources of specific components complicate the identification 
of individual effects of various PM2.5 components on a national scale (Bell et al, 2007).111 
Thus, while these studies have tremendous value in interpreting the epidemiological 
literature, they are not likely to be practical for health benefits analysis.  

Despite improved monitoring and a growing database of speciated PM data, significant 
challenges and uncertainties remain when trying to address the issue of differential 
toxicity within benefits analysis. For a number of reasons, even with the growth of 
epidemiological evidence utilizing speciated PM data, it may remain challenging to 
provide quantitative C-R functions for individual PM components. The reasons for this 
include: 

 Components may interact; effects may not be a linear combination of exposures 
and may depend on particular combinations of components.  Epidemiological 
studies have not modeled nonlinear combinations, and it would be challenging to 
capture synergistic or antagonistic effects of particle combinations in light of the 
numerous covarying exposures, the size of the anticipated signal, and the lack of 
biological understanding of the potential interactions. 

 It will remain difficult for the foreseeable future to assess the concordance of 
epidemiological and toxicological results.  Even if toxicological studies or 
controlled human exposure studies could determine that specific particle 
components (e.g., nitrate) do not produce adverse effects at ambient 
concentrations, it would be difficult for such studies to capture phenomena where 
particles may be heterogeneous combinations of multiple components, and where 
some particles may act as carriers for some chemical or biological toxic agent. 
The increasing use of concentrated ambient particles (CAPs) provides a realistic 
ambient aerosol for toxicological studies, but has difficulty in separating out the 
effects of individual components in a way that would be useful for benefits 
analysis. 

 Data remain limited on the spatial and temporal variability of PM2.5 components, 
though as noted above, progress is being made here based on the growing 
speciation network (Bell et al. 2007). 112  

 Even when epidemiological evidence is derived from the speciation network, the 
C-R functions for different components will vary by site, and it is difficult to 
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determine the extent to which this is related to potential unique aspects of PM 
composition in each location or to random variability. More generally, in multi-
city comparisons using between-city differences to evaluate differential toxicity, 
it is difficult to isolate the exclusive effect of differential toxicity, given other 
important effect modifiers and confounders that exist in site-specific studies (e.g., 
concentration-exposure relationships modified by air conditioning prevalence, 
vulnerability distributions).  

 Control strategies would remove a combination of components that may not be 
the same as the combinations observed in prior epidemiological or toxicological 
studies. Understanding the effects of sulfate particles in the past may not be the 
same as understanding the benefits of removing sulfate particles from the current 
atmosphere. 

These are daunting challenges that are not likely to be resolved soon. However, the 
literature on the health effects of individual components or component mixtures is 
growing rapidly, and one could consider how the current epidemiological evidence base 
could be used to construct sensitivity analyses that remain notional but are logically 
consistent, as well as how an “ideal” epidemiological evidence base could be used in the 
future to provide an empirical basis for differential toxicity sensitivity analyses.  

In general, these sorts of analyses are likely to rely on time-series estimates for mortality 
and morbidity, given a sufficient number of studies and sites to formally and 
quantitatively explore differential toxicity. There are relatively fewer cohort studies, and 
as described above, only a handful of PM component estimates from those studies. In 
addition, the differential toxicity analyses would most likely be derived from meta-
analyses of single-city epidemiological studies, or from multi-city investigations using 
Bayesian hierarchical models or related methods, depending on the nature of the available 
evidence. The latter approach might be preferable, since individual epidemiological 
studies may report only a subset of components, potentially biasing pooled estimates, but 
meta-analytic approaches can provide valuable insight in the absence of large multi-city 
studies. 

In either case, this would allow for pooled estimates to be developed for a number of 
individual components, as done in studies such as Bell et al. (2009). 113 Figure 3 from this 
paper is replicated below, as it helps to illustrate the potential and pitfalls of such 
investigations. 
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In principle, functions such as these could be used to directly estimate C-R functions for 
individual PM components. However, this does not account for the covariance among 
components. For example, ammonium would generally be found bound to either sulfate 
or nitrate, and many particles covary due to common sources or atmospheric processes. 
Moreover, if C-R functions were developed per g/m3 (as would be necessary for a 
differential toxicity assessment), the values would vary enormously across components, 
mostly within confidence intervals that are quite large. Focusing on only the high-mass 
components would make this problem somewhat less intractable, but the uncertainties 
would remain large in any relative toxicity assessment.  

For example, just focusing on EC and V for cardiovascular hospital admissions (which 
are both statistically significant, reducing uncertainties in the relative toxicity 
comparison), Bell et al. report a 25.8% increase per interquartile range increase of EC 
(95% CI: 4.4%, 47.2%), versus a 27.5% increase per interquartile range increase of V 
(95% CI: 10.6%, 44.4%). Given interquartile ranges of 0.245 g/m3 for EC and 0.001 
g/m3 for V, a literal interpretation of these functions implies potency for V that is over 
200 times that of EC using the central estimates. If these confidence intervals were 
uncorrelated, a simple simulation method analysis indicates that the 95% confidence 
interval for the ratio of V potency to EC potency is (-380, 1,900). If the confidence 
intervals were correlated at the level of correlation between EC and V (0.33), the 95% 
confidence interval for the ratio would be (-13, 1,400). Even assuming a correlation of 
0.90, the 95% confidence interval would be approximately (100, 730).  

Clearly, these specific results are dependent on a single study and its values. However, it 
has been documented previously that comparing ratios of two uncertain distributions will 
have an extremely large confidence interval, to the extent that estimates of relative 



Second Section 812 Prospective Analysis 
March 2011 

 

 

 5-19 

potency using central estimates would be highly misleading (Finkel, 1995). 114 Thus, even 
“gold standard” epidemiological studies with component data would likely yield relative 
toxicity values that are quite uncertain. These uncertainties could be reduced if the 
original studies directly estimated relative potency values, rather than having them 
interpreted after the fact from published studies.  

5.6  CONCLUSIONS 

We conclude that the current evidentiary base from the epidemiological and toxicological 
literatures is insufficient to support a meaningful policy-relevant analysis of the 
implications of estimating avoided mortality using C-R functions based on individual PM 
components instead of PM2.5 mass.  The epidemiological evidence collected to date 
provides limited and inconsistent evidence on the relative potency of the key PM 
components that are both a significant contributor to, and co-vary with, total PM mass.  
These data gaps would limit the informativeness of even the most straightforward (linear) 
combination of potencies.  Furthermore, the available epidemiological and toxicological 
evidence suggests that we are dealing with a much more complex system of particle 
interactions that could be improperly characterized by a simple linear combination 
approach.  Characterization of any of these more complicated “what if” potency scenarios 
would require more support from the epidemiological and toxicological literatures and 
more detailed air quality modeling data on metals and other PM components. 

The current data gaps are significant.  Advancements that would be needed to undertake a 
meaningful and interpretable policy relevant treatment of uncertainty in the potency of 
individual PM components include:  

Epidemiology.  Improved epidemiology is key to development of the population C-R 
functions.  The ideal study of differential toxicity would be a multi-city epidemiological 
investigation with sufficient information about particle composition and related exposures 
(varying over both time and location), good characterization of vulnerable populations, 
and good specificity in health outcomes (with characterization of multiple such 
outcomes). Useful studies would need to be able to provide quantitative concentration-
response functions for all of the key components, both those that co-vary with PM mass 
and others (e.g., metals) that have been implicated in existing studies, derived in a manner 
so that the total reflected the observed effects of PM2.5 and so that the estimates reflected 
possible interactions and correlations among components.  For reasons discussed above, 
studies that provide estimates of potency of individual components from single pollutant 
models are less useful due to extensive correlations among particles and the wide 
uncertainty bounds associated with developing potency ratios across such results.   

Multi-city epidemiological investigations or meta-analyses of numerous individual-city 
studies could also provide insights about differential toxicity by investigating 
compositional/correlational factors explaining between-city variability. Approaches could 
include meta-regression techniques or forms of cluster analysis, which have been 

                                                      
114 Finkel, A.M. 1995.  Towards Less Misleading Comparisons of Uncertain Risks: The Example of Aflatoxin and Alar. 

Environmental Health Perspectives, Vol. 103(4), 376-385.   
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successful in related analyses. However, as discussed above, such analyses would be 
challenged by the fact that numerous characteristics associated with exposures or 
outcomes vary across cities and regions, including weather, personal exposure patterns 
(driven by air conditioning and other factors), and vulnerability characteristics. Moreover, 
the relative consistency of estimates across settings in the present literature would 
indicate the likely challenges in such an assessment. However, such assessments would 
likely represent the only means for developing quantitative estimates of relative toxicity 
and should be explored. 

Source-oriented epidemiologic studies.  While these studies are intrinsically limited by 
the fact that source contributions vary spatially and by the challenges in linking source-
oriented epidemiologic studies with outputs from atmospheric models used in health 
benefits analysis, there may be limited settings in which such studies would be fruitful. 
Specifically, in the near-roadway environment, epidemiological studies that characterize 
the contribution from various traffic sources could ultimately be applied in the narrow 
context of evaluating the health benefits for near-field populations associated with 
primary pollutant control strategies. Factor-analytic approaches would need to be 
developed jointly with atmospheric model refinements to ensure that the relevant 
pollutants could be characterized and that the correlation structures implicit in the source-
oriented factors exist within the designated receptor domain. 

Toxicology. While not likely to provide the basis for the C-R function, sound toxicology 
is needed to provide corroboration of biological plausibility and mechanisms of disease 
and to contribute to our understanding of uncertainty in potency estimates.  In theory, 
sound toxicological evidence could help to determine the subset of constituents plausibly 
associated with targeted health outcomes, allowing for other constituents to be dismissed 
as non-causal and therefore excluded from epidemiological investigation. However, 
developing such toxicological evidence would be challenging. Future studies should not 
focus on the toxic effects of exposures to individual components; rather they should focus 
on mixtures, doses, and outcomes (e.g., cardiovascular disease and mortality) that would 
be relevant to the exposures experienced in epidemiological studies.  Ideally these would 
be conducted on animal populations with disease models that capture particularly 
vulnerable individuals.  Toxicological studies that are conducted in parallel with multi-
city epidemiological studies and that evaluate exposures to PM samples collected from at 
least a subset of the cities being studied could help provide useful corroborating 
toxicological evidence that may identify key elements of more potent PM mixtures. 

Air Quality Modeling.  As attention shifts towards the role of components such as 
metals that contribute less mass to overall PM2.5, or to components that may be prominent 
indicators of key PM sources, air quality models need to adapt to model the transport and 
transformation of these components to produce concentration estimates that could be 
coupled with more traditionally modeled PM components in a benefits analysis. 
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CHAPTER 6  |  PARTICULATE MATTER/MORTALITY CESSATION LAG 

6.1 SELECTION OF PM/MORTALITY LAG STRUCTURES 

Based in part on prior advice from the Advisory Council on Clean Air Compliance 
Analysis (hereafter, the Council), EPA typically assumes that there is a time lag between 
reductions in particulate matter (PM) exposures in a population and the full realization of 
reductions in premature mortality.  Within the context of benefits analyses, this term is 
often referred to as “cessation lag.”  The existence of such a lag is important for the 
valuation of reductions in premature mortality because economic theory suggests that 
dollar-based representations of health effect incidence changes occurring in the future 
should be discounted.  We applied a five percent discount rate to calculate the net present 
value of a stream of future benefits that begins in each target year of the analysis (i.e., 
2000, 2010, or 2020).    

The Project Team explored the effect on monetized benefits of model uncertainty related 
to the cessation lag for PM-related reductions in mortality risk.  We selected two 
alternative cessation lag structures to include in our analysis in addition to the default lag 
employed in the primary 812 benefits assessment (the 20-year distributed lag).  The 
default lag and one of the alternative lags (five-year distributed lag) have been used by 
EPA in previous benefits analyses and are step functions.  The third is a new alternative 
lag structure, which we developed based on an exponential decay function (hereafter, the 
“smooth function”).  We describe below the default cessation lag structure as well as the 
two alternative structures and the rationale for including them in the analysis. 

6.1.1  DEFAULT TWENTY-YEAR DISTRIBUTED LAG 

The 20-year distributed lag, which is applied in the integrated report, assumes that 30 
percent of the total mortality reductions occur in the first year, 50 percent are distributed 
evenly among years two through five, and the remaining 20 percent are distributed evenly 
among years six through 20.  In 2002, the National Research Council (NRC) of the 
National Academy of Sciences evaluated EPA’s use of the five-year distributed lag model 
in previous air pollution benefits analysis and found little justification for the five-year 
time course of exposure and outcome.  In response to the NRC report, the EPA identified 
three alternative options in the analytic blueprint for the Second Section 812 Prospective 
Study:115  (1) the currently employed five-year distributed lag, (2) an alternative based on 
a range of lag structures from zero to 20-30 years, and (3) construction of a 3-parameter 
Weibull distribution configured to match (undefined) expected low, most likely, and 

                                                      
115 US EPA (2003). Benefits and Costs of the Clean Air Act 1990-2020: Revised Analytical Plan for EPA’s Second Prospective 

Analysis. Prepared by Industrial Economics, Inc for the Office of Policy Analysis and Review. 
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expected high values.  The EPA requested comment from the Council’s Health Effects 
Subcommittee (HES) on these three approaches. 

In a March 2004 advisory report, the Council HES provided an in-depth assessment of 
the cessation lag issue and the three approaches put forth by the EPA.116  This report 
echoed the earlier reports by the HES predecessor, the Health and Ecological Effects 
Subcommittee (HEES), and NRC in noting that the empirical evidence is lacking to 
inform the choice of lag distribution directly and further, that there is little evidence 
supporting a five-year cessation lag structure.  The Council HES urged the EPA “to begin 
to move from the relatively arbitrary assumptions of the five-year lag structure to an 
approach based on some plausible models of the disease process involved,” and goes on 
to state that lacking direct empirical evidence, “new insights regarding the shape of the 
cessation lag can only come from improved understanding of the mechanism of the 
exposure-response relationship.”  Taking this advice into consideration and working with 
the Office of Management and Budget (OMB) on the non-road diesel rule, EPA identified 
an alternative lag structure that assumes 20 percent of the mortality reductions occur in 
the first year, 50 percent are distributed evenly among years two through five, and the 
remaining 30 percent are distributed evenly among years six through 20.   

A December 6, 2004 letter from the Council reviewed the 20-year lag proposed by the 
EPA and states that “this proposal is broadly consistent with our recommendations, and 
preferable to the five-year distributed lag used earlier,” but suggests a slight 
modification.117 Based on the air pollution evidence, which is generally suggestive of 
greater impacts in the first year, and some recent evidence from intervention studies, 
which suggest that substantial benefits might occur in the first year, the Council 
recommended that the EPA use a 20-year lag structure, where 30 percent of the mortality 
reductions occur in the first year, 50 percent are distributed evenly among years two 
through five, and the remaining 20 percent are distributed evenly among years six 
through 20.  This is the 20-year lag structure applied as the basis for the primary benefits 
estimate. 

6.1.2  F IVE-YEAR DISTRIBUTED LAG 

The first alternative lag structure we employed as one of our alternatives is a five-year 
distributed lag structure, which was used in The Benefits and Costs of the Clean Air Act, 
1990 to 2010 and in other rulemaking analyses, such as the Heavy Duty Diesel 
Regulatory Impact Analysis (RIA) and the Tier II Motor Vehicle Emissions Standards 

                                                      
116 Science Advisory Board (2004). Advisory on Plans for Health Effects Analysis in the Analytical Plan for EPA’s Second 

Prospective Analysis—Benefits and Costs of the Clean Air Act, 1990-2020:  Advisory by the Health Effects Subcommittee of 

the Advisory Council on Clean Air Compliance Analysis. EPA-SAB-COUNCIL-ADV-04-002. 

117 Science Advisory Board (2004). Advisory Council on Clean Air Compliance Analysis Response to Agency Request on 

Cessation Lag.  Letter from the Health Effects Subcommittee to the U.S. Environmental Protection Agency Administrator, 

December. 
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RIA.118  The five-year distributed lag assumes that 25 percent of the mortality reductions 
occur in the first year, an additional 25 percent occur in the second year, and the 
remaining 50 percent are distributed evenly among years three through five.  This five-
year distributed lag structure was adopted by EPA in 1999 after review of various 
structures by the HEES.  EPA asked the HEES to consider three lag options:  (1) a zero 
lag, the current practice at the time, (2) a five-year distributed lag, which had been used in 
an illustrative analysis in the proposed Tier II RIA and (3) a 15-year lag proposed by 
OMB that assumed all incidence changes occur in the 15th year following the change in 
exposure.  The HEES concluded that the five-year distributed lag was preferable to the 
zero and 15-year options, both of which they considered implausible.  The HEES also 
indicated that available data on smoking cessation generally supported the five-year 
distributed lag (although it did not provide any specific citations).  The health effects of 
PM exposure are similar to other long-term inhalation exposures, such as cigarette 
smoking.  Therefore, HEES considered information from the smoking cessation literature 
relevant to the PM/mortality cessation lag question. 

6.1.3  SMOOTH FUNCTION LAG 

In its 2004 letter recommending a 20-year lag structure, the Council urged EPA to review 
and keep abreast of the emerging literature in this area, including information from the 
smoking cessation literature; provide the best available justification for the lag structure 
used; and strongly consider conducting sensitivity analyses of other possible lag 
structures.  Specifically, the Council indicated that EPA should consider using smoothed 
distributions.  In response to these suggestions, the Project Team performed a literature 
review that included studies published since 2004.  Using the PubMed search engine 
(www.pubmed.gov), we searched for articles related to PM/mortality cessation lag as 
well as recently published papers on smoking cessation and environmental tobacco 
smoke (ETS) exposure cessation. 

Through our search of literature exploring the PM/mortality cessation lag, we identified a 
2005 paper by Roosli et al.119  The authors of this study developed a smooth function lag 
that  assumes that mortality risks decrease exponentially after exposure termination.  This 
assumption is based on the fact that an exponential model is often observed in biological 
systems.  We chose to base our third lag structure on the approach employed by this 
paper because it allowed us to use data from existing PM/mortality cohort studies as well 
as intervention studies as described further below.  In addition, its use is consistent with 

                                                      
118 United States Environmental Protection Agency (1999). The Benefits and Costs of the Clean Air Act 1990 to 2010. EPA 

Report to Congress. 

 United States Environmental Protection Agency (2000). Regulatory Impact Analysis: Heavy-Duty Engine and Vehicle 

Standards and Highway Diesel Fuel Sulfur Control Requirements. Office of Air and Radiation. EPA420-R-00-026. 

 United States Environmental Protection Agency (1999). Regulatory Impact Analysis - Control of Air Pollution from New 

Motor Vehicles: Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements. Office of Air and 

Radiation. EPA420-R-99-023. 

119 Roosli, M., N. Kunzli, et al. (2005). Years of life lost attributable to air pollution in Switzerland: dynamic exposure-

response model. International Journal of Epidemiology 34(5): 1029-35. 
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the Council’s advice to explore smoothed distributions.  Details of the lag structure are 
provided below. 

6.1.3.1 Descr ipt ion of  the Roosl i  Model  

Roosli et al. developed a dynamic model that estimates the course of mortality after a 
sudden reduction of air pollution exposure.  The model assumes an exponential decrease 
of risk of death after exposure termination at time t0, of the form ktrisk  exp , where k 
is the time constant and t is the time after t0.  The relative risk from air pollution (RR) at a 
given time (t) can be calculated from the excess relative risk (ERR) attributable to air 
pollution from PM cohort studies ( 0RRRERR  ), as follows: 

  0exp RERRtRR kt   ,       (1) 

where R0 is the baseline relative risk in the absence of air pollution (R0 = 1).  After 
cessation of exposure, mortality will start to decline and approach the baseline level.  The 
change in mortality (ΔM), in units of percent-years, can be derived from Equation (1) as 
follows: 

     (2) 

 

 

Estimates of ΔM can be obtained from PM intervention studies.  Integrating Equation (2) 
gives: 

kt

k

ERR

k

ERR
tERRM  exp .      (3) 

6.1.3.2 Appl icat ion of  the Roosl i  Model  

We first identified possible PM cohort studies to use as the source of ERR values in 
Equation 3.  We included the follow-up analyses of the two major existing cohorts, the 
Six Cities Cohort (Laden et al., 2006) and the American Cancer Society (ACS) Cohort 
(Pope et al., 2002).120,121  We standardized the published RR estimates from these two 
studies to represent a 10 µg/m3 increase in PM10.

122  In addition, we used the primary 
estimate of the PM/mortality concentration-response (C-R) function used in the integrated 
report, which is based on a Weibull distribution of C-R coefficients with a mean of 1.06 
percent decrease in annual all-cause mortality per 1 μg/m3 and an interquartile range 
bracketed approximately by the Pope et al. 2002 ACS estimate (0.55 percent) on the low 

                                                      
120 Pope, CA III, et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air 

pollution. JAMA 287: 1132-1141. 

121 Laden, F., et al. (2006). Reduction in fine particulate air pollution and mortality – Extended follow-up of the Harvard Six 

Cities Study. Am J Respir Crit Care Med 173: 667-672. 

122 In order to convert the published RRs from PM2.5 to PM10 , we used the same factor used in the Roosli et al. analysis of 

1.33. 
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end and the Six Cities Laden et al., 2006 extended follow-up estimate (1.5 percent) at the 
high end.   

We then collected information from PM intervention studies to develop estimates of ΔM 
for Equation 3.  In particular, we relied on data on the time course of the change in 
mortality from two PM intervention studies to determine ΔM.  Clancy et al. (2002) 
analyzed the change in mortality in Dublin following the ban of coal sales (hereafter, the 
“Dublin Coal Ban” study).123  This study found a 1.6 percent decrease in mortality per 10 
μg/m3 PM10 over a six-year period, resulting in a ΔM of 0.1 percent-years (0.016 × 6).  A 
study by Pope et al. (1992) examined the change in mortality resulting from the closure of 
a steel mill in the Utah Valley (hereafter, the “Utah Valley” study).124  This study 
reported a 2.1 percent decrease in mortality per 10 μg/m3 PM10 over a 13-month period 
(corresponding to a ΔM of 0.02 percent-years (0.021 × 1.083)).125   

We iteratively solved Equation (3), to calculate values for the time constant, k, using the 
ΔM values from the two intervention studies along with the ERR values from the two 
cohort studies.   

Finally, to address the Council’s suggestion to incorporate data from the smoking 
cessation literature, we also used information from a study that developed a dynamic 
model that took into account the decrease in risk after the termination of an exposure to 
air pollution using smoking cessation as a proxy for air pollution exposure (Leksell and 
Rabl, 2001).126,127,128  This study relied on a time constant of 9.55 years, which was based 
on studies examining the body’s ability to repair the damage after an individual stops 
smoking.  This was derived by calculating a weighted average of a time constant of 1.5 
years for acute myocardial infarction and stroke (Lightwood and Glantz, 1997; weighted 
with 0.3) and a time constant of 13 years for total mortality (Doll et al., 1994; weighted 
with 0.7).129,130    

                                                      
123 Clancy, L., P. Goodman, et al. (2002). Effect of air-pollution control on death rates in Dublin, Ireland: an intervention 

study. Lancet 360(9341): 1210-4. 

124 Pope, C.A., J. Schwartz, M.R. Ransom. (1992). Daily mortality and PM10 pollution in Utah Valley. Archives of 

Environmental Health 47:211-17. 

125 Note that we also considered data from the Six Cities study update (Laden et al., 2006), which found a 27 percent 

decrease in mortality risk per 10 μg/m3-reduction of PM2.5 in Period 2 (1990-1998) when controlling for exposure in Period 1 

(1974-1989).  However, the value of k resulting from this estimate is very large and therefore is equivalent to applying no 

lag.  Therefore, we did not include this in our sensitivity analysis.     

126 Leksell, I. And Rabl, A. (2001). Air pollution and mortality: Quantification and valuation of years of life lost. Risk Analysis 

21(5): 843-857.  

127 An external reviewer, Lauraine Chestnut of Stratus Consulting, Inc., also recommended deriving a k value from Leksell and 

Rabl (2001).  Her comments and recommendations are summarized in a memorandum dated March 31, 2009 (Chestnut, 

2009).    

128 We were unable to identify any articles providing information on the length of the lag between the cessation of 

environmental tobacco smoke (ETS) exposure and mortality.  We identified several additional studies examining the change 

in health risks after cessation of smoking, however, few specifically estimated all-cause mortality effects. 

129 Lightwood, J.M. and Glantz, S.A. (1997). Short-term economic and health benefits of smoking cessation: Myocardial 

infarction and stroke. Circulation 96: 1089-1096. 
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We then used the derived values of k to calculate the decrease in risk after exposure 
termination using the following equation: ktrisk  exp .  Exhibit 6-1 below provides the 
k values we used in our uncertainty analysis as well as the studies underlying them. 

EXHIBIT 6-1.  VALUES OF THE TIME CONSTANT (k)  USED IN THE EXPONENTIAL DECAY 

PM/MORTALITY CESSATION LAG FUNCTION 

VALUE OF K COHORT STUDY INTERVENTION STUDY 

0.05 Six Cities1 Dublin Coal Ban2 

0.08 Primary Estimate Dublin Coal Ban 

0.10 Smoking Cessation Literature3 

0.15 ACS4 Dublin Coal Ban 

0.37 Six Cities Utah Valley5 

0.57 Primary Estimate Utah Valley 

1.24 ACS Utah Valley 
1 Laden, F., et al. (2006). Reduction in fine particulate air pollution and mortality – 
Extended follow-up of the Harvard Six Cities Study. Am J Respir Crit Care Med 173: 
667-672. 
2 Clancy, L., P. Goodman, et al. (2002). Effect of air-pollution control on death 
rates in Dublin, Ireland: an intervention study. Lancet 360(9341): 1210-4. 
3 Leksell, I. And Rabl, A. (2001). Air pollution and mortality: Quantification and 
valuation of years of life lost. Risk Analysis 21(5): 843-857. 
4 Pope, CA III, et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term 
exposure to fine particulate air pollution. JAMA 287: 1132-1141. 
5 Pope, C.A., J. Schwartz, M.R. Ransom. (1992). Daily mortality and PM10 pollution 
in Utah Valley. Archives of Environmental Health 47:211-17. 

 

Exhibit 6-2 below displays the relationship between the ERR and ΔM terms in Equation 2 
when deriving the k values.  Combining the ERRs from the cohort studies with the Dublin 
Coal Ban study (shown in the top three graphs) results in lower k values (i.e., a more 
gradual decline in risk) than when the Utah Valley intervention study is used.  This is 
because the Utah Valley study found a larger total decrease in mortality (2.1 percent 
versus 1.6 percent) within a shorter timeframe (13 months versus 6 years).  Therefore, the 
evidence from this study supports a cessation lag structure where deaths are accrued more 
quickly after the PM change.  In addition, for a given intervention study (and therefore 
ΔM), smaller ERRs result in higher k values.  For instance, the k derived from the 
combination of the Utah Valley intervention study and the Laden cohort study is 0.37, 
compared to a k of 1.24 from the Pope cohort study.  This is because in order to achieve 
the percent reduction in mortality found in the intervention study within the given 

                                                                                                                                                 
130 Doll, R., et al. (1994). Mortality in relation to smoking: 40 years’ observations on British doctors. British Medical Journal 

309: 901-911. 
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timeframe, t, a smaller ERR requires a more rapid decline to occur in the ERR(t) function, 
and hence a larger decay constant.    

6.2 CALCULATION OF MORTALITY INCIDENCE AND VALUATION USING LAG STRUCTURES 

BenMAP currently does not have the capability to apply a cessation lag to the mortality 
incidence results data.  Therefore, the Project Team constructed a spreadsheet that would 
apply alternate cessation lag models to the BenMAP results as a post-processing step.   

The spreadsheet uses the estimates of avoided deaths from BenMAP generated from the 
use of the Community Multi-scale Air Quality model (CMAQ) exposure model for each 
target year, along with an estimate of the default Value of a Statistical Life (VSL) of $7.4 
million in 1990 (in 2006$), and a five percent discount rate, to calculate the net present 
economic value of the modeled stream of monetized benefits under each lag 
assumption.131 

6.3   EFFECT OF ALTERNATIVE CESSATION LAG STRUCTURES 

The exponential decay function that we employed as a new alternative lag structure relies 
on time constant values derived from combining information from a particular PM cohort 
and intervention study pair.  Therefore, use of this smooth function implies that selecting 
an alternate C-R function will affect not only the total avoided mortality (as described in 
Chapter 4) but also the way in which that avoided mortality accrues over time following a 
change in exposure.  We first present the effects of applying the two step functions and 
the exponential functions derived from the primary C-R function to the mortality 
incidence results generated with the primary C-R function.  We also compare the results 
of applying the exponential decay function lag based on the smoking literature to the 
primary C-R function.  We next present the relative benefits resulting from applying the 
two step functions and the exponential decay functions derived from the Pope and Laden 
studies to the mortality incidence results generated from Pope and Laden C-R functions.   

6.3.1  CESSATION LAG RESULTS BASED ON THE PRIMARY C-R FUNCTION ESTIMATE 

Exhibits 6-3 and 6-4 show the difference in the timing of avoided deaths due to Clean Air 
Act Amendment (CAAA)-related PM2.5 changes in 2020 when applying the various 
cessation lag structures to the primary mortality incidence results.  Exhibit 6-3 shows the 
number of deaths that would occur in each year and Exhibit 6-4 compares the cumulative 
number of avoided deaths over time.  Exhibit 6-5 displays the mean valuation results 
using the default 20-year distributed lag and the percent change in valuation that occurs 
as a result of employing each of the alternative cessation lag structures.  We present 
below a summary of the key impacts of varying the cessation lag model on the primary 
estimates of mortality reductions due to CAAA programs: 

 

 

                                                      
131 This approach is equivalent to discounting future VSLs from the years in which mortality reductions are expected to occur 

and multiplying each discounted VSL times avoided deaths in that year.  The approach does not discount future avoided 

deaths. 
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EXHIBIT 6-2.  RELATIONSHIP BETWEEN THE CHANGE IN MORTALITY OBSERVATION STUDIES AND THE EXCESS RELATIVE RISKS FROM PM 

COHORT STUDIES WHEN DERIVING AN EXPONENTIAL DECAY TIME CONSTANT 
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 The five-year distributed lag valuation results are roughly nine percent higher 
than the 20-year distributed lag assumption.  This is due to the fact that the 
avoided deaths in the 20-year lag assumption are spread over a longer time period 
and the corresponding VSLs are more heavily discounted, while under the five-
year lag assumption, 50 percent of deaths occur within the first two years and all 
deaths occur within five years. 

 The results based on the smooth function lag structure vary depending on the 
time constant selected.  When relying on the k value derived from the primary C-
R function and the Dublin Coal Ban study (k = 0.08), the economic value 
decreases 23 percent from the default.  This reflects the fact that the avoided 
deaths are spread over a longer period of time after the exposure change.  The 
benefits that accrue far into the future are assigned less economic value because 
the VSL is more heavily discounted.  Applying the k value derived from primary 
C-R function and the Utah Valley study (k = 0.57) results in valuation estimates 
that are 10 percent higher than the default lag assumption.  Use of the k value 
derived from the smoking cessation literature (k = 0.10) results in a monetary 
benefits estimate that is 18 percent lower than the 20-year distributed lag.   

 Assuming no lag, and therefore no discounting of VSL, results in an increase in 
benefits of approximately 16 percent above the default, 20-year distributed lag.  

EXHIBIT 6-3.  ALTERNATE CESSATION LAGS –  ANNUAL DEATHS (PRIMARY ESTIMATE) 
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EXHIBIT 6-4.  ALTERNATE CESSATION LAGS –  CUMULATIVE DEATHS (PRIMARY ESTIMATE) 

 
 

 

 

 

 

 

 

 

 

 

 

EXHIB IT 6-5.  VALUATION RESULTS FOR THE PRIMARY C-R FUNCTION ESTIMATE AND THE EFFECT 

OF USING ALTERNATIVE LAG STRUCTURES  

MORTALITY CESSATION LAG  

Primary Estimate with 20-Year Distributed Lag – 2000 710,000 

Primary Estimate with 20-Year Distributed Lag – 2010 1,200,000 

Primary Estimate with 20-Year Distributed Lag – 2020 1,700,000

 

Percent Change 
from the Primary 

Estimate with 
Default Lag* 

Primary Estimate with 5-Year Distributed Lag 9% 

Primary Estimate with Smooth Function, k = 0.08  
(Dublin Intervention Study) -23% 

Primary Estimate with Smooth Function, k = 0.10 
(Smoking cessation) -18% 

Primary Estimate with Smooth Function, k = 0.57 
(Utah Valley Intervention Study) 10% 
No Lag, No Discounting 16% 

* All values in the table represent the percent change from the mean primary 
estimate.  Percent change estimates do not vary by target year. 
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6.3.2 CESSATION LAG RESULTS BASED ON POPE ET AL.,  2002 

Exhibits 6-6 and 6-7 show the difference in the timing of avoided deaths due to CAAA-
related PM2.5 changes in 2020 when applying the various cessation lag structures to the 
Pope mortality incidence results.  Exhibit 6-6 shows the number of deaths that would 
occur in each year and Exhibit 6-7 compares the cumulative number of avoided deaths 
over time.  Exhibit 6-8 displays the percent change in valuation results from the primary 
estimate (i.e., the primary C-R function estimate with the 20-year distributed lag) as a 
result of employing each of the alternative lag structures to the Pope incidence results.  
We present below a summary of the key results of varying both the C-R function 
employed and the cessation lag model on the primary estimates of avoided mortality due 
to CAAA programs: 

 The use of the Pope et al. incidence estimates along with the default 20-year 
distributed lag result in valuation estimates that are 43 percent lower than the 
primary estimate.  Since we are only varying the incidence estimate and not the 
lag structure, this difference is solely due to the different magnitudes of the two 
C-R functions. 

 Applying the 5-year distributed lag to the Pope incidence results in a benefits 
estimate that is 42 percent lower than the primary estimate.  In this case, the 
reduction in avoided mortality due to the lower Pope C-R coefficient dominates 
the effect of shortening the lag period and increasing the percentage of benefits 
accrued in early years.   

 The results based on the smooth function lag structure vary depending on the 
time constant selected.  When relying on the k value derived from Pope and the 
Dublin Coal Ban study (k = 0.15), the economic value decreases 52 percent from 
the default.  This reflects the fact that the avoided deaths are spread over a longer 
period of time after the exposure change, but again the bulk of the impact comes 
from changing the C-R function.  Applying the k value derived from Pope and 
the Utah Valley study (k = 1.24) results in valuation estimates that are similar to 
assuming no lag, since 71 percent of avoided mortality occurs within the first 
year.  These results are 37 percent lower than the default lag assumption, again 
illustrating that the results are less sensitive to the choice of cessation lag than 
they are to the choice of C-R coefficient. 
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EXHIBIT 6-6.  ALTERNATE CESSATION LAGS –  ANNUAL DEATHS (POPE ET AL.,  2002) 
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EXHIBIT 6-7.  ALTERNATE CESSATION LAGS -  CUMULATIVE DEATHS (POPE ET AL.,  2002) 

 

 

 

 

 

 

 

 

 

 

 

 

EXHIBIT 6-8.  RELATIVE VALUATION RESULTS USING ALTERNATIVE LAG STRUCTURES –  POPE ET 

AL.,  2002 

MORTALITY CESSATION LAG 

PERCENT CHANGE FROM PRIMARY 

ESTIMATE WITH DEFAULT LAG* 

Pope et al. 2002 with 20-Year Distributed Lag -43% 

Pope et al. 2002 with 5-Year Distributed Lag -42% 

Pope et al. 2002 with Smooth Function, k = 0.15 
(Dublin Intervention Study) -52% 
Pope et al. 2002 with Smooth Function, k = 1.24 
(Utah Valley Intervention Study) -37% 

* All values in the table represent the percent change from the mean primary estimate.  Percent 
change estimates do not vary by target year. 
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6.3.3  CESSATION LAG RESULTS BASED ON LADEN ET AL.,  2006 

Exhibits 6-9 and 6-10 show the difference in the timing of avoided deaths due to CAAA-
related PM2.5 changes in 2020 when applying the various cessation lag structures to the 
Laden mortality incidence results.  Exhibit 6-9 shows the number of deaths that would 
occur in each year and Exhibit 6-10 compares the cumulative number of avoided deaths 
over time.  Exhibit 6-11 displays the percent change in valuation results from the primary 
estimate (i.e., the primary C-R function estimate with the 20-year distributed lag) as a 
result of employing each of the alternative lag structures to the Laden incidence results.  
We present below a summary of the key results of varying both the C-R function 
employed and the cessation lag model on the primary estimates of avoided mortality due 
to CAAA programs: 

 The use of the Laden incidence results with the 20-year distributed lag result in 
benefits estimates that are 37 percent higher than the primary estimate, due to the 
larger RR reported by Laden et al. as compared with the primary C-R function. 

 Applying the 5-year distributed lag to the Laden incidence estimates results in 
benefits that are 47 percent higher than the primary estimate.  This is due to both 
the difference in the magnitude of the C-R functions as well as the fact that the 
avoided deaths in the 20-year lag assumption are spread over a longer time period 
and the corresponding VSLs are more heavily discounted, while under the five-
year lag assumption, 50 percent of deaths occur within the first two years and all 
deaths occur within five years.  In this case, the increase in avoided mortality due 
to the higher Laden C-R coefficient dominates the effect of shortening the lag 
period and increasing the percentage of benefits accrued in early years.   

 As with the primary C-R function estimate and the Pope results, the results based 
on the smooth function lag structure vary depending on the intervention study 
selected.  When relying on the k value derived from Laden and the Dublin Coal 
Ban study (k = 0.05), the economic value is 12 percent lower the primary 
estimate. Application of this time constant spreads the avoided deaths over a very 
long time period, causing the economic value to be heavily reduced due to 
discounting.  In this case, the application of the alternative lag dominates over the 
different C-R function, reducing the benefits estimate below the primary 
estimate.  Applying the k value derived from Laden and the Utah Valley study (k 
= 0.37) results in valuation estimates that are 47 percent higher than the default 
value, a similar estimate to the five-year lag application. 
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EXHIBIT 6-9.  ALTERNATE CESSATION LAGS -  ANNUAL DEATHS (LADEN ET AL.,  2006) 
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EXHIBIT 6-10.  ALTERNATE CESSATION LAGS -  CUMULATIVE DEATHS (LADEN ET AL.,  2006) 

 

 

 

 

 

 

 

 

 

 

 

EXHIBIT 6-11. MEAN VALUATION RESULTS USING ALTERNATIVE LAG STRUCTURES –  LADEN ET AL.,  

2006  

MORTALITY CESSATION LAG 

PERCENT CHANGE FROM 

PRIMARY ESTIMATE WITH 

DEFAULT LAG* 

Laden et al. 2006 with 20-Year Distributed Lag 38% 

Laden et al. 2006 with 5-Year Distributed Lag 50% 

Laden et al. 2006 with Smooth Function, k = 0.05 
(Dublin Intervention Study) -13% 
Laden et al. 2006 with Smooth Function, k = 0.37 
(Utah Valley Intervention Study) 45% 

* All values in the table represent the percent change from the mean primary estimate.  
Percent change estimates do not vary by target year. 
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CHAPTER 7  |  DYNAMIC POPULATION MODELING  

7.1 INTRODUCTION  

EPA’s standard approach to estimating the mortality effects of air pollutant exposure 
involves application of the BenMAP tool.  Although BenMAP incorporates growth in 
population over time, the fundamental approach is based on a static population model, 
which does not differ across scenarios or update over time.   

In this chapter, we describe the Project Team’s deployment of a supplementary approach 
to PM2.5-related premature mortality and population effects using a dynamic population 
model.  The dynamic population simulation model was developed with EPA funding and 
is described briefly in this chapter and in detail elsewhere.132 

7.2 DESCRIPTION OF THE POPULATION S IMULATION MODEL 

The dynamic population simulation model we applied is a spreadsheet-based approach 
that is based on principles established in prior research.133  The model was designed to 
track the effect of alternative assumptions about the mortality effects of PM2.5 in the U.S. 
population over time.  The tool incorporates detailed life table data for historical years, by 
age, gender, and cause of death, obtained from the Census Bureau and the Centers for 
Disease Control and Prevention (CDC).  It also incorporates Census mortality and 
population projections for future years, again by age and gender, using the projected 
death and birth rates that underlie the Census Bureau’s published population projections. 

This model allows users to: 

 Simulate population in the U.S. by single year of age and gender for years 
between 1990 and 2050 under alternative assumptions about the degree of hazard 
posed by air pollution relative to baseline historical and projected Census 
mortality rates; 

 Estimate changes in life years relative to baseline Census mortality rates; 

 Apply air pollution hazards differentially by cause of death; and 

                                                      
132 Industrial Economics, Inc. (2006). Population Simulation Model for Air Pollution Hazards, Version 1.1 - User Manual and 

Documentation. Prepared for the Office of Policy Analysis and Review, U.S. Environmental Protection Agency, September. 

133 See, for example, B.G. Miller and J.F. Hurley, “Life table methods for quantitative impact assessments in chronic 

mortality,” Journal of Epidemiology and Community Health, 57:200–206, 2003, and Röösli, M., N. Künzli, C. Braun-

Fahrländer, and M. Egger. 2005. Years of life lost attributable to air pollution in Switzerland: Dynamic exposure-response 

model. International Journal of  Epidemiology. 34(5):1029-1035. 
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 Analyze the effect of alternative cessation lag structures on the timing of total 
mortality and on total life years in the U.S. population, based on differential 
application by cause of death or other specifications of cessation lag. 

The model provides users the capability to manually enter a user-specified beta 
coefficient or use the epidemiologic data pre-loaded into the model, and accounts for the 
impact of overlapping cessation lags for each change to determine the net impact on 
mortality hazard in each year.  In addition, users can specify the trajectory of PM changes 
over time as either a step function or through linear interpolation between target years.  
Users can also incorporate a PM2.5 threshold concentration, explore the impacts of 
varying susceptibility to air pollution by age; and, using the Crystal Ball™ spreadsheet 
overlay software, can run a version of the model using probabilistic inputs for the beta 
coefficient and threshold concentration to model the effect of uncertainty in these 
parameters on the outcome measures. 

All calculations and results in the model are conducted at the national level, using 
average changes in national average PM levels or population-weighted exposure.  The 
model can be used to estimate changes in mortality risk for years between 1990 and 2050.   
The temporal range provides a "run-up" period using the more highly resolved by-cause 
mortality data available for historical years, and allows for testing of hypotheses on a 
retrospective and prospective basis.    

The model consists of five linked components, as illustrated in Exhibit 7-1: Inputs, 
Hazard Estimation, Baseline Life Table, Regulatory Life Table, and Outputs.  The five 
components include seven spreadsheets in total, one each for Inputs, Hazard Estimation, 
and Outputs, and two each (one for males and one for females) for the Baseline and 
Regulatory Life Table Modules.   

7.3 APPLICATION OF THE POPULATION S IMULATION MODEL 

The Project Team used the spreadsheet-based dynamic population simulation model 
described above to explore the effect of CAAA-related PM changes on the population.  
The population simulation model at this time can only estimate changes in mortality due 
to a single change in PM2.5 nationwide.  However, the CMAQ output consists of PM2.5 
concentrations at the CMAQ 36 km grid cell level.  Therefore, we calculated national 
population-weighted average PM2.5 concentrations for each target year and scenario 
(with- and without-CAAA) using the CMAQ data for the core scenarios and population 
data at the CMAQ 36 km grid cell level generated using EPA’s PopGrid program.134   

                                                      
134 This program relies on population projections from Woods and Poole. 
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EXHIBIT 7-1.  CONCEPTUAL FRAMEWORK FOR UPDATED POPULATION S IMULATION MODEL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We then input the incremental difference in PM2.5 concentration between the baseline and 
control scenario for the first target year (2000) and then the incremental difference in 
PM2.5 concentration from the previous target year to the current target year for 2010 and 
2020.  We input incremental changes rather than absolute changes in PM because the 
population simulation model assumes that each concentration change is permanent.  
Therefore, each subsequent change results in an impact on the mortality rate equivalent to 
the cumulative total effect of air pollution changes up to that point in time.  We also 
assumed that the PM changes would occur gradually over time.  For instance, we took the 
total CMAQ-derived PM change in 2000 and spread it evenly between 1990 and 2000, 
assuming a linear trajectory.  In addition, we applied the default 20-year distributed lag to 
each PM change.  We chose to apply this incremental, linear change in PM because it is a 
standard option in the population simulation model and it is a reasonably close 
approximation of how CAAA-related PM changes would occur over time and how the 
baseline mortality rate would be affected in the control scenario.  
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The results presented below are based on application of the Pope et al. (2002) PM C-R 
function and EPA’s current standard 20-year distributed cessation lag.  Other C-R 
function and cessation lag assumptions are possible in the model, but were not explored 
for this draft.  No threshold was applied.   

7.4 RESULTS 

Exhibits 7-2 through 7-4 below provide the standard output from the population 
simulation model for the runs configured as outlined above, in terms of changes in 
number of deaths per year, life years gained, and changes in period conditional life 
expectancy.  Exhibit 7-2 provides the estimated change in number of deaths per year by 
age cohort for the simulation period 1990 through 2050.  The estimates presented are for 
a single year (they are not cumulative for the prior or next five-year period) based on 
differences in population tables by cohort and year between two life tables – one that 
simulates population with the CAAA, which is our baseline scenario, and one that 
simulates population without the CAAA, a scenario with higher PM concentrations and, 
as a consequence higher mortality rates in cohorts where the PM C-R function applies 
(adults age 30 and over).  The estimates represent differences from the baseline, with-
CAAA scenario, so most of the estimates are negative, indicating higher mortality in the 
without-CAAA scenario.  The simulation could have been run in the opposite direction, 
but the Project Team believes that the baseline population data from Census is meant to 
illustrate mortality rates consistent with the factual, with-CAAA scenario – and because 
this is a dynamic model, the results are not reflexive.   

As illustrated in the table, changes in the life tables begin in 1995 and the difference in 
total deaths continues to grow through 2020.  Not surprisingly, initially all cohorts 
experience fewer deaths in the cleaner, with-CAAA scenario, but because more 
individuals are alive to enter older, higher baseline mortality cohorts, the oldest three 
cohorts in particular begin to quickly experience more deaths in the with-CAAA scenario, 
and the number of additional deaths grows in these cohorts over time.  This phenomenon 
is only seen in the oldest cohorts – in all other cohorts, there are fewer deaths in the with-
CAAA scenario.  Note that the CAAA is not the cause of more deaths – it is that the life-
extending qualities of less air pollution exposure yield higher numbers of individuals 
surviving to cohorts with high non-pollution mortality rates.  Examination of the life 
tables shows that more individuals survive in all cohorts. 

The number of deaths estimate, then, is fundamentally different from that estimated by 
BenMAP.  While BenMAP estimates the number of deaths that will eventually be 
avoided as a result of a single improvement in air pollutant exposure for a given year, the 
population simulation approach incorporates a series of dynamic processes, including 
multiple annual exposure changes, overlapping lag periods, and dynamic effects of 
changes in air pollutant mortality rates that operate each year in concert with age-specific 
mortality rates.  Individuals are “passed” from year to year and each year experience a 
new level of mortality risk, depending on age-specific non-air-pollutant risks and an 
exposure dependent air pollutant risk.  Deaths tabulated in Exhibit 7-2 are therefore total 
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number of deaths from all causes, a fundamentally different measure that cannot be 
compared to the estimate from BenMAP, but which supplements that estimate.    

Exhibit 7-3 illustrates a second output from the population simulation model, estimated 
life years gained by age cohort and year of the simulation.  These estimates effectively 
compare the number of individuals in each age cohort in the two simulations; in other 
words, each additional individual in a cohort represents an additional life year lived for 
that cohort.  For this measure, age cohorts are smaller, and the total population is also 
smaller, for all years of the without-CAAA simulation compared to the with-CAAA 
simulation.  The gain from CAAA implementation is therefore positive.  Interestingly, 
individuals less than 30 years of age also experience gains from implementing the 
CAAA, even though the air pollutant effect is assumed not to apply to those under 30 
years of age.  In this simulation, more adults of child-bearing age exist in the cleaner, 
with-CAAA scenario, because of the effects of air pollutant mortality risk, meaning more 
children are born to those cohorts.  This effect is quite small early on in the simulation 
period, but grows rapidly over the course of the simulation, until in 2045 more than 1,500 
infants that are born in the with-CAAA scenario are not born in the without-CAAA 
scenario, because the prospective parents have succumbed prematurely to the effects of 
air pollution.  Over the course of the full simulation, through 2050, implementation of the 
CAAA accounts for an estimated 120 million additional life years lived in the US 
population.135 

Exhibit 7-4 provides estimates of the increase in period life expectancy from the model.  
Period life expectancy is constructed using age-specific mortality rates for a single year, 
with no allowance for projected changes in mortality – it is sometimes summarized as the 
life-expectancy at a certain age as if the individual were to experience the mortality risk 
of other cohorts alive at that time.  In fact all individuals instead will experience a future, 
unknown risk of mortality that unfolds through their lifetime, but period life expectancy 
is the methodology that is used to calculate the life expectancy statistics that are generally 
reported by the CDC, so we report it here.136  Effects on life expectancy are immediately 
experienced across all cohorts, and grow rapidly to a gain in the with-CAAA scenario of 
approximately 0.7-0.9 years per individual for all cohorts up to about age 60.  
Interestingly, while it is typically stated that older cohorts are the main recipients of the 
benefits of cleaner air, the life expectancy gains among older cohorts are actually  

                                                      
135 This estimate represents the cumulative life years across the entire study period (i.e., a sum of all of the additional life 

years accrued in each individual year between 1990 and 2050.  Therefore, this estimate does not match the results 

presented in Exhibit 7-3, which only presents annual life year results in 5-year increments. 

136 The model also calculates cohort conditional life expectancy.  Cohort life expectancy is constructed using age-specific 

mortality rates that reflect projected changes in mortality in future years.  In our case, differences in cohort conditional 

life expectancy reflect our projection of changes in air pollutant-induced mortality risk.  The cohort conditional life 

expectancy tables show an almost immediate gain in life expectancy among younger cohorts because of the anticipated 

much cleaner air through their lifetime, but those results are of course dependent on our projection of future air quality. 
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EXHIBIT 7-2.  CHANGE IN NUMBER OF DEATHS BY AGE COHORT MOVING FROM WITH-CAAA  TO WITHOUT-CAAA  SCENARIO 

AGE COHORT 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 

0 to 4 0  0.088  0.62  1.3  1.3  1.5  1.8  2.1  2.2  2.3  2.3  2.3  
5 to 9 0  0  0  0.04  0.10  0.12  0.13  0.15  0.18  0.19  0.19  0.20  

10 to 14 0  0  0  0  0.037  0.11  0.13  0.14  0.16  0.19  0.21  0.22  
15 to 19 0  0  0  0  0.0081  0.13  0.38  0.48  0.54  0.63  0.75  0.84  
20 to 24 0  0  0  0  0  0.014  0.18  0.47  0.57  0.64  0.75  0.89  
25 to 29 0  0  0  0  0  0  0.013  0.18  0.48  0.58  0.66  0.77  
30 to 34 0  (490) (810) (1,100) (1,400) (1,700) (2,000) (1,900) (1,800) (1,800) (1,800) (1,800) 
35 to 39 0  (650) (1,300) (1,600) (1,900) (2,200) (2,500) (2,600) (2,400) (2,200) (2,200) (2,300) 
40 to 44 0  (780) (1,900) (2,400) (2,600) (2,800) (3,000) (3,200) (3,300) (3,100) (2,800) (2,800) 
45 to 49 0  (910) (2,500) (3,400) (4,100) (4,200) (4,300) (4,400) (4,500) (4,500) (4,200) (3,800) 
50 to 54 0  (1,100) (3,100) (4,700) (6,100) (6,800) (6,700) (6,500) (6,300) (6,500) (6,400) (6,000) 
55 to 59 0  (1,300) (3,700) (6,200) (8,200) (10,000) (11,000) (10,000) (9,400) (9,100) (9,400) (9,200) 
60 to 64 0  (1,900) (4,500) (7,300) (11,000) (13,000) (16,000) (16,000) (14,000) (13,000) (13,000) (13,000) 
65 to 69 0  (2,800) (6,000) (8,500) (12,000) (17,000) (20,000) (23,000) (22,000) (20,000) (18,000) (18,000) 
70 to 74 0  (3,700) (8,200) (10,000) (12,000) (16,000) (22,000) (25,000) (27,000) (26,000) (23,000) (22,000) 
75 to 79 0  (4,100) (10,000) (12,000) (13,000) (15,000) (19,000) (24,000) (26,000) (28,000) (27,000) (25,000) 
80 to 84 0  (4,200) (9,700) (12,000) (12,000) (13,000) (14,000) (16,000) (19,000) (20,000) (22,000) (23,000) 
85 to 89 0  (3,300) (7,200) (6,800) (6,900) (6,200) (5,600) (4,500) (4,000) (4,500) (5,000) (6,400) 
90 to 94 0  (1,800) (2,700) (820) 1,100  3,400  5,300  7,500  9,700  13,000  16,000  18,000  
95 to 99 0  (480) 160  1,800  4,700  8,000  12,000  15,000  17,000  20,000  25,000  33,000  

100+ 0  (76) 300  1,100  2,800  5,400  8,800  13,000  18,000  21,000  25,000  31,000  
Total Change in Deaths: 0  (28,000) (61,000) (74,000) (83,000) (92,000) (100,000) (100,000) (95,000) (86,000) (70,000) (51,000) 
Note: Results in the table are rounded to two significant figures. 

  



Second Section 812 Prospective Analysis 
March 2011 

 

 7-7 

EXHIBIT 7-3.  ESTIMATED LIFE YEARS GAINED AS A RESULT OF CAAA IMPLEMENTATION 

AGE COHORT 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 

0 to 4 0  17  240  670  850  1,000  1,300  1,600  1,900  2,100  2,300  2,600  
5 to 9 0  0  17  240  670  850  1,000  1,300  1,600  1,900  2,100  2,300  

10 to 14 0  0  0  17  230  670  850  1,000  1,300  1,600  1,900  2,100  
15 to 19 0  0  0  0  17  230  670  850  1,000  1,300  1,600  1,900  
20 to 24 0  0  0  0  0  17  230  660  840  1,000  1,300  1,600  
25 to 29 0  0  0  0  0  0  17  230  660  840  1,000  1,300  
30 to 34 0  460  1,200  2,000  2,400  3,100  3,600  3,800  3,700  4,100  4,400  4,500  
35 to 39 0  890  4,100  6,900  9,100  11,000  13,000  15,000  15,000  13,000  14,000  14,000  
40 to 44 0  1,100  6,000  13,000  17,000  20,000  23,000  27,000  29,000  28,000  26,000  26,000  
45 to 49 0  1,200  7,600  19,000  28,000  32,000  37,000  41,000  46,000  47,000  45,000  41,000  
50 to 54 0  1,400  9,500  25,000  41,000  54,000  58,000  62,000  66,000  72,000  73,000  69,000  
55 to 59 0  1,800  11,000  31,000  55,000  79,000  96,000  98,000  100,000  100,000  110,000  110,000  
60 to 64 0  2,600  14,000  37,000  71,000  110,000  140,000  160,000  160,000  150,000  150,000  160,000  
65 to 69 0  3,900  20,000  44,000  82,000  140,000  190,000  240,000  250,000  240,000  230,000  230,000  
70 to 74 0  5,300  28,000  58,000  94,000  150,000  230,000  300,000  360,000  370,000  340,000  330,000  
75 to 79 0  6,100  36,000  79,000  120,000  160,000  240,000  350,000  430,000  490,000  500,000  460,000  
80 to 84 0  6,600  39,000  94,000  140,000  180,000  240,000  330,000  460,000  550,000  620,000  630,000  
85 to 89 0  5,900  36,000  87,000  150,000  200,000  230,000  290,000  390,000  530,000  620,000  700,000  
90 to 94 0  3,900  24,000  62,000  110,000  160,000  200,000  240,000  290,000  380,000  510,000  600,000  
95 to 99 0  1,600  10,000  27,000  53,000  85,000  120,000  160,000  180,000  220,000  290,000  390,000  

100+ 0  490  2,800  7,600  18,000  35,000  60,000  93,000  130,000  160,000  200,000  270,000  
Total Life Years 
Gained 0  43,000  250,000  590,000  980,000  1,400,000  1,900,000  2,400,000  2,900,000  3,400,000  3,800,000  4,100,000  
Note: Results in the table are rounded to two significant figures. 
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EXHIBIT 7-4.  INCREASE IN PERIOD CONDITIONAL LIFE EXPECTANCY ATTRIBUTABLE TO THE CLEAN AIR ACT 

AGE 

COHORT 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 

0 0  0.15  0.36  0.52  0.64  0.76  0.86  0.90  0.90  0.91  0.90  0.89  
10 0  0.15  0.36  0.52  0.65  0.76  0.86  0.90  0.91  0.91  0.91  0.90  
20 0  0.15  0.36  0.52  0.65  0.76  0.87  0.90  0.91  0.91  0.91  0.90  
30 0  0.15  0.36  0.53  0.65  0.77  0.87  0.91  0.92  0.92  0.91  0.90  
40 0  0.14  0.35  0.51  0.63  0.74  0.84  0.88  0.89  0.89  0.88  0.87  
50 0  0.13  0.32  0.47  0.59  0.70  0.79  0.83  0.84  0.84  0.84  0.83  
60 0  0.12  0.29  0.42  0.53  0.63  0.71  0.75  0.76  0.77  0.76  0.76  
70 0  0.094  0.23  0.35  0.44  0.52  0.59  0.62  0.64  0.64  0.64  0.64  
80 0  0.067  0.17  0.25  0.32  0.38  0.43  0.46  0.47  0.48  0.48  0.48  
90 0  0.040  0.10  0.15  0.19  0.22  0.25  0.26  0.27  0.27  0.27  0.26  

100+ 0  0  0  0  0  0  0  0  0  0  0  0  
Note: Results in the table are rounded to two significant figures. 
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truncated because older cohorts may die of something else before experiencing the full 
benefit from air pollution reduction.  Instead, in life expectancy terms, younger cohorts 
experience the greatest gains. 

7.5 DISCUSSION 

The Project Team’s application of the population simulation model illustrates additional, 
supplementary characterizations of the benefits of the CAAA, as well as new insights not 
available from a static approach.  They demonstrate the substantial effect of the CAAA 
on population unfolding through time, and add insights into the life expectancy gains 
attributed to cleaner air. 

Our results for the CAAA simulation are not directly comparable to those from BenMAP 
– our results reflect a long-term trajectory of improved air quality; and because the effects 
of changes in exposure are lagged over time as the risk is reduced, our results for any 
given year represent the cumulative effect of overlapping lagged mortality risk changes 
from multiple years.  It is nonetheless possible to design experiments with the population 
simulation model that approximate a BenMAP result, in particular for the life-years 
lost/gained metric.  To compare the BenMAP and population simulation approaches and 
estimate the impact of using a dynamic versus static population approach, we estimated 
the long-term effect of a one year change in exposure in 2010 and 2020 comparable to the 
one-year national population-weighted change that is developed in the BenMAP runs for 
those two target years.  

The results of our comparison suggest that the effect of using a dynamic model is 
substantial, as illustrated in Exhibit 7-5 below.  The total effect of using a dynamic 
approach is roughly a factor of three – in 2020, for example, the dynamic approach 
estimates almost 9 million life years saved through 2050, while the BenMAP approach 
estimates just more than 3 million life years saved for a single year’s exposure 
improvement.  The results by cohort could be somewhat misleading, as they reflect 
different approaches to allocating life year gains among cohorts.  BenMAP attributes life 
year gains to the cohort that is of a certain age in the year in which exposure changes (in 
this case, either 2010 or 2020), regardless of when those life-year gains accrue, while the 
population simulation model attributes gains to the cohort in the year they are 
experienced.  This difference in approach means that BenMAP attributes more of the life-
year gains to younger cohorts, but both approaches are simulating the same effect.  The 
main difference is that the population simulation approach incorporates the effects of a 
dynamically growing population as a result of the gain in air pollution – the end result is 
that the life-years-gained measure of the mortality benefit of clean air is likely 
underestimated by the static approach, and perhaps by a substantial margin.   
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EXHIBIT 7-5.  COMPARISON OF LIFE YEARS GAINED FROM A ONE-YEAR EXPOSURE CHANGE FOR 

BENMAP AND POPULATION S IMULATION MODEL 

AGE COHORT BENMAP RESULTS 

POPULATION SIMULATION 

MODEL 

START AGE END AGE 2010 2020 2010 2020 

30 34         70,000         94,000  11,000 12,000 
35 44       220,000       260,000  110,000 130,000 
45 54       390,000       420,000  300,000 320,000 
55 64       560,000       770,000  700,000 720,000 
65 74       530,000       890,000  1,400,000 1,600,000 
75 84       480,000       610,000  2,300,000 2,600,000 

85 99       220,000       300,000  2,900,000 3,500,000 

Total     2,500,000    3,300,000  7,700,000 8,900,000 
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CHAPTER 8  |  VALUATION UNCERTAINTY  

Another key factor contributing to uncertainty in the monetized benefit estimates 
associated with the Clean Air Act Amendments of 1990 (CAAA) is uncertainty in the 
“value of statistical life” (VSL) estimates that we apply to reductions in premature 
mortality.  The VSL is a summary measure of willingness-to-pay (WTP) values for small 
reductions in mortality risk experienced by a large number of people.  The VSL approach 
applies information from several published value-of-life studies to determine a reasonable 
monetary value of preventing premature mortality.  EPA’s primary benefits estimate is 
calculated using a distribution of VSLs based on 26 studies that assumes a Weibull 
distribution with a mean of $4.8 million in 1990$ ($7.4 million in 2006$). 

However, the literature on VSL is extensive, and studies have measured VSL using 
different methodological approaches (e.g., revealed versus stated preference) on a variety 
of study populations (e.g., workers versus a general population sample) in a variety of 
different risk contexts (e.g., fatal workplace accidents versus mortality risk from disease).  
In addition, several meta-analyses of the literature have been conducted in an attempt to 
synthesize the literature, including those by Viscusi and Aldy (2003), Mrozek and Taylor 
(2002) and Kochi et al. (2006).137  In this chapter, we explore the implications of 
assuming alternative distributions for VSL on the net present value (NPV) monetized 
estimates of CAAA-related reductions in premature mortality.   

8.1 UNCERTAINTY IN ECONOMIC VALUATION 

The Project Team explored the uncertainty in the estimated economic value of avoided 
deaths due to PM2.5 by applying several different estimates of VSL to the mortality 
incidence results from the core scenarios for each of the three target years.  We compare 
all estimates against the primary estimate, which is based on a Weibull distribution of 
VSL values derived from 26 studies.  We generated alternative NPV mortality benefits 
estimates using the following alternative VSL distributions:138 

                                                      
137 Viscusi, W. K. and J. E. Aldy. 2003. The Value of a Statistical Life: A Critical Review of Market Estimates throughout the 

World. AEI-Brookings Joint Center for Regulatory Studies. Washington, DC. January.; Mrozek, J.R., Taylor, L.O. 2002. What 

Determines the Value of Life? A Meta-Analysis. Journal of Policy Analysis and Management 21(2): 253-270.; and Kochi, I., 

Hubbell, B., Kramer, R. 2006. An Empirical Bayes Approach to Combining and Comparing Estimates of the Value of a 

Statistical Life for Environmental Policy Analysis. Environment and Resource Economics 34: 385-406. 

138 Note that the VSL estimates are presented as they were originally published.  All of our results are presented in 2006$.  

After applying the VSLs to the mortality incidence estimates, we converted the benefits estimates from their original 

currency year to 2006$ using inflation adjustment factors from BenMAP (Abt Associates, Inc. (2008). BenMAP User’s Manual.  

Prepared for the U.S. EPA’s Office of Air Quality Planning and Standards, Research Triangle Park, NC. September.)   
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 A VSL distribution derived from estimates reported in a 2003 meta-analysis by 
Viscusi and Aldy (specifically, the mean predicted VSL and confidence interval 
for the U.S. sample, derived using Model 5 as reported in Table 8).  This specific 
estimate was selected because it provided the best model fit to the data, had 
relatively tight confidence bounds, and reduced non-normality in the error term 
by using Huber weighting.  The Project Team applied this estimate by assuming a 
lognormal distribution with a geometric mean of $6.3 million (in 2000$).139     

 An estimate from Viscusi and Aldy (2003) Model 2 from Table 8, assuming a 
log-normal distribution with a geometric mean of $5.8 million (in 2000$)140; 

 The estimate used in the recent PM National Ambient Air Quality Standards 
(NAAQS) Regulatory Impact Analysis (RIA) assuming a normal distribution 
with a mean of $5.5 million (in 2000$);141 and 

 An estimate from a wage-risk study by Viscusi (2004) assuming a truncated 
normal distribution with a mean of $4.8 million, a minimum of $2.3 million, and 
a maximum of $7.1 million (in 1997$ and at 1997 income levels).142,143 

We generated NPV estimates of monetized reductions in premature mortality discounted 
to each target year using the same simulation sampling approach applied in the primary 
analysis, and assumed that avoided mortality benefits are accrued over time in the pattern 
described in the 20-year cessation lag model advocated by the Advisory Council for 
Clean Air Compliance Analysis (Council).144  EPA’s Benefits Analysis and Mapping 
Program (BenMAP) uses statistical sampling methods to generate a mortality valuation 
distribution that integrates uncertainty in total avoided mortality with VSL uncertainty 
described by a user-specified VSL distribution.  We then scale this distribution using a 

                                                      
139 The chosen model is semi-log in form and reports a 95 percent confidence interval that is consistent with a log-normally 

distributed VSL, although the paper itself does not report a specific VSL distribution. 

140 As is the case with the VSL estimate from Model 5, the chosen model is semi-log in form and reports a 95 percent 

confidence interval that is consistent with a log-normally distributed VSL, although the paper itself does not report a 

specific VSL distribution. 

141 http://www.epa.gov/ttn/ecas/ria.html (see Chapter 5).  

142 This estimate was derived by Dr. Joseph Aldy of Resources for the Future by taking 100,000 random draws of two normal 

distributions: 1) a distribution of coefficient estimate of on-the-job mortality risk variables from Viscusi (2004); and 2) a 

distribution of workers’ hourly wages.  He then took the product of each pair of draws.  According to Aldy, the 95 percent 

confidence bounds of the resulting distribution were “virtually identical” to the result assuming the product is normally 

distributed.  Therefore, we assumed that the distribution was normally distributed with a mean of $4.8 million, as reported 

by Aldy, truncated at the minimum and maximum values also reported by Aldy.  See Appendix A from the report, Valuing 

Mortality Risk Reductions inHomeland Security Regulatory Analyses, Final Report, June 2008, Prepared by Lisa A. Robinson, 

Independent Consultant for Elena Ryan, U.S. Customs and Border Protection, Department of Homeland Security, under 

subcontract to Jennifer Baxter and Henry Roman, Industrial Economics Incorporated. 

143 Viscusi, W.K. (2004). The value of life: Estimates with risks by occupation and industry. Economic Inquiry 42(1): 29-48. 

144 Science Advisory Board (2004). Advisory on Plans for Health Effects Analysis in the Analytical Plan for EPA’s Second 

Prospective Analysis—Benefits and Costs of the Clean Air Act, 1990-2020:  Advisory by the Health Effects Subcommittee of 

the Advisory Council on Clean Air Compliance Analysis. EPA-SAB-COUNCIL-ADV-04-002. 
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target-year specific adjustment factor that accounts for income growth over time,145 the 
effect of cessation lag on accrual of the mortality benefits from air pollution changes in 
the target year, and the effect of discounting VSL values for mortality benefits expected 
to occur after the target year.  The result of this scaling calculation is a distribution of 
NPVs for avoided mortality benefits, based on an assumed 20-year distributed cessation 
lag for PM mortality effects and application of a 5 percent discount rate.  

We also generated alternative results substituting discount rates of 3 and 7 percent, in 
addition to the default discount rate of 5 percent.146 

8.2 RESULTS 

8.2.1  ALTERNATIVE VSLs  

Exhibit 8-1 provides a table of valuation results for the three target years using alternative 
VSL distributions.  Exhibit 8-2 presents these same results using box plots that illustrate 
alternative results distributions.   

 Overall, the mean valuation estimates from BenMAP for premature mortality due 
to CAAA-related changes in PM2.5 using the alternative estimates of VSL range 
from 20 percent lower to equivalent to our primary estimate when applying the  
Viscusi et al., 2004 and Viscusi and Aldy (2003) Model 5 distributions, 
respectively. 

 The spread of the confidence bounds of the VSL estimates vary, with the 
distribution of the primary estimate (Weibull) having the largest spread and the 
Viscusi (2004) results having the smallest spread. 

8.2.2  ALTERNATIVE DISCOUNT RATES 

Exhibit 8-3 provides the economic valuation results for each target year, applying 
alternative discount rates to calculate the NPV.  Exhibit 8-4 provides a graphical 
representation of the 90 percent confidence bounds around each of the benefits estimates.  
Applying alternative discount rates has little effect on the benefits estimates; applying a 
discount rate of 7 percent results in benefits that are four percent lower than the default 
and applying a 3 percent discount rate results in a benefits estimate four percent higher 
than the default. 

                                                      
145 Income adjustment factors reflecting future income growth projections and the income elasticity of VSL were obtained 

from BenMAP (Abt Associates, Inc. (2008). BenMAP User’s Manual.  Prepared for the U.S. EPA’s Office of Air Quality Planning 

and Standards, Research Triangle Park, NC. September.)   

146 Alternative discount rates of three and seven percent are recommended in U.S. EPA (2000). Guidelines for Preparing 

Economic Analyses, EPA 240-R-00-003, September. 
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EXHIBIT 8-1.  RELATIVE PM/MORTALITY VALUATION RESULTS USING ALTERNATIVE ESTIMATES OF 

VSL (MILLIONS OF 2006$) 

VSL ESTIMATE PERCENTILE 5 MEAN PERCENTILE 95 

Weibull Distribution (Primary) – 2000 $66,000 $710,000 $2,200,000 

Weibull Distribution (Primary) – 2010 $110,000 $1,200,000 $3,600,000 

Weibull Distribution (Primary) – 2020 $170,000 $1,700,000 $5,300,000 

 Percent Change from Mean Primary Estimate* 

Viscusi and Aldy (2003) - Model 5 -80% 0% 122% 

Viscusi and Aldy (2003) - Model 2 -82% -7% 108% 

Normal Distribution -87% -14% 122% 

Viscusi et al. (2004) -85% -20% 71% 

* All values in the table represent the percent change from the mean primary estimate.  Percent change estimates do not vary 
by target year. 

 



Second Section 812 Prospective Analysis 
March 2011 

 

 

 8-5

EXHIBIT 8-2.  BOX-PLOT OF 90 PERCENT CONFIDENCE BOUNDS FOR ALTERNATIVE VSL RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternative VSLs Results

-150%

-100%

-50%

0%

50%

100%

150%

200%

250%

Weibull Distribution Viscusi and Aldy (2003)
- Model 5

Viscusi and Aldy (2003)
- Model 2

Normal Distribution Viscusi et al. (2004)

VSL Estimate

P
e

rc
e

n
t 

C
h

a
n

g
e 

in
 E

c
o

n
o

m
ic

 B
e

n
e

fi
ts

 
R

e
la

ti
ve

 t
o

 t
h

e
 P

ri
m

ar
y 

E
st

im
a

te

95th

Mean

5th

Alternative VSLs Results

-150%

-100%

-50%

0%

50%

100%

150%

200%

250%

Weibull Distribution Viscusi and Aldy (2003)
- Model 5

Viscusi and Aldy (2003)
- Model 2

Normal Distribution Viscusi et al. (2004)

VSL Estimate

P
e

rc
e

n
t 

C
h

a
n

g
e 

in
 E

c
o

n
o

m
ic

 B
e

n
e

fi
ts

 
R

e
la

ti
ve

 t
o

 t
h

e
 P

ri
m

ar
y 

E
st

im
a

te

95th

Mean

5th



Second Section 812 Prospective Analysis 
March 2011 

 

 

 8-6

EXHIBIT 8-3.  RELATIVE PM/MORTALITY VALUATION RESULTS USING ALTERNATIVE DISCOUNT 

RATES (MILLIONS OF 2006$) 

VSL ESTIMATE PERCENTILE 5 MEAN PERCENTILE 95 

Baseline (5 percent) - 2000 $66,000 $710,000 $2,200,000 

Baseline (5 percent) - 2010 $110,000 $1,200,000 $3,600,000 

Baseline (5 percent) - 2020 $170,000 $1,700,000 $5,300,000 

 Percent Change from Mean Primary Estimate* 

High (7 percent) -91% -4% 191% 

Low (3 percent) -90% 4% 223% 

* All values in the table represent the percent change from the mean primary estimate.  Percent change 
estimates do not vary by target year. 
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EXHIBIT 8-4.  BOX-PLOT OF 90 PERCENT CONFIDENCE BOUNDS FOR ALTERNATIVE DICSOUNT 

RATE RESULTS 
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CHAPTER 9  |  CONCLUSIONS  

This chapter summarizes the advances in the quantitative treatment of uncertainty in the 
Second Prospective Section 812 Study of the Clean Air Act Amendments (CAAA) and 
their implications for interpreting the benefit and cost results. 

9.1 ADVANCES IN QUANTITATIVE ANALYSES 

This uncertainty analysis has made significant incremental advances in the quantitative 
treatment of uncertainty in several elements of the analytical chain of the second 
prospective analysis of the benefits and costs of the Clean Air Act.  Areas of 
advancement include: 

 Emissions.  Using EPA’s cutting-edge meta-model, the Response Surface Model 
(RSM), as a cost-effective, reduced-form substitute for Community Multiscale Air 
Quality Model (CMAQ), we were able to evaluate the impact of marginal changes 
in emissions in each of the five major particulate matter (PM) source categories on 
PM levels nationwide and on estimates of avoided mortality due to the CAA.  
These offline analyses allow us to compare the marginal benefits of additional 
reductions in each sector, and give us some sense of the potential sensitivity of 
results to changes in emissions.  In addition, we conducted an analysis of the 
impacts of scenario uncertainty in both the with- and without-CAAA cases on 
emissions from the Electric Generating Unit (EGU) sector in 2000.   

 Concentration-Response.   We evaluated both parameter and model uncertainty 
in concentration-response (C-R) function estimates for PM-related mortality, 
replacing the primary C-R function with functions with alternative C-R coefficient 
distributions from individual studies from the literature and with the 12 EPA 
expert elicitation (EE)-based functions that present alternative coefficient 
distributions and, in some cases, alternative shapes of the PM-mortality C-R 
function.  In addition, we evaluated parameter uncertainty in the C-R function for 
ozone mortality. 

 Cessation Lag.  We completed an evaluation of the effects on monetized benefits 
of model uncertainty in the temporal realization of avoided mortality benefits 
following reductions in PM exposure (i.e., cessation lag).  This included 
assessment of the impacts of assuming alternative forms for the cessation lag 
structure instead of the primary 20-year step function, including a more rapid 5-
year step function and a variety of smooth functions that incorporate information 
from both PM intervention studies and long- term cohort studies of PM mortality.  
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 Dynamic Population Modeling.  We also assessed the implications of an 
alternative damage function approach that incorporates dynamic changes in 
population over time using a life-table approach to benefit assessment.  Though 
the model employed a simplified treatment of exposure changes due to the 
CAAA, it nonetheless provided useful insights into the potential magnitude of the 
CAAA’s effect on population size, life-years gained, and life expectancy. 

 Valuation.  We assessed the sensitivity of monetized results to an array of 
alternative distributions from the published literature for value of statistical life 
(VSL) and alternative assumptions about the discount rate applied to VSL for 
avoided mortality benefits expected to accrue in future years.  

 Direct Costs.  We assessed several sources of uncertainty in direct cost estimates, 
including scenario uncertainty in predictions of the future composition and fuel 
economy of the U.S. vehicle fleet and parameter uncertainty in three factors: (1) 
the assumed rate at which experience applying control technologies reduces 
control costs; (2) vehicle failure rates associated with inspection and maintenance 
(I&M) programs; and (3) the cost per ton of unidentified local pollution controls.  

For additional uncertainties, we developed revised qualitative uncertainty tables that 
update the tables presented in the First Prospective 812 Study.  These tables describe the 
uncertainty; present our assessment, where possible, of the likely direction of bias in net 
benefits associated with that uncertainty; and give our characterization of the potential 
significance of the uncertainty (“potentially major” if the effect could exceed five percent 
of current net benefits, “probably minor” if less than five percent, or “unknown”).  In 
addition, this report included a detailed and extensive evaluation of the potential for 
notional sensitivity analyses of the impacts of uncertainty about the relative toxicity of 
the various components that comprise PM2.5 and concluded that significant data gaps in 
both toxicology and epidemiology preclude the development of useful, policy-relevant 
analysis at this time. 

9.2 SUMMARY OF KEY UNCERTAINTIES 

Exhibit 9-1 presents a tabular summary of the results of the analyses presented in this 
report for both costs and benefits.  Exhibit 9-2 presents a graphical illustration of the 
impacts of effect of alternative assumptions and models on the central estimate and 
distribution of monetized avoided mortality benefits, the primary contributor to 
monetized benefits. 
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EXHIBIT 9-1.  QUANTITATIVE ANALYSES OF UNCERTAINTY IN THE 812 SECOND PROSPECTIVE 

ANALYSIS  

FACTOR 

TYPE OF 

UNCERTAINTY 

EVALUATED ALTERNATIVE ASSUMPTIONS 

IMPACT OF 

ALTERNATIVE 

ASSUMPTIONS ON 2020 

PRIMARY ESTIMATE 

UNCERTAINTIES RELATED TO COST ESTIMATES 

Unidentified controls (Ch 2) Parameter Alternate assumption about the 
threshold for, and cost of, applying 
unidentified local controls to achieve 
NAAQS compliance ($10,000/ton). 

-18% of local control 
costs;  
-2.1% of total costs 

I&M program vehicle  failure 
rates(Ch 2) 

Parameter Alternative assumption about failure 
rates for I&M program testing based 
on NRC (2001). 

-12% for mobile source 
costs; 
-6.5% of total costs 

Learning curve assumptions 
(Ch 2) 

Parameter Alternate assumptions about the 
learning rate (5 and 20%) 

-6.0% to 3.2% of total 
costs 

Fleet composition and fuel 
efficiency (Ch 2) 

Scenario Alternate assumption about future 
fleet composition and fuel efficiency 
using AEO 2008. 

-3.6% for mobile 
source costs; 
-2.0% of total costs 

UNCERTAINTIES RELATED TO BENEFITS ESTIMATES 

Alternate C-R function for PM 
(Ch 4)a 

Parameter Alternative C-R functions – two from 
empirical literature (Pope et al., 
2002 and Laden et al., 2006) and 12 
subjective estimates from the expert 
elicitation study 

-83% to 76%, 
Based on most 
extreme estimates 
from PM EE study.  
Rest of alternatives 
range from -44% to 40% 

Emissions from EGU sources 
(Ch 3) 

Scenario Use continuous emissions monitoring 
(CEM) data in place of Integrated 
Planning Model (IPM) results, 
coupled with alternative 
counterfactual consistent with CEM 
approach. 

+50% in 2000 
Due almost entirely to 
the impact of the 
alternative without-
CAAA  scenario. 

PM/Mortality Cessation lag 
(Ch 6) a 

Model and 
parameter 

Alternative lag structures – one step 
function and a series of smooth 
functions (based on an exponential 
decay). Smooth functions in some 
cases also require change in C-R 
coefficient. 

-23% to 16% when using 
primary C-R function. 
-52 to 50% when also 
changing C-R function. 

VSL (Ch 8) a Parameter Alternative VSL estimates -20% to 0% 

Discount rates (Ch 8) a Parameter Alternate discount rates (5% and 7%) -4% to 4% 

Alternate C-R function for 
ozone (Ch 4) 

Parameter Alternative C-R functions – three 
from multi-city studies and three 
meta-analyses 

0% for total mortality 
benefits. 
-63% to 66% 
For ozone-related 
mortality.  
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FACTOR 

TYPE OF 

UNCERTAINTY 

EVALUATED ALTERNATIVE ASSUMPTIONS 

IMPACT OF 

ALTERNATIVE 

ASSUMPTIONS ON 2020 

PRIMARY ESTIMATE 

Emissions changes by 
emitting sector (Ch 3) 

Scenario Altering each sector-specific 
emissions by 10 percent 

$/ton marginal benefit 
for proportional EGU 
sector reductions is 
about 3 times that for 
nonroad and on-road 
sectors, and 50% 
higher than that for 
area and non-EGU 
point source sectors.  

Differential toxicity of PM 
components (Ch 5) 

Parameter Potential alternative estimates of 
toxicity for specific PM components 

N/A.  No quantitative 
sensitivity analysis 
performed due to 
significant data gaps. 

Dynamic population modeling 
(Ch 7) 
 

Model Incorporation of dynamic population 
estimates to calculate life years 
gained  and changes in life 
expectancy 

N/A. Life years gained 
and changes in life 
expectancy are 
supplemental 
estimates of 
PM/mortality effects 
and cannot be directly 
compared to the 
primary estimate. 

9.2.1  COST UNCERTAINTIES 

Exhibit 9-1 shows that the impact of our alternative assumptions about mobile source cost 
parameters, learning curves, and unidentified local control costs each have relatively 
modest impacts on total costs, with the I&M failure rate and learning curve assumptions 
have slightly more of an impact on total costs.147  In addition, the assumptions underlying 
our primary cost estimates tend to be conservative; most of the alternatives decrease total 
compliance costs and none increase costs more than about three percent. 

9.2.2  BENEFIT UNCERTAINTIES 

On the benefits side, Exhibits 9-1 and 9-2 show that the most influential assumptions 
affecting benefits are the choice of the C-R function, the cessation lag model for the 
accrual of benefits, and the VSL distribution.  While the two most extreme results from 
EPA’s EE study imply substantial effects of C-R choice (about 80 percent in either 
direction) most of the alternatives from the EE study and the published epidemiological 
studies suggest effects on benefits of about 40 percent or less in either direction.  By 
themselves, longer cessation lag alternatives can reduce monetized benefits by as much as 
a 23 percent and if coupled with a change in the C-R function, by close to half; however, 
the Council suggested much of the risk reduction benefits from PM2.5 controls are more  

                                                      
147 The estimate of the impact on total costs is derived from the relative contribution of the affected cost sector to the 

overall costs of compliance, assuming all other sectors are unaffected. 



Second Section 812 Prospective Analysis 
March 2011 

 

 

9-5 

 

likely to accrue sooner rather than later.  Accelerating benefits increases benefits by about 
16 percent when maintaining the same C-R function, but could increase them by as much 
as half when using a smooth function based on the Laden Six Cities follow-up effect 
estimate.  VSL distribution choices in one case produce the same central estimate; in 
others reduce VSL between 7 and 20 percent.   

A review of the box plots in Exhibit 9-2 for the factors that have the greatest potential to 
change the central estimate shows that most of the alternatives do not have a dramatic 
effect on the spread of uncertainty.  Some alternatives suggest the high end of the 
distribution could be lower, including all of the alternative VSL distributions, which give 
less weight to higher VSL values than the 26-study Weibull.  On the other hand, only a 
few alternatives (from the EE study) significantly extend the upper end and hardly any 
extend the lower end, suggesting our primary estimate is unlikely to understate the 
uncertainty in avoided mortality benefits.    

EXHIBIT 9-2.  SUMMARY OF QUANTITATIVE ANALYSIS  OF UNCERTAINTY IN MONETIZED MORTALITY 

BENEFITS ESTIMATES 
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9.2.3  ADDITIONAL OBSERVATIONS 

Offline modeling of marginal changes in emissions by sector suggests that the EGU 
sector yields the most benefits at the margin in 2020 (on a dollar per ton basis), followed 
by area sources, non-EGU point sources, on-road sources, and non-road sources.  The 
benefit per ton ratio in 2020 is about 3:2 for when comparing EGU emissions to area 
emissions and to non-EGU emissions; the ratio is 3:1 for EGU emissions to both mobile 
source categories.  These results rank the expected sensitivity of benefit results to 
uncertainties in emissions inventories for these sectors, and could provide perspective on 
the ordering of priorities for additional reductions in future air regulations.   

Scenario uncertainty related to the details of the without-CAAA scenario for EGUs, as 
discussed in Chapter 3, is another potentially significant uncertainty for benefits; use of 
the Ellerman-based alternative without-CAAA scenario in 2000 coupled with the CEM-
based with-CAAA scenario produces a central estimate of avoided mortality benefits 
approximately 50 percent greater than the standard scenarios.  Given that the differences 
between the alternative without-CAAA  scenario RSM runs were often much greater than 
the differences between the CEM- and IPM-based with-CAAA RSM runs, the difference 
in benefits appears to be due  predominantly to the changes in the without-CAAA 
scenario.  While we are unable to determine which represents the more accurate 
counterfactual, the without-CAAA scenario we apply for the primary results appears to be 
the more conservative choice. 

The 812 Project Team’s use of a damage model with dynamic population simulation 
yielded striking results that demonstrate the substantial effect of the CAAA on population 
over time and provide useful insights into gains in life expectancy due to the CAAA.  Use 
of a dynamic model showed an approximate tripling of the expected life years saved due 
to a single year’s exposure improvement, suggesting that the static approach to benefits 
assessment likely underestimates the mortality benefits of improved air quality, possibly 
by a substantial margin.  

A comparison of the qualitative uncertainty tables from the First and Second Prospective 
studies indicates that significant advancements over the First Prospective include the use 
of improved monitoring data for PM2.5, an improved understanding and treatment of 
atmospheric chemistry and the composition of PM2.5 emissions, and the use of longer-
term simulations with integrated modeling of criteria pollutants using CMAQ rather than 
a collection of separate air quality models.  Other potentially major uncertainties affecting 
benefits estimates in the Second Prospective not mentioned above include the inclusion in 
the with-CAAA scenario of CAIR and CAMR, both of which are being re-tooled by EPA 
in the wake of court rulings.
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TABLE A-1.  KEY UNCERTAINTIES  ASSOCIATED WITH COST ESTIMATION 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET BENEFITS 

ESTIMATE1 

Costs are based on today’s 
technologies.  Innovations in 
future emission control 
technology and competition 
among equipment suppliers tend 
to reduce costs over time. 

Underestimate Probably minor.  Available evidence 
suggests that estimates of pollution 
control costs based on current 
engineering can substantially 
overestimate the ultimate cost 
incurred, resulting in understanding 
net benefits.2 

Uncertainty of final State 
strategies for meeting 
Reasonable Further Progress 
(RFP) requirements. 

Underestimate Probably minor.  We apply a 
conservative estimate for costs of 
RFP measures.  Available evidence 
for identified RFP measures suggests 
costs could be as much as 70 percent 
lower than this value.  The bias most 
likely results in significantly 
understating net benefits. 

Errors in emission projections 
that form the basis of selecting 
control strategies and costs in 
both the IPM and ERCAM 
models.   

Unable to determine 
based on current 
information 

Probably minor.  In many cases, 
emissions reductions are specified in 
the regulations, suggesting that 
errors in the estimation of absolute 
levels of emissions under Pre- and 
Post-CAAA scenarios may have only a 
small impact on cost estimates.  The 
effect on net benefits is unknown. 

Exclusion of the impact of 
economic incentive provisions, 
including banking, trading, and 
emissions averaging provisions. 

Underestimate Probably minor.  Economic incentive 
provisions can substantially reduce 
costs, but the major economic 
programs for trading of sulfur and 
nitrogen dioxide emissions are 
reflected in the analysis. 

Incomplete characterization of 
certain indirect costs, including 
vehicle owner opportunity costs 
associated with Inspection and 
Maintenance Programs and 
performance degradation issues 
associated with the 
incorporation of emission 
control technology. 

Overestimate Probably minor.  Preliminary 
evidence suggests that the 
opportunity costs of vehicle owners is 
most likely small relative to other 
cost inputs.3  In addition, it will vary 
from State to State and is subject to 
a variety of influencing factors.  The 
potential magnitude of indirect costs 
associated with performance 
degradation is more uncertain, 
because few data currently exist to 
quantify this effect. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET BENEFITS 

ESTIMATE1 

Choice to model direct costs 
rather than social costs. 

Unable to determine 
based on current 
information 

Probably minor.  The relationship of 
social cost to direct cost estimates is 
influenced by multiple factors that 
operate in opposite directions, 
suggesting the magnitude of the net 
effect is reduced.  Social cost 
estimates can reflect the net welfare 
changes across the full range of 
economic sectors in the U.S., and so 
may yield higher estimates of costs 
than a direct cost approach.  In 
addition, social cost estimates can be 
constructed to reflect the potentially 
substantial cost magnifying effect of 
existing tax distortions.  Direct cost 
estimates, however, are likely to 
overstate costs in the primary market 
because they do not reflect 
consumer and producer responses.  
The extent to which a direct cost 
estimate will overstate or understate 
a social cost estimate depends on the 
magnitude of the “ripple effects” in 
economic sectors not targeted by a 
regulation.  In addition, assessment 
of the effect on net benefit 
estimates must also account for any 
economy-wide effects of direct 
benefits (e.g., the broader 
implications of improving health 
status, and improving environmental 
quality). 

Use of costs for rules that are 
currently in draft form (i.e., not 
yet finalized). 

Unable to determine 
based on current 
information 

Probably minor.  Rules that are most 
important to the overall cost 
estimate are largely finalized.  For 
example, there is some uncertainty 
as to how the cap-and-trade program 
through the SIP process will lower 
NOx emissions in an efficient manner.  
The expected effect on net benefits 
is minimal. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET BENEFITS 

ESTIMATE1 

Exclusion of costs of 7-year and 
10-year MACT standards and the 
residential risk standards for the 
2- and 4-year MACT standards. 

Unable to determine 
based on current 
information 

Probably minor.  Costs for the 7- and 
10-year MACT standards are likely to 
be less than for the 2- and 4-year 
standards included in the analysis 
and the need for, and potential 
scope and stringency of, future Title 
III residual risk standards remain 
highly uncertain.  For consistency, 
benefits of the 7- and 10-year 
standards and the residual risk 
standards are also excluded. 
 
 

1 The classification of each potential source of error reflects the best judgment of the section 
812 Project Team.  The Project Team assigns a classification of “potentially major” if a 
plausible alternative assumption or approach could influence the overall monetary benefit 
estimate by approximately five percent or more; if an alternative assumption or approach is 
likely to change the total benefit estimate by less than five percent, the Project Team assigns 
a classification of “probably minor.” 

2 For more detail, see Harrington et al. (1999). 
3 Preliminary evidence based on Arizona’s Enhanced I/M program indicates that major 

components of the programs costs are associated with test and repair costs rather than the 
costs of waiting and travel for vehicle owners.  (Harrington and McConnell, 1999).  To date, 
Enhanced I/M programs have been implemented in only four States. 
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TABLE A-2.  KEY UNCERTAINTIES  ASSOCIATED WITH EMISSIONS ESTIMATION 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS 

FOR NET BENEFITS ESTIMATE 

LIKELY SIGNIFICANCE RELATIVE 

TO KEY UNCERTAINTIES IN NET 

BENEFIT ESTIMATE* 

PM2.5 emissions are largely 
based on scaling of PM10 
emissions. 

Overall, unable to determine 
based on current information, 
but current emission factors 
are likely to underestimate 
PM2.5 emissions from 
combustion sources, implying 
a potential underestimation of 
benefits. 

Potentially major.  Source-
specific scaling factors reflect 
the most careful estimation 
currently possible, using 
current emissions monitoring 
data.  However, health 
benefit estimates related to 
changes in PM2.5 constitute a 
large portion of overall CAAA-
related benefits. 

Primary PM2.5 emissions 
estimates are based on unit 
emissions that may not 
accurately reflect composition 
and mobility of the particles.  
For example, the ratio of 
crustal to primary 
carbonaceous particulate 
material likely is high. 

Underestimate.  The effect of 
overestimating crustal 
emissions and underestimating 
carbonaceous when applied in 
later stages of the analysis, is 
to reduce the net impact of 
the CAAA on primary PM2.5 
emissions by underestimating 
PM2.5 emissions reductions 
associated with mobile source 
tailpipe controls. 

Potentially major.  Mobile 
source primary carbonaceous 
particles are a significant 
contributor to public exposure 
to PM2.5.  Overall, however, 
compared to secondary PM2.5 
precursor emissions, changes 
in primary PM2.5 emissions 
have only a small impact on 
PM2.5 related benefits. 

The post-CAAA scenario 
includes implementation of a 
region-wide NOx emissions 
reduction strategy to control 
regional transport of ozone 
that may not reflect the NOx 
controls that are actually 
implemented in a regional 
ozone transport rule. 

Unable to determine based on 
current information. 

Probably minor.  Overall, 
magnitude of estimated 
emissions reductions is 
comparable to that in 
expected future regional 
transport rule.  In some areas 
of the 37-state region, 
emissions reductions are 
expected to be 
overestimated, but in other 
areas, NOx inhibition of ozone 
leads to underestimates of 
ozone benefits (e.g., some 
eastern urban centers). 

VOC emissions are dependent 
on evaporation, and future 
patterns of temperature are 
difficult to predict.   

Unable to determine based on 
current information. 

Probably minor.  We assume 
future temperature patterns 
are well characterized by 
historic patterns, but an 
acceleration of climate 
change (warming) could 
increase emissions. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS 

FOR NET BENEFITS ESTIMATE 

LIKELY SIGNIFICANCE RELATIVE 

TO KEY UNCERTAINTIES IN NET 

BENEFIT ESTIMATE* 

Use of average temperatures 
(i.e., daily minimum and 
maximum) in estimating 
motor-vehicle emissions 
artificially reduces variability 
in VOC emissions. 

Unable to determine based on 
current information. 

Probably minor.  Use of 
averages will overestimate 
emissions on some days and 
underestimate on other days.  
Effect is mitigated in Post-
CAAA scenarios because of 
more stringent evaporative 
controls that are in place by 
2000 and 2010. 

Economic growth factors used 
to project emissions are an 
indicator of future economic 
activity.  They reflect 
uncertainty in economic 
forecasting as well as 
uncertainty in the link to 
emissions. 

Unable to determine based on 
current information. 

Probably minor.  The same set 
of growth factors are used to 
project emissions under both 
the Pre-CAAA and Post-CAAA 
scenarios, mitigating to some 
extent the potential for 
significant errors in estimating 
differences in emissions. 

Uncertainties in the 
stringency, scope, timing, and 
effectiveness of Post-CAAA 
controls included in projection 
scenarios. 

Unable to determine based on 
current information. 

Probably minor.  Future 
controls could be more or less 
stringent, wide-reaching (e.g., 
NOx reductions in OTAG region 
- see above), or effective 
(e.g., uncertainty in realizing 
all Reasonable Further 
Progress requirements) than 
projected.  Timing of 
emissions reductions may also 
be affected (e.g., sulfur 
emissions reductions from 
utility sources have occurred 
more rapidly than projected 
for this analysis). 

*  The classification of each potential source of error reflects the best judgment of the section 
812 Project Team.  The Project Team assigns a classification of “potentially major” if a plausible 
alternative assumption or approach could influence the overall monetary benefit estimate by 
approximately five percent or more; if an alternative assumption or approach is likely to change 
the total benefit estimate by less than five percent, the Project Team assigns a classification of 
“probably minor.” 
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TABLE A-3.  KEY UNCERTAINTIES  ASSOCIATED WITH AIR QUALITY MODELING 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

PM10 and PM2.5  concentrations 
in the East (RADM domain) are 
based exclusively on changes 
in the concentrations of 
sulfate and nitrate particles, 
omitting the effect of 
anticipated reductions in 
organic or primary particulate 
fractions. 

Underestimate Potentially major.  Nitrates and 
sulfates constitute major 
components of PM, especially PM2.5,  
in most of the RADM domain and 
changes in nitrates and sulfates may 
serve as a reasonable approximation 
of changes in total PM10 and total 
PM2.5.  Of the other components, 
primary crustal particulate 
emissions are not expected to 
change between scenarios; primary 
organic carbon particulate emissions 
are expected to change, but an 
important unknown fraction of the 
organic PM is from biogenic 
emissions, and biogenic emissions 
are not expected to change 
between scenarios.  If the 
underestimation is major, it is likely 
the result of not capturing 
reductions in motor vehicle primary 
elemental carbon and organic 
carbon particulate emissions.  

The number of PM2.5 ambient 
concentration monitors 
throughout the U.S. is limited.  
As a result, cross estimation 
of PM2.5 concentrations from 
PM10 (or TSP) data was 
necessary in order to 
complete the “monitor-level” 
observational dataset used in 
the calculation of air quality 
profiles. 

Unable to determine 
based on the current 
information. 

Potentially major.  PM2.5 exposure is 
linked to mortality, and avoided 
mortality constitutes a large portion 
of overall CAAA benefits.  Cross 
estimation of PM2.5, however, is 
based on studies that account for 
seasonal and geographic variability 
in size and species composition of 
particulate matter.  Also, results 
are aggregated to the annual level, 
improving the accuracy of cross 
estimation. 

Use of separate air quality 
models for individual 
pollutants and for different 
geographic regions does not 
allow for a fully integrated 
analysis of pollutants and 
their interactions. 

Unable to determine 
based on current 
information 

Potentially major.  There are 
uncertainties introduced by 
different air quality models 
operating at different scales for 
different pollutants.  Interaction is 
expected to be most significant for 
PM estimates.  However, important 
oxidant interactions are 
represented in all PM models and 
the models are being used as 
designed.  The greatest likelihood 
of error in this case is for the 
summer period in areas with NOx 
inhibition of ambient ozone (e.g., 
Los Angeles). 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Future-year adjustment 
factors for seasonal or annual 
monitoring data are based on 
model results for a limited 
number of simulation days. 

Overall, unable to 
determine based on 
current information 

Probably minor.  RADM/RPM and 
REMSAD PM modeling simulation 
periods represent all four seasons 
and characterize the full seasonal 
distribution.  Potential 
overestimation of ozone, due to 
reliance on summertime episodes 
characterized by high ozone levels 
and applied to the May-September 
ozone season, is mitigated by longer 
simulation periods, which contain 
both high and low ozone days.  Also, 
underestimation of UAM-V western 
and UAM-IV Los Angeles ozone 
concentrations (see below) may 
help offset the potential bias 
associated with this uncertainty. 

Comparison of modeled and 
observed concentrations 
indicates that ozone 
concentrations in the western 
states were somewhat 
underpredicted by the UAM-V 
model, and ozone 
concentrations in the Los 
Angeles area were 
underestimated by the UAM-IV 
model. 

Unable to determine 
based on current 
information 

Probably minor.  Because model 
results are used in a relative sense 
(i.e., to develop adjustment factors 
for monitor data) the tendency for 
UAM-V or UAM to underestimate 
absolute ozone concentrations 
would be unlikely to affect overall 
results.  To the extent that the 
model is not accurately estimating 
the relative changes in ozone 
concentrations across regulatory 
scenarios, the effect could be 
greater. 

Ozone modeling in the eastern 
U.S. relies on a relatively 
coarse 12 km grid, suggesting 
NOx inhibition of ambient 
ozone levels may be under 
represented in some eastern 
urban areas.  Coarse grid may 
affect both model 
performance and response to 
emissions changes. 

Unable to determine 
based on current 
information 

Probably minor.  Though potentially 
major for eastern ozone results in 
those cities with known NOx 
inhibition, ozone benefits 
contribute only minimally to net 
benefit projections in this study.  
Grid size affects chemistry, 
transport, and diffusion processes 
which in turn determine the 
response to changes in emissions, 
and may also affect the relative 
benefits of low-elevation versus 
high-stack controls.  However, the 
approach is consistent with current 
state-of-the-art for regional-scale 
ozone modeling. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

UAM-V modeling of ozone in 
the western U.S. uses a 
coarser grid than the eastern 
UAM-V (OTAG) or UAM-IV 
models, limiting the resolution 
of ozone predictions in the 
West. 

Unable to determine 
based on current 
information 

Probably minor.  Also, probably 
minor for ozone results.  Grid cell-
specific adjustment factors for 
monitors are less precise for the 
west and may not capture local 
fluctuations.  However, exposure 
tends to be lower in the 
predominantly non-urban west, and 
models with finer grids have been 
applied to three key population 
centers with significant ozone 
concentrations.  May result in 
underestimation of benefits in the 
large urban areas not specifically 
modeled (e.g., Denver, Seattle) 
with finer grid. 

Emissions estimated at the 
county level (e.g., area source 
and motor vehicle NOx and 
VOC emissions) are spatially 
and temporally allocated 
based on land use, population, 
and other surrogate indicators 
of emissions activity.  
Uncertainty and error are 
introduced to the extent that 
area source emissions are not 
perfectly spatially or 
temporally correlated with 
these indicators. 

Unable to determine 
based on current 
information 

Probably minor.  Potentially major 
for estimation of ozone, which 
depends largely on VOC and NOx 
emissions; however, ozone benefits 
contribute only minimally to net 
benefit projections in this study. 

The REMSAD model 
underpredicted western PM 
concentrations during fall and 
winter simulation periods. 

Unable to determine 
based on current 
information 

Probably minor.  Because model 
results are used in a relative sense 
(i.e., to develop adjustment factors 
for monitor data) REMSAD’s 
underestimation of absolute PM 
concentrations would be unlikely to 
significantly affect overall results.  
To the extent that the model is not 
accurately estimating the relative 
changes in PM concentrations across 
regulatory scenarios, or the 
individual PM components (e.g., 
sulfates, primary emissions) do not 
vary uniformly across seasons, the 
affect could be greater. 



Second Section 812 Prospective Analysis 
March 2011 

 

 

 A-9 

 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Lack of model coverage for 
acid deposition in Western 
states. 

Underestimate Probably minor.  Because acid 
deposition tends to be a more 
significant problem in the eastern 
U.S. and acid deposition reduction 
contributes only minimally to net 
monetized benefits, the monetized 
benefits of reduced acid deposition 
in the western states would be 
unlikely to significantly alter the 
total estimate of monetized 
benefits. 

Uncertainties in biogenic 
emissions inputs increase 
uncertainty in the AQM 
estimates. 

Unable to determine 
based on current 
information 

Probably minor.  Potentially major 
impacts for ozone outputs, but 
ozone benefits contribute only 
minimally to net benefit projects in 
this study.  Uncertainties in 
biogenics may be as large as a 
factor of 2 to 3.  These biogenic 
inputs affect the emissions-based 
VOC/NOx ratio and, therefore, 
potentially affect the response of 
the modeling system to emissions 
changes. 

* The classification of each potential source of error reflects the best judgment of the section 
812 Project Team.  The Project Team assigns a classification of “potentially major” if a 
plausible alternative assumption or approach could influence the overall monetary benefit 
estimate by approximately five percent or more; if an alternative assumption or approach is 
likely to change the total benefit estimate by less than five percent, the Project Team 
assigns a classification of “probably minor.” 
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TABLE A-4.  KEY UNCERTAINTIES  ASSOCIATED WITH HUMAN HEALTH EFFECTS MODELING 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS 

FOR NET BENEFITS ESTIMATE 

LIKELY SIGNIFICANCE RELATIVE 

TO KEY UNCERTAINTIES IN NET 

BENEFIT ESTIMATE* 

Application of C-R 
relationships only to those 
subpopulations matching the 
original study population. 

Underestimate Potentially major.  The C-R 
functions for several health 
endpoints (including PM-
related premature mortality) 
were applied only to 
subgroups of the U.S. 
underestimate the whole 
population benefits of 
reductions in pollutant 
exposures.  In addition, the 
demographics of the study 
population in the Pope et al. 
study (largely white and 
middle class) may result in an 
underestimate of PM-related 
mortality, because the effects 
of PM tend to be significantly 
greater among groups of lower 
socioeconomic status. 

No quantification of health 
effects associated with 
exposure to air toxics. 

Underestimate Potential major.  According to 
EPA criteria, over 100 air 
toxics are known or suspected 
carcinogens, and many air 
toxics are also associated with 
adverse health effects such as 
neurotoxicity, reproductive 
toxicity, and developmental 
toxicity.  Unfortunately, 
current data and methods are 
insufficient to develop (and 
value) quantitative estimates 
of the health effects of these 
pollutants. 

Use of long-term global 
warming estimates in Title VI 
analysis that show more 
severe warming than is now 
generally anticipated. 

Overestimate (for Title VI 
estimate only) 

Potentially major.  Global 
warming can accelerate the 
pace of stratospheric ozone 
recovery; if warming is less 
severe than anticipated at the 
time the Title VI analyses 
were conducted, the modeled 
pace of ozone recovery may 
be overestimated, suggesting 
benefits of the program could 
be delayed, perhaps by many 
years.  The magnitude of 
estimated Title VI benefits 
suggests that the impact of 
delaying benefits could be 
major. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS 

FOR NET BENEFITS ESTIMATE 

LIKELY SIGNIFICANCE RELATIVE 

TO KEY UNCERTAINTIES IN NET 

BENEFIT ESTIMATE* 

The quantitative analysis of 
Title VI (see next section) 
does not account for potential 
increases in averting behavior 
(i.e., people’s efforts to 
protect themselves from UV-b 
radiation). 

Unable to determine based on 
current information 

Potentially major.  Murdoch 
and Thayer (1990) estimate 
that the cost-of-illness 
estimates for nonmelanoma 
skin cancer cases between 
2000 and 2050 may be almost 
twice the estimated cost of 
averting behavior (application 
of sunscreen).  Our Title VI 
analysis relies on 
epidemiological studies, which 
incorporate averting behavior 
as currently practiced.  
Omission of future increases in 
averting behavior, however, 
may overstate the benefits of 
reduced emissions of ozone-
depleting chemicals.  Benefits 
could be understated if 
individuals alter their 
behaviors in ways that could 
increase exposure or risk 
(e.g., sunbathing more 
frequently).  A recent 
European study by Autier et 
al. (1999) found that the use 
of high sun protection factor 
(SPF) sun screen is associated 
with increased frequency and 
duration of sun exposure. 

Analysis assumes a causal 
relationship between PM 
exposure and premature 
mortality based on strong 
epidemiological evidence of a 
PM/mortality association.  
However, epidemiological 
evidence along cannot 
establish this causal link. 

Unable to determine based on 
current information 

Potentially major.  A basic 
underpinning of this analysis, 
this assumption is critical to 
the estimation of health 
benefits.  However, the 
assumption of causality is 
suggested by the 
epidemiologic evidence and is 
consistent with current 
practice in the development 
of a best estimate of air 
pollution-related health 
benefits.  At this time, we can 
identify no basis to support a 
conclusion that such an 
assumption results in a known 
or suspected overestimation 
bias. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS 

FOR NET BENEFITS ESTIMATE 

LIKELY SIGNIFICANCE RELATIVE 

TO KEY UNCERTAINTIES IN NET 

BENEFIT ESTIMATE* 

Across-study 
variance/application of 
regionally derived C-R 
estimates to entire U.S. 

Unable to determine based on 
current information 

Potentially major.  The 
differences in the expected 
changes in health effects 
calculated using different 
underlying studies can be 
large.  If differences reflect 
real regional variation in the 
PM/mortality relationship, 
applying individual C-R 
functions throughout the U.S. 
could result in considerable 
uncertainty in health effect 
estimates. 

Estimate of non-melanoma 
skin cancer mortality resulting 
from reductions in 
stratospheric ozone is 
calculated indirectly, by 
assuming the mortality rate is 
a fixed percentage of non-
melanoma incidence. 

Unable to determine based on 
current information 

Potentially major.  New data 
on the death rate for non-
melanoma skin cancer may 
significantly influence the 
Title VI mortality estimate.  
Some preliminary estimates 
suggest that this estimate may 
need to be adjusted 
downward. 

The baseline incidence 
estimate of chronic bronchitis 
based on Abbey et al. (1995) 
excluded 47 percent of the 
cases reported in that study 
because those reported 
“cases” experienced a 
reversal of symptoms during 
the study period.  These 
“reversals” may constitute 
acute bronchitis cases that 
are not included in the acute 
bronchitis analysis (based on 
Dockery et al. 1996). 

Underestimate Probably minor.  The relative 
contribution of acute 
bronchitis cases to the overall 
benefits estimate is small 
compared to other health 
benefits such as avoided 
mortality and avoided chronic 
bronchitis. 

CAAA fugitive dust controls 
implemented in PM non-
attainment areas would 
reduce lead exposures by 
reducing the re-entrainment 
of lead particles emitted prior 
to 1990.  This analysis does 
not estimate these benefits. 

Underestimate Probably minor.  While the 
health and economic benefits 
of reducing lead exposure can 
be substantial (e.g., see 
section 812 Retrospective 
Study Report to Congress), 
most additional fugitive dust 
controls implemented under 
the Post-CAAA scenario (e.g., 
unpaved road dust 
suppression, agricultural 
tilling controls, etc.) tend to 
be applied in relatively low 
population areas. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS 

FOR NET BENEFITS ESTIMATE 

LIKELY SIGNIFICANCE RELATIVE 

TO KEY UNCERTAINTIES IN NET 

BENEFIT ESTIMATE* 

Exclusion of C-R functions 
from short-term exposure 
studies in PM mortality 
calculations. 

Underestimate Probably minor.  Long-term 
PM exposure studies may be 
able to capture some of the 
impact of short-term peak 
exposure one mortality; 
however, the extent of 
overlap between the two 
study types is unclear. 

Age-specific C-R functions for 
PM related premature 
mortality not reported by 
Pope et al. (1995).  Estimation 
of the degree of life-
shortening associated with 
PM-related mortality used a 
single C-R function for all 
applicable age groups. 

Unable to determine based on 
current information 

Unknown, possibly major 
when using a value of life 
year’s approach.  Varying the 
estimate of degree of 
prematurity has no effect on 
the aggregate benefit 
estimate when a value of 
statistical life approach is 
used, since all incidences of 
premature mortality are 
valued equally.  Under the 
alternative approach based on 
valuing individual life-years, 
the influence of alternative 
values for number of average 
life years lost may be 
significant. 

Assumption that PM-related 
mortality occurs over a period 
of five-years following the 
critical PM exposure.  Analysis 
assumes that 25 percent of 
deaths occur in year one, 25 
percent in year two, and 16.7 
percent in each of the 
remaining three years. 

Unable to determine based on 
current information 

Probably minor.  If the 
analysis underestimates the 
lag period, benefits will be 
overestimated, and vice-
versa.  However, available 
epidemiological studies do not 
provide evidence of the 
existence or potential 
magnitude of a lag between 
exposure and incidence.  
Thus, an underestimate of the 
lag seems unlikely.  If the 
assumed lag structure is an 
overestimate, even if benefits 
are fully discounted from the 
future year of death, 
application of reasonable 
discount rates over this period 
would not significantly alter 
the monetized benefit 
estimate. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS 

FOR NET BENEFITS ESTIMATE 

LIKELY SIGNIFICANCE RELATIVE 

TO KEY UNCERTAINTIES IN NET 

BENEFIT ESTIMATE* 

Extrapolation of criteria 
pollutant concentrations to 
populations distant from 
monitors. 

Unable to determine based on 
current information 

Probably minor.  Extrapolation 
method is most accurate in 
areas where monitor density is 
high.  Monitor density tends to 
be highest in areas with high 
criteria pollutant exposures; 
thus most of this uncertainty 
affects low exposure areas 
where benefits are likely to be 
low.  In addition, an enhanced 
extrapolation method 
incorporation modeling results 
is used for areas fare (> 50 
km) from a monitor. 

Exposure analysis in areas 
beyond 50 km is based on a 
new technique that relies on 
the direct use of air quality 
modeling results in 
combination with adjusted 
monitor data. 

Unable to determine based on 
current information 

Probably minor.  The new 
technique is used for less than 
10 percent of the country for 
PM exposure, and less than 15 
percent for ozone.  The 
approach we use should be 
more accurate than the 
alternative approach of linear 
interpolation over long 
distances.  The new method 
nonetheless requires further 
testing against monitor data 
to access its accuracy. 

Pope et al. (1995) study did 
not include pollutants other 
than PM. 

Unable to determine based on 
current information 

Probably minor.  If ozone and 
other criteria pollutants 
correlated with PM contribute 
to mortality, that effect may 
be captured in the PM 
estimate.  Thus, PM is 
essentially used as a surrogate 
for a mix of pollutants.  This 
uncertainty does make it 
difficult to disaggregate 
avoided mortality benefits by 
pollutant, however other 
studies (besides Pope) suggest 
that PM is the dominant factor 
in premature mortality. 

*  The classification of each potential source of error reflects the best judgment of the section 
812 Project Team.  The Project Team assigns a classification of “potentially major” if a plausible 
alternative assumption or approach could influence the overall monetary benefit estimate by 
approximately five percent or more; if an alternative assumption or approach is likely to change 
the total benefit estimate by less than five percent, the Project Team assigns a classification of 
“probably minor.” 
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TABLE A-5.  KEY UNCERTAINTIES  ASSOCIATED WITH ECOLOGICAL EFFECTS ESTIMATION 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Incomplete coverage of 
ecological effects identified in 
existing literature, including 
the inability to adequately 
discern the role of air 
pollution in multiple stressor 
effects on ecosystems. 

Underestimate Potentially major.  The extent of 
unquantified and unmonetized 
benefits is largely unknown, but the 
available evidence suggests the 
impact of air pollutants on 
ecological systems may be 
widespread and significant.  At the 
same time, it is possible that a 
complete quantification of effects 
might yield economic valuation 
results that remain small in 
comparison to the total magnitude 
of health benefits. 

Omission of the effects of 
nitrogen deposition as a 
nutrient with beneficial 
effects. 

Overestimate Probably minor.  Although nitrogen 
does have beneficial effects as a 
nutrient in a wide range of 
ecological systems, nitrogen in 
excess also has significant and in 
some cases persistent detrimental 
effects that are also not adequately 
reflected in the analysis. 

Incomplete assessment of 
long-term bioaccumulative 
and persistent effects of air 
pollutants.   

Underestimate Potentially major.  Little is 
currently known about the longer-
term effects associated with the 
accumulation of toxins in 
ecosystems. But what is known 
suggests the potential for major 
impacts.  Future research into the 
potential for threshold effects is 
necessary to establish the ultimate 
significance of this factor. 

The PnET II modeling of the 
effects of ozone on timber 
yields relies on a simplified 
mechanism of response (i.e., 
changes in net primary 
productivity). 

Overestimate Probably minor.  Existing evidence 
suggests that the growth changes 
PnET II projects are relatively large, 
however none of the currently 
available points of comparison fully 
address such issues as the impact of 
stand-level competition, and the 
net primary productivity results are 
within the range of results of other 
studies of environmental and 
anthropogenic stressors. 

* The classification of each potential source of error reflects the best judgment of the section 
812 Project Team.  The Project Team assigns a classification of “potentially major” if a 
plausible alternative assumption or approach could influence the overall monetary benefit 
estimate by approximately five percent or more; if an alternative assumption or approach is 
likely to change the total benefit estimate by less than five percent, the Project Team 
assigns a classification of “probably minor.” 
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TABLE A-6.  SUMMARY OF KEY SOURCES OF UNCERTAINTY AND THEIR IMPACT ON COSTS  

 AND BENEFITS 

SOURCE OF UNCERTAINTY 

DESCRIPTION OF ALTERNATIVE 

PARAMETER INPUTS 

IMPACT ON ANNUAL ESTIMATES 

IN 2010 

COSTS BENEFITS 

Measurement error and 
uncertainty in the physical 
effects and economic 
valuation steps. 

Use a range of input 
assumptions to reflect 
statistical measurement 
uncertainty in concentration-
response functions, modeling 
of physical effects, and 
estimation of economic 
values.  Most important input 
parameters are value of 
statistical life and estimated 
relationship between 
particulate matter and 
premature mortality (see 
Chapters 5, 6, and 7). 

None For Titles I 
through V, 
effect of the 
use of 
alternative 
input 
assumptions 
ranges from 
$84 billion 
decrease (5th 
percentile) to 
a $160 billion 
increase (95th 
percentile). 

Measurement error and 
uncertainty in direct cost 
inputs 

Use alternative assumptions 
for key input parameters for 
six of the highest cost 
provisions.  Conduct sensitivity 
tests for each provision 
separately (see Chapter 3, 
pages 30 to 32).  As discussed 
in Chapter 3 and in this 
chapter, aggregation of 
provision-specific results 
would be inappropriate. 

High 
estimates for 
some 
provisions are 
$1 billion 
higher than 
primary 
estimate.  
Low 
estimates are 
as much as $2 
billion below 
primary 
estimates. 

None 

Value of statistical life-based 
estimates do not reflect age 
at death. 

Use estimates of the 
incremental number of life-
years lost from exposure to 
ambient PM and a value of 
statistical life-year as opposed 
to measuring number of lives 
lost and a value of statistical 
life (see Chapters 5 and 6). 

None Decrease by 
$47 billion 

Basis of estimate of avoided 
mortality from PM exposure 

The Dockery et al. study 
provides an alternative 
estimate of the long-term 
relationship between chronic 
PM exposure and mortality 
(see Chapter 5). 

None Increase by 
$100 to $150 
billion 
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SOURCE OF UNCERTAINTY 

DESCRIPTION OF ALTERNATIVE 

PARAMETER INPUTS 

IMPACT ON ANNUAL ESTIMATES 

IN 2010 

COSTS BENEFITS 

Uncertainties in title VI health 
benefits analysis 

Major uncertainties include:  
estimating fatal cancer cases 
resulting from UV-b exposure; 
not accounting for future 
averting behavior; and not 
accounting for future 
improvements in the early 
detection and treatment of 
melanoma (see Table 5—6). 

None Not 
quantified, 
but net effect 
is probably 
that benefits 
estimates are 
too low. 

Omission of potentially 
important benefits categories 
from primary estimates. 

Non-quantified categories of 
impacts summarized in 
Chapters 5 and 7.  Quantified 
but omitted categories include 
household soiling, nitrogen 
deposition, and residential 
viability (see Chapter 7). 

None Increase by at 
least $8 
billion, (does 
not reflect 
unquantified 
categories). 
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B-1 

March 30, 2009 

 

 

To: James Neumann, Industrial Economics, Inc. STI-908026.02-3537-TM 

From: Neil Wheeler and Kenneth Craig 

 

Re: Uncertainty Analysis of the Integrated Air Quality Modeling System for use in the U.S. 
Environmental Protection Agency’s Section 812 Second Prospective Analysis 

Under Section 812 of the Clean Air Act Amendments (CAAA), the U.S. Environmental 
Protection Agency (EPA) is requested to periodically conduct and submit to Congress a report on 
economic benefits and costs of all provisions of the Act and its Amendments.  The EPA 
delivered the first of these reports, a retrospective analysis covering provisions of the original 
Clean Air Act during the period 1970-1990, in 1997, and the second report, a prospective 
analysis covering provisions of the CAAA during the period 1990-2010, in 1999. 

 
The EPA is currently working on the third report to be developed under Section 812.  

This “Second Prospective Analysis” will estimate benefits and costs for provisions of the 
Amendments as they are expected to be implemented during the period 1990-2020.  

  
In September 2004, Sonoma Technology, Inc. (STI) completed a literature review that 

summarized much of the existing uncertainty literature and assessed the possible application of 
existing approaches to the Second Prospective Analysis for estimating the uncertainties in the 
integrated air quality modeling system (IAQMS), which includes the emissions, meteorological, 
and air quality models.148   

 
This memorandum covers the two deliverables for Work Assignment 4-15 as revised on 

October 15, 2008.  The first deliverable is an updated literature review of uncertainties in 
IAQMSs and methods for quantifying them (Section 1) and the evaluation and overall reliability 
of IAQMSs (Section 2).  The second deliverable is a discussion of the IAQMS used in the 
Second Prospective Analysis and a draft table that summarizes key uncertainties in the IAQMS, 
potential sources of error, potential biases for the net benefits estimate, and the likely 
significance relative to key uncertainties in net benefit estimate (Section 3).  References cited 
throughout this document are provided in Section 4.  

                                                      
148 See September 30, 2004 memorandum to Nona Smoke and James DeMocker, EPA/OAR/OPAR, from Neil Wheeler and 
Kiren Baum, Sonoma Technology, Inc., “Response to Council Comments on the May 2003 Draft Analytical Plan for the 
Section 812 Second Prospective – Options for Uncertainty Analysis for Emissions and Air Quality Analyses”. 
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UNCERTAINTIES  IN  THE IAQMS 

Sources of Uncertainty 

Uncertainty in estimated values for future air quality arises from at least three sources: (1) 
inherent or stochastic variability in the observations; (2) errors in model physics and chemistry 
assumptions; and (3) errors caused by uncertainties in model input variables.  For prospective 
analyses, we need to focus on uncertainty in the context of model response to future-year 
emissions.  For example, an air quality model (AQM) may be very sensitive to a particular input 
without affecting its response to emission changes.  Alternatively, an AQM may show little 
sensitivity to an input under current conditions (e.g., boundary conditions) but become 
increasingly sensitive to that input in future years as anthropogenic emissions are reduced. 

Measurement Uncertainty 

While measurement uncertainty is less important when using relative reduction factors 
(RRFs) and linear cost-response functions, it can affect the ability to evaluate model performance 
and gain confidence that a model is getting the right answer for the right reason.  For gases, 
instruments can be calibrated using gases of known concentrations, and the uncertainty in the 
measurement is reasonably well known.  However, this is not the case for PM.  Uncertainties in 
PM mass and speciation can be significant, which limits our ability to critically evaluate model 
performance and reduce uncertainty in model simulations. 

 
Hogrefe et al. (2000) developed an approach to gain insight into the distribution of future 

air quality predictions attributable to variability in currently observed air quality at a given 
location.  The procedure is to fit a theoretical statistical distribution to the tail of a set of daily 
observations at a monitoring site (e.g., over a three-year period) and compute a design value 
consistent with the form of the National Ambient Air Quality Standards (NAAQS).  The next 
step is to perform a bootstrapping operation several hundred times to obtain different sets of air 
quality data.  For each instance, a design value is determined from the resulting data.  The result 
is a distribution of current design values, which can be translated into a distribution of future air 
quality estimates using the RRF approach recommended in EPA guidance.  While work so far 
has focused on the 1-hr and 8-hr NAAQS for ozone, it may be possible to apply the methodology 
to PM-related applications. 

Model Uncertainty 

Emissions, meteorological, and air quality models are mathematical representations of the 
physical world, and as such, have inherent uncertainties associated with their formulation, 
assumptions, and implementation.  Some of the uncertainties are due to the limitations of our 
scientific knowledge.  Other uncertainties are a result of simplifications or approximations 
needed to make the model practical.  At the present time, we do not see a way to completely 
quantify uncertainty caused by inherent limitations in a model.  However, methods and a body of 
research are available to help us understand the importance of uncertainty in individual model 
components.  We can also reduce uncertainty by using models whose scientific basis is fully and 
satisfactorily explained in its accompanying documentation.   
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In some cases, it is necessary to use a simplified “engineering” or “reduced-form” version 
of a model.  Uncertainty inherent in such results may be reduced if it has been shown that the 
engineering and more complete versions of a model produce similar results under the conditions 
that are of greatest interest for a particular application. 

Input Uncertainty 

The best-formulated and least uncertain models are only as good as their inputs.  Model 
input uncertainty has been explored extensively in past decades and has driven research to 
improve these model inputs.  In some cases, these inputs are based on measurements, which may 
be available only at limited temporal or spatial resolutions.  In other cases, the input for one 
model may be the output of another model (i.e., the use of a mobile source emissions model to 
provide input to an AQM). 

Methods for Assessing the Effects of Uncertainty 

Sensitivity analysis is the most widely used method for assessing the effects of 
uncertainty on future-year air quality outcomes.  Process analysis has been used in more recent 
AQM applications to identify those processes in the AQM that contribute the most to predicted 
pollutant concentrations and, thus, may be most affected by uncertainty.  These methods and 
their use are discussed in greater detail below. 

Sensitivity Analysis 

The response of AQM predictions to changes of input parameters or model options can 
provide valuable information about uncertainties in model predictions.  Such information can be 
obtained by sensitivity analysis, the systematic calculation of sensitivity coefficients, to 
quantitatively measure these dependencies.  Basic sensitivity analysis may involve perturbing 
input parameters or model options one at a time or in combinations.  

 
Beck et al. (1997) provide an overview of evaluations and uncertainties of environmental 

models, with emphasis on water quality models.  They stress the need to specify a hypothesis or 
question to be answered by the model, and describe three alternatives to basic sensitivity 
analysis:  (1) brute-force MC uncertainty analysis; (2) response surface evaluation; and (3) first-
order error analysis, which is sometimes called sensitivity or “small perturbation” analysis.  Each 
technique is discussed below. 

Basic Sensitivity Analysis 

Because of its ease of use and interpretation, there exist many examples of basic 
sensitivity analysis applied to AQMs.  For example, Seigneur et al. (1981) estimated the 
sensitivities of an urban model to variations in input data.  Winner et al. (1995) and Dabdub et al. 
(1999) showed that ozone predictions are especially sensitive to the inflow boundary conditions 
in Los Angeles and the San Joaquin Valley, respectively.  Hass et al. (1997) carried out a 
sensitivity study of four European long-range transport and dispersion models, finding factors 
of 2 to 3 differences in the sensitivities of the different models to variations in emissions.  Our 
review of these sensitivity studies suggests that the results are applicable only to a narrow range 
of conditions associated with the specific scenario.  Because photochemical processes are often 
non-linear, the magnitude and even the sign of the sensitivity coefficients may vary as the 
scenario varies. 
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While meteorological parameters are undoubtedly important in photochemical grid 
models, it is not easy to decide how to account for variations in meteorology, especially wind 
speed and direction.  The problem is that it is necessary for the wind field to always satisfy mass-
continuity, so that it is not correct to simply randomly vary the winds in each grid square of the 
model.  Photochemical grid models make use of meteorological preprocessors, which may adjust 
the wind fields so they are mass-consistent.  Hanna et al. (1998) avoided this problem by 
assuming that the perturbations in wind speed and direction applied uniformly across all grid 
squares.  Schere and Coates (1992) suggested a more elegant (and time-consuming) method of 
accounting for uncertainties or variations in winds.  Bergin et al. (1999) attacked the problem by 
generating a small number of alternate wind fields based on systematically “withdrawing” data 
from the meteorological preprocessor.  This method is a useful first estimate but will 
underestimate the total uncertainty because of the limited number of runs and the failure to 
account for the full range of wind uncertainty. 

 
Meteorologists have accounted for variability in weather forecasts by applying the 

“ensemble” method in which several forecast models (i.e., an ensemble) are run for the same 
scenario, and the best-guess forecast is assumed to be given by the mean of the several forecasts.  
These methods have been applied to air quality models by Straume et al. (1998), who showed 
that the ensemble method produced improved forecasts of tracer concentrations for the long-
range ETEX tracer experiment in Europe.  It is implied that the uncertainty would be given by 
the variability of the forecasts.  These methods have also been extended to regulatory air quality 
modeling by using and evaluating alternative AQMs.  For example, Ozone Transport Assessment 
Group (1997) modeling used multiple meteorological models (SAIMM and RAMS) and multiple 
AQMs (UAM-V and CAMx) for some episodes.  However, it is clear that the full range of 
possible input conditions can not be covered by these ensemble methods. 

 
The EPA guidance documents on attainment demonstrations (U.S. Environmental 

Protection Agency, 1999, 2001) identify three sensitivity tests that may be useful for assessing 
uncertainty in AQM predictions.  The first of these, which has been proposed by Reynolds et al., 
(1996), is to prepare “alternative base-case” emission estimates, reflecting reasonable alternative 
assumptions about current emissions that lead to comparable or better model performance.  A 
second test is to assume alternative (reasonable) growth assumptions.  This could reflect using 
differing growth rates or placement of new sources in different, equally probable locations.  
Combinations of these first two tests are also possible.  A third test involves simulating a future-
year case with an alternative grid resolution or with different (reasonable) meteorological 
assumptions.  For example, due to resource constraints, it might be necessary to perform 
modeling using a grid with 36-km grid cells (horizontal dimension).  Differences in projected air 
quality obtained with a grid having 12-km or 4-km cells could then be evaluated. 

 
The EPA guidance documents on modeling for attainment demonstrations were 

influenced by earlier guidance developed at the California Air Resources Board (CARB), which 
specifically addressed uncertainty (DaMassa, 1992).  CARB applied this guidance in a series of 
uncertainty analyses to support the development of California’s State Implementation Plans 
(SIPs).  This program included analyses of uncertainty associated with future-year boundary 
conditions (Wagner and Wheeler, 1988), meteorology (Wagner and Wheeler, 1989; Wheeler, 
1992), emission inventory bias (Wagner et al., 1992), horizontal advection solvers (Odman et al., 
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1996), chemical mechanisms (Whitten and Killus, 1998), and photolysis rates (Vuilleumier et al., 
2000). 

Monte Carlo Uncertainty Analysis 

Monte Carlo (MC) methods are the most widely used means for uncertainty analysis.  
These methods involve random sampling from the distribution of inputs and successive model 
runs until a statistically significant distribution of outputs is obtained.  There has been a rapid 
growth in the use of MC uncertainty analysis with photochemical AQMs in recent years.  This 
“brute-force” method is computer-intensive because it requires 50 to 100 or more model runs for 
each base-year and future emission scenario.  However, because of the exponential growth of 
computer speed and storage, it is now possible to carry out MC runs with a complex 
photochemical grid model applied to large domain.  This method has been widely used in other 
environmental fields (e.g., water pollution modeling), as described in the reviews by 
International Atomic Energy Agency (IAEA) (1989), National Council on Radiation Protection 
and Measurements (NCRP) (1996), and Beck et al. (1997). 

 
One of the first applications of MC uncertainty analysis to photochemistry was the study 

of relationships between stratospheric ozone and chlorine reported by Solarski et al. (1978).  
Alcamo and Bartnicki (1987) used MC methods to study the uncertainties in sulfur deposition 
predicted by the EMEF-W model in Europe.  They found that it is more important to specify the 
width (i.e., the standard deviation) rather than the shape of the probability density function of the 
input variables.  Irwin et al. (1987) performed an MC uncertainty analysis to estimate error 
bounds from the output of a Gaussian dispersion model.  Uncertainties in wind speed, standard 
deviation of vertical and lateral wind direction fluctuations, and plume rise were propagated 
through the modeling system.  It was found that the error bounds for the maximum concentration 
could be double that of the error bounds for the input parameters.  This is one of the earlier 
papers on using uncertainty analysis on a dispersion model.  Gao et al. (1996) applied MC 
uncertainty analysis to the chemical rate parameters.  Deuel et al. (1998) studied the uncertainties 
of the UAM-V model using MC methods; however, the uncertainty ranges that they assumed for 
the input variables (vertical resolution, vertical diffusivity, plume-in-grid method, land-use, 
chemical reaction rates, and emissions) were a third or less than those recommended by the 
experts in the studies by Hanna et al. (1998, 2001).  Bergin et al. (1999) applied MC methods 
with Latin Hypercube Sampling (LHS) to a Lagrangian photochemical AQM (i.e., not a grid 
model) in Southern California.  They accounted for meteorological variability by using several 
solutions of a mass-consistent wind model, run with random data-withholding assumptions.   

 
Frey (1992) discusses the decision process followed in applications of MC uncertainty 

analysis, stressing the importance of good estimates of input data uncertainties.  Conover (1971) 
provides guidance concerning the computation of statistical tolerance limits from a simple 
random sample.  Bergin et al. (1999) discuss the use of LHS, which they believe provides a 
better coverage of the data distribution than Simple Random Sampling (SRS).  However, the 
advantage of LHS comes with a price—only with SRS can the confidence in the results be 
interpreted through statistical tolerance limits. 

 
From a practical standpoint, Hanna et al. (2001) demonstrated that MC methods could be 

applied to larger photochemical modeling studies (i.e., OTAG) by performing 100 simulations 
each for a base-case and three emission reduction scenarios.  Hanna and Davis (2002) evaluated 
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the UAM-V photochemical grid model by examining probability density functions of the 
variations in modeled ozone concentrations.  The probability density functions are generated 
from 100 MC uncertainty simulations based on uncertainties in model input variables. 

Houyoux et al. (2003) simplified the use of AQMs for assessing emission inventory 
uncertainties by generating multiple realizations of model-ready emissions with the Sparse 
Matrix Operator Kernel Emissions (SMOKE) processing system (Coats and Houyoux, 1996) by 
modifying SMOKE to accept parametric and empirical probability distributions to describe the 
uncertainty about them.  This approach allows emissions modelers to assign uncertainty 
information about an existing inventory without having to change the actual inventory files.  The 
same inventories can be used for both deterministic (i.e., without uncertainty) modeling and 
stochastic modeling (i.e., with uncertainty), and the type of modeling that is performed depends 
only on the presence of the additional inventory uncertainty file. 

 
Wang et al. (2000) estimated uncertainties in incremental reactivities for the SAPRC-97 

chemical mechanism, with an emphasis on aromatic mechanism parameters, using Monte Carlo 
analysis with LHS.  Rodriguez and Dadbub (2003) performed an MC uncertainty and sensitivity 
analysis of the Caltech Atmospheric Chemistry Mechanism (CACM), with an emphasis placed 
on secondary organic aerosol.  Uncertainties were propagated through box model simulations.   

 
Hanna et al. (2006) performed a Monte Carlo uncertainty analysis with ISCST3 and 

AERMOD to study uncertainties in annual average benzene and 1,3-butadiene concentrations in 
the Houston Ship Channel area caused by uncertainties in meteorological inputs, emissions 
inputs, and dispersion model parameters. 

 
Martien et al (2006) developed a continuous adjoint sensitivity analysis procedure for a 

three-dimensional photochemical model to determine the sensitivity of a small number of model 
responses to many parameters.  Menut (2003) also applied an adjoint sensitivity method for a 
photochemical sensitivity analysis. 

 
Deguillaume et al. (2007) applied a Bayesian Monte Carlo uncertainty analysis to a 

regional-scale inverse emission modeling study to estimate emission uncertainty in the Ile-de-
France region.  Deguillaume et al. (2008) applied a Bayesian Monte Carlo analysis to evaluate 
model uncertainty in ozone production and its sensitivity to emission changes in the CHIMERE 
model for the Ile-de-France region during the 1998 and 1999 summer seasons.  The use of 
observations to constrain the analysis reduced uncertainty of predicted ozone concentrations. 

Response Surface Analysis 

Forms of response surface approximations have been used in a variety of scientific, 
engineering, and economic modeling applications, including groundwater flow using the 
Stochastic Response Surface Method (SRSM) (Balakrishnan et al., 2003, 2005); radiative forcing 
by anthropogenic sulfate aerosol Probability Collocation Method (PCM) (Pan et al., 1998); 
climate change using the PCM (Webster and Sokolov, 2000; Webster et al., 2006), and soil 
moisture in the NOAA Land Surface Model (Hossain et al., 2004). 

 
Response surface models have been used in the air quality field for the past decade.  

Calbo et al. (1998) used PCM to develop a parameterization consisting of a set of analytical 
expressions that approximate the predictions by the CIT Urban Airshed Model.  Parameterization 
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development was the ultimate focus of this work, but the authors mentioned that their 
parameterization was applicable to detailed uncertainty and sensitivity analysis.  Isukapalli et al., 
(1998) applies SRSM to propagate uncertainty through the Reactive Plume Model (RPM-IV).  
The results agreed closely with those of traditional MC and LHS methods, while significantly 
reducing the required number of model simulations.  Isukapalli et al. (2000) coupled SRSM to 
the Automatic Differentiation of FORTRAN (ADIFOR) to propagate uncertainty through the 
Reactive Plume Model (RPM-IV).  EPA has developed and used an RSM based on the 
Community Multiscale Air Quality (CMAQ) model to develop emissions control scenarios in 
support of the Regulatory Impact Assessment for the PM2.5 NAAQS (U.S. Environmental 
Protection Agency, 2006b). 

 
The response surface method is at the other extreme from simple one-at-a-time sensitivity 

studies. This method (Tatang et al., 1997) attempts to fit orthogonal polynomials to the input 
conditions and the predictions of numerical geophysical models.  For this approach, it is 
necessary to run the models a sufficient number of times to have enough data to develop the 
response surfaces.  It is claimed that 25 to 60 times fewer runs are needed than for a MC SRS 
exercise.  However, in a Response Surface Model (RSM) pilot study, Hubbell (2003) reported 
that 144 REMSAD runs were required to characterize a second order polynomial surface to 
develop an RSM for PM2.5. 

 
Nevertheless, the response surface is a model of a model and, therefore, is susceptible to 

problems associated with scenarios outside of the range of parameters used to generate the data 
for deriving the model. 

First-order Sensitivity Analysis 

Sensitivity analysis has not been used as extensively as desired because of 
implementation complexity and computational limitations.  As a result, the simple “brute-force” 
method has been used most frequently to determine model sensitivities, especially in 
multidimensional chemistry transport models.  By this method, a separate simulation is required 
to calculate the effects of each parameter or emission rate in the model.  However, this approach 
rapidly becomes impractical when a large number of sensitivity coefficients need to be 
computed. 

 
A number of other approaches have been developed to calculate sensitivity coefficients.  

One method of reducing this effort is determining the equations governing the sensitivity 
coefficients and solving them directly.  In this method, the sensitivity equations are derived from 
the model equations and solved simultaneously with the model equations.  This method proved 
to be unstable and inefficient when applied to stiff equations found in many air quality problems 
(Dunker, 1984).  Other techniques rely on Green’s function (Rabitz et al., 1983; Cho et al., 1987; 
Harley et al., 1997) or the adjoint method, in which the sensitivity coefficients are computed 
from integrals of the Green’s function of sensitivity equations derived from the model equations.  

 
The automatic differentiation of Fortran (ADIFOR) technique (Bischof et al., 1992) 

automatically translates large FORTRAN codes to a subprogram that includes the original 
functions as well as those for the desired sensitivity coefficients.  This method has been used in 
past studies for sensitivity analysis of the advection equation as used for atmospheric modeling 
(Hwang et al., 1997), and initial concentrations and reactions rates in photochemical models 
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(Carmichael et al., 1997).  Because ADIFOR is designed for general-purpose sensitivity analysis, 
the expanded codes do not take advantage of the program structure and re-use of calculations.  
Also, computing some sensitivity coefficients, such as those with respect to the subdomain 
emissions or the boundary conditions, requires additional modifications that can be cumbersome.  

Another approach for computing sensitivity coefficients is the decoupled direct method 
(DDM) (Dunker, 1981; 1984), in which the sensitivity equations are derived from the model 
equations, but solved separately.  DDM does not share the instability problem found with the 
direct and adjoint methods.  Furthermore, the implementation of this method is more 
straightforward than the coupled direct or adjoint methods because the sensitivity equations are 
linear, even though they are functions of concentrations.  Therefore, the calculations of 
sensitivity coefficients are much less computationally demanding.  Milford et al. (1992) and 
Seefeld and Stockwell (1999) also applied the DDM to study variations in chemical rate 
constants. 

 
Another technique for sensitivity study is DDM-3D (decoupled direct method in three 

dimensions), which has been successfully implemented in the CIT, CAMx, and CMAQ 
photochemical AQMs.  This approach is highly computation-efficient and capable of calculating 
a full set of model sensitivity in a three-dimensional domain.  Yang et al. (1997) first 
implemented DDM in a three-dimensional photochemical model (now known as DDM-3D).  
This implementation was used to calculate first-order ozone sensitivities to dry deposition 
velocity, initial conditions, rate constants, and NOx and VOC emissions for a 1987 South Coast 
ozone episode.  DDM-3D was implemented into CAMx version 3.0.0 by Dunker et al. (2002) to 
calculate first-order ozone sensitivities with respect to emissions and boundary conditions for a 
1995 Lake Michigan ozone episode. 

Higher-order Sensitivity Analysis 

First-order DDM sensitivity analysis is limited because it assumes linear responses to 
input changes.  The use of the higher-order direct decoupled method (HDDM) and its higher-
order coefficients allows DDM to be extended to study non-linear responses, and can be used to 
study the uncertainty of modeled sensitivities.  Most studies that have implemented and tested 
HDDM have not specifically used the technique to examine uncertainty in pollutant response 
attributable to uncertainties in inputs.   

 
Hakami et al. (2003) extended DDM-3D to calculate higher-order ozone sensitivities in 

the MAQSIP photochemical grid model for the 1990 SARMAP domain.  HDDM was initially 
implemented for the CB-IV chemical mechanism, and later extended to the more complex 
SAPRC chemical mechanism (Hakami et al., 2004).  HDDM was ported to CMAQ by Cohan et 
al. (2005) to CMAQ and applied to a 2001 ozone episode during the Fall Line Air Quality Study.  
Recently, DDM-3D was extended to calculate first-order sensitivities of PM2.5 species in CMAQ 
(Napelenok et al. 2006). 

 
Hakami et al. (2003) and Cohan et al. (2005) suggested that second-order sensitivity 

coefficients calculated from HDDM could be applied to quantitatively determine the uncertainty 
in pollutant sensitivity to uncertain photochemical model inputs.  Cohan et al. (2005) used 
higher-order sensitivity coefficients from HDDM to illustrate how sensitivity and source 
apportionment estimates can be affected by uncertainty in emissions inventories.  Jin et al. 
(2008) used the second-order sensitivity coefficients from HDDM in CMAQ to assess the 
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influences of uncertainties in various model inputs.  Uncertainties in NOx and anthropogenic 
VOC emissions, and the rate coefficient for the OH + NO2 termination reaction were found to 
have the greatest effect on first-order ozone responses to changes in NOx emissions. 

 
Though Jin et al. (2008) and Cohan et al. (2005) use HDDM to assess uncertainty, true 

quantitative uncertainty estimates of pollutant sensitivity to uncertain model inputs remain 
elusive.  An attempt is currently underway to perform a quantitative uncertainty analysis using 
CMAQ-HDDM, with a Monte Carlo analysis as a post-processor (Digar et al. 2008).   

Process Analysis 

A technique called process analysis (PA) has been used to assess relative importance of 
various model assumptions as well as simulated physical and chemical phenomena contributing 
to an ozone concentration at a particular time and location (Jeffries, 1997; Jeffries et al., 1996; 
Jang et al., 1995; and Lo and Jeffries, 1997).  Because models used to simulate ozone and 
secondary particulate matter are similar, process analysis should also be useful for addressing 
PM2.5 issues.  The technique works by breaking down a modeled simulation into a sequence of 
physical and chemical processes that lead to a predicted concentration at a given location and 
time and by tracking the contributions of those processes.  PA has been implemented in CMAQ 
and CAMx but not REMSAD. 

 
While PA requires a substantial amount of expertise to be interpreted to full advantage, 

useful insights are possible with less detailed analyses.  PA takes advantage of numerical grid 
models that address physical and chemical factors affecting ozone in a sequential manner.  For 
example, a typical sequence followed in a model for each time step might be (1) advection of 
PM2.5 components and precursors present at the beginning of the time step, (2) PM2.5 and 
precursor emissions added during the time step, (3) vertical diffusion of the advected material 
and fresh emissions, (4) estimated cloud cover and its effects on photolysis rates, (5) atmospheric 
chemistry involving advected and diffused material with fresh emissions, and (6) deposition of 
certain compounds.  PA examines incremental effects on changes in component and/or PM2.5 

predictions from hour to hour attributable to each of the processes described above.  In this way, 
one gets a sense of how important each process is as a contributor to predicted air quality at a 
specific time and location. 

Quantifying Uncertainty in Model Inputs and Options 

The first step in uncertainty analysis is to estimate the uncertainties in model input 
variables and options.  Model options may include alternative techniques for solving model 
equations or alternative physical or chemical submodels.  The two primary methods available for 
the Second Prospective Analysis are literature reviews and expert elicitation.  For longer-term 
efforts in assessing uncertainty, these methods could be supplemented with specific applications 
of methods already discussed in the literature and in new research.  

Literature Reviews 

Past and current literature can provide estimates of uncertainties in model inputs based on 
measurement and sensitivity studies.  Because models and measurements are constantly 
evolving, care must be taken to ensure that estimates of uncertainty in the literature are still valid. 
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Emission Inventories 

Table 1 provides an overview of methods reviewed for the Emission Inventory 
Improvement Program (EIIP) in its final report on evaluating the uncertainty of emission 
estimates (Emission Inventory Improvement Program, 1996).  While many of the studies cited 
are now out of date, the report provides a good summary of the methods available for 
quantifying uncertainty.  NARSTO (2005) prepared an assessment of emission inventories across 
North America.  NARSTO’s findings on the relative confidence levels for emission inventories 
are summarized in Table 2. 

 
Additional research has been performed to develop and demonstrate improved methods 

for quantifying uncertainty in emission inventories.  A complete review of research on 
quantifying uncertainty in emission estimates was not possible within the scope of this work 
assignment.  However, the following discussion provides many examples of the methods used 
and the results obtained. 

 
In the area of mobile source emissions, Kini and Frey (1997) developed quantitative 

estimates of uncertainty associated with Mobile5b emission factor model estimates of light-duty 
gasoline-vehicle base emissions and speed-corrected emissions and found that the uncertainty in 
average emissions is often 20% or more.  Pollack et al. (1999) performed a similar study on 
California’s EMFAC7G highway vehicle emission factor model.  Frey et al. (1999) revisited the 
earlier analysis of Mobile5b emission factor estimates to include uncertainties associated with 
temperature corrections.  Rhodes and Frey (1997) quantified variability and uncertainty in AP-42 
emission factors using a bootstrap simulation method. 
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Table 1.  Overview of methods for evaluating the uncertainty of emission estimates. 

Method Description References 

Qualitative 

Discussion 

Sources of uncertainty are listed and discussed. General 

direction of bias and relative magnitude of imprecision are 

given if known.  

Steiner et al., 1994 

Subjective Data 

Quality Ratings  

Subjective rankings based on professional judgment are 

assigned to each emission factor or parameter.  

U.S. EPA, 1995 

Saeger, 1994 

Data Attribute 

Rating System 

(DARS)  

Numerical values representing relative uncertainty are 

assigned through objective methods.  

Beck et al., 1994  

Expert Estimation 

Method  

Emission distribution parameters (i.e., mean, standard 

deviation, and distribution type) are estimated by experts. 

Simple analytical and graphical techniques can then be used 

to estimate confidence limits from the assumed distributional 

data. In the Delphi method, expert judgment is used to 

estimate uncertainty directly.  

Linstene and Turoff, 1975 

SCAQMD, 1982 

Horie, 1988 

Horie and Shorpe, 1989 

Propagation of 

Errors Method 

Direct Simulation 

Method  

Emission parameter means and standard deviations are 

estimated using expert judgment, measurements, or other 

methods. Standard statistical techniques of error propagation 

typically based on Taylor’s series expansions are then used to 

estimate the composite uncertainty.  

Mangat et al., 1984 

Benkovitz, 1985 

Benkovitz and Oden, 1989 

Balentine et al., 1994 

Environment Canada, 1994 

Direct Simulation 

Method   

Monte Carlo, Latin hypercube, bootstrap (resampling), and 

other numerical methods are used to estimate directly the 

central value and confidence intervals of individual emission 

estimates. In the Monte Carlo method, expert judgment is 

used to estimate the values of the distribution parameters prior 

to performance of the Monte Carlo simulation. Other methods 

require no such assumptions.  

Freeman et al., 1986 

Iman and Helton, 1988 

Oden and Benkovitz, 1990 

Efron and Tibshirani, 1991 

Environment Canada, 1994 

Gatz and Smith, 1995a 

Gatz and Smith, 1995b 

Direct or Indirect 

Measurement 

(Validation) Method 

Direct or indirect field measurements of emissions are used to 

compute emissions and emission uncertainty directly. 

Methods include direct measurement such as stack sampling 

and indirect measurement such as tracer studies. These 

methods also provide data for validating emission estimates 

and emission models.  

Pierson et al., 1990 

Spellicy et al., 1992 

Fujita et al., 1992 

Peer et al., 1992 

Mitchell et al., 1995 
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Method Description References 

Claiborn et al., 1995 

Receptor Modeling 

(Source 

Apportionment) 

Method  

Receptor modeling is an independent means to estimate the 

relative contribution of specific source types to observed air 

quality measurements. The method works best for nonreactive 

pollutants for which unique emission composition 

“fingerprints” exist for all significant source categories. The 

method provides a measure of the relative contribution of 

each source type but not absolute emission estimates.  

Watson et al., 1984 

Lowenthal et al., 1992 

Chow et al., 1992 

Scheff et al., 1995 

Inverse Air Quality 

Modeling Method  

Air quality simulation models are used in an inverse, iterative 

approach to estimate the emissions that would be required to 

produce the observed concentrations fields.  

Hartley and Prinn, 1993 

Chang et al., 1993 

Chang et al., 1995 

Mulholland and Seinfeld, 

1995 

 

Table 2.  Estimated relative confidence levels of emission inventories. 

Pollutants Source Canada United States Mexico 

SO2 

Utilities high high high 

Other point sources medium medium low-medium 

On-road  medium medium low 

Nonroad mobile low-medium medium low 

Stationary nonpoint  low low low 

Biogenic sources low low low 

Other man-made sources 
(noncombustion) 

low low low 

NOx 

Utilities medium-high high medium 

Other point sources medium medium medium 

On-road  medium-high medium-high medium 

Nonroad mobile medium medium low 

Stationary nonpoint  low low low 

Biogenic sources low low low 



Second Section 812 Prospective Analysis 
March 2011 

 

 B-13 

 

Pollutants Source Canada United States Mexico 

Other man-made sources 
(noncombustion) 

medium medium low 

VOC 

Utilities medium-high medium-high medium 

Other point sources low-medium low-medium medium 

On-road  low-medium low-medium low 

Nonroad mobile low-medium low-medium low 

Stationary nonpoint  low low low 

Biogenic sources low low low 

Other man-made sources 
(noncombustion) 

medium medium low 

HAP 

Utilities medium medium medium 

Other point sources low-medium low-medium low 

On-road  low-medium low-medium low 

Nonroad mobile low-medium low-medium low 

Stationary nonpoint  low low low 

Biogenic sources low low low 

Other man-made sources 
(noncombustion) 

low low low 

 
Bergin and Milford (2000) applied a Bayesian Monte Carlo analysis to estimate 

uncertainties in ozone concentrations in a Lagrangian photochemical air quality model.  
Bayesian updating reduced the estimated uncertainty in predicted peak ozone concentrations.  
Beekmann and Derognat (2003) used a similar approach to analyze uncertainty in a Eulerian 
photochemical model (CHIMERE).  Uncertainties in peak ozone ranged between ±15% and 
±30%.  Measurement constraint reduced uncertainties by a factor of 1.5 to 2.7.   

 
Frey and Bammi (2002) estimated uncertainty in the emission factors for lawn and 

garden (L&G) equipment.  For 2-stroke L&G engines, the 95% confidence intervals for the mean 
emission factors for total hydrocarbon (THC) and NOx emissions were -30% to +41% and -45% 
to +75%, respectively.  For 4-stroke L&G engines, the confidence intervals were -33% to +46% 
for THC and -27% to +35% for NOx. 

 
Frey and Li (2003) applied quantitative methods for characterizing variability and 

uncertainty to case studies of emission factors from AP-42 for stationary natural gas-fueled 
internal combustion engines.  The approximate range of uncertainty in mean emission factors 
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varies from as little as ±10% to as much as -60% to +80%, depending on the pollutant, control 
technology, and nature of the available data. 

 
Frey and Zheng (2002a) developed a probabilistic methodology for quantifying 

variability and uncertainty in highway vehicle emission factors based on data used in 
MOBILE5b.  Empirical distributions of emissions measurement data were used to characterize 
variability, while the bootstrap simulation method was used to characterize uncertainty.  Inter-
vehicle variability in emissions was found to span 2 or 3 orders of magnitude.  The uncertainty in 
fleet average emission factors ranged from ±10% to as much as -90% to +280%. 

 
Frey and Zheng, (2002b) quantified the variability and uncertainty in emission factors 

and activity factors for power plant NOx emissions using the Monte Carlo and bootstrap 
simulation.  The uncertainties were then propagated through an emission inventory to produce a 
probabilistic power plant NOx emission inventory for North Carolina.   

 
Frey and Bammi (2003) estimated variability and uncertainty in NOx and total 

hydrocarbon emission factors for construction, farm, and industrial (non-road) engines.  
Bootstrap simulations were used to develop confidence intervals for the mean.  The 95% 
confidence intervals for the mean emission factors were as small as –10 to +11% and as large as 
–48 to +49%, with an average range of –26 to +27%. 

 
Abdel-Aziz and Frey (2003a) used univariate stochastic time series models, and ordinary 

least-squares regression models were employed to quantify hourly uncertainty in capacity 
emission factors and heat rate, respectively.  The models were used to develop an hourly 
probabilistic power plant NOx emission inventory for a four-day period.  Abdel-Aziz and Frey 
(2003b) used multivariate time series models (time series approach) to account for the 
dependence between emissions from correlated units.   

 
Zhao and Frey (2004) developed probabilistic toxic emission inventories for 

1,3-butadiene, mercury, arsenic, benzene, formaldehyde, and lead for Jacksonville, Florida.  
Parametric and empirical bootstrap simulations were used to quantify the uncertainty in urban air 
toxic emission factors.  The emission inventory 95% uncertainty ranges were as small as -25% to 
+42% for chromium to as large as -75% to +224% for arsenic with correlated surrogates.  
Uncertainty was dominated by only a few source categories.  Using a similar approach, Frey and 
Zhao (2004) developed a probabilistic inventory of urban toxic emissions of benzene, 
formaldehyde, chromium, and arsenic for Houston, Texas.  Maximum likelihood estimation was 
used to deal with censored (non-detected) values in emission data, and bootstrap simulation in 
combination with maximum likelihood estimation was used to estimate uncertainty in the mean 
emission factors.  Zhao and Frey (2006) used maximum likelihood estimation and bootstrap 
simulation to determine asymptotically unbiased mean values and uncertainty for air toxic 
emission factors.  Uncertainty in the mean was also estimated.  The largest range of uncertainty 
in the mean was obtained for the external coal combustion benzene emission factor, with 95th 
confidence interval of the mean equal to -93% to +411%. 

 
Chi et al. (2004) used bootstrap sampling, expert elicitation, and MC simulations to 

characterize uncertainty of nonroad emissions for Georgia from the EPA NONROAD model.  
Tools used were a bootstrap resampling technique and a parametric bootstrap analysis method in 
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Zheng and Frey’s Analysis of Uncertainty and Variability Tool (AuvTool).  Overall uncertainty 
ranged from -23 to +33%; however, fuel consumption, growth factors, equipment age 
distributions, PM and HC speciation profiles, temporal activity adjustments, fuel sulfur effects, 
and evaporative emissions were not accounted for in the analysis. 

 
Meteorological and Air Quality Models 

Derwent and Hov (1988) made estimates of uncertainty in photochemical model inputs 
based on “best judgments” for an application of sensitivity and analysis techniques.  They 
estimated uncertainties to be 50% for concentrations aloft; 30% for emissions and deposition 
velocities, and hydroxyl radical sinks; 20% for boundary layer depth; and 10% wind speed.  In 
preparation for an MC uncertainty analysis of Ozone Transport Assessment Group (OTAG) 
(1997) modeling, Frey (1998) developed estimates of uncertainty in the AQM inputs based on 
expert elicitation.  Frey reported the uncertainty range, which includes 95% of the data, to be a 
factor of 5 for initial VOC and NOx concentrations; a factor of 3 for initial ozone concentrations, 
boundary conditions of VOC and NOx, and vertical diffusivity above 1000 m and at times other 
than 8:00 a.m. to 6:00 p.m.; and a factor of 2 for photolysis rates, cloud liquid water content, 
rainfall amounts, and emissions except major point sources.  The range of uncertainty for 
chemical reactions in the Carbon Bond IV chemical mechanism varied, by reaction, from a factor 
of 1.01 to 3.02.  The least uncertain model inputs were major point source emissions (50%), 
horizontal boundary condition for ozone (50%), concentrations aloft (50%), wind direction 
(40 degrees), cloud cover (30%), vertical diffusivity below 1000 m from 8:00 a.m. to 
6:00 p.m. (30%), relative humidity (±30%), and ambient temperature (3°C). 

 
Yang et al. (1995) propagated uncertainties in reaction rate parameters, through 

simulations of urban ozone formation to estimated uncertainties in incremental reactivities of 
VOCs.  Uncertainty (±1σ) in reactivity ranged from 30% to 70%.   

 
While formal estimates of uncertainty are not typically made of the meteorological model 

outputs used as inputs to AQMs, some information about uncertainty can be gained from the 
performance evaluations of these models.  Often statistical comparisons of the model predictions 
to observations are provided.  While these statistics provide a first-order estimate of the 
uncertainty, it must be kept in mind that model estimates and observations may not be spatially 
and temporally commensurate.  Model predictions represent grid-cell volume averages of the 
predicted parameters at a particular time while observations are most often for a point location 
and may be averaged over various periods of time.  Therefore, model performance-based 
estimates of uncertainty are likely to be larger than the actual uncertainty. 

 
Olerud et al. (2000) performed meteorological modeling with MM5 for all of 1996 on a 

grid covering the entire continental United States at 36-km resolution.  The results of this 
modeling have been used by EPA and regional planning organizations (RPOs) in subsequent air 
quality modeling studies with REMSAD, UAM-V, CAMx, and Community Multiscale Air 
Quality (CMAQ) model.  The root mean square errors for the entire domain were reported by 
season and ranged from 1.15 to 1.47 m/s for wind speed, 35.2 to 38.5 degrees for wind direction, 
2.3C to 4.2C for temperature, and 0.8 to 1.7 g/kg for humidity.  Doty et al. (2002) reported on 
meteorological modeling with the RAMS model for the Southern Appalachian Mountains 
Initiative (SAMI).  They found that for their 12-km domain, over all days modeled, the root 
mean square error for wind speed was 2.18 m/s, the gross error for wind direction was 
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39 degrees, the gross error for temperature was 1.9C with a bias of –0.8C, and the gross error 
for humidity was 0.8 g/kg with a bias of –0.1 g/kg. 

 
Fish and Burton (1997) performed an uncertainty analysis on a Lagrangian 

photochemical model applied to stratospheric ozone destruction.  Uncertainties in chemical 
kinetic and photochemical rate data were propagated through the modeling system.  Arctic and 
mid-latitude ozone destruction could be modeled with ±25% and ±50% uncertainty (1 sigma), 
respectively.  It was found that two reactions (out of more than 100) were responsible for more 
than a third of the uncertainty in the model calculations of Arctic ozone loss.  

 
Moore and Londergan (2001) used a modification of the basic MC method to determine 

uncertainty.  The computationally intensive aspects of the full methodology are replaced by a 
highly restricted sampling approach that exploits the spatial persistence found in predicted 
concentration fields.  The approach was tested in an application of UAM-IV to assess the 
uncertainty in the differences in predicted maximum ozone concentration between the base-case 
and control scenarios.  Uncertainty in model inputs and parameters were simulated using 
stochastic models driven by LHS.  They propagated uncertainty in 168 model inputs for 
emissions, chemistry, meteorology, and boundary conditions. 

 
A probabilistic hourly NOx emission inventory was developed for 32 units of nine coal-

fired power plants in the Charlotte, North Carolina, region for 1995 (Abdel-Aziz and Frey, 
2003a,b).  The uncertainty was then propagated through the MAQSIP model to estimate the 
uncertainty in maximum 1-hr and 8-hr concentrations for the Charlotte, North Carolina, 
modeling domain using an MC simulation (Abdel-Aziz and Frey, 2004).  Statistical 
dependencies between power plant units (inter-unit variability), as well as temporal 
autocorrelation for each individual unit (intra-unit variability), were accounted for.  A total of 
50 simulations were performed to represent the ranges of uncertainty in hourly emissions and 
predicted ozone levels.  The range of uncertainty in predicted peak 1-hr ozone concentrations 
solely attributable to utility NOx emissions was as large as 25 ppb.  Uncertainties in peak ozone 
concentrations at specific locations could be pinpointed to emissions from a specific power plant.  
Exceedances of the 8-hr standard were more widespread and not attributable to any one plant. 

 
Mallet and Sportisse (2006) estimated uncertainty in a chemistry transport model due to 

physical parameterizations and numerical approximations using an ensemble modeling approach.  
The turbulent closure parameterization and chemical mechanism introduced the highest 
uncertainties.  

 
Zhang et al. (2007) ran an ensemble of meteorological simulations with perturbed initial 

conditions through CMAQ to explore the sensitivity of ozone predictions caused by small 
meteorological perturbations.  Significant uncertainties in ozone predictions for the Houston area 
were attributed to meteorological uncertainties, particularly from wind and temperature. 

Expert Elicitation 

Quantifying the uncertainties in model input variables may be difficult because there is 
little specific information on this subject in the literature for the complete spectrum of inputs 
(e.g., initial and boundary conditions, emissions components, meteorological variables, model 
parameterization constants, photolysis rates, and chemical rate constants).  When quantifying the 
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uncertainties is difficult, Morgan and Henrion (1990) suggest that it is appropriate to carry out an 
expert elicitation where “experts” are asked to give estimates of uncertainties based on their 
experience.  To combine information from a number of different experts, each expert can be 
assigned a subjective weight indicating the relative extent of the individual’s expertise with 
respect to the other experts participating in the elicitation (National Council on Radiation 
Protection and Measurements [NCRP], 1996).  In many instances, each expert may be given 
equal weight, but in those areas for which the degree of expertise differs markedly, unequal 
weights may be assigned to each expert. 

 
Hanna et al. (1998) estimated uncertainties in model inputs by taking the median of the 

uncertainty values (expressed as a plus and minus percentile that would include 95% of the 
variability) suggested by 10 modelers (experts) who responded to questionnaires.  That is, each 
expert was given equal weight.  In that study, no attempt was made to carry out a comprehensive 
survey of modelers (experts) or to encourage discussions among modelers. 

 
Hanna et al. (2001) improved on this process by attempting to reach about 100 experts 

via a web page where the experts could enter their estimates of input uncertainties.  The 
100 experts included 10 or 20 from each major category of input data (e.g., emissions, boundary 
and initial conditions, chemical rate constants, and meteorology).  However, only about 
20 experts responded to the request.  It was found that better information could be obtained by 
meeting with groups of experts at several different laboratories.  One reason for the difficulty is 
that many photochemical modeling experts have not thought much about uncertainties in input 
parameters and, therefore, the estimates are largely based on intuition and compromise.  Hanna 
et al. suggested that future expert elicitations should be more thorough, including workshops 
where experts come together to discuss the uncertainties.  Experts should also assign weights to 
themselves based on their degree of expertise.  The problem with the approach is that it is time-
consuming and resource-intensive (two or three weeks of effort over a time period of about six 
months plus travel costs for two or three meetings for each of about 20 experts).  

 
Uncertainties in BEIS3 biogenic emission outputs have been thoroughly examined.  

Hanna et al. (2002) used a Monte Carlo approach, while Hanna and Wilkinson (2004) used an 
analytical approach.  The analytical equations for relative uncertainties agreed approximately 
with the results of the full Monte Carlo method.  The total relative variance in isoprene emissions 
varied from 0.10 to 0.40, depending on temperature.  The total oxygenated volatile organic 
compounds and monoterpene relative variances were similar, with values ranging from 0.10 to 
0.26.  They estimated that the relative uncertainty in BEIS3 emissions was in the range of about 
0.3 to 0.8 (i.e., ± 30% to 80%).  Hanna et al. (2003, 2005) evaluated consequences of the BEIS3 
uncertainties in chemical transport models (CTMs).  The MC uncertainties in the CTM-predicted 
1-hr and 8-hr averaged ozone concentrations were studied by drawing 20 random samples from 
the 1000 sets of BEIS3 outputs and running each CTM (MAQSIP, UAM-V, and URM) 20 times 
for the three episodes.  The estimated total uncertainties of ±15 to 20% are found to be nearly the 
same for the three CTMs over the three time periods, for 1-hr and 8-hr averages. 

 
Winiwarter and Rypdal (2001) estimated uncertainty associated with the Austrian 

Greenhouse Gas emission inventory for CO2, CH4, and N2O, and for the overall greenhouse 
potential.  Expert elicitation was used to obtain uncertainties in inventory input data.  Error 
distributions were then developed and combined using MC analysis.  Overall uncertainty for all 
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sources and gases was 10.5% and 12%, respectively.  Uncertainties were attributed to N2O 
emissions from soils, CH4 from landfills, and CO2 sinks in forests. 
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RELIABILITY OF INTEGRATED MODELING SYSTEMS 

 
Much of the available literature on uncertainty in models only addresses the model’s 

sensitivity to model inputs within their range of uncertainty.  However, sensitivity to an input 
does not mean that the sensitivity will influence the IAQMS’s response to emission changes.  
The literature in general indicates that when an IAQMS exhibits reasonable model performance, 
the system’s response to emission changes may be more reliable than its ability to estimate 
absolute concentrations at monitoring sites. 

Relative Response of Models 

Hogrefe et al. (2008) suggest that operational model evaluation metrics provide little 
insight into the reliability of the actual model application in a regulatory setting (i.e., the 
estimation of relative changes), and that more emphasis should be placed on the development of 
dynamic evaluation approaches that test model response to changes in emission and 
meteorology.  As a demonstration, Hogrefe et al. (2008) simulated an emission reduction 
scenario using two different vertical mixing parameterizations.  While the model-to-model 
differences in daily maximum 8-hr ozone concentrations were up to 20 ppb, only minor 
differences were detected in the relative response of ozone concentrations to emission 
reductions, resulting in differences of a few ppb or less in estimated future year design values. 

 
Jones et al. (2005) assessed the sensitivity and reliability of the RRF approach in the 

development of 8-hr ozone attainment plans.  They examined the sensitivity of model-predicted 
responses to emission reductions to the choice of meteorology and chemistry mechanism.  The 
different simulations agreed on whether predicted future-year design values would be above or 
below the NAAQS threshold at nearly 95% of the monitoring locations in the domain.  Jones et 
al. (2005) also tested the ability of the attainment demonstration procedure to predict changes in 
monitored ozone design values through a retrospective analysis.  An average gross error of 
around 5 ppb was found between modeled and observed design values.  Also, at 27% of sites, 
model-predicted and observed design values disagreed as to whether the design value was above 
or below the NAAQS threshold. 

 
Sistla et al. (2004) assert the need to provide uncertainty estimates of predicted RRFs.  

An operational assessment found that model-to-model differences could introduce an uncertainty 
in the future estimated design value of 3 to 5 ppb. 

Dynamic Evaluation of Models 

Dennis et al. (2008) reviews approaches to the evaluation of regional-scale air quality 
modeling systems, and introduces a conceptual model evaluation framework to provide a context 
for the evaluation process.  The framework involves the complementary application of 
operational, diagnostic, dynamic, and probabilistic evaluation methods.  Methods for each type 
of evaluation are reviewed, and examples of their application to air quality models are discussed.  
Data needs for model evaluation are also discussed.  

 
Dennis et al. (2008) suggest that model performance methodologies developed for local 

and mesoscale model applications during the 1980s and 1990s may not extend for regional-scale 
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applications.  Model evaluation criteria should be dependent on the context of the application.  
Three primary objectives of air quality model evaluation are presented: 

1. Determining the suitability of a modeling system for a specific application and 
configuration. 

2. Distinguishing the performance among different models or different versions of the same 
model. 

3. Guiding model improvement. 
 
Dennis et al. (2008) define “dynamic evaluation” as an evaluation that assesses the ability 

of a model to predict changes in air quality concentrations in response to changes in source 
emissions or meteorology.  A dynamic evaluation requires historical case studies where changes 
in emissions or meteorology are known, or can be confidently estimated, and the changes in 
emission or meteorology have a discernable impact on air quality.  Cases that potentially meet 
these criteria include major regulatory programs (e.g., the NOx SIP Call), cyclical emissions 
changes (e.g., day-of-the week mobile-source emission changes), and unique events (e.g., the 
2003 black out). 

 
Because air quality models are inherently deterministic, they do not explicitly account for 

uncertainties.  A “probabilistic evaluation” attempts to qualify this uncertainty, but no specific 
widely used prescribed method exists.  Ensemble methods are discussed by Dennis et al. (2008), 
and the authors note that results from a finite set of ensemble simulations are not a true measure 
of model uncertainty, as they represent only a limited view of a portion of the uncertainty 
spectrum.  Monte Carlo techniques are also briefly discussed, and the authors note that input 
variables in air quality modeling systems can be correlated, which complicates the interpretation 
of results.  Uncertainty in the model’s relative response to emission reductions is briefly 
discussed, as are Bayesian approaches, rank order statistics, and extreme value theory.  Dennis et 
al. (2008) conclude that regional air quality modeling systems cannot be validated in the formal 
sense, but can be shown to have predictive and diagnostic value.  

 
Gilliland et al. (2008) suggest that “dynamic evaluation” is only possible if a 

retrospective case exists in which substantial emission reductions have resulted in discernable 
changes in air quality and the change in emissions can be quantified with reasonable confidence.  
They evaluated the CMAQ model’s ability to predict ozone response to NOx emission reductions 
associated with the NOx SIP Call.  Two different post-NOx SIP Call summer periods were used 
to address the influence of meteorological changes on the ozone response.  Simulations using 
SAPRC99, CB-IV, and CB-05 were performed to assess the sensitivity of ozone responses to the 
choice of chemical mechanism.  CMAQ underestimated ozone reductions observed after the NOx 
SIP Call was implemented.  A spatial correlation analysis and comparison with aircraft ozone 
observations suggested that CMAQ underestimates the contribution of long-range transport of 
ozone and its precursors.  Simulations using SAPRC more accurately predicted ozone response 
than simulations using CB-IV.   

 
Recent research on modeling weekend/weekday ozone effects has used models as a tool 

to assess the causes of these effects for specific urban airsheds; however, they do not really 
address the issue of using the weekend/weekday as an observational basis for dynamic model 
evaluations.  Yarwood et al. (2003) used CAMx to investigate hypotheses for the causes of 
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weekday/weekend ozone differences in the Los Angeles area.  They used first-order sensitivities 
calculated from DDM-3D in CAMx to study the contributions of VOC and NOx reductions to 
weekday/weekend ozone changes.  Jimenez et al. (2005) modeled weekend/weekday effects in 
the northeastern Iberian Peninsula. 

 
Hogrefe et al. (2007) compared CMAQ weekend/weekday changes in ozone to 

observations.  While they noted that weekend/weekday differences existed for observed and 
modeled ozone during summer 2001, the differences appeared to be mainly attributable to 
changes in meteorology.  The authors suggested that to further compare observed and predicted 
weekend/weekday differences, methods to remove the effects of meteorological variations on 
ozone needed to be developed.  They outlined steps for future research in this area, as they 
recognize the potential usefulness of using the weekend/weekday effect as a way to evaluate the 
modeling system’s ability to reproduce observed response to emission changes.  

 
A recent request for proposals from the Coordinating Research Council (CRC Project 

A-69, “Regional Modeling of Weekday/Weekend Ozone Changes”) requires the contractor to 
perform a dynamic evaluation to test the ability of a regional modeling system to simulate ozone 
changes in response to weekday/weekend emission changes.  They specifically reference 
Gilliland et al. (2008) as a source of useful approaches. 

 
Marufu et al. (2004) used the August 2003 North American electrical blackout to 

quantify the direct contribution of power plants to regional haze and ozone.  Aircraft 
observations collected over Pennsylvania, Maryland, and Virginia during the blackout were 
compared to observations taken during the previous summer in the same locations and under 
similar meteorological conditions.  Marufu et al. (2004) found SO2 and ozone reductions of 90% 
and 50% (7 ppb), respectively, and an improvement in visual range of > 40 km. 

 
Hu et al. (2006) used CMAQ DDM-3D model simulations to quantify the effects of 

power plant emission reductions on SO2 and ozone during the 2003 blackout.  Sensitivity results 
show that the emission reductions led to SO2 concentration reductions of 42%, sulfate 
concentration reductions of 22%, and ozone reductions of less than 5% (2 ppb), and that mobile 
NOx emission reductions linked to the blackout had a larger impact on ozone than EGU NOx 
emission reductions.  The authors use these results to suggest that the observational results from 
Marufu et al. (2004) are overestimates. 

 
Even though Hu et al. (2006) suggest that the Marufu et al. (2004) observational analysis 

overestimated ozone response to emission changes induced by the blackout, some recent SIPs 
(e.g., 2007 Baltimore Ozone SIP, New Jersey Ozone SIP) have used the results of Hu et al. 
(2006) as an authoritative argument that CMAQ underestimates ozone response to emission 
reductions. 

UNCERTAINTIES  IN  THE IAQMS FOR THE SECOND PROSPECTIVE ANALYSIS  

 
The Second Perspective Analysis is the first Section 812 analysis to use an integrated 

modeling system, the CMAQ model, to simulate national and regional-scale pollutant 
concentrations and deposition.  The CMAQ model (National Exposure Research Laboratory, 
1999) is a state-of-the-science, regional air quality modeling system that is designed to simulate 
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the physical and chemical processes that govern the formation, transport, and deposition of 
gaseous and particulate species in the atmosphere.  The CMAQ modeling system was designed 
to approach air quality as a whole by including state-of-the-science capabilities for modeling 
multiple air quality issues, including tropospheric ozone, fine particles, toxics, acid deposition, 
and visibility degradation.  CMAQ was also designed to have multiscale capabilities so that 
separate models were not needed for urban- and regional-scale air quality modeling. 

 
Douglas et al. (2008) applied the CMAQ model for seven core CAAA scenarios that 

include four different years that span a 30-year period:  1990, 2000, 2010, and 2020.  Scenarios 
that incorporate the emission reductions associated with the CAA are referred to as with-CAAA 
while those that do not are referred to as without-CAAA.  The scenarios include 

 Retrospective Base-year Scenario 

– 1990 without-CAAA 

 Base- and Future-year Scenarios without 1990 CAAA Controls 

– 2000 without-CAAA 

– 2010 without-CAAA 

– 2020 without-CAAA 

 Base- and Future-year Scenarios with 1990 CAAA Controls 

– 2000 with-CAAA 

– 2010 with-CAAA 

– 2020 with-CAAA 
 
For PM2.5 and related species, the CMAQ model was applied in annual simulations for 

the period January through December.  A 36-km resolution modeling domain that encompasses 
the contiguous 48 states was used for the annual modeling.  For ozone and related species, the 
CMAQ model was applied for a five-month simulation period that captures the key ozone-season 
months of May through September.  Two 12-km resolution modeling domains (that when 
combined cover the contiguous 48 U.S. states) were used for the ozone-season modeling.   

 
E. H. Pechan & Associates, Inc. (E. H. Pechan & Associates, Inc. and Industrial 

Economics, Inc. 2006; Wilson et al., 2008) developed the base and projection year emission 
estimates that were used in the CMAQ modeling.  These emission inventories have several 
unique features.  One is the use of consistent economic assumptions from the Department of 
Energy’s Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 
and 2020 emissions for all sectors.  Another is the analysis of the different emissions paths for 
both with and without CAAA scenarios.  Other features of this analysis include being the first 
EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-
state emission projections, incorporating control factor files from RPOs that had completed 
emission projections at the time the analysis was performed, and modeling the emission benefits 
of the expected adoption of measures to meet the 8-hr ozone NAAQS, the Clean Air Visibility 
Rule, and the PM2.5 NAAQS. 
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Model-ready meteorological input files for 2002 were provided by EPA for use in the 
CMAQ modeling.  The meteorological inputs to CMAQ were developed with the fifth-
generation Penn State/NCAR mesoscale model (MM5) (Grell et al., 1994).  Dolwick et al. 
(2007) describe the 36-km and eastern 12-km MM5 modeling and model performance for the 
eastern 12-km domain.  The western 12-km modeling used MM5 meteorology that was 
developed by the Western Regional Air Partnership (WRAP) (Kemball-Cook et al., 2005).  
Brewer et al. (2007) described the MM5 model performance on the eastern 12-km domain and a 
limited analysis of model performance on the 36-km domain.  These 2003 meteorological fields 
were used and described in the technical support document for the final Locomotive/Marine Rule 
(U.S. Environmental Protection Agency, 2008).  The most complete description of the 2002 
MM5 evaluation for all domains is in a yet-to-be-released internal EPA document for the entire 
2002 CMAQ modeling platform (Dolwick, 2008). 

 
Uncertainties in IAQMS will be assessed using EPA’s Response Surface Metamodels 

(RSMs) for ozone (U.S. Environmental Protection Agency, 2006a) and particulate matter (U.S. 
Environmental Protection Agency, 2006b).  The RSMs are based on an approach known as air 
quality metamodeling that aggregates numerous pre-specified individual air quality modeling 
simulations into a multi-dimensional air quality “response surface”.  Simply, this metamodeling 
technique is a “model of the model” and has been shown to reproduce the results from an 
individual modeling simulation with little bias or error over the range of conditions for which 
they were developed.  The RSM incorporates statistical relationships between model inputs and 
outputs to provide a real-time estimate of air quality changes.  The RSM provides a wide breadth 
of model outputs, which we can use to assess the impact of emission uncertainties.  This 
approach allows for the rapid assessment of air quality impacts of different combinations of 
emission levels. 

 
While the RSM-based uncertainty assessments have not been documented yet, Table 3 

provides an initial description of emissions, meteorological, and air quality uncertainties in the 
IAQMS based on our review of relevant literature.  The literature demonstrates a continuing 
process of uncertainty identification and reduction over the past several decades.  Of the three 
main components in the IAQMS, the emissions component is still the most complex and 
uncertain with uncertainties in quantity, composition, spatial and temporal allocation, and future 
year projection.  The literature also shows significant improvements in the meteorological and air 
quality modeling components of the IAQMS with more complete and accurate representations of 
atmospheric physics and chemistry,  larger modeling domains, finer grid-resolution, and  longer 
(i.e., annual or seasonal) simulation lengths.  The current meteorological models still show 
regional and season biases in variables that can influence PM2.5 formation but the longer term 
simulations tend to ameliorate the effects of these biases and more clearly define the extent and 
magnitude of the biases.  The air quality model used in the Second Prospective Analysis includes 
a more complete treatment of aerosol chemistry than used previously but has been shown to 
underestimate the formation of secondary organic aerosols.  The availability of PM2.5 
measurements (mass and speciation) since the first prospective Analysis has greatly improved 
our ability to assess model performance and uncertainties in estimates of PM2.5.  However, the 
lack of an available model performance evaluation for the CMAQ 2002 base case modeling 
limits our ability to understand and quantify the modeling uncertainties and their effects in this 
analysis. 
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Uncertainties in Table 3 are separated into broad categories for types of models such as 
emissions, meteorological, and air quality.  In cases where a particular uncertainty is poorly 
defined or the literature is out of date, the opinions of experts were relied upon to refine the 
available information.  Uncertainties are ranked based on their potential to affect the specific 
model with which they are associated and their overall effect on the IAQMS response to 
emission changes. 



Second Section 812 Prospective Analysis 
March 2011 

 

 B-25 

 

Table 3.  Uncertainties associated with the Integrated Air Quality Modeling 
System in the Second Prospective Analysis. 

Page 1 of 3 

C
at

eg
or

y 
a  

Key Uncertainties Associated with Emissions 

Estimation Potential Source of Error 

Direction of Potential 

Bias for Net Benefits 

Estimate 

Likely Significance Relative to 

Key Uncertainties in Net Benefit 

Estimate b 

E 

Uncertainties in biogenic emissions inputs 

increase uncertainty in the AQM estimates.  

Uncertainties in biogenic emissions may be 

large (± 80%).  The biogenic inputs affect the 

emissions-based VOC/NOx ratio and, 

therefore, potentially affect the response of the 

modeling system to emissions changes. 

Underestimate.  The 

underestimate of 

biogenic emissions 

would reduce overall 

reactivity leading to 

underestimates of the 

model’s response to 

emission reductions.  

Potentially major.  Impacts for 

ozone and PM2.5 results.  Both 

oxidation potential and secondary 

organic aerosol formation could 

influence PM2.5 formation 

significantly.  However, ozone 

benefits contribute only 

minimally to net benefit 

projections in this study.  

E 

The with-CAAA  scenario includes 

implementation of the Clean Air Mercury 

Rule (CAMR), which has been vacated, and 

Clean Air Interstate Rule (CAIR), which was 

vacated but has since been remanded. 

Overestimate. Potentially major.  Significance 

in 2020 will depend on the speed 

and effectiveness of 

implementing CAIR and 

replacing CAMR. In some areas, 

emissions reductions are 

expected to be overestimated, but 

in other areas, NOx inhibition of 

ozone leads to underestimates of 

ozone benefits (e.g., some urban 

centers). 

E 

VOC emissions are dependent on evaporation, 

and future patterns of temperature are difficult 

to predict.  

Overestimate. Probably minor. An acceleration 

of climate change (warming) 

could increase emissions but the 

increase over 30 years would not 

likely be significant. 

E 

Use of average temperatures (i.e., daily 

minimum and maximum) in estimating motor-

vehicle emissions artificially reduces 

variability in VOC emissions. 

Unable to determine 

based on current 

information. 

Probably minor. Use of averages 

will overestimate emissions on 

some days and underestimate on 

other days. Effect is mitigated in 

with-CAAA  scenarios because of 

more stringent evaporative 

controls that are in place by 2000 

and 2010.  
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Table 3.  Uncertainties associated with the Integrated Air Quality Modeling 
System in the Second Prospective Analysis. 

Page 2 of 3 

C
at

eg
or

y 
a  

Key Uncertainties Associated with Emissions 

Estimation Potential Source of Error 

Direction of 

Potential Bias for 

Net Benefits 

Estimate 

Likely Significance Relative to Key 

Uncertainties in Net Benefit 

Estimate b 

E 

Economic growth factors used to project 

emissions are an indicator of future economic 

activity.  These growth factors reflect 

uncertainty in economic forecasting as well as 

uncertainty in the link to emissions.  IPM 

projections may be reasonable regionally but 

may introduce significant biases locally.  Also, 

the Annual Energy Outlook 2005 growth factors 

do not reflect the recent economic downturn or 

the volatility in fuel prices since the fall of 2005. 

Unable to 

determine based 

on current 

information. 

Probably minor.  The same set of 

growth factors are used to project 

emissions under both the without-

CAAA  and with-CAAA  scenarios, 

mitigating to some extent the 

potential for significant errors in 

estimating differences in emissions.  

Some specific locations may be 

more significantly influenced. 

E 

Uncertainties in the stringency, scope, timing, 

and effectiveness of with-CAAA  controls 

included in projection scenarios. 

Unable to 

determine based 

on current 

information. 

Probably minor.  Future controls 

could be more or less stringent, 

wide, or effective than projected.  

Timing of emissions reductions 

may also be affected. 

E 

Emissions estimated at the county level (e.g., 

low-level source and motor vehicle NOx and 

VOC emissions) are spatially and temporally 

allocated based on land use, population, and 

other surrogate indicators of emissions activity. 

Uncertainty and error are introduced to the 

extent that area source emissions are not 

perfectly spatially or temporally correlated with 

these indicators. 

Unable to 

determine based 

on current 

information. 

Probably minor. Potentially major 

for estimation of ozone, which 

depends largely on VOC and NOx 

emissions; however, ozone benefits 

contribute only minimally to net 

benefit projections in this study. 

E 

The location of the emissions reductions 

achieved from unidentified measures is 

uncertain.  We currently treat these reductions as 

if they’re achieved from non-point sources, but 

this may not be correct in all cases. 

Unable to 

determine based 

on current 

information. 

Probably minor.  Impacts from 

these uncertainties would be 

localized and would not 

significantly change the overall net 

benefit estimate. 
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a  

Key Uncertainties Associated with Emissions 

Estimation Potential Source of Error 

Direction of 

Potential Bias for 

Net Benefits 

Estimate 

Likely Significance Relative to Key 

Uncertainties in Net Benefit 

Estimate b 

E 

The on-road source emissions projections reflect 

MOBILE6.2 data on the composition of the 

vehicle fleet.  If recent volatility fuel prices 

persists or if fuel prices rise significantly (like 

they did in 2007 and 2008), the motor vehicle 

fleet may include more smaller, lower-emitting 

automobiles and fewer small trucks (e.g., 

SUVs). 

Underestimate Probably minor.  

M 

Unknown meteorological biases in the 12-km 

western and 36-km MM5 domains due to the 

lack of model performance evaluations. 

Unable to 

determine based 

on current 

information. 

Probably minor.  Other evaluations 

using 2002 and similar meteorology 

and CMAQ have shown reasonable 

model performance.  Although 

potentially major affects on nitrate 

results in western areas with 

wintertime PM2.5 problems.  
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Table 3.  Uncertainties associated with the Integrated Air Quality Modeling 
System in the Second Prospective Analysis. 

Page 3 of 3 

C
at

eg
or

y 
a  

Key Uncertainties Associated with Emissions 

Estimation Potential Source of Error 

Direction of 

Potential Bias for 

Net Benefits 

Estimate 

Likely Significance Relative to Key 

Uncertainties in Net Benefit  

Estimate b 

M 

Known metrological biases in the 12-km 

eastern MM5 domain. MM5 has a cold bias 

during the winter and early spring, and has a 

general tendency to underestimate the monthly 

observed precipitation.  MM5’s under 

prediction was greatest in the fall and least in 

the spring months. 

Unable to 

determine based on 

current 

information. 

Probably minor.  These biases would 

likely influence PM2.5 formation 

processes, which was modeled on 

the 36-km domain. 

A 

Secondary organic aerosol (SOA) chemistry.  

CMAQ version 4.6 has known biases 

(underprediction) in SOA formation. 

Underestimate.   Probably minor.  A significant 

portion of SOA forms from biogenic 

emissions. 

A 

The CMAQ modeling relies on a modal 

approach to modeling PM2.5 instead of a 

sectional approach.  The modal approach is 

effective in modeling sulfate aerosol 

formation but less effective in modeling 

nitrate aerosol formation than the sectional 

approach. 

Unable to 

determine based on 

current 

information. 

Probably minor in the eastern U.S. 

where annual PM2.5 is dominated by 

sulfate.  Potentially major in some 

western U.S. areas where PM2.5 is 

dominated by secondary nitrate 

formation. 

A 

No model performance evaluation of CMAQ 

for 2002. 

Unable to 

determine based on 

current 

information. 

Probably minor.  Other evaluations 

using 2002 and similar meteorology 

and CMAQ have shown reasonable 

model performance. 
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Key Uncertainties Associated with Emissions 

Estimation Potential Source of Error 

Direction of 

Potential Bias for 

Net Benefits 

Estimate 

Likely Significance Relative to Key 

Uncertainties in Net Benefit  

Estimate b 

A 

Ozone modeling relies on a 12-km grid, 

suggesting NOx inhibition of ambient ozone 

levels may be under-represented in some 

urban areas.  Grid resolution may affect both 

model performance and response to emissions 

changes. 

Unable to 

determine based on 

current 

information. 

Probably minor. Though potentially 

major ozone results in those cities 

with known NOx inhibition, ozone 

benefits contribute only minimally to 

net benefit projections in this study. 

Grid size affects chemistry, 

transport, and diffusion processes, 

which in turn determine the response 

to changes in emissions, and may 

also affect the relative benefits of 

low-elevation versus high-stack 

controls.  

A 

Emissions estimated at the county level (e.g., 

low-level source and motor vehicle NOx and 

VOC emissions) are spatially and temporally 

allocated based on land use, population, and 

other surrogate indicators of emissions 

activity. Uncertainty and error are introduced 

to the extent that area source emissions are not 

perfectly spatially or temporally correlated 

with these indicators. 

Unable to 

determine based on 

current 

information. 

Probably minor. Potentially major 

for estimation of ozone, which 

depends largely on VOC and NOx 

emissions; however, ozone benefits 

contribute only minimally to net 

benefit projections in this study. 

a Categories are E (emissions), M (meteorological model), or A (air quality model) 

b The classification of each potential source of error is based on those used in the first prospective Analysis.  The classification of 

“potentially major” is used if a plausible alternative assumption or approach could influence the overall monetary benefit 

estimate by approximately 5% or more; if an alternative assumption or approach is likely to change the total benefit estimate by 

less than 5%, the classification of “probably minor” is used. 
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The summary tables of key uncertainties that were prepared for the first prospective 
Analysis (Tables 4 and 5) are provided for comparison to uncertainties in the Second Prospective 
Analysis.  Table 4 includes uncertainties associated with emissions estimation while Table 5 
includes uncertainties associated with air quality modeling.  Significant improvements are 
apparent in both the modeling systems and model inputs since the first prospective Analysis was 
performed.  While there have been many improvements in emission inventories the largest 
improvements have occurred in the air quality modeling system and the availability of PM2.5 
measurements.  The use of longer term simulations with a single “one atmosphere” model in the 
Second Prospective Analysis significantly reduces many of the original sources of error such as 
the use of multiple models, different physical and chemical mechanisms, inadequate grid 
resolution and spatial coverage, and lack of adequate secondary aerosol chemistry.  The 
increased availability of PM2.5 measurements has increased our ability to assess model 
performance, quantify biases and errors, and gain confidence in the modeling system’s estimates.  
These improvements have reduced the uncertainty in the IAQMS and the overall analytical chain 
and allowed us to provide better estimates of the effect and significance of key uncertainties on 
the net benefit estimate. 
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Table 4.  Key uncertainties associated with emissions estimation identified in the 
First Prospective Analysis. 

Page 1 of 2 

Potential Source of Error 
Direction of Potential Bias for Net 

Benefits Estimate 

Likely Significance Relative to Key 

Uncertainties in Net Benefit Estimate* 

PM2.5 emissions are largely based on 

scaling of PM10 emissions. 

Overall, unable to determine based 

on current information, but current 

emission factors are likely to 

underestimate PM2.5 emissions 

from combustion sources, 

implying a potential 

underestimation of benefits. 

Potentially major. Source-specific 

scaling factors reflect the most careful 

estimation currently possible, using 

current emissions monitoring data. 

However, health benefit estimates 

related to changes in PM2.5 constitute a 

large portion of overall CAAA-related 

benefits. 

Primary PM2.5 emissions estimates 

are based on unit emissions that may 

not accurately reflect composition 

and mobility of the particles. For 

example, the ratio of crustal to 

primary carbonaceous particulate 

material likely is high. 

Underestimate. The effect of 

overestimating crustal emissions 

and underestimating carbonaceous 

emissions when applied in later 

stages of the analysis, is to reduce 

the net impact of the CAAA on 

primary PM2.5 emissions by 

underestimating PM2.5 emissions 

reductions associated with mobile 

source tailpipe controls.  

Potentially major. Mobile source 

primary carbonaceous particles are a 

significant contributor to public 

exposure to PM2.5. Overall, however, 

compared to secondary PM2.5 

precursor emissions, changes in 

primary PM2.5 emissions have only a 

small impact on PM2.5-related benefits. 

The with-CAAA  scenario includes 

implementation of a region-wide 

NOx emissions reduction strategy to 

control regional transport of ozone 

that may not reflect the NOx controls 

that are actually implemented in a 

regional ozone transport rule.  

Unable to determine based on 

current information. 

Probably minor. Overall, magnitude of 

estimated emissions reductions is 

comparable to that in an expected 

future regional transport rule. In some 

areas of the 37 state region, emissions 

reductions are expected to be 

overestimated, but in other areas, NOx 

inhibition of ozone leads to 

underestimates of ozone benefits (e.g., 

some eastern urban centers). 
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Table 4.  Key uncertainties associated with emissions estimation identified in the 
First Prospective Analysis. 

Page 2 of 2 

Potential Source of Error 
Direction of Potential Bias for Net 

Benefits Estimate 

Likely Significance Relative to Key 

Uncertainties in Net Benefit Estimate* 

VOC emissions are dependent on 

evaporation, and future patterns of 

temperature are difficult to predict.  

Unable to determine based on 

current information. 

Probably minor. We assume future 

temperature patterns are well 

characterized by historic patterns, but 

an acceleration of climate change 

(warming) could increase emissions. 

Use of average temperatures (i.e., 

daily minimum and maximum) in 

estimating motor-vehicle emissions 

artificially reduces variability in 

VOC emissions. 

Unable to determine based on 

current information. 

Probably minor. Use of averages will 

overestimate emissions on some days 

and underestimate on other days. 

Effect is mitigated in with-CAAA  

scenarios because of more stringent 

evaporative controls that are in place 

by 2000 and 2010.  

Economic growth factors used to 

project emissions are an indicator of 

future economic activity. They 

reflect uncertainty in economic 

forecasting as well as uncertainty in 

the link to emissions. 

Unable to determine based on 

current information. 

Probably minor. The same set of 

growth factors are used to project 

emissions under both the without-

CAAA  and with-CAAA  scenarios, 

mitigating to some extent the potential 

for significant errors in estimating 

differences in emissions. 

Uncertainties in the stringency, 

scope, timing, and effectiveness of 

with-CAAA  controls included in 

projection scenarios. 

Unable to determine based on 

current information. 

Probably minor. Future controls could 

be more or less stringent, wide 

reaching (e.g., NOx reductions in 

OTAG region - see above), or 

effective (e.g., uncertainty in realizing 

all Reasonable Further Progress 

requirements) than projected. Timing 

of emissions reductions may also be 

affected (e.g., sulfur emissions 

reductions from utility sources have 

occurred more rapidly than projected 

for this analysis). 

* The classification of each potential source of error reflects the best judgment of the section 812 Project Team. The Project 

Team assigns a classification of “potentially major” if a plausible alternative assumption or approach could influence the overall 

monetary benefit estimate by approximately 5% or more; if an alternative assumption or approach is likely to change the total 

benefit estimate by less than 5%, the Project Team assigns a classification of “probably minor”. 
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Table 5.  Key uncertainties associated with air quality modeling from the First 
Prospective Analysis. 

Page 1 of 3 

Potential Source of Error 

Direction of Potential 

Bias for Net Benefits 

Estimate 

Likely Significance Relative to Key Uncertainties 

in Net Benefit Estimate* 

PM10 and PM2.5 concentrations in 

the East (RADM domain) are 

based exclusively on changes in 

the concentrations of sulfate and 

nitrate particles, omitting the 

effect of anticipated reductions in 

organic or primary particulate 

fractions. 

Underestimate.  Potentially major.  Nitrates and sulfates constitute 

major components of PM, especially PM2.5, in 

most of the RADM domain and changes in 

nitrates and sulfates may serve as a reasonable 

approximation of changes in total PM10 and total 

PM2.5.  Of the other components, primary crustal 

particulate emissions are not expected to change 

between scenarios; primary organic carbon 

particulate emissions are expected to change, but 

an important unknown fraction of the organic PM 

is from biogenic emissions, and biogenic 

emissions are not expected to change between 

scenarios.  If the underestimation is major, it is 

likely the result of not capturing reductions in 

motor vehicle primary elemental carbon and 

organic carbon particulate emissions. 

The number of PM2.5 ambient 

concentration monitors 

throughout the U.S. is limited.  As 

a result, cross estimation of PM2.5 

concentrations from PM10 (or 

TSP) data was necessary to 

complete the “monitor level” 

observational data set used in the 

calculation of air quality profiles. 

Unable to determine 

based on current 

information. 

Potentially major.  PM2.5 exposure is linked to 

mortality, and avoided mortality constitutes a 

large portion of overall CAAA benefits.  Cross 

estimation of PM2.5, however, is based on studies 

that account for seasonal and geographic 

variability in size and species composition of 

particulate matter.  Also, results are aggregated to 

the annual level, improving the accuracy of cross 

estimation. 

Use of separate air quality models 

for individual pollutants and for 

different geographic regions does 

not allow for a fully integrated 

analysis of pollutants and their 

interactions. 

Unable to determine 

based on current 

information. 

Potentially major. There are uncertainties 

introduced by different air quality models 

operating at different scales for different 

pollutants. Interaction is expected to be most 

significant for PM estimates. However, important 

oxidant interactions are represented in all PM 

models and the models are being used as 

designed. The greatest likelihood of error in this 

case is for the summer period in areas with NOx 

inhibition of ambient ozone (e.g., Los Angeles). 
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Potential Source of Error 

Direction of Potential 

Bias for Net Benefits 

Estimate 

Likely Significance Relative to Key Uncertainties 

in Net Benefit Estimate* 

Future-year adjustment factors for 

seasonal or annual monitoring 

data are based on model results 

for a limited number of simulation 

days. 

Overall, unable to 

determine based on 

current information. 

Probably minor. RADM/RPM and REMSAD PM 

modeling simulation periods represent all four 

seasons and characterize the full seasonal 

distribution. Potential overestimation of ozone, 

due to reliance on summertime episodes 

characterized by high ozone levels and applied to 

the May-September ozone season, is mitigated by 

longer simulation periods, which contain both 

high and low ozone days. Also, underestimation 

of UAM-V western and UAM-IV Los Angeles 

ozone concentrations (see below) may help offset 

the potential bias associated with this uncertainty. 
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Table 5.  Key uncertainties associated with air quality modeling from the First 
Prospective Analysis. 

Page 2 of 3 

Potential Source of Error 

Direction of Potential 

Bias for Net Benefits 

Estimate 

Likely Significance Relative to Key Uncertainties 

in Net Benefit Estimate* 

Comparison of modeled and 

observed concentrations indicates 

that ozone concentrations in the 

western states were somewhat 

underpredicted by the UAM-V 

model, and ozone concentrations 

in the Los Angeles area were 

underestimated by the UAM-IV 

model. 

Unable to determine 

based on current 

information. 

Probably minor.  Because model results are used 

in a relative sense (i.e., to develop adjustment 

factors for monitor data) the tendency for UAM-

V or UAM to underestimate absolute ozone 

concentrations would be unlikely to affect overall 

results.  To the extent that the model is not 

accurately estimating the relative changes in 

ozone concentrations across regulatory scenarios, 

the effect could be greater. 

Ozone modeling in the eastern 

U.S. relies on a relatively coarse 

12-km grid, suggesting NOx 

inhibition of ambient ozone levels 

may be under-represented in some 

eastern urban areas.  Coarse grid 

may affect both model 

performance and response to 

emissions changes. 

Unable to determine 

based on current 

information. 

Probably minor. Though potentially major for 

eastern ozone results in those cities with known 

NOx inhibition, ozone benefits contribute only 

minimally to net benefit projections in this study.  

Grid size affects chemistry, transport, and 

diffusion processes, which in turn determine the 

response to changes in emissions, and may also 

affect the relative benefits of low-elevation versus 

high-stack controls.  However, the approach is 

consistent with current state-of-the-art regional-

scale ozone modeling. 

UAM-V modeling of ozone in the 

western U.S. uses a coarser grid 

than the eastern UAM-V (OTAG) 

or UAM-IV models, limiting the 

resolution of ozone predictions in 

the west. 

Unable to determine 

based on current 

information. 

Probably minor.  Also, probably minor for ozone 

results.  Grid cell-specific adjustment factors for 

monitors are less precise for the west and may not 

capture local fluctuations.  However, exposure 

tends to be lower in the predominantly non-urban 

west, and models with finer grids have been 

applied to three key population centers with 

significant ozone concentrations.  May result in 

underestimation of benefits in the large urban 

areas not specifically modeled (e.g., Denver, 

Seattle) with finer grid. 
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Potential Source of Error 

Direction of Potential 

Bias for Net Benefits 

Estimate 

Likely Significance Relative to Key Uncertainties 

in Net Benefit Estimate* 

Emissions estimated at the county 

level (e.g., area source and motor 

vehicle NOx and VOC emissions) 

are spatially and temporally 

allocated based on land use, 

population, and other surrogate 

indicators of emissions activity.  

Uncertainty and error are 

introduced to the extent that area 

source emissions are not perfectly 

spatially or temporally correlated 

with these indicators. 

Unable to determine 

based on current 

information. 

Probably minor.  Potentially major for estimation 

of ozone, which depends largely on VOC and 

NOx emissions; however, ozone benefits 

contribute only minimally to net benefit 

projections in this study. 
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Table 5.  Key uncertainties associated with air quality modeling from the First 
Prospective Analysis. 

Page 3 of 3 

Potential Source of Error 

Direction of Potential 

Bias for Net Benefits 

Estimate 

Likely Significance Relative to Key Uncertainties 

in Net Benefit Estimate* 

The REMSAD model 

underpredicted western PM 

concentrations during fall and 

winter simulation periods.  

Unable to determine 

based on current 

information.  

Probably minor. Because model results are used 

in a relative sense (i.e., to develop adjustment 

factors for monitor data) REMSAD’s 

underestimation of absolute PM concentrations 

would be unlikely to significantly affect overall 

results.  To the extent that the model is not 

accurately estimating the relative changes in PM 

concentrations across regulatory scenarios, or the 

individual PM components (e.g., sulfates, primary 

emissions) do not vary uniformly across seasons, 

the effect could be greater. 

Lack of model coverage for acid 

deposition in western states.  

Underestimate. Probably minor.  Because acid deposition tends to 

be a more significant problem in the eastern U.S. 

and acid deposition reduction contributes only 

minimally to net monetized benefits, the 

monetized benefits of reduced acid deposition in 

the western states would be unlikely to 

significantly alter the total estimate of monetized 

benefits.  

Uncertainties in biogenic 

emissions inputs increase 

uncertainty in the AQM estimates.  

Unable to determine 

based on current 

information.  

Probably minor.  Potentially major impacts for 

ozone outputs, but ozone benefits contribute only 

minimally to net benefit projections in this study.  

Uncertainties in biogenics may be as large as a 

factor of 2 to 3.  These biogenic inputs affect the 

emissions-based VOC/NOx ratio and, therefore, 

potentially affect the response of the modeling 

system to emissions changes. 

* The classification of each potential source of error reflects the best judgment of the section 812 Project Team. The Project 

Team assigns a classification of “potentially major” if a plausible alternative assumption or approach could influence the overall 

monetary benefit estimate by approximately 5% or more; if an alternative assumption or approach is likely to change the total 

benefit estimate by less than 5%, the Project Team assigns a classification of “probably minor”. 
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TABLE C-1.  KEY UNCERTAINTIES  ASSOCIATED WITH EMISSIONS ESTIMATION 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS FOR 

NET BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE1 

UNCERTAINTIES RELATED TO BASE-YEAR EMISSIONS 

Uncertainties in modeling a 
counterfactual emissions scenario.  
Estimating EGU emissions using an 
alternate counterfactual 
projection approach yielded 
increases in air quality impacts and 
health benefits of 50% relative to 
the core scenario’s IPM-generated 
estimates.  

Underestimate.  The IPM-based 
counterfactual generated 
substantially lower benefits than 
the alternative counterfactual 
scenario specification we tested, 
which was based on published and 
readily replicated methodologies.  
It is possible, however, that other 
counterfactual specifications 
would yield lower benefits.  It is 
also possible that the direction of 
effect might be different for other 
pollutant source categories where 
this is no accepted basis to 
generate an alternative 
counterfactual scenario estimate. 

Potentially major.  Analysis 
confirmed that IPM performs well 
when estimating with-CAAA 
emissions, but also highlighted high 
degree of uncertainty in estimating 
counterfactual emissions.  Similar 
uncertainties exist for emissions 
from other emitting sectors.  
There is no clear way, however, to 
determine which approach to 
estimating counterfactual 
emissions is superior.   

Uncertainties in biogenic emissions 
inputs increase uncertainty in the 
air quality modeling estimates.  
Uncertainties in biogenic emissions 
may be large (± 80%).  The 
biogenic inputs affect the 
emissions-based VOC/NOx ratio 
and, therefore, potentially affect 
the response of the modeling 
system to emissions changes. 

Unable to determine based on 
current information.  The biogenic 
emissions change overall 
reactivity, leading to either an 
underestimate or overestimate of 
the model’s response to emission 
reductions.  

Probably minor.  Impacts for ozone 
and PM2.5 results.  Both oxidation 
potential and secondary organic 
aerosol formation could influence 
PM2.5 formation significantly.  
However, biogenic emissions are 
assumed to be unaffected by the 
CAAA, so this uncertainty should 
not significantly affect net 
benefits.  Furthermore, ozone 
benefits contribute only minimally 
to net benefit projections in this 
study.  

Emissions estimated at the county 
level (e.g., low-level source and 
motor vehicle NOx and VOC 
emissions) are spatially and 
temporally allocated based on land 
use, population, and other 
surrogate indicators of emissions 
activity. Uncertainty and error are 
introduced to the extent that area 
source emissions are not perfectly 
spatially or temporally correlated 
with these indicators. 
 
 
 
 
 
 
 

Unable to determine based on 
current information. 

Probably minor. Potentially major 
for estimation of ozone, which 
depends largely on VOC and NOx 
emissions; however, ozone 
benefits contribute only minimally 
to net benefit projections in this 
study. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS FOR 

NET BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE1 

UNCERTAINTIES RELATED TO GROWTH FACTORS 

Economic growth factors used to 
project emissions are an indicator 
of future economic activity.  These 
growth factors reflect uncertainty 
in economic forecasting as well as 
uncertainty in the link to 
emissions.  IPM projections may be 
reasonable regionally but may 
introduce significant biases locally.  
Also, the Annual Energy Outlook 
2005 growth factors do not reflect 
the recent economic downturn or 
the volatility in fuel prices since 
the fall of 2005. 

Unable to determine based on 
current information. 

Potentially major.  The same set of 
growth factors are used to project 
emissions under both the Without-
CAAA and With-CAAA scenarios, 
mitigating to some extent the 
potential for significant errors in 
estimating differences in 
emissions.  Some specific locations 
may be more significantly 
influenced.  We estimated gross 
benefits using AEO low-growth and 
high-growth scenarios and found 
differences of ±20%.  However, due 
to nonlinearities in the benefits 
estimation model, we could not 
reliably determine in what 
direction over- or underestimating 
growth might bias net benefits 
estimates.   

The on-road source emissions 
projections reflect MOBILE6.2 data 
on the composition of the vehicle 
fleet.  If recent volatility in fuel 
prices persists or if fuel prices rise 
significantly (like they did in 2007 
and 2008), the motor vehicle fleet 
may include more smaller, lower-
emitting automobiles and fewer 
small trucks (e.g., SUVs). 

Overestimate Probably minor. Overall, fuel 
prices affect fleet composition at 
the margin, and we expect changes 
in fleet composition to occur 
gradually over long periods, 
suggesting that any effect would 
take several years to fully 
manifest. 

UNCERTAINTIES RELATED TO EMISSIONS CONTROL MODELING 

The With-CAAA scenario includes 
implementation of the Clean Air 
Mercury Rule (CAMR), which has 
been vacated, and Clean Air 
Interstate Rule (CAIR), which was 
vacated but has since been 
remanded. 

Unable to determine based on 
current information.  

Potentially major.  Significance in 
2020 will depend on the speed and 
effectiveness of implementing 
potential alternatives to CAIR and 
CAMR. In some areas, emissions 
reductions are expected to be 
overestimated, but in other areas, 
NOx inhibition of ozone leads to 
underestimates of ozone benefits 
(e.g., some urban centers). 

VOC emissions are dependent on 
evaporation, and future patterns 
of temperature are difficult to 
predict.  

Underestimate. Higher 
temperatures in the future are 
more likely than lower 
temperatures because of climate 
change, and higher temperature 
would lead to more emissions in 
the without-CAAA case but 
controls would keep the with-CAAA 
emissions roughly constant. 

Probably minor.  The analysis uses 
meteorological data from 2002 to 
characterize temperatures during 
the 30-year period from 1990 to 
2020.  An acceleration of climate 
change (warming) could increase 
emissions but the increase relative 
to 2002 levels would not likely be 
significant. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF POTENTIAL BIAS FOR 

NET BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE1 

Use of average temperatures (i.e., 
daily minimum and maximum) in 
estimating motor-vehicle emissions 
artificially reduces variability in 
VOC emissions. 

Unable to determine based on 
current information. 

Probably minor.  Use of averages 
will overestimate emissions on 
some days and underestimate on 
other days.  Effect is mitigated in 
With-CAAA scenarios because of 
more stringent evaporative 
controls that are in place by 2000 
and 2010.  

Uncertainties in the stringency, 
scope, timing, and effectiveness of 
With-CAAA controls included in 
projection scenarios. 

Unable to determine based on 
current information. 

Probably minor.  Future controls 
could be more or less stringent, 
widely applicable, or effective 
than projected.  Timing of 
emissions reductions may also be 
affected. 

The location of the emissions 
reductions achieved from 
unidentified measures is uncertain.  
We currently treat these 
reductions as if they are achieved 
from non-point sources, but this 
may not be correct in all cases. 

Unable to determine based on 
current information. 

Probably minor.  Impacts from 
these uncertainties would be 
localized and would not 
significantly change the overall net 
benefit estimate. 

1 The classification of each potential source of error reflects the best judgment of the section 812 Project Team.  The 
Project Team assigns a classification of “potentially major” if a plausible alternative assumption or approach could 
influence the overall monetary benefit estimate by approximately five percent or more; if an alternative assumption or 
approach is likely to change the total benefit estimate by less than five percent, the Project Team assigns a 
classification of “probably minor.” 
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EXHIBIT C-2.  KEY UNCERTAINTIES  ASSOCIATED WITH COST ESTIMATION 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE1 

Uncertainty in the maximum 
per ton costs for local controls 
to comply with the 8-hour 
Ozone and PM2.5 NAAQS. 

Unable to determine 
based on current 
information 

Probably minor.  Our analysis of 
local controls assumes a maximum 
cost of $15,000 per ton for local 
controls implemented to comply 
with 8-hour Ozone and PM2.5 NAAQS 
requirements.5  Local areas may 
implement more costly controls to 
comply with the NAAQS, but 
technological innovation may lead 
to the development of less 
expensive controls. 

Uncertainty in the projected 
composition of motor vehicle 
sales and the fuel efficiency 
of the motor vehicle fleet.  

Unable to determine 
based on current 
information 

Probably minor.  We projected the 
composition of motor vehicle sales 
and the fuel efficiency of the motor 
vehicle fleet based on AEO 2005 
data.  The sensitivity analysis of 
alternative sales and fuel efficiency 
projections presented in this report 
suggests that this uncertainty has a 
small impact on net benefits.  

Uncertainty regarding failure 
rates for motor vehicle 
inspections. 

Unable to determine 
based on current 
information 

Probably minor.  The repair costs 
for vehicles that fail emission 
inspections represent a small 
fraction of the estimated net 
benefits of the amendments.  The 
failure rate sensitivity analysis 
presented in this report suggests 
that alternative failure rate 
assumptions could have a large 
effect on the costs for this 
component of the CAAA, but only a 
minor effect on the estimated net 
benefits of the amendments as a 
whole.  

Costs for some technologies 
and emissions sectors reflect 
default assumptions about the 
rates at which learning affect 
costs because empirical 
information is unavailable. 

Underestimate Probably minor.  Based on the 
advice of the Council on Clean Air 
Compliance Analysis, we used a 
conservative learning rate of 10 
percent for those sectors where no 
empirical data were available.2  In 
contrast, the learning curve 
literature suggests that the average 
learning rate is approximately 20 
percent, suggesting that learning 
will reduce costs more than is 
reflected in the present analysis.3 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE1 

Uncertainties in the economic 
growth projections that form 
the basis of the cost analysis.  

Unable to determine 
based on current 
information 

Probably minor.  The project team 
used AEO 2005 economic growth 
projections, which suggest that the 
economy will grow at an annual rate 
of 3.1 percent through 2025.4  This 
growth rate is in line with historical 
GDP growth.  

Incomplete characterization 
of certain indirect costs, such 
as productivity impacts for 
regulated industry. 

Unable to determine 
based on current 
information 

Probably minor.  The literature on 
the productivity impacts of the 
CAAA is unclear with respect to the 
direction and magnitude of these 
effects.   

Product quality degradation 
associated with emission 
control technology. 

Unable to determine 
based on current 
information 

Unable to determine based on 
current information.  Conceptually, 
the potential for CAAA requirements 
to affect product quality could 
result in an underestimate or 
overestimate of the welfare effects 
of compliance costs, and therefore 
an indeterminate effect on net 
benefits.  Unfortunately, few 
studies exist that address the 
potential product quality effects of 
CAAA regulations. 

Exclusion of the impact of 
technological innovation and 
input substitution on 
compliance costs. 

Underestimate Probably minor.  Minimal 
information is available on the 
potential effects of technological 
innovation on costs.  Though input 
substitution is a potential source of 
cost savings, the analysis primarily 
models mature industries and 
compliance strategies which have 
been established as least-cost 
compliance paths.  In addition, 
many regulations, such as RACT, are 
technology-based and may not allow 
for much input substitution. 

Partial estimation of costs for 
compliance with the PM2.5 
NAAQS, due to the 
unavailability of emission 
reduction targets for non-
attainment areas. 

Overestimate Probably minor.  The 2006 PM2.5 
NAAQS RIA estimates that the 
incremental costs of residual non-
attainment (i.e., costs of additional 
reductions from unidentified 
controls needed to reach 
attainment) are approximately $4.3 
billion in 2020, yielding total cost 
estimates that exceed the estimates 
presented here by a factor of five or 
more.6   However, we estimate that 
the costs of the PM2.5 NAAQS 
represent less than 5 percent of the 
net benefits of the amendments.7  
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE1 

Uncertainty in the emission 
reduction estimates used to 
estimate the costs for select 
rules. 

Unable to determine 
based on current 
information 

Probably minor.  Costs for many 
rules are not dependent on the 
corresponding emissions reductions 
(e.g., fuel sulfur limits, tailpipe 
standards, etc.)   

Exclusion of the impact of 
economic incentive provisions, 
including banking, trading, 
and emissions averaging 
provisions. 

Underestimate Probably minor.  Economic incentive 
provisions can substantially reduce 
costs, but the major economic 
programs for trading of sulfur and 
nitrogen dioxide emissions are 
reflected in the analysis. 

Potential for overestimation 
biases in engineering cost 
estimates. 

Underestimate Probably minor.  A study by 
Harrington, Morgenstern, and 
Nelson (1999) evaluated the 
accuracy of EPA and OSHA estimates 
of 25 ex ante regulatory cost 
estimates relative to ex post studies 
of actual costs, and concluded that 
initial cost estimates by EPA 
tend to overstate costs.  The source 
of these biases include a built-in 
conservative bias, inaccuracies in 
estimating the size of the affected 
universe, the effect of learning on 
reducing costs, the effect of 
innovation on reducing costs, and 
cost-reducing features of regulatory 
design.  Some of these factors are 
discussed elsewhere in this table.  
The magnitude of these biases 
varies substantially, but in no case 
would we expect the overall impact 
to exceed five percent of overall 
net benefits. 

1 The classification of each potential source of error reflects the best judgment of the section 812 
Project Team.  The Project Team assigns a classification of “potentially major” if a plausible 
alternative assumption or approach could influence the overall monetary benefit estimate by 
approximately five percent or more; if an alternative assumption or approach is likely to change 
the total benefit estimate by less than five percent, the Project Team assigns a classification of 
“probably minor.” 

2 U.S. Environmental Protection Agency Science Advisory Board, EPA-SAB-COUNCIL-ADV-07-002, 
"Benefits and Costs of Clean Air Act – Direct Costs and Uncertainty Analysis", Advisory Letter, June 
8, 2007.  Available at http://www.epa.gov/sab/pdf/council-07-002.pdf. 

3 For an analysis of the learning rates estimated in the empirical literature, see John M. Dutton and 
Annie Thomas, "Treating Progress Functions as a Managerial Opportunity," Academy of Management 
Review, Vol 9, No. 2, 1984. 

4 U.S. Department of Energy, Energy Information Administration, Annual Energy Outlook 2005, 
February 2005. 

5 The Project Team uses this maximum unit cost value in two ways.  First, the Project Team assumes 
that local areas would not implement identified controls costing more than $15,000 per ton.  
Second, the Project Team assumes a cost of $15,000 per ton for unidentified controls. 

6 U.S. Environmental Protection Agency. Regulatory Impact Analysis for the Particulate Matter 
NAAQS. October, 2006. 

7 For detailed estimates of the costs of PM2.5 NAAQS compliance, see E.H. Pechan and Associates, Inc. 
and Industrial Economics, Inc., Direct Cost Estimates for the Clean Air Act Second Section 812 
Prospective Analysis, prepared for U.S. EPA, March 2009.   
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TABLE C-3.  KEY UNCERTAINTIES  ASSOCIATED WITH AIR QUALITY MODELING 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Unknown meteorological 
biases in the 12-km western 
and 36-km MM5 domains due 
to the lack of model 
performance evaluations. 

Unable to determine 
based on current 
information. 

Probably minor.  Other evaluations 
using 2002 and similar meteorology 
and CMAQ have shown reasonable 
model performance.  Although 
potentially major affects on nitrate 
results in western areas with 
wintertime PM2.5 problems.  

Known metrological biases in 
the 12-km eastern MM5 
domain. MM5 has a cold bias 
during the winter and early 
spring, and has a general 
tendency to underestimate 
the monthly observed 
precipitation.  MM5’s under 
prediction was greatest in the 
fall and least in the spring 
months. 

Unable to determine 
based on current 
information. 

Probably minor.  These biases would 
likely influence PM2.5 formation 
processes, which was modeled on 
the 36-km domain. 

Secondary organic aerosol 
(SOA) chemistry.  CMAQ 
version 4.6 has known biases 
(underprediction) in SOA 
formation. 

Underestimate.   Possibly major.  The modeling 
system underpredicts SOA, which 
has both biogenic and 
anthropogenic components.  
Reductions in NOx can reduce both 
biogenic and anthropogenic SOA and 
reductions in VOC will reduce 
anthropogenic SOA.  Since both of 
these precursors are significantly 
impacted by the CAAA, there may 
be large benefits from SOA related 
reductions that are not currently 
captured by the modeling system.    

The CMAQ modeling relies on 
a modal approach to modeling 
PM2.5 instead of a sectional 
approach.  The modal 
approach is effective in 
modeling sulfate aerosol 
formation but less effective in 
modeling nitrate aerosol 
formation than the sectional 
approach. 

Unable to determine 
based on current 
information. 

Probably minor in the eastern U.S. 
where annual PM2.5 is dominated by 
sulfate.  Potentially major in some 
western U.S. areas where PM2.5 is 
dominated by secondary nitrate 
formation. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Limited model performance 
evaluation of CMAQ for 2002. 

Unable to determine 
based on current 
information. 

Probably minor.  While a 
comprehensive model evaluation 
was not completed, the overall 
results of the CMAQ runs for the 
Second Prospective were assessed 
using AMET, and bias and error 
statistics were within acceptable 
ranges.  Further, our application of 
the MATS procedure provides 
further assurance that air quality 
results used in the subsequent 
health assessments are consistent 
with available monitor data. 

Ozone modeling relies on a 
12-km grid, suggesting NOx 
inhibition of ambient ozone 
levels may be under-
represented in some urban 
areas.  Grid resolution may 
affect both model 
performance and response to 
emissions changes. 

Unable to determine 
based on current 
information. 

Probably minor. Though potentially 
major ozone results in those cities 
with known NOx inhibition, ozone 
benefits contribute only minimally 
to net benefit projections in this 
study. Grid size affects chemistry, 
transport, and diffusion processes, 
which in turn determine the 
response to changes in emissions, 
and may also affect the relative 
benefits of low-elevation versus 
high-stack controls.  

Emissions estimated at the 
county level (e.g., low-level 
source and motor vehicle NOx 
and VOC emissions) are 
spatially and temporally 
allocated based on land use, 
population, and other 
surrogate indicators of 
emissions activity. Uncertainty 
and error are introduced to 
the extent that area source 
emissions are not perfectly 
spatially or temporally 
correlated with these 
indicators. 

Unable to determine 
based on current 
information. 

Probably minor. Potentially major 
for estimation of ozone, which 
depends largely on VOC and NOx 
emissions; however, ozone benefits 
contribute only minimally to net 
benefit projections in this study. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Use of MATS relative response 
factors to calculate changes in 
PM2.5 

Indeterminate Probably minor.  Using MATS, air 
quality modeling results were 
projected in a “relative” sense.  In 
this approach, the ratio of future 
year model predictions to base year 
model predictions are used to 
adjust ambient measured data up or 
down depending on the relative 
(percent) change in model 
predictions for each location. The 
use of ambient data as part of the 
calculation helps to reduce 
uncertainties in the future year 
predictions, especially if the 
absolute model concentrations are 
over-predicted or under-predicted.     

Modeling artifacts created by 
changes in emissions inventory 
estimation methods between 
the 1990 inventories used for 
the without-CAAA scenario 
and the 2002 inventories used 
for the with-CAAA scenarios 
were mitigated through 
application of adjustment 
factors for primary PM from 
non-EGU point sources, and 
for the certain subsectors of 
area sources, in the without-
CAAA case.  Application of 
these adjustments may result 
in overestimated or 
underestimated changes in 
primary PM contributions to 
ambient concentrations for 
these particular sources. 

Unable to determine 
based on current 
information. 

Probably minor.  While primary PM 
can make a significant contribution 
to ambient PM2.5 in some locations, 
secondarily formed fine particles 
dominate the estimates for ambient 
concentration change in this 
analysis.  In addition, the effect of 
the inventory adjustments was to 
significantly reduce the differentials 
between the control and 
counterfactual scenarios, implying 
any residual error is more likely to 
reflect an underestimation bias than 
an overestimation bias, particularly 
since the non-EGU primary PM 
reductions were adjusted to a 
scenario differential of zero.  
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Adjustments to take account 
of processes that remove 
fugitive dust from the 
ambient air at or close to the 
source of emissions, owing to 
the effect of forests, 
vegetation, and urban 
structures on fugitive dust.  
Analysis of the chemical 
species collected by ambient 
air samplers suggests that the 
modeling process may 
overestimate PM-2.5 from 
fugitive dust sources by as 
much as an order of 
magnitude, if not adjusted for 
this effect. The Project Team 
incorporated adjustments 
post-CMAQ modeling but prior 
to use of PM air quality 
estimates in subsequent steps 
of the analysis. 

Unable to determine 
based on current 
information. 

Probably minor.  If adjustment 
factors had been applied as part of 
the CMAQ modeling, evidence 
suggests the entrainment effect 
would have been adequately 
accounted for.  The largely linear 
processes of direct PM emissions to 
air quality suggest that our post-hoc 
adjustment should also be adequate 
to account for this factor.  Further 
assurance that this factor has been 
accounted for is our application of 
the MATS monitor calibration 
procedure, which provides a 
speciated calibration to ensure 
better agreement between air 
quality modeling results and 
comparable monitor data, and the 
fact that the adjustment applies to 
both scenarios, further mitigating 
the impact of this source of 
uncertainty.  

*  The classification of each potential source of error is based on those used in the First 
Prospective Analysis.  The classification of “potentially major” is used if a plausible alternative 
assumption or approach could influence the overall monetary benefit estimate by approximately 
5% or more; if an alternative assumption or approach is likely to change the total benefit 
estimate by less than 5%, the classification of “probably minor” is used. 
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TABLE C-4.  KEY UNCERTAINTIES  ASSOCIATED WITH HUMAN HEALTH EFFECTS MODELING 

POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

UNCERTAINTIES RELATED TO PREMATURE MORTALITY BENEFITS ESTIMATES 

Analysis assumes a 
causal relationship 
between PM exposure 
and premature 
mortality based on 
strong epidemiological 
evidence of a 
PM/mortality 
association.  However, 
epidemiological 
evidence alone cannot 
establish this causal 
link. 

Overestimate Potentially major. 
PM/mortality 
effects are the 
largest contributor 
to the net benefits 
estimate.  If the 
PM/mortality 
relationship is not 
causal, it would 
lead to a significant 
overestimation of 
net benefits. 

High.  
The assumption of 
causality is suggested 
by the epidemiologic 
and toxicological 
evidence and is 
consistent with 
current practice in the 
development of a best 
estimate of air 
pollution-related 
health benefits.  At 
this time, we can 
identify no basis to 
support a conclusion 
that such an 
assumption results in a 
known or suspected 
overestimation bias. 

Analysis assumes a 
causal relationship 
between ozone 
exposure and 
premature mortality 
based on strong 
epidemiological and 
experimental evidence 
of an ozone/mortality 
association. 

Overestimate Probably minor. 
Ozone mortality 
effects are a large 
contributor to the 
net benefits 
estimate, but total 
monetized ozone 
mortality benefits 
remain less than 
five percent of total 
net benefits.  If the 
ozone mortality 
relationship is not 
causal, it would 
lead to an 
overestimation of 
net benefits. 

Medium.  
Several 
epidemiological 
studies provide strong 
evidence for 
associations between 
ozone and mortality.  
This data is supported 
by human and animal 
experimental studies 
that provide 
suggestive evidence 
for plausible 
mechanisms.  Overall, 
the evidence is highly 
suggestive, but 
additional research is 
needed to more fully 
establish underlying 
mechanisms.   
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

It is possible that the 
PM/mortality 
relationship is modified 
by socioeconomic 
status (SES).   

Unable to determine 
based on current 
information.  
Consideration of both 
the Pope and Laden 
studies avoids the 
possible 
underestimation 
effect from the ACS 
cohort, owing to the 
demographics of that 
study population, and 
the possible 
overestimation bias 
associated with the 
more limited 
geographic scope of 
the Harvard Six-Cities 
cohort. 

Potentially major. 
Sensitivity analyses 
reported in this 
chapter indicate 
the high sensitivity 
of benefits results 
to the choice of the 
PM/mortality C/R 
function. 

Medium.  
Studies have found 
effect modification of 
the PM/mortality 
effect by SES, as 
assessed through 
education attainment 
(Krewski et al., 2000).  
However, this effect is 
likely to affect only 
the Pope et al. 
estimate.  Our 
inclusion of both the 
Pope et al. and Laden 
et al. (which does 
includes a more 
diverse population) 
helps account for the 
possible significance 
of this uncertainty. 

Exposure 
misclassification due to 
reliance on ambient 
monitoring data to 
estimate PM2.5 
exposures rather than 
measuring personal 
exposures. 

Underestimate.  
Concentrations 
measured at central 
site monitors may not 
accurately reflect 
exposure experienced 
by the population due 
to variation in 
ambient 
concentrations over 
space within a 
geographic area, 
incomplete 
penetration of 
ambient pollution into 
homes and 
workplaces, patterns 
of population activity 
and indoor sources 
that can contribute 
significantly to 
individual PM2.5 
exposures.  Reducing 
exposure error can 
result in stronger 
associations between 
pollutants and health 
effects than generally 
observed in studies 
having less exposure 
detail. 

Potentially major. 
Recent analyses 
reported in Krewski 
et al. (2009) 
demonstrate the 
relatively 
significant effect 
that this source of 
uncertainty can 
have on effect 
estimates.      

High. 
The results from 
Krewski et al. (2009) 
and Jerrett et al. 
(2005) suggest that 
exposure error may 
underestimate effect 
estimates (PM ISA). 
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

Exclusion of C-R 
functions from short-
term exposure studies 
in PM mortality 
calculations. 

Underestimate Potentially major.   
PM/mortality is the 
top contributor to 
the net benefits 
estimate.  If short-
term functions 
contribute 
substantially to the 
overall PM-related 
mortality estimate, 
then the net 
benefits could be 
underestimated. 
 
 

Medium. 
Long-term PM 
exposure studies likely 
capture a large part of 
the impact of short-
term peak exposure on 
mortality; however, 
the extent of overlap 
between the two 
study types is unclear. 

Assumption that PM-
related mortality 
occurs over a period of 
20 years following the 
critical PM exposure.  
Analysis assumes that 
30% of mortality 
reductions in the first 
year, 50% over years 2 
to 5, and 20% over the 
years 6 to 20 after the 
reduction in PM2.5 

Unable to determine 
based on current 
information  
 

Potentially major.  
PM/mortality is the 
largest contributor 
to monetary 
benefits.  Our 
quantitative 
sensitivity analysis 
indicated that 
alternative 
plausible cessation 
lag structures could 
alter the benefits 
estimate between 
23% lower to 16% 
higher than the 
primary estimate. 

Medium. 
Recent 
epidemiological 
studies (e.g., 
Schwartz, 2008) have 
shown that the 
majority of the risk 
occurs within 2 years 
of reduced exposure.  
However, our default 
lag assumes 43% of 
mortality reductions 
would occur within 
the first 2 years.  The 
evidence directly 
informing the 
cessation lag structure 
is somewhat limited, 
but the current lag is 
supported by the 
Council HES. 

Assumption of a linear, 
no-threshold model for 
PM and ozone mortality 

Overestimate Probably minor. 
Although 
consideration for 
alternative model 
forms (Krewski et 
al., 2009) does 
suggest that 
different models 
can impact risk 
estimates to a 
certain extent, 
generally this 
appears to be a 
moderate source of 
overall uncertainty.   
 
 

High. 
The current scientific 
literature does not 
support a population-
based threshold, 
which consistently 
shows effects down to 
the lowest 
measureable levels.  If 
a threshold does exist, 
it is likely below the 
range of 
concentrations of 
regulatory interest.   
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

Mortality health impact 
did not include 
pollutants other than 
PM or ozone. 

Unable to determine 
based on current 
information 

Probably minor.  If 
other criteria 
pollutants 
correlated with PM 
contribute to 
mortality, that 
effect may be 
captured in the PM 
estimate.  This 
uncertainty does 
make it difficult to 
disaggregate 
avoided mortality 
benefits by 
pollutant. 

High. 
PM and ozone are the 
two pollutants most 
strongly linked to 
mortality in the 
epidemiological 
literature.  It is likely 
that we’ve captured 
the majority of 
mortality benefits due 
to criteria pollutants 
in our analysis. 

Pooling with equal 
weights of ozone 
mortality incidence 
estimates to present a 
primary estimate. 

Unable to determine 
based on current 
information 

Probably minor. 
Pooling with equal 
weights provides a 
central estimate of 
ozone mortality 
benefits, but it is 
not clear that the 
six ozone mortality 
incidence studies 
should be combined 
in this manner.  
Relying on a 
particular single 
study or another 
combination of 
studies may result 
in significantly 
different estimated 
benefits from  
ozone reductions. 
However, ozone-
related avoided 
mortality benefits 
are a minor 
contributor to total 
monetized benefits. 

Medium. 
All six studies are 
associated with 
different strengths 
and limitation.  No 
single study has 
emerged as solely 
suitable to support a 
primary estimate.  
Therefore, a pooled 
estimate provides a 
central estimate of 
the available 
literature. 
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

No cessation lag was 
used for ozone 
mortality. 

Overestimate Probably minor.  If 
there is a time lag 
between changes in 
ozone exposure and 
the total realization 
of changes in health 
effects then 
benefits occurring 
in the future should 
be discounted.  The 
use of no lag 
assumes that all 
mortality benefits 
are realized in the 
year of the 
exposure change 
and therefore no 
discounting occurs.  
This may lead to an 
overestimate of 
benefits. 

High. 
Due to the use of 
short-term studies of 
ozone mortality, use 
of a no lag structure is 
appropriate and 
supported by the 
Council HES. 

UNCERTAINTIES RELATED TO APPLICATION OF C-R FUNCTIONS 

Application of C-R 
relationships only to 
those subpopulations 
matching the original 
study population. 

Underestimate Probably minor.  
The C-R functions 
for several health 
endpoints (including 
PM-related 
premature 
mortality) were 
applied only to 
subgroups of the 
U.S. population 
(e.g. adults 30+) 
and thus may 
underestimate the 
whole population 
benefits of 
reductions in 
pollutant 
exposures.  
However, the 
background 
incidence rates for 
these age groups 
are likely low and 
therefore would not 
contribute many 
additional cases. 

High.   
The baseline mortality 
and morbidity rates 
for PM-related health 
effects are 
significantly lower in 
those under the age of 
30 (other than 
neonates).   
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

Application of 
regionally derived C-R 
estimates to entire U.S. 

Unable to determine 
based on current 
information 

Probably minor. 
This is likely to 
affect morbidity 
estimates rather 
than mortality, as 
mortality estimates 
are based on 
studies that include 
multiple cities.  
Since morbidity is 
not as large of a 
contributor to 
overall benefits, 
this is not likely to 
have a large impact 
on net benefits. 

Medium. 
The differences in the 
expected changes in 
health effects 
calculated using 
different underlying 
studies can be large.  
If differences reflect 
real regional 
variation, applying 
individual C-R 
functions throughout 
the U.S. could result 
in considerable 
uncertainty in health 
effect estimates. 

UNCERTAINTIES RELATED TO HEALTH VALUATION 

Use of a Value-of-a-
Statistical-Life (VSL) 
estimate based on a 
Weibull distribution of 
26 studies 

Unable to determine 
based on current 
information  
 

Potentially major. 
Mortality valuation 
generally dominates 
monetized benefits. 

Medium.  
The VSL used in this 
analysis is based on 26 
labor market and 
stated preference 
studies published 
between 1974 and 
1991.  Although there 
are many more recent 
studies, including 
meta-analyses, 
sensitivity analyses 
reported above 
suggest that these 
alternative sources 
generate results that 
are close to the 
estimates used in the 
analysis. 

Use of cost of illness 
(COI) estimates to 
value some morbidity 
endpoints 

Underestimate 
 
 

Probably minor. 
Mortality valuation 
generally dominates 
monetized benefits; 
therefore specific 
estimates used to 
generate morbidity 
benefits likely 
would not have a 
large impact on net 
benefits.  

Low. 
Morbidity benefits 
such as hospital 
admissions and heart 
attacks are calculated 
using COI estimates, 
which some studies 
have shown are 
generally half as much 
as WTP to avoid the 
illness.  However, WTP 
estimate are currently 
not available for all 
health endpoints. 
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

Benefits transfer for 
mortality risk 
valuation, including 
differences in age, 
income degree of risk 
aversion, the nature of 
the risk, and treatment 
of latency between 
mortality risks 
presented by PM/ozone 
and the risks evaluated 
in the available 
economic studies. 

Unable to determine 
based on currently 
available information 

Potentially major.  
The mortality 
valuation step is 
clearly a critical 
element in the net 
benefits estimate, 
so any uncertainties 
can have a large 
effect.   

Medium. 
Information on the 
combined effect of 
these known biases is 
relatively sparse, and 
it is therefore difficult 
to assess the overall 
effect of multiple 
biases that work in 
opposite directions.  
However, our VSL 
estimate is based on a 
distribution of the 
results of 26 individual 
studies, which cover a 
range of 
characteristics. 

Inability to value some 
quantifiable morbidity 
endpoints, such as 
impaired lung function. 

Underestimate Probably minor.  
Reductions in lung 
function are a well-
established effect, 
based on clinical 
evaluations of the 
impact of air 
pollutants on 
human health, and 
the effect would be 
pervasive, affecting 
virtually every 
exposed individual. 
However, the lack 
of a clear 
symptomatic 
presentation of the 
effect, however, 
could limit 
individual WTP to 
avoid lung function 
decrements.     
 
 
 
 
 
 
 
 
 
 
 

 

Low. 
There currently is no 
evidence to determine 
the monetary value of 
the benefits of 
avoided lung function 
reductions. 
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

UNCERTAINTIES IN FORECASTED DATA SUPPORTING HEALTH EFFECTS ESTIMATES  

Uncertainty in 
projecting baseline 
incidence rates 

Both Probably minor. 
The magnitude 
varies with the 
health endpoint.  
Mortality baseline 
incidence is at the 
county level and 
projected for 5-year 
increments.  
Morbidity baseline 
incidence has 
varying spatial 
resolution for year 
2000 only.   

Medium. 
The county-level 
baseline incidence and 
population estimates 
were obtained from 
databases where the 
relative degree of 
uncertainty is low.  
The baseline data for 
other endpoints are 
not location specific 
(e.g., those taken 
from studies) and 
therefore may not 
accurately represent 
the actual location-
specific rates.   

Income growth 
adjustments 

Both Potentially major.  
Income growth 
increases 
willingness-to-pay 
valuation 
estimates, including 
mortality, over 
time.   

Medium 
 
It is difficult to 
forecast future income 
growth, owing to 
unpredictability of 
future business and 
employment cycles.  
These can have a 
substantial effect on 
short term growth rate 
projections, although 
over longer periods 
economic growth rates 
have tended to 
converge.  The use of 
data from AEO 2005, 
however, omits the 
effect of the most 
recent economic 
downturn.   
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

Population projections Both 
 
 

Probably minor.  
The magnitude 
varies with the 
health endpoint.  
Mortality baseline 
incidence is at the 
county level and 
projected for 5-year 
increments.  
Morbidity baseline 
incidence has 
varying spatial 
resolution for year 
2000 only. 
 
 
 
 

Medium. 
The county-level 
baseline incidence and 
population estimates 
were obtained from 
databases where the 
relative degree of 
uncertainty is low.  
The baseline data for 
other endpoints are 
not location-specific 
(e.g., those taken 
from studies) and 
therefore may not 
accurately represent 
the actual location-
specific rates. 

Income growth 
adjustments 

Both Potentially major. 
Income growth 
increases 
willingness-to-pay 
valuation 
estimates, including 
mortality, over 
time. 

Medium. 
It is difficult to 
forecast future income 
growth, owing to 
unpredictability of 
future business and 
employment cycles. 
These can have a 
substantial effect on 
short-term growth 
rate projections, 
although over longer 
periods, economic 
growth rates have 
tended to converge.  
The use of data from 
AEO 2005, however, 
omits the effect of the 
most recent economic 
downturn. 
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

Population projections Both Probably minor. 
The demographics 
of population 
forecasting are 
relatively well-
established, 
however migration 
estimates are quite 
uncertain, 
particularly for 
specific locations.  
Overall, we believe 
that population 
projections are not 
likely to vary more 
than 5 percent at 
the national level. 

Medium. 
Population projections 
cannot adequately 
account for future 
population migration 
due to catastrophic 
events.  Projected 
population and 
demographics may not 
well represent future-
year population and 
demographics. 

OTHER UNCERTAINTIES 

Variation in effect 
estimates reflecting 
differences  in PM2.5 
composition  
 
 

Unable to determine 
based on current 
information  
 

Unable to 
determine based on 
current information  
 
 

Medium. 
Epidemiology studies 
examining regional 
differences in PM2.5-
related health effects 
have found 
differences in the 
magnitude of those 
effects.  While these 
may be the result of 
factors other than 
composition (e.g., 
different degrees of 
exposure 
misclassification), 
composition remains 
one potential 
explanatory factor.     

Very limited 
quantification of health 
effects associated with 
exposure to air toxics. 

Underestimate Probably minor. 
Studies have found 
air toxics cancer 
risks to be orders of 
magnitude lower 
than those of 
criteria pollutants.     

N/A 
Current data and 
methods are 
insufficient to develop 
(and value) national 
quantitative estimates 
of the health effects 
of these pollutants. 
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POTENTIAL SOURCE OF 

ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR 

NET BENEFITS 

ESTIMATE 

MAGNITUDE OF 

IMPACT ON NET 

BENFITS ESTIMATE 

DEGREE OF 

CONFIDENCE 

CAAA fugitive dust 
controls implemented 
in PM non-attainment 
areas would reduce 
lead exposures by 
reducing the re-
entrainment of lead 
particles emitted prior 
to 1990.  This analysis 
does not estimate 
these benefits. 

Underestimate Probably minor. 
The health and 
economic benefits 
of reducing lead 
exposure can be 
substantial (e.g., 
see section 812 
Retrospective Study 
Report to 
Congress). 
However, most 
additional fugitive 
dust controls 
implemented under 
the with-CAAA 
scenario (e.g., 
unpaved road dust 
suppression, 
agricultural tilling 
controls, etc.) tend 
to be applied in 
relatively low 
population areas. 

N/A 
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TABLE C-5.  KEY UNCERTAINTIES  ASSOCIATED WITH ECOLOGICAL EFFECTS ESTIMATION 

POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Incomplete coverage of 
ecological effects identified in 
existing literature, including 
the inability to adequately 
discern the role of air 
pollution in multiple stressor 
effects on ecosystems.  
Examples of categories of 
potential ecological effects 
for which benefits are not 
quantified include: reduced 
eutrophication of estuaries, 
reduced acidification of soils, 
reduced bioaccumulation of 
mercury and dioxins in the 
food chain. 

Underestimate Potentially major.  The extent of 
unquantified and unmonetized 
benefits is largely unknown, but the 
available evidence suggests the 
impact of air pollutants on 
ecological systems may be 
widespread and significant.   

Incomplete geographic scope 
of recreational fishing 
benefits associated with 
reduced lake acidification 
analysis due to case study 
approach. 

Underestimate Potentially major.  As a case study 
limited to the Adirondack region of 
New York State, the estimated 
benefits to recreational fishing 
reflect only a portion of the overall 
benefits of reduced acidification on 
this service flow, but based on the 
magnitude of effects in the 
Adirondacks, the national estimate 
is nonetheless likely to be less than 
five percent of total benefits. 

Incomplete assessment of 
long-term bioaccumulative 
and persistent effects of air 
pollutants.   

Underestimate Potentially major.  Little is 
currently known about the longer-
term effects associated with the 
accumulation of toxins in 
ecosystems. What is known suggests 
the potential for major impacts.  
Future research into the potential 
for threshold effects is necessary to 
establish the ultimate significance 
of this factor. 

Omission of the effects of 
nitrogen deposition as a 
nutrient with beneficial 
effects. 

Overestimate Probably minor.  Although nitrogen 
does have beneficial effects as a 
nutrient in a wide range of 
ecological systems, nitrogen in 
excess also has significant and in 
some cases persistent detrimental 
effects that are also not adequately 
reflected in the analysis. 
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POTENTIAL SOURCE OF ERROR 

DIRECTION OF 

POTENTIAL BIAS FOR NET 

BENEFITS 

LIKELY SIGNIFICANCE RELATIVE TO 

KEY UNCERTAINTIES ON NET 

BENEFITS ESTIMATE* 

Use of CMAQ model to 
estimate air pollutant 
deposition levels. 

Unable to determine.  As 
part of a performance 
evaluation of CMAQ, EPA 
compared model 
predictions for some 
forms of deposition 
relevant to this analysis 
(wet SO2, NOx, and 
ammonium) to observed 
deposition data).**  The 
evaluation indicated that 
CMAQ overpredicted 
some forms of deposition 
and underpredicted 
others.  The relative 
accuracy of the model’s 
predictions varied 
seasonally and 
geographically. 

Probably minor. 
The Adirondack lake acidification 
analysis uses deposition estimates 
as inputs, but they are calibrated to 
lake-level monitoring data, and the 
monetized benefits estimates for 
that component are a small part of 
the overall net benefits.  We also 
use the CMAQ deposition estimates 
to generate maps that highlight the 
relative distribution of deposition 
for various air pollutants across the 
U.S. With respect to net impacts, 
the extent to which the forms of 
deposition and geographic areas 
that are overpredicted by those that 
re underpredicted is unknown. 

* The classification of each potential source of error reflects the best judgment of the section 
812 Project Team.  The Project Team assigns a classification of “potentially major” if a 
plausible alternative assumption or approach could influence the overall monetary benefit 
estimate by approximately five percent or more; if an alternative assumption or approach is 
likely to change the total benefit estimate by less than five percent, the Project Team 
assigns a classification of “probably minor.” 

**     See U.S. EPA, Office of Air Quality Planning and Standards, Emissions Analysis and 
Monitoring Division, Air Quality Modeling Group. CMAQ Model Performance Evaluation Report 
for 2001: Updated March 2005. CAIR Docket OAR-2005-0053-2149. 

 

 

 


