Natural Gas Star Annual Implementation Workshop

Evaluation of Casing Gas Recovery Options in China

David Picard (Clearstone Engineering Ltd) 12–14 May 2014 San Antonio, Texas

Basic Casing-Gas Control Strategy

- Use what you can on site or at other nearby facilities (especially where this reduces reliance on offsite fuel and other supplied energy).
- Transport the gas to market by gaining access to a nearby gathering system or convert it to an alternative energy form that can be more readily transported to market (e.g., LNG, LPG or electricity).
- Dispose of the gas that cannot be conserved or utilized in in a manner that minimizes GHG emissions (i.e., flare rather than vent).

Challenges

- Most large and medium scale opportunities already addressed:
 - Recovery of condensable hydrocarbons.
 - Electric power generation.
- Individual site opportunities generally <1000 m³/d.
- Flows from individual wells range from 0 to 20.6 m³/h or (0 to 494.4 m³/d).
- Lack of site-specific measurement data to evaluate opportunities.
- Reliable gas analyses generally unavailable.

Challenges

- One surveyed oilfield in China comprised several thousand widely dispersed wells (primarily in mountainous terrain).
 - Difficult pipelining conditions.
 - Limited opportunities to cluster wells.
- In older development areas:
 - Casing gas flows have declined.
 - Local residents have begun using the waste gas for domestic needs and flare the balance.

Oilfield Terrain

Approach Being Taken

- Measurement program to identify practicable casing-gas recovery opportunities.
- Application of small-scale solutions:
 - Small Scale Power Generators.
 - Micro-condensers.
 - Micro-LNG Plants.

Measurements

- Continuous data logging of vent gas flows using ultrasonic flow meter:
 - Zero back pressure & easy to install.
 - Tolerant of some condensation or aerosols.
 - Composition independent.
 - Excellent range ability (2000:1).
 - Good accuracy ± 2 to 5%.
 - Determination of gas MW from sound speed.

Casing-Gas Flow Measurement

Casing-Gas Flow Measurement

Hi-Flow Sampler Measurement of Emissions from a Sump

Variations in Casing Gas Flows

Micro & Optical GCs: Technological Innovations

- Field analyses reduces or eliminates sample degradation and transportation issues.
- Micro-GCs offer stable and reliable performance in the field.
- Low power requirements.
- Optical GCs eliminate need for carrier or calibration gases in the field.

Micro-Condenser Units

Capacity: 282 to 2832 m3/d of waste ga

Figure 8: Screening tool for site selection for refrigeration casing gas recovery system - payout period as a function of casing gas flow rate and VOC concentration of casing gas for the generate and flare scenario.

Small-Scale Power Generators

Capacity: 10 to 117 kW (70 to 828 m³/d).

Micro-LNG Plant

Source: Kryopak Inc. (Texas) Capacity: 50 tonnes/d (73,700 m³/d)

Key Findings

- Adequate time-series monitoring of casinggas flows important for determining true production potential.
- For the cases investigated the casing gas comprised noteworthy amounts of nonmethane hydrocarbons:
 - 5 times more valuable than methane fraction.
 - Greatly enhances feasibility of casing-gas recovery projects.

