Using SOAS & related field study data for scientific and regulatory modeling Havala O. T. Pye, National Exposure Research Laboratory, US Environmental Protection Agency #### **Contributors:** Deborah J. Luecken, ¹ Lu Xu, ² Christopher M. Boyd, ² Nga L. Ng, ² Kirk Baker, ³ Benjamin R. Ayres, ⁴ Jesse O. Bash, ¹ Karsten Baumann, ⁵ William P. L. Carter, ⁶ Eric Edgerton, ⁵ Juliane L. Fry, ⁴ William T. Hutzell, ¹ Donna Schwede, ¹ Paul B. Shepson, ⁷ Sri Hapsari Budisulistiorini, ⁸ Jason Surratt, ⁸ Thanos Nenes, ² Annmarie Carlton, ⁹ V. Faye McNeill¹⁰ ¹National Exposure Research Laboratory, US Environmental Protection Agency, ²Georgia Institute of Technology, ³Office of Air Quality Planning and Standards, US Environmental Protection Agency, ⁴Reed College, ⁵Atmospheric Research and Analysis, Inc., ⁶Center for Environmental Research and Technology, University of California at Riverside, ⁷Purdue University, ⁸University of North Carolina at Chapel Hill, ⁹Rutgers University, ¹⁰Columbia University Using SOAS & related field study data for scientific and regulatory modeling: How field and laboratory data has moved us from surrogates to explicit SOA mechanisms ## **Development of State of the Science SOA Models** - CMAQ model is often used for regulatory decision making in a relative sense (for ozone, SO₂, etc) - Current regulatory uses do not specifically focus on SOA - Large uncertainties in anthropogenically dominated locations - More mechanistic information known in BVOC dominated locations (such as the southeast United States) - Future lower PM_{2.5} NAAQS, component specific PM_{2.5} standards, or climate relevant work could require mechanistic SOA models #### SOA Predictions During CalNex 2010 (Woody et al. 2015 ACPD) # Pathways to SOA in CMAQ informed by SOAS #### 1. Organic Nitrates # Traditional BVOC+NO₃ OA model Monoterpenes: Carlton et al. 2010 ES&T Isoprene: v5.1 unpublished # Revised organic nitrogen SOA model Semivolatile ON sources considered: - Monoterpene + OH, NO - Monoterpene + NO₃ - Isoprene + NO₃ dinitrate only #### Benefits of framework: - Allows interaction of aerosol system with gas system (implications for NO_x, ozone) - Provides more opportunities for evaluation # O₃ is the dominant nocturnal oxidant # NO₃ is the dominant ON source ^{*} CIMS signal is one subset of MTNO₃ # **OC predicted at CTR June 2013** Bias in **OA** vs AMS: -35% $(-1.93 \mu g/m^3)$ Bias in **OA** vs AMS: -23% $(-1.26 \mu g/m^3)$ Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA - Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA - Faster hydrolysis improves the speciation of LO-OOA - Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA - Faster hydrolysis improves the speciation of LO-OOA Faster hydrolysis improves the magnitude of gas-phase organic nitrates - Increasing the hydrolysis rate increases the magnitude of modeled LO-OOA - Faster hydrolysis improves the speciation of LO-OOA Faster hydrolysis improves the magnitude of gas-phase organic nitrates #### **IEPOX SOA** - Included in all research and regulatory mechanisms of CMAQ as of v5.1 - Modeled as reactive uptake (Pye et al. 2013 ES&T) epoxide(g) $\xrightarrow{k_{het}}$ aerosol $$k_{het} = \frac{A}{\frac{r_p}{D_g} + \frac{4}{v\gamma_{epoxide}}}$$ reaction rate constant epoxide ### **CMAQ Predictions of IEPOX-OA** CMAQ predictions reproduce the observed correlation with sulfate ## Modeling of the SOAS-LRK Site Budisulistiorini et al. in prep Models reproduce observed correlation of IEPOX-derived species (tetrols+organosulfates) with aerosol volume and surface area and lack of correlation k_{particle} #### NO_x emission reduction leads to OA reduction #### SO_x Emission Reduction Leads to Isoprene SOA Reduction Budisulistiorini et al. in prep. Pye et al. 2013 isoprene-OA includes semivolatile and aqueous IEPOX SOA Marais et al. 2015 isoprene-OA 58% from IEPOX 28% from glyoxal #### **Conclusions** - Mechanistic SOA parametrizations give us confidence in the predictive capability of models - For organic nitrate-derived SOA, gas-phase mechanisms should couple with aerosol-phase mechanisms - CMAQ model predictions are consistent with SOAS observations of NO_y components when particle phase organic nitrates undergo fast reaction (3 h) - Significant progress has been made in modeling isoprene-OA, but uncertainties exist (e.g. the composition of the isoprene-OA factor) - NO_x and SO_x emission reductions in the Southeast are expected to reduce SOA