Onsite Biomass & Biogas:

A Natural Strategy for Success

U.S. EPA's Green Power Partnership Blaine Collison, U.S. EPA

Green Power Partnership Webinar May 19, 2009 1:00 – 2:30 p.m. EST

Today's Agenda

- Introduction & Biomass 101
 - Blaine Collison, Director, EPA's Green Power Partnership
- Middlebury College's Biomass Gasification Plant
 - Jack Byrne, Director, Sustainability Integration Office
- University of Iowa Biomass Project
 - Ferman Milster, Associate Director Utilities & Energy Management
- University of New Hampshire's ECOLine
 - Paul Chamberlin, Assistant Vice President for Energy and Campus Development
- Question & Answers

Webinar Logistics

- You will be muted throughout this webinar to minimize background noise.
- Submit questions and comments in writing via the online control panel. To minimize or maximize the control panel, click on the >> button at the top left of the tool bar.
- Presentations from today's session will be made available for download shortly at: <u>www.epa.gov/greenpower/events/index.htm</u>
- Post-webinar survey.

State Bioenergy Primer

Information and Resources for States On Issues, Opportunities, and Options For Advancing Bioenergy

To be posted at: www.epa.gov/cleanenergy/stateandlocal

- Forthcoming Summer 2009
- Covers biopower, biofuels, and bioproducts
- Concise format useful for state policy-makers
- Primer to understand the basics / determine if additional information is wanted or needed

Abbreviated Table of Contents:

- Chapter 2. What Is Bioenergy?
 - Feedstocks, Conversion Technologies
- Chapter 3. Benefits, Challenges, and Considerations of Bioenergy
 - Economics, Environmental Issues, Feedstock Supply, Infrastructure
- Chapter 4. How Can States Identify Bioenergy Opportunities?
 - Determine Feedstock Availability, Assess Markets, Identify Opportunities
- Chapter 5. Options for States to Advance Bioenergy Goals
 - Policies, Regulatory Development; Environmental Revenue Streams, Investments/Financing, Incentives, RD&D, Information Sharing

Contact: Emma Zinsmeister, zinsmeister.emma@epa.gov

What is Green Power?

- Green power is an "environmentally-differentiated" electricity product from:
 - solar
 - biogas
- wind
- geothermalbiomass

small hydro

Green Power Benefits

- Environmental
 - Reduce greenhouse gases (GHGs)
 - Reduce criteria pollutants*
 - Water conservation
- Energy Price Stability/Reliability
 - Reduced demand for natural gas lowers prices
 - Electricity price stability
 - On-site systems can reduce T&D requirements
- Economic Development
 - Job creation
 - Landowner lease payments (\$2000-\$5000/wind turbine)
 - Tax revenues (often in rural areas that need them)

Buying Green Power – Product Options

- Green Power Electricity Products
 - Buy electricity from utility green pricing programs or green power retail marketers that is all, or partially, generated from renewable sources

- Renewable Energy Certificates (REC)
 - Buy only the environmental "attributes" associated with the electricity generated (1 REC = 1 MWh)

- On-site Generation
 - Install renewable energy system on-site (e.g. solar panels, wind turbines)

Partnership Offerings & Benefits

- Credible Benchmarks
 - Metric for "How much green power is enough?"
 - Definition of eligible renewables
- Planning & Implementation Resources
 - Green power locator www.epa.gov/greenpowerpubs/gplocator.htm
 - Purchasing guidance
 - Marketing and communications support
 - Environmental impact information www.epa.gov/greenpower/pubs/calculator.htm
- Recognition
 - Top Partner lists
 - Green Power Leadership Awards
 - Promotional opportunities
 - Use of the Partnership logo

Biomass Energy 101

- "Biomass" is a term used to describe natural materials used as energy sources
- Biomass derived from organic materials, including wood and crops, as well
 wastes from consumer, municipal and agricultural processes, can be used to
 generate heat and electricity. Biomass fuels encompass a broad range of
 solids, gases, and liquids that result from living organisms or from the wastes
 and by-products of human activities.
- Biomass energy is commonly used in the following applications:
 - Electricity production
 - Heat generation
 - Transportation fuel
- Biomass supplies ~55 billion kWh/yr, or 1.3% of U.S. electricity generation

Biomass Energy: Applications

Cofiring

 Cofiring is the mixture of biomass fuel with fossil fuels. This reduces reliance on fossil fuel and helps reduce emissions.

Landfill and Digester Gas

The decomposition of organic matter in landfills and wastewater treatment plants produces significant amounts of methane as a byproduct. Methane is also the main component of natural gas, which is a primary fuel for electricity generation. Though the gas needs to be collected and its impurities removed, it is still a cost effective means of generating power or heat by using what would otherwise be vented to the atmosphere.

Biomass Gasification

In a gasification system, biomass (wood or other solid plant matter) is heated to high temperatures (600-800 °C) in a gasifier. The fuel is converted to a gas that is then used to generate heat and power. Gasifiers are a much cleaner and more efficient technology than traditional biomass combustion systems.

Benefits of Onsite Biomass & Biogas

- Dispatachable renewable generation technologies
 - Have ability to supply baseload power
- Local renewable energy source
 - The money spent on biomass keeps energy dollars circulating in the local economy and supports local jobs
- Fuel price stability
- Energy Security
- Potential for Combined Heat and Power (CHP) applications
- Waste disposal
 - use of biomass wastes mitigates the need to create new landfills and extends the life of existing landfills
- Co-firing is a cost-effective means of using current power generation technologies while incorporating renewables and decreasing emissions profiles

Want to Know More?

Basic Information

- An overview of Green Power Partnership is available on EPA's Web site www.epa.gov/greenpower
- To see EPA's Top Partner Lists, please visit: www.epa.gov/greenpower/toplists/index.htm
- More Questions?
 - Blaine Collison, 202-343-9139, collison.blaine@epa.gov
 - Anthony Amato, 617-357-4630, anthony.amato@erg.com

