

Using SOAS & related field study data for scientific and regulatory modeling

Havala O. T. Pye, National Exposure Research Laboratory, US Environmental Protection Agency

Contributors:

Deborah J. Luecken, ¹ Lu Xu, ² Christopher M. Boyd, ² Nga L. Ng, ² Kirk Baker, ³ Benjamin R. Ayres, ⁴ Jesse O. Bash, ¹ Karsten Baumann, ⁵ William P. L. Carter, ⁶ Eric Edgerton, ⁵ Juliane L. Fry, ⁴ William T. Hutzell, ¹ Donna Schwede, ¹ Paul B. Shepson, ⁷ Sri Hapsari Budisulistiorini, ⁸ Jason Surratt, ⁸ Thanos Nenes, ² Annmarie Carlton, ⁹ V. Faye McNeill¹⁰

¹National Exposure Research Laboratory, US Environmental Protection Agency, ²Georgia Institute of Technology, ³Office of Air Quality Planning and Standards, US Environmental Protection Agency, ⁴Reed College,

⁵Atmospheric Research and Analysis, Inc., ⁶Center for Environmental Research and Technology, University of California at Riverside, ⁷Purdue University, ⁸University of North Carolina at Chapel Hill, ⁹Rutgers University, ¹⁰Columbia University

Using SOAS & related field study data for scientific and regulatory modeling:

How field and laboratory data has moved us from surrogates to explicit SOA mechanisms

Development of State of the Science SOA Models

- CMAQ model is often used for regulatory decision making in a relative sense (for ozone, SO₂, etc)
- Current regulatory uses do not specifically focus on SOA
 - Large uncertainties in anthropogenically dominated locations
 - More mechanistic information known in BVOC dominated locations (such as the southeast United States)
- Future lower PM_{2.5} NAAQS, component specific PM_{2.5} standards, or climate relevant work could require mechanistic SOA models

SOA Predictions During CalNex 2010 (Woody et al. 2015 ACPD)

Pathways to SOA in CMAQ informed by SOAS

1. Organic Nitrates

Traditional BVOC+NO₃ OA model

Monoterpenes: Carlton et al. 2010 ES&T

Isoprene: v5.1 unpublished

Revised organic nitrogen SOA model

Semivolatile ON sources considered:

- Monoterpene + OH, NO
- Monoterpene + NO₃
- Isoprene + NO₃ dinitrate only

Benefits of framework:

- Allows interaction of aerosol system with gas system (implications for NO_x, ozone)
- Provides more opportunities for evaluation

O₃ is the dominant nocturnal oxidant

NO₃ is the dominant ON source

^{*} CIMS signal is one subset of MTNO₃

OC predicted at CTR June 2013

Bias in **OA** vs AMS: -35% $(-1.93 \mu g/m^3)$

Bias in **OA** vs AMS: -23% $(-1.26 \mu g/m^3)$

 Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA

- Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA
- Faster hydrolysis improves the speciation of LO-OOA

- Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA
- Faster hydrolysis improves the speciation of LO-OOA

 Faster hydrolysis improves the magnitude of gas-phase organic nitrates

- Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA
- Faster hydrolysis improves the speciation of LO-OOA

 Faster hydrolysis improves the magnitude of gas-phase organic nitrates

IEPOX SOA

- Included in all research and regulatory mechanisms of CMAQ as of v5.1
- Modeled as reactive uptake (Pye et al. 2013 ES&T)

epoxide(g) $\xrightarrow{k_{het}}$ aerosol

$$k_{het} = \frac{A}{\frac{r_p}{D_g} + \frac{4}{v\gamma_{epoxide}}}$$

reaction rate constant

epoxide

CMAQ Predictions of IEPOX-OA

CMAQ predictions reproduce the observed correlation with sulfate

Modeling of the SOAS-LRK Site

Budisulistiorini et al. in prep

Models reproduce observed correlation of IEPOX-derived species (tetrols+organosulfates) with aerosol volume and surface area and lack of correlation k_{particle}

NO_x emission reduction leads to OA reduction

SO_x Emission Reduction Leads to Isoprene SOA Reduction

Budisulistiorini et al. in prep.

Pye et al. 2013 isoprene-OA includes semivolatile and aqueous IEPOX SOA

Marais et al. 2015 isoprene-OA 58% from IEPOX 28% from glyoxal

Conclusions

- Mechanistic SOA parametrizations give us confidence in the predictive capability of models
- For organic nitrate-derived SOA, gas-phase mechanisms should couple with aerosol-phase mechanisms
- CMAQ model predictions are consistent with SOAS observations of NO_y components when particle phase organic nitrates undergo fast reaction (3 h)
- Significant progress has been made in modeling isoprene-OA, but uncertainties exist (e.g. the composition of the isoprene-OA factor)
- NO_x and SO_x emission reductions in the Southeast are expected to reduce SOA

