
Supplemental Environmental Impact Statement for the Designation of Dredged Material Disposal Site(s) in Eastern Long Island Sound, Connecticut and New York

APPENDIX E

Biological Characterization of the Eastern Long Island Sound Dredged Material Disposal Sites

Prepared for: NAVFAC Mid Atlantic and United States Environmental Protection Agency

Prepared by: Tetra Tech

May 2014

[This page intentionally left blank]

NAVFAC Atlantic Biological Resource Services

Contract: N62470-08-D-1008; Task Order: WE11

30 May 2014

Prepared for:

NAVFAC Mid - Atlantic 9742 Maryland Ave. Building Z-144 Norfolk, VA 23508-1278

US EPA - Region 1, New England 5 Post Office Square, Suite 1000 Mail Code OEP06-1 Boston, MA 02109-3912

Prepared by:

Tetra Tech, Inc. 1320 North Courthouse Road, Suite 600 Arlington, VA 22201 This Page Intentionally Left Blank

TABLE OF CONTENTS

<u>LIS</u>	LIST OF ACRONYMSV					
<u>1</u>	INTRODUCTION	1				
1.1	Project Description and Location	2				
1.2	OBJECTIVES					
1.3	Previous Investigations	4				
2	METHODS	5				
-						
2.1	Field Sampling					
2.1						
2.1						
2.1	•					
2.2	LABORATORY ANALYSIS	.14				
2.2	1 SEDIMENT TOXICITY	. 14				
2.2	2 TOTAL ORGANIC CARBON (TOC) AND GRAIN SIZE	.14				
2.2	3 BENTHIC INFAUNA	. 15				
2.3	Data Analysis	.15				
2.4	FISHING ACTIVITY SURVEY	.16				
3	RESULTS	.19				
<u>3</u>	RESULTS	<u>.19</u>				
<u>3</u> 3.1						
3.1	New London Dredged Material Disposal Site (NLDS)	.24				
-	New London Dredged Material Disposal Site (NLDS)	.24 .24				
3.1	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types	. 24 .24 .24				
3.1 3.1 3.1	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity	. 24 .24 .24 .25				
3.1 3.1 3.1 3.1	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna	. 24 .24 .24 .25 .25				
3.1 3.1 3.1 3.1 3.1	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna Off-site Area Surrounding Bartlett Reef/Goshen Point/The Race	.24 .24 .25 .25 .25				
3.1 3.1 3.1 3.1 3.1 3.1 3.2	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna OFF-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics	.24 .24 .25 .25 .25 .26				
3.1 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.2	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna OFF-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics	.24 .24 .25 .25 .25 .26 .26				
3.1 3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.2	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna 0FF-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna 5 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna	.24 .24 .25 .25 .26 .26 .26 .28 .28				
3.1 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna 0FF-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna Miantic Bay Historic Dredged Material Disposal Site (NBDS)	.24 .24 .25 .25 .26 .26 .26 .28 .28 .28 .28				
3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna 0FF-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna 5 Sediment Toxicity 4 Benthic Infauna 1 Station Characteristics 1 Station Characteristics	.24 .24 .25 .25 .26 .26 .28 .28 .28 .28 .29				
3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.3 3.3 3.3	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna 0Ff-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types. 5 Sediment Toxicity 4 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna 4 Benthic Infauna 4 Benthic Infauna 5 Sediment Toxicity 4 Benthic Infauna 6 Benthic Infauna 7 Station Characteristics 8 Benthic Infauna 8 Benthic Infauna 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 2 Benthic Habitat and Sediment Types.	.24 .24 .25 .25 .26 .26 .28 .28 .28 .29 .29				
3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna OFF-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna 0 Ff-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna Niantic Bay Historic Dredged Material Disposal Site (NBDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 3 Sediment Toxicity	24 .24 .25 .26 .26 .26 .28 .28 .28 .28 .28 .29 .29 .29 .30				
3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.3	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity. 4 Benthic Infauna Off-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna 0 Miantic Bay Historic Dredged Material Disposal Site (NBDS) 1 Station Characteristics 2 Benthic Infauna Niantic Bay Historic Dredged Material Disposal Site (NBDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna	24 .24 .25 .25 .26 .26 .26 .28 .28 .28 .29 .29 .30 .30				
3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.4	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 BENTHIC Habitat and Sediment Types. 3 Sediment Toxicity. 4 BENTHIC INFAUNA OFF-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types. 5 Sediment Toxicity 4 Benthic Infauna 7 Station Characteristics 8 Benthic Infauna 9 Sediment Toxicity 4 Benthic Infauna Niantic Bay Historic Dredged Material Disposal Site (NBDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna 6 Grandent Toxicity 4 Benthic Infauna 6 Grandent Toxicity 4 Benthic Infauna 6 Grandent Toxicity 4 Benthic Infauna 6	.24 .24 .25 .25 .26 .26 .28 .28 .29 .29 .29 .30 .30 .30				
3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.4 3.4	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna Off-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types. 5 Sediment Toxicity 4 Benthic Habitat and Sediment Types. 5 Sediment Toxicity 4 Benthic Infauna Niantic Bay Historic Dredged Material Disposal Site (NBDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna Cornfield Shoals Dredged Material Disposal Site (CSDS) 1 Station Characteristics 1 Station Characteristics	.24 .24 .25 .25 .26 .26 .28 .28 .29 .29 .30 .30 .30 .31 .31				
3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3	New London Dredged Material Disposal Site (NLDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Infauna Off-site Area Surrounding Bartlett Reef/Goshen Point/The Race 1 Station Characteristics 2 Benthic Habitat and Sediment Types 3 Sediment Toxicity 4 Benthic Habitat and Sediment Types 5 Sediment Toxicity 4 Benthic Infauna Niantic Bay Historic Dredged Material Disposal Site (NBDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna Niantic Bay Historic Dredged Material Disposal Site (NBDS) 1 Station Characteristics 2 Benthic Habitat and Sediment Types. 3 Sediment Toxicity 4 Benthic Infauna Cornfield Shoals Dredged Material Disposal Site (CSDS) 1 Station Characteristics 2 Benthic Infauna Cornfield Shoals Dredged Material Disposal Site (CSDS) <	.24 .24 .25 .25 .26 .26 .26 .28 .28 .29 .29 .30 .30 .30 .31 .31 .31				
3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.4 3.4	New London Dredged Material Disposal Site (NLDS) 1 STATION CHARACTERISTICS 2 BENTHIC HABITAT AND SEDIMENT TYPES 3 SEDIMENT TOXICITY 4 BENTHIC INFAUNA OFF-SITE AREA SURROUNDING BARTLETT REEF/GOSHEN POINT/THE RACE 1 STATION CHARACTERISTICS 2 BENTHIC HABITAT AND SEDIMENT TYPES 3 SEDIMENT TOXICITY 4 BENTHIC INFAUNA OFF-SITE AREA SURROUNDING BARTLETT REEF/GOSHEN POINT/THE RACE 1 STATION CHARACTERISTICS 2 BENTHIC HABITAT AND SEDIMENT TYPES 3 SEDIMENT TOXICITY 4 BENTHIC INFAUNA NIANTIC BAY HISTORIC DREDGED MATERIAL DISPOSAL SITE (NBDS) 1 STATION CHARACTERISTICS 2 BENTHIC HABITAT AND SEDIMENT TYPES 3 SEDIMENT TOXICITY 4 BENTHIC INFAUNA CORNFIELD SHOALS DREDGED MATERIAL DISPOSAL SITE (CSDS) 1 STATION CHARACTERISTICS 2 BENTHIC INFAUNA CORNFIELD SHOALS DREDGED MATERIAL DISPOSAL SITE (CSDS) 1 STATION CHARACTERISTICS 2 BENTHIC INFAUNA CORNFIELD SHOALS DREDGED MATERIAL DISPOSAL SITE (CSDS) 1 STATION CHARACTERISTICS 2 BENTHIC HABITAT AND SEDIMENT TYPES 3 SEDIMENT TOXICITY	.24 .24 .25 .25 .26 .26 .26 .28 .28 .29 .29 .30 .30 .30 .31 .31 .31 .31 .32				

3.5	FISH SURVEY	33
3.5.1	SITE CHARACTERISTICS	33
3.5.2	CATCH COMPOSITION	33
3.5.2	2.1 Trawls On Dredged Material Disposal Sites	33
3.5.2	2.2 Trawls Off-site of Dredged Material Disposal Sites	37
3.5.3	LOBSTERS	40
3.5.4	Species Length Distributions	40
3.6	STATISTICAL COMPARISONS	42
3.6.1		
3.6.2		
3.7	FISHING ACTIVITY SURVEY	
3.7.1		
3.7.2	Spatial and Temporal Trends in Fishing Effort	49
3.7.3	FISHING NEAR DREDGED MATERIAL DISPOSAL SITES	56
<u>4</u> D	DISCUSSION	57
4.1	BENTHIC CHARACTERISTICS	57
4.2	Fisheries Patterns	
4.3	DISEASE AND TOXICITY	
4.4	SITE-SPECIFIC TRENDS	
4.5	Comparisons Among Sites	
1.5		
<u>5 R</u>	REFERENCES	<u>68</u>
<u>APPE</u>	ENDIX A – FIELD DATA SHEETS; BENTHIC SAMPLING	<u> APP A-1</u>
APPE	ENDIX B – RAW LABORATORY DATA; GRAIN SIZE AND TOC	APP B-1
	ENDIX C – RAW LABORATORY DATA; SEDIMENT TOXICITY	
AFFL		AFF C-1
APPE	ENDIX D – RAW LABORATORY DATA; BENTHIC INFAUNA	<u> APP D-1</u>
<u>APPE</u>	ENDIX E – FIELD DATA SHEETS; TRAWL SAMPLING	APP E-1
	ENDIX F – FISHING ACTIVITY SURVEY	APP F-1
<u></u>		<u></u>
A D D F	NDIX G – FISHING ACTIVITY SURVEY RESULTS	
AFFF		AFF (1-1

LIST OF TABLES

Table 1: Summary of Field Sampling Effort
Table 2: Coordinates of Sampling Locations and Samples Collected 10
Table 3: Connecticut Department of Energy and Environmental Protection (CT DEEP) Trawl Times and
Locations for Fish Surveys
Table 4: Network Efforts and 2013 Fishing Activity Survey Participation 17
Table 5: Site Location and Sediment Description for Benthic Sampling in Eastern Long Island Sound 19
Table 6: Average Grain Size and Organic Content of Sediment Samples Collected within Eastern Long
Island Sound
Table 7: Water Column Measurements (Surface, Middle, and Bottom) for All Sites, Collected with a YSI
6920 during Benthic Sampling, July 2013
Table 8: Abundance of Individuals by Phyla for All Sites 23
Table 9: Biomass of All Samples Collected Within Each Dredged Material Disposal Site and Off-site24
Table 10: Grain Size and Organic Content of Sediment Samples Collected within New London Dredged
Material Disposal Site (NLDS)
Table 11: Total Individuals, Species, and Diversity Indices for Benthic Samples Collected within New
London Dredged Material Disposal Site (NLDS)
Table 12: Grain Size and Organic Content of Sediment Samples Collected Off-site of Dredged Material
Disposal Sites
Table 13: Total Individuals, Species, and Diversity Indices for Benthic Samples Collected off site
Table 14: Grain Size and Organic Content of Sediment Samples Collected within Niantic Bay Historic
Dredged Material Disposal Site (NBDS)
Table 15: Total Individuals, Species, and Diversity Indices for Benthic Samples Collected in Niantic Bay
Historic Dredged Material Disposal Site (NBDS)
Table 16: Grain Size and Organic Content of Sediment Samples Collected within Cornfield Shoals
Dredged Material Disposal Site (CSDS)
Table 17: Total Individuals, Species, and Diversity Indices for Benthic Samples Collected in Cornfield
Shoals Dredged Material Disposal Site (CSDS)
Table 18: Water Quality Parameters Measured at Trawl Stations
Table 19: Catch Composition of Trawls On New London, Niantic Bay (Historic), and Cornfield Shoals
Dredged Material Disposal Sites (NLDS, NBDS, CSDS)
Table 20: Catch Composition of Trawls Off-site 38
Table 21: Biological Parameters of Lobsters Collected by Connecticut Department of Energy and
Environmental Protection (CT DEEP) Trawls
Table 22: Average Diversity (H') of Benthic Grabs On and Off Dredged Material Disposal Sites
Table 23: Average Percent Composition of Targeted Species from Trawls Located On and Off Dredged
Material Disposal Sites
Table 24: Average Catch per Unit Effort (CPUE) for Targeted Species On and Off Dredged Material
Disposal Sites
Table 25: Results Summary of Fishing Activity Survey for Eastern Long Island Sound ¹
Table 26: Finfish Species Most Targeted by Eastern Long Island Sound Fisheries Based on a Fishing
Survey
Table 27: Fishing Trends near Dredged Material Disposal Sites in Eastern Long Island Sound
Table 28: Summary of Benthic Characteristics and Finfish Abundance
Table 29: Essential Fish Habitat Designations within Eastern Long Island Sound

LIST OF FIGURES

Figure 1: Existing Dredged Material Disposal Sites within Eastern Long Island Sound
Figure 2: Eastern Long Island Sound Priority and Randomized Sample Collection Sites for Benthic and
Sediment Analyses at New London Dredged Material Disposal Site (NLDS), Niantic Bay Historic Dredged
Material Disposal Site (NBDS), and Off-site
Figure 3: Eastern Long Island Sound Priority Sample Collection Sites for Benthic and Sediment Analyses
at Cornfield Shoals Dredged Material Disposal Site (CSDS) and Off-site
Figure 4: Locations of Connecticut Department of Energy and Environmental Protection (CT DEEP) Trawls
in Eastern Long Island Sound (Green Lines Numbered 1–6)13
Figure 5: Average Percentage of Sediment Type for Each Location
Figure 6: Percentage of Sediment Type for Each Benthic Grab within New London Dredged Material
Disposal Site (NLDS)
Figure 7: Percentage of Sediment Type for Each Benthic Grab Off-site
Figure 8: Percentage of Sediment Type for Each Benthic Grab within Niantic Bay Historic Dredged
Material Disposal Site (NBDS)
Figure 9: Percentage of Sediment Type for Each Benthic Grab within Cornfield Shoals Dredged Material
Disposal Site (CSDS)
Figure 10: Length Frequency Distribution for Scup On and Off Dredged Material Disposal Sites
Figure 11: Length Frequency Distribution for Winter Flounder On and Off Dredged Material Disposal
Sites
Figure 12: Length Frequency Distribution for Windowpane Flounder On and Off Dredged Material
Disposal Sites
Figure 13: Comparison of Average Percent Composition of Targeted Species between Trawls Conducted
On and Off Dredged Material Disposal Sites43
Figure 14: Fishing Effort by Month for Eastern Long Island Sound Fisheries, Based on Fishing Survey49
Figure 15: Commercial Lobster Effort by Season in Eastern Long Island Sound, Based on Fishing Survey 51
Figure 16: Commercial Mollusk Effort by Season in Eastern Long Island Sound, Based on Fishing Survey52
Figure 17: Commercial Finfish Effort by Season in Eastern Long Island Sound, Based on Fishing Survey .53
Figure 18: Charter/Party Boat Effort by Season in Eastern Long Island Sound, Based on Fishing Survey .54
Figure 19: Recreational Fishing Effort by Season in Eastern Long Island Sound, Based on Fishing Survey 55
Figure 20: Spring Index of Abundance for Lobster, Based on the CT DEEP LIS Trawl Survey

RECOMMENDED CITATION:

Tetra Tech, Inc. 2014. Biological Characterization of the Eastern Long Island Sound Dredged Material Disposal Sites. Final Report. Task Order N62470-08-D-1008-WE11. Prepared For Naval Facilities Engineering Command Mid-Atlantic and U.S. Environmental Protection Agency by Tetra Tech, Inc., May 2014.

LIST OF ACRONYMS

CEQ	Council on Environmental Quality
CPUE	catch per unit effort
CSDS	Cornfield Shoals Dredged Material Disposal Site
CT DEEP	Connecticut Department of Energy and Environmental Protection
CWA	Clean Water Act
DAMOS	disposal area monitoring system
DO	dissolved oxygen
EFH	essential fish habitat
EIS	Environmental Impact Statement
EPA	U.S. Environmental Protection Agency
FMP	Fishery Management Plan
GIS	geographic information system
GPS	global positioning system
LIS	Long Island Sound
MPRSA	Marine Protection, Research and Sanctuaries Act
NAVFAC	Naval Facilities Engineering Command
Navy	U.S. Department of the Navy
NBDS	Niantic Bay Historic Dredged Material Disposal Site
NEPA	National Environmental Policy Act
NLDS	New London Dredged Material Disposal Site
NOAA	National Oceanic and Atmospheric Administration
OSV	Oceanographic Survey Vessel
psu	practical salinity units
QAPP	Quality Assurance Project Plan
RIM	Regional Implementation Manual
SAP	Sampling and Analysis Plan
SEIS	Supplemental Environmental Impact Statement
тос	total organic carbon
USACE	United States Army Corps of Engineers
UTM	Universal Transverse Mercator
ZSF	Zone of Siting Feasibility

This Page Intentionally Left Blank

1 INTRODUCTION

Tetra Tech has developed this report for biological and environmental studies through Naval Facilities Engineering Command (NAVFAC) Atlantic contract N62470-08-D-1008. The report will support the U.S. Environmental Protection Agency (EPA) and the U.S. Department of the Navy (Navy) in preparation of a Supplemental Environmental Impact Statement (SEIS) for the potential designation of one or more dredged material disposal sites in eastern Long Island Sound. The need for open-water dredged material disposal sites was evaluated in a 2009 report by the U.S. Army Corps of Engineers (USACE), New England District, which identified the future needs for dredging of navigational projects and navigationdependent facilities in Long Island Sound in Connecticut, New York, and in Washington County, Rhode Island (USACE 2009).

Long Island Sound, a semi-enclosed estuary, is an important economic resource for both commercial and recreational fishermen. The region is occupied by more than 100 fish species; only a portion of which are considered year-round residents. Many migrate through the area in response to seasonal variations in water temperature and access to spawning and nursery grounds in the shallow estuaries and rivers that lead into Long Island Sound. Additionally, the variety of depths, salinities, and substrate attracts diverse fish species. The Long Island Sound (LIS) Trawl Survey, conducted by the State of Connecticut Department of Energy and Environmental Protection (CT DEEP), has collected fish abundance and diversity data since 1984. An annual Biomass Index (i.e., the average weight of fish per tow) has not shown a trend up or down, indicating a stable ecosystem (LISS 2012). Individual species abundance has been subject to changes, however. Since 1985, for example, winter flounder abundance has decreased, while scup abundance has increased (LISS 2012). Although the fish assemblages exhibit interannual variation, Long Island Sound continues to support many fish populations.

Certain species of shellfish also constitute some of the key commercial and recreational fishery resources in nearshore areas of Long Island Sound. Important bivalve mollusk resources include the bay scallop, eastern oyster, hard clam, softshell clam, and surfclam. The bay scallop is primarily found in the eastern part of Long Island Sound, especially Peconic Bay. Since bay scallops survive naturally for only 18 to 22 months, recruitment failure of even one spawning event may severely impact populations. Drastic declines in abundance, particularly attributed to "brown tide" algal blooms from 1985 to 1987, have prompted efforts to restore bay scallops (Wenczel et al. 1994). This commercially important shellfish, historically generating more than \$1 million in harvesting, is slowly recovering (Tettelbach and Smith 2009). The oyster and clam industries have fluctuated over the past century, due to pollution, disease, and weather. Currently, harvests of oyster and clam are stable or increasing (LISS 2012). The American lobster population experienced a die-off in 1999 due to abiotic stressors coupled with disease (LISS 2012). Recruitment failure now hinders the rebuilding of the stock, and numbers remain low. Other important invertebrate resources in Long Island Sound include the horseshoe crab, squid, and conch (whelk). With the exception of lobster and longfin squid, commercially and recreationally important shellfish resources of Long Island Sound occur near shore.

A previous study by Tetra Tech (Tetra Tech Inc. 2013a) reviewed literature published since 2009 that was relevant to this project. Using a list of comprehensive key words, 191 documents were identified and summarized in a literature review, with 14 of particular relevance. All documents, both peer-reviewed and grey literature, were considered for support of this biological characterization in order to reflect the most current and accepted knowledge available. This literature is integrated throughout the report.

The purpose of this study is to characterize the fisheries industry, fisheries abundance, diversity and locations, and benthic species associated with areas in eastern Long Island Sound considered for openwater placement of dredged material. This was achieved through physical and biological sampling, as well as a survey of local fishermen. Benthic sampling, which characterized parameters such as infaunal diversity and grain size, was conducted on active or historic dredged material disposal sites and at nearby off-site locations. Fish trawls, which were used to identify the diversity and biomass of local fish species, covered a broader area in eastern Long Island Sound. Similarly, the fishing activity survey included all areas in eastern Long Island Sound, and not just areas around current or historic dredged material disposal sites. The data in this report will be used by the EPA in support of the preparation of an SEIS that will consider the potential designation of one or more dredged material disposal sites in the waters of eastern Long Island Sound, under Section 102 of the Marine Protection, Research and Sanctuaries Act (MPRSA), and 40 CFR 230.80 of the regulations of the EPA under Section 404 of the Clean Water Act (CWA).

1.1 PROJECT DESCRIPTION AND LOCATION

This project will support the SEIS process by providing information on the physical and biological environment of eastern Long Island Sound. This study provides a biological characterization of two active dredged material disposal sites (New London and Cornfield Shoals Dredged Material Disposal Sites [NLDS and CSDS, respectively]) and a historic site (Niantic Bay Historic Dredged Material Disposal Site [NBDS]). Historic dredged material disposal sites are identified as having a disposal event of dredged material as described and recorded by USACE, New England District. Additionally, off-site reference areas outside of the active and historic sites were sampled. The EPA previously screened 11 historic and active sites for more in-depth characterization; the areas chosen for sampling were considered a priority.

Studies referenced in the SEIS will be consistent with the provisions of Section 102 (c) of the MPRSA and 40 CFR Parts 228.5, 228.6, 230.80, Section 404 of the CWA, Section 404(b)(1) guidelines, National Environmental Policy Act (NEPA) and the Council on Environmental Quality (CEQ) regulations. Tetra Tech completed the sampling associated with the biological characterization of these sites as outlined below. The key focus sites for this study were CSDS, NLDS, and NBDS, which are shown in Figure 1 (Northeast Ocean Data Portal Working Group 2014).

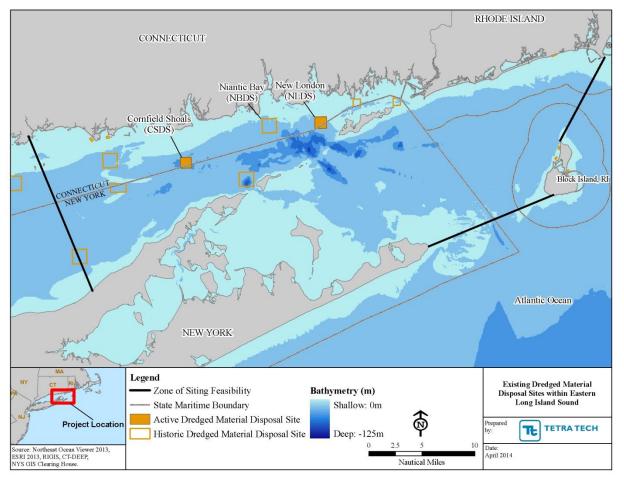


Figure 1: Existing Dredged Material Disposal Sites within Eastern Long Island Sound

The Zone of Siting Feasibility (ZSF) is a comprehensive area considered for dredged material disposal site designation, which encompasses a range of reasonable alternatives (EPA 2004). In identifying the ZSF, the EPA evaluates locations that are economical and practical relative to dredging operations. These factors are presented in further detail in the EPA's manual for site designation (EPA 1986). The EPA, with the cooperation of USACE, U.S. Fish and Wildlife Service, and the National Marine Fisheries Service, developed the ZSF for the evaluation of Long Island Sound dredged material disposal sites in 1999. The ZSF was further modified in 2002 to differentiate the western and central region from the eastern region, which was subsequently evaluated separately. Dredged material disposal sites in central and western Long Island Sound have been analyzed in an Environmental Impact Statement (EIS [EPA 2004]); an SEIS is currently under development for the eastern region. This SEIS will include in-depth information about physical properties, type of site (e.g., dispersive or non-dispersive), and past disposal activities for each historic or active dredged material disposal site that is considered for potential site designation. Some of this information is currently available through the USACE Disposal Area Monitoring System (DAMOS) (USACE 2014). For this biological characterization, parameters such as depth, sediment composition, and biological resources are summarized for each active or historic dredged material disposal site, as well as off-site reference areas.

1.2 OBJECTIVES

In support of the EPA's SEIS preparation, the objectives of this eastern Long Island Sound biological characterization included collecting benthic and fish data at priority sites: three of the eastern Long Island Sound active or historic dredged material disposal sites—Cornfield Shoals, New London, and Niantic Bay (historic)—plus additional off-site reference areas between New London and Niantic Bay. This included obtaining information around each site, as well as the identification of locations to serve as reference areas for future monitoring efforts.

The Sampling and Analysis Plan (SAP) describes data collection methods for fisheries, benthic, and toxicity testing (Tetra Tech Inc. 2013c). The benthic and toxicity testing were conducted as described further in the Quality Assurance Project Plan (QAPP) (Tetra Tech Inc. 2013b), while the fisheries data were collected by CT DEEP trawls and a fishing activity survey. Information on finfish abundances was collected by CT DEEP's annual LIS Trawl Survey, with a subset of their tows occurring near the dredged material disposal sites. Additional data on the status of fisheries resources in eastern Long Island Sound were gathered by administering a questionnaire to eastern Long Island Sound fishermen, particularly commercial lobstermen (see Appendix F). Since biological samples could not be obtained from lobsters due to their low abundance, trends in this fishery were characterized using both qualitative and quantitative data were collected for benthic organisms at each area and analyzed by Tetra Tech. In addition, existing technical reports and literature, such as those created by the U.S. Geological Society and the USACE DAMOS program (USACE 2014), were referenced for comparison. This study characterizes the biological resources which include the benthic, finfish, and shellfish resources of eastern Long Island Sound.

1.3 PREVIOUS INVESTIGATIONS

The EPA, with the support of USACE, evaluated sites in Long Island Sound as part of an EIS to designate one or more dredged material disposal sites in western and central Long Island Sound under section 102(c) of the MPRSA and in accordance with the NEPA and CEQ Regulations (40 CFR 1500 et. seq.). The purpose of the EIS was to evaluate the current sites used in western and central Long Island Sound, as well as other sites, for possible designation as dredged material disposal sites and to investigate the means for managing dredged material (EPA 2004).

In the earlier years of that study, data were collected sound-wide and included the eastern portion of Long Island Sound. The methods, work plans, and analyses of the current study all followed a similar approach as the central and western Long Island Sound EIS (as applicable), since the initial EIS sampling effort was presented and accepted by agencies, the public, and other stakeholders.

In 1999, a questionnaire (ENSR 2001b), completed by fishermen, was used by as a part of the Long Island Sound Dredged Material Disposal EIS (EPA 2004). Following a massive die-off in 1999, lobster fishing activities were significantly affected throughout the Sound, although the western portion experienced the greatest decrease in lobster abundance. The fixed-gear (i.e., pots and traps) lobster fishery was dominant in Long Island Sound in the years before the die-off, with more than 800 active commercial lobstermen in 1998. The survey implemented in 1999 received feedback about effort and trends from 20 fishermen from throughout Long Island Sound. For an updated comparison, another fishing activity survey, specific to eastern Long Island Sound, was implemented in 2013 as a part of this current study. This report describes the results of that survey.

2 METHODS

Data were collected from both field sampling and survey responses. Benthic grabs and fish trawls were achieved through two separate efforts, which are summarized in this introduction and described in more detail in the subsequent sections. The benthic survey was conducted by Tetra Tech biologists in coordination with a local fishing vessel captained by a fully-licensed commercial fisherman/lobsterman. During field sampling efforts, Tetra Tech held a Scientific Collecting Permit (#SC-13004) from the State of Connecticut to authorize the collection of benthic organisms for this study within the Connecticut waters of eastern Long Island Sound. All benthic sampling was conducted in accordance with the quality objectives and protocols specified in the SAP and the QAPP developed for this project (Tetra Tech Inc. 2013b, c). The methods, procedures, quality assurance, and quality control measures are fully described in those documents. Briefly, 45 sites were sampled for benthic parameters. These sites were identified by location (on or off of a dredged material disposal site) and by importance (priority or randomized). From these collected samples, measurements were made, including infaunal diversity and wet-weight biomass, organic carbon content, and grain size distribution.

Fisheries data for this report were collected in a separate effort. CT DEEP biologists provided the fish data as part of the ongoing LIS trawl survey. In addition to standard trawl sites, CT DEEP scientists collected trawl samples (fish and shellfish) from sites specifically selected for this study. This resulted in several trawl locations closer to dredged material disposal sites. Fish identification, abundance, wetweight biomass, and lengths were then provided to Tetra Tech biologists for analysis and inclusion in this report. For an annual comprehensive report covering all of CT DEEP's trawl locations in Long Island Sound, see Gottschall and Pacileo (2012) or CT DEEP (2014).

Sampling stations for both benthic grabs and fish trawls were targeted and identified using the vessel's onboard global positioning system (GPS) navigation system and a Trimble Juno[®] Series handheld GPS unit, as a backup. Positioning data were uploaded as GPS points using the Universal Transverse Mercator (UTM), NAD-83, Connecticut State Plane Coordinate System. Sampling locations were mapped using ESRI ArcGIS v9.3.

To supplement the biological data and gain a better understanding of fisheries resources, especially the American lobster, a fishing activity survey was also implemented by Tetra Tech biologists. This survey focused exclusively on eastern LIS, but collected information from a variety of fisheries (commercial, charter/party boat, and recreational). In either electronic or hard-copy form, the anonymous survey was distributed to fishermen through fishing associations, public forums, and word-of-mouth.

2.1 FIELD SAMPLING

Field sampling was conducted in accordance with the quality objectives and protocols specified in the QAPP developed for this project. A summary of all field samples collected is provided in Table 1.

Sites		nthic Grabs 18 July 2013	Fish Trawl (Conducted by CT DEEP LIS Trawl Survey) 10–13 June 2013		
	# of Stations	Number and Type of Samples	# of Stations	Data Collected	
NLDS	6 on-site (1 in triplicate)	8 TOC and grain size; 8 infauna; 1 toxicity	1 on-site trawl station	Species composition; length; weight	
NBDS	8 on-site (1 in triplicate)	10 TOC and grain size; 10 infauna; 1 toxicity	1 on-site trawl station	Species composition; length; weight	
CSDS	1 on-site (in triplicate)	3 TOC and grain size; 3 infauna; 1 toxicity	1 on-site trawl station	Species composition; length; weight	
Off-site	30 off-site (none in triplicate)	30 TOC and grain size; 30 infauna; 1 toxicity	3 off-site trawl stations	Species composition; length; weight	
Total	45 grab sites	51 TOC and grain size; 51 infauna; 4 toxicity	6 trawl sites	6 trawl hauls	

Table 1: Summary of Field Sampling Effort

Note: LIS = Long Island Sound; CT DEEP = Connecticut Department of Energy and Environmental Protection; TOC = total organic carbon

2.1.1 BENTHIC GRABS

Sediment samples for benthic organism identification, grain size, total organic carbon (TOC), and toxicity testing were collected using a Van Veen grab sampler (0.1 m^2) . The sampling strategy was designed to provide an overall characterization of the infaunal community and sedimentary regimes at the dredged material disposal sites. The original sampling plan included collecting individual samples from three insite stations and two nearby reference stations from each area. The site-specific stations were located within 200 meters (m) of the target site boundaries.

Benthic samples were collected aboard the F/V *Hostile Waters* by four Tetra Tech field biologists, the vessel captain, and one crewmember from 16–18 July 2013. The Van Veen grab was deployed from the capstan head and block on the F/V *Hostile Waters*. Upon retrieval, the grab was examined for acceptability in accordance with the QAPP (i.e., at least 50 percent full with no surface washout). Samples for TOC and grain size analysis were collected from the top 2 cm of sediment prior to any manipulation. Raw sediment was transferred to a pre-labeled 16 oz. polyethylene screw-top jar. When collected, toxicity samples were also stored in sealed 1-gallon plastic bags before sieving the sample. All screw-top lids were secured and sealed with electrical tape, and bags were double-bagged and secured with cable ties to prevent leakage. All unprocessed samples were stored and shipped on ice in coolers. The remaining sediments were then sieved to retain only the larger sediments and organisms.

A total of 45 separate sites were sampled, 21 of which were considered "Priority" (labeled as "P-XXX" and represented by circles in Figures 2 and 3). Priority sites were chosen by the EPA based on previous sampling coordinated by the EPA and USACE, and conducted aboard the OSV *Bold*. Therefore, the effort for the current sampling event was not evenly distributed, because some sites warranted more sampling than others. Eleven priority sites were located within one of three current or historic dredged material disposal sites (five in New London [NLDS], five in Niantic Bay [NBDS], and one in Cornfield Shoals [CSDS]; Table 2; Figure 2; Figure 3); ten priority sites were located off-site of a dredged material disposal site. Random sites (labeled as "R-XXX" and represented by triangles in Figure 2) were chosen by a geographic

information systems (GIS) specialist by generating random points within a constraining polygon around the sample area. Three priority sites, one within each dredged material disposal site, had triplicate grabs taken for benthic infauna, grain size, and TOC analysis (sites P003, P011, and P018). Samples analyzed specifically for toxicity levels were collected at four sites: one within each active or historic dredged material disposal site (sites P003, P011, and P018) and one off-site, located outside of a dredged material disposal site (site R024). These sites used in sediment toxicity tests are identified in Figures 2 and 3 by an asterisk.

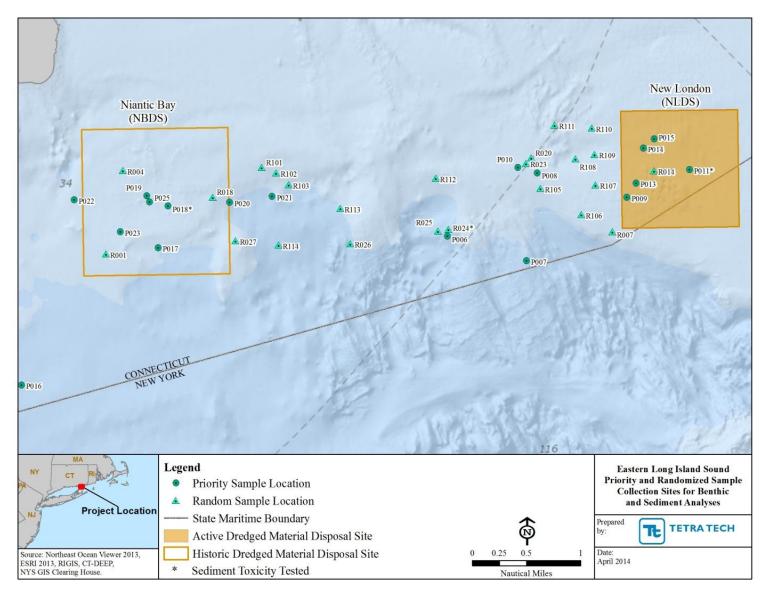


Figure 2: Eastern Long Island Sound Priority and Randomized Sample Collection Sites for Benthic and Sediment Analyses at New London Dredged Material Disposal Site (NLDS), Niantic Bay Historic Dredged Material Disposal Site (NBDS), and Off-site

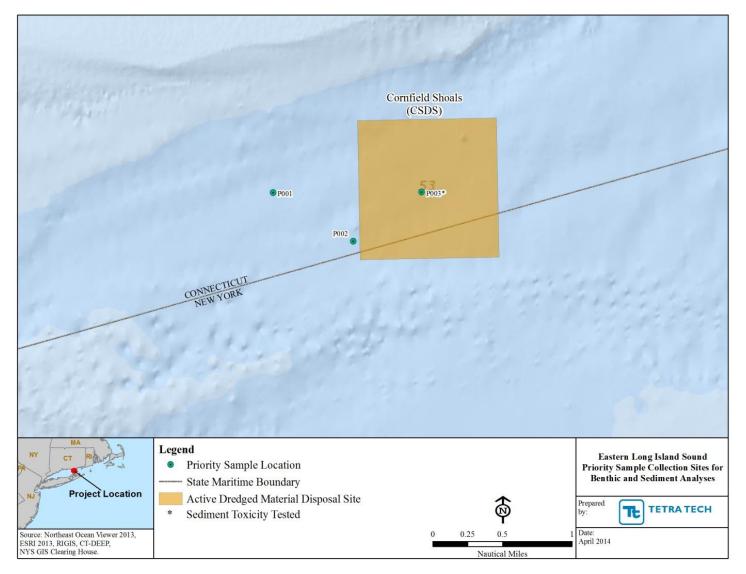


Figure 3: Eastern Long Island Sound Priority Sample Collection Sites for Benthic and Sediment Analyses at Cornfield Shoals Dredged Material Disposal Site (CSDS) and Off-site

Site ID ¹	Date	Latitude (N)	Longitude (W)	Benthic infauna	TOC and grain size	Toxicity
	New London	Dredged Ma	terial Disposal	Site (NLDS)		
P009 (NL-6)	16 July 2013	41.266	72.087	X	Х	
P011 ²	16 July 2013	41.270	72.074	Х	Х	Х
P013	16 July 2013	41.268	72.085	Х	Х	
P014	16 July 2013	41.273	72.083	Х	Х	
P015	16 July 2013	41.275	72.081	Х	Х	
R014	16 July 2013	41.270	72.081	Х	Х	
	Niantic Bay Hist	oric Dredged	Material Dispo	sal Site (NBDS))	
P017 (NT-26)	17 July 2013	41.260	72.182	Х	Х	
P018 ² (NT-25)	17 July 2013	41.266	72.180	Х	Х	Х
P019 (NT-22)	17 July 2013	41.268	72.185	Х	Х	
P023	17 July 2013	41.262	72.190	Х	Х	
P025	17 July 2013	41.267	72.184	Х	Х	
R001	17 July 2013	41.259	72.193	Х	Х	
R004	17 July 2013	41.272	72.190	Х	Х	
R018	17 July 2013	41.267	72.171	Х	Х	
	Cornfield Shoa	ls Dredged N	laterial Dispos	al Site (CSDS)		
P003 ² (CSDS-16)	17 July 2013	41.211	72.359	Х	Х	Х
		Off	site	_		
P001 (CSDS29-REF2)	17 July 2013	41.211	72.383	Х	Х	
P002 (CSDS23-REF4)	17 July 2013	41.205	72.370	Х	Х	
P006 (NL-8)	18 July 2013	41.261	72.123	Х	Х	
P007 (NL-12)	18 July 2013	41.256	72.107	Х	Х	
P008 (NL-3)	16 July 2013	41.270	72.105	Х	Х	
P010 (NL-2)	16 July 2013	41.271	72.109	Х	Х	
P016 (NT-19)	17 July 2013	41.239	72.211	Х	Х	
P020 (NT-37)	17 July 2013	41.266	72.168	Х	Х	
P021 (NT-38)	18 July 2013	41.267	72.159	Х	Х	
P022	17 July 2013	41.267	72.200	Х	Х	
R007	18 July 2013	41.261	72.090	Х	Х	
R020	16 July 2013	41.272	72.106	Х	Х	
R023	16 July 2013	41.271	72.107	Х	Х	
R024	18 July 2013	41.262	72.123	Х	Х	Х
R025	18 July 2013	41.261	72.125	Х	Х	
R026	17 July 2013	41.260	72.143	Х	Х	
R027	17 July 2013	41.260	72.167	Х	Х	
R101	17 July 2013	41.272	72.161	Х	Х	

Table 2: Coordinates of Sampling Locations and Samples Collected

Site ID ¹	Date	Latitude (N)	Longitude (W)	Benthic infauna	TOC and grain size	Toxicity
					0	
R102	17 July 2013	41.271	72.158	Х	Х	
R103	17 July 2013	41.269	72.156	Х	Х	
R105	18 July 2013	41.268	72.104	Х	Х	
R106	18 July 2013	41.263	72.096	Х	Х	
R107	18 July 2013	41.268	72.093	Х	Х	
R108	18 July 2013	41.272	72.097	Х	Х	
R109	18 July 2013	41.273	72.093	Х	Х	
R110	18 July 2013	41.277	72.094	Х	Х	
R111	18 July 2013	41.277	72.101	Х	Х	
R112	18 July 2013	41.269	72.126	Х	Х	
R113	18 July 2013	41.265	72.145	Х	Х	
R114	18 July 2013	41.260	72.158	Х	Х	

¹EPA IDs from previous surveys in parentheses; ²Triplicate samples collected at sampling location.

Sieving was accomplished by placing sediment in the bottom of a sieve bucket with a 500 micron-mesh bottom; the bucket was then partially submerged in a wash tub. The bucket was agitated in such a manner that the finest sediment rinsed away through the sieve, leaving behind the benthic fauna, and larger materials (i.e., gravel, organisms, etc.) as the filtered sample. Once the entire contents of the Van Veen were processed in this manner, the filtered sample was transferred to a cloth bag and preserved with 10 percent buffered formalin in a 5-gallon bucket. In addition to the standard exterior label, a waterproof paper interior label was included inside each sample bag with the same information as the exterior label. The sieved, preserved samples were labeled and stored at ambient temperature prior to shipment.

TOC and grain size samples were shipped to Tetra Tech's geotechnical lab in Orlando, Florida. Toxicity samples were shipped to Tetra Tech's toxicology lab in Owings Mills, Maryland. Sieved samples for benthic infaunal identification were shipped to EcoAnalysts in Moscow, Idaho.

2.1.2 WATER QUALITY

Water quality data were collected in conjunction with the benthic sampling. *In-situ* water quality parameters were measured near the bottom, middle, and top of the water column from representative areas where sediment grabs were obtained, using a YSI 6920 sonde and water quality meter equilibrated at each site. These data provide a characterization of the ambient water quality conditions of the water column to which benthic organisms are exposed. Within each area (NLDS, NBDS, CSDS, and off-site), measured parameters included temperature, specific conductance, dissolved oxygen (DO), pH, and turbidity. The cable for the sonde was marked at 1-m depth intervals and was lowered to the appropriate measurement depth, where readings were recorded after DO readings stabilized.

2.1.3 FISH TRAWLS

Fish were collected as part of the CT DEEP Long Island Sound Trawl Survey. This survey encompasses an area from Pawcatuck to Greenwich, Connecticut and includes waters from 5 to 46 m deep in both Connecticut and New York state waters. Typically, Long Island Sound is surveyed in the spring, from April

through June, and during the fall, from September through October. The sites for this project were surveyed during June 2013 in Connecticut waters: four on 10 June, one on 12 June, and one on 13 June (Table 3). This somewhat temporal spacing was a consequence of schedule; however, since all trawls were conducted within three days, it is not expected that fish assemblages would change drastically within this time frame. Trawl stations were designated from the randomly selected stations to best represent similar habitat conditions for that general site area. All sampling protocols and methods are described in detail within the most recent LIS trawl survey report (Gottschall and Pacileo 2012). A trawl net was towed through one station at each of the three active or historic dredged material disposal sites (tows AC2013001, AC2013003, and AC2013006 at NLDS, NBDS, and CSDS, respectively), plus an additional three tows off-site (tows AC2013002, AC2013004, and AC2013005) for a total of six tows (Table 3; Figure 4). Since fishes are highly mobile, tows in close proximity were considered representative of conditions on dredged material disposal sites; therefore, the on-site tows are not directly transecting sites. The selection was performed in consultation with the resource scientists of CT DEEP to ensure proper representation of the stations selected for this study aligned with their preselected locations. Actual trawl locations may have been adjusted in the field, taking weather, tides, and fixed fishing gear into consideration; however, CT DEEP crews strived to remain as close as possible to pre-determined trawl coordinates. For each trawl, CT DEEP employed the following naming convention: "AC" denotes a trawl specific to this project, followed by the year and the sequence number. For graphical simplicity, only the last digit of the site ID was used in Figure 4 (e.g., AC2013001 is represented as 1). Additional trawls conducted by CT DEEP as part of their annual LIS trawl survey (i.e., not specifically for this study) follow a different naming convention, with "SP" denoting spring and "FA" denoting fall. These are followed by the year and trawl sequence number. Station information for the entire trawl survey, including location, tow duration, water quality, and haul data, can be found in Gottschall and Pacileo (2012).

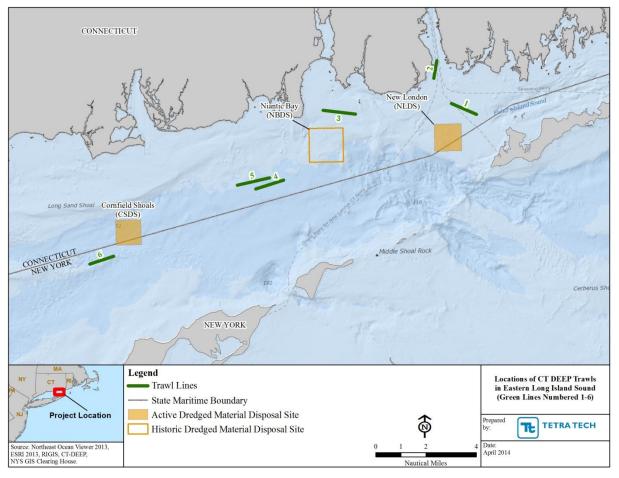


Figure 4: Locations of Connecticut Department of Energy and Environmental Protection (CT DEEP) Trawls in Eastern Long Island Sound (Green Lines Numbered 1–6)

The survey's otter trawl was towed from the 23.3 m (76.5 ft.) R/V *Connecticut* for 30 minutes at approximately 3.5 knots, depending on the tide. The trawl net was a Wilcox 14.0 m (46.0 ft) high-rise net (two seam) with steel "V" type doors. Each tow was approximately 2 miles in length. Upon completion of the tow, the catch was funneled through the sorting table and categorized by species. Catch data were obtained for each of the six tows. Additional gear specifications and methods are described in the LIS trawl survey report (Gottschall and Pacileo 2012).

Consistent with previous LIS studies at these sites and CT DEEP reports, winter flounder (*Pseudopleuronectes americanus*), scup (*Stenotomus chrysops*), bluefish (*Pomatomus saltatrix*), and striped bass (*Morone saxatilis*) were chosen as the primary species of interest (ENSR 2000). The windowpane flounder (*Scophthalmus aquosus*) and striped searobin (*Prionotus evolans*) were considered secondary species of interest. Finfish, lobsters, and squid were counted and weighed in aggregate (to the nearest 0.1 kg) by species with a precision marine-grade scale (30 kg, +/- 10 g capacity).

Tow ID	Date	Time (start)	Duration (min)	Latitude (N)	Longitude (W)	Location (NLDS, NBDS, CSDS, off- site)
AC2013001	10 June 2013	0854	30	411755	720435	NLDS
AC2013003	10 June 2013	1258	30	411711	720904	NBDS
AC2013006	13 June 2013	0806	30	411141	722377	CSDS
AC2013002	10 June 2013	1048	30	411965	720510	Off-site
AC2013004	10 June 2013	1437	30	411470	721274	Off-site
AC2013005	12 June 2013	0731	30	411480	721372	Off-site

 Table 3: Connecticut Department of Energy and Environmental Protection (CT DEEP) Trawl Times and Locations for Fish Surveys

2.2 LABORATORY ANALYSIS

Benthic sampling was conducted in accordance with the quality objectives and protocols specified in the SAP and QAPP developed for this project that was approved by the EPA. The laboratory protocols were followed under the guidance of the Regional Implementation Manual (RIM), developed by the EPA and USACE (2004). Taxonomic identification was conducted by experts that specialize in the regional benthic infauna. The analysis of each sample and methods used is summarized in the following sections.

2.2.1 SEDIMENT TOXICITY

To measure the toxicity of sediments, a 10-day toxicity test was completed using unfiltered sediment collected from four benthic grabs in eastern Long Island Sound from each dredged material disposal site and off-site (Sites P011, P018, P003, and R024; Figure 2 and 3). Sediment samples were collected using a Van Veen grab, then transferred to sealed plastic bags and stored on ice before and during shipment. The Tetra Tech Ecological Testing Facility in Owings Mills, Maryland received the sediment samples on 22 July 2013. The complete methods used in the toxicity test are included in Appendix C. In summary, sediment samples were homogenized and inspected for fauna (if found, organisms were removed). Two test organisms, Leptocheirus plumulosus and Americamysis bahia, were then exposed to the sediment for a period of 10 days, after which final survival was measured. L. plumulosus, measuring 2-4 mm, were put into containers with artificial seawater of 19.4 practical salinity units (psu) at densities of 20 organisms per container, with five replicates. A. bahia, 1–5 days of age, were stocked in 25–30 psu salinity at ten organisms per container, with five replicates. Additional control samples were also maintained with identical conditions (e.g., species density, salinity, replicates), to determine organism quality and verify that the laboratory methods did not affect survival. Control sediment was from the Boardman River in Michigan. Survival of 90 percent or greater within the control sample was required to validate the acceptability of the test. This control test verified that organisms were of good health and could survive in laboratory conditions. Therefore, any significant decrease in survival in test (i.e., Long Island Sound) sediment, either from dredged material disposal sites or off-site reference areas, could be attributed to sediment toxicity rather than confounding factors.

2.2.2 TOTAL ORGANIC CARBON (TOC) AND GRAIN SIZE

Grain size and TOC samples were analyzed by Tetra Tech's Ardaman Laboratory in Orlando, Florida. Grain size samples were analyzed according to method D422, "Particle-Size Analysis of Soils," using sieve analysis (Tetra Tech 2013c). These methods require sifting the sediment samples through progressively smaller, nested sieves. Results were determined by dividing the post-drying weight of material retained by each sieve by the total post-drying weight of the sample. Size ranges for each category were as follows: gravel was retained on the No. 4 sieve (0.185"); coarse sand passed through the No. 4 sieve and was retained in the No. 10 sieve (0.078"); medium sand passed through the No. 10 sieve and was retained in the No. 40 sieve (0.0164"); fine sand passed through the No. 40 sieve and was retained in the No. 200 sieve (0.0029"); silt and clay passed through the No. 200 sieve. Sediment samples were analyzed for TOC in accordance with the SAP developed for this project (Tetra Tech 2013c) and as reported in Appendix B. TOC results were reported as percent organic content. Water content was also measured and reported as percent water content.

2.2.3 BENTHIC INFAUNA

Benthic macroinvertebrate samples were identified by EcoAnalysts in Moscow, Idaho. Individual organisms were picked from each sample, sorted into major taxonomic categories, then further identified by lowest practical taxonomic unit and enumerated. The picking, sorting, and taxonomic identification processes were subject to quality control checks by laboratory staff. Planktonic fauna and colonial epifauna were not included in the raw data files. Data were recorded electronically and taxa were coded with the relevant National Oceanographic Data Center code. Calculations based on species (e.g., diversity, evenness, and number of species) included only those taxa identified to species level.

During previous studies conducted at dredged material disposal sites in Long Island Sound, in support of the site designation EIS (ENSR 2002), a new species in the polychaete worm family Cirratulidae were discovered (Battelle 2003). To ensure that the current taxonomic identification of these worms is consistent with those made for previous studies, the most up-to-date taxonomic references were used for this region. Additional technical documents used for reference and background information were obtained from the DAMOS website (USACE 2014).

2.3 DATA ANALYSIS

Characteristics and patterns within the benthic data were investigated using several different parameters. Species richness (R) is the overall number of species. To measure diversity, the Shannon Diversity Index (H') was calculated as:

$$H' = -\sum_{i=1}^{R} p_i \ln p_i$$

where p_i is the proportion of an individual species relative to the total species abundance. Greater values of H' correspond to higher diversity. This diversity index can then be used to look at relative abundances of different species, or evenness. Pielou's evenness index,

$$J' = \frac{H'}{H'_{max}}$$

estimates the evenness of different species. H'_{max} is the maximum value of H', equivalent to the natural log of R (where R = total number of species). J' ranges from 0 to 1, with low values representing greater variation between species and high values indicative of more even abundances. A community with similar abundances of various species is considered more even and will have a J' value approaching 1. Statistical comparisons of benthic and finfish data among sites were tested using a two-tailed t-test. All statistical tests used a significance level of $\alpha = 0.05$.

2.4 FISHING ACTIVITY SURVEY

The fishing survey included 22 questions that focused on topics that were similar to the information collected by the 2001 survey (ENSR 2001b). The goal was to generate the greatest response rate of fishermen while ensuring their anonymity. Questions focused on fishing activity by area and season; information was also gathered on trends in catches, such as size, health, and bycatch, observed by fishermen (full survey in Appendix F). The map included in the survey was developed by the EPA and a Tetra Tech fisheries biologist. Within the ZSF, 13 areas (labeled A-M) were delineated based on state boundaries and geographic features, with a conscious effort to avoid overlap with regulatory boundaries (e.g., state or federal management areas). These smaller areas provided a finer spatial scale on which to identify fishing patterns. This survey was offered in several formats, namely website link, phone, social media, and hard copy, in order to generate the greatest response rate. Names, vessels, and contact information were not required; however, individuals had the opportunity to voluntarily identify themselves. The 2001 questionnaire was implemented as a phone survey, relying almost exclusively on unsolicited "cold" calls. The current study used an online survey tool (FluidSurveys), so that a link could be distributed via email or social media (e.g., fishing message boards, electronic newsletters, and websites). A hard copy of the survey, which included the same guestions, was also offered by mail to be returned to a Tetra Tech fisheries biologist. The same fisheries biologist's direct line was also available to assist respondents with completing the survey over the phone or to provide additional information. Respondents could choose the most convenient of the response options, leading to an increased response rate. The survey was available for 37 days, from 25 November to 31 December 2013.

Before and during the survey period, fishermen were contacted to encourage participation. Networking efforts included a Tetra Tech biologist attending the executive board meeting of the Southern New England Fishing and Lobster Association in Stonington, Connecticut. The input of commercial, charter, and recreational fishermen was solicited primarily through fishing associations. Multiple associations distributed survey information, including the electronic link and hard copy surveys (Table 4). Often, the cooperation of one organization or individual led to the inclusion of more groups, so the effort to reach out to the fishing community continued throughout the open survey period. Survey data were then analyzed to better understand areas of both biological and socioeconomic importance within eastern Long Island Sound. Initially, any responses that were irrelevant or that contained insufficient information were omitted (e.g., surveys that were not completed beyond the first five questions were excluded).

For analysis, data were organized by relation to the fishing industry (commercial, charter/party boat, and recreational). Commercial fishing data were then further divided by target species (lobster, mollusk, and finfish) due to the substantial differences in gear, location, and seasonality. The charter/party boat industry and the recreational fishery both identified rod and reel as the primary gear type and almost exclusively targeted finfish; therefore, these two categories were not split further. Overall averages (i.e., for all survey respondents regardless of fishery type) were determined using a weighted mean, to account for varying sample sizes of each fishery category.

Individual contacted	Organization	First contacted	Method of contact	Fishermen reached/result
President/lobsterman	Rhode Island Lobstermen's Association	08 November	Emailed; called	75 members; sent 25 hard copies and link
Liaison	Long Island Commercial Fishing Association	08 November	Facebook message; called	Sent 50 hard copies and 40 postcards; link posted on Facebook page; information shared to multiple contacts in industry and regional FMCs
President/lobsterman	Connecticut Commercial Lobstermen's Association	13 November	Called	No response
President/lobsterman	Southern New England Fisherman and Lobsterman Association	13 November	Called	25 members; attended executive board meeting (~12 fishermen); left 25 hard-copy surveys and 10 postcards
Liaison	Commercial Fisheries Center of Rhode Island	20 November	Emailed	Forwarded info to Executive Committee and Commercial Fisheries Center of Rhode Island
President/charter boat captain	Rhode Island Party and Charter Boat Association	20 November	Emailed; called	70 members; sent 20 hard copies and link; meeting held 17 December
Two members/charter boat captains	Mid-Atlantic Fisheries Management Council	26 November	Emailed both individuals	No response from either individual
President/charter boat captain	Connecticut Charter and Party Boat Association	02 December	Called	35 members; sent 20 hard copies and link; meeting held 12 December
President/fisherman	Rhode Island Saltwater Anglers Association	02 December	Called	Sent link electronically
Members	Long Island Fishing Charters	04 December	Emailed individuals	Link sent electronically to 20 individuals
Finfish and crustacean biologist	New York State Department of Environmental Conservation	10 December	Emailed; called	Distributed link electronically to about 13,000 contacts
President	Rhode Island Fishermen's Alliance	11 December	Called	200 members (~75% fishermen); link distributed in weekly newsletter
Liaison	Viking Fleet charter/party boat fleet (NY)	11 December	Emailed	Distributed link electronically
NEFMC/captain	Frances Fleet charter/party boat fleet (RI)	11 December	Emailed	No response
Elected board member	East Hampton Fisheries Committee	11 December	Emailed	Circulated link to Fisheries Committee and local fishermen
President/fisherman	Rhode Island Commercial Fishermen's Association	11 December	Called	Missed calls; no response to last two calls

Table 4: Network Efforts and 2013 Fishing Activity Survey Participation

17

Individual contacted	Organization	First contacted	Method of contact	Fishermen reached/result
Member/captain	North Fork Captains	11 December	Called	20 members; sent link electronically
	Association; Montauk			
	Boatman's Association			
Public fishery forum	Noreast.com	11 December	Posted survey online	Over 1,000 views; fishermen of all types
Member/captain	Anonymous	06 December	Called in	Completed online survey
Member/captain	Anonymous	09 December	Called in	Completed online survey
Captain	Anonymous	11 December	Called in	Completed online survey
Commercial charter	Anonymous	13 December	Called in	Completed online survey
fisherman				
Lobsterman	Anonymous	18 December	Called in	Completed hard-copy survey
Fisherman	Anonymous	19 December	Called in	Completed online survey
Fisherman	Anonymous	23 December	Called in	Completed online survey

3 RESULTS

Results from the sampling effort in eastern Long Island Sound are summarized below. For the Benthic sampling effort, sediment descriptions are provided in Table 5. Grain size, water quality, and benthic infauna abundance are summarized in Tables 6, 7, and 8, respectively. Datasheets used in the field are included in Appendix A. Detailed results of TOC, grain size, toxicity, and infauna diversity are further presented by area. For information pertaining to dredged material disposal activities and monitoring programs, refer to USACE's DAMOS website (USACE 2014). Results of the fish trawl survey, executed by CT DEEP, are also included within this section. Additional detail and historic data from the annual LIS trawl survey are kept up to date by CT DEEP (2014). Finally, the fishing activity survey results are included at the end of this section.

Site ID	Date	Depth (ft.)	Description						
	New London Dredged Material Disposal Site (NLDS)								
P009	16 July 2013	61.8	Light brown to black clayey sand with trace shell						
P011a	16 July 2013	59.1	Light brown to brown silty sand with shell						
P011b	16 July 2013	59.1	Light brown to brown silty sand with shell and trace roots						
P011c	16 July 2013	59.1	Light brown to brown sand with silt, shell and trace roots						
P013	16 July 2013	66.3	Brown to black clay with sand and trace roots and shell						
P014	16 July 2013	61.4	Gray sandy clay with trace shell and roots						
P015	16 July 2013	59.3	Brown to dark gray clayey sand with shell						
R014	16 July 2013	61.9	Gray to light brown clayey sand with shell						
		Niantic Bay	y Historic Dredged Material Disposal Site (NBDS)						
P017	17 July 2013	123.0	Orangey-brown clayey sand with shell and trace roots						
P018a	17 July 2013	109.0	Light brown to brown sand with gravel and shell						
P018b	17 July 2013	109.0	Light brown to brown sand with shell						
P018c	17 July 2013	105.0	Light brown to brown sand with shell						
P019	17 July 2013	92.0	Light brown to brown sand with silt and shell						
P023	17 July 2013	88.7	Light brown to brown sand with gravel and shell						
P025	17 July 2013	92.1	Light brown to brown sand with shell and trace roots						
R001	17 July 2013	100.0	Light brown to brown sand with shell						
R004	17 July 2013	84.0	Light brown to brown sand with shell and trace roots						
R018	17 July 2013	54.2	Light brown to brown sand with gravel and shell						
		Cornfield	l Shoals Dredged Material Disposal Site (CSDS)						
P003a	17 July 2013	178.0	Light brown to brown sand with gravel, shell and trace roots						
P003b	17 July 2013	158.0	Light brown to brown sand with silt and gravel and shell and trace roots						
P003c	17 July 2013	157.0	Light brown to brown sand with silt, shell and trace roots						
			Off-site						
P001	17 July 2013	178.0	Light brown to brown sand with shell and roots						
P002	17 July 2013	171.0	Light brown to brown sand with silt and shell						
P006	18 July 2013	143.0	Light brown to brown sand with silt, shell and trace roots						
P007	18 July 2013	115.0	Light brown to brown gravel (shell) with sand; live shells removed from sand						
P008	16 July 2013	65.7	Dark gray to light brown clayey sand with shell and trace roots						
P010	16 July 2013	66.8	Light brown to brown sand with silt, shell and trace roots						
P016	17 July 2013	132.0	Light brown to brown sand with gravel and shell						
P020	17 July 2013	95.1	Light brown to gray clayey sand with shell						

Table 5: Site Location and Sediment Description for Benthic Sampling in Eastern Long Island Sound

Site ID	Date	Depth (ft.)	Description
P021	18 July 2013	105.0	Light brown to brown clayey sand with shell and trace roots
P022	17 July 2013	87.9	Light brown to brown sand with silt and shell
R007	18 July 2013	78.9	Light brown to dark gray clayey sand with shell
R020	16 July 2013	71.6	Light brown to brown sand with silt, shell and trace roots
R023	16 July 2013	69.3	Light brown to brown sand with silt, shell and trace roots
R024	18 July 2013	119.0	Light brown to brown clayey sand with gravel and shell
R025	18 July 2013	144.0	Orangeish-brown to dark gray clayey sand with shell and trace roots
R026	17 July 2013	140.0	Light brown to dark gray sand with silt and gravel and shell
R027	17 July 2013	93.5	Light brown to brown sand with clay and gravel and shell
R101	17 July 2013	69.1	Light brown to brown sand with clay, shell and trace roots
R102	17 July 2013	81.1	Brown sand with trace shell
R103	17 July 2013	112.0	Light brown to brown gravel with clay and sand and trace roots
R105	18 July 2013	69.0	Light brown to brown clayey sand with shell
R106	18 July 2013	67.3	Light brown to brown sand with silt and shell
R107	18 July 2013	59.6	Light brown to brown clayey sand with gravel and shell and trace roots
R108	18 July 2013	89.5	Light brown to brown clayey sand with shell
R109	18 July 2013	80.3	Brown clayey sand with shell
R110	18 July 2013	66.3	Brown clayey sand with shell
R111	18 July 2013	69.4	Brown clayey sand with shell
R112	18 July 2013	69.6	Light brown to brown sand with shell
R113	18 July 2013	101.0	Brown sand with silt and shell
R114	18 July 2013	161.0	Light brown to brown sand with clay and shell

Individual grab characteristics are described in the following sections, but Table 6 and Figure 5 summarize average conditions for all sites by area. Medium sand dominated the grabs from NBDS, CSDS, and off-site. NLDS, however, was dominated by silt and clay. Complete grain size and organic content data are included in Appendix B.

			Particle-size Distribution (from dry mass)							
	Organic	Water	Sample	Sample Sand-size (%)						
Grab	Content	Content	Dry Mass	Gravel-				Clay-size		
Location	(%)	(%)	(grams)	size (%)	Coarse	Medium	Fine	(%)		
NLDS	2.7	59.4	263.9	9.1	5.5	22.2	29.2	34.1		
NBDS	0.6	23.5	421.5	18.5	14.6	48.8	13.4	4.7		
CSDS	0.6	25.0	354.7	23.7	9.2	46.3	15.8	5.0		
Off-site	1.0	32.5	336.1	16.4	8.7	37.3	27.0	10.6		

Table 6: Average Grain Size and Organic Content of Sediment Samples Collected within Eastern Long Island Sound

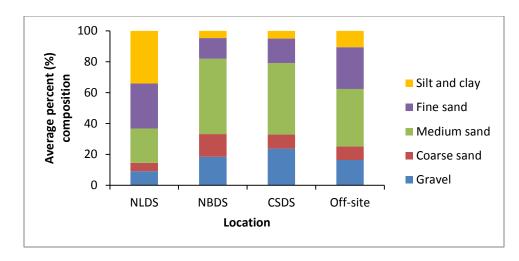


Figure 5: Average Percentage of Sediment Type for Each Location

Water quality parameters were measured at the surface, middle, and bottom of the water column within each dredged material disposal site, as well as two off-site stations (Table 7). These values represent the expected conditions of eastern Long Island Sound: mild stratification with the bottom layer containing the denser (i.e., colder and saltier) water. Since the water quality meter used was not capable of taking actual salinity readings, conductivity was used as a surrogate to represent ionic concentrations. Like salinity, greater values of conductivity indicate greater ion concentration. Conductivity measured in the field was used to calculate salinity, reported in Table 7. Temperature decreased with depth, while salinity and DO increased with depth. Based on these data, a slight pycnocline (i.e., density gradient) existed during sampling efforts. Mixing was expected between the top and bottom layers, though, which ensures adequate levels of nutrients and oxygen throughout the water column. Since most marine life requires DO concentrations of at least 5 mg/L, the entire water column appears to provide sufficient oxygen for organisms. During benthic sampling, the study area did not have any oxygen issues (e.g., hypoxia or anoxia). Temperature and salinity data collected by CT DEEP during fish trawls for this study show similar results (Section 3.5.1).

			Surface			Middle				Bottom				
Site	Date	Depth (ft)	Temp (°C)	Salinity (psu)	DO (mg/L)	рН	Temp (°C)	Salinity (psu)	DO (mg/L)	рН	Temp (°C)	Salinity (psu)	DO (mg/L)	рН
NLDS	19 July 2013	59.0	19.50	28.1	6.85	8.21	19.56	29.5	6.72	8.19	19.37	28.9	6.66	8.19
NBDS	19 July 2013	70.0	19.45	28.2	7.19	8.18	18.58	29.7	6.91	8.17	18.51	30.0	6.84	8.16
CSDS	19 July 2013	149.0	19.82	29.8	7.94	8.19	19.25	29.7	7.40	8.16	19.14	28.8	7.29	8.17
Off-site A	19 July 2013	81.0	19.42	28.9	7.09	8.22	18.42	30.9	6.74	8.18	17.37	32.2	6.51	8.14
Off-site B	19 July 2013	71.0	19.58	29.0	6.99	8.22	19.20	29.9	6.75	8.19	17.50	31.4	6.52	8.15

Table 7: Water Column Measurements (Surface, Middle, and Bottom) for All Sites, Collected with a YSI 6920 during Benthic Sampling, July 2013

The benthic samples collected during this survey exhibited a high degree of taxonomic diversity (see Appendix D for full results). Sampling intensity varied by site, with eight sites at NLDS, ten at NBDS, three at CSDS, and 30 off-site. The total number of individuals, biomass, and species richness is affected by numbers of sample sites; all other parameters are standardized for comparison. At all sites, the top three phyla with the highest number of individuals were Annelida, Arthropoda, and Mollusca, with the remaining seven phyla representing less than 3 percent of the infaunal composition at any given site (Table 8). In NLDS, NBDS, and CSDS, arthropods were the most numerically dominant taxa, making up between 35 and 45 percent of all individuals. Off-site grabs were dominated by annelids, which made up almost 38 percent of all individuals. The average density of individuals per grab (i.e., total individuals/number of samples) were similar among all four sites, ranging from the lowest of 528 (NBDS) to 693 (CSDS), with NLDS and off-site densities intermediate at 615 and 625, respectively.

Phylum		NLDS		NBDS		CSDS	Off-site		
	Total	% of individuals	Total	% of individuals	Total	% of individuals	Total	% of individuals	
Annelida	2,039	41.43	1,413	26.77	618	29.70	7,120	37.95	
Arthropoda	2,215	45.01	1,980	37.51	745	35.80	6,125	32.65	
Mollusca	611	12.42	1,735	32.87	656	31.52	5,153	27.47	
Nemertea	33	0.67	54	1.02	55	2.64	160	0.85	
Echinodermata	22	0.45	90	1.71	3	0.14	143	0.76	
Cnidaria	0	0.00	2	0.04	3	0.14	46	0.25	
Sipuncula	1	0.02	3	0.06	0	0.00	10	0.05	
Platyhelminthes	0	0.00	0	0.00	1	0.05	3	0.02	
Phoronida	0	0.00	0	0.00	0	0.00	1	0.01	
Chordata	0	0.00	1	0.02	0	0.00	0	0.00	
Average density (individuals per grab)		615	528		693		625		
Species Richness		208	196		115		282		
Species Diversity (H')		3.297	2.934		2.851		2.753		
Pielou's Evenness (J')	0.754		0.714		0.675		0.696		
Number of samples (n)		8		10	3		30		

Table 8: Abundance of Individuals by Phyla for All Sites

In addition to abundance, wet-weight biomass (in mg), was determined for major taxa represented in each benthic grab. These results are summarized in Table 9 as weight and percent of total. For all sites, mollusks contributed the most biomass, from about 82 percent in off-site grabs to 96 percent at CSDS. Crustaceans and polychaetes had the next highest biomass by taxa; however, they made up a relatively low proportion of the samples compared to phylum Mollusca. Within-site comparisons of diversity, as well as species-specific abundances, are provided in the following sections.

	NLDS		NBDS		CSDS		Off-site	
Таха	Weight (mg)	% of total						
Mollusca	90,464	84.55	102,293	92.29	24,993	96.09	160,570	82.09
Crustacea	12,101	11.31	4,516	4.07	326	1.25	20,592	10.53
Polychaeta	4,323	4.04	2,247	2.03	643	2.47	12,222	6.25
Echinodermata	35	0.03	1,514	1.37	12	0.05	1,986	1.02
Cnidaria	0	0.00	225	0.20	110	0.42	701	0.36
Other taxa ¹	66	0.06	46	0.04	35	0.13	202	0.10
Total	106,989		110,841		26,010		195,602	

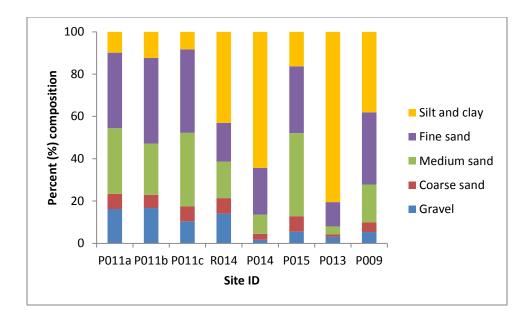
Table 9: Biomass of All Samples Collected Within Each Dredged Material Disposal Site and Off-site

¹Other taxa include nemerteans, sipunculids, echiurids, ascidians, urochordates, lophophorates, and Platyhelminthes.

3.1 New London Dredged Material Disposal Site (NLDS)

3.1.1 STATION CHARACTERISTICS

Within the New London Dredged Material Disposal Site (NLDS), six sites were targeted for benthic grabs, with one site sampled in triplicate, for a total of eight benthic samples: P011 (triplicate samples), R014, P014, P015, P013, and P009. All eight samples were analyzed for benthic infauna, TOC, and grain size. P011 sediment was also used in a 10-day toxicity test. The DAMOS program has additional data on NLDS characteristics from previous monitoring studies (USACE 2014).


3.1.2 BENTHIC HABITAT AND SEDIMENT TYPES

In addition to descriptive observations (Table 5), each benthic grab at NLDS was characterized by particle size. Table 10 includes site-by-site organic content (or TOC), water content, sample mass, and particle size distributions for all benthic grabs within NLDS. These are represented graphically in Figure 6.

			Particle-size Distribution (from dry mass)						
	Organic	Water	Sample			Sand-size (%)		Silt- &	
Grab	Content	Content	Dry Mass	Gravel-	Coarse	Medium	Fine	Clay-size	
Sample	(%)	(%)	(grams)	size (%)	Course	culu	Time	(%)	
P009	3.8	79.6	154.83	5.3	4.6	17.9	34.1	38.1	
P011a	1.5	30.8	406.15	16.2	7.2	31	35.7	9.9	
P011b	1.5	32.9	321.09	16.7	6.2	24.3	40.4	12.4	
P011c	1.2	28.9	383.02	10.4	7.0	34.8	39.5	8.3	
P013	6.2	124.9	116.36	3.1	1.1	3.8	11.5	80.5	
P014	3.7	85.1	165.48	1.7	2.8	9.1	22.1	64.3	
P015	1.2	33.0	323.58	5.5	7.3	39.3	31.6	16.3	
R014	1.9	60.1	240.34	14.0	7.4	17.2	18.3	43.1	
Average	2.7	59.4	263.9	9.1	5.5	22.2	29.2	34.1	

 Table 10: Grain Size and Organic Content of Sediment Samples Collected within

 New London Dredged Material Disposal Site (NLDS)

Figure 6: Percentage of Sediment Type for Each Benthic Grab within New London Dredged Material Disposal Site (NLDS)

Of the eight benthic grabs analyzed, five were dominated by sand-size particles, while three were dominated by silt- and clay-size particles (Figure 6). Where sand-size particles were dominant, medium and fine sand, not coarse sand, made up most of the sample. On average, NLDS grabs consisted of approximately 57 percent sand, 34 percent silt and clay, and 9 percent gravel. Organic content ranged from 1.2 to 6.2 percent, averaging 2.6 percent.

3.1.3 SEDIMENT TOXICITY

A toxicity test was conducted using sediment collected at site P011 (See Appendix C). As required, the test was validated by a greater than 90 percent survival of organisms in control sediment. *L. plumulosus* experienced a mean survival of 96 percent. Mean survival of *A. bahia* was 82 percent.

3.1.4 BENTHIC INFAUNA

The results of benthic infauna analysis are summarized in Table 11. The number of individuals collected in one benthic grab with NLDS ranged from 259 at site R014 to 875 at site P011b, with an average of 617 individuals. Two sites, P014 and R014, both had 60 species identified, which were the fewest. The greatest species richness was 100, which occurred at both site P011c and P015. Species richness, denoted as R, was 208 for the NLDS. Diversity indices ranged from 2.840 to 3.761. The most diverse sample was P011c; the least diverse was P014. The average Shannon diversity index was 3.297. The three most abundant species were two amphipods, *Ampelisca* sp. and *Ampelisca vadorum*, and the polychaete *Ampharete cf. lindstroemi*.

Sample ID	Total individuals	Species richness (R)	Diversity index (H')	Pielou's evenness (J')
P009	733	92	3.089	0.683
P011a	511	65	3.147	0.754
P011b	875	94	3.474	0.765
P011c	752	100	3.761	0.817
P013	634	73	3.044	0.709
P014	396	60	2.840	0.694
P015	772	100	3.801	0.825
R014	259	60	3.218	0.786
Average	617	208 ¹	3.297	0.754

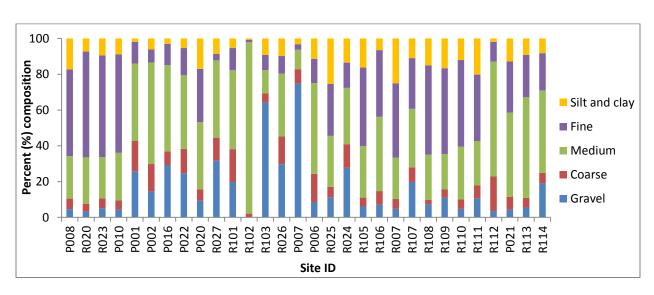
Table 11: Total Individuals, Species, and Diversity Indices for Benthic Samples Collected within New London Dredged Material Disposal Site (NLDS)

¹This value represents total species richness for the site; it is not an average.

3.2 OFF-SITE AREA SURROUNDING BARTLETT REEF/GOSHEN POINT/THE RACE

3.2.1 STATION CHARACTERISTICS

Off-site areas adjacent and intermediate to the dredged material disposal sites were sampled. Off-site areas were sampled with 30 benthic grabs at 30 sites (i.e., no triplicate samples were taken at off-site grab locations). All 30 samples were analyzed for benthic infauna, TOC, and grain size. Sediment from site R024 was submitted to a 10-day toxicity test.


3.2.2 BENTHIC HABITAT AND SEDIMENT TYPES

In addition to descriptive characterizations (Table 5), each benthic grab conducted off-site was characterized by particle size. Table 12 includes site-by-site organic content (or TOC), water content, sample mass, and particle size distributions for all off-site benthic grabs. These are represented graphically in Figure 7.

Table 12: Grain Size and Organic Content of Sediment Samples Collected Off-site of Dredged Material Disposal Sites

			Particle-size Distribution (from dry mass)							
	Organic	Water	Sample			Sand-size (%)		Silt- &		
Grab	Content	Content	Dry Mass	Gravel-	Coarse	Medium	Fine	Clay-size		
Sample	(%)	(%)	(grams)	size (%)	course	Wieddani	Time	(%)		
P001	0.4	22.6	360.15	25.8	16.9	43.3	12.2	1.8		
P002	0.5	22.1	388.45	14.5	15.3	56.8	7.3	6.1		
P006	1.1	29.0	301.53	8.6	15.7	50.8	13.6	11.3		
P007	1.9	33.5	77.72	74.9	8.0	10.9	3.0	3.2		
P008	1.4	40.9	208.05	4.6	5.9	23.8	48.4	17.3		
P010	1.0	36.3	294.99	4.3	5.2	26.6	55.1	8.8		
P016	0.4	20.3	428.21	29.3	7.6	48.3	11.8	3.0		
P020	1.4	36.2	272.71	9.3	6.4	37.5	29.8	17.0		
P021	1.1	34.9	282.47	4.3	7.1	47.1	28.7	12.8		
P022	0.5	22.6	430.09	24.6	13.7	41.2	15.2	5.3		
R007	1.7	52.3	233.20	4.8	5.5	23.1	41.6	25.0		
R020	0.8	33.7	377.29	3.2	4.4	26.0	59.1	7.3		

			Particle-size Distribution (from dry mass)							
	Organic	Water	Sample			Sand-size (%)		Silt- &		
Grab	Content	Content	Dry Mass	Gravel-	Coarse	Medium	Fine	Clay-size		
Sample	(%)	(%)	(grams)	size (%)	course			(%)		
R023	1.5	42.5	278.57	5.1	5.6	23.0	56.9	9.4		
R024	0.9	30.7	434.61	27.7	13.2	31.5	14.1	13.5		
R025	1.3	41.1	315.47	11.2	5.8	28.6	29.0	25.4		
R026	1.2	36.9	264.29	29.7	15.6	35.1	9.8	9.8		
R027	0.8	23.5	418.68	31.7	12.9	43.2	3.6	8.6		
R101	0.5	19.6	464.91	19.8	18.3	44.1	12.5	5.3		
R102	0.2	25.0	237.60	0.1	2.0	95.8	1.4	0.7		
R103	1.0	19.2	539.20	64.2	5.1	13.0	8.5	9.2		
R105	1.3	42.8	287.89	6.1	4.9	28.8	44.0	16.2		
R106	0.7	34.2	388.06	7.3	7.4	41.5	37.3	6.5		
R107	1.3	32.1	369.77	19.8	8.1	32.8	28.3	11.0		
R108	1.3	40.6	321.78	7.3	2.6	25.2	49.8	15.1		
R109	1.4	37.1	345.04	11.0	4.6	19.8	48.0	16.6		
R110	0.9	32.8	296.57	4.8	5.3	29.4	48.5	12.0		
R111	1.8	42.0	313.72	10.8	7.0	24.9	37.1	20.2		
R112	0.6	26.2	436.98	3.5	19.3	64.3	11.1	1.8		
R113	0.7	34.4	389.90	5.5	5.4	56.2	23.7	9.2		
R114	1.1	30.7	325.54	19.0	5.9	46.1	20.8	8.2		
Average	1.0	32.5	336.10	16.4	8.7	37.3	27.0	10.6		

In areas adjacent to dredged material disposal sites, 30 off-site benthic sites were sampled. Of these, 28 benthic grabs were dominated by sand-size particles, while only two were dominated by gravel-size particles (Table 12). On average, off-site grabs consisted of approximately 73 percent sand, 16 percent gravel, and 11 percent silt and clay. Organic content ranged from 0.2 to 1.9 percent and averaged 1.0 percent.

3.2.3 SEDIMENT TOXICITY

The 10-day toxicity test for the off-site area was run with the sediment sample from site R024 (See Appendix C). The test was validated by a greater than 90 percent survival of organisms in control sediment. The species *L. plumulosus* had an average survival of 94 percent. Mean survival of *A. bahia* was 88 percent.

3.2.4 BENTHIC INFAUNA

Results from benthic grabs collected off-site of dredged material disposal sites were quite variable (Table 13). Site R102 had the fewest individuals, only 52, as well as the fewest number of species, 12. The greatest number of individuals at any one site was 3,905 at site P016. This site also had 104 identified species, the most of any off-site sample. On average, however, a sample contained 626 individuals. The species richness for the off-site area was 282. The lowest diversity index of 1.320 was reflected by site R110. The highest diversity index of 3.652 belonged to site R027. The mean diversity index for off-site samples was 2.753. At off-site locations, the three most abundant species were two bivalves, *Anadara transversa* and *Crassinella lunulata*, as well as the barnacle *Sessilia* spp.

Sample ID	Total individuals	Species richness (R)	Diversity index (H')	Pielou's evenness (J')
P001	2,121	66	2.390	0.570
P002	134	32	2.654	0.766
P006	866	65	2.931	0.702
P007	1,874	78	2.326	0.534
P008	703	91	3.392	0.752
P010	312	43	2.820	0.750
P016	3,905	104	2.609	0.562
P020	397	60	3.068	0.749
P021	395	61	2.818	0.685
P022	398	48	2.173	0.561
R007	433	58	2.694	0.663
R020	416	53	3.057	0.770
R023	467	66	3.344	0.798
R024	575	69	3.227	0.762
R025	764	73	3.123	0.728
R027	215	61	3.652	0.888
R101	349	68	3.231	0.766
R102	52	12	1.602	0.645
R103	721	71	2.452	0.575
R104	600	62	2.830	0.686
R105	320	65	3.200	0.767
R106	245	58	3.457	0.851
R107	187	47	3.050	0.792
R108	548	43	2.142	0.569

Sample ID	Total individuals	Species richness (R)	Diversity index (H')	Pielou's evenness (J')
R109	439	33	1.422	0.407
R110	419	33	1.320	0.378
R111	331	61	3.115	0.758
R112	59	21	2.679	0.880
R113	135	32	2.870	0.828
R114	396	54	2.939	0.737
Average	626	282 ¹	2.753	0.696

¹This value represents total species richness for the site; it is not an average.

3.3 NIANTIC BAY HISTORIC DREDGED MATERIAL DISPOSAL SITE (NBDS)

3.3.1 STATION CHARACTERISTICS

The Niantic Bay Historic Dredged Material Disposal Site (NBDS) was sampled at eight sites, one of which was sampled in triplicate. Therefore, ten sediment samples were collected: R004, P019, P025, P023, R001, P017, P018 (triplicate samples), and R018. All ten samples were analyzed for benthic infauna, TOC, and grain size. P018 sediment was used in a 10-day toxicity test.

3.3.2 BENTHIC HABITAT AND SEDIMENT TYPES

In addition to descriptive characterizations (Table 5), each benthic grab at NBDS was characterized by particle size. Table 14 includes site-by-site organic content (or TOC), water content, sample mass, and particle size distributions for all benthic grabs within NBDS. These are represented graphically in Figure 8.

			Particle-size Distribution (from dry mass)							
	Organic	Water	Sample		Sand-size (%)			Silt- &		
Grab Sample	Content (%)	Content (%)	Dry Mass (grams)	Gravel- size (%)	Coarse	Medium	Fine	Clay-size (%)		
P017	0.9	29.1	433.23	17.7	14.8	45.4	9.1	13.0		
P018a	0.6	23.1	259.52	25.1	11.6	49.7	10.1	3.5		
P018b	0.4	19.8	430.78	25.3	13.0	47.9	10.8	3.0		
P018c	0.6	22.9	388.13	18.4	14.7	54.9	8.2	3.8		
P019	0.8	28.1	456.66	13.4	13.5	41.3	23.7	8.1		
P023	0.4	19.0	510.07	20.9	25.1	39.7	10.8	3.5		
P025	0.7	25.6	444.78	12.0	12.3	48.9	22.3	4.5		
R001	0.4	19.6	543.99	16.9	13.1	53.7	14.2	2.1		
R004	0.5	23.1	459.46	6.4	15.3	60.0	15.0	3.3		
R018	0.4	25.1	288.51	28.8	13.0	46.7	9.6	1.9		
Average	0.6	23.5	421.5	18.5	14.6	48.8	13.4	4.7		

Table 14: Grain Size and Organic Content of Sediment Samples Collected within Niantic Bay Historic Dredged Material Disposal Site (NBDS)

Figure 8: Percentage of Sediment Type for Each Benthic Grab within Niantic Bay Historic Dredged Material Disposal Site (NBDS)

Niantic Bay was sampled at eight sites, one of which was sampled in triplicate, yielding ten total benthic samples. All ten of these samples were dominated by sand-size particles (Table 14). More specifically, the dominant sand-size particle for all NBDS samples was in the medium sand-size category. When averaged, NBDS grabs consisted of approximately 77 percent sand, 19 percent gravel, and 5 percent silt and clay. Organic content ranged from 0.4 to 0.9 percent and averaged 0.6 percent.

3.3.3 SEDIMENT TOXICITY

The sediment from site P018 in NBDS was tested using the 10-day toxicity test (See Appendix C). Since organisms in the control sediment realized greater than 90 percent survival, the test was validated. Mean survival of *L. plumulosus* was 98 percent. Survival of *A. bahia* averaged 92 percent.

3.3.4 BENTHIC INFAUNA

A summary of the benthic infauna found in NBDS samples is provided in Table 15. The average number of individuals collected at a site within NBDS was 529. The maximum number of individuals collected was 837, at site P017. The fewest number of individuals collected was 134 at site R004. The total number of species in a sample ranged from 30 at site R004 to 86 at site P018b. The species richness for these ten samples in NBDS was 196. Diversity indices ranged from a minimum of 1.991 at site R018 to a maximum of 3.595 at site P018b. The average diversity index, however, was 2.934. The three most abundant species at NBDS were the bivalve *Crassinella lunulata*, the amphipod *Ampelisca vadorum*, and the barnacle *Sessillia* spp.

Sample ID	Total individuals	Species richness (R)	Diversity index (H')	Pielou's evenness (J')
P017	837	79	3.127	0.716
P018a	505	85	3.730	0.840
P018b	680	86	3.595	0.807
P018c	574	71	3.080	0.723
P019	502	57	2.271	0.562
P023	610	62	2.815	0.682
P025	741	65	2.773	0.664
R001	436	56	3.464	0.861
R004	134	30	2.498	0.734
R018	267	37	1.991	0.551
Average	529	196 ¹	2.934	0.714

 Table 15: Total Individuals, Species, and Diversity Indices for Benthic Samples Collected in

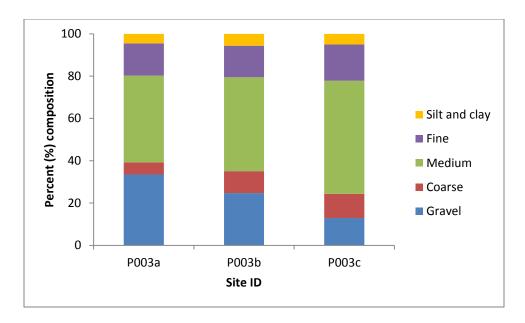
 Niantic Bay Historic Dredged Material Disposal Site (NBDS)

¹This value represents total species richness for the site; it is not an average.

3.4 CORNFIELD SHOALS DREDGED MATERIAL DISPOSAL SITE (CSDS)

3.4.1 STATION CHARACTERISTICS

One site was sampled by triplicate benthic grabs within the Cornfield Shoals Dredged Material Disposal Site (CSDS). Therefore, three sediment samples were collected from site P003. All three samples were analyzed for benthic infauna, TOC, and grain size. Sediment from P003 was also used in a 10-day toxicity test. USACE's DAMOS program has additional data and reports regarding CSDS from previous sampling efforts (USACE 2014).


3.4.2 BENTHIC HABITAT AND SEDIMENT TYPES

In addition to descriptive characterizations (Table 5), each benthic grab at CSDS was characterized by particle size. Table 16 includes site-by-site organic content (or TOC), water content, sample mass, and particle size distributions for all benthic grabs within CSDS. These are represented graphically in Figure 9.

			Particle-size Distribution (from dry mass)							
	Organic	Water	Sample	Sample Sand-size (%)						
Grab	Content	Content	Dry Mass	Gravel-				Clay-size		
Sample	(%)	(%)	(grams)	size (%)	Coarse	Medium	Fine	(%)		
P003a	0.6	22.4	410.09	33.5	5.7	41	15.3	4.5		
P003b	0.6	24.5	386.84	24.7	10.4	44.4	14.9	5.6		
P003c	0.7	28.1	267.11	12.9	11.4	53.5	17.2	5.0		
Average	0.6	25.0	354.7	23.7	9.2	46.3	15.8	5.0		

 Table 16: Grain Size and Organic Content of Sediment Samples Collected within

 Cornfield Shoals Dredged Material Disposal Site (CSDS)

Figure 9: Percentage of Sediment Type for Each Benthic Grab within Cornfield Shoals Dredged Material Disposal Site (CSDS)

Cornfield Shoals Dredged Material Disposal Site was sampled at one site, in triplicate, for a total of three benthic samples. All of the CSDS samples were dominated by sand-size particles (Table 16). More specifically, the dominant sand-size particle for all CSDS samples was categorized as medium sand-size. When averaged, these benthic grabs consisted of approximately 71 percent sand, 24 percent gravel, and 5 percent silt and clay. Organic content ranged from 0.6 to 0.7 percent, with an average of 0.6 percent.

3.4.3 SEDIMENT TOXICITY

The sediment sample from site P003 in CSDS was subjected to a 10-day toxicity test. The test was validated by a greater than 90 percent survival of organisms in control sediment. *L. plumulosus* experienced a mean survival of 98 percent. Survival of *A. bahia* was an average of 92 percent.

3.4.4 BENTHIC INFAUNA

Table 17 includes a summary of benthic infauna characteristics of the three CSDS samples. Sample P003a had 665 individuals, the fewest, while P003b had the greatest at 1,136 individuals. The average number of individuals was 893 per sample. The total species found ranged from 62 in P003b to 71 in P003c, with a total species richness of 115. The diversity index was greatest for P003c and least for P003b; the average was 2.851. At CSDS, the three most abundant taxa were the bivalve mussel *Mytilus edulis*, the amphipod *Corophiidae* spp., and the bivalve clam *Anadara transversa*.

Sample ID	Total individuals	Species richness (R)	Diversity index (H')	Pielou's evenness (J')
P003a	665	70	3.206	0.755
P003b	1,136	62	2.099	0.509
P003c	879	71	3.247	0.762
Average	893	115 ¹	2.851	0.675

Table 17: Total Individuals, Species, and Diversity Indices for Benthic Samples Collected in Cornfield Shoals Dredged Material Disposal Site (CSDS)

¹This value represents total species richness for the site; it is not an average.

3.5 FISH SURVEY

3.5.1 SITE CHARACTERISTICS

Water quality data were collected at the surface and bottom of each trawl site in eastern Long Island Sound from 10 to 13 June 2013 (Table 18; Figure 4). Similar to the measurements made during the benthic sampling, these data suggest that there is mild vertical stratification in the water column. Strong stratification precludes exchange between top and bottom layers. Since temperatures are within roughly 1°C from surface to bottom, however, it appears that mixing does occur occasionally. As found during benthic sampling, the abiotic conditions of the water column appear to be suitable for most marine organisms, with no major water quality issues. One anomaly in these measurements is apparent at site AC2013002. At this area off-site, the surface salinity was measured as 18.3 psu. Based on this measurement and the location of the trawl, it is evident that the trawl occurred in the Thames River Estuary. Due to different abiotic conditions at this particular site, trawl data were considered carefully since salinity and thermal tolerance might restrict certain species' distributions.

		Location			Surface		Bottom		
Site ID	Date	(NLDS, NBDS, CSDS, off- site)	CSDS, off- (ft)		Salinity (psu)	Sp. Cond. (mS/m)	Temp (°C)	Salinity (psu)	Sp. Cond. (mS/m)
AC2013001	10 June 2013	NLDS	40.7	15.0	27.6	34.66	13.9	30.8	37.37
AC2013003	10 June 2013	NBDS	38.4	15.2	27.7	34.26	14.2	30.0	36.63
AC2013006	13 June 2013	CSDS	110.9	15.5	27.7	35.23	14.2	29.7	36.43
AC2013002	10 June 2013	Off-site	28.2	15.9	18.3	24.90	14.3	30.0	36.73
AC2013004	10 June 2013	Off-site	123.4	14.6	29.7	36.73	13.9	30.6	37.05
AC2013005	12 June 2013	Off-site	116.5	14.7	26.0	31.13	14.1	30.2	36.85

Table 18: Water Quality Parameters Measured at Trawl Stations

3.5.2 CATCH COMPOSITION

3.5.2.1 Trawls On Dredged Material Disposal Sites

Three trawls were conducted near active or historic dredged material disposal sites (Figure 4). NLDS was sampled by trawl AC2013001, NBDS by AC2013003, and CSDS by AC2013006. Species occurrence and abundance for each site is presented in Table 19. Field data sheets are included in Appendix E.

Of trawls on dredged material disposal sites, NLDS had the greatest number of individuals, while NBDS had the greatest biomass (i.e., weight). CSDS had the lowest number and biomass of fish. From all sites

combined, scup was the most abundant species. For the NLDS and NBDS trawls, the most abundant fish by weight was scup, composing greater than 50 percent of the catch by weight. Winter skate made up more than 35 percent of the CSDS trawl and was the most abundant species by weight. The primary target species were scup, striped bass, winter flounder, and bluefish. Scup was present in all three trawls. These fish dominated the NLDS and NBDS catches at 55 and 59.5 percent, respectively, but was less abundant at CSDS at only 8.4 percent. Striped bass were absent at NLDS, and only one individual was caught at each of NBDS and CSDS. Winter flounder was present in all three trawls but at relatively low abundance; the greatest proportion of biomass was 3.2 percent at NLDS. No bluefish were caught at NLDS or NBDS; only one bluefish, which made up 3.6 percent of the catch weight, was caught at CSDS. Secondary target species, striped searobin and windowpane flounder, were not present at NLDS or NBDS but were caught at CSDS. Two striped searobin comprised 1.3 percent of the biomass, and 11 windowpane flounder made up 4.1 percent of the catch. The invasive red algae *Heterosiphonia japonica* from Japan was present in all three trawls at these sample sites.

Common			AC2013001	(NLDS)	AC2013003 (NBDS)			AC2013006 (CSDS)		
name	Species	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition
scup ¹	Stenotomus chrysops	676	61.6	55.0	444	76.4	59.5	17	4.5	8.4
striped bass ¹	Morone saxatilis				1	3.2	2.5	1	3.4	6.4
winter flounder ¹	Pseudopleuronectes americanus	13	3.6	3.2	2	0.4	0.3	1	0.3	0.6
bluefish ¹	Pomatomus saltatrix							1	1.9	3.6
striped searobin ²	Prionotus evolans							2	0.7	1.3
windowpane flounder ²	Scophthalmus aquosus							11	2.2	4.1
Asian red algae	Heterosiphonia japonica	NA ³	8.8	7.9	NA ³	23.9	18.6	NA ³	0.2	0.4
longfin squid	Loligo pealeii	433	22.3	19.9	130	4.9	3.8	5	0.3	0.6
winter skate	Leucoraja ocellata							17	19	35.6
little skate	Leucoraja erinacea	10	5.2	4.6	1	0.4	0.3	19	12	22.5
spider crab	Libinia emarginata	NA ³	5.9	5.3	NA ³	3.4	2.6	NA ³	0.2	0.4
kelp	Laminaria spp.	NA ³	0.6	0.5	NA ³	7	5.5			
smooth dogfish	Mustelus canis							2	5.6	10.5
tautog	Tautoga onitis	1	1.8	1.6	2	2.4	1.9			
mixed algae species	Algae spp.	NA ³	0.7	0.6	NA ³	2.9	2.3	NA ³	0.1	0.2
northern searobin	Prionotus carolinus							15	2.2	4.1
boring sponge	Cliona celata				NA ³	1.5	1.2			
American lobster	Homarus americanus	5	1.2	1.1						
summer flounder	Paralichthys dentatus				1	0.9	0.7			
ulva	Ulva lactuca	NA ³	0.1	0.1	NA ³	0.7	0.5	NA ³	0.1	0.2

Table 19: Catch Composition of Trawls On New London, Niantic Bay (Historic), and Cornfield Shoals Dredged Material Disposal Sites (NLDS, NBDS, CSDS)

35

Common		AC2013001 (NLDS)			AC2013003 (NBDS)			AC2013006 (CSDS)		
name	Species	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition
fourspot flounder	Paralichthys oblongus							2	0.4	0.8
butterfish	Peprilus triacanthus	3	0.1	0.1	1	0.1	0.1			
bay anchovy	Anchoa mitchilli				1	0.1	0.1			
squid eggs	Loligo pealeii eggs				NA ³	0.1	0.1			
rock crab	Cancer irroratus				NA ³	0.1	0.1			
flat claw hermit crab	Pagurus pollicaris							NA ³	0.1	0.2
rockweed, fucus	Fucus spp.							NA ³	0.1	0.2
	Total	1,141	111.9	100.0	583	128.4	100.0	93	53.3	100.0

¹Primary targeted species; ²Secondary targeted species; ³Counts not obtained, only weights.

3.5.2.2 Trawls Off-site of Dredged Material Disposal Sites

In addition to the three trawls conducted within dredged material disposal sites, three trawls were made in off-site areas near dredged material disposal sites (Figure 4). Trawl AC2013002 was conducted near NLDS. Trawls AC2013004 and AC2013005 occurred in an area between NBDS and CSDS. Field data sheets are included in Appendix E.

Overall, AC2013005 had the greatest number and biomass of fish compared to trawls both on and off of dredged material disposal sites. The most abundant fish by weight was scup at two of the three sites, 29.7 percent of the catch at AC2013002 and 26.7 percent at AC2013004; smooth dogfish was most abundant at AC2013005, constituting 28 percent of the catch weight (Table 20). Of the primary target species, scup and winter flounder were present in all three trawls, striped bass was only present in one trawl, and bluefish was not present in any of the three trawls. At AC2013005, the high frequency of smooth dogfish drove down the percent composition of scup. Therefore, scup abundance was comparable among all three sites, even though the percent composition varied. Winter flounder abundance was relatively consistent among trawls, making up between 2.1 and 2.6 percent of total biomass. Only one individual striped bass was caught; it occurred at site AC2013002. No bluefish were caught in off-site trawl tows. Striped searobin and windowpane flounder were caught in all three tows. Striped searobin abundance was slightly more variable, ranging from 0.7 to 7.2 percent of biomass caught. Similar to trawls on dredged material disposal sites, all trawls conducted off of a dredged material disposal site contained the non-native Asian red algae *Heterosiphonia japonica*.

			AC2013	002		AC2013	004		AC2013	3005
Common name	Species	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition
scup ¹	Stenotomus chrysops	165	16	29.7	292	32.9	26.7	209	20.5	11.6
striped bass ¹	Morone saxatilis	1	8.7	16.1						
winter flounder ¹	Pseudopleuronectes americanus	3	1.4	2.6	10	3.2	2.6	13	3.7	2.1
windowpane flounder ²	Scophthalmus aquosus	1	0.4	0.7	14	3	2.4	62	12.7	7.2
striped searobin ²	Prionotus evolans	1	0.5	0.9	4	0.8	0.6	1	0.3	0.2
smooth dogfish	Mustelus canis				6	16.8	13.6	16	49.5	28.0
northern searobin	Prionotus carolinus				214	14.6	11.9	351	26.3	14.9
little skate	Leucoraja erinacea	2	1.3	2.4	36	19.7	16.0	35	16.8	9.5
spiny dogfish	Squalus acanthias				1	3.9	3.2	5	21.4	12.1
winter skate	Leucoraja ocellata				10	11.9	9.7	5	5.1	2.9
longfin squid	Loligo pealeii	147	6	11.1	59	4.3	3.5	78	4.8	2.7
Asian red algae	Heterosiphonia japonica	NA ³	7.8	14.5	NA ³	5	4.1	NA ³	1.2	0.7
summer flounder	Paralichthys dentatus	6	3.4	6.3	1	0.8	0.6	3	5.9	3.3
black sea bass	Centropristis striata	3	0.5	0.9	14	2	1.6	15	2.4	1.4
spider crab	Libinia emarginata	NA ³	2	3.7	NA ³	0.7	0.6			
fourspot flounder	Paralichthys oblongus				11	1.8	1.5	6	0.9	0.5
kelp	Laminaria spp.	NA ³	2.3	4.3	NA ³	0.3	0.2	NA ³	0.1	0.1
clearnose skate	Raja eglanteria							1	1.9	1.1
bluecrab	Callinectes sapidus	8	1.4	2.6						
silver hake	Merluccius bilinearis				10	0.7	0.6	9	0.7	0.4
spot	Leiostomus xanthurus							20	1.4	0.8
mixed algae species	Algae spp.	NA ³	0.8	1.5				NA ³	0.2	0.1
spotted hake	Urophycis regia				4	0.2	0.2	14	0.6	0.3

			AC2013	002		AC2013	004		AC2013005		
Common name	Species	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition	Count	Weight (kg)	Percent composition	
American lobster	Homarus americanus	2	0.6	1.1							
ulva	Ulva lactuca	NA ³	0.2	0.4	NA ³	0.3	0.2	NA ³	0.1	0.1	
flat claw hermit crab	Pagurus pollicaris				NA ³	0.1	0.1	NA ³	0.2	0.1	
lion's mane jellyfish	Cyanea capillata	4	0.2	0.4							
red hake	Urophycis chuss				2	0.1	0.1	1	0.1	0.1	
bay anchovy	Anchoa mitchilli	9	0.1	0.2							
butterfish	Peprilus triacanthus	3	0.1	0.2							
Atlantic herring	Clupea harengus	1	0.1	0.2							
common slipper shell	Crepidula fornicata	NA ³	0.1	0.2							
rock crab	Cancer irroratus				NA ³	0.1	0.1				
moon snail egg case	Naticidae spp.							NA ³	0.1	0.1	
	Total	356	53.9	100.0	688	123.2	100.0	844	176.9	100.0	

¹Primary targeted species; ²Secondary targeted species; ³Counts not obtained, only weights.

3.5.3 LOBSTERS

Although lobsters were not a target species, they are of particular interest due to decreasing abundance in southern New England, including Long Island Sound. Five lobsters were collected by a single trawl on a dredged material disposal site, all at NLDS site AC2013001. Two additional lobsters were collected by a single trawl off-site, both in AC2013002. In addition to obtaining lengths, CT DEEP biologists also recorded information on biological condition (Table 21). After observation, all collected organisms were released back into Long Island Sound.

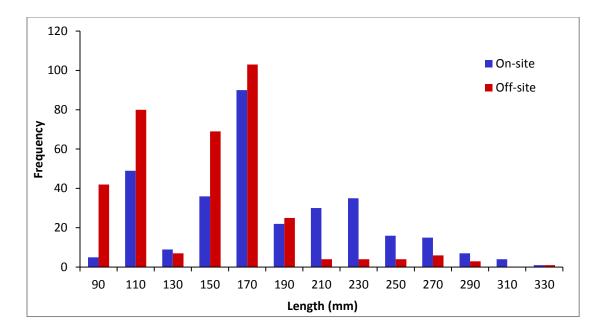
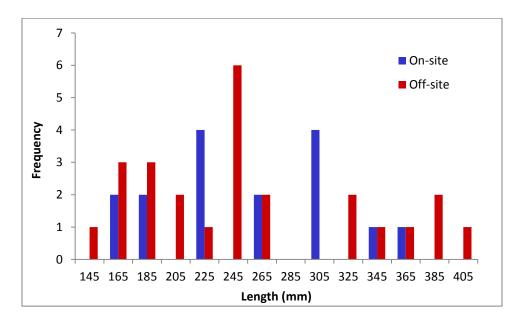
Site ID	Sex	Length (mm)	Egg Development	Shell hardness	Crusher claw	Pincher claw	Condition	Shell disease
AC2013001 (NLDS)	Μ	72.7	None	Hard	Bud	Present	Alive	None
AC2013001 (NLDS)	F	58.8	None	Hard	Small	Present	Alive	None
AC2013001 (NLDS)	F	70.7	None	New hard shell	Present	Present	Alive	None
AC2013001 (NLDS)	Μ	67.4	None	Hard	Present	Present	Alive	11–50% covered
AC2013001 (NLDS)	Μ	69.7	None	Hard	Present	Present	Alive	None
AC2013002 (Off-site)	F	70.3	None	Hard	Present	Present	Alive	None
AC2013002 (Off-site)	Μ	54.4	None	Hard	Present	Present	Alive	None

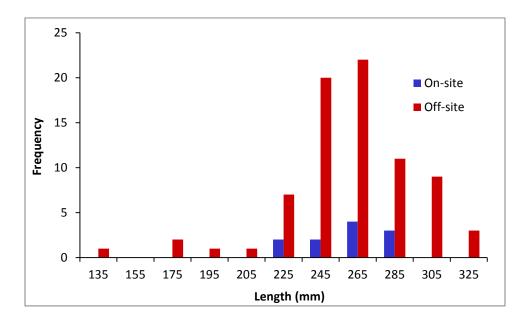
Table 21: Biological Parameters of Lobsters Collected by Connecticut Department of Energy and Environmental
Protection (CT DEEP) Trawls

3.5.4 SPECIES LENGTH DISTRIBUTIONS

Of the six targeted species, only three were in high enough abundance to produce meaningful length frequency graphs (raw data and additional lengths may be found in Appendix E). Striped bass, bluefish, and striped searobin were caught by the trawl infrequently, so there were not enough length measurements to infer demographic trends. The two on-site striped bass were 655 and 665 mm; the single off-site individual was 905 mm. The single bluefish caught was on-site, measuring 537 mm in length. The two on-site striped searobin were 285 and 295 mm; the five off-site striped searobin ranged from 225 to 275 mm. Scup, winter flounder, and windowpane flounder had high enough abundance that length distributions could be used to investigate demographic structuring. Due to the variability in effort and sample size, however, statistical comparisons were not feasible; the results below should be interpreted as trends rather than statistical differences.

There is a relatively strong trimodal pattern in scup lengths. Two peaks are evident at 110 and 170 mm, with a third, more gradual peak at 230 for on-site trawls and 270 for off-site trawls (Figure 10). Scup collected both on and off of dredged material disposal sites displayed the same overall length frequency pattern.


Figure 10: Length Frequency Distribution for Scup On and Off Dredged Material Disposal Sites

Winter flounder had a range of lengths, from 145 to 405 mm (Figure 11). The frequency of each length is spread fairly evenly, with only a slight increase at 245 mm for off-site trawls and at 225 and 305 mm for on-site trawls. No strong difference in length pattern between on- and off-site tows is evident, however.

Figure 11: Length Frequency Distribution for Winter Flounder On and Off Dredged Material Disposal Sites

Windowpane flounder showed a strong unimodal length distribution (Figure 12), with a peak at 265 mm for both on- and off-site trawls. Since more windowpane flounder were collected off-site, the pattern is more defined than on-site tows, with a notable increase around 225 mm, peak at 265 mm, and a steady decrease to 325 mm. Windowpane flounder collected on dredged material disposal sites have a similar, though dampened pattern, likely due to fewer total individuals.

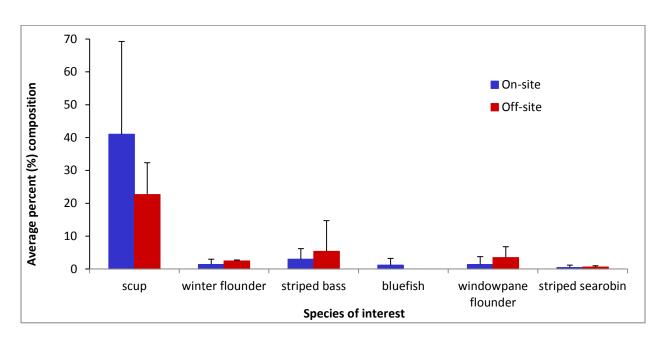
3.6 STATISTICAL COMPARISONS

3.6.1 BENTHIC HABITAT AND INFAUNA

Diversity, as measured by the Shannon Diversity Index (H'), was averaged for all benthic grabs on and off a dredged material disposal site. When the diversity indices of on-site grabs were compared with those of off-site grabs using a two-tailed t-test, on-site diversity was higher, though the difference was just below statistical significance (P = 0.057, α = 0.05; Table 22). Therefore, benthic infaunal diversity was marginally higher in dredged material disposal sites relative to intermediate sites adjacent to dredged material disposal sites.

Pielou's evenness (J') estimates the relative abundance of benthic infauna (i.e., more similar abundances correlate to greater evenness). Evenness for on-site samples was not significantly different than off-site samples (P = 0.401, $\alpha = 0.05$; Table 22) when tested with a two-tailed t-test.

Parameter	On-site	Off-site	P-value
Average diversity (H')	3.060	2.753	0.056924
Average evenness (J')	0.724	0.696	0.401414


Table 22: Average Diversity (H') of Benthic Grabs On and Off Dredged Material Disposal Sites

3.6.2 FINFISH ABUNDANCE

The sampling effort of this biological characterization was variable among sites, therefore statistical comparisons among dredged material disposal sites were not be performed. By combining the three onsite tows and the three off-site tows, however, statistical tests could be run to identify differences in abundance on and off of a dredged material disposal site. No significant difference was evident in species abundance between targeted species collected on and off dredged material disposal sites (twotailed, equal variance t-test with a significance level of 0.05; all P > 0.323, α = 0.05; Table 23). Figure 13 illustrates the percent of the catch composed by different targeted species resulting from trawls conducted on and off dredged material disposal sites.

		Average %	Average % Composition				
Targeted species		On-site	Off-site	P-value			
	scup	41.0	22.7	0.348			
During a mu	winter flounder	1.4	2.4	0.323			
Primary	striped bass	4.4	16.1	0.692			
	bluefish	3.6	0.0	0.374			
Casandam	windowpane flounder	4.1	3.5	0.430			
Secondary	striped searobin	1.3	0.6	0.783			

Table 23: Average Percent Composition of Targeted Species from Trawls Located On and Off Dredged Material Disposal Sites

Figure 13: Comparison of Average Percent Composition of Targeted Species between Trawls Conducted On and Off Dredged Material Disposal Sites

A proportional measure of abundance is catch per unit effort (CPUE). The total number of fish (count) per trawl is standardized by time of tow, which was 30 minutes for each. The CPUE was then averaged across sites, for trawls conducted on and off dredged material disposal sites (Table 24). Abundance, as estimated by CPUE, did not differ between sites located on and off dredged material disposal sites.

		Averag		
Т	argeted species	On-site	Off-site	P-value
	scup	8.19	7.40	0.919
Duling out a	winter flounder	0.18	0.29	0.530
Primary	striped bass	0.02	0.01	0.519
	bluefish	0.01	0.00	0.374
Cocondom	windowpane flounder	0.12	0.86	0.309
Secondary	striped searobin	0.02	0.07	0.329

Table 24: Average Catch per Unit Effort (CPUE) for Targeted Species On and Off Dredged Material Disposal Sites

3.7 FISHING ACTIVITY SURVEY

Over the approximately 5 weeks that the fishing activity survey was available to fishermen, 440 individuals visited the survey website and 10 individuals mailed in hard copies. Of these, 45 did not fill out a single question and 160 had insufficient information (less than five questions answered); these 205 respondents were excluded from further analysis. Six additional surveys were omitted due to irrelevance, because they were not completed by a fisherman. Therefore, 229 surveys were considered relevant and useful (Table 25), and only those responses were carried forward in the analysis of fishing activity in eastern Long Island Sound. As outlined in Section 2.4, results were analyzed in five groups, based on fishery type:

- Commercial lobster
- Commercial mollusk
- Commercial finfish
- Charter/party boat
- Recreational

Commercial results were delineated by target species (lobster, mollusk, and finfish), while charter/party and recreational fishing were analyzed separately. The recreational fishing industry had the highest number of respondents; however, a variety of fishermen participated, with the dominant fisheries in eastern Long Island Sound well-represented. Data are presented here as catch observations, spatial and temporal variation in fishing effort, and the relation of fishing activity to active and historic dredged material disposal sites.

3.7.1 FISHING TRENDS

A summary of the results of the survey is presented in Table 25, but notable results are highlighted in the following paragraphs. Each value in Table 25 represents the percentage of fishermen that chose a particular answer. Not all respondents completed every question, so the percentages may be calculated from a value less than n, the total number of participants. Due to the use of whole percentage values, a few categories do not sum to exactly 100 percent. Detailed results are included in Appendix G.

On average, the commercial and charter/party boat industries had more years of experience than recreational fishermen; at least 50 percent of commercial and 60 percent of charter/party boat fishermen had more than 30 years of experience, while only 35 percent of recreational fishermen have been fishing that long. Of all 229 fishermen that responded to the survey, 90 percent actively fished in 2013. Conflicting opinions regarding abundance of target species were found among the five fishery types. In the lobster and mollusk commercial industries, 40 percent indicated a decrease in quantity. The

majority (60 percent) of lobstermen cited no change in abundance. Out of the 19 commercial fishermen targeting finfish, 69 percent noted an increase in abundance. In contrast, 68 percent of charter/party boat fishermen and 69 percent of recreational fishermen thought abundance of their target species has decreased. The minority (0 to 40 percent) of all commercial fishermen felt that target species size has decreased. The charter/party boat and recreational responses were almost in exact agreement with each other, but differed from the commercial industry opinions. More than half (55 percent) of both the charter/party boat and recreational fishermen thought the size of their target species has decreased. Despite the somewhat variable input regarding location, the majority (between 58 and 100 percent) of each fishery has not changed fishing grounds. The majority of all groups thought the health of the catch had not changed or had improved. Between 18 and 40 percent of fishermen thought target species health has declined. The only group that has not observed a change in bycatch composition is mollusk fishermen, who encounter various crab species. Of the other groups, between 20 and 70 percent has noticed a change in bycatch. A couple of groups cited more scup, black sea bass, and dogfish as bycatch, but some also claimed that more selective gear has decreased the overall quantity of non-target species.

	_		Commercial				• ¹¹²
Fishing activity	parameter	Lobsters	Mollusks	Finfish	Charter/party	Recreational	Overall ²
Number of part	ticipants (n)	8	6	19	30	166	229
Length of	≤ 30 yrs	50%	50%	26%	40%	65%	58%
activity	> 30 yrs	50%	50%	74%	60%	35%	42%
Current	Active	75%	100%	100%	100%	88%	90%
activity	Not active	25%	0%	0%	0%	12%	10%
Shift in target	Yes	14%	67%	53%	40%	37%	39%
species	No	86%	33%	47%	60%	63%	61%
	Reason for changing target species	Regulations	Pollution effect on lobsters; market demand	Regulations; market demand; abundance	Regulations; seasonality; abundance; quality	Regulations; seasonality; abundance; sport	
Quantity	No change	60%	40%	23%	23%	14%	18%
	Increase	0%	20%	69%	9%	17%	20%
	Decrease	40%	40%	8%	68%	69%	62%
Size	No change	80%	40%	38%	23%	24%	27%
	Increase	20%	20%	46%	23%	20%	23%
	Decrease	0%	40%	15%	55%	55%	49%
Location	No change	100%	80%	58%	81%	71%	72%
	Increase	0%	0%	33% (in H, I, J, K, L)	14% (in I, J)	6% (in I, J, K, M)	9%
	Decrease	0%	20% (in F, G)	8% (in L)	5% (in G)	23% (in B, E, F, G, I, L, M)	19%
Gender	No change	100%	100%	100%	74%	85%	86%
composition	Increase in males	0%	0%	0%	26%	10%	11%
	Increase in females	0%	0%	0%	0%	6%	4%

Table 25: Results Summary of Fishing Activity Survey for Eastern Long Island Sound¹

			Commercial		Chamber (second	Desmostional	O
Fishing activity	parameter	Lobsters	Mollusks	Finfish	Charter/party	Recreational	Overall ²
Health of	No change	40%	60%	64%	61%	78%	73%
catch	Improved	20%	0%	18%	13%	9%	10%
	Poorer	40%	40%	18%	26%	13%	17%
Bycatch	No change	80%	100%	30%	73%	56%	58%
	Change	20%	0%	70%	27%	44%	42%
	Observations	More scup, black sea bass, dogfish	Mostly spider crabs, rock crabs, green crabs	Less bycatch overall; more black sea bass and mid-Atlantic species; less lobsters	Greater quantity and size of dogfish, bluefish, sea robins; more blowfish and weakfish	Less bycatch overall; more scup, bluefish, sea robin, sculpin, black sea bass (especially juveniles), spiny dogfish; fewer blue claw crabs	
Gear fouling	No change	75%	50%	56%	100%	81%	80%
	Fouling	25%	50%	44%	0%	19%	20%
-	Reasons	Weather	Weather; seaweed	Weather; <i>H.</i> <i>japonica</i> ; vandalism	NA	Snags; vandalism	

¹Due to rounding to whole numbers, some categories may not sum to exactly 100%; ²Averages calculated using a weighted mean to account for different sample sizes.

A variety of finfish species are targeted by members of the commercial, charter/party boat, and recreational industries, though at different intensities (Table 26). Each percentage represents the relative frequency that each finfish is targeted out of all identified species. The most highly sought-after finfish by commercial fishermen are summer flounder and tautog, each targeted 18 percent of the time. In general, the commercial industry focuses its effort more evenly across species, though not necessarily on more species. Charter/party boats target striped bass at a higher frequency than any other species (29 percent); summer flounder are the next-highest target species (15 percent). Recreational fishermen are the least balanced, with much of their effort focused on only a few species. Of all target species, summer flounder and striped bass are each targeted 28 percent of the time by recreational fishermen. As summarized in Table 26, the reason for shifting target species may explain slight differences in target finfish by these three different industries. While respondents in all groups cited regulations as a driving determinant, commercial fishermen are understandably more influenced by market demands. Charter/party boat and recreational fishermen both mentioned seasonal fluctuations in species abundance as a motivating factor for choosing target species. Only recreational fishermen identified personal preferences, such as a harder challenge or better taste, as reasons for shifting target species.

Towest finfish ¹	Relative targeted effort						
Target finfish ¹	Commercial	Charter/party	Recreational				
summer flounder	18%	15%	28%				
striped bass ²	11%	29%	28%				
bluefish ²	5%	14%	14%				
tautog	18%	14%	11%				
scup	11%	12%	7%				
black sea bass	13%	8%	3%				
false albacore			2%				
all local fish	5%	5%	<1%				
mollusks	3%		2%				
weakfish			1%				
lobster		2%	1%				
squid	5%						
blowfish (pufferfish)			<1%				
kingfish			<1%				
shark			<1%				
Spanish mackerel			<1%				
winter flounder ²			<1%				
tilefish		2%					
tuna		2%					
butterfish	3%						
Whiting/silver hake (Merluccius spp.)	3%						
Atlantic herring	3%						
Atlantic mackerel	3%						

¹Fish common names as reported in survey; ²Targeted species in current study's finfish trawls

3.7.2 SPATIAL AND TEMPORAL TRENDS IN FISHING EFFORT

A strong seasonal trend in fishing effort is apparent for all fishery groups. With the exception of the commercial mollusk fishery, all other groups have peak activity in the summer (Figure 14). Commercial lobstermen increase fishing effort in March, dropping off again in September. Commercial finfish, charter/party boat, and recreational fishermen have a similar trend, but it is temporally offset relative to lobstermen. For these three groups, activity increases in May and does not drop off until November. Commercial mollusk fishermen have a different seasonal pattern altogether. While there is a slight increase in fishing activity from May to September, the greatest effort occurs in November.

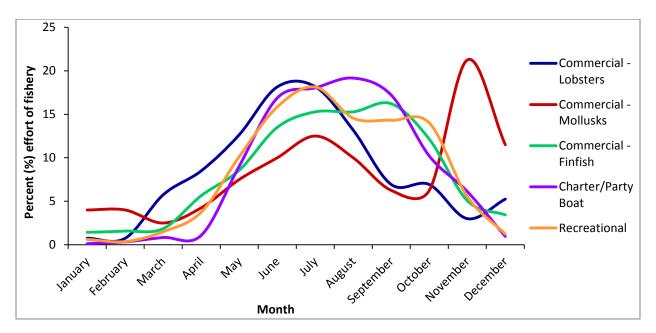


Figure 14: Fishing Effort by Month for Eastern Long Island Sound Fisheries, Based on Fishing Survey

To further characterize fishing activity spatially, effort was described for 13 distinct areas in eastern Long Island Sound. These areas, labeled A-M, are not based on management areas, but some borders do follow state lines. See the figures below for location of these areas. The yellow line demarking fishing area boundaries used in the survey may obscure portions of state maritime boundaries, which are identified in Figure 1. Of the 229 fishermen that participated in the survey, 199 respondents (or 87 percent) identified which areas they frequented each season (spring, summer, fall, and winter). These data were compiled to find high-use areas by season for each fishery type. The patterns for each fishery are summarized below, along with the corresponding figure that depicts the spatiotemporal trends in fishing effort.

- Commercial lobstermen identified 10 of the 13 areas as fishing grounds, 7 of which are active year-round. The most frequented areas is L, followed by I. Most commercial lobster activity occurs in the summer, and the least is in the winter. Of the western portion of the study area (areas A, B, E, F, G), there is little overall activity, with a slight increase in A and F during the summer (Figure 15).
- Commercial mollusk fishermen have the most concentrated effort, utilizing only 7 of the 13 areas of eastern Long Island Sound. Area G is fished most extensively, with nearby F and H also experiencing high use. Fall is the season of highest activity; minimal fishing occurs in the winter (Figure 16).

- Commercial finfishermen use nearly every area year-round; however, seasonal and geographical trends are still apparent. Area I is most frequented by finfishermen, but other eastern areas (H, J, K, L, and M) are also common fishing grounds. The western portion of the area of interest has the least fishing activity. Effort is almost evenly spread between spring, summer, and fall, but it drops substantially in the winter (Figure 17).
- The charter/party boat industry identified fishing grounds in each of the areas of eastern Long Island Sound. The most highly used area is H, with I and M also fished often. In general, the western portion has lower activity than the eastern portion. Seasonally, summer and fall have the highest activity. There is very little charter/party boat fishing in the winter, with no fishing in most areas (Figure 18).
- Recreational fishing is the most evenly spread both spatially and temporally than any other fishery type. Each of the 13 areas supports recreational fishing every season of the year. Areas E, F, G, H, and I have the highest activity, while B, C, and D have the lowest. Summer and fall are the most common times to fish, and winter has the least fishing (Figure 19).

Each of the following figures (Figures 15 through 19) uses the same color convention, with purples and blues representing less effort and oranges and reds representing more effort. Each fishery group is presented individually, but comparisons may be made between figures. This scale extends from the minimum amount of effort (0.2 percent) to the maximum (11.8 percent) across all five groups. Each figure includes a color scale for reference. Full results are included in Appendix G.

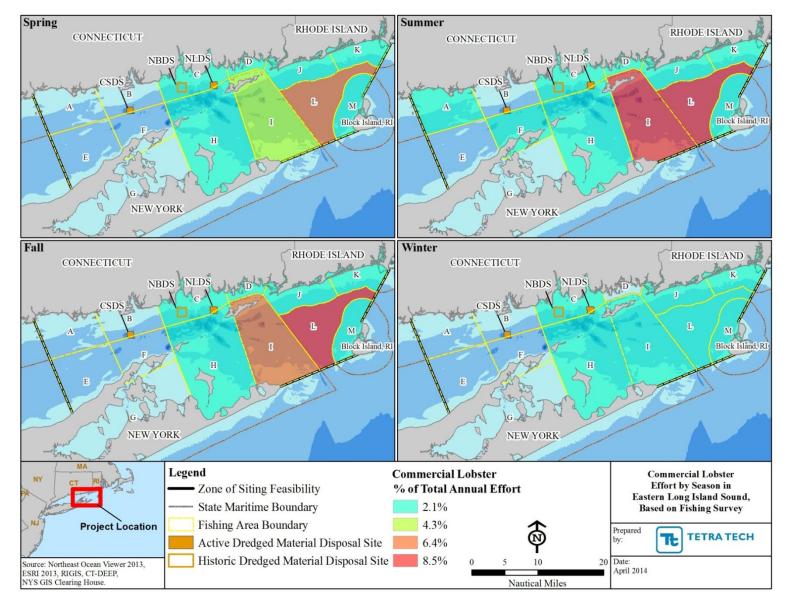


Figure 15: Commercial Lobster Effort by Season in Eastern Long Island Sound, Based on Fishing Survey

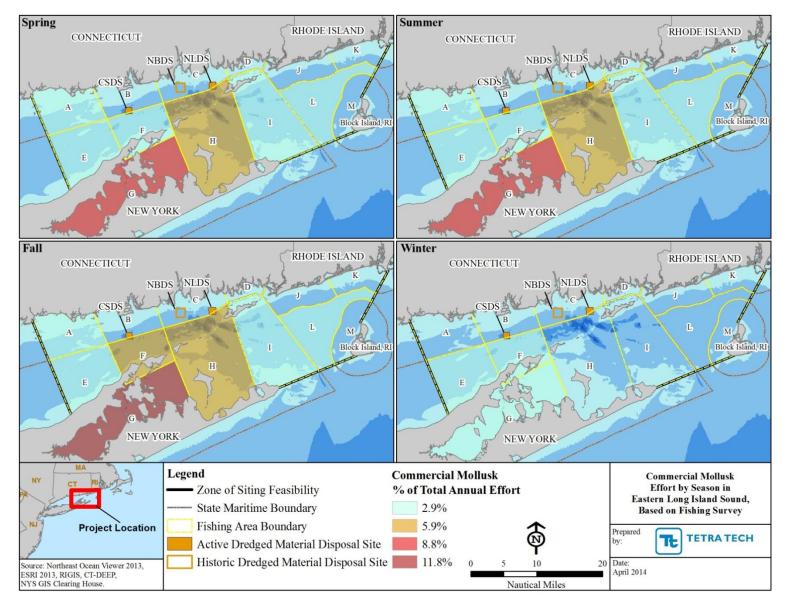


Figure 16: Commercial Mollusk Effort by Season in Eastern Long Island Sound, Based on Fishing Survey

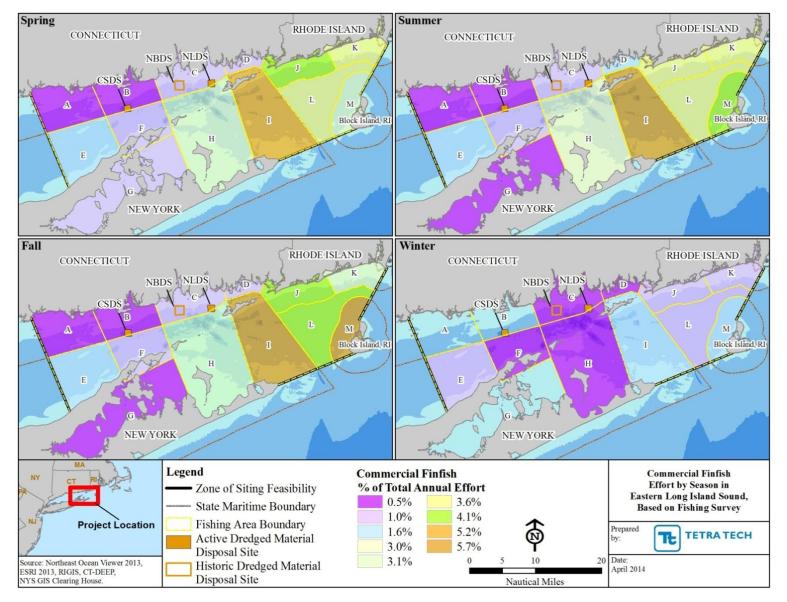


Figure 17: Commercial Finfish Effort by Season in Eastern Long Island Sound, Based on Fishing Survey

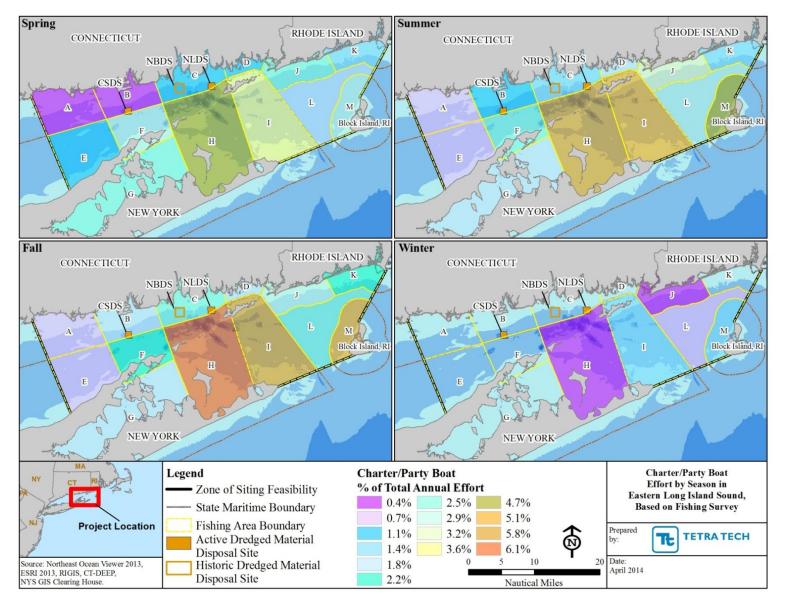


Figure 18: Charter/Party Boat Effort by Season in Eastern Long Island Sound, Based on Fishing Survey

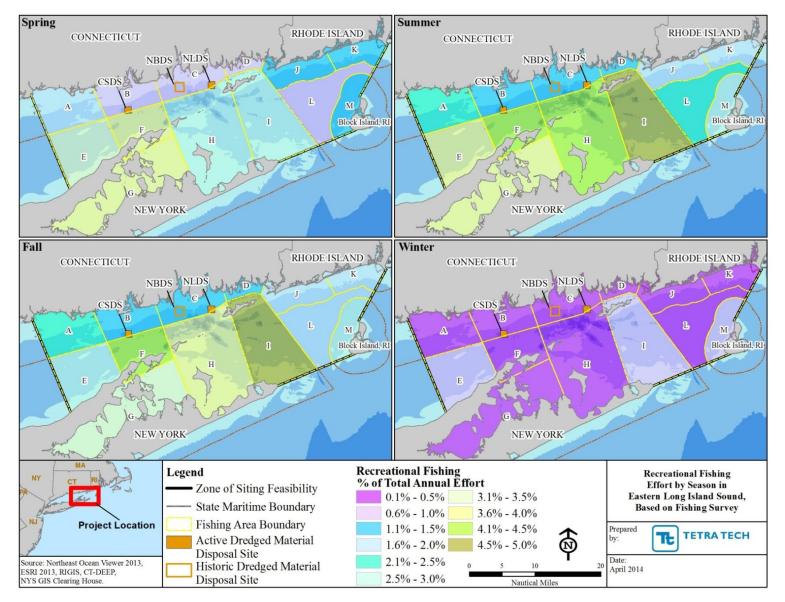


Figure 19: Recreational Fishing Effort by Season in Eastern Long Island Sound, Based on Fishing Survey

3.7.3 FISHING NEAR DREDGED MATERIAL DISPOSAL SITES

On average, only 6 percent of surveyed fishermen fish near dredged material disposal sites (1 percent regularly; 5 percent occasionally; Table 27). Many (44 percent) were unsure whether their fishing grounds were near a dredged material disposal site at all. Only four commercial lobstermen provided information regarding fishing near dredged material disposal sites. Of these, one individual (25 percent) did not know whether the fishing grounds was within 0.5 nautical miles of a dredged material disposal site. The other three (75 percent) do not fish near sites. None of the commercial mollusk fishermen knew if they fished near a site. One commercial fisherman who switched target species from lobster to finfish to shellfish mariculture identified "New London [dredged material disposal site]" as a regular fishing ground. This particular fisherman has noticed that more mid-Atlantic species are found near dredged material disposal sites. The majority of commercial finfishermen do not fish near dredged material disposal sites, and a guarter of those surveyed did not know. Two charter/party boat fishermen occasionally fish near dredged material disposal sites; one near New London, the other near Old Saybrook, Connecticut. Old Saybrook is geographically closest to Niantic Bay Historic Dredged Material Disposal Site, but it is not clear whether this is the dredged material disposal site referenced. No difference in catch was reported for Old Saybrook, but an increase in catch was observed at the New London Dredged Material Disposal Site. Just over half of charter/party boat fishermen do not fish near sites, and 36 percent were unsure. Four recreational fishermen occasionally fish near dredged material disposal sites. One fisherman historically fished the New London Dredged Material Disposal Site for winter flounder and scup and believed that, "site activity improves fishing quality." Another recreational fisherman who fished near New London felt that flounder are "all gone," but that scup were "highly abundant." A different recreational fisherman fished near dredged material disposal sites near Narragansett Harbor, Block Island Port, and New York bight (beyond the eastern Long Island Sound study area) but did not identify any changes in catch in these areas.

Fishing activity parameter			Commercial		Charter/	Recreational	Overall	
		Lobsters	Mollusks	Finfish	party boat			
Dredged material	Regular fishing	0%	0%	8%	0%	0%	1%	
disposal site proximity	Occasional fishing	0%	0%	0%	9%	5%	5%	
	No fishing	75%	0%	67%	55%	48%	50%	
	Unsure	25%	100%	25%	36%	47%	44%	
	Locations ¹	NA	NA	NLDS	NLDS, Old Saybrook	NLDS; Narragansett Harbor; Block Island Port; NY Bight; Hudson River, NY		

Table 27: Fishing Trends near Dredged Material Disposal Sites in Eastern Long Island Sound

Note: NLDS indicates the New London Dredged Material Disposal Site

¹Of the 6 percent of all fishermen that fish near dredged material disposal sites, locations were provided by very few and therefore often correspond to one individual's feedback.

4 **DISCUSSION**

Results of the benthic and finfish sampling are summarized in Table 28. In general, the results are consistent with previous studies, indicating a stable marine benthic community both within and outside of the dredged material disposal sites. The ambient water quality data are consistent with healthy abiotic conditions. For benthic and finfish characteristics, no significant differences were found between samples collected on dredged material disposal sites and samples collected off-site (areas adjacent to dredged material disposal sites).

Water quality issues often have a variety of sources and can vary interannually. The water characteristics of Long Island Sound have been found to fluctuate with levels of the Connecticut River plume (Ackleson and O'Donnell 2011). One of the most detrimental water quality problems is low oxygen, or hypoxia, which occurs when DO concentrations drop below 2 mg/L (in extreme cases, no oxygen, or anoxia results). Hypoxia may be caused by many factors that often act synergistically; in particular, stratification, nutrient loading, and water exchange can decrease DO, with non-linear effects on the local ecosystem (Zhang et al. 2010). Since LIS is semi-enclosed, with freshwater input and potential nutrient loading, this ecosystem is susceptible to hypoxic conditions. Since 1987, the area affected by hypoxia has fluctuated dramatically (LISS 2012). In 2012, an area of 289 square miles was affected, with hypoxic conditions lasting 80 days, 23 days more than average (LISS 2012). Relative to the western and central basins of Long Island Sound, the eastern basin has the best overall water quality, attributed to current-driven mixing (LISS 2012). Although it has been found that most marine animals need at least 5 mg/L of DO, this may not be as limiting as previously believed. Some marine species, like weakfish (Cynoscion regalis), are capable of tolerating DO concentrations as low as 2 mg/L, only displaying avoidance behavior of water with 1 mg/L DO (Stierhoff et al. 2009). Many species may be able to survive hypoxic conditions in Long Island Sound. During the sampling efforts of this study, however, low oxygen was not apparent.

4.1 BENTHIC CHARACTERISTICS

Sediment characterization of Long Island Sound, especially in the context of dredged material disposal sites, has been described in several different studies. The Millstone Power Station has conducted sampling in eastern Long Island Sound near the power plant and at a reference site located approximately five nautical miles from NBDS since 1976. The long time-series of this dataset offers a unique insight into local conditions over time. Among the parameters studied, the Millstone studies have observed sediment characteristics, benthic infauna, and fish abundance. Increased grain size was evident at Millstone's thermal discharge sites due to scouring (Dominion Resources Services Inc. 2006). Natural variation in sediment composition was observed at the reference site, but overall, silt and clay made up 12.4 and 5.5 percent of the sediment in June and September, respectively, with a significant decrease in mean grain size over a 33-year period (Dominion Resources Services Inc. 2013). In the present study, mean silt and clay composition ranged from 4.7 to 34.1 percent among the three dredged material disposal sites and off-site areas. NBDS, the site nearest to the Millstone study, had an average of about 5 percent silt and clay, which is similar to the Millstone reference site. Sediment samples were collected as part of a benthic analysis of Long Island Sound conducted by ENSR (2002); results of eastern Long Island Sound will be discussed here. At CSDS, both active and reference sites were dominated by sand-size particles, which is consistent with the findings of this study (i.e., 46 percent of CSDS sediment was medium-size sand). In about half of the samples collected in the NLDS, fine particles dominated; the other half was dominated by sand-size particles. There were almost no particles categorized as gravel. These findings are consistent with the current finding of silt and clay comprising the majority of NLDS sediment. A different study conducted by AECOM (2009) to monitor the effects and recovery of dredged

material disposal at NLDS found that on-site and reference samples were remarkably similar, with thick layers of brown sand. One site that was recently used for deposition was quite different, though, with irregular topography and clumps of shell or clay. These different characteristics are likely more representative of the dredged material source than local sediment. Since NLDS is an active dredged material disposal site, sediment is not expected to be homogeneous, which was reflected in the high variation among samples collected within the site. Relative to previous investigations, sediment characteristics have not drastically changed, with sand and fine particles dominating eastern Long Island Sound.

Total organic content, or TOC, of Long Island Sound sediment generally increases with decreasing grain size. Previous studies found values ranging from 0.02 to 1.05 percent at CSDS, which is inclusive of the values measured in this study (ENSR 2002). TOC at NLDS was measured between 0.70 and 2.69 percent in 2002 (ENSR 2002); current values (1.2–6.2 percent) are somewhat higher overall than these measurements. NLDS had the highest TOC values of any of the sites sampled in this study. As concluded in other studies, sites with smaller grain size were correlated with higher TOC content. Survival challenges with two model organisms during 10-day sediment toxicity testing suggest that sediment in Long Island Sound does not pose a health threat to benthic infauna.

Benthic infauna at Millstone showed evidence of long-term successional development (Dominion Resources Services Inc. 2013), with most sites dominated by annelids; the reference site was comprised of 48 percent annelids. In samples collected off-site in the current study, Annelida was the most abundant phylum; however, the most abundant species in off-site samples were two mollusks and one arthropod. The site of thermal discharge at Millstone was dominated by the mollusk Mytilus edulis, an epifaunal organism. NBDS, which is located near the Millstone plant, had an abundance of arthropods, but a bivalve was the single most abundant species. Another study (ENSR 2002) found that the dominant phylum at CSDS was Annelida in February and Arthropoda in July. Although Arthropoda was the most abundant phyla at CSDS in this study, the mussel Mytilus edulis was the most abundant species. At NLDS, arthropods were the most abundant taxon (ENSR 2002), similar to this study. NLDS, which had the highest percent composition of silt/clay and fine sand, was dominated by tube-dwelling amphipods (Ampelisca spp.) that prefer fine sand and muddy bottoms. These amphipods were also found in high number at NBDS, though primarily in two samples (P019 and P025) within close proximity of each other, both of which had the highest fine sand and silt/clay composition. The three areas dominated by medium sand particles (NBDS, CSDS, and off-site) had a higher occurrence of bivalves and barnacles. A benthic quality index developed by the Long Island Sound Study (2012) indicates that in the eastern basin, the conditions are 75 percent "good," and 25 percent "poor," which is better than the western basin but worse than the central basin.

The Millstone reference sites had both the lowest total individuals (2,058) and fewest number of taxa (107), which had significantly decreased since 1980. None of the four sites have displayed species richness (R) greater than 150 since sampling began in 1979 (Dominion Resources Services Inc. 2013). In the present study, three of the four sites exhibited species richness values bordering or exceeding 200. In comparison to the previous studies, species richness was notably higher in the present study. Species diversity, indexed by H', at CSDS has been recorded between 2.60 and 4.68, with higher values corresponding to samples taken from active disposal areas (ENSR 2002). Current estimates for CSDS range from 2.099 to 3.247, slightly less than the 2002 study. Diversity indices, or H', for NLDS have been estimated between 2.68 to 4.77 (ENSR 2002), a range that encompasses the values currently found in this study. Areas in central Long Island Sound have been recorded with diversity indices ranging from 3.0 to 3.6 and evenness indices between 0.6 and 0.7 (EPA 2004); both of these parameters are close to

estimates calculated in the current study. Overall, diversity is relatively high with sufficient evenness in all sampled areas in eastern Long Island Sound, which is in agreement with previous studies. Although patterns may change interannually, the current benthic community appears to be well-developed and diverse.

Parameter	NLDS	NBDS	CSDS	Off-site		
Number of samples	8	10	3	30		
Average grain size	34% silt/clay, 29% fine, 22% medium, 9% gravel, 6% coarse	49% medium, 19% gravel, 15% coarse, 13% fine, 5% silt/clay	46% medium, 24% gravel, 16% fine, 9% coarse, 5% silt/clay	37% medium, 27% fine, 16% gravel, 11% silt/clay, 9% coarse		
Total organic content	1.2–6.2%	0.4–0.9%	0.6–0.7%	0.2–1.9%		
Abundance (individuals/sample)	259–875 (2,590–8,750/m ²)	134–837 (1,340–8,370/m ²)	665–1,136 (6,650–11,360/m ²)	52–3,905 (520–39,050/m ²)		
Species richness	208	196	115	282		
Species diversity (H')	2.840 - 3.761	1.991 – 3.595	2.099 - 3.247	1.320 - 3.652		
Pielou's evenness (J')	0.683 – 0.825	0.551 - 0.861	0.509 – 0.762	0.378 – 0.888		
Dominant phyla	Arthropoda, Annelida, Mollusca	Arthropoda, Mollusca, Annelida	Arthropoda, Mollusca, Annelida	Annelida, Arthropoda, Mollusca		
Dominant finfish and % abundance						

4.2 FISHERIES PATTERNS

Finfish abundance in eastern Long Island Sound has fluctuated for many species, due to many factors, some yet unidentified. The CT DEEP (previously CT DEP) has been conducting trawl surveys in Long Island Sound since 1984. The data from these surveys were organized and analyzed by ENSR in a 2001 report. The most current data from the CT DEEP trawl survey (Gottschall and Pacileo 2012) are also incorporated into this discussion. Generally, the western and central basins had significantly higher finfish abundance compared to the eastern portion. This may be due to western and central Long Island Sound having more mud habitat, which is known to support greater fish densities (ENSR 2001a). Strong currents and irregular bathymetry in the eastern basin limits the ability to sample spatially random areas and results in the higher frequency of trawls in the coastal areas of Connecticut. Based on the available data, ENSR (2001a) concluded that all of the eastern Long Island Sound areas had low CPUE and less species richness compared to the central and western portions. Specific patterns for several species of interest are presented here.

In eastern Long Island Sound, essential fish habitat (EFH) has been designated for 38 managed species (Table 29). These data were compiled from the National Oceanic and Atmospheric Administration's

(NOAA's) *Guide to Essential Fish Habitat Designations in the Northeastern United States* (http://www.nero.noaa.gov/hcd/webintro.html; accessed 3 February 2014). This guide summarizes designated EFH in 10-minute by 10-minute squares, so EFH in any of the squares within the area of interest (Figure 1) was included in Table 29 and described by life stage. Of these, 12 were caught in the finfish trawls conducted by CT DEEP. Many of these species, as well as the early life history stages of all species, would not be susceptible to the bottom otter trawl gear type, however, so the presence or absence of a species in the trawl is not necessarily indicative of whether the animal inhabits eastern Long Island Sound.

Species		Larvae	Juveniles	Adults	Occurrence in Present Study
Atlantic salmon (Salmo salar)			Х	Х	
Atlantic cod (Gadus morhua)		Х	Х	Х	
haddock (Melanogrammus aeglefinus)		Х			
pollock (Pollachius virens)			Х	Х	
whiting/silver hake (Merluccius bilinearis)	Х	Х	Х	Х	Х
red hake (Urophycis chuss)		Х	Х	Х	Х
witch flounder (Glyptocephalus cynoglossus)	Х	Х			
winter flounder (Pseudopleuronectes americanus) ¹	Х	Х	Х	Х	Х
yellowtail flounder (Limanda ferruginea)	Х	Х	Х	Х	
windowpane flounder (Scophthalmus aquosus) ¹		Х	Х	Х	Х
American plaice (Hippoglossoides platessoides)			Х	Х	
summer flounder (Paralichthys dentatus)		Х	Х	Х	Х
ocean pout (Macrozoarces americanus)		Х	Х	Х	
Atlantic sea herring (Clupea harengus)			Х	Х	Х
monkfish (Lophius americanus)	Х	Х	Х	Х	
bluefish (<i>Pomatomus saltatrix</i>) ¹	Х		Х	Х	Х
Atlantic butterfish (Peprilus triacanthus)		Х			Х
Atlantic mackerel (Scomber scombrus)		Х	Х	Х	
scup (Stenotomus chrysops) ¹		Х	Х	Х	Х
black sea bass (Centropristis striata)	NA		Х	Х	Х
king mackerel (Scomberomorus cavalla)		Х	Х	Х	
Spanish mackerel (Scomberomorus maculatus)	Х	Х	Х	Х	
skipjack tuna (Katsuwonus pelamis)				Х	
bluefin tuna (Thunnus thynnus)			Х	Х	
cobia (Rachycentron canadum)		Х	Х	Х	
longfin squid (Loligo pealeii)		NA	Х	Х	Х
shortfin squid (Illex illecebrosus)		NA			
surf clam (Spisula solidissima)		NA	Х		
ocean quahog (Artica islandica)		NA	Х	Х	
spiny dogfish (Squalus acanthias)		NA	Х	Х	Х

Table 29: Essential Fish Habitat Designations within Eastern Long Island Sound

Species		Larvae	Juveniles	Adults	Occurrence in Present Study
blue shark (Prionace glauca)		Х	Х	Х	
dusky shark (Carcharhinus obscurus)		Х	Х		
sandbar shark (Carcharhinus plumbeus)		Х	Х	Х	
sand tiger shark (Carcharias taurus)		Х			
white shark (Carcharodon carcharias)			Х		
tiger shark (Galeocerdo cuvieri)			Х		
shortfin mako shark (Isurus oxyrinchus)		Х	Х		
common thresher shark (Alopias vulpinus)		Х	Х	Х	

Note: NA indicates that this lifestage does not exist for the species or EFH has not been designated ¹Targeted species in current study's fish trawls

To characterize biological activity in eastern Long Island Sound, the feedback of fishermen was critical to the overall success of the fishing survey. Regardless of opinion or industry, the fishing activity survey appeared to be well-received. It is difficult to estimate a response rate, since it is unknown how many fishermen were exposed to the survey. To increase survey availability, respondents were encouraged to distribute the survey freely. Despite an occasional reluctance, the majority of the industry was receptive to participating in and distributing the survey among fishermen. Most respondents recognized the importance of their input. The ability to supplement biological data with fishing patterns was accomplished through the cooperation of fishing groups and individuals.

Since each of the six tows had the same effort (30 minutes), catches from the three tows on-site can be compared with the three tows off-site. Abundance, or the number of individuals, was about the same (1,817 on-site; 1,888 off-site). Biomass was higher in off-site tows, likely due to a high occurrence of smooth dogfish in one trawl. Length distributions on and off dredged material disposal sites did not exhibit any clear patterns. It appeared that a greater proportion of large scup were present in trawls on dredged material disposal sites. Windowpane flounder had a greater proportion of large fish off-site, though. Winter flounder did not have a discernible pattern, and the other targeted species had too low of abundance to make any inferences. Based on the catch composition and lengths of fish collected in the CT DEEP trawls, there is no clear difference between fish assemblages on and off dredged material disposal sites.

Scup were caught often in the CT DEEP surveys. The eastern basin yielded lower catches of scup during the fall than western areas; however, some areas had high abundances in the spring. These fish move seasonally, from offshore in the winter to inshore in the summer. With the adoption of a Fishery Management Plan (FMP) in 1996, measures were put in place to effectively manage the scup resource. As defined by NOAA's National Marine Fisheries Service, a fish stock is considered overfished if its biomass is depleted below a level needed to achieve maximum sustainable yield. Overfishing occurs if the fishing mortality (i.e., harvest) exceeds the rate needed to reach the maximum sustainable yield. In 2009, the scup stock was deemed rebuilt, meaning the previously overfished stock had recovered to levels that support maximum sustainable yield; therefore, the most recent stock assessment in 2012 concluded that the stock was not overfished and overfishing was not occurring (Mid-Atlantic Fishery Management Council 2013b). In both the spring 2012 CT DEEP data and the current study, scup were the most abundant species. In this study, only the Cornfield Shoals Dredged Material Disposal Site had a notably low abundance of scup, which also had a high abundance of little and winter skates. Scup spawn once a year in the summer, which explains the trimodal length frequency diagram (Figure 10); as each

year-class matures and grows, a distinct peak forms. Therefore, at least three year-classes were collected by CT DEEP for this survey. Males and females become sexually mature at 2 years, which corresponds to about 16 cm (160 mm). Of the measured scup, the first peak at 110 mm is likely age-0 fish, just before their first birthday. The following, highest peak at 170 mm represents fish turning 2 years of age and reproducing for the first time. The last, smaller peak (230 mm) would be composed of fish 3 or more years old. Scup are targeted more often by commercial and charter/party boat fishermen than the recreational industry.

Winter flounder abundances have decreased since 1992, and though they are broadly distributed throughout the Sound, the eastern basin had the lowest catches. Data from 2010 indicated that the southern New England and mid-Atlantic stock was overfished (i.e., biomass level below maximum sustainable yield) but that overfishing was not occurring (i.e., fishing mortality did not exceed levels needed to rebuild the stock) (Atlantic States Marine Fisheries Commission 2013c). Winter flounder, one of this study's primary targeted species and of high commercial importance, was also studied by Dominion Resources Services Inc. (2006) during their investigation of the ecological impacts of the Millstone Power Station. Historically, there was a decline in stock abundances after the early 1980s, presumably due to low recruitment, warmer winter temperatures, and increased fisheries exploitation. In a follow-up study, Dominion Resources Services Inc. (2013) found that abundance decreased further, though larval abundance was greater in Niantic Bay relative to Niantic River, suggesting Long Island Sound may be more important to reproductive success than estuaries. This species has a seasonal migration that is the reverse of many of the other species found in Long Island Sound. Winter flounder overwinter in the inshore bays and estuaries, then migrate offshore during the summer months. Consequently, the relatively low abundance in this study's trawl survey may be a result of preferred offshore habitat in June. Sexual maturity is reached at 2 to 3 years of age, or 20 to 25 cm (200–250 mm). Based on fish length, most of the winter flounder collected in this survey were sexually mature. The somewhat protracted spawning period may also explain why a distinct peak for each year-class is not evident (Figure 11). Since winter flounder were scarce, though, there may simply be insufficient length data to discern a pattern. Winter flounder were only identified by recreational fishermen as a target species, and at low rates.

Three striped bass were collected in three different tows throughout eastern Long Island Sound for this study. Striped bass stocks have been deemed recovered as of 1995, following strict regulations in the mid-1980s. The most recent assessment from 2013 found that the stock is not overfished nor is overfishing occurring (Atlantic States Marine Fisheries Commission 2013a). This increase in abundance since the 1980s is also reflected in the CT DEEP survey. Since spawning occurs in freshwater between April and June, it is possible that adult fish were not yet using habitat in eastern Long Island Sound during this trawl survey. Juvenile striped bass (<20 cm) often disperse to low salinity habitat in non-natal estuaries (Able et al. 2012) before growing and moving into the main estuary and ocean. From Plum Island Estuary, Massachusetts, sub-adult striped bass migrate south in the fall, with about half stopping in Long Island Sound, and the other half continuing on to the Delaware Estuary (Mather et al. 2010). Two adults that were collected on a dredged material disposal site in this study were estimated to be approximately 6 years of age; one that was collected off-site was likely 10 years of age. Sexual maturity is reached between 2 and 4 years for males and 5 to 8 for females, so the 6-year-old individuals may or may not have been sexually mature. This anadromous fish is the most sought-after species by charter/party boat and recreational fishermen.

Bluefish primarily occur in eastern Long Island Sound seasonally, moving through the Mid-Atlantic Bight during their summer spawning period, though larger fish may reside there year-round. The bluefish

stock is considered rebuilt, with both commercial and recreational fishermen under-harvesting the stock (Atlantic States Marine Fisheries Commission 2013b). Since the start of the survey, bluefish catch per tow varied, with a higher frequency of age-0 fish than age-1+. In 2012, approximately thirteen age-0 and one age-1+ bluefish per tow were caught, with greater biomass during the fall sampling period. Therefore, the finfish trawl sampling effort in this study had below average abundance of bluefish, but that could be due, at least in part, to their seasonal migration restricting them from Long Island Sound until later in the summer. To determine age class, CT DEEP uses 30 cm as the length to partition age-0 and age-1+ bluefish (CT DEEP 2012). Using this to determine age, the single bluefish collected in the westernmost tow of this study, measured at 537 mm fork length (53.7 cm), is considered older than 1 year of age. Bluefish are the third-most targeted finfish by both charter/party boat and recreational fishermen.

Both secondary targeted species, windowpane flounder and striped searobin, were among the top 10 most abundant species in the CT DEEP Long Island Sound survey in 2012, comprising 2.2 and 1.9 percent of the total catch, respectively. However, ENSR (2001a) found that the highest catches of these two species occurred in western Long Island Sound. In this study, both species occurred at low densities, except windowpane flounder in tow AC2013005. In this tow, 62 fish made up over 7 percent of the catch. This was also the one tow with an above-average occurrence of smooth dogfish, which is unexpected since dogfish are a common predator of this flounder species. Split spawning occurs for windowpane flounder in the spring and fall; since only one peak is evident in the length frequency graph (Figure 12), other cohorts may have been excluded by the size or speed of the trawl net. The average age at maturity for striped searobin is 221 mm fork length, for both males and females (McEachran and Davis 1970). Therefore, most, if not all, of the collected individuals (225–295 mm) were sexually mature. Neither windowpane flounder nor striped searobin were specifically mentioned as a target species in the fishing activity questionnaire.

Commercial finfishermen rely heavily on eastern portions of Long Island Sound, while charter/party boat and recreational fishermen frequent the central to southwestern portions. Interestingly, commercial fishermen were the only group in which the majority felt that the quantity of their target species had increased over time; all other fishery groups felt abundance of their target species had not been changing or had been decreasing. All finfish groups listed summer flounder and striped bass as important target species, but commercial fishermen were alone in identifying black sea bass and tautog among their most-targeted species. Although tautog are currently characterized as overfished (Atlantic States Marine Fisheries Commission 2011), the black sea bass stock was considered rebuilt in 2009 and is at 102 percent of the necessary spawning stock biomass for maximum sustainable yield (Atlantic States Marine Fisheries Commission 2009, Mid-Atlantic Fishery Management Council 2013a). This recent increase in abundance may have influenced many of the fishermen targeting black sea bass to report greater numbers.

Shellfish fisheries patterns display a slightly different spatial and temporal pattern than that for finfish. The three most abundant shellfish species collected by on-site trawls were longfin squid, spider crab, and lobster. For off-site trawls, they were longfin squid, spider crab, and blue crab. The trawl data are not likely to fully complement the survey data for the commercial shellfish fishermen, because of gear effects. Many fishermen use pots, traps, or dredges to target shellfish, especially for animals that reside below the sediment surface. Based on the CT DEEP trawl survey in all of Long Island Sound, lobster abundance has been below average for the last decade (Gottschall and Pacileo 2012; Figure 20). In the six eastern Long Island Sound trawls included in this study, lobsters were only collected in the easternmost trawls, toward the highly used commercial lobster grounds in the eastern portion of the survey

area (Figure 15). Since trawls did not collect any lobsters and commercial fishermen do not use the area, the western portion (areas A, B, E, F, and G) may be suboptimal lobster habitat. In addition to habitat usage, the overall low abundance of lobsters in this study may be due to the decreasing population abundance throughout the Sound. Based on feedback from the fishing activity survey, the eastern portion of the study area is important to the lobster fishery, while the southwestern portion is used frequently by the commercial mollusk industry. Commercial mollusk fishermen were the only group that did not report peak fishing effort in the summer; rather, they focused their efforts in the fall. Many shellfish areas in New York waters, where the commercial mollusk fishery is focused, have seasonal closures from May to October or November (New York State Department of Environmental Conservation 2014), so mollusk fishermen may increase their effort when the areas reopen in the fall.

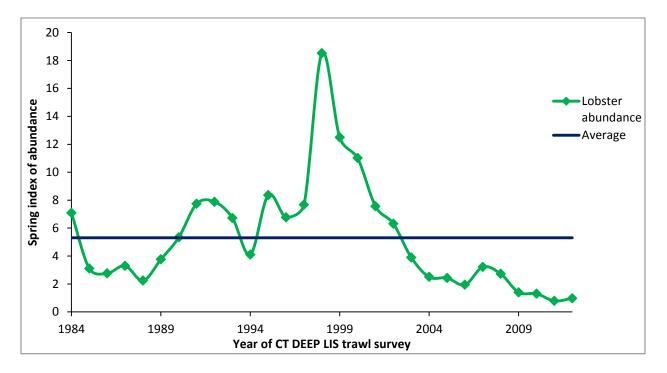


Figure 20: Spring Index of Abundance for Lobster, Based on the CT DEEP LIS Trawl Survey

Fishing near dredged material disposal sites was infrequent, regardless of the fishery type. Half of all respondents do not fish near dredged material disposal sites at all and a large percentage of them (44 percent) were unsure. Since these individuals are not seeking out these specific dredged material disposal site areas, it is unlikely that they would frequent them by chance. Only a small portion (6 percent total) fished near a dredged material disposal site occasionally or regularly. The NLDS was the only dredged material disposal site included in the current study that was explicitly mentioned by fishermen who fished close to such sites. NBDS and CSDS do not appear to attract fishermen. Since few of the questionnaire's respondents fished near dredged material disposal sites, feedback on the effect of dredged material disposal site on fishing activity was limited. The few that did identify changes in catch near a dredged material disposal site include an increase in mid-Atlantic species, as well as an overall increase in catch quantity. Based strictly on those fishermen that commented on changes in catch near dredged material disposal sites, the only negative observation was that flounders were "all gone;" all other responses were neutral or positive. It may be assumed that this one particular fisherman's response was regarding the most sought-after flatfish, summer flounder (Table 26). If this is the case,

however, the observation contradicts the increase in summer flounder abundance observed over the last decade; a recent stock assessment from 2011 found that the summer flounder stock had reached its biomass target in 2010 (Northeast Fisheries Science Center 2011).

One recurring comment throughout the survey was a greater incidence of warmer-water species. This observation has been substantiated by years of catch data. More than 20 years of CT DEEP's trawl data were compared to 32 years of water temperature data by Howell and Auster (2012). Bottom water temperature significantly increased over this time period. With it, fish assemblages shifted from cold-adapted to warm-adapted species. Northern fish like windowpane flounder, winter flounder, red hake, and little skate have shown declining numbers, while southern fish like scup, butterfish, summer flounder, and black sea bass have proliferated (Benson 2012). The 2012 Long Island Sound trawl survey caught pinfish (*Lagodon rhomboids*) for the first time in two fall trawls (Gottschall and Pacileo 2012). This warm-water species tolerates water temperatures from 10°F to 35°F and are generally found in more southern waters (Ohs et al. 2011). Fish assemblages have already undergone alterations in response to increased water temperature, as evidenced by trawl catch composition and fishery target species. This increase in water temperature may further stress cold-water species, increasing susceptibility to disease or parasites, or driving populations offshore.

4.3 DISEASE AND TOXICITY

The American lobster may be particularly vulnerable to environmental changes, such as warmer water. Shell disease was first documented in 1992 and increased dramatically after 1999. This increase in shell disease was concurrent with temperatures regularly exceeding 20°C, a pattern that was not evident before the mid-1990s. Shell disease results in bacterial growth that weakens the lobster's shell, with a simultaneous attack on the immune system. Molting can get rid of shell disease, but under the same stressful environmental conditions, the animals easily become re-infected. Eastern Long Island Sound has had the highest incidence of the disease relative to the central and western basins, with rates ranging from a low of 14.4 percent in 2008 to a high of 35.5 percent in 2002 (Giannini and Howell 2010). Though shell disease incidence has remained elevated since 1999, the most recent estimates from 2009 show a slight decrease in occurrence from 2002-2007 levels, with 22 percent of lobsters affected by the disease (Giannini and Howell 2010). Disease severity has been linked to poor immune systems (Homerding et al. 2012), but it does not appear to result from metal contamination (LeBlanc and Prince 2012). The disease is more common in egg-bearing females, with up to 92.1 percent showing signs of shell disease in 2002 (Giannini and Howell 2010). In addition to this biological affliction, there is some evidence that lobsters are beginning to spawn offshore in deeper waters, which may negatively affect recruitment rates. Larvae released offshore are transported away from historic nursery sites in Long Island Sound estuaries, resulting in higher losses at sea or settlement in more northern areas (Bell 2010). Environmental changes, rather than fishing pressure, have been implicated in the decline of the southern New England stock of American lobster (Bell 2010). Decreased health, coupled with recruitment failure, has likely contributed to the relatively few commercial lobstermen still actively fishing, as well as low abundances, both apparent in the current study.

From 1988 to 2010, chemical contaminants from land, air, and water have collectively decreased by 86 percent within Long Island Sound (LISS 2012). This decline has been attributed to toxic chemical bans, tighter regulations, and less manufacturing, which has led to the recovery of several species, including the osprey (LISS 2012). Contaminants still threaten marine and coastal organisms, however. Bluefish, an important recreational species, has been found with levels of mercury high enough to pose a risk to human health (Szczebak and Taylor 2011). In fact, bioaccumulation is correlated to bluefish length,

because as these fish grow, they prey on larger food items with more mercury. Both summer and winter flounders have exhibited bioaccumulation of mercury as well, with evidence that mercury is transferred through the food web (Payne and Taylor 2010). Therefore, some of the largest fishes (and most sought-after by fishermen) often contain the highest contaminant concentrations. Not only can contaminants like mercury pose a risk to human health, but they may also decrease the fitness of an organism. The saltmarsh sparrow, an endangered coastal bird, has been observed with mercury levels that may reduce nesting success (LISS 2012). As previously stated, contaminant levels have decreased overall, however, with many beneficial results. Levels of contaminants such as metals, dioxins, and pesticides were low enough in shellfish that 2,500 acres of LIS shellfish areas were reopened in 2011 after 40 years (LISS 2011). Although some organisms continue to be affected by contaminants, the health of Long Island Sound has improved, resulting in the recovery of several species.

As discussed in Sections 3.1 to 3.4, the 10-day sediment toxicity testing completed for this study resulted in survival rates ranging from 82 to 92 percent of *A. bahia* and 94 to 98 percent of *L. plumulosus*, suggesting that the toxicity of sediments within the disposal sites is not a major concern for survival of benthic organisms.

4.4 SITE-SPECIFIC TRENDS

The NLDS is distinguished by the high proportion of silt and clay sediment. Likewise, NLDS samples have slightly elevated organic content. Species density varied substantially from site to site, with a minimum of 30 in NBDS and a maximum of 3,905 in an off-site grab. Since the variation occurs within all of the sites sampled, there is not one particular site or area that shows a notable trend in species density. Species richness was highest off-site where the greatest number of grabs occurred, which is supported by species-area relationships in marine ecosystems (Valiela 1995, Neigel 2003). Diversity, indexed by H', was also somewhat variable, but was relatively high. No one site had significantly different diversity. Off-site samples were dominated by annelids, while all others had arthropods as the dominant taxon. On a species-specific basis, however, the fine-grained NLDS contained more tube-dwelling amphipods compared with the other three medium-grained sites, which had more barnacles and bivalves. Based on average abundance by biomass, scup was greatest both on and off dredged material disposal sites, however it occurred in different percentages. Off-site, scup made up about 20 percent of the catch, while it made up almost 50 percent of on-site trawls.

4.5 COMPARISONS AMONG SITES

In general, the sediment composition was consistent with expectations, and similar between dredged material disposal sites and off-site areas. Based on the grain size analysis of this study, the areas sampled in eastern Long Island Sound were primarily made up of medium-size sand. This type of sand often provides habitat for many marine invertebrates, but does not support seagrasses in the open-water habitat of the study area due to minimal light penetration to the ocean bottom. Likewise, no evidence of hardbottom or livebottom in the sampled area of eastern Long Island Sound was found. Organic content was relatively low across all sites, with the highest TOC at NLDS, which coincides with a high proportion of silt and clay. The number of individuals per sample ranged from 30 to 875 for on-site benthic grabs, and ranged from 52 to 3,905 for off-site grabs. Only three of the off-site grabs attained more than 1,000 individuals per sample; the average was 626. This is comparable to the averages of NLDS (617), NBDS (529), and CSDS (893). Species richness was higher than expected based on previous measurements (Dominion Resources Services Inc. 2013), which indicates a diverse infaunal community. Diversity indices were marginally significant between samples collected on and off dredged material disposal sites, with H' increased on-site. Based on H', benthic infauna species diversity is greater on a

dredged material disposal site relative to adjacent areas. Arthropods dominated on-site samples, while annelids were the majority taxon for off-site samples. However, Arthropoda, Mollusca, and Annelida were almost equally abundant across sample sites. Therefore, no difference between taxa was apparent between grabs on and off dredged material disposal sites. Toxicity of the sediment to two organisms was not different among eastern Long Island Sound sites, and none of the field sites resulted in differential survival when compared to survival in control sediment.

A variety of organisms were brought up in the trawls conducted in eastern Long Island Sound. Scup, one of the primary targeted species, was the most abundant species by weight for both on- and off-site tows. The only targeted fish, either primary or secondary, that did not appear in both areas was the bluefish, which was absent from off-site tows. CPUEs, which are proportional to population abundances, did not differ significantly between catches on and off of dredged material disposal sites for targeted species of interest (scup, striped bass, winter flounder, bluefish, striped searobin, and windowpane flounder).

Overall, eastern Long Island Sound is dominated by medium sand that supports a healthy, diverse group of benthic organisms. Dredged material disposal sites do not appear to be correlated to changes in fish or benthic infauna abundance or habitat alterations; rather, local processes seem to dictate differences between samples and sites. Finfish abundance is presumably greatly influenced by seasonal movements of many species, including some of the target species of this study, such as scup, winter flounder, and bluefish. For all of the five fishery groups, the majority of fishing activity was concentrated in the eastern and southwestern portions of the Sound. The northwest portion of the study area appeared to have the least fishing activity. Eastern Long Island Sound provides important habitat for many benthic and fish species, as well as fishing opportunities for many commercial fishermen and recreational anglers.

5 REFERENCES

- Able, K. W., T. M. Grothues, J. T. Turnure, D. M. Byrne, and P. Clerkin. 2012. Distribution, movements, and habitat use of small striped bass (Morone saxatilis) across multiple spatial scales. Fishery Bulletin **110**:176–192.
- Ackleson, S. G. and J. O'Donnell. 2011. Small-scale variability in suspended matter associated with the Connecticut River plume front. Journal of Geophysical Research-Oceans **116**.
- AECOM. 2009. Monitoring Survey at the New London Disposal Site, July/August 2007. Prepared for USACE New England District.
- ASTM International. 1994. E1367-92. Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipods. American Society for Testing and Materials, Philadelphia, PA.
- ASTM International. 2007. D422. Standard Test Method for Particle-Size Analysis of Soils. American Society for Testing and Materials, Philadelphia, PA.
- ASTM International. 2010. D2216 Method B. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. American Society for Testing and Materials, Philadelphia, PA.
- ASTM International. 2013. D2974 Method C. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. American Society for Testing and Materials, Philadelphia, PA.
- Atlantic States Marine Fisheries Commission. 2009. Species Profile: Black Sea Bass Joint Management Yields Rebuilt Status for Popular Mid-Atlantic Fish. Pages 1–3 ASMFC Fisheries Focus.
- Atlantic States Marine Fisheries Commission. 2011. 2011 Tautog Assessment Update Summary.
- Atlantic States Marine Fisheries Commission. 2013a. Fisheries Management: Atlantic Striped Bass. Arlington, Virginia.
- Atlantic States Marine Fisheries Commission. 2013b. Fisheries Management: Bluefish. Arlington, Virginia.
- Atlantic States Marine Fisheries Commission. 2013c. Fisheries Management: Winter Flounder. Arlington, Virginia.
- Battelle. 2003. Long Island Sound Dredged Material Disposal EIS, Appendix H-2: Benthic Community Analysis for the Bridgeport and Milford Sites: July 2002 Survey. Prepared for USACE - New England Division.
- Bell, M. C. 2010. Recruitment Failure in the Southern New England Lobster Stock, External Independent Peer Review. Center for Independent Experts.
- Benson, J. 2012. Warmer Long Island Sound reeling in southern fish. The Day. The Day Publishing Company, New London, Connecticut.
- [CT DEEP] Connecticut Department of Energy and Environmental Protection. 2014. Long Island Sound Trawl Survey. Retrieved 28 March 2014, from

http://www.ct.gov/deep/cwp/view.asp?a=2696&q=322660&depNAV_GID=1647.

- Dominion Resources Services Inc. 2006. Monitoring of the Marine Environment of Long Island Sound at Millstone Power Station, Waterford, Connecticut: Final Report 2005.
- Dominion Resources Services Inc. 2013. Monitoring of the Marine Environment of Long Island Sound at Millstone Power Station, Waterford, Connecticut: Final Report 2012.
- ENSR. 2000. Long Island Sound Dredged Material Disposal EIS, Appendix H-4: Finfish Survey Summary Report, June and September 2000. Prepared for USACE - New England Division.
- ENSR. 2001a. Long Island Sound Dredged Material Disposal EIS, Appendix H-6: Analysis of Connecticut Department of Environmental Protection Trawl Data for Long Island Sound. Prepared for USACE - New England Division.

- ENSR. 2001b. Long Island Sound Dredged Material Disposal EIS, Appendix H-9: Fishing Activities Questionnaire and Interview Interim Report. Prepared for USACE - New England Division.
- ENSR. 2002. Long Island Sound Dredged Material Disposal EIS, Appendix H-1: Benthic Community Analysis: February and July 2000 and July 2001 Sampling Surveys. Prepared for USACE - New England Division.
- [EPA] U.S. Environmental Protection Agency. 1986. Ocean Dumping Site Designation Delegation Handbook for Dredged Material, EPA - Office of Marine and Estuarine Protection, Washington, D.C.
- [EPA] U.S. Environmental Protection Agency. 2004. Final Environmental Impact Statement for the Designation of Dredged Material Disposal Sites in Central and Western Long Island Sound, Connecticut and New York. EPA - New England Region.
- [EPA and USACE] U.S. Environmental Protection Agency and U.S. Army Corps of Engineers. 2004. Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters. U.S. Environmental Protection Agency, Region 1 and U.S. Army Corps of Engineers, New England District, Boston, Massachusetts.
- Giannini, C. and P. Howell. 2010. Connecticut Lobster (*Homarus americanus*) Population Studies. NOAA NMFS, Northeast Region, New London, Connecticut.
- Gottschall, K. F. and D. J. Pacileo. 2012. A Study of Marine Recreational Fisheries in Connecticut, Job 2.1: Long Island Sound Trawl Survey. State of Connecticut Department of Energy and Environmental Protection.
- Homerding, M., A. McElroy, G. Taylor, A. Dove, and B. Allam. 2012. Investigation of Epizootic Shell
 Disease in American Lobsters (*Homerus americanus*) from Long Island Sound: II. Immune
 Parameters in Lobsters and Relationships to the Disease. Journal of Shellfish Research **31**:495–504.
- Howell, P. and P. J. Auster. 2012. Phase Shift in an Estuarine Finfish Community Associated with Warming Temperatures. Marine and Coastal Fisheries **4**:481–495.
- LeBlanc, L. A. and D. Prince. 2012. Metal Concentrations in Tissues of American Lobsters (*Homarus americanus*) with Epizootic Shell Disease. Journal of Shellfish Research **31**:543–553.
- [LISS] Long Island Sound Study. 2011. DEC to Reopen 2,500 Acres of Shellfish Areas. New York State Department of Environmental Conservation (DEC), Albany, New York.
- [LISS] Long Island Sound Study. 2012. Sound Health: Status and Trends in the Health of Long Island Sound.
- Mather, M. E., J. T. Finn, S. M. Pautzke, D. Fox, T. Savoy, H. M. Brundage, L. A. Deegan, and R. M. Muth. 2010. Diversity in destinations, routes and timing of small adult and sub-adult striped bass Morone saxatilis on their southward autumn migration. Journal of Fish Biology **77**:2326–2337.
- McEachran, J. D. and J. Davis. 1970. Age and Growth of the Striped Searobin. Transactions of the American Fisheries Society **99**:343–352.
- Mid-Atlantic Fishery Management Council. 2013a. Black Sea Bass Advisory Panel Information Document. Mid-Atlantic Fishery Management Council. 2013b. Scup Advisory Panel Information Document.
- Neigel, J. E. 2003. Species-Area Relationships and Marine Conservation. Ecological Applications, Supplement **13**:S138–S145.
- New York State Department of Environmental Conservation. 2014. Chapter I Fish and Wildlife, Part 41: Sanitary Condition of Shellfish Lands. 2014, from http://www.dec.ny.gov/regs/4014.html. Last updated 29 January 2014.
- Northeast Fisheries Science Center. 2011. Stock Assessment of Summer Flounder for 2011. NOAA National Marine Fisheries Service. Woods Hole, Massachusetts.
- Northeast Ocean Data Portal Working Group. 2014. Northeast Ocean Data Viewer. 2014, from http://northeastoceanviewer.org/.

- Ohs, C. L., M. A. DiMaggio, and S. W. Grabe. 2011. Species Profile: Pinfish, *Lagodon rhomboides*. Southern Regional Aquaculture Center.
- Payne, E. J. and D. L. Taylor. 2010. Effects of diet composition and trophic structure on mercury bioaccumulation in temperate flatfishes. Archives of environmental contamination and toxicology 58:431–443.
- Stierhoff, K. L., R. M. Tyler, and T. E. Targett. 2009. Hypoxia tolerance of juvenile weakfish (*Cynoscion regalis*): Laboratory assessment of growth and behavioral avoidance responses. Journal of Experimental Marine Biology and Ecology **381**:S173–S179.
- Szczebak, J. T. and D. L. Taylor. 2011. Ontogenetic patterns in bluefish (*Pomatomus saltatrix*) feeding ecology and the effect on mercury biomagnification. Environmental Toxicology and Chemistry **30**:1447–1458.
- Tetra Tech Inc. 2013a. Literature Review for Eastern Long Island Sound Dredged Material Disposal Sites. Task Order N62470-08-D-1008-WE11. Prepared for Naval Facilities Engineering Command Mid-Atlantic and U.S. EPA.
- Tetra Tech, Inc. 2013b. Quality Assurance Project Plan for Eastern Long Island Sound Dredged Material Disposal Sites – Field Procedures. Task Order N62470-08-D-1008-WE11. Prepared For Naval Facilities Engineering Command Mid-Atlantic and U.S. Environmental Protection Agency by Tetra Tech, Inc., June 2013.
- Tetra Tech, Inc. 2013c. Sampling and Analysis Plan for Eastern Long Island Sound Dredged Material Disposal Sites. Task Order N62470-08-D-1008-WE11. Prepared For Naval Facilities Engineering Command Mid-Atlantic and U.S. Environmental Protection Agency by Tetra Tech, Inc., June 2013.
- Tettelbach, S. T. and C. F. Smith. 2009. Bay Scallop Restoration in New York. Ecological Restoration **27**:20-22.
- [USACE] U.S. Army Corps of Engineers. 2009. Final Report for Long Island Sound Dredged Material Management Plan: Upland, Beneficial Use, and Sediment De-watering Site Inventory. USACE -New England District.
- [USACE] U.S. Army Corps of Engineers. 2014. Disposal Monitoring System (DAMOS). 2014, from http://www.nae.usace.army.mil/Missions/DisposalAreaMonitoringSystem(DAMOS).aspx.
- Valiela, I. 1995. Marine Ecological Processes, 2nd Edition. Springer-Verlag, New York, New York.
- Wenczel, P., C. F. Smith, and S. T. Tettelbach. 1994. Planting Bay Scallops: Results of Reseeding Bay Scallops in the Peconic Bay New York 1986 to 1992. The Long Island Green Seal Committee, Southold, New York.
- Zhang, J., D. Gilbert, A. Gooday, L. Levin, S. Naqvi, J. Middelburg, M. Scranton, W. Ekau, A. Pena, and B. Dewitte. 2010. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7.

APPENDIX A – FIELD DATA SHEETS; BENTHIC SAMPLING

T. AVAN - A	o Cinolini			
SITE TIME DEPTH TEMP CONDMUS	TEMP COND DO	DOX 1 PH 1	REMARKS	
PHI RODO MAR 202	19.82 41.37 7.44	99.6% 8.19	N WANTE EDRE	
I OW	19.25 40.74 7.40	93.7 2 8.16		
CEPES		P1.62 8.17		
10 th 07 30 70	19.45 38.99 7.19	90.5°/ 7.18		
Start	13.58 40.07 6.91	85.97 8.17		
Billion	18.51 40.41 6.84	45.1% Bill		-
12 SHLOW OT 45 FI	19.42 39.86 7.69	22.8 1.568		
it and	18.42 41,40 6.74	8412 8.18		
Bot	17.37 42.00 6.51	11.8 11.PT		
RHIL MY OTSS 71	19.58 40.11 6.99			
GW	19.20 40.96 675	PI-8 2238		
Not Not	LVIH			1.1
AND DATE OFFICE 59	19.56 34,974 6.85	B6.5% 8.11 B5.4% 8.14	MS/en is which the	1
な	19-37 39.77 6.66	841.2 2.198	70 m - 09 00	

TE TEATECH	Ŧ				1. 1.						4	
	3	2			Fd				Benthic	Benthics, Sheet <u>f</u> of <u>f</u>		د بر ج
Crew: BD, DA	LE (C	4.	- Date しるす 下ら	C Grab	Bate: 1101 Vessel: NOSTIN VY VAND	Len VV	1 12	<u>vicoution: Loo NW LON LON IN Annon</u> Calibration: <u>N/A</u>	1-01/101-1	N LEO N		ULPOSAL SIX
Weather Conditions: Jacon w. warn	ISI	57	War y	<u> </u>		(\$103)						
Additional Notes		1-1-07	Per - triplicate sample as	NA NO		Ikctuly PNII toxicity	toxicit	4 Samol collote	Ach			
59 + H (3 M in		L STN F	r 50 m	- Aline				>				
Site/Station ID	Time	GPS?	Depth TmJf	% Full	Penetration?	Water Overlay?	Even Surface?	Sediment Description (color, odor, texture)		Grain Size	# of #	
Palla	<u>j</u>	7	20	20	Yes	705	yes	Sarich w /S (not) /wsh	N:0 Z	Z	7	Bar
911 Ød	Sez		6	R	292	582	<u>7</u> 45	Sand W/Shuil has	7 2	7		J Baq
DANC	(230		53	75	Zes	285	×es	Sard W/Shillorh		Z	ungen	i Brd
Ren (1245	7	. 0 0	20 21	20K	ly es	Veca	San nà W Khall	7	Z	М	a a a
T Q	13:20	2	5.0	29	57.8	1 1 1 1 1 1	534	silty davi) 07	7	land	> {{
500	1308		89 10	50	Yes	Yes	M C	sand w/shill had	1	2) and Bala
Pa13	1330	7	Car)	S	Yes	, Ye S	- ^0	sandur, si Hicher	7 ON	2	5	×8 ≫\$
· Pool	1351	Z	61 S	6	u es	Yes	495	Silt Class	7 QN	2	T	\sim
L'AQY	443		199 <u>.</u>			2	2.	asaatireenaan googaan ay ay aana ay ay aana ahaa ahaa ahaa	n na sensa se		4 1444	
PNOS	1432	2	62:7	<u>M</u> S	yes	700	Xes	sand	\geq	2	7	SAC
RNJØ	1443	Z	71.6	R	Yes	703	XIS	Sa N.	20	2	N	RAC
	Trouble	Leshoon	Troubleshoot problems w	W = W	(Ver Veer C	2 Chin	19 15 12	iys u ján au - m	ne, went	ba de te	0	
Additional Notes	mar W	ie to	999	SWIN	marina to get a swind, whill solved	30/ ma	-98 -98 -98	(, while solved grab issue. Regrouped & POH & ROD MOUN		1200 N	i di A	
	10003	\$2 +	1449 + Robe = 2 35%	3	15%0 9K	263-6	, same	0 grales to annorth. 50% toke	Ú.			
WE11_Benthic_DataSheet		200	- 23	+ 52	00 9 12 K	-5- -2		8008 = 2573 +50% guilds to generate 75% total	4/3/2013	13		105000 MV>
)	$\overline{}$	· .	1 Jacob				· · ·

Benthics, Sheet <u> of</u>

R WUTWS Location: <u>LT Sand</u>	Calibration: N /A		
11 10 17 Vessel: Noch	Grab Type: <u>V& ~ V * ~</u>	305	
Project: Low 1 5 and Benthic Date:	<u>Сгем: ВО, ТЕ, DA, СК</u>	Weather Conditions: <u>Swammer</u> , hur Co	Additional Notes

		Bar	PS S	$\overline{}$							2 samples
	# of #]
	Grain Size	2	7								
	TOC	>	7								4/3/2013
	RPB	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Correction (Correction)	an a	
	Sediment Description > (color, odor, texture)	Sarah	Sand							240	
	Even Surface?	$\vee \mathcal{Q}$	Sax							0	
	Water Overlay?	ye S	Yes								
	Penetration?	sat	2 % 2							END SOMPLING FOR DAY @ 1540	
	% Full		50%								
1	Depth (m)	69.350%	9 9 9							<u> </u>	
	GPS?	>	7							Q V	
	Time	200	0)15							₩ Z	aSheet
	Site/Station ID	RASS	e set			14	÷	•		Additional Notes	WE11_Benthic_DataSheet

ł

and the second second

2

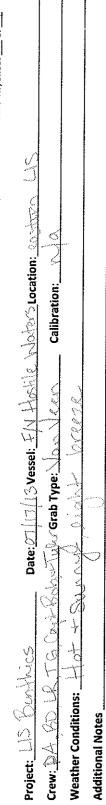
er S 1 Situs S S S)ot (Ú) 20 00 J S J p C D A.A.A. # of # Benthics, Sheet $\overline{\mathcal{Z}}$ of $\overline{\square}$ Grain Size 4/3/2013 TOC PPD-C C >Date:07/17/15 Vessel: F/V Hosh/c Woheelocation: costern LiS Triplicates a text why sampled outleated at Site Popo. Sardy withosh raw orther ACC CON ters achidici (color, odor, texture) Sediment Description Asal - lossh And the bid as Sand Hrash Sand + amarked 1 Calibration: <u>' (</u> Z A Surface? S. T 8 Even S. surger and the second s ç. 5 \mathcal{L} Ø Water Overlay? $\sim 1 \sim 1$ 200 405 1 S. 1 $\mathcal{O}_{\mathcal{O}}$ 3 1 $\langle \rangle$ Crew: DA. BDIRIG Capt Brot Tuley Grab Type: Nan Veen ç Penetration? R N 3 7 100 NS. S Weather Conditions: Durnman har Var North у 7 SS >> % Full 92.010 Ч Г Q U 20 0 0 $\hat{\mathbb{O}}$ 0 01 2. ĥ, 0 87 270 Depth (m) 0 <u>S</u> $\sum_{i=1}^{n}$ 0 Ē 00 GPS? Project: LIS Burkhics 200 <u>Г</u> 050 832 5 Time 0902 000 157 WE11_Benthic_DataSheet Additional Notes 0.0x0.0 **Additional Notes** Site/Station ID POB 2-11 P\$030 1001 • 0010 0000 20030 Rad Carp. ł,

TE TETRATECH

TETRA TECH

Benthics, Sheet 🛁 of 🗌

Location: 2000 1	ibration: 시 A		
Date: D7 11 1 S Vessel: F/V Howic Nucle	They Grab Type: Non Vecn Calibr	y. no wind	-
Project: 15 Benthics	Crew: DA BD, LR TTG Co de Ballon	Weather Conditions: Hat w Summ	Additional Notes


Site/Station ID	Time	GPS?	Depth (m)	% Full	Penetration?	Water Overlay?	Even Surface?	Sediment Description (color, odor, texture)	S C	TOC	Grain Size	# Jo #
Pø 25 ·	1252	\sum	67.	2/ 1	<u> </u>	2	S.	Bud Few hesh	\times			
P023	() () ()	$\overline{\ }$	88. 1	Q Q	ار گری	100		Sand Resard	\geq	$\overline{\}$		
Rodi	[530	>	100	L U	, S	4es	Yes	Sond 7 1	\sim	$\left \right>$, >	
Poll.	-77	\mathbf{i}	23	50	165	70	125	Sad Midder da	\geq	$\left \right>$	\sum	
PØ180	14 04	\sum	B	A,	125	Nes S		Sand Sussi	.×	$\left \right\rangle$	5	****
Pp 186	- - - - - - - - - - - - 		00	50 20	Yes	2		Sec.	\sim	$\left \right>$	$\left \right>$	Par demonstra
76 BC	1410 U		00	2 10	3	5	105	Sand Pins hash	\times	>		
· R. @ 18	432	. \	84.2	S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ş	400	Sard Rew Reide	\times	>	\geq	
PELO	147			R	5	S	4,5	Olevel + Sord	\times	5	5	
2027	502	\geq	G .	20	405		465	Sard	\sim	>	$\left \right>$	
F & Draw		\geq	[00]		And a second			الا محمل بالا محمد الله عنه المحمد المحم المحمد المحمد				
Additional Notes												
_												

WE11_Benthic_DataSheet

4/3/2013

Benthics, Sheet Sof

Pic Grain -RPBr TOC Size # of #	\times $/$ $/$ \otimes \times										
Sediment Description (color, odor, texture)	Sand		and 2 a rould	A MAN							
Even Surface?	, S	<u> </u>	5 7								
Water Overlay?	100	Ş	1	S N							8
Penetration?	3	Ver	\ &								ری پیچ
% Full	0 0	90	50	ß							201
Depth (m)	69.	91.1	2	<u></u>							N S
GPS?	\mathbf{z}	\sum	\geq								
Time	1608	619	1630	(1992) 1993						•	- end of same?
Site/Station ID	RICH	R102	0.103	RIDH	(Jerry)	*	ŗ	(j			

WE11_Benthic_DataSheet

4/3/2013

H Samplus

- 25-

TE TELATECH

Benthics, Sheet 🗘 of 🗍

<u>S</u>			
Jaters Location: <u>castern U</u>	Calibration:	222E	
S Vessel: EN Hahle 200	Grab Type: <u>Jaco Veco</u>	mid 202), Maplet VV	
Date: 01/8/	West	1995 - () 1995 - ()	
Project: US Bankhies	Crew: DA BD. L. T. G. 4 8 4	Weather Conditions: Swarn of the	Additional Notes

Site/Station ID	Time	GPS?	Depth (m)	% Full	Penetration?	Water Overlay?	Even Surface?	Sediment Description (color, odor, texture)	് പ്ര	TOC	Grain Size	# of #
D a c	0131	$\left \right>$	E	ĝ, Ĝ,	\ \ \ \	S X		Gravel, hash	\times		\geq	
900 (n	0151	\geq	5	ŝ			5 7	David . I vertin	\succ	\geq		e production of the
070		·					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sand few Jesth	>		\leq	•
2021	600	\geq	Š	Q ()				Sand Rive halk	X	>	\mathbb{N}	. and the state of
Q. Ø 5 .	28 EN	\leq	0 ((() ()	20 20				Sard Clark	\sim	\mathbf{i}	\geq	
2 dC	0600	$\left \right\rangle$	619	0 2		765	N cS	Saural March	\geq	\mathbf{i}	\sum	∎ na ₁₀ 100 °
	6	\searrow	े २० २१	0 Q		5	N S	Sand, havin	\times	\geq	\geq	
1013.	5750	1	9 5 5	j. G		ن الج التي	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sout Row Inch	\geq			
	9767		0 10 10	о Ц	N 53	لأدك	N.S	Cord Frankesh	\geq	\sum	\sum	
2 . M.S.		\mathbb{N}	8		9	5	<<	Saw Guntash	\times	\geq	\geq	~~~
	- 		S. S		S.	N S	S.) 7	Conditions where	\geq		$\overline{\}$	
1 Mag.		- ていこう		(olieded	C Tro	024		\supset				
Additional Notes												

WE11_Benthic_DataSheet

4/3/2013

Il samples II sites

TE TETRA TECH

Benthics, Sheet ____ of ____

	Dea); S	0	Biel	s Di	フ? (12)	Ő				
# of #		North Control of Contr			anna an ta	g _{inter} son					
Grain Size	5			\geq	>	\sum					
Toc)		a service and a service with service	\geq	\geq	7					
S. S. BPD	\times	\times		>	~	~	Conservation of Statemark (1) is not a space of the statemark (1) is not a space of the statemark (1) is not a		`		
Sediment Description (color, odor, texture)	Ind arovel	Sud Shumuck		Dand Same Mash	Sand Rev hash	Cond. arenel					somple with grado
Even Surface?		<u>S</u>		45	200	<u>></u>					
Water Overlay?	S) tangar	Yes	a series de la constante de la	1 cs	Ves.	Ness					
Penetration?	10	Salv		Ves	Nes	52					to better
% Full	50	001		50	50	50					
(m) (m)	(A. 4)	(07, lo		501	0		7	,			4
GPS?	\sum	\geq	\square	\sim	\sum	\mathbf{i}	. ,				
Time	1022	1043	a a construction of the second se	1999 1999 1999 1999 1999 1999 1999 199	1231	412					Mar war arpr
Site/Station ID	Z III	2112	Stranger Hydre	2 6 21	R 113		140 P	- 			Additional Notes

WE11_Benthic_DataSheet

4/3/2013

This Page Left Intentionally Blank

APPENDIX B – RAW LABORATORY DATA; GRAIN SIZE AND TOC

Ardaman & Associates, Inc.

Geotechnical, Environmental and Materials Consultants

September 20, 2013 File Number 13-13-0083

Tetra Tech Inc. 889 Elm St. Manchester, NH 03101

- Attention: Brian Dresser
- Subject: Laboratory Testing Services, Eastern Long Island Sound, Biological and Environmental Studies to Support the Environmental Protection Agency and the US Navy in Preparation of a Supplemental Environmental Impact Statement

Gentlemen:

As requested, laboratory testing has been completed on fifty-one benthic sediment grab samples received on July 23, 2013.

Each sample was homogenized and specimens obtained for determination of particle-size distribution, organic content and water content by the following test methods:

- Particle-size distribution was determined using sieve analyses in general accordance with ASTM Standard D422 "Particle-Size Analysis of Soils".
- Organic content was determined in general accordance with ASTM Standard D 2974 "Moisture, Ash, and Organic Matter of Peat and Other Organic Soils" using Method C.
- Water content was determined in general accordance with ASTM Standard D2216 "Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass" using method B and an oven temperature of 107°C.

The test results are presented on the attached Particle-Size Analysis Test Reports. The percent gravel-size particles (\geq 2.00 mm [U.S. Standard No. 10 sieve]) and sand-size particles (<2.00 mm and \geq 0.063 mm [U.S. Standard No. 230 sieve]) as defined in the scope of services using the Udden-Wentworth grain-size scale for siliciclastic sediment is listed on Table 1. The particle-size analysis test reports show gravel-size particles as \geq 4.75 mm (U.S. Standard No. 4 sieve) in accordance with ASTM Standard D422.

The test samples were reported to be from the client-specified designations herein. The test results are indicative of only the specimens that were actually tested. The test results presented are based upon accepted industry practice as well as the test method(s) listed.

Please contact us if you have any questions about the test results or require additional information.

Very truly yours, ARDAMAN & ASSOCIATES, INC.

Thomas S. Ingra, P

Laboratory Director Florida License No. 31987

8008 S. Orange Avenue 32809, Post Office Box 593003, Orlando, Florida 32859-3003 Phone (407) 855-3860 FAX (407) 859-8121

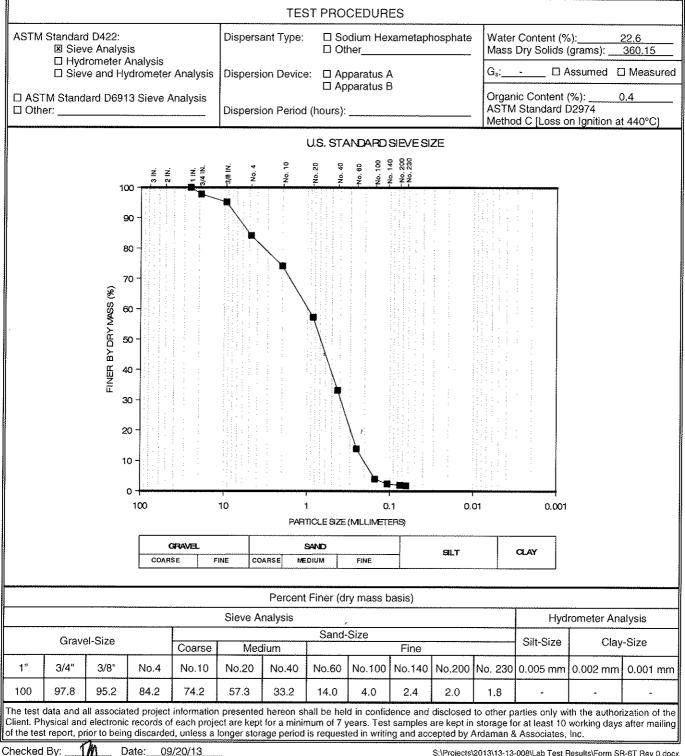
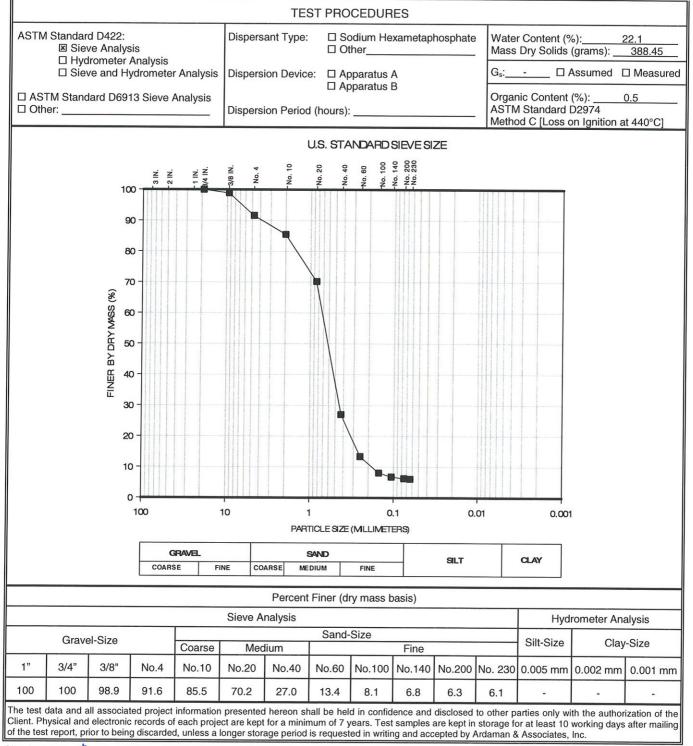
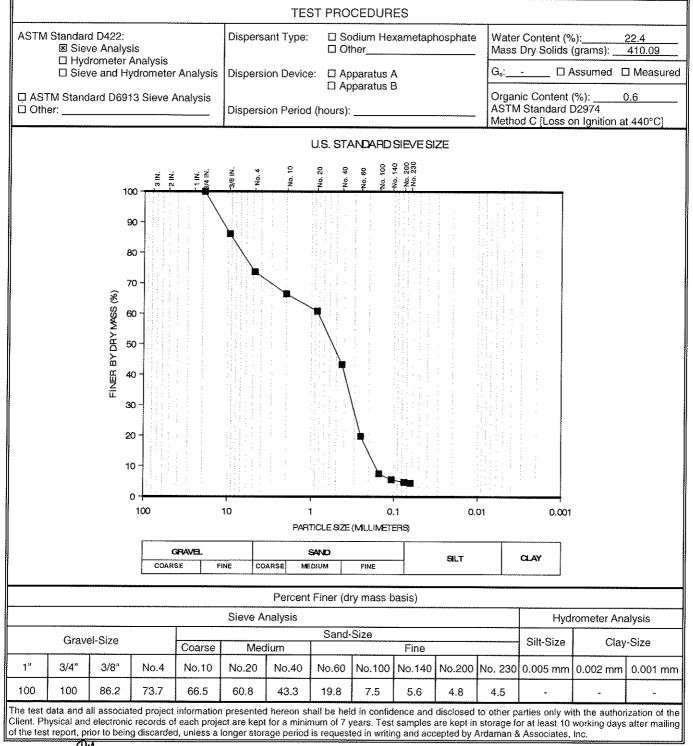

Louisiana: Alexandria, Baton Rouge, Monroe, New Orleans, Shreveport

Table 1

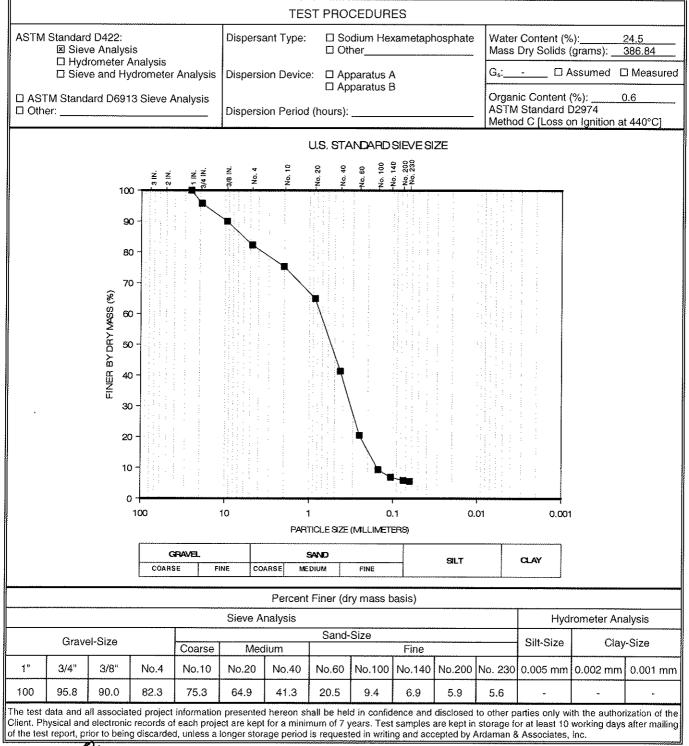
PARTICLE-SIZE DISTRIBUTION TEST RESULTS


	Group	Organic	S	il-Fraction (% dry mas	ss)
Sample No.	Symbol	Content	Gravel	Sand	Silt/Clay
	Symbol	(%)	(≥2.00 mm)	(2.00-0.063 mm)	(<0.063 mm)
P001	SP	0.4	25.8	72.4	1.8
P002	SP-SM	0.5	14.5	79.4	6.1
P003A	SP	0.6	33.5	62.0	4.5
P003B	SP-SM	0.6	24.7	69.7	5.6
P003C	SP-SM	0.7	12.9	82.1	5.0
P006	SP-SM	1.1	8.6	80.1	11.3
P007	GW	1.9	74.9	21.9	3.2
P008	SC	1.4	4.6	78.1	17.3
P009	SC	3.8	5.3	56.6	38.1
P010	SP-SM	1.0	4.3	86.9	8.8
P011A	SM	1.5	16.2	73.9	9.9
P011B	SM	1.5	16.7	70.9	12.4
P011C	SP-SM	1.2	10.7	81.3	8.3
P013	CL or CH	6.2	3.1	16.4	80.5
P014	CL or CH	3.7	1.7	34.0	64.3
P015	SC	1.2	5.5	78.2	16.3
P016	SP	0.4	29.3	67.7	3.0
P017	SC	0.9	17.7	69.3	
P018A	SP	0.9	25.1		13.0
P018B	SP SP	0.8	25.3	71.4	3.5
P018C	SP SP	0.4		71.7	3.0
P019	SP-SM		18.4	77.8	3.8
P019 P020		0.8	13.4	78.5	8.1
	SC	1.4	9.3	73.7	17.0
P021	SC	1.1	4.3	82.9	12.8
P022	SP-SM	0.5	24.6	70.1	5.3
P023	SP	0.4	20.9	75.6	3.5
P025	SP	0.7	12.0	83.5	4.5
R001	SP	0.4	16.9	81.0	2.1
R004	SP	0.5	6.4	90.3	3.3
R007	SC	1.7	4.8	70.2	25.0
R014	SC	1.9	14.0	42.9	43.1
R018	SP	0.4	28.8	69.3	1.9
R020	SP-SM	0.8	3.2	89.5	7.3
R023	SP-SM	1.5	5.1	85.5	9.4
R024	SC	0.9	27.7	58.8	13.5
R025	SC	1.3	11.2	63.4	25.4
R026	SW-SM	1.2	29.7	60.5	9.8
R027	SP-SC	0.8	31.7	59.7	8.6
R101	SP-SC	0.5	19.8	74.9	5.3
R102	SP	0.2	0.1	99.2	0.7
R103	GP-GC	1.0	64.2	26.6	9.2
R105	SC	1.3	6.1	77.7	16.2
R106	SP-SM	0.7	7.3	86.2	6.5
R107	SC	1.3	19.8	69.2	11.0
R108	SC	1.3	7.3	77.6	15.1
R109	SC	1.4	11.0	72,4	16.6
R110	SC	0.9	4.8	83.2	12.0
R111	SC	1.8	10.8	69.0	20.2
R112	SP	0.6	3.5	94.7	1.8
R113	SP-SM	0.7	5.5	85.3	9.2
R-114	SP-SC	1,1	19.0	72.8	8,2

INCOMING SAMPLE NO.: P001
BORING:SAMPLE:
_ DEPTH: 🗆 ft; 🗆 m
LABORATORY IDENTIFICATION: 0083/P001
_ SAMPLE DESCRIPTION: Light brown to brown sand
with shell and roots (SP)
$C_0 = 4.9; C_c = 0.7$

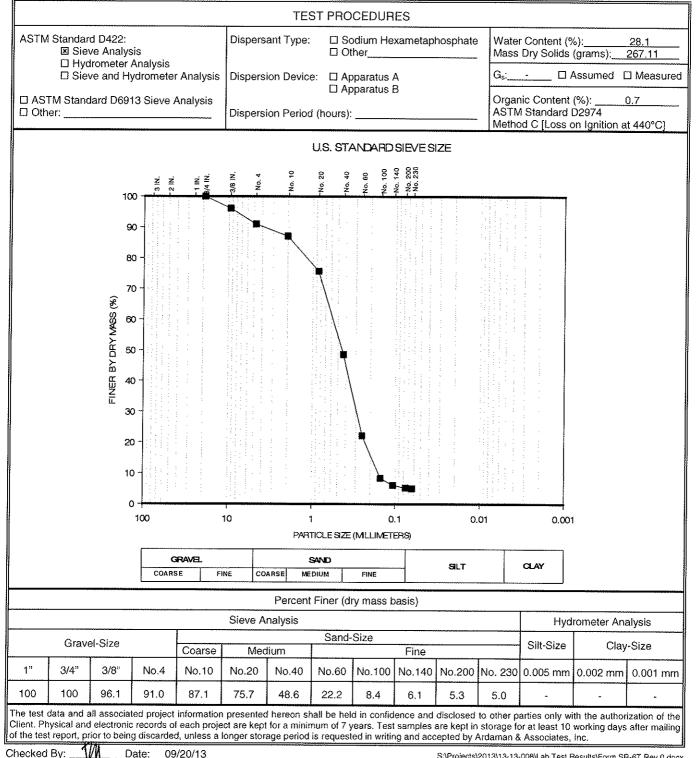

Gears - No. 10. 10.20 Not = No20 - None No. 100-100200

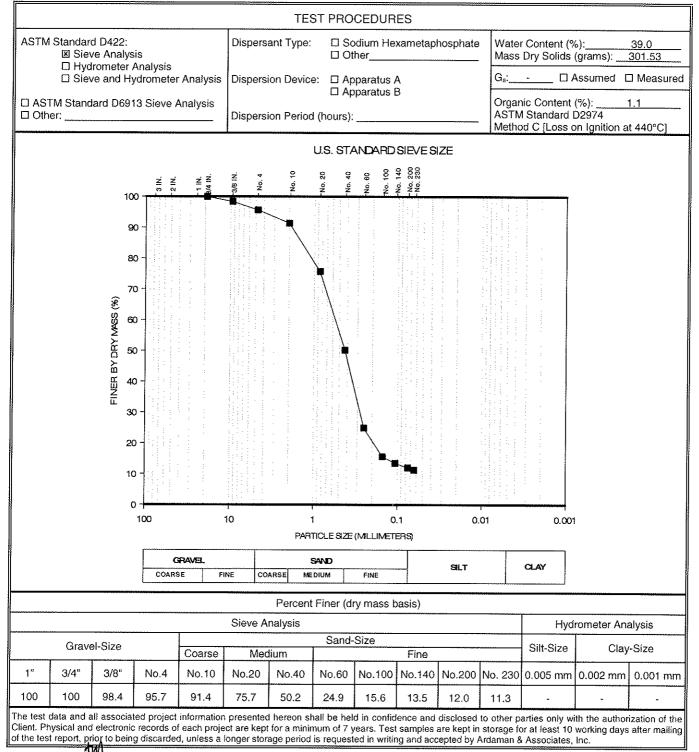
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P002
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: - D ft; D m
	LABORATORY IDENTIFICATION: 0083/P002
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/25/13	with silt and shell (SP-SM)
DATE REPORTED: 09/20/13	$C_u = 3.9; C_c = 1.6$



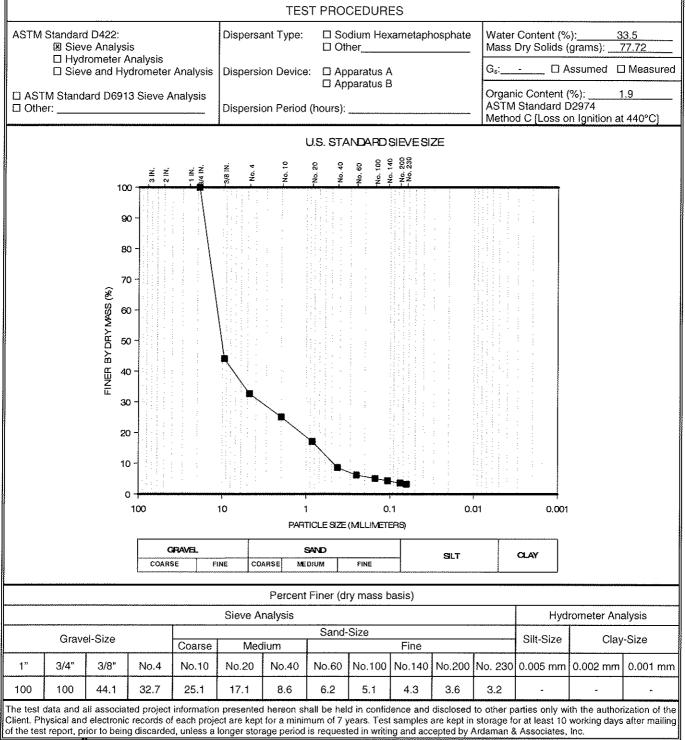
Date: 09/20/13

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P003A	
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -	
FILE NO.: 13-13-0083	DEPTH: 🛛 🗖 ft; 🖸] m
DATE SAMPLE RECEIVED: 07/24/13	LABORATORY IDENTIFICATION: 0083/P003A SAMPLE DESCRIPTION: Light brown to brown sa	nd
DATE TEST SET-UP: 07/25/13	with gravel, shell and trace roots (SP)	
DATE REPORTED: 09/20/13	$\underline{C_u} = 4.8; \underline{C_c} = 0.7$	

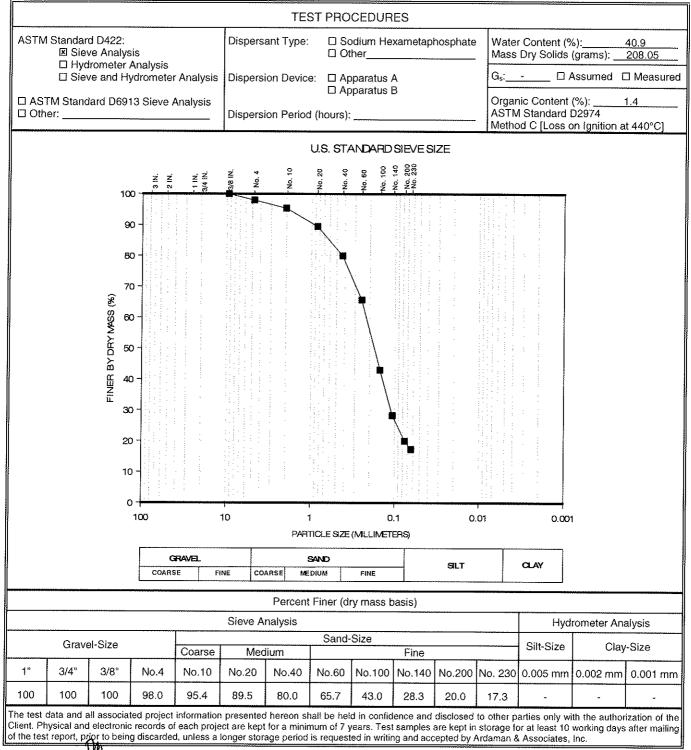

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.:	P003B
PROJECT: Eastern Long Island Sound	BORING: SAMP	PLE:
FILE NO.: <u>13-13-0083</u>	DEPTH:	□ ft; □ m
	LABORATORY IDENTIFICATIO	N: 0083/P003B
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light	brown to brown sand
DATE TEST SET-UP: 07/25/13	with silt and gravel and shell and	trace roots (SP-SM)
DATE REPORTED: 09/20/13	<u>$C_u = 4.3; C_c = 0.8$</u>	


Checked By: ____

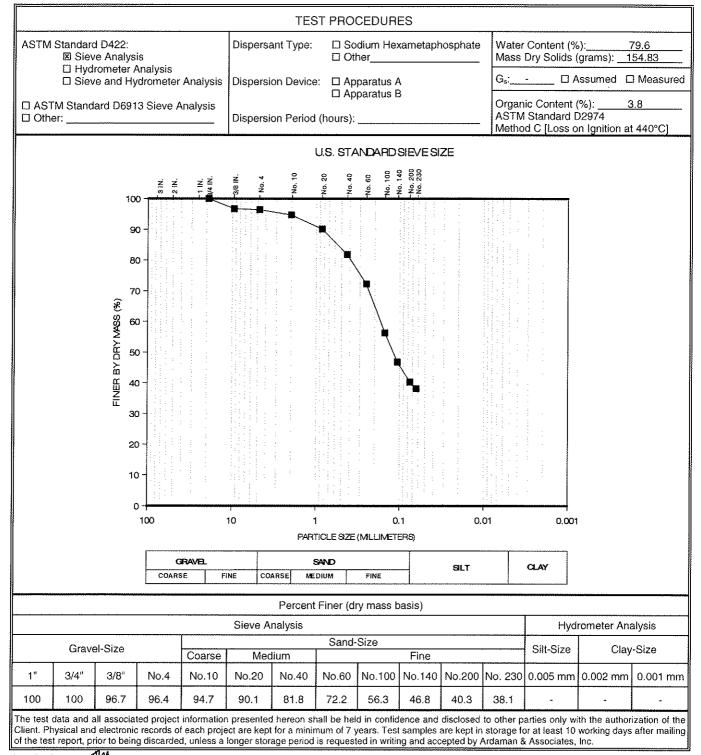
Date: 09/20/13


CLIENT:Tetra Tech NUS	INCOMING SAMPLE NO.: P003C
PROJECT: Eastern Long Island Sound	BORING <u>: -</u> SAMPLE:
FILE NO.: <u>13-13-0083</u>	DEPTH: 🛛 🗍 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/P003C
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/25/13	with silt, shell and trace roots (SP-SM)
DATE REPORTED: 09/20/13	$C_u = 3.4; C_c = 0.9$

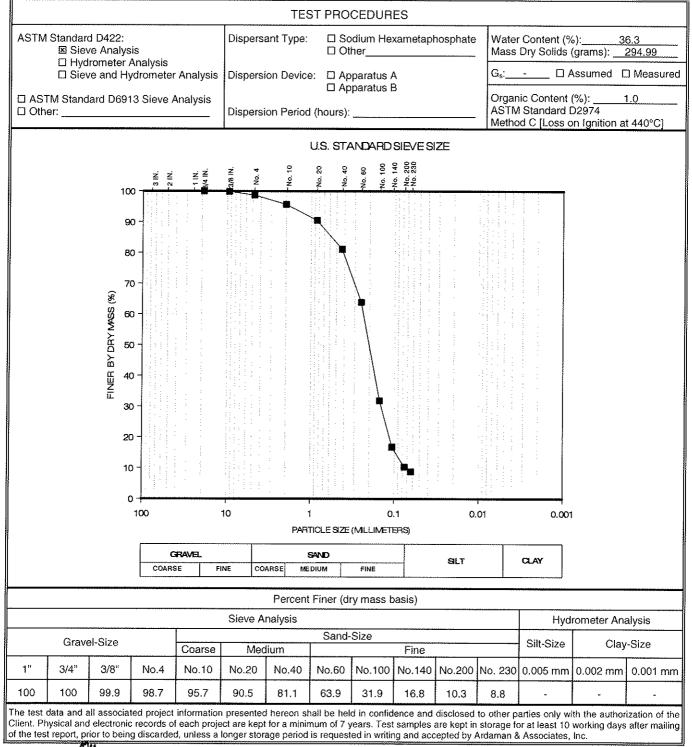
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P006
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH:
	LABORATORY IDENTIFICATION: 0083/P006
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/25/13	with silt, shell and trace roots (SP-SM)
DATE REPORTED: 09/20/13	


CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P007
PROJECT: Eastern Long Island Sound	BORING:SAMPLE:
FILE NO.: 13-13-0083	DEPTH:
	LABORATORY IDENTIFICATION: 0083/P007
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown gravel
DATE TEST SET-UP:07/25/13	(shell) with sand (GW) $C_u = 25$; $C_c = 2.1$. Live shells
DATE REPORTED: 09/20/13	were removed from sample.
	·

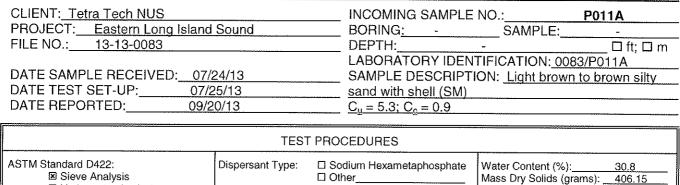
Date:

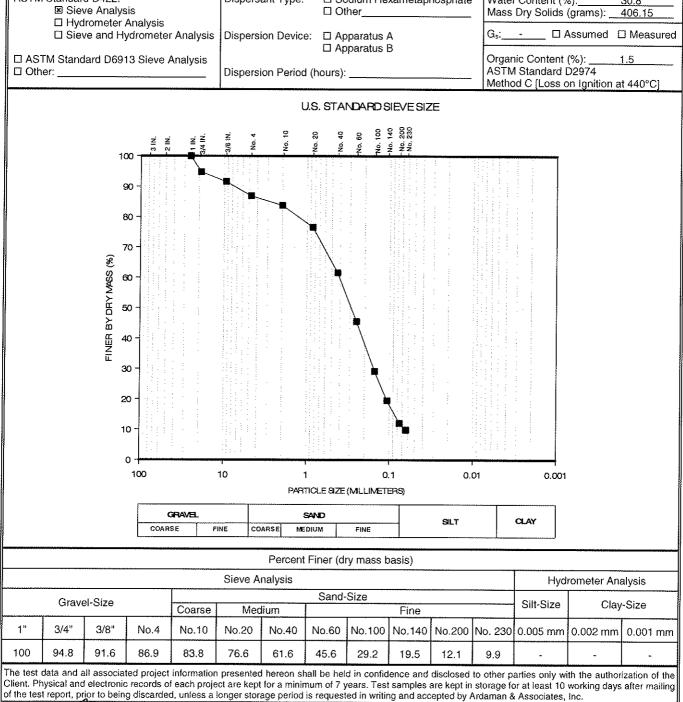

09/20/13

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P008
PROJECT: Eastern Long Island Sound	BORING:SAMPLE: -
FILE NO.: <u>13-13-0083</u>	DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/P008
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Dark gray to light brown
DATE TEST SET-UP: 07/25/13	clayey sand with shell and trace roots (SC)
DATE REPORTED: 09/20/13	

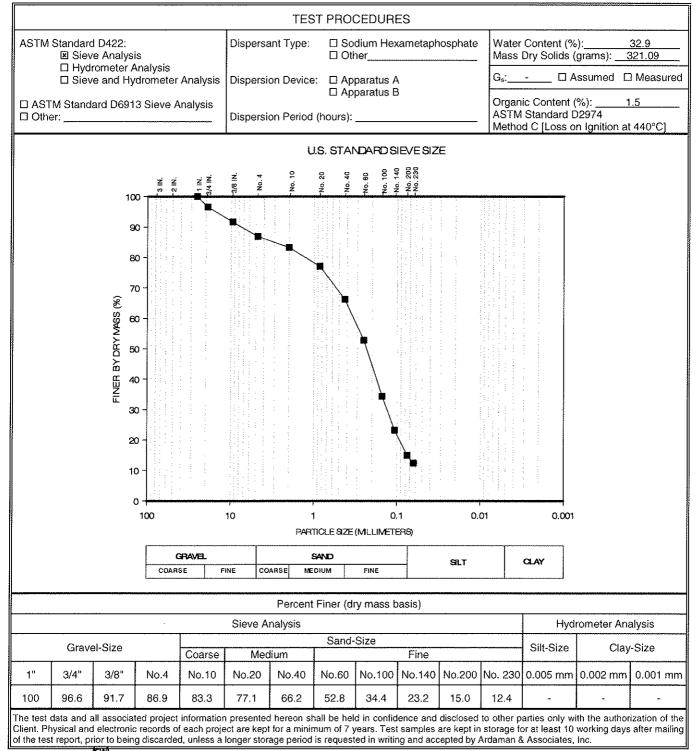


Checked By: _

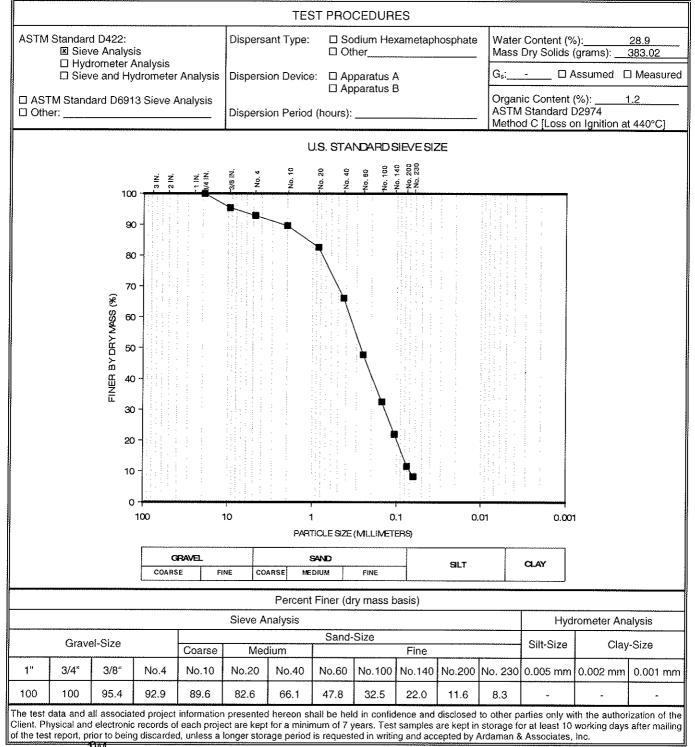

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P009	
PROJECT: Eastern Long Island Sound	BORING:SAMPLE:	
FILE NO.: 13-13-0083	_ DEPTH:	Πm
	LABORATORY IDENTIFICATION: 0083/P009	
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to black c	layey
DATE TEST SET-UP:07/25/13	sand with trace shell (SC)	
DATE REPORTED: 09/20/13		



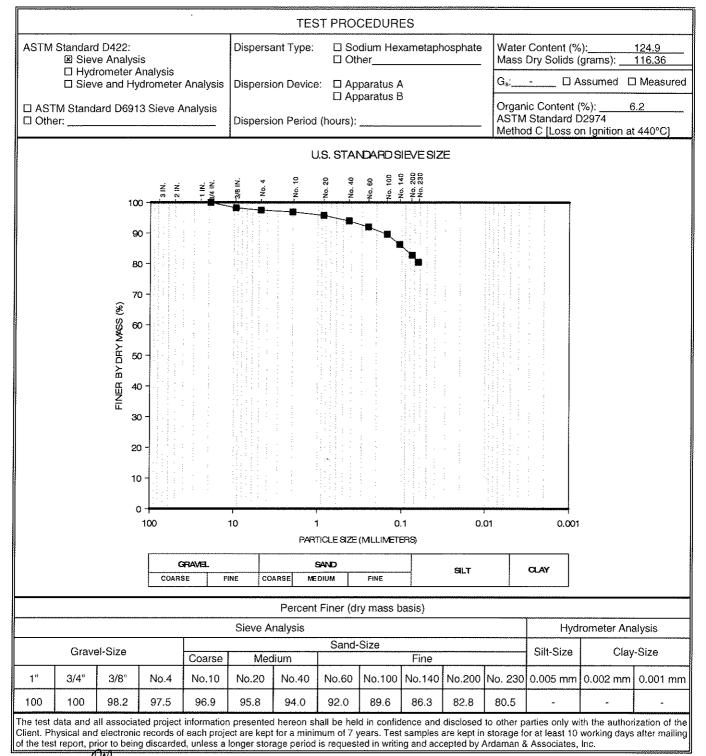
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P010	
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE:	-
FILE NO.: 13-13-0083	DEPTH: [⊐ ft; □ m
	LABORATORY IDENTIFICATION: 0083/P010)
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown	wn sand
DATE TEST SET-UP: 07/25/13	with silt, shell and trace roots (SP-SM)	
DATE REPORTED: 09/20/13	<u>C_u = 3.4; C_c = 1.5</u>	



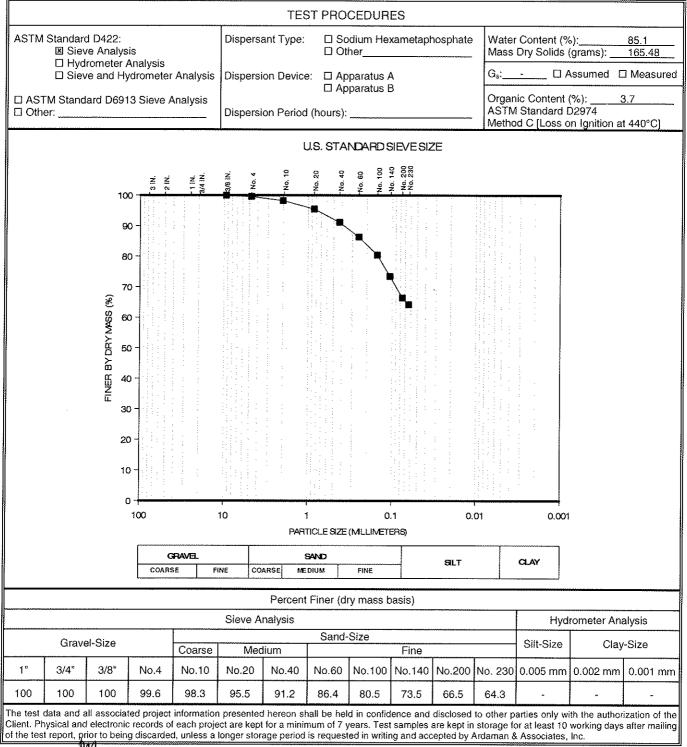
Date: 09/20/13



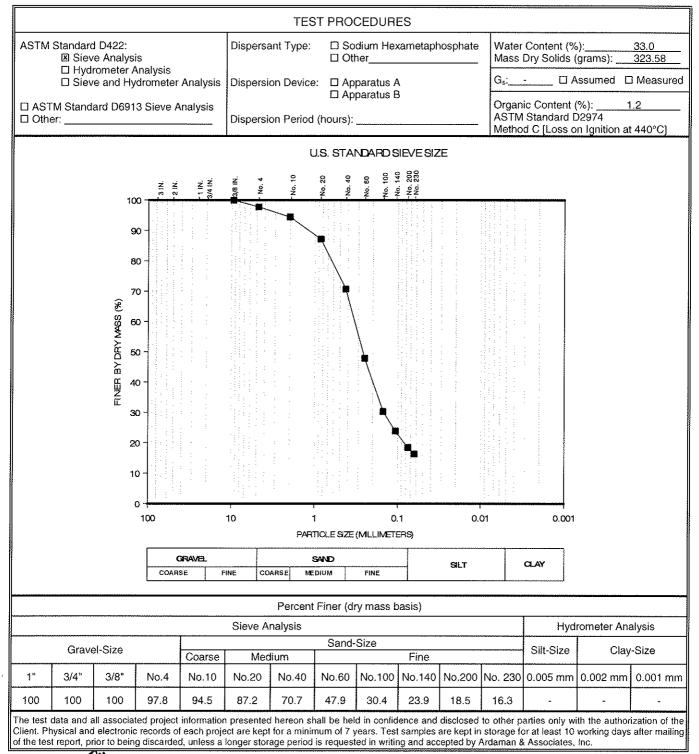
CLIENT: Tetra Tech NUS		_ INCOMING S	AMPLE NC).: <u> </u>	P011B
PROJECT: Eastern Long I	sland Sound	_ BORING <u>:</u>	-	_ SAMPLE:	
FILE NO.: 13-13-0083		_ DEPTH:	-		□ ft; □ m
		LABORATOR	IV IDENTIF	ICATION: 008	3/P011B
DATE SAMPLE RECEIVED:_	07/24/13	_ SAMPLE DES	SCRIPTION	I: Light brown	to brown silty
DATE TEST SET-UP:	07/25/13	sand with she	Il and trace	roots (SM)	
DATE REPORTED:	09/20/13				

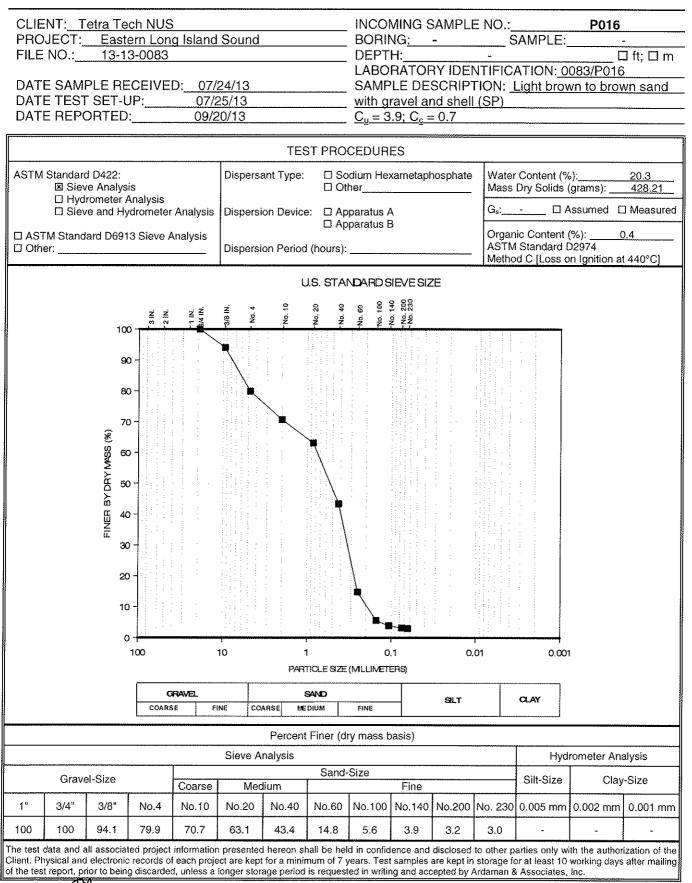

Date: 09/20/13

CLIENT:Tetra Tech NUS	INCOMING SAMPLE NO.: P011C
PROJECT: Eastern Long Island Sound	BORING: SAMPLE:
FILE NO.: 13-13-0083	DEPTH: 🛛 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/P011C
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/25/13	with silt, shell and trace roots (SP-SM)
DATE REPORTED: 09/20/13	$C_{\rm u} = 5.1; C_{\rm c} = 0.9$

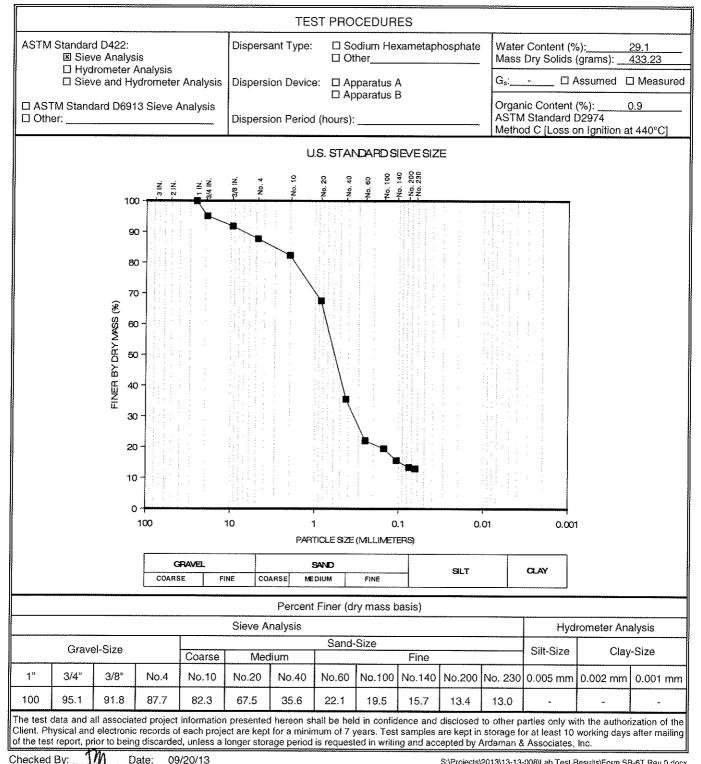

Date: 09/20/13

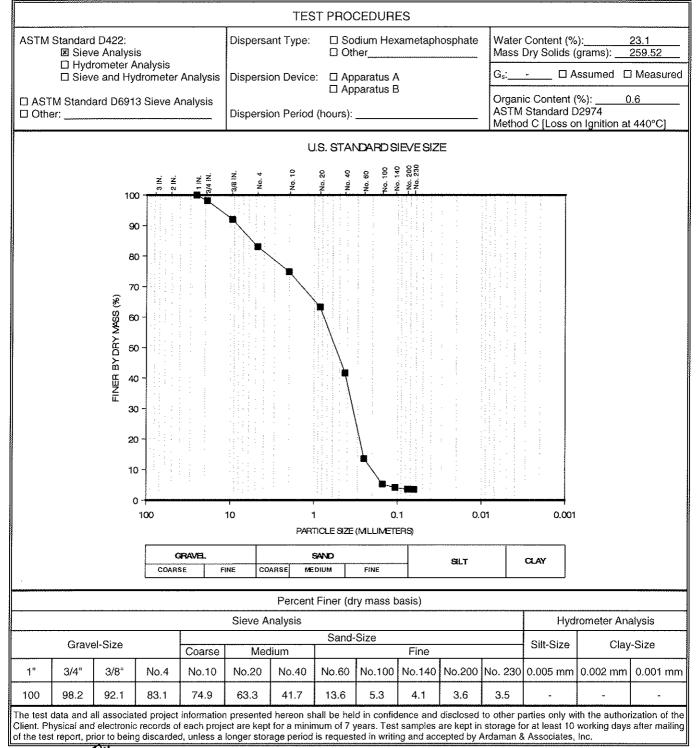
CLIENT: Tetra Tech NUS		INCOMING S		10.:	P013
PROJECT: Eastern Long Is	and Sound	BORING:	-	SAMPLE:	-
FILE NO.: 13-13-0083		DEPTH:		•	🗌 ft; 🗆 m
		LABORATORY IDENTIFICATION: 0083/P013			
DATE SAMPLE RECEIVED:	07/24/13	SAMPLE DE	SCRIPTIC	N: Brown to b	lack clay with
DATE TEST SET-UP:	07/25/13	sand and trac	ce roots ar	nd shell	-
DATE REPORTED:	09/20/13				




Date: 09/20/13

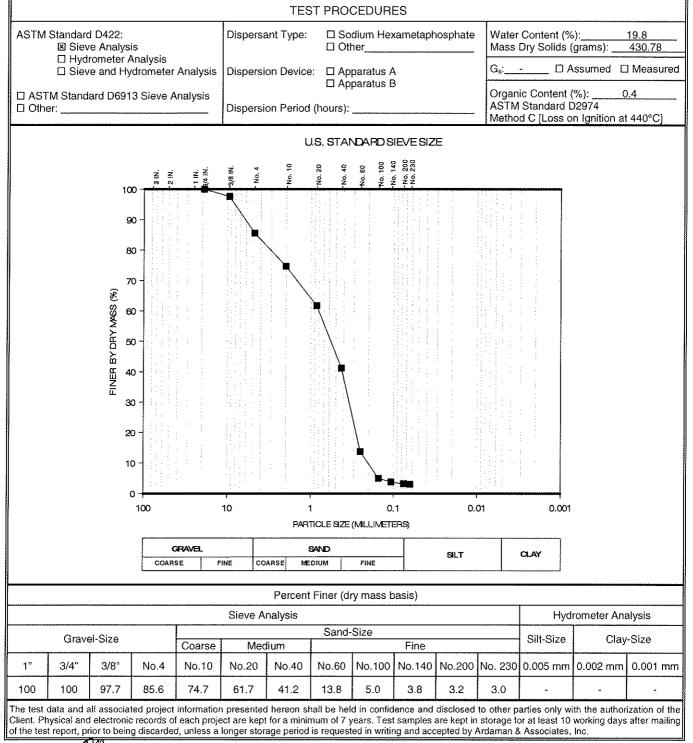
CLIENT: Tetra Tech NUS		_ INCOMING S		10.:	P014		
PROJECT: Eastern Long I	sland Sound	_ BORING <u>:</u>	-	SAMPLE:			
FILE NO.: <u>13-13-0083</u>		DEPTH:	-	-	🗆 ft; 🗆 m		
		LABORATORY IDENTIFICATION: 0083/P014					
DATE SAMPLE RECEIVED: 07/24/13		SAMPLE DESCRIPTION: Gray sandy clay with trace					
DATE TEST SET-UP:	07/25/13	shell and root	S				
DATE REPORTED:	09/20/13						


CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P015
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/P015
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Brown to dark gray clayey
DATE TEST SET-UP:07/25/13	sand with shell (SC)
DATE REPORTED: 09/20/13	



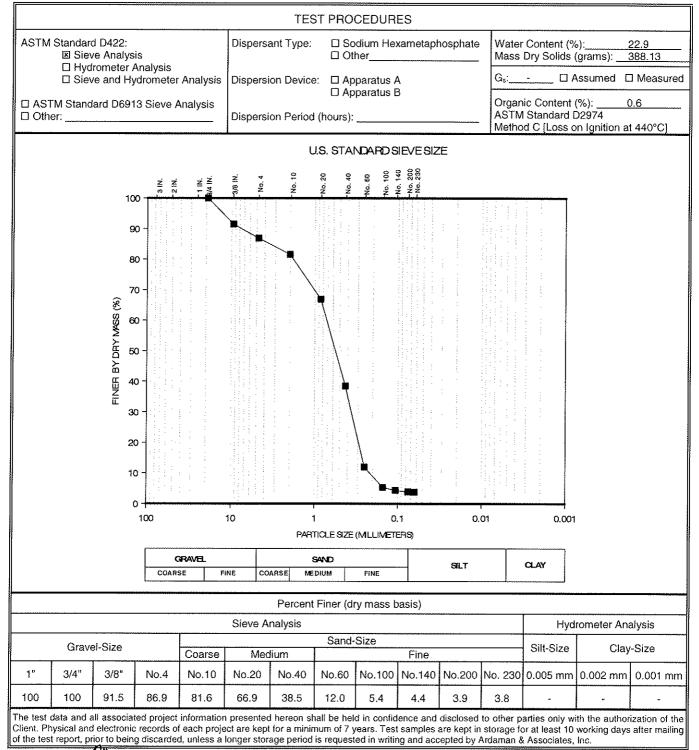
Checked By: _____ Date: ____09/20/13

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P017
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: <u>13-13-0083</u>	_ DEPTH:
	LABORATORY IDENTIFICATION: 0083/P017
DATE SAMPLE RECEIVED: 07/24/13	_ SAMPLE DESCRIPTION: <u>Orangish-brown clayey</u>
DATE TEST SET-UP: 07/25/13	sand with shell and trace roots (SC)
DATE REPORTED: 09/20/13	

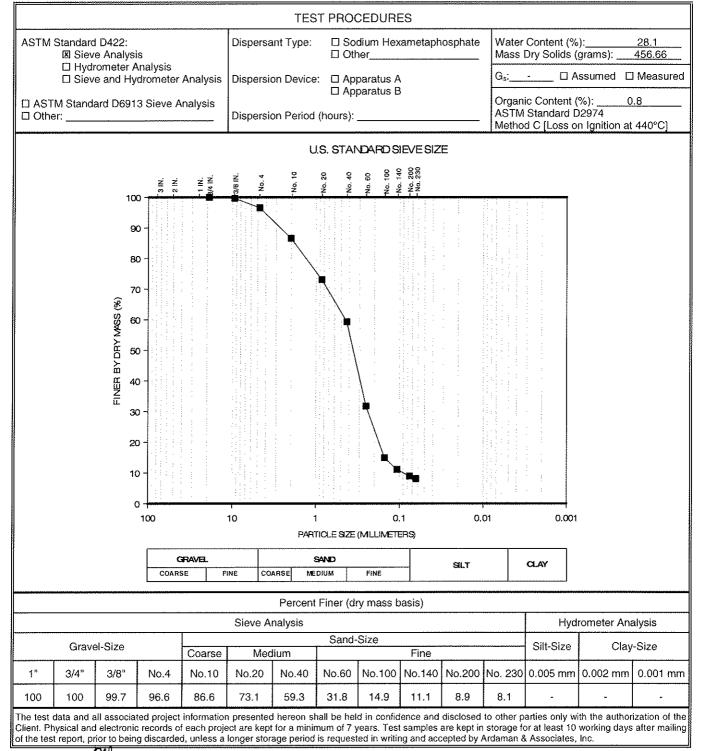


CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P018A
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: <u>13-13-0083</u>	_ DEPTH:
	LABORATORY IDENTIFICATION: 0083/P018A
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with gravel and shell (SP)
DATE REPORTED: 09/20/13	$C_{\rm u} = 3.8; C_{\rm c} = 0.8$

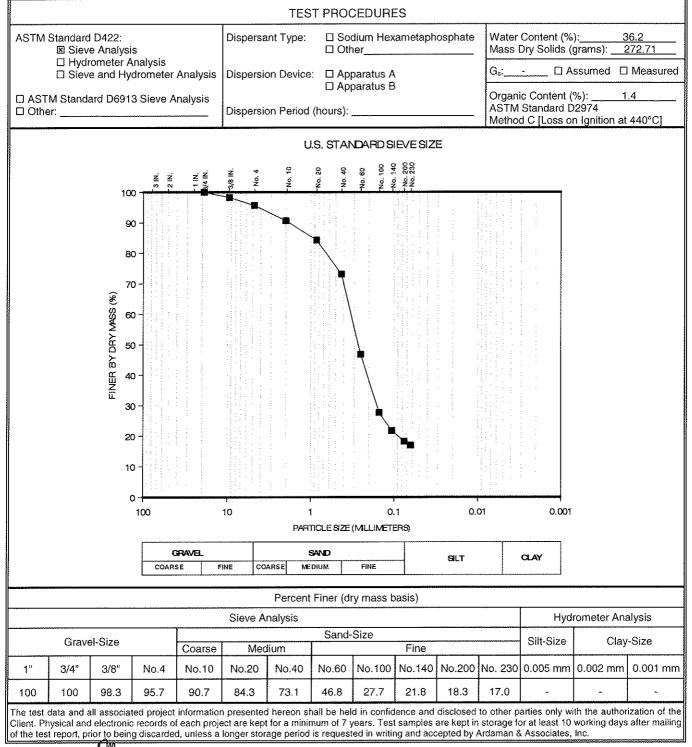
_ Date: 09/20/13


CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P018B
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/P018B
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with shell (SP)
DATE REPORTED: 09/20/13	$C_{\underline{u}} = 4.0; C_{\underline{c}} = 0.7$

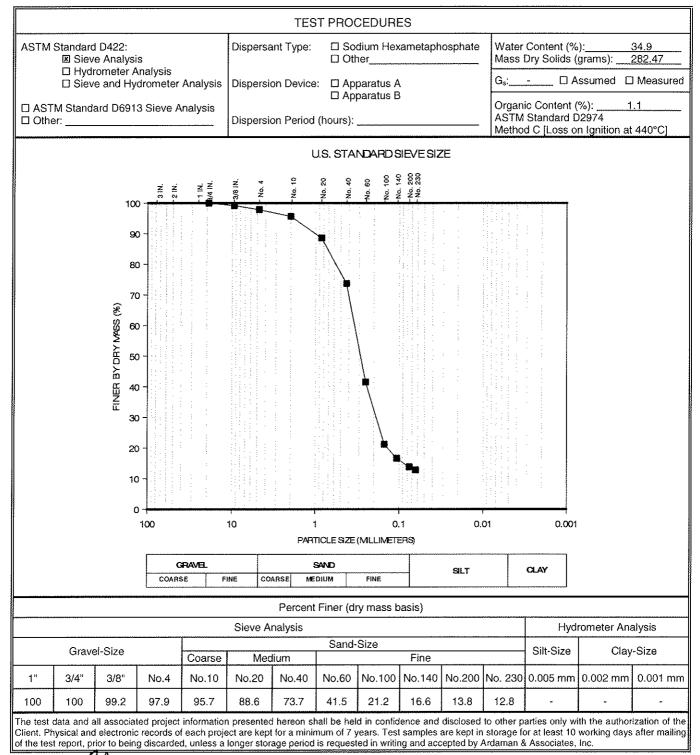
Checked By: _


Date: 09/20/13

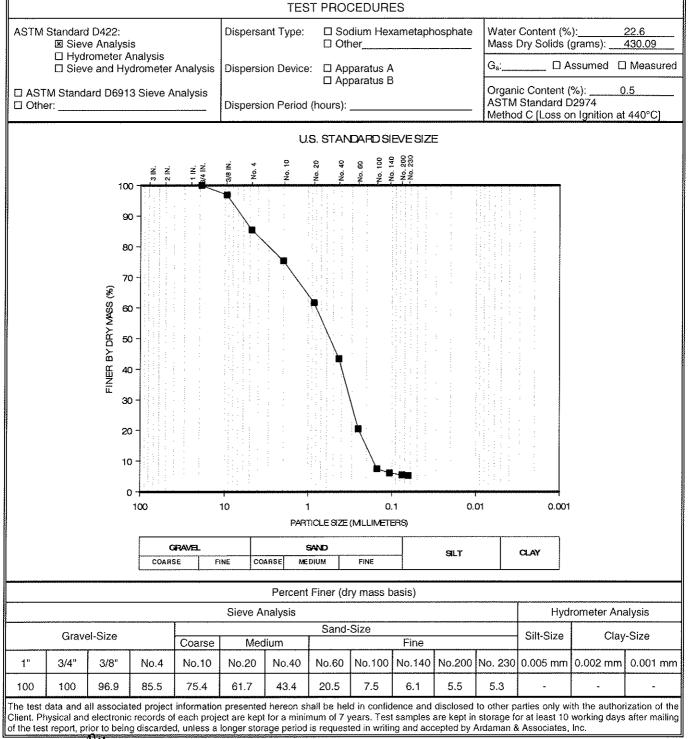
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P018C
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	_ DEPTH: □ ft; □ m
	LABORATORY IDENTIFICATION: 0083/P018C
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP:07/26/13	with shell (SP)
DATE REPORTED: 09/20/13	$C_{\underline{u}} = 3.4; C_{\underline{c}} = 0.9$


Date: 09/20/13

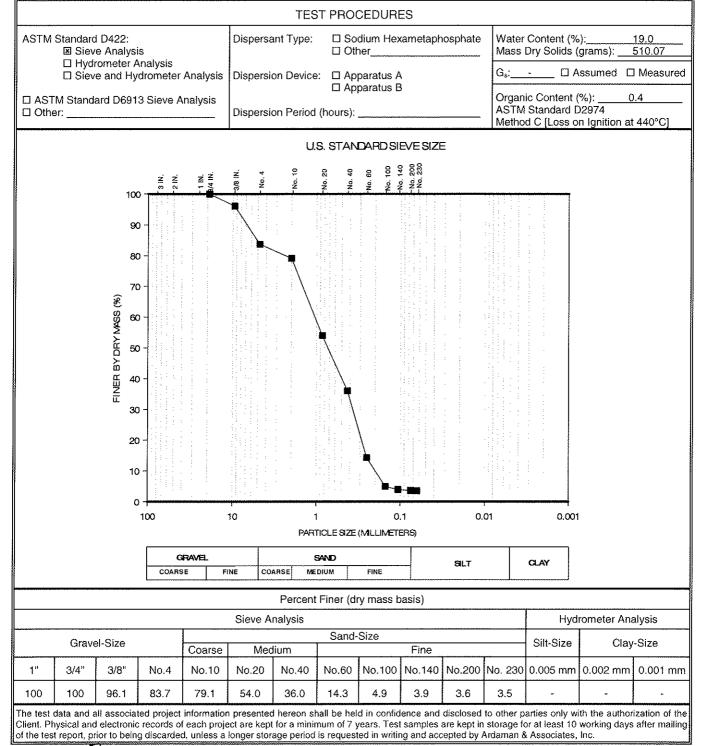
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P019
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	_ DEPTH:
	LABORATORY IDENTIFICATION: 0083/P019
DATE SAMPLE RECEIVED: 07/24/13	_ SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with silt and shell (SP-SM)
DATE REPORTED: 09/20/13	$C_{\rm u} = 5.0; C_{\rm c} = 1.5$


Date: 09/20/13

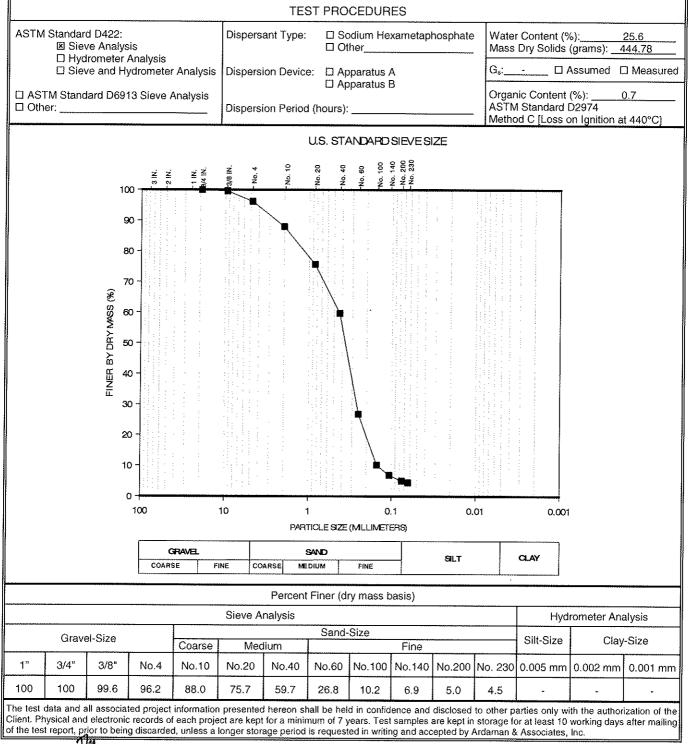
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P020
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE:
FILE NO.: 13-13-0083	DEPTH:□ft; □ m
	LABORATORY IDENTIFICATION: 0083/P020
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to gray clayey
DATE TEST SET-UP: 07/26/13	sand with shell (SC)
DATE REPORTED: 09/20/13	

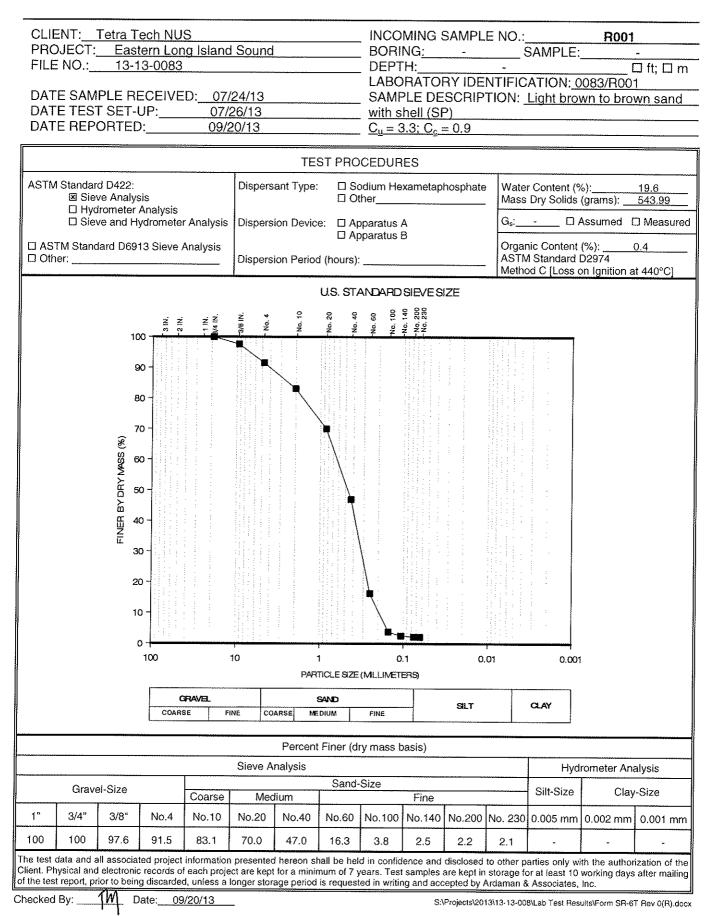

Date: 09/20/13

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P021
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH:
	LABORATORY IDENTIFICATION: 0083/P021
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown
DATE TEST SET-UP: 07/26/13	clayey sand with shell and trace roots (SC)
DATE REPORTED: 09/20/13	

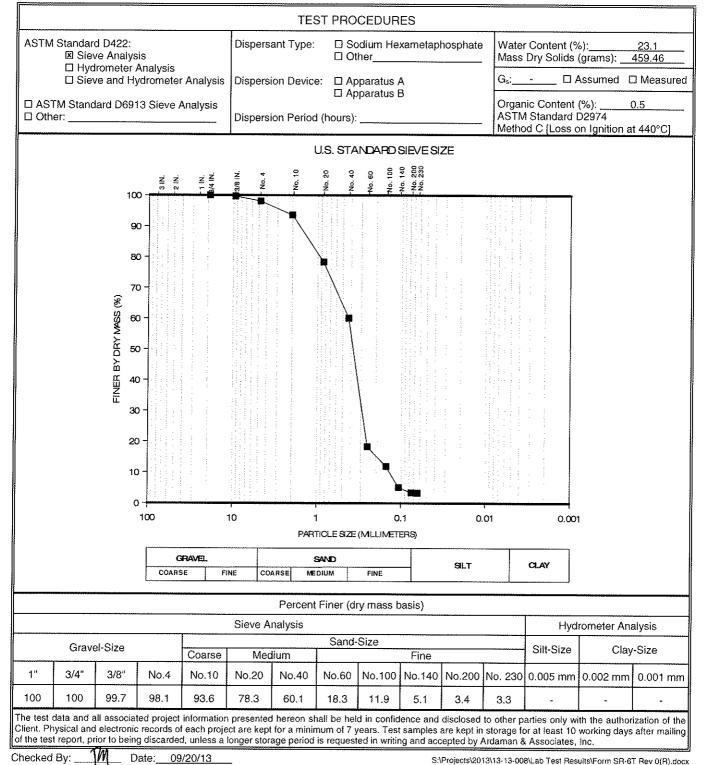

Date: 09/20/13

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P022
PROJECT: Eastern Long Island Sound	BORING:SAMPLE:
FILE NO.: 13-13-0083	DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/P022
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with silt and shell (SP-SM)
DATE REPORTED: 09/20/13	$C_{\rm u} = 4.7; C_{\rm c} = 0.7$

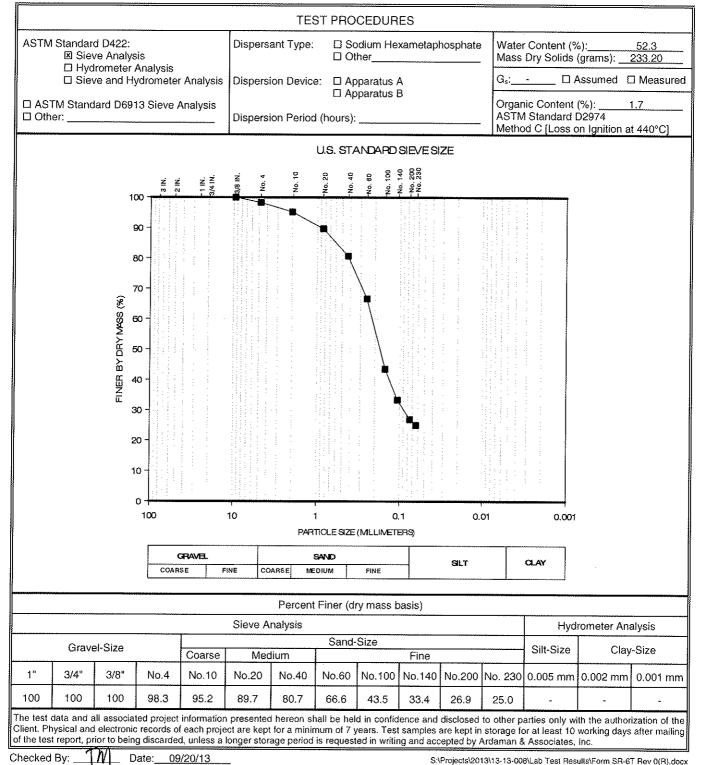


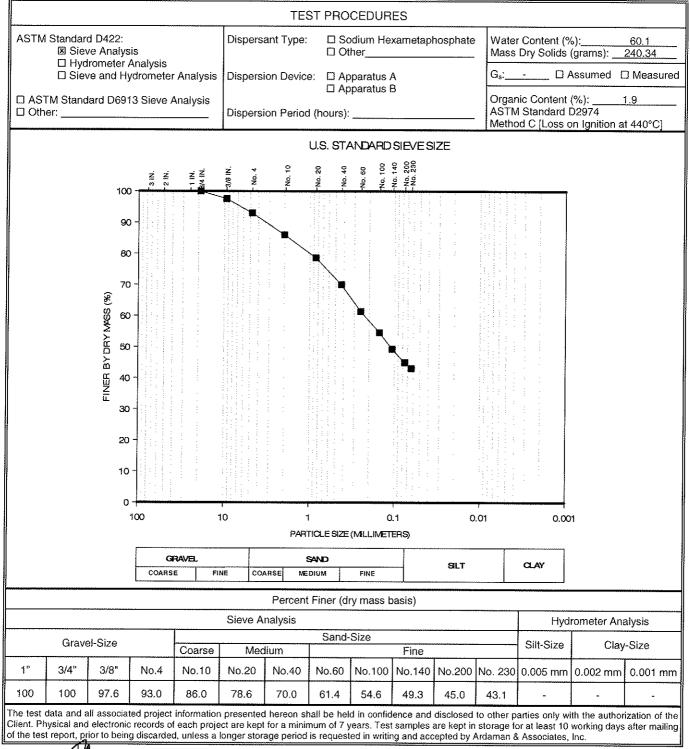

Date: 09/20/13

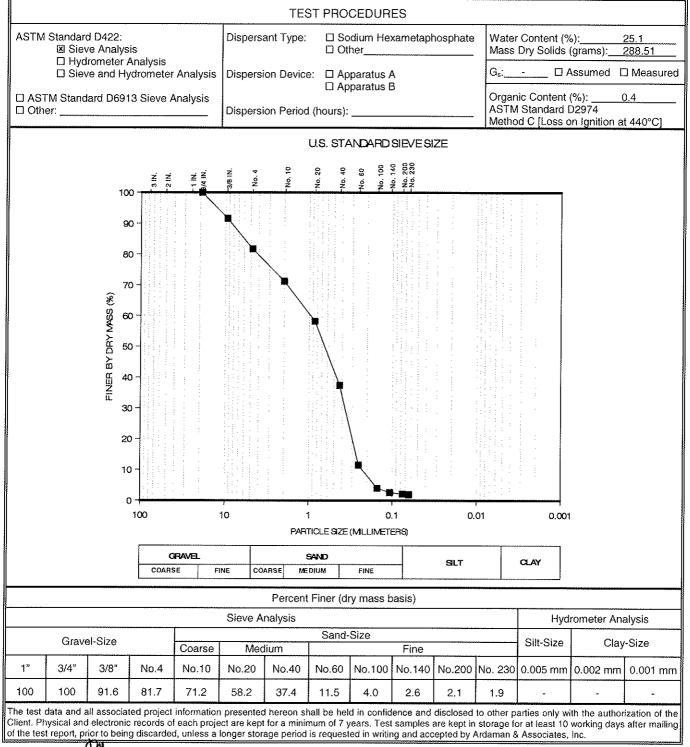
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P023
PROJECT: Eastern Long Island Sound	BORING:SAMPLE:
FILE NO.: 13-13-0083	_ DEPTH: □ ft; □ m
	LABORATORY IDENTIFICATION: 0083/P023
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with gravel and shell (SP)
DATE REPORTED: 09/20/13	$C_{u} = 5.5; C_{c} = 0.6$



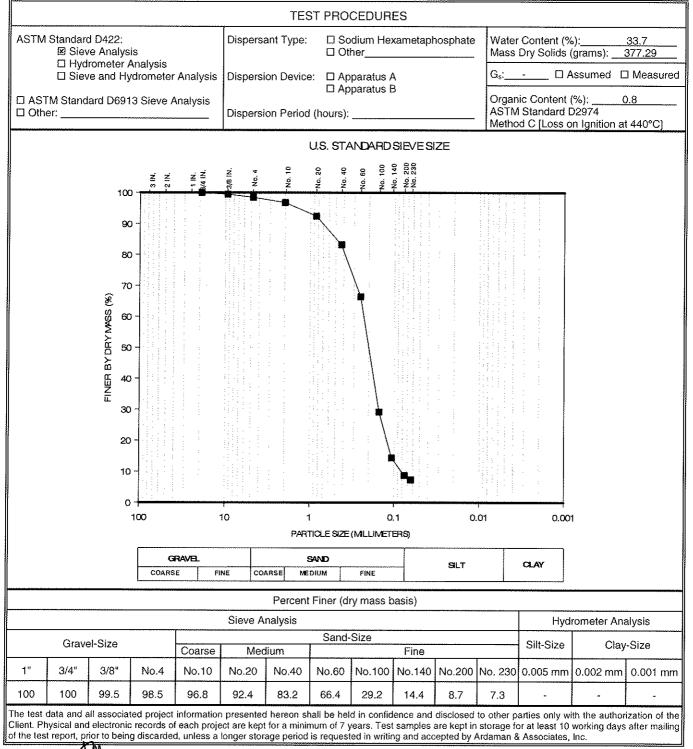
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: P025
PROJECT: Eastern Long Island Sound	BORING: SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: _
	LABORATORY IDENTIFICATION: 0083/P025
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with shell and trace roots (SP)
DATE REPORTED: 09/20/13	$\underline{C_u} = 2.9; \ \underline{C_c} = 1.1$

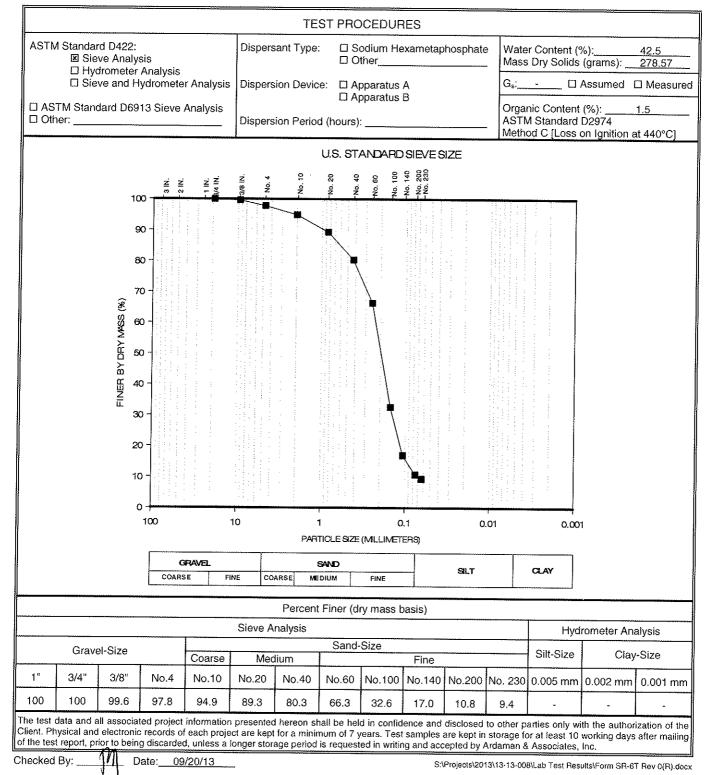



CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R004
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: <u>13-13-0083</u>	_ DEPTH: □ ft; □ m
	LABORATORY IDENTIFICATION: 0083/R004
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP:07/26/13	with shell and trace roots (SP)
DATE REPORTED: 09/20/13	$C_{\rm u} = 3.1; C_{\rm c} = 1.4$

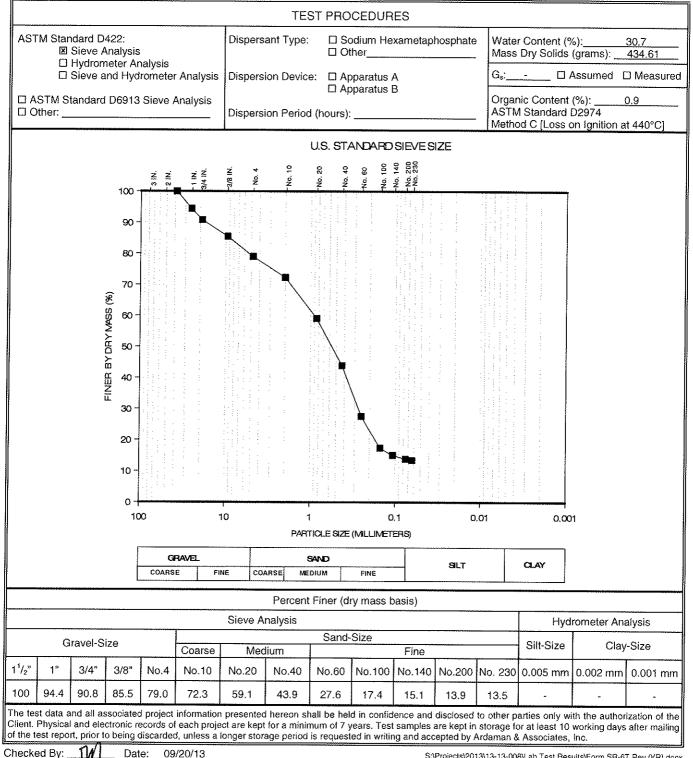

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R007
PROJECT: Eastern Long Island Sound	BORING: SAMPLE:
FILE NO.: <u>13-13-0083</u>	DEPTH: 🛛 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R007
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to dark gray
DATE TEST SET-UP: 07/26/13	clayey sand with shell (SC)
DATE REPORTED: 09/20/13	

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R014
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R014
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Gray to light brown clayey
DATE TEST SET-UP: 07/26/13	sand with shell (SC)
DATE REPORTED: 09/20/13	······································

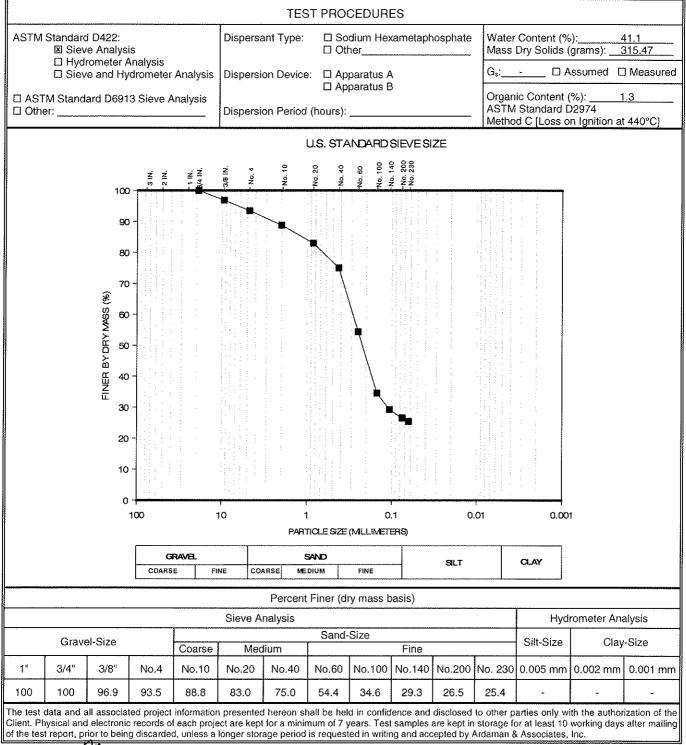

CLIENT:Tetra Tech NUS	INCOMING SAMPLE NO.: R018
PROJECT: Eastern Long Island Sound	_ BORING: SAMPLE:
FILE NO.: 13-13-0083	_ DEPTH: 🛛 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R018
DATE SAMPLE RECEIVED: 07/24/13	_ SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with gravel and shell (SP)
DATE REPORTED: 09/20/13	$C_u = 4.1; C_c = 0.6$


Checked By: _

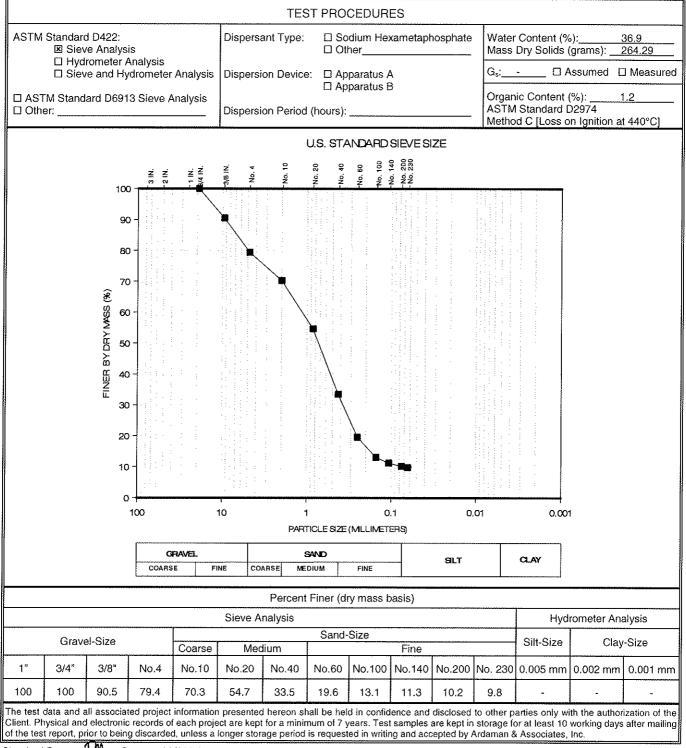
Date: 09/20/13


CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R020
PROJECT: Eastern Long Island Sound	BORING: SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: 🛛 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R020
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with silt, shell and trace roots (SP-SM)
DATE REPORTED: 09/20/13	<u>$C_u = 2.9; C_c = 1.4$</u>

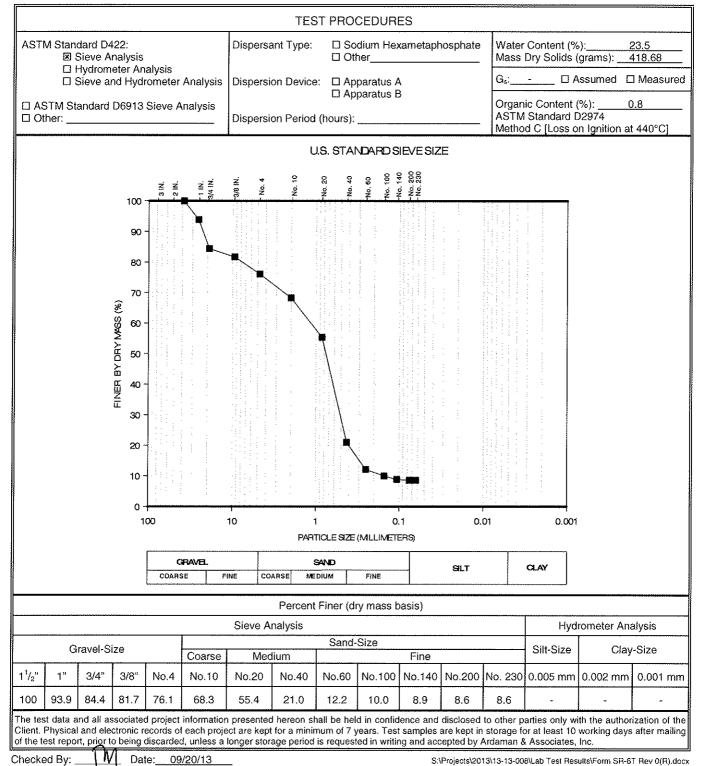
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R023
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: <u>13-13-0083</u>	DEPTH: 🗌 ft: 🗆 m
DATE SAMPLE RECEIVED: 07/24/13 DATE TEST SET-UP: 07/26/13 DATE REPORTED: 09/20/13	LABORATORY IDENTIFICATION: 0083/R023 SAMPLE DESCRIPTION: Light brown to brown sand with silt, shell and trace roots (SP-SM) C _u = 3.3; C _c = 1.4



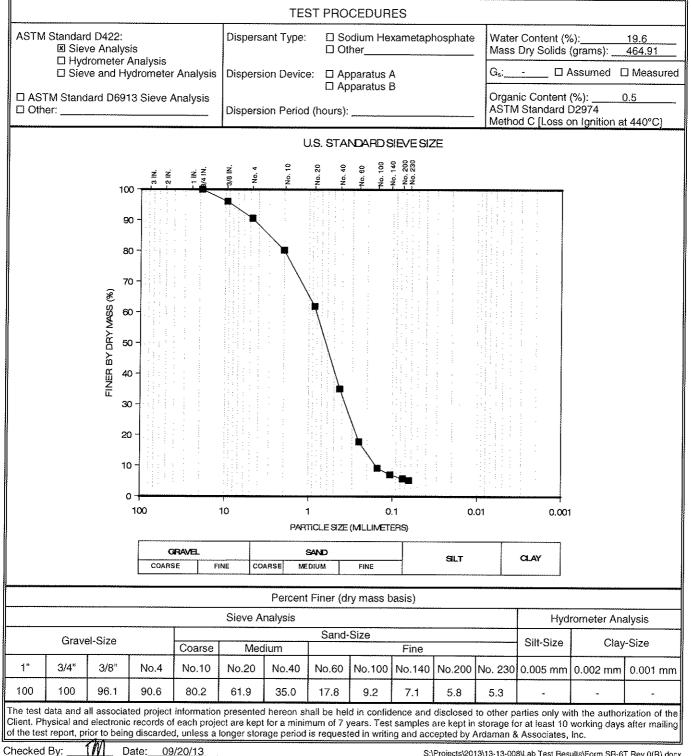
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R024
PROJECT: Eastern Long Island Sound	BORING: SAMPLE:
FILE NO.: <u>13-13-0083</u>	DEPTH: 🛛 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R024
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown
DATE TEST SET-UP: 07/26/13	clayey sand with gravel and shell (SC)
DATE REPORTED: 09/20/13	


Checked By: Date:

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R025
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R025
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Orangish-brown to dark
DATE TEST SET-UP: 07/26/13	gray clayey sand with shell and trace roots (SC)
DATE REPORTED: 09/20/13	

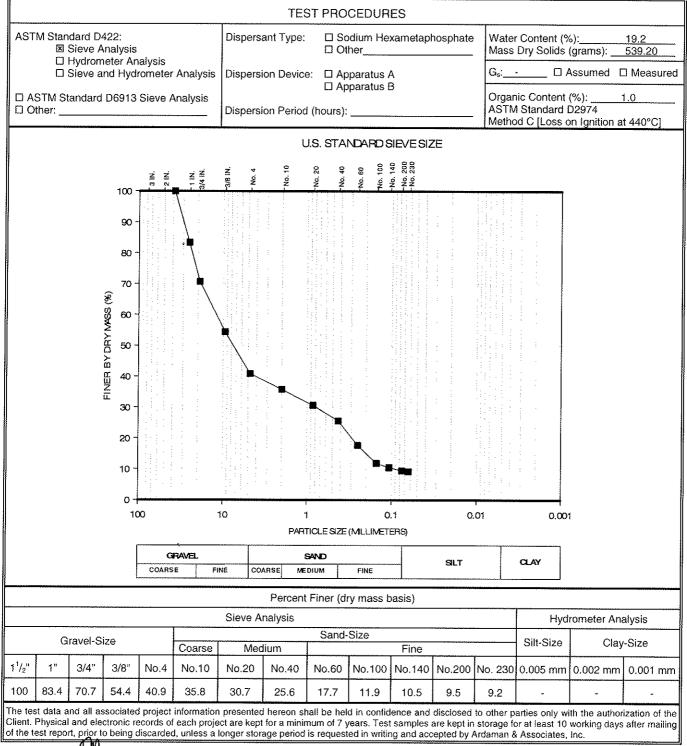


Date: 09/20/13


CLIENT: Tetra Tech NUS		INCOMING SA	MPLE NO		R026
PROJECT: Eastern Long Is	land Sound	BORING:		SAMPLE:	-
FILE NO.: 13-13-0083		DEPTH:	-		🗆 ft; 🗆 m
		LABORATORY	/ IDENTIFI	CATION: 008	3/R026
DATE SAMPLE RECEIVED:	07/24/13	SAMPLE DES	CRIPTION	: Light brown	to dark gray
DATE TEST SET-UP:	07/26/13	sand with silt a			
DATE REPORTED:	09/20/13	$C_{\rm u} = 16; C_{\rm c} = 1$.6		

INCOMING SAMPLE NO.: R027
BORING: - SAMPLE: -
DEPTH:
LABORATORY IDENTIFICATION: 0083/R027
SAMPLE DESCRIPTION: Light brown to brown sand
with clay and gravel and shell (SP-SC)
$C_u = 14; C_c = 0.7$

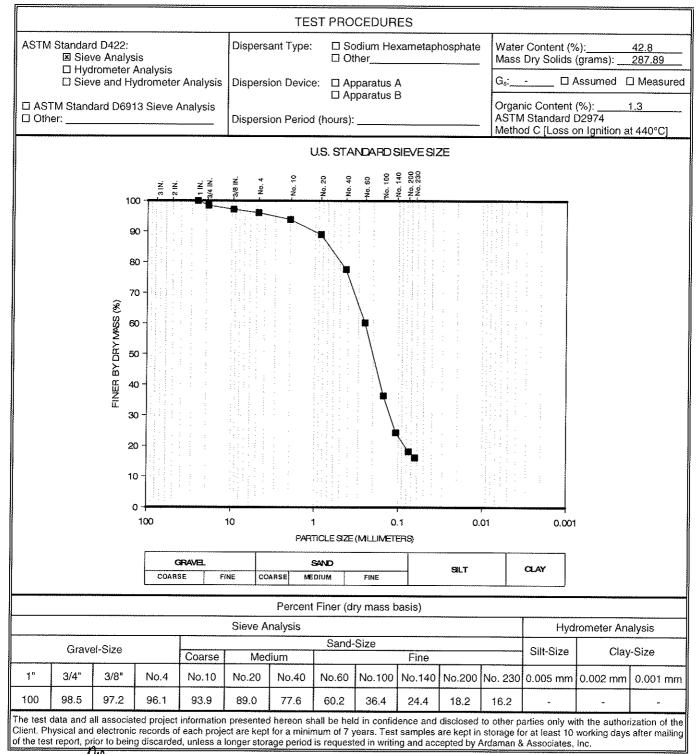
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R101
PROJECT: Eastern Long Island Sound	BORING: SAMPLE:
FILE NO.: 13-13-0083	DEPTH:
	LABORATORY IDENTIFICATION: 0083/R101
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with clay, shell and trace roots (SP-SC)
DATE REPORTED: 09/20/13	$C_u = 4.8; C_c = 1.0$


Checked By:

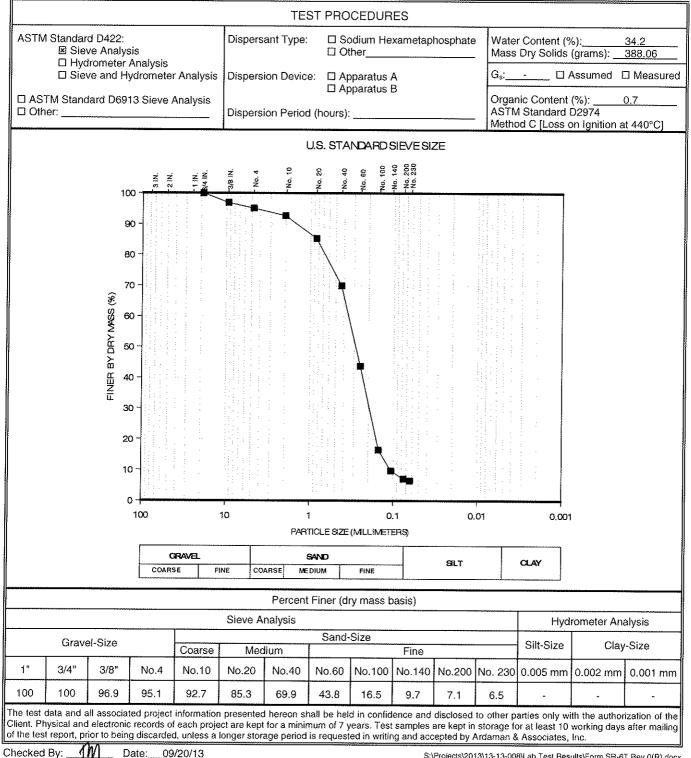
Date:_ 09/20/13

CLIENT: <u>Tetra Tech NUS</u> PROJECT: <u>Eastern Long Island Sound</u>					INCOMING SAMPLE NO.: R102 BORING: - SAMPLE: -											
FILE NO.: 13-13-0083						DEPI	-	-		SAMPLE:		- ⊐ ft; ⊡ m				
						LABC	RATOR				083/R102	2				
DATE SAMPLE RECEIVED: 07/24/13						SCRIP	TION: _	<u>Brown sa</u>	nd with t	race						
DATE TEST SET-UP: 07/26/13 DATE REPORTED: 09/20/13					<u>shell</u> C., = ⁻	(SP) 1.9; C _c =	= 1.0									
										<u></u>						
							1		ST PRO							
ASTM	Standard Siev Hyd	e Anal	ysis								dium Hexametaphosphate Water ner Mass			r Content (% Dry Solids	6): (grams):	25.0 237.60
	🗆 Siev	e and I	Hydro	omet	er A	nalysis				paratus			Gs:	<u> </u>	Assumed [] Measured
	rM Stand									paratus			Orgar	nic Content	(%):	0.2
Oth	er:						Dispers	ion Perioc	(hours):					1 Standard od C [Loss d	D2974 on Ignition a	t 440°C]
									J.S. STA		SIEVE SI	ZE				
				N.	2 N.	- 1 IN. 3/4 IN.	3/8 IN.	No. 10	Na. 20 No. 40	No. 60 No. 100	No. 140 No. 200 No. 230					
		1	00			1 1 1	<u> </u>			<u>f</u> <u>F</u>	777					
			90 -													
			80 -													
			70 -			÷										
			10													
		FINER BY DRY MASS (%)	60 -													
		RYA	50 -			į				1						
		В∕р	~ !													
		E H	40 - ¹						•							
		_	30													
1			-ر س													
		1	20 -							l						
						•										
			10 -													
			o -				+	-								
			100)			10	PAR	I NOLE SIZE).1 Tersy	٥	.01	0.00	1	
			-		GRA		NE 0-			phase 1 40-		SILT		CLAY		
			L	COA	RSE	Fí	NE CO	I		FINE			I			
							Sieve A		Finer (d	ry mass	Dasis)			Hyd	rometer An	alysis
	Gravel-Size Sand-		Size				Silt-Size	1	-Size							
1"	3/4"	3/8"	1	No.4		No.10	No.20	No.40	No.60	No.100	Fine No.140	No.200	No. 230	0.005 mm	0.002 mm	0.001 mm
100	100	100		100	1	99.9	97.9	39.8	2.1	0.8	0.7	0.7	0.7	-	-	-
Client. Ph	nysical and	l electroi	nic rea	cords	ofea	ach proje	ect are kep	t for a minir	י num of 7	vears. Tes	st samples :	are kept ir	storage f	or at least 10	working days	ization of the after mailing
Checked	7		ung di Date		09/2		ionger stör	age period	is reques	iea in writ	· · · · · · · · · · · · · · · · · · ·			Associates,		
CONCU	·····	4	Date	~ <u> </u>	55123	0/10	_				50	antojecis\20	10110-10-00	Inst Hest Hes	unsvrorm SR-6	T Rev 0(R).docx

Date: 09/20/13

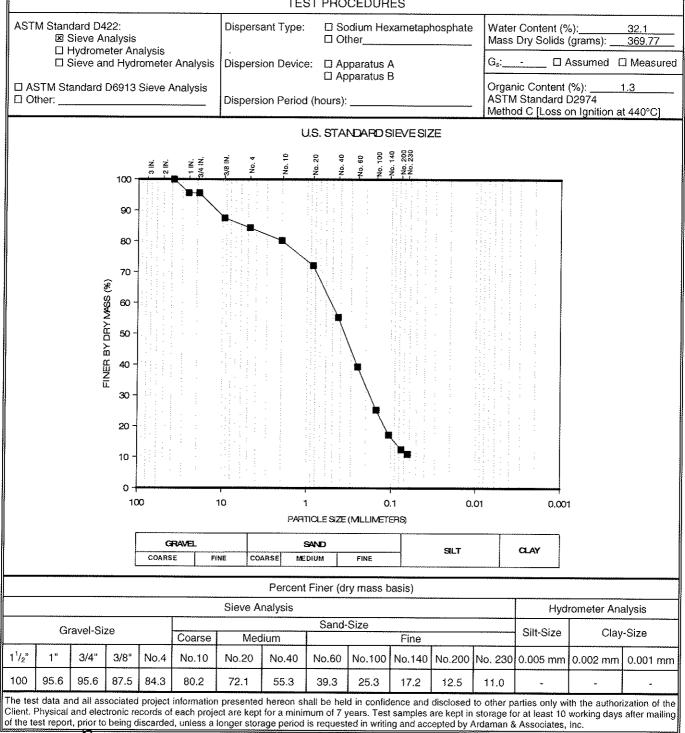

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R103
PROJECT: Eastern Long Island Sound	BORING; - SAMPLE; -
FILE NO.: <u>13-13-0083</u>	DEPTH: □ ft; □ m
DATE SAMPLE RECEIVED: 07/24/13	LABORATORY IDENTIFICATION: 0083/R103 SAMPLE DESCRIPTION: Light brown to brown gravel
DATE TEST SET-UP: 07/26/13	with clay and sand and trace roots (GP-GC)
DATE REPORTED: 09/20/13	<u>$C_u = 130; C_c = 0.6$</u>

Checked By:


Date: 09/20/13

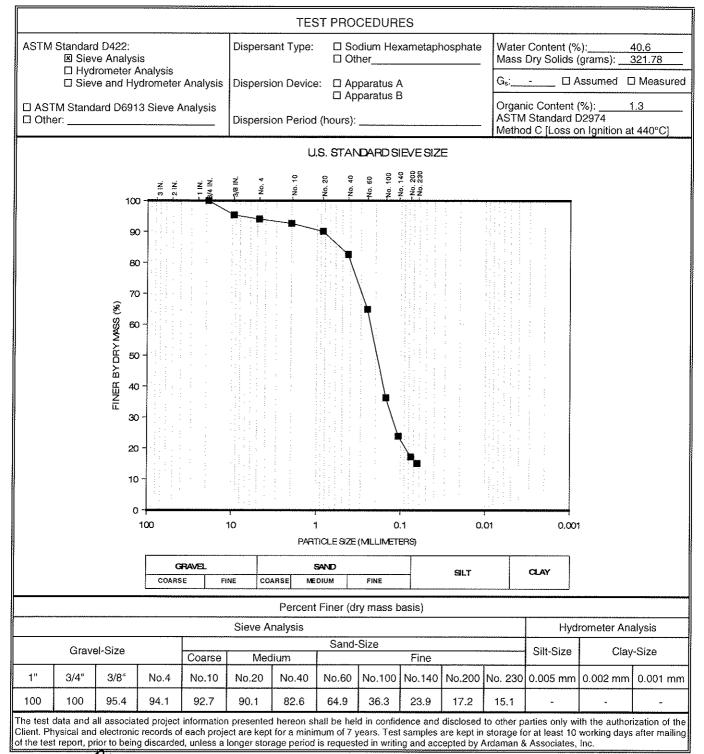
CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.:	105
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE:	-
FILE NO.: 13-13-0083	DEPTH:	□ ft; □ m
	LABORATORY IDENTIFICATION: 0083/	R105
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to	brown
DATE TEST SET-UP: 07/26/13	clayey sand with shell (SC)	
DATE REPORTED: 09/20/13		

Date: 09/20/13

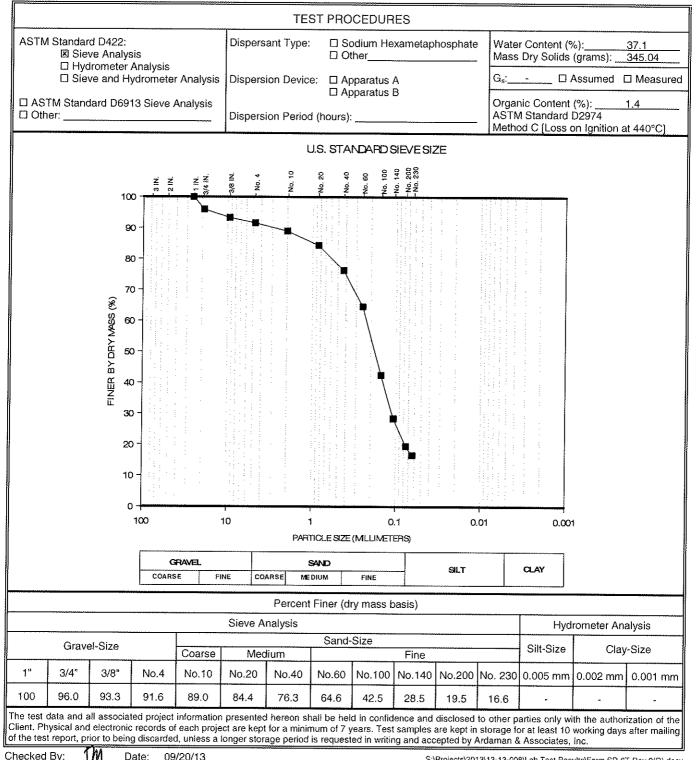

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R106
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: <u>13-13-0083</u>	DEPTH: - D ft; D m
DATE SAMPLE RECEIVED: 07/24/13	LABORATORY IDENTIFICATION: 0083/R106 SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with silt and shell (SP-SM)
DATE REPORTED: 09/20/13	$C_{\underline{u}} = 3.3; C_{\underline{c}} = 0.9$

Checked By: 11 Date:

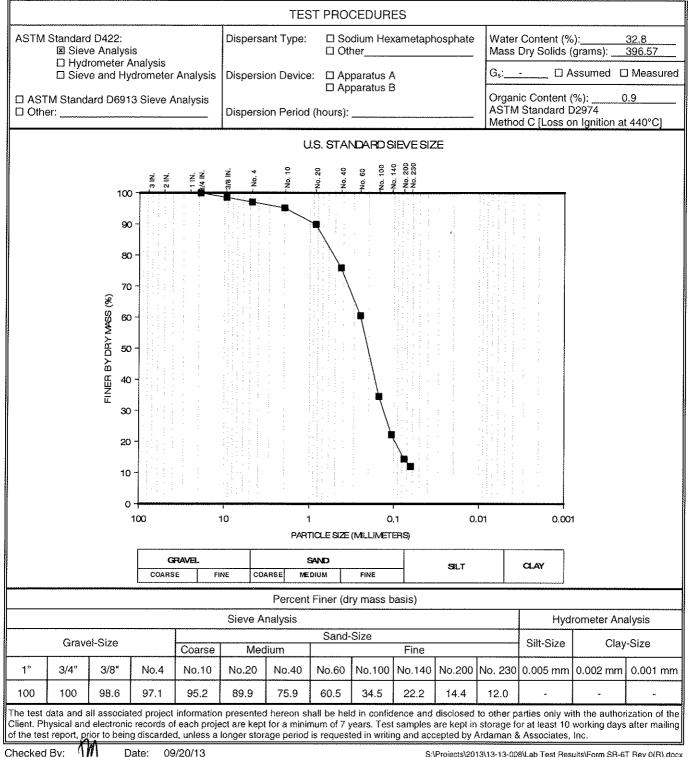
S:\Projects\2013\13-13-008\Lab Test Results\Form SR-6T Rev 0(R).docx


CLIENT: Tetra Tech NUS	····	INCOMING SAMPLE NO.:	R107
PROJECT: Eastern Long Is	sland Sound	BORING <u>:</u> SAMPLE:	-
FILE NO.: <u>13-13-0083</u>	·····	DEPTH:	□ ft; □ m
		LABORATORY IDENTIFICATION: 00	083/R107
DATE SAMPLE RECEIVED:_	07/24/13	SAMPLE DESCRIPTION: Light brown to brown	
DATE TEST SET-UP:	07/26/13	clayey sand with gravel and shell and	
DATE REPORTED:	09/20/13		
TEST PROCEDURES			

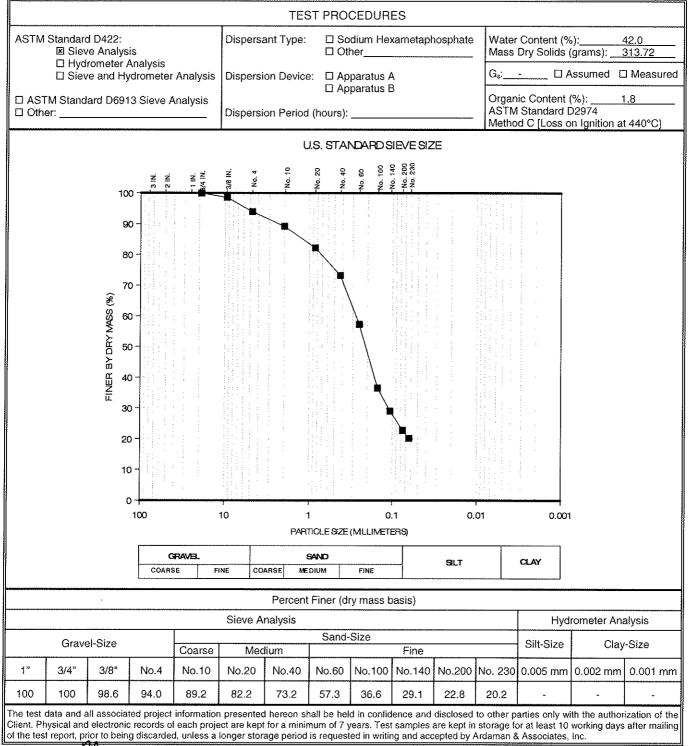
Checked By: _


_ Date:<u>09/20/13</u>

CLIENT: Tetra Tech NUS		INCOMING S	AMPLE NC		R108
PROJECT: Eastern Long Is	land Sound	BORING:	-	SAMPLE:	-
FILE NO.: 13-13-0083		DEPTH:	-		🗆 ft; 🗆 m
		LABORATOR	Y IDENTIF	ICATION: 008	33/R108
DATE SAMPLE RECEIVED:_	07/24/13	SAMPLE DES	SCRIPTION	: Light brown	to brown
DATE TEST SET-UP:	07/26/13	clayey sand w	ith shell (S	C)	
DATE REPORTED:	09/20/13				

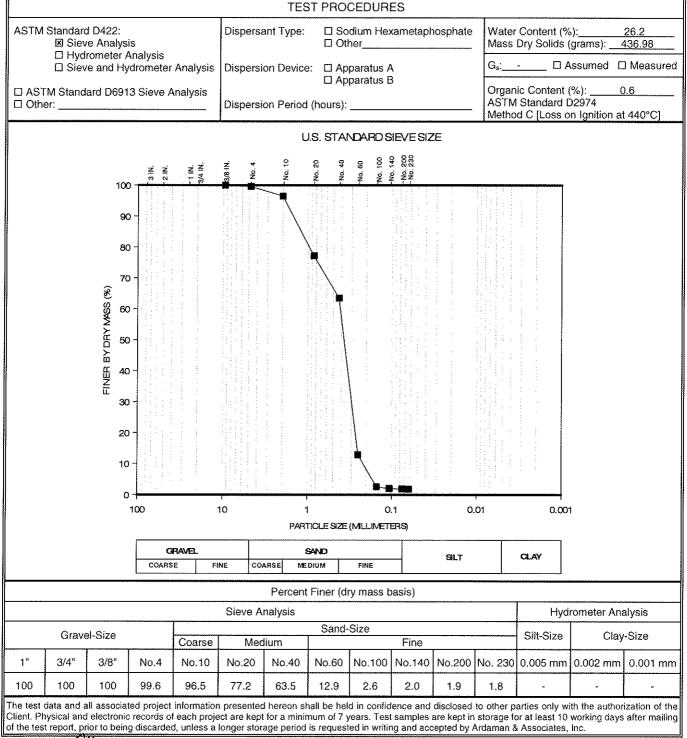

_ Date: 09/20/13

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R109
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH:
	LABORATORY IDENTIFICATION: 0083/R109
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Brown clayey sand with
DATE TEST SET-UP: 07/26/13	shell (SC)
DATE REPORTED: 09/20/13	

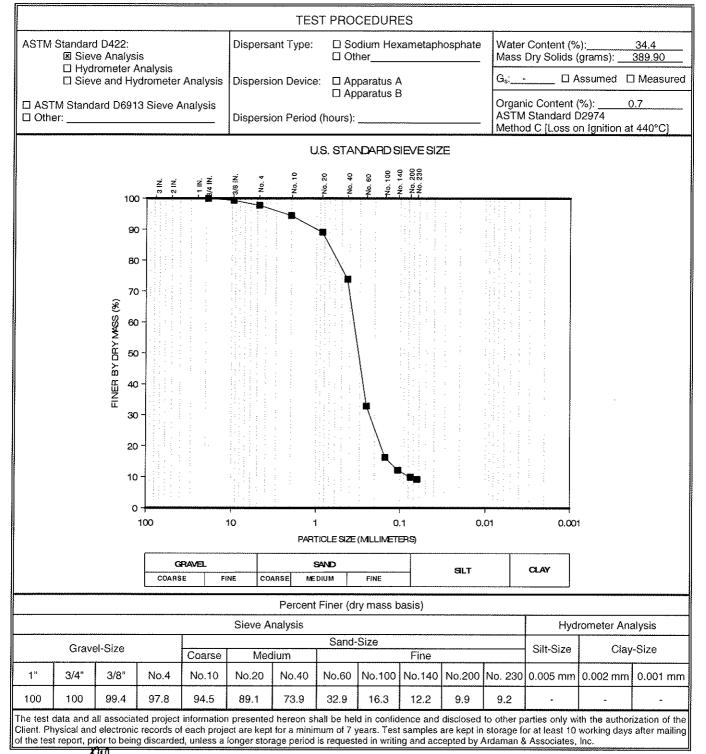

Date: 09/20/13

CLIENT: Tetra Tech NUS		INCOMING SAMPLE NC	D.: R110
PROJECT: Eastern Long I	sland Sound	BORING <u>:</u>	SAMPLE:
FILE NO.: 13-13-0083		_ DEPTH:	ロ ft; ロ m
		LABORATORY IDENTIF	ICATION: 0083/R110
DATE SAMPLE RECEIVED:	07/24/13	SAMPLE DESCRIPTION	I: Brown clayey sand with
DATE TEST SET-UP:	07/26/13	shell (SC)	
DATE REPORTED:	09/20/13		

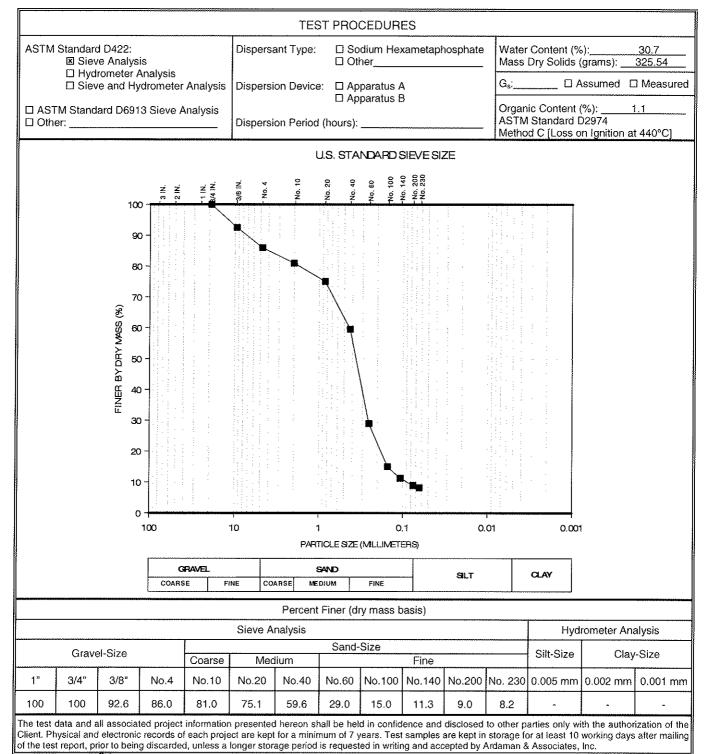
Checked By: Date:


CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R111
PROJECT: Eastern Long Island Sound	BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH:
	LABORATORY IDENTIFICATION: 0083/R111
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Brown clayey sand with
DATE TEST SET-UP: 07/26/13	shell (SC)
DATE REPORTED: 09/20/13	
	1

Checked By: _


п

CLIENT: <u>Tetra Tech NUS</u> PROJECT: Eastern Long Island Sound	INCOMING SAMPLE NO.: R112 BORING: - SAMPLE: -
FILE NO.: 13-13-0083	DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R112
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with shell (SP)
DATE REPORTED: 09/20/13	$C_{\rm u} = 2.0; C_{\rm c} = 1.0$
(



Checked By: 1// Date: 09/20/13

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R113
PROJECT: Eastern Long Island Sound	_ BORING: SAMPLE:
FILE NO.: 13-13-0083	_ DEPTH: 🗆 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R113
DATE SAMPLE RECEIVED: 07/24/13	_ SAMPLE DESCRIPTION: <u>Brown sand with silt and</u>
DATE TEST SET-UP:07/26/13	shell (SP-SM)
DATE REPORTED: 09/20/13	$C_u = 4.5; C_c = 0.6$

CLIENT: Tetra Tech NUS	INCOMING SAMPLE NO.: R114
PROJECT: Eastern Long Island Sound	BORING:SAMPLE:
FILE NO.: 13-13-0083	_ DEPTH: 🗆 🗖 ft; 🗆 m
	LABORATORY IDENTIFICATION: 0083/R114
DATE SAMPLE RECEIVED: 07/24/13	SAMPLE DESCRIPTION: Light brown to brown sand
DATE TEST SET-UP: 07/26/13	with clay and shell (SP-SC)
DATE REPORTED: 09/20/13	$C_{\rm u} = 5.1; C_{\rm c} = 1.8$

S:\Projects\2013\13-13-008\Lab Test Results\Form SR-6T Rev 0(R).docx

Checked By:

Date:

И

09/20/13

APPENDIX C - RAW LABORATORY DATA; SEDIMENT TOXICITY

This Page Left Intentionally Blank

Tł

Results of 10 day Sediment Toxicity Tests with Leptocheirus plumulosus and Americamysis bahia for Long Island Sound Dredge Disposal Sites

Report #BRF/ETF13-024

Submitted to: Mr. Brian Dresser Tetra Tech, Inc. 889 Elm St. Manchester, NH 03101 Phone: (603)-314-0756

Prepared by: Tetra Tech, Inc. 400 Red Brook Boulevard, Suite 200 Owings Mills, Maryland 21117

September 30, 2013

SUMMARY

CLIENT:	USEPA and NAVFAC	
TEST FACILITY:	Eastern Long Island Sound	
TEST MATERIAL:	Sediment from 4 sites, plus cor	ntrol
DATE(S) COLLECTED:	July 16 - 18, 2013	
DATE(S) RECEIVED:	July 23, 2013	
COLLECTED BY:	Brian Dresser, Tetra Tech, Inc.	
CONTROL/DILUTION WATER:	Artificial Seawater	
TYPE OF TEST(S):	10-Day Sediment Toxicity using 10-Day Sediment Toxicity using	
TEST DATE(S):	Leptocheirus plumulosus:	August 27 – September 7, 2013 July 29 – August 9, 2013
	Americamysis bahia:	September 9 – 20, 2013

TEST RESULTS:

TABLE 1.SUMMARY OF TEST RESULTS

Site	Species	Mean % Survival
Control		97
P003		98
P018	L. plumulosus	99
R024		94
P011		96
Control		90
P003		92
P018	A. bahia	92
R024		88
P011		82

MATERIALS AND METHODS

TEST MATERIAL

One gallon of sediment for each of 4 sites was collected by Tetra Tech personnel between July 16 and 18. Samples were held at <6° C from July 18 until shipping on July 22. The samples were transported in one gallon plastic ziploc bags on ice to Tetra Tech's Ecological Testing Facility. Upon arrival, the sample identification, collection date and time were recorded on the sample chain-of-custody sheet (see Appendix A Chain-of-Custody). Temperature of sediment was recorded upon arrival by measuring the temperature blank (water) packed with sediment. Temperature was < 6° C and was recorded on the chain-of-custody sheet.

CONTROL/DILUTION WATER

The control/dilution water used for the *Leptocheirus plumulosus* 10-day sediment toxicity test was artificial seawater with a salinity of 19.4 ppt. The control/dilution water used for the *Americamysis bahia* 10-day sediment toxicity test was artificial seawater with a salinity of 28.5 ppt.

TEST ORGANISMS/AGE

Leptocheirus plumlosus, 2 – 4 millimeters in length, were obtained from ABS (Aquatic BioSystems Inc.) and Chesapeake Cultures. *Americamysis bahia*, 1 day old, were obtained from Chesapeake Cultures. All organisms appeared healthy and disease free.

TEST METHODS

Samples were thoroughly homogenized in the lab in a stainless steel bowl with a Teflon spoon. During homogenization, the sediments were inspected for indigenous organisms. If any were found, they were removed.

USEPA. 1991. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th Ed. EPA/600/4-90/027.

ASTM. 1994. E1367-92. Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods. Annual Book of ASTM Standards, Vol. 11.04. American Society for Testing and Materials, Philadelphia, PA.

Tetra Tech Standard Operating Procedure TT-BRF/TX-SOP-O-054. 10-day Sediment Toxicity Test Using *Leptocheirus plumulosus*. Created May 22, 2012. (Internal document prepared by Tetra Tech, Inc.)

TEST CONDITIONS

A summary of the test conditions for the *L. plumolsus* 10-day sediment toxicity test is on page 4 (Table 2) and *A. bahia* is on page 5 (Table 3).

AERATION OF TEST

As per the method, slow aeration was provided one day prior to test organisms being loaded into test chambers for both *L. plumulosus* and *A. bahia*. Dissolved oxygen levels were sufficient after the addition of aeration.

MODIFICATIONS TO PROTOCOLS

None.

COMMENTS CONCERNING TEST

Due to control mortality greater than 10%, the 10-day sediment toxicity testing with *L. plumulosus* was repeated with a new batch of organisms and different control sediment. Control survival in the subsequent round of testing was greater than 90%.

TABLE 2.	Summary of Test Conditions for <i>Leptocheirus plumulosus</i> 10-day Whole Sediment
Toxicity T	est.

	PARAMETER	CONDITIONS
1.	Test type	10-Day Survival
2.	Test duration	10 Days
3.	Temperature	$25^{\circ}C \pm 1^{0}C$ daily mean temperature, $25 \pm 3^{0}C$ instantaneous temperature
4.	Light quality	Wide-spectrum fluorescent lights
5.	Light intensity	~ 100-1000 lux
6.	Photoperiod	24-h light
7.	Test chamber size	1000 mL high-form lipless beaker
8.	Sediment volume	175 mL
9.	Overlying water volume	800 mL
10.	Renewal of overlying water	None
11.	Length of test organisms:	2 – 4 mm (no mature males or females)
12.	No. organisms per test chamber	20
13.	No. replicate chambers per sample	5
14.	No. organisms per sample	100
15.	Feeding regime	None
16.	Test chamber cleaning	None
17.	Aeration	Slow aeration was provided as per USEPA guidelines.
18.	Overlying water	Artificial Seawater (19.4 ppt)
19.	Overlying water quality	Temperature and DO daily; ph, ammonia, salinity on Day 2 and Day 8
20.	Endpoint	Survival
21.	Sampling and sample holding requirements	Samples used within 8 weeks of receipt. Samples stored in the dark at 4^{0} C in sealed containers with no air space.
22.	Sample volume required	one gallon
23.	Test acceptability	Minimum mean control survival of 90%.

TABLE 3.	Summary of Test Conditions for Americamysis bahia 10-day Whole Sediment
Toxicity T	est.

	PARAMETER	CONDITIONS
1.	Test type	10-Day Survival
2.	Test duration	10 Days
3.	Temperature	$25^{\circ}C \pm 1^{\circ}C$ daily mean temperature, $25 \pm 3^{\circ}C$ instantaneous temperature
4.	Light quality	Wide-spectrum fluorescent lights
5.	Light intensity	~ 100-1000 lux
6.	Photoperiod	16-h light: 8-h dark
7.	Test chamber size	1000 mL high-form lipless beaker
8.	Sediment volume	175 mL
9.	Overlying water volume	800 mL
10.	Renewal of overlying water	None
11.	Age of test organisms:	1 – 5 days
12.	No. organisms per test chamber	10
13.	No. replicate chambers per sample	5
14.	No. organisms per sample	50
15.	Feeding regime	Fed <24-hour old Artemia nauplii daily
16.	Test chamber cleaning	None
17.	Aeration	Slow aeration was provided as per USEPA guidelines.
18.	Overlying water	Artificial Seawater (25-30‰)
19.	Overlying water quality	Temperature, pH and DO daily; ammonia, salinity on Day 1 and Day 9
20.	Endpoint	Survival
21.	Sampling and sample holding requirements	Samples used within 8 weeks of receipt. Samples stored in the dark at 4^{0} C in sealed containers with no air space.
22.	Sample volume required	one gallon
23.	Test acceptability	Minimum mean control survival of 90%.

RESULTS

OVERLYING WATER PHYSICAL/CHEMICAL RESULTS

The physical/chemical results of the overlying water including ammonia, dissolved oxygen, pH, temperature, and salinity, are summarized in Tables 4 and 5. See Appendix B Laboratory Bench Sheets for all physicochemical data.

LEPTOCHEIRUS PLUMULOSUS RESULTS

Leptocheirus plumulosus survival in site sediments ranged between 94% (R024) to 99% (P018). There was no significant difference in the survival of any site with respect to the controls. The results of the statistical analyses, along with significance levels, are included in Table C-1 in Appendix C Statistical Analyses.

AMERICAMYSIS BAHIA RESULTS

Americamysis bahia survival in site sediments ranged between 82% (P011) to 92% (P003 and P018). There was no significant difference in the survival of any site with respect to the controls. The results of the statistical analyses, along with significance levels, are included in Table C-2 in Appendix C Statistical Analyses.

COMMENTS CONCERNING TEST RESULTS

Test acceptability criteria were met for *L. plumulosus* and *A. bahia* for these tests as evidenced by >90% survival in the controls.

QUALITY ASSURANCE/QUALITY CONTROL

Reference toxicant test data are included in Appendix D Quality Assurance/Quality Control. Results indicate all organisms were responding appropriately.

TABLE 4.SUMMARY OF WATER QUALITY AND TEST DATAFOR L. plumulosus 10-DAY SEDIMENT TOXICITY TEST

Client: USEPA and NAVFAC		
Experiment ID: Tt01684, Tt01688 – Tt01691	Start Test	8-27-13
Sample Tested: Eastern Long Island Sound	End Test	9-7-13

RESULTS (including water quality before organisms were loaded)

WATER CHEMIST	'RY ANALYSIS (R	ANGE)			
Site	Salinity (ppt)	D.O. (mg/L)	рН	Temp. (°C) Instantaneous	Ammonia (mg/L)
Control	17.5 – 19.6	7.2 – 8.4	7.3 – 7.4	23.7 – 26.5	1.1 – 3.3
P003	19.9 – 22.7	7.6 – 8.8	7.8	23.7 – 26.5	0.3 – 0.7
P018	20.0 - 22.1	7.1 - 8.8	7.9 – 8.0	23.7 – 26.5	1.7 – 4.7
P011	20.3 – 22.4	7.7 – 9.0	8.0	23.7 – 26.5	0.1 - 0.4
R024	20.0 - 22.1	7.7 – 8.7	8.0	23.7 – 26.5	0.1 – 2.7

TABLE 5.SUMMARY OF WATER QUALITY AND TEST DATAFOR A. bahia 10-DAY SEDIMENT TOXICITY TEST

Client: USEPA and NAVFAC		
Experiment ID: Tt01711, Tt01713 - Tt01716	Start Test	9-09-13
Sample Tested: Eastern Long Island Sound	End Test	9-20-13

RESULTS (including water quality before organisms were loaded)

WATER CHEMIST	'RY ANALYSIS (R	ANGE)			
Site	Salinity (ppt)	D.O. (mg/L)	рН	Temp. (°C) Instantaneous	Ammonia (mg/L)
Control	28.5 - 30.3	7.1 – 8.5	7.6 - 8.1	23.9 - 26.1	0.5 – 4.4
P003	30.1 - 35.1	7.3 – 9.2	7.9 – 8.3	23.9 - 26.1	0.1 - 0.4
P018	30.8 - 34.5	7.3 – 9.3	7.9 – 8.2	23.9 – 26.1	0.5 – 2.1
P011	30.5 - 33.1	7.4 – 9.1	7.6 – 8.2	23.9 – 26.1	0.7 – 4.1
R024	30.5 - 33.0	6.9 – 9.3	7.7 – 8.1	23.9 – 26.1	1.0 - 1.7

A. CHAIN OF CUSTODY

Eastern Long Island Sound Dredged Material Disposal Sites - Longty Assurance Project Plan

Figure 7: Chain of Custody Form

33 Biological Resource Characterization and Risk Assessment

June 2013

B. LABORATORY BENCH SHEETS

Page ((of	1	8		L. PL	משחדכ	SUS 10	D-DAY SED	L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	LY BENCH \$	SHEET			Test #:	Test #: T + 0/684	1684	
)		×0 ~ -				I aboratory ID ⁻	Ċ	11			Sedimer	Sediment Load Date/Time:	tte/Time:	E1 176/3		1010	
Test		Rail 1.	1	Red Culci	·	Cliant/Droject	niect	Ĩ			Organist	Organism Load Date/Time:	ate/Time:	811-8113	513	0679	
Sam	Sample ID: 4	van one	10.		_	Codimo	of Volur	-	51 :02	l	Test End	Test End Date/Time:	e: Je:	9/7//3		OPRO	
Orga	nism Sot	Organism Source: UN0000000	n 2 6			Vater V	olume (800		Corresp	Corresponding Control Test #:	introl Tes	1	TEO1684		
	Organism Date: Organism Size:	e: 2-4m	2			Dilution	Water	Dilution Water (Batch #):	Sul	ł							
			Replicate			Analyst	Time		Observations	Temp (°C)	DO (mg/L)	Salinity (%)	NH ₃ (mg/L)	Hq	Analyst	Time	
2	- %	202	е ²	ي م	s v	ßS	1230		14	13.9	7.5				55	مرما	
<u> </u>	2		2	2	2					23.8	8.3			1997 1997 1997	22	0360	
-										2.54	8.6	17. S	1.1	52	85	0560	
~										23.7	<u>&</u> ;+				F 2	1050	
m										23.7	1.1				SLA	030	
4									×	2327	5				Pr3	1165	
ŝ									26.1		r 8,3				<i>b</i> 5	1000	
0		Ŷ	٩							26.5	8.3				35	0 Z 5-0	
~										35.3	4.4	9,61	33	22	65	RB	
8									÷	254	7.7				45	0700	
ത	61	0	6		6-	8	0920	30		25 6	+	1			\$5	0421	
	10 / Final Mear	ר – – – – – – – – – – – – – – – – – – –	Survial:	/ 3/ û / # #	- [2] 8	- x100 =		% LE 74			6 2						
i af a	-												1			C 1 U C	~

2013

.

Data Checked and Approved: 37

Tetra Tech, Inc. Ecological Testing Facility

Page	L of L					L. P.	, TOWNT(snsc	10-DA)	L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	BENCH	SHEET			Test #	Test #: <u> </u>	6 4 4
Test #		tto1688	$\boldsymbol{\diamond}$				Laboratory ID:	tory ID	T T	ь_	-	Sedime	Sediment Load Date/Time:	ate/Time	8/3	7/13	(101
Sample ID:	le ID:	1003	m				Client/Project:	² roject.	LT S	\$	1	Organis	Organism Load Date/Time:	ate/Time		\$/18/13	(} (0
Organ	Organism Source: Chasopla/M	rce: CM	leso) la/re			Sedime	int Vol	Sediment Volume (mL):	IL): 175	1	Test En	Test End Date/Time:		9/2/13		640
Organ	Organism Batch #.		0036				Water Volume (mL):	/olum	e (mL):	600	1	Corresp	Corresponding Control Test #: 7601684	ontrol Te	st #. 76 (11 84	
Organ	Organism Size:	• •	4	·tmm			Dilution	Wate	Dilution Water (Batch #):	1#): 50 ⁽	70 J						
Day	-	~	Rep	Replicate	4	5	Analyst	t	•	Observations	Temp (°C)	DO (mg/L)	Salinity (%)	NH ₃ (mg/L)	Hq	Analyst	Time
0	2	2		20	2	20	54	1310	e		23.7	81				85	loto
-									的这些中		23.8	J.J				<i></i>	01 10
~											23.7	84	A.9	0.7	2.0	\$5	0950
ო											À3.7	6,3				(بھ	(d50
4											23.7	7,6				SLA	οξοί
2 C											23,7	8,2				513	1155
9										36.1	1/2/2 34E	1.8				158	1000
2											5.98	7.9				56	0530
ω											853	85	Da.7	0.3	87	B	250
თ										17	25.4	2.8				RS	0 1 0
10	29	02	-	8	07	20	87S	0401	9		25.6	7.9				45	1340
Fina	Final Mean Percent Survial:	Percent (Survi	ial:	# Surviving # Exposed	viving	- x100 =		4 8	%							

Data Checked and Approved: JP

Tetra Tech, Inc. Ecological Testing Facility

Page <u></u> of	L of L		Ľ Þ	LUMULC	ISUS 10	-DAY SED	L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	Y BENCH	SHEET			Test #	Test #:01039	680	
Test #:	TT01687			Laboratory ID:	ory ID:	T T		I	Sedime	Sediment Load Date/Time:	ate/Time	\$ 127/13		2015	
Sample ID:	eID: Polg			Client/Project:	roject:	lts		n I	Organis	Organism Load Date/Time:	late/Time		8 178 113	5451	
Organi	Organism Source: CN0500 CM	produe		Sedime	Sediment Volume (mL):	ie (mL):	175	1	Test En	Test End Date/Time:		El Fofro	দ	TLY	
Organi	organism Batch #: CO 않	- 0		Water \	<u>Water Volume (mL):</u>		800	I	Corresp	Corresponding Control Test #: 72 01 674	ontrol Te	st #: 74	FOLGEY		
Organ	Organism Size: 7	p-4m	1	Dilution	Water (I	Dilution Water (Batch #):	501	I							
Day	1 2 Rep	Replicate 3 4	5	Analyst	Time	^q O	Observations	Temp (°C)	DO (mg/L)	Salinity (%)	NH ₃ (mg/L)	Hď	Analyst	Time	
0	0		o k	<i>R</i> s	1345			23.9	8.3				R 5	مرما	
-						5		3° EC	8,3				<i>4</i> 5	0160	
~						2		6.8-6	8.7	20.0	1.7	7.6	45	ه ۲۵ ه	
ო								23.7	6,8				\$2	1050	
4								23.7	12				STJ	0201	с. I
ى س							Ţ.	23,7	2.8				Erg	1155	. 1
۵							1 26		1.8				981	000	
2								265	8.0				R5	e 5,90	Ý •
. ∞								esc	E.S	L'H Vee	L'n	8.0	S	125	
თ			ida.					25.4	7.8				53	0900	
9	19 20	20 20	2	54	57 H			2.5.6	7.8				64	1340	
Fina	Final Mean Percent Survial:		# Surviving # Exposed	- x100 =	6	d %	- Ann								
Tetra Ecolog	Tetra Tech, Inc. Ecological Testing Facility			181 	Data	Checked a	Data Checked and Approved: JF	4						2013	

	Page _	Page tof [Γ	PLU	NULOS	US 10-E	AY SEDIN	L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	Y BENCH	I SHEET			Test	Test #: T 0 / 6%	1910	
	Test #:	: TT61690	0693			1	La I	Laboratory	y ID:	TT -	÷		Sedime	Sediment Load Date/Time: $8/\lambda7/r3$	ate/Time	x/8:	7/13	1018	So.
	Sample ID:	ä	8011			[ō	Client/Project:		SI	×		Organis	Organism Load Date/Time:	ate/Time	1/2 :0	8/28/13	1325	5.
	Organi	Organism Source: UN WORM	Se: C	neaper	بعر	I	ഗ്	diment	Sediment Volume (mL).	(mL):	1 75		Test En	Test End Date/Time: 9/0チ//3	ne: 0	(07 /13		1000	
	Organi	Organism Batch #:	# 20	COAL			3	ater Vo	Water Volume (mL):		800	1	Corresp	Corresponding Control Test #:	ontrol Te		7701684		
	Organi	Organism Size:		2-4 mm		I	Ξļ	ution V	Dilution Water (Batch #):		501								
	Day	-	5	Replicate	4	5		Analyst	Time	Obse	Observations	Temp (°C)	DO (mg/L)	Salinity (%)	NH ₃ (mg/L)	Hd	Analyst	Time	
	0	20	202	d.	م م		2 C X	<u>2</u> ~	1326			23.9	8.3				65	1040	
	-											23.4	8.3				60	Dy 10	
	5											23.9	8:1	20.3	0,4	8.0	64	одбо	
	e											23.7	6.6				135	1050	
	4											23,7	7.8				SLU	0501	
	5									11	18	23.7	8,3				Et J	1155	ö
Ĵ	9										A.6.1	9/110-115	8.0				591	(00 C)	N
-{	2											26.5	8.1				RS	0850	
	∞											89.3	Ch	Hibe	0,	8,0	Ś	600	
	თ										4	25.4	1 27				45	0100	
	9	20 20 19	20	19	4	18	•	50	0001			25.6	61 0				35	1380	
	Final	Final Mean Percent Survial:	arcent S	urvial:	# #	# Surviving # Exposed		- ×100 =	96	%									
	Tetra T	Tetra Tech, Inc.									U t	И							

Data Checked and Approved: 3F

Tetra Tech, Inc. Ecological Testing Facility

Page / of 1	L. PLUMULOSUS 10-DA	L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	BENCH SH	HEET		Tes	Test #: <u> </u>	1631	
Test #: 77 01691	Laboratory ID:	7+	ωI	sediment	Sediment Load Date/Time:		8/27/13	1040	
Sample ID:	Client/Project: L	T3	O	Drganism	Organism Load Date/Time:		8/78/13	1345	
Organism Source: Cheftopelac	Sediment Volume (mL):	11): 175		est End	Test End Date/Time: $9 1 3$ No S	9/1/3	Nos		
Organism Batch #: 00ルー	Water Volume (mL):	600	0	orrespo	Corresponding Control Test #: 1401684	I Test #:	Rollogy		
Organism Size: $\mathcal{I}^{\mathcal{A}_{M}}$	Dilution Water (Batch #):	h#): Sol		110					
Day Replicate 1 2 3 4 5	Analyst Time	Observations	Temp (°C)	DO (mg/L)	Salinity NH ₃ (‰) (mg/L)	NH ₃ pH mg/L)	Analyst	Time	
0 30 20 20 20 20	C BS (3+5		43.9	8,3			<i>b</i> 5	9201	
		2	23.8	<i></i> 8 Н			MS	a160	
7			626	5.6	20°0 2.7	7 8.0	95	0950	
3			23.7	1:9			PHS	1050	
4			23.7	8,0			573	1030	
2				8,3			-frs	11531	
9	•	1.9-6	L'ELE	6.2			PS-	000	
7			26.5	8.1			<i>H</i> 5	0850	
8			353	83	B2.1 O.	(8.5	ß	1250	
0			2.5.4	7.7			K 5	0060	
10 20 19 20 18 1	11 35 1409		25.6	19			¥5	1340	
Final Mean Percent Survial: # Exposed	<u>19</u> ×100 = 4 <u>년</u>	%							
Tetra Tech, Inc. Ecological Testing Facility	Data Che	Data Checked and Approved:		I.				2013	

Page ¹	- of -	ı			Ĺ	PLUM	NOSI	US 10-[L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	тохісіту	BENCH	SHEET			Test	Test #: TT01669	1669	
Test #	Test #: 17 16 69	1699			2	Labo	oratory	Laboratory ID: TT		0		Sedime	Sediment Load Date/Time:	ate/Time		7/29/13	5421	VA I
Samp	Sample ID: C	Cuthol			I	Clier	Client/Project:		SIJ			Organis	Organism Load Date/Time:	ate/Time		1/30/13	~	00
Orgar	Organism Source:	rce: #85	35		1	Sedi	iment \	Volume	Sediment Volume (mL): 1 75			Test En	Test End Date/Time:		8913	0910		•
Orgar	Organism Batch #:		ور ٥٥		I	Wat	er Volt	Water Volume (mL):	L): 600			Corresp	Corresponding Control Test #:	ontrol Te	I	T& D1669	E	
Orgar	Organism Size:	m +- + m	¥ w		1	Dilut	tion W	ater (Ba	Dilution Water (Batch #): ᅛ්ॳ3									
Day	-	5	Replicate	te 4	2	Analyst		Time	Observations	su	Temp (°C)	(T/gm)	Salinity (%)	NH ₃ (mg/L)	Hd	Analyst	Time	
0	Je	Å	20	d.u	ۍ مړ	ßS		1300			24.7	66				45	0001	
-											ीप्प	73				\$))00	r
5											2. fr	8.2	9'1'e	5_0	6.8	58	1350	
ო										8	SNG	7.7				S	<i>3</i> 915	
4											2.5 L	3.6				B5	6 I O I	
5											35.5	79				C	1510	
9											0. XL	9° l.				64	0935	
7									8	3	350	B,R				S	2405	8
ω											25.0	8.2	<i>٥ '٤</i> ٤	7.0	J'S	65	0451	. 1
ი											24.9	8.5				55	1330	
10	1	7	2)	(۲	1 5	135		0160			249	8,6				55	1600	
Fine	Final Mean Percent Survial:	ercent S	survial:	。 第 第	# Surviving # Exposed	— ×100	=	J 9	%	-Test invalid due to control mutality > 10th	id due t	throo th	of marter	lity >	10 ⁰ b.			1
Tetra [·] Ecoloç	Tetra Tech, Inc. Ecological Testing Facility	ing Facil	lity					Data Ch	ସନ Checked and Approve d:_	- \ *	2 Sector	L but	SF reviewed but not approved; invited	d. invit	P		2013	

A. - N. 1

Data Checked and Approved: 38

Page 1 of	L. I		OSUS 10.	L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	ITY BENCH	SHEET		Test	Test #: <u>TTOI 670</u>	0191	
Test#: Trol6 70	1	Laboratory ID:	ory ID: 🦷	F-	I	Sedime	Sediment Load Date/Time:		5/67	21/24/13 1205	Ś
Sample ID: $\beta c \circ 3$	20	Client/Project:	roject:		1	Organis	Organism Load Date/Time:		7/30/13	1100	
Organism Source: A \$5	:	Sedime	nt Volume	Sediment Volume (mL): 1 75	I	Test En	Test End Date/Time: 8/9/13	9/13	1300		
Organism Batch #: ⁰ º-3	I	Water V	Water Volume (mL):	ر]: گ ^{وره}	1	Corresp	Corresponding Control Test #: Tと0 しんう	st #:	69710:		
Organism Size:		Dilution	Dilution Water (Batch #):	atch #):	I						
Day Replicate 1 2 3	2	Analyst	Time	Observations	Temp (°C)	DO (mg/L)	Salinity NH ₃ (%) (mg/L)	Hq	Analyst	Time	
مر مر مر 0	020	Кs	0011		24-7	7.8			ßs	1000	
7				43	BY.Y	22			S	Nea	
2				-	24.6	J.J	x1.8 (.3	6.6	\$ 2	1350	
3					gy.g	7.7			53	SIGO	•
4					25.0	8-0			<i>h</i> 5	10 15	
Q				8	96.5	CS			S	ongl	
ω					25,0	7.8			ζų	0935	
7					€% €	80			SJ	0425	
8					25.0	8.5	21.5 0.2	7.5	83	1240	
9					24.9	8.6			28	0881	
10 17 18 16 M	ľ þ	16 5	002)		24.9	8.7			1 55	16 00	
Final Mean Percent Survial: #S	# Surviving # Exposed	- x100 =	18	%	walid due	the con	- Tast much ind due to constrat another 10 36	. % 01 <	-		
Tetra Tech, Inc. Ecological Testing Facility		N 124	Data C	Data Checked and Approved: 38	Data revie	tud hout	SF Data reviewed but not approved; test involud.	st inul	ý.	2013	

Page ^L of <u>L</u> F	PLUMULC	ISUS 10	L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	Y BENCH	SHEET			Test	Test #: T t o l 6	16 71
Test #: 770 /67/	Laboratory ID:		7T		Sedime	Sediment Load Date/Time:	ate/Time:	7/29/13		9/11
Sample ID: P 0 1 8	Client/Project:	roject:		24	Organis	Organism Load Date/Time:	ate/Time		7/30/13	1210
Organism Source: $4 \beta 5$	Sedimer	Sediment Volume (mL):	e (mL): 1 ⁷ 5		Test En	Test End Date/Time:		21/00/80		601
Organism Batch #: vo h3	Water V	Water Volume (mL):	uL): %00		Corresp	Corresponding Control Test #: 74 01669	ontrol Tes	# #	01669	
Organism Size: みっサルル	Dilution	Dilution Water (Batch #):	atch #):	1						
Day Replicate 1 2 3 4 5	Analyst	Time	Observations	Temp (°C)	DO (mg/L)	Salinity (%o)	NH ₃ (mg/L)	Hd	Analyst	Time
of he ar ar ar	85	0121		24.7	7	-111-			ßs	1000
1				hrhe	10:8				S	8
2				34.6	እሌ	4.1.2	J.0	7.9	55	1350
3				949	8.0				B	2190
4				2-5-6	9.0				63	lo (S
2				35,5	E.S				S	1540
9				م.5%	7.8				155	2580
7			-	350	لوبه				R	eas
8				2.0	8.9	2.1.1	o.4	7.5	SS SS	مهدا
6				24:7	Y.5				45	ولألحج
T1 81 T1 61 P1 01	53		n. R	542	8.7				k 5	الوه
Final Mean Percent Survial: # Surviving # Exposed	- x100 =	43	% Test M	Test miniful due to contral montality 210%.	to contr	bl nute	ne fili	0%0.		
Tetra Tech, Inc. Ecological Testing Facility		Data C	allault ^b aff Data Checked and Approved: 3F	wed	wt appr	but not approved; test in which,	marked			2013

Page	Page <u></u> of ¹				L. F	TUMUL	OSUS 1(L. PLUMULOSUS 10-DAY SEDIMENT TOXICITY BENCH SHEET	TOXICITY	BENCH	SHEET			Test #	Test #: <u> </u>	1672	,
Test #:		61910+1	4			Labora	Laboratory ID:	Ł			Sedimer	 Sediment Load Date/Time: 	ate/Time:		712/13	1200	<u>.</u>
Sample ID:		Rozy				Client/Project:	² roject:				Organisi	Organism Load Date/Time:	ate/Time	: 7/30/13	/13	1300	
Organi	Organism Source:		A 9.5			Sedime	Sediment Volume (mL):	ie (mL): 175			Test End	Test End Date/Time: 0\${04 //J	ne: 08	E/ 60	,ğ	5101	
Organ	Organism Batch #:		0073			Water /	Water Volume (mL):	nL): 800			Corresp	Corresponding Control Test #: 7 / 0/เป _็ ย	introl Tes	i#: TE	0169		
Organi	Organism Size: 2 - 4 ~ ~	×+ ~	¥			Dilution	Dilution Water (Batch #):	3atch #):									
Day	-	2	Replicate	4	5	Analyst	tTime	Observations	su	Temp (°C)	DO DO	Salinity (‰)	NH ₃ (mg/L)	Ηq	Analyst	Time	
0	de	ng	ar	20	20	R5	1300		4	24.7	0-S				\$5	0001	
-										NY	SZ.				R	II S	4
2										QH. 6	8.2	414	ي. ل	2.9	59	izsó	
с С									0	94.9	7.7				ß	0915	
4									-	25v	61				2	5,0%	
5									0	85.5	8.6				3	1540	
9		•		in .						0.5%	7.9				K5	کدوم	
7								-	~	950	8.3				S	OBS	-
8								8.		25.0	87	ا.يد	4.0	7.7	\$S	1240	
^с б										24 9	8.3				<i>B</i> 3	1330	
10	1 - 1 C	Richtly ALA	26,8,10, 16, 19,50013, 8,713, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 14, 1	11 45 45 WE 11	15 13	59	03-10-8%	5		24.6	6,6				ŖЗ	levu	
Final	Final Mean Percent Survial:	ercent S	urvial:	# Su # Exi		- x100 =	-	% /	Test Iwhere Over to Conner Martality >10%.	רבט ()	ue to C	owner M	ortality	210°h	ď		
Tetra T Ecologi	Tetra Tech, Inc. Ecological Testing Facility	ing Facil	iţ				Data (Data Checked and Approved: <u>JF</u>		reword	but rei	reviewed but not approved; in valud.		hd.		2013	

Page_	Page <u>t</u> of l				Ļ	T. PLUMULOSUS	LOSUS		10-DAY SEDIMENT TOXICITY BENCH SHEET	BENCH	SHEET		Test	Test #:0	1673	
Test #:		7701673			1	Labor	Laboratory ID:	5 1-			Sedimer	Sediment Load Date/Time:		21/27/13	1 <u>15</u>	
Sample ID:		1101			I	Client	Client/Project:				Organisı	Organism Load Date/Time:		7/30/13	1300	
Organi	Organism Source: A 135	ce: A ß	\$		I	Sedim	ient Vol	Sediment Volume (mL):	1 75		Test End	Test End Date/Time:	C1 60 30	Σ	0141	
Organi	Organism Batch #:		out3		I	Water	Water Volume (mL):	e (mL):	100		Corresp	Corresponding Control Test #: TE 0)/069	est #: T1	Folded		
Organi	Organism Size:	a-4-m	Ę		-	Dilutio	Dilution Water	r (Batch #):								
Day	-	5	Replicate	e 4	2	- Analyst	stTime	e	Observations	Temp (°C)	DO DO	Salinity NH ₃ (‰) (mg/L)	Hd	Analyst	Time	
0	مه	9.6	20	مله	30	<i>1</i> 65	1300		× .	24.7	7.8			ŚŚ	0001	6
~										hhC	8.4			S	1169	
2		:								st. 6	§.3	ه. ۲ م. ک	F.L.	85	1350	
3										34.9	7.7			SJ	Ogis	
4										25.0	7.8			65	د) ه) ا	
5										85.5	§.(o			Ś	1540	
9										2-5.0	8.1		5.	<i>B</i> S	0935	
7										SF.o	80			B	6725	
8										25.0	4.8	23.0 0.4	7.8	ŚŶ	1240	
ი	•									34.9	58			ßS	1330	
10	[]	EVENSIV	۶ı	i ر	91	64	14 10	٥	18	24.9	Ø,S			ЪŞ	روده	
Final	Final Mean Percent Survial:	ercent S	urvial:	# E) # E)	# Surviving # Exposed	— ×100 =		83 %		LEO Due	ق م	Test Invalue Due to Connece Montherry 210%	ליטול לד	رە		
Tetra T Ecologi	Tetra Tech, Inc. Ecological Testing Facility	ng Facil	iş.				Da	ta Checkeo	المدامين ع ² Data Checked and Approved: 37 كمك	h rentue	d but a	5F Dath reviewed but not approved; test invalud,	inutual	Ň	2013	

Page i of l

Weight Data for L. plumulosus Larval Survival and Growth

Test ID: T+61669-++0 1673.	Start Date (MMDDYYY): $7/3$ $7/3$	<u> </u>
Drying Temp: h0°C	Drying Time (HH:MM): المراجع Drying Time (HH:MM): المراجع	Weighing Date (MMDDYYY): 7/3/1/3
Analyst: 🖄	Client: <i>し</i> すら	

Analyst: 🖉			Client: L+S				
Concentration	Replicate	A Weight of boat (mg)	B Dry Weight of foil and organisms (mg)	B-A Total Dry Weight of organisms (mg)	C Number of organisms	(B-A)/C Mean Dry Weight of organisms (mg)	Remarks
	-	5:181 2 2 3 1.81.2	2	5,2	(ع	0,43	
	2	1, 75,4	-	5:0	41	0.42	ALL = O. W.S.
16 109	e	1186,2	119414	4	5	0,55	1
·	4	1188.3	1951	6.8	14	0,49	
	5	1.171.1	11-78.9	7.8	SI	0.52	
		1175.2	11 -78.8	3.6	(ナ	0.21	
r r	2	1179.8	1.84.1	4,9	8)	0. RF	
16/0	3	1172.4	1178.4	6.0	٩١	o. 38	Avn. = 0, 432
,	5	1 8 7, 8	6.7.6 11	101	<u>†</u> 1	やけつ	-
	5		11823	9.3	91 	0.50	
	÷		1185.4	10.7	Ы	٥.5٦	
	2	0' 1 2 1 1 2 1 1	1180.5	المركب ا	أع	054	
1671	ო	2.6911	60001	107	17	0.63	Hun = 0.544
-	4		0.181	1.4 I	18	0.41	
	5	1169.1	1178.9	9.8	F	0.58	
	1	1165.9	1176.6	10,7	8	0.59	
	2	2.2911	1171.5	8.3	14	0,59	
[[677]	3	1176.8	1181.6	ý.S	13	0. <i>2</i> 7	Aun-=0.422
1	4	1173.5	1177.4	3.9))	0.35	~
	5	1179.9	1184.0	4.1	(3	0.31	
	ŀ	1180.3	1185.2	4.9	(}	0.3	
7	2	1172.5	11778	S.3	20	0,27	
1042	3	1193.1	1197.3	4.2	أر	<u>ତ. ୬୪</u>	AUM- 0.314
	4	1188.0	1194.6	1.0	١	<u> </u>	(
	5	11710	1176.3	4.7	ر ار	ତ୍ ଅ	
Blanks	A			· · · · · · · · · · · · · · · · · · ·			
	В						
			I			-	

-

Ter Twhere Dueto control worth LPY >10%

Data Checked and Approved 3F Data Checked and Approved 3F

Tetra Tech, Inc. Ecological Testing Facility

2013

Test #	Test #: [T017]	1711	~			Labora	Laboratory ID:	P	2	-	Sedimer	Sediment Load Date/Time:	ate/Time:	9/9/13		1322	ر <i>ب</i>
Sample ID:		Dard	NoM	3000 Man Control		Client/	Client/Project:	SE		* 	Organis	Organism Load Date/Time: $9/lo/l3$	ate/Time:	9/10/	2	1410	1
Specie	s/Sourc	ie: ehe	arlena	Species/Source: ehosografize A. 10/11/3	æ	Sedimer	ent Volume (mL):	ie (mL):	اېح	-	Test En	Test End Date/Time: 1/20/13	ле: 4 3	0/13	0	0910	I
Organ	Organism Batch #:		1800			Water	Water Volume (mL):	יר):	80)	I	Corresp	Corresponding Control Test #:	ntrol Tes		17-01711	_	ı
Organ	Organism Age:		1 day	\$		Dilutior	Dilution Water (Batch #): SOS	3atch #):	505	I							
Day		5	Replicate	te 4	ы	Analyst	t Time		Comments	Temp (°C)	DO DO	Salinity (%)	NH ₃ (mg/L)	Hď	Analyst	Time	
0	0	0)	2	9	0	50	(HD			25.1	1.4	5.87	0.5	29	32	580)	
										1.92	7.7	28.5	L.0	8-1	98	0250	
2			Ą							25.6	2'2		1	7.6	38	0750	
ო										33,9	7.3		ł	52	65	lore	
4										29.2	7.5		1	7.6	R 5	(0 Ib	
S										25.8	7.5		ļ	1.7	24	1100	
9										2,5,9	7,1		(2.6	\$	0850	
7									2	26,0	7.6		Si q₽	2.9	52	1050	
œ										2,5,8	89		[6,0	543	BHB	-
თ										24.2 8.0	8.0	30.3	P.P.S	8.1	Stry	1300	
10	0	0	∞	9	0	Ø	BID	-		24.1	5.8)	7.9	173	ethy	-
Fina	l Mean F	Final Mean Percent Survial:	Survial:	# Surviving # Exposed	viving	- ×100 =	40	%			Data	Data checked and OC'd: JF	oud Q	c'al : 1	H		с. 8

									it								
Test #:		TT017 13	~		1	Labo	Laboratory ID:	52			Sedimer	Sediment Load Date/Time: $?/?//3$	ate/Time:	81/8/13	(3.	1325	
Samp	Sample ID: A	Rozt				Client	Client/Project:	SII			Organis	Organism Load Date/Time:	ate/Time:		A/10/13 15	MH	
Speci	es/Sourc	Species/Source: CNosonpurke A bohia	androso	he H.	bolia	Sedin	Sediment Volur	olume (mL):	: الحک		Test En	Test End Date/Time:	16: 9/20/13	210	1020		
Orgai	Organism Batch #:	ch #: 0	0031	-	I	Wate	Water Volume (mL):	(mL):	SON	-	Corresp	Corresponding Control Test #:	ntrol Test		110	CITION - ELTION	CIL
Orgai	Organism Age:	1 days	h		I	Dilutio	Dilution Water (Batch #):	(Batch #	i: Sor								
Day	F	5	Replicate	ate 4	2	Analyst	st Time	-	Comments	Temp (°C)	DO (mg/L)	Salinity (‰)	NH ₃ (mg/L)	Hď	Analyst	Time	
0	9	2	9	0/	2	õ	1 HI			25.1	79	31.4	(0.8	35	1035	
										26.1	2,3	30.5	0.i	g.(52	0 950	
7								in a state of the		25.6	7.6		1	7.7	24	0350	
m										23.9	Ρ,Η		₹)	7,8	<i>b</i> s	1020	
4								in the second		2.5 L	7.7		١	7.6	44	0101	
ഹ								00084400		2.5.8	7.9		J	56	75	الده	
و										25.9	6-3		1	6.6	42	0850	
~					6.a					26.0	7,2		.)	7.7	26	1050	
∞										25.8	7.1		١	7.9	N W	SHAD	
ი									1	242	· ·	8.2 33.0	SN	1.8	520	1300	
10	Γ	6	6	01	5	8	1620		8	24.1	9.3		1	8.1	543	N 10	
Fin	il Mean I	Final Mean Percent Survial:	Survial:		# Surviving # Exposed	— ×100 =		88	<u>%</u>	-	×						
										Data	da acha c	Duts charling and Dry, 38	5,3	2			

Data chacked and BCals JT

120-

Data cheched and GLA

Test #:		tto1715	\sim		.	Labo	Laboratory ID:	D: 7	ېد			Sedime	Sediment Load Date/Time:	ate/Time		9/9/131337	27	
Sam	Sample ID:	8018	×		I	Clien	Client/Project:		LtS			Organis	Organism Load Date/Time:	ate/Time		91/0/13	1325	ا من ا
Spec	ies/Sourc	Species/Source: Chosan walke A Ming	saged	L A h	<u>th</u> ing	Sedi	ment V	Sediment Volume (mL):		PT PT	1	Test En	Test End Date/Time:		21/08/13	1230	þ	
Orga	Organism Batch #:		0031		I	Wate	∋r Volui	Water Volume (mL):		3 00	I	Corresp	Corresponding Control Test #:	ontrol Tes		PS ED THO THO THO TH	12 12 12 12 12 12 12 12 12 12 12 12 12 1	M
Orga	Organism Age:	i lab	A A		к Б	Dilution	ion Wa	Water (Batch #):	ch #):	505	l							
Day		2	Replicate	ate 4	5	Analyst		Time		Comments	Temp (°C)	DO (mg/L)	Salinity (%)	NH ₃ (mg/L)	Hq	Analyst	Time	
0	0	0	S	Q	<u>o</u>	65	<u></u>	1325			25.1	8,6	31.8	7.1	8.1	<i></i>	1035	
1											26.1	2.6	30.9	C:0	くら	88	0930	.
7											25.6	7.8)	9.0	85	0950	
ñ											612	14		1	8.1	85	1020	T
4											75.2	7.3		J	8.0	54	1010	
ъ											2,28	7.9		1	8.1	85	اد کر ہ	r
9											25.9	4'1)	8.1	<i>S</i> ¢	0850	-
2				artin des							5 O X	7,6		1	8.0	28	050)	
∞											25.8	23		V	8,0	Puts	Supo	
6											J' YOC	8.0	34,5	0.5	5.9	cu)	1300	·
10	6	6	6	6	9	S	el	1390			24.1	9.3		١	8.2	845	0171	
Fin	al Mean f	Final Mean Percent Survial:	survial:	₩ ₩	# Surviving # Exposed	×100 =	=	26	%					×				
											(-		Y			

Data dreedured and OC'd: 58

of |

Sediment Load Date/Time: $\frac{2}{3}/\frac{4}{3}/3$	Organism Load Date/Time: $9/10/7$ 1320	Test End Date/Time: の人20 (3 /えんし	oseponding Control Test #: 11-01上し下し、 での17/1		Temp DO Salinity NH ₃ PH Analyst Time (°C) (mg/L) (%) (mg/L) pH Analyst Time	25.1 8.6 31.1 0.7 8.1 55 1035	8660 591 18 5.2 305 PT 105 0830	25.6 7,9 - 8,0 KS 0950	23,9 7.4 - 8.1 150 1020	97.7 7.2 - 8.1 05 1.010	25.8 7.7 - 8.1 15 1.40	25.9 7.7 - 8.1 45 0850	26.0 7.8 - 8.1 35 1050	25.8 8.1 - 8.2 MB OTHE	24.2 8.3 33,1 4.1 7.6 175 1300	24,19,1 - 8.2 87> 1410		Data dreedual and acid , It
Laboratory ID: Tt	Client/Project: LLS	Sediment Volume (mL): 7-5	Water Volume (mL): &W	Dilution Water (Batch #): SUS	Analyst Time Comments	0 85 1300										15 1326	$\frac{9}{1}$ x100 = $\frac{62}{2}$	
Test #: TT0 (7 6	Sample ID: P 0 11	Species/Source: Chosenpertine A. Child	Organism Batch #: 003	Organism Age: I doug	Day Replicate 1 2 3 4 5	0 0 0 0 0 0 0	1	2	3	4	2	9	7	8	δ	10 1 8 8 8 8	Final Mean Percent Survial: # Surviving # Exposed	

Jo

C. STATISTICAL ANALYSIS

	Duncan tes	Duncan test; Variable: Survival (Spreadsheet1)	Survival (S	preadsheet	(1)
	Marked diff	Marked differences are significant at p < .05000	e significant	t at p < .05(000
	Control	P003	P011	P018	R024
Sample ID	(M=19.6)	(M=19.6) (M=19.6) (M=19.4) (M=19.4) (M=18.8)	(M=19.4)	(M=19.4)	(M=18.8)
Control		1.000000	0.747415	1.000000 0.747415 0.739414 0.212427	0.212427
P003	1.000000		0.739414	0.739414 0.724180 0.203659	0.203659
P011	0.747415	0.747415 0.739414		1.000000	1.000000 0.295674
P018	0.739414	0.739414 0.724180 1.000000	1.000000		0.322202
R024	0.212427	0.212427 0.203659 0.295674 0.322202	0.295674	0.322202	

Table C-1. Summary of statistical analysis of survival for 10-Day Eastern Long Island Sound sediment test using L. plumulosus. Highlighted cells are significant at p<0.05.

Table C-2. Summary of statistical analysis of survival for 10-Day Eastern Long Island Sound sediment test using *A. bahia.* Highlighted cells are

significant at p<0.05.

	Duncan tes	Duncan test; Variable: Ab Survival (LIS Survival Data)	Ab Surviva	il (LIS Survi	val Data)
	Marked diff	Marked differences are significant at p < .05000	significant	at p < .05(000
	Control	P003	P011	P018	R024
Sample ID	(M=9.0)	(M=9.2)	(M=8.2)	(M=9.2)	(M=8.8)
Control		0.736141	0.736141 0.184561 0.720736 0.720736	0.720736	0.720736
P003	0.736141		0.117574	0.117574 1.000000 0.514881	0.514881
P011	0.184561	0.184561 0.117574		0.110576	0.110576 0.289582
P018	0.720736	0.720736 1.000000 0.110576	0.110576		0.501576
R024	0.720736	0.720736 0.514881 0.289582 0.501576	0.289582	0.501576	

D. QUALITY ASSURANCE/QUALITY CONTROL

CETIS Sum	mary Repo	rt						Report Dat Test Code:			-	54 (p 1 of 2 3-7901-929
Americamyeis	96-h Acute Sur	vival Tost		······				Test Code:				a Tech, Inc
Batch ID:	16-6823-0670		• •	Survival (96h)				Analyst:				
Start Date:	29 Aug-13 13:2			EPA/821/R-02-	. ,			Diluent:	• •	pt Saltwate	r	
Ending Date:		-		Americamysis I	pahia (Atlan	tic Mysid)		Brine:		nt Ocean		
Duration:	95h	Sour	ce:	Chesapeake				Age:	3d			
Sample ID:	10-8651-8267	Code	:	40C2F3FB				Client:	Tetra	Tech		
Sample Date:	29 Aug-13 13:2	5 Mate	rial:	Potassium chlo	ride			Project:	Refe	rence Toxic	cant	
Receive Date:		Sour	ce:	Reference Toxi	cant							
Sample Age:	N/A	Statio	on:									
Point Estimate	e Summary											
Analysis ID	Endpoint		Level	gm/L	95% LCL	95% UCL	τU	Meth	nod			
20-7721-9751	48h Survival Ra	te	EC5	0.5128	0.359	0.5323		Line	ar Inte	rpolation (I	CPIN)	
			EC10	0.5385	0.4985	0.5569						
			EC15	0.5641	0.5264	0.5815						
			EC20	0.5897	0.5543	0.6062						
			EC25	0.6154	0.5821	0.6308						
			EC40	0.6923	0.6657	0.7046						
			EC50		0.7214	0.7538						
17-9466-0514	96h Survival Ra	te	EC5	0.5128	0.359	0.5323		Line	ar Inte	rpolation (I	CPIN)	
			EC10		0.4985	0.5569						
			EC15		0.5264	0.5815						
			EC20		0.5543	0.6062						
			EC25		0.5821	0.6308						
			EC40		0.6657	0.7046						
			EC50	0.7436	0.7214	0.7538						
48h Survival F												
· · · · · ·	Control Type	Count	Mean		95% UCL	Min	Max		Err	Std Dev	CV%	%Effect
	Dilution Water	4	1	1	1	1	1	-0		0	0.0%	0.0%
0.125		4	1	1	1	1	1	0		0	0.0%	0.0%
0.25		4	1	1	1	1	1	0		0	0.0%	0.0%
0.5		4	0.975		0.9937	0.9	1	0.02	5	0.05	5.13%	2.5%
1		4	0	0	0	0	0	0		0		100.0%
2		4	0	0	0	0	0	0		0		100.0%
96h Survival F	•											
	Control Type		Mean				Max		Err	Std Dev	CV%	%Effect
	Dilution Water	4	1	1	1	1	1	0		0	0.0%	0.0%
0.125		4	1	1	1	1	1	0		0	0.0%	0.0%
0.25		4	1	1	1	1	1	0	-	0	0.0%	0.0%
0.5			0.975		0.9937	0.9	1	0.02	5	0.05	5.13%	2.5%
1			0	0	0	0	0	0		0		100.0%
2		4	0	0	0	0	0	0		0		100.0%

Analyst: PS QA: 5P

CETIS Summary Report

Americamysis 96-h Acute Survival Test

48h Survival Rate Detail

48n Surviva	Rate Detail					
Conc-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
0	Dilution Water	1	1	1	1	
0.125		1	1	1	1	
0.25		1	1	1	1	
0.5		1	1	0.9	1	
1		0	0	0	0	
2		0	0	0	0	

96h Survival Rate Detail

Conc-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Dilution Water	1	1	1	1
0.125		1	1	1	1
0.25		1	1	1	1
0.5		1	1	0.9	1
1		0	0	0	0
2		0	0	0	0

Ref00497 | 03-7901-9299 Tetra Tech, Inc.

03 Sep-13 13:54 (p 2 of 2)

Report Date: Test Code:

CETIS Measurement Report

Report Date: Test Code:

03 Sep-13 13:53 (p 1 of 4) Ref00497 | 03-7901-9299

Americamys											
	sis 96-n Acute Si	ırvival T	est							Те	tra Tech, Inc.
Batch ID:	16-6823-0670		Test Type:	Survival (96h)				Analyst:			
Start Date:	29 Aug-13 13:		Protocol:	EPA/821/R-02	-012 (2002)			•	30 ppt Saltwa	ter	
Ending Date	-		Species:	Americamysis					Instant Ocear		
Duration:	95h	00	Source:	Chesapeake		itic iviyala)			3d	•	
							-				
Sample ID:	10-8651-8267	05	Code:	40C2F3FB					Tetra Tech		
Sample Date	v	20	Material:	Potassium chi				Project:	Reference To	xicant	
Receive Dat			Source:	Reference Tox	licant						
Sample Age	: N/A		Station:								
Final Dissol	ved Oxygen-mg/	L									
Conc-gm/L	Control Type	Count		95% LCL	95% UCL	Min	Max	Std Er		CV%	QA Coun
)	Dilution Water	2	7.25	6.987	7.513	6.7	7.8	0.55	0.7778	10.73%	0
0.125		2	7.25	7.035	7.465	6.8	7.7	0.45	0.6364	8.78%	0
0.25		2	7.3	7.156	7.444	7	7.6	0.3	0.4243	5.81%	0
).5		2	7.45	7.235	7.665	7	7.9	0.45	0.6364	8.54%	0
1		1	7.4			7.4	7.4	0	0	0.0%	0
2		1	7.5			7.5	7.5	0	0	0.0%	0
Overall		10	7.358			6.7	7.9				0 (0%)
nitial Disso	lved Oxygen-mg	/L									
Conc-gm/L	Control Type	Count		95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	Dilution Water	2	7.4	7.209	7.591	7	7.8	0.4	0.5657	7.64%	0
0.125		2	7.45	7.235	7.665	7	7.9	0.45	0.6364	8.54%	0
0.25		2	7.55	7.335	7.765	7.1	8	0.45	0.6364	8.43%	0
0.5		2	7.65	7.435	7.865	7.2	8.1	0.45	0.6364	8.32%	0
1		1	8			8	8	0	0	0.0%	0
2		1	8			8	8	0	0	0.0%	0
Overall		10	7.675		E.	7	8.1				0 (0%)
	its	10	7.675		H	7	8.1				0 (0%)
Final pH-Uni Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	· Std Dev	CV%	0 (0%) QA Count
Final pH-Uni Conc-gm/L 0		Count 2		7.952	95% UCL 8.048			Std Er	• Std Dev 0.1414	CV% 1.77%	
Final pH-Uni Conc-gm/L 0 0.125	Control Type	Count 2 2	Mean	7.952 8.052		Min	Max				QA Count
Final pH-Uni Conc-gm/L) 0.125 0.25	Control Type	Count 2 2 2	Mean 8 8.1 8.1	7.952 8.052 8.099	8.048	Min 7.9	Max 8.1	0.1	0.1414	1.77%	QA Count 0
Final pH-Uni Conc-gm/L) 0.125 0.25	Control Type	Count 2 2	Mean 8 8.1	7.952 8.052	8.048 8.148	Min 7.9 8	Max 8.1 8.2	0.1 0.1	0.1414 0.1414 0	1.77% 1.75%	QA Count 0 0
Final pH-Uni Conc-gm/L 0 0.125 0.25 0.5 1	Control Type	Count 2 2 2	Mean 8 8.1 8.1 8.05 7.9	7.952 8.052 8.099	8.048 8.148 8.101	Min 7.9 8 8.1	Max 8.1 8.2 8.1	0.1 0.1 0	0.1414 0.1414 0	1.77% 1.75% 0.0%	QA Count 0 0 0
Final pH-Uni Conc-gm/L D D.125 D.25 D.5 1 2	Control Type	Count 2 2 2 2 1 1	Mean 8 8.1 8.1 8.05	7.952 8.052 8.099	8.048 8.148 8.101	Min 7.9 8 8.1 8 7.9 7.9 7.9	Max 8.1 8.2 8.1 8.1	0.1 0.1 0 0.0500	0.1414 0.1414 0 1 0.07073	1.77% 1.75% 0.0% 0.88%	QA Count 0 0 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2	Control Type	Count 2 2 2 2 2	Mean 8 8.1 8.1 8.05 7.9	7.952 8.052 8.099	8.048 8.148 8.101	Min 7.9 8 8.1 8 7.9	Max 8.1 8.2 8.1 8.1 7.9	0.1 0.1 0 0.0500 0	0.1414 0.1414 0 1 0.07073 0	1.77% 1.75% 0.0% 0.88% 0.0%	QA Count 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0 0.125 0.25 0.5 1 2 Dverall	Control Type Dilution Water	Count 2 2 2 2 1 1	Mean 8 8.1 8.1 8.05 7.9 7.9	7.952 8.052 8.099	8.048 8.148 8.101	Min 7.9 8 8.1 8 7.9 7.9 7.9	Max 8.1 8.2 8.1 8.1 7.9 7.9	0.1 0.1 0 0.0500 0	0.1414 0.1414 0 1 0.07073 0	1.77% 1.75% 0.0% 0.88% 0.0%	QA Count 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L	Control Type Dilution Water its Control Type	Count 2 2 2 2 1 1 10 Count	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean	7.952 8.052 8.099 8.026 95% LCL	8.048 8.148 8.101 8.074 95% UCL	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 Min	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max	0.1 0.1 0.0500 0 0 Std Err	0.1414 0.1414 0 1 0.07073 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0%	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L)).125).25).25).5 1 2 Dverall nitial pH-Un Conc-gm/L	Control Type Dilution Water	Count 2 2 2 2 1 1 10 Count 2	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95	7.952 8.052 8.099 8.026 95% LCL 7.926	8.048 8.148 8.101 8.074 95% UCL 7.974	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 Min 7.9	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8	0.1 0.1 0 0.0500 0 0 Std Er 0.0499	0.1414 0.1414 0 1 0.07073 0 0 • Std Dev 9 0.0707	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% CV%	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L)).125).25).25).5 1 2 Dverall nitial pH-Un Conc-gm/L)).125	Control Type Dilution Water its Control Type	Count 2 2 2 2 1 1 10 Count 2 2	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8	7.952 8.052 8.099 8.026 95% LCL 7.926 8	8.048 8.148 8.101 8.074 95% UCL 7.974 8	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 Min 7.9 8	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8	0.1 0.1 0.0500 0 0 Std Err	0.1414 0.1414 0 1 0.07073 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% CV% 0.89% 0.0%	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L 0 0.125 0.25	Control Type Dilution Water its Control Type	Count 2 2 2 2 1 1 1 10 Count 2 2 2 2	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 Min 7.9	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8	0.1 0.1 0 0.0500 0 0 Std Er 0.0499	0.1414 0.1414 0 1 0.07073 0 0 • Std Dev 9 0.0707	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% CV%	QA Coun 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L 0.125 0.25 0.5	Control Type Dilution Water its Control Type	Count 2 2 2 2 1 1 10 10 Count 2 2 2 2 2 2	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1	7.952 8.052 8.099 8.026 95% LCL 7.926 8	8.048 8.148 8.101 8.074 95% UCL 7.974 8	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8 8 8.1 8.1	0.1 0.1 0 0.0500 0 0 Std Er 0.0499 0	0.1414 0.1414 0 1 0.07073 0 0 • Std Dev 9 0.0707 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% CV% 0.89% 0.0%	QA Coun 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L 0.125 0.25 0.5	Control Type Dilution Water its Control Type	Count 2 2 2 2 1 1 10 10 Count 2 2 2 2 2 2 1	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8 8 8 8.1 8.1 8.1 8.1	0.1 0.1 0 0.0500 0 0 Std Er 0.0499 0 0	0.1414 0.1414 0 1 0.07073 0 0 • Std Dev 9 0.0707 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Coun 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L 0.125 0.25 0.5 1 2	Control Type Dilution Water its Control Type	Count 2 2 2 2 1 1 1 10 2 2 2 2 2 2 2 1 1	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.2	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.2	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8 8 8.1 8.1 8.1 8.2	0.1 0.1 0 0.0500 0 0 Std Er 0 0 0 0 0	0.1414 0.1414 0 1 0.07073 0 0 • Std Dev 9 0.0707 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.89% 0.0% 0.0% 0.0%	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0 0.125 0.25 0.5 1 2 Overall Initial pH-Un Conc-gm/L 0 0.125 0.25 0.25 1 2 Overall	Control Type Dilution Water its Control Type Dilution Water	Count 2 2 2 2 1 1 10 10 Count 2 2 2 2 2 2 1	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8 8 8 8.1 8.1 8.1 8.1	0.1 0.1 0 0.0500 0 0 Std Er 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 1 0.07073 0 0 • Std Dev 9 0.0707 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L 0.125 0.25 0.25 0.5 1 2 Dverall Final Salinity	Control Type Dilution Water its Control Type Dilution Water	Count 2 2 2 2 1 1 10 2 2 2 2 2 2 2 1 1 10	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.2 8.075	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.2 7.9	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8 8.1 8.1 8.1 8.2 8.2	0.1 0.1 0.0500 0 0 Std Er 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 1 0.07073 0 0 0 5 Std Dev 9 0.0707 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L 0.125 0.25 0.5 1 2 Dverall Final Salinity Conc-gm/L	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type	Count 2 2 2 2 1 1 10 2 2 2 2 2 2 2 1 1 10 2 0 2	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.2 7.9 Min	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8 8.1 8.1 8.1 8.2 8.2 8.2 Max	0.1 0.1 0.0500 0 0 Std Er 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 1 0.07073 0 0 - Std Dev 9 0.0707 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L D.125 D.25 D.5 Coverall Ditial pH-Un Conc-gm/L D.125 D.25 D.5 Coverall Final Salinity Conc-gm/L D	Control Type Dilution Water its Control Type Dilution Water	Count 2 2 2 2 1 1 10 Count 2 2 2 2 1 1 10 Count 2	Mean 8 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.2 7.9 Min 35.8	Max 8.1 8.2 8.1 8.1 7.9 7.9 8.2 Max 8 8 8.1 8.1 8.1 8.2 8.2 Max 36	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 1 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0	QA Count 0 QA Count 0 0 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 Dverall nitial pH-Un Conc-gm/L 0.125 0.5 1 2 Dverall Final Salinity Conc-gm/L 0.125	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type	Count 2 2 2 2 1 1 10 Count 2 2 2 2 1 1 10 Count 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mean 8 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9 37.35	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95 37.37	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.1 8.2 7.9 Min 35.8 37.3	Max 8.1 8.2 8.1 7.9 8.2 Max 8 8.1 8.1 8.2 Max 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 Max 36 37.4	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Coun 0
Final pH-Uni Conc-gm/L D.125 D.25 D.5 Coverall Conc-gm/L D.125 D.25 D.25 D.25 D.25 Coverall Final Salinity Conc-gm/L D.125 D.25 D.25 D.25 D.25 D.25 D.25 D.25 D.	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type	Count 2 2 2 2 1 1 10 Count 2 2 2 2 1 1 10 Count 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Mean 8 8.1 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9 37.35 33.9	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099 95% LCL 35.85 37.33 33.8	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95 37.37 34	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.3 8.3 3.3	Max 8.1 8.2 8.1 7.9 7.9 8.2 Max 8 8 8.1 8.1 8.1 8.1 8.2 8.2 Max 36 37.4 34.1	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Coun 0
Final pH-Uni Conc-gm/L)).125).25).5 2 Dverall nitial pH-Un Conc-gm/L)).125).25).5 2 Dverall Final Salinity Conc-gm/L)).125).25).25).25).25	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type	Count 2 2 2 2 1 1 10 Count 2 2 2 2 2 1 1 10 2 2 2 2 2 2 2 2 2 2 2	Mean 8 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9 37.35 3.9 35.55	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099 8.099	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95 37.37	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.2 7.9 Min 35.8 37.3 33.7 35 35	Max 8.1 8.2 8.1 7.9 8.2 Max 8 8.1 8.1 8.2 Max 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 36 37.4 36.1	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Coun 0
Final pH-Uni Conc-gm/L)).125).25).5) Dverall nitial pH-Un Conc-gm/L)).125).25).5 Poverall Final Salinity Conc-gm/L)).125).25).25).5	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type	Count 2 2 2 2 1 1 10 Count 2 2 2 2 1 1 10 2 2 2 2 2 2 2 2 2 2 2 2	Mean 8 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9 37.35 33.9 35.55 32.6	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099 95% LCL 35.85 37.33 33.8	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95 37.37 34	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 Min 7.9 8 8.1 8.1 8.1 8.1 8.2 7.9 Min 35.8 37.3 33.7 35 32.6	Max 8.1 8.2 8.1 7.9 7.9 8.2 Max 8 8 8 8.1 8.1 8.1 8.1 8.2 8.2 Max 36 37.4 36.1 32.6	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.39% 0.19% 0.83% 2.19% 0.0%	QA Coun 0
Final pH-Uni Conc-gm/L 0.125 0.25 0.5 1 2 0.verall nitial pH-Un Conc-gm/L 0.125 0.25 0.25 0.25 0.5 1 2 0.verall Final Salinity Conc-gm/L 0.125 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2 0.125 0.5 1 2 0.125 0.25 0.5 1 2 0.125 0.25 0.25 0.5 1 2 0.125 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type	Count 2 2 2 2 1 1 10 Count 2 2 2 2 1 1 10 2 2 2 2 2 2 2 2 1 1 10 2 2 2 2	Mean 8 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9 37.35 33.9 35.55 32.6 33.6	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099 95% LCL 35.85 37.33 33.8	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95 37.37 34	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 7.9 7.9 Min 35.8 37.3 33.7 35 32.6 33.6	Max 8.1 8.2 8.1 7.9 7.9 8.2 Max 8 8 8 8.1 8.1 8.1 8.1 8.2 8.2 8.2 Max 36 37.4 36.1 32.6 33.6	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.	QA Count 0
Final pH-Uni Conc-gm/L 0 0.125 0.25 0.5 1 2 Overall Initial pH-Un Conc-gm/L 0.125 0.25 0.25 0.25 0.5 1 2 Overall Final Salinity Conc-gm/L 0.125 0.25 0.5 1 2 0.25 0.5 1 2 0.5 1 2 0.25 0.5 1 2 0 0 5 1 2 0 2 5 0 5 1 2 2 0 5 1 2 2 2 5 0 5 1 2 2 2 5 1 2 2 2 5 1 2 2 2 5 1 2 2 2 5 1 2 2 2 5 1 2 2 2 5 1 2 2 2 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type	Count 2 2 2 2 1 1 10 Count 2 2 2 2 1 1 10 2 2 2 2 2 2 2 2 2 2 2 2	Mean 8 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9 37.35 33.9 35.55 32.6	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099 95% LCL 35.85 37.33 33.8	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95 37.37 34	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 Min 7.9 8 8.1 8.1 8.1 8.1 8.2 7.9 Min 35.8 37.3 33.7 35 32.6	Max 8.1 8.2 8.1 7.9 7.9 8.2 Max 8 8 8 8.1 8.1 8.1 8.1 8.2 8.2 Max 36 37.4 36.1 32.6	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.39% 0.19% 0.83% 2.19% 0.0%	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Final pH-Uni Conc-gm/L 0	Control Type Dilution Water its Control Type Dilution Water /-ppt Control Type Dilution Water	Count 2 2 2 2 1 1 10 Count 2 2 2 2 1 1 10 2 2 2 2 2 2 2 2 1 1 10 2 2 2 2	Mean 8 8.1 8.05 7.9 7.9 8.008 Mean 7.95 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.075 Mean 35.9 37.35 33.9 35.55 32.6 33.6	7.952 8.052 8.099 8.026 95% LCL 7.926 8 8.099 8.099 8.099 8.099 95% LCL 35.85 37.33 33.8 35.29	8.048 8.148 8.101 8.074 95% UCL 7.974 8 8.101 8.101 95% UCL 35.95 37.37 34	Min 7.9 8 8.1 8 7.9 7.9 7.9 7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.1 3.1 8.2 7.9 Min 35.8 37.3 33.7 35 32.6 33.6 32.6 32.6 32.6	Max 8.1 8.2 8.1 7.9 7.9 8.2 Max 8 8 8 8.1 8.1 8.1 8.1 8.2 8.2 8.2 Max 36 37.4 36.1 32.6 33.6	0.1 0.1 0 0.0500 0 0 0 0 0 0 0 0 0 0 0 0	0.1414 0.1414 0 0.07073 0 0 0 0 0 0 0 0 0 0 0 0 0	1.77% 1.75% 0.0% 0.88% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.39% 0.19% 0.83% 2.19% 0.0%	QA Count 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CETIS™ v1.8.0.10

CETIS Measurement Report

Americamysis 96-h Acute Survival Test

03 Sep-13 13:53 (p 2 of 4) Ref00497 | 03-7901-9299

Report Date:

Test Code:

Tetra Tech, Inc.

Initial Salinit	y-ppt										
Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	2	30.05	29.93	30.17	29.8	30.3	0.25	0.3536	1.18%	0
0.125		2	30.05	29.93	30.17	29.8	30.3	0.25	0.3536	1.18%	0
0.25		2	30.2	30.1	30.3	30	30.4	0.2	0.2828	0.94%	0
0.5		2	30.45	30.43	30.47	30.4	30.5	0.04998	0.07069	0.23%	0
1		1	30.9			30.9	30.9	0	0	0.0%	0
2		1	32			32	32	0	0	0.0%	0
Overali		10	30.61			29.8	32				0 (0%)
Final Tempe	rature-°C										
Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	2	25.55	25.48	25.62	25.4	25.7	0.15	0.2121	0.83%	0
0.125		2	25.55	25.48	25.62	25.4	25.7	0.15	0.2121	0.83%	0
0.25		2	25.55	25.48	25.62	25.4	25.7	0.15	0.2121	0.83%	0
0.5		2	25.55	25.48	25.62	25.4	25.7	0.15	0.2121	0.83%	0
1		1	24.8			24.8	24.8	0	0	0.0%	0
2		1	24.8			24.8	24.8	0	0	0.0%	0
Overail		10	25.3			24.8	25.7				0 (0%)
Initial Tempe	erature-°C							7			
Conc-gm/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	2	25.25	25.03	25.47	24.8	25.7	0.45	0.6364	2.52%	0
0.125		2	25.25	25.03	25.47	24.8	25.7	0.45	0.6364	2.52%	0
0.25		2	25.25	25.03	25.47	24.8	25.7	0.45	0.6364	2.52%	0
0.5		2	25.25	25.03	25.47	24.8	25.7	0.45	0.6364	2.52%	0
1		1	24.8			24.8	24.8	0	0	0.0%	0
2		1	24.8			24.8	24.8	0	0	0.0%	0
Overall		10	25.1			24.8	25.7				0 (0%)

Analyst: PS QA: JF

03 Sep-13 13:53 (p 3 of 4) Ref00497 | 03-7901-9299

Report Date:

Test Code:

					Test Coue.	Rei00497 03-790 1-9293
Americamys	is 96-h Acute Su	urvival Te	est			Tetra Tech, Inc.
Final Dissol	ved Oxygen-mg/	Ľ		 		
Conc-gm/L	Control Type	1	2			
0	Dilution Water	6.7	7.8			
0.125		6.8	7.7			
0.25		7	7.6			
0.5		7	7.9			
1		7.4				
2		7.5				
Initial Dissol	lved Oxygen-mg	/L		6		
Conc-gm/L	Control Type	1	2			
0	Dilution Water	7.8	7			
0.125		7.9	7			
0.25		8	7.1			
0.5		8.1	7.2			
1		8				
2		8		 		
Final pH-Uni	its					
Conc-gm/L	Control Type	1	2			
0	Dilution Water	7.9	8.1			
0.125		8	8.2			
0.25		8.1	8.1			
0.5		8	8.1			
1		7.9				
2		7.9				
Initial pH-Un	its			 12		
Conc-gm/L	Control Type	1	2	 		
0	Dilution Water	7.9	8		34	
0.125		8	8			
0.25		8.1	8.1			
0.5		8.1	8.1			
1		8.1				
2		8.2				
Final Salinity	/-ppt	19		 	 	
Conc-gm/L	Control Type	1	2		 	
0	Dilution Water	35.8	36			
0.125		37.3	37.4			
0.25		34.1	33.7			
0.5		36.1	35			
1		32.6				
2		33.6		 		
Initial Salinit	y-ppt					
Conc-gm/L	Control Type	1	2	 	 	
0	Dilution Water	29.8	30.3	 9	 · · · · · · · · · · · · · · · · · · ·	
0.125		29.8	30.3			
0.25		30	30.4			
0.5		30.4	30.5			
1		30.9				
I		30.9				

000-013-180-1

Analyst: fs QA: SF

	Americam	ysis 96	-h Acute	Survival	Test
--	----------	---------	----------	----------	------

Conc-gm/L	Control Type	1	2	
0	Dilution Water	25.7	25.4	
0.125		25.7	25.4	
0.25		25.7	25.4	
0.5		25.7	25.4	
1		24.8		
2		24.8		

Initial Temperature-°C

minual rempt								
Conc-gm/L	Control Type	1	2					
0	Dilution Water	24.8	25.7					
0.125		24.8	25.7					
0.25		24.8	25.7					
0.5		24.8	25.7					
1		24.8						
2		24.8						

000-013-180-1

Analyst: ps QA: 54

Tetra Tech, Inc.

Report Date:

Test Code:

START Da	1te/Time (ммооүүүү н 1325	H:MM):	_	FINISH Date	/Time (MMDDY 3∂	ҮҮҮ НН:ММ):	
Dilution W	Vater: (<u>.0.600</u> {	esabalis Del Loboo!	2	3	Test Substa	nce; KCL			
Client/Pro	iject: Tet	6 Tech		_	Species/Sou 	rce:	esopate	2	
Concent Repli	cate		Num	ber alive/hour	of test		# alive # exposed	_	
Units: Area	9)L	Start	24	48	72	96	(percent survival)	Comme	ents
5	A	10	io	10	10	10		T	
	В	10	10	10	16	10			
0.	С	10	10	10	10)0	100		
	D	10	10	10	10	10			
	Α	10	10	10	0	10			
	В	10	(0	10	10	10	100		
0.125	С	10	10	10	10	10	60		
	D	10	10	10	10	10			
-	A	10	10	10	10)0			
0.25	B	10	(0	10	10	10			
0.25	С	10	10	10	0	0	100		
i	D	10	10	(0	10	0			
-	<u>A</u>	10	10	1 U	10	10			
0.5 -	B	0	10	Alsin XIS		10	97.5		
-	<u> </u>	(0	(0	8 9 3191	2 8 9 973 2/1/15	9	17.5	· .	
	D	10	10	10	10	10			
-	A	10	0						
1 -	B	G	0						
-	D		0		\searrow		0		
	A	[0							
0 -	B	10	0			K.			
2 -	C	_() _[0	0			\$130/3	0		
-	D	10	0				-	1	93113
ANALY		PS 1	rs rs	BS	PTS	PTS 1			1-11-1.
TIM		1325	1057	1/11	105				
		1427	1071	uu	102	1236			

START Date/Time	(MMDDYYYY HH:MM):	
8129113	1225	

Dilution Water: 35/1/13 Laboso 2

Client/Project:

Tetra Tech

FINISH Date/Time (MMDDYYYY HH:MM):

1230

9/2/13

Test Substance:

Species/Source:

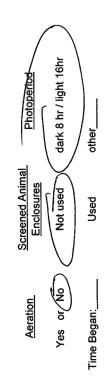
A

.hohia ake

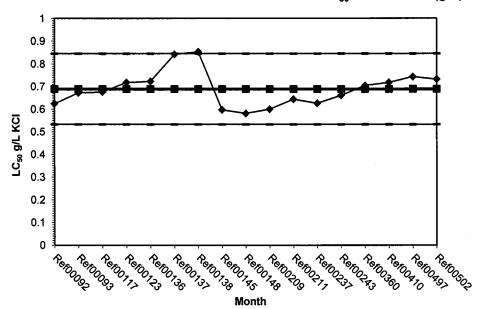
Test Conc.	Chemical		Hour	of Test	Commonte	
Units:	Parameters	0	48 before	48 ASEr	96	Comments
0	Salinity (‰)	29.8	35.8	30.3	36.0	
	DO (mg/L)	7.8	6.7	7.0	7.8	
\cap	pH (su)	7.9	7.9	8.0	8.1	
U	Temp (°C)	24.8	25.7	25.7	25.4	
	Salinity (‰)	298	37.3	30.3	37.4	
	DO (mg/L)	7.9	6.8	7.0	7.7	
0.125	pH (su)	80	8.0	9.0	8-2	
0	Temp (°C)	248	25.7	እ5.7	25.4	
	Salinity (‰)	30,0	34.1	30.4	33-7	
	DO (mg/L)	8.0	7.0	7.1	7.6	
0.25	pH (su)	8.1	8-1	8.1	8.1	
	Temp (°C)	24.8	25.7	25.7	25.4	
	Salinity (‰)	30.4	36.1	30.5	35.0	
	DO (mg/L)	8.1	7.0	7.2	7.9	
0,5	pH (su)	81	8.0	8.1	8.1	
011	Temp (°C)	24.8	25.7	25.7	25.4	
	Salinity (‰)	30.9	32.6 \$			
	DO (mg/L)	8.0	7.4 \$			
1	pH (su)	8.1	7.9 🕈		13	
	Temp (°C)	21.8	24.8 🖻		5/30/13	
	Salinity (‰)	32.0	336 \$			
2	DO (mg/L)	9.0	7.5 \$			
2	pH (su)	8.2	7.9 🎙			P5
	Temp (°C)	24.3	24.8 🗚			97/13
A	Analyst	ps .	15 155	BS	Berg	
Time	Analyzed	1335	1100 1035	1115	1235	7

Tetra Tech, Inc. Ecological Testing Facility

Data Checked and Approved:


Page Z of Z

Toxicity Test Procedure Check Sheet


	[2011]	ration	sed to measure and t	Pipet(s)	Other	he test organisms into the	Loading QC Initials	14S	Feeding Schedule	Not fed Fed Daily	Other	
Date S 29/13 Test ID Number 200497	Type of Test Chamber Authr	Number of replicates per concentration	Specify vessel type and volume used to measure and deliver effluent and dilutent to test chambers	Graduated Cylinder(s)	Volumetric Flask(s) <u> </u>	Specify materials used to place the test organisms into the test chambers <u>Mpら</u> ん	Test ID Number	ReF00497	Exposure Chamber	Total Vessel Capacity <u>FW</u> mL Test Solution volume <u> </u>		

Specify below the number of milliliters (mls) of diluent and effluent

	Total Volume	000/	JOS	2000	2000	CBS	200 J	fs estay 15
measured out per concentration in this test.	Diluent	(ଏଚଠ	1000	000	1000	1000		
measured out per concentration in this test.	Working Stock Solution	0	(600)	1000	1000	(000)	2000	
measured out per	Treatment Concentration	C	0,125	0,25	0.5	/	0	

Tetra Tech, Inc. Ecological Testing Facility

Test Log #	Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD	
Ref00092	10/17/06	0.6240	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00093	10/24/06	0.6720	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00117	09/20/07	0.6760	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00123	10/22/07	0.7180	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00136	04/18/08	0.7230	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00137	04/22/08	0.8420	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00138	04/29/08	0.8530	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00145	07/08/08	0.5969	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00148	07/29/08	0.5813	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00209	01/21/10	0.6000	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00211	02/04/10	0.6440	0.6892	0.6110	0.5329	0.7673	0.8454	CONTROL FAILURE
Ref00237	06/16/10	0.6260	0.6892	0.6110	0.5329	0.7673	0.8454	CONTROL FAILURE
Ref00243	06/23/10	0.6610	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00360	08/23/11	0.7046	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00410	09/28/12	0.7183	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00497	08/29/13	0.7436	0.6892	0.6110	0.5329	0.7673	0.8454	
Ref00502	09/10/13	0.7321	0.6892	0.6110	0.5329	0.7673	0.8454	

Mean	0.6892
SD	0.0781
CV%	11.3380

	Sep-13 08:4 f00502 02		ort Date: Code:	-						τ	nmary Report	2115 Sum
a Tech, In	Tetra								st	ival To	s 96-h Acute Survi	Americamysis
		pt Saltwater ant Ocean	ent: 30 p e: Insta	Analy Dilue Brine Age:		ic Mysid)	• •	Survival (96h) EPA/821/R-02-0 Americamysis b Chesapeake	est Type: Protocol: Species: Source:		05-2573-1363 10 Sep-13 12:45 14 Sep-13 12:05 95h	Batch ID: Start Date: Ending Date: Duration:
	cant	a Tech erence Toxic		Clien Proje				EDF98D5 Potassium chlor Reference Toxic	Code: Material: Source: Station:			Sample ID: Sample Date: Receive Date: Sample Age:
•	a.	-									e Summary	Point Estimate
			Method	U	. TL	95% UCL	95% LCL	gm/L	Level		Endpoint	Analysis ID
	CPIN)	erpolation (IC	Linear Inte			0.7562	0.03571	0.1071	EC5	e	48h Survival Rate	18-5009-6650
						0.5483	0.4867	0.5221	EC10			
						0.5734	0.5152		EC15			
						0.5985	0.5438	0.5752	EC20			
						0.6236	0.5723		EC25			
						0.6988 0.749	0.6578 0.7148	0.6814 0.7345	EC40 EC50			
		erpolation (IC	Linear Inte			0.7507	0.04375	0.09375	EC50		96h Survival Rate	20-7810-3006
			Linear inte			0.538	0.4893		EC10	C	Son Survival Nate	20-7019-3000
						0.5636	0.5177		EC15			
						0.5893	0.546		EC20			
						0.615	0.5744		EC25			
						0.692	0.6595		EC40			
						0.7433	0.7163	0.7321	EC50			
				0							Rate Summary	48h Survival F
%Effe	CV%	Std Dev	Std Err	l ax		Min	95% UCL			Coun	<u> </u>	_
0.0%	0.0%	0	0		1	1	1	1	1	4		
7.5%	10.35%	0.09574	0.04787		1	0.8	0.9608		0.925	4		0.125
5.0%	6.08%	0.05774	0.02887		1	0.9	0.9716	0.9284	0.95	4		0.25
5.0%	6.08%	0.05774	0.02887		1	0.9	0.9716	0.9284	0.95	4		0.5
100.09		0	0		0	0	0	0	0	4		1
100.09		0	0		0	0	0	0	0	4		2
%Effe	CV%	Std Dev	Std Err	/lax	M	Min	95% UCL	95% LCL	Mean	Coun	Rate Summary Control Type	
0.0%	0.0%	0	0		1	1	1	1	1	4		
	10.35%	0.09574	0.04787		1	0.8	0.9608	-	0.925	4		0.125
7.5%	5.41%	0.05	0.025		1	0.9	0.9437		0.925	4		0.25
5.0%	6.08%	0.05774	0.02887		1	0.9	0.9716	0.9284	0.95	4		0.5
100.09		0	0		0	0	0	0	0	4		1
100.09		0	ů.		0	0	0	õ	õ	4		2

CETIS Summary Report

Americamysis 96-h Acute Survival Test

Ash Survival Pate Detail

48h Survival	Rate Detail				
Conc-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
0	Dilution Water	1	1	1	1
0.125		0.8	0.9	1	1
0.25		1	0.9	0.9	1
0.5		1	1	0.9	0.9
1		0	0	0	0
2		0	0	0	0


96h Survival Rate Detail

Conc-gm/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	 		
0	Dilution Water	1	1	1	1			
0.125		0.8	0.9	1	1			
0.25		1	0.9	0.9	0.9			
0.5		1	1	0.9	0.9			
1		0	0	0	0			
2		0	0	0	0			

Report Date:

Test Code:

Tetra Tech, Inc.

41 (p 1 of 2-9960-525	f00502	Re	st Code:	Т							
a Tech, Inc	Tet							est	rvival T	96-h Acute Su	Americamysis
		ppt Saltwater tant Ocean		D	tic Mysid)	· ·	Survival (96h) EPA/821/R-02- Americamysis I Chesapeake	Test Type: Protocol: Species: Source:	15	05-2573-1363 10 Sep-13 12:4 14 Sep-13 12:0 95h	Batch ID: Start Date: Ending Date: Duration:
	ant	ra Tech ference Toxic			2		EDF98D5 Potassium chlo Reference Toxi	Code: Material: Source: Station:	15		Sample ID: Sample Date: Receive Date: Sample Age:
									-	ed Oxygen-mg/l	Final Dissolve
QA Cou	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL	Mean	Count	Control Type	Conc-gm/L
0	1.96%	0.1414	0.1	7.3	7.1	7.248	7.152	7.2	2	Dilution Water	0
0	2.93%	0.2121	0.15	7.4	7.1	7.322	7.178	7.25	2		0.125
0	0.96%	0.0707	0.04999	7.4	7.3	7.374	7.326	7.35	2		0.25
0	1.91%	0.1414	0.1	7.5	7.3	7.448	7.352	7.4	2		0.5
0	0.0% 0.0%	0 0	0 0	7.3 7.5	7.3 7.5			7.3 7.5	1 1		1 2
0 (0%)	0.070	U	v	7.5	7.5			7.5	10		2 Overall
				1.0	7.1			1.000		ed Oxygen-mg/	
QA Cou	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL	Mean	- Count	Control Type	
0	5.37%	0.4243	0.3	8.2	7.6	8.044	7.756	7.9	2	Dilution Water	· · ·
0	4.34%	0.3535	0.25	8.4	7.9	8.27	8.03	8.15	2		- 0.125
0	3.49%	0.2828	0.2	8.3	7.9	8.196	8.004	8.1	2		0.25
0	0.88%	0.07073	0.05001	8.1	8	8.074	8.026	8.05	2		0.5
0	0.0%	0	0	8.3	8.3			8.3	1		1
0	0.0%	0	0	8.2	8.2			8.2	1		2
0 (0%)	- 51			8.4	7.6			8.117	10		Overall
	-							<i>b</i>	. .		Final pH-Units
QA Cou	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL		Count	Control Type	
0 0	0.9% 0.89%	0.07071 0.0707	0.05 0.04999	7.9	7.8 7.9	7.874 7.974	7.826 7.926	7.85 7.95	2 2	Dilution Water	0 0.125
0	0.89%	0.0707	0.04999	8 8	7.9 7.9	7.974	7.926	7.95	2		0.125
õ	0.0%	0.0707	0.049999	8	8	8	8	8	2		0.5
0	0.0%	0	õ	8.1	8.1	U 15	0	8.1	1		1
0	0.0%	0	õ	8.2	8.2			8.2	1		2
0 (0%)				8.2	7.8			8.008	10		Overall
										S	Initial pH-Unit
QA Cou	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL	Mean	Count	Control Type	Conc-gm/L
0	0.88%	0.07073	0.05001	8.1	8	8.074	8.026	8.05	2	Dilution Water	
0 -	0.87%	0.07073	0.05001	8.2	8.1	8.174	8.126	8.15	2		0.125
0	0.87%	0.07073	0.05001	8.2	8.1	8.174	8.126	8.15	2		0.25
0	0.0%	0	0	8.2	8.2	8.2	8.2	8.2	2		0.5
0 0	0.0%	0	0	8.2	8.2			8.2	1 1		1
0 (0%)	0.0%	0	0	8.2 8.2	8.2 8		·	8.2 8.158	<u>1</u> 10		2 Overall
		14		V.2				0.100		opt	Final Salinity-
QA Cou	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL	Mean	Count	Control Type	
0	0.64%	0.2119	0.1499	33.4	33.1	33.32	33.18	33.25	2	Dilution Water	
0	1.51%	0.4949	0.35	33.2	32.5	33.02	32.68	32.85	2		0.125
0	3.29%	1.061	0.75	33	31.5	32.61	31.89	32.25	2		0.25
0	1.71%	0.5656	0.4	33.4	32.6	33.19	32.81	33	2		0.5
0	0.0%	0	0	32.2	32.2			32.2	1		1
0	0.0%	0	0	32.3	32.3			32.3	1		2
0 (0%)				33.4	31.5			32.64	10		Overall
~											

Americamysis 96-h Acute Survival Test

26 Sep-13 08:41	(p
-----------------	----

Report Date: Test Code:

Ref00502 | 02-9960-5253 Tetra Tech, Inc.

2 of 4)

Oor ginze Oor ginze <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>y-ppt</th><th>Initial Salinity</th></t<>											y-ppt	Initial Salinity
0.125 2 30.8 30.7 30.9 30.6 31.1 0.22 0.2829 0.92 0.25 2 30.85 30.73 30.97 30.6 31.1 0.25 0.3536 1.15 0.5 2 31.15 31.08 31.22 31 31.3 0.15 0.2121 0.68 1 1 31.9 31.9 31.9 0 0 0.09 Qverall 10 31.36 30.5 32.8 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 52.2 25.6 0.2 0.2829 1.11 0.125 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 <th>QA Count</th> <th>CV%</th> <th>Std Dev</th> <th>Std Err</th> <th>Max</th> <th>Min</th> <th>95% UCL</th> <th>95% LCL</th> <th>Mean</th> <th>Count</th> <th>Control Type</th> <th>Conc-gm/L</th>	QA Count	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL	Mean	Count	Control Type	Conc-gm/L
0.25 2 30.85 30.73 30.97 30.6 31.1 0.25 0.3536 1.15 0.5 2 31.15 31.08 31.22 31 31.3 0.15 0.2121 0.68 1 1 31.9 31.9 31.9 0 0 0.09 2 1 32.8 32.8 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 0 0 0.09 Overall Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV9 0 Dilution Water 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11	60	0.69%	0.2121	0.15	30.8	30.5	30.72	30.58	30.65	2	Dilution Water	0
D.5 2 31.15 31.08 31.22 31 31.3 0.15 0.2121 0.68 1 1 31.9 31.9 31.9 31.9 0 0 0.09 2 1 32.8 32.8 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 0 0 0.09 Overall Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 0 Dilution Water 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 <th< td=""><td>60</td><td>0.92%</td><td>0.2829</td><td>0.2</td><td>31</td><td>30.6</td><td>30.9</td><td>30.7</td><td>30.8</td><td>2</td><td></td><td>0.125</td></th<>	60	0.92%	0.2829	0.2	31	30.6	30.9	30.7	30.8	2		0.125
1 31.9 31.9 31.9 31.9 0 0 0.09 2 1 32.8 32.8 32.8 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 0 0 0.09 Final Temperature-°C Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV9 0 Dilution Water 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.125 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 26.1 26.1 26.1 0 0 0.09 Quera	60	1.15%	0.3536	0.25	31.1	30.6	30.97	30.73	30.85	2		0.25
2 1 32.8 32.8 32.8 32.8 32.8 0 0 0.09 Overall 10 31.36 30.5 32.8 32.8 0 0 0.09 Final Temperature-°C Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV9 0 Dilution Water 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.125 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 26.1 26.1 26.1 0 0 0.09 Querall 10 25.63 25.2 26.1 26.1 0	60	0.68%	0.2121	0.15	31.3	31	31.22	31.08	31.15	2		0.5
Direction Control Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% CV% O Dilution Water 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.125 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 26.1 26.1 26.1 26.1 0 0 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.	0	0.0%	0	0	31.9	31.9			31.9	1		1
Final Temperature-°C Count of Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 0 Dilution Water 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.125 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 26.1 26.1 26.1 0 0 0.09 Overall 10 25.63 25.2 26.1 26.1		0.0%	0	0	32.8	32.8			32.8	1		2
Conc-gm/LControl TypeCountMean95% LCL95% UCLMinMaxStd ErrStd DevCV%0Dilution Water225.425.325.525.225.60.20.28291.110.125225.425.325.525.225.60.20.28291.110.25225.425.325.525.225.60.20.28291.110.5225.425.325.525.225.60.20.28291.1112225.425.325.525.225.60.20.28291.110.5225.425.325.525.225.60.20.28291.11126.1225.425.325.525.225.60.20.28291.11126.1225.6325.226.1000.092126.1225.6325.226.1000.09Overall1025.6325.226.126.1000.09Initial Temperature-°CConc-gm/LControl TypeCountMean95% LCL95% UCLMinMaxStd ErrStd DevCV%0Dilution Water225.3525.2325.4725.125.60.250.35361.490.125225.3525.2325.4725.125.60.250.353	0 (0%)				32.8	30.5			31.36	10		Overall
One gine Definition (ypc) Control (y											rature-°C	Final Temper
0.125 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 26.1 26.1 26.1 26.1 0 0 0.09 Qverall 10 25.63 25.2 26.1 0 0 0.09 Overall 10 25.63 25.2 26.1 0 0 0.09 Overall 10 25.63 25.2 26.1 0 0 0.09 0 Dilution Water 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49	QA Count	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL	Mean	Count	Control Type	Conc-gm/L
0.25 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 26.1 26.1 26.1 26.1 0 0 0.09 2 1 26.1 26.1 26.1 26.1 0 0 0.09 2 1 26.1 26.1 26.1 0 0 0.09 2 10 25.63 25.2 26.1 0 0 0.09 Overall 10 25.63 25.2 26.1 5 25.2 26.1 5 Initial Temperature-°C Kontrol Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 0 Dilution Water 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49 0.125 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 <td>60</td> <td>1.11%</td> <td>0.2829</td> <td>0.2</td> <td>25.6</td> <td>25.2</td> <td>25.5</td> <td>25.3</td> <td>25.4</td> <td>2</td> <td>Dilution Water</td> <td>0</td>	60	1.11%	0.2829	0.2	25.6	25.2	25.5	25.3	25.4	2	Dilution Water	0
0.5 2 25.4 25.3 25.5 25.2 25.6 0.2 0.2829 1.11 1 1 26.1 26.1 26.1 26.1 0 0 0.9 2 1 26.1 26.1 26.1 26.1 0 0 0.9 Overall 10 25.63 25.2 26.1 26.1 0 0 0.9 Initial Temperture-°C 10 25.63 25.2 26.1 26.1 26.1 26.1 26.1 26.1 26.1 0 0 0.9 0.9 Initial Temperture-°C 10 25.63 25.2 26.1	60	1.11%	0.2829	0.2	25.6	25.2	25.5	25.3	25.4	2		0.125
1 26.1 26.1 26.1 26.1 0 0 0.09 2 1 26.1 26.1 26.1 0 0 0.09 Overall 10 25.63 25.2 26.1 26.1 0 0 0.09 Initial Temperature-°C 2 25.3 25.4 25.2 26.1 <td>% 0</td> <td>1.11%</td> <td>0.2829</td> <td>0.2</td> <td>25.6</td> <td>25.2</td> <td>25.5</td> <td>25.3</td> <td>25.4</td> <td>2</td> <td></td> <td>0.25</td>	% 0	1.11%	0.2829	0.2	25.6	25.2	25.5	25.3	25.4	2		0.25
2 1 26.1 26.1 26.1 0 0 0.09 Overall 10 25.63 25.2 26.1 0 0 0.09 Initial Temperature-°C Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV9 0 Dilution Water 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49 0.125 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49	60	1.11%	0.2829	0.2	25.6	25.2	25.5	25.3	25.4	2		0.5
Overall 10 25.63 25.2 26.1 Initial Temperature-°C Conc-gm/L Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 0 Dilution Water 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.4% 0.125 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.4%	0	0.0%	0	0	26.1	26.1			26.1	1		1
Initial Temperature-°C Conc-gm/L Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 0 Dilution Water 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.4% 0.125 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.4%	0	0.0%	0	0	26.1	26.1			26.1	1		2
Conc-gm/L Control Type Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 0 Dilution Water 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49 0.125 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49	0 (0%)	1 V			26.1	25.2			25.63	10		Överall
O Dilution Water 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49 0.125 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49											erature-°C	Initial Tempe
0.125 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.4%	QA Count	CV%	Std Dev	Std Err	Max	Min	95% UCL	95% LCL	Mean	Count	Control Type	Conc-gm/L
	0	1.4%	0.3536	0.25	25.6	25.1	25.47	25.23	25.35	2	Dilution Water	0
0.25 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.49	0	1.4%	0.3536	0.25	25.6	25.1	25.47	25.23	25.35	2		0.125
	0	1.4%	0.3536	0.25	25.6	25.1	25.47	25.23	25.35	2		0.25
0.5 2 25.35 25.23 25.47 25.1 25.6 0.25 0.3536 1.4%	0	1.4%	0.3536	0.25	25.6	25.1	25.47	25.23	25.35	2		0.5
1 1 25.1 25.1 25.1 0 0 0.0%	0	0.0%	0	0	25.1	25.1			25.1	1		1
2 1 25.1 25.1 0 0 0.0 ⁹		0.0%	0	0	25.1	25.1	3		25.1	1		2
Overall 10 25.27 25.1 25.6	0 (0%)				25.6	25.1			25.27	10		Overall

Analyst: D QA: 38

CETIS Me	asurement	Report			Report Date: Test Code:	26 Sep-13 08:41 (p 3 of 4) Ref00502 02-9960-5253
Americamys	is 96-h Acute Su	rvival Te	st	2		Tetra Tech, Inc.
Final Dissol	/ed Oxygen-mg/	L				
Conc-gm/L	Control Type	1	2			
0	Dilution Water	7.1	7.3			
0.125		7.1	7.4			
0.25		7.3	7.4			
0.5		7.3	7.5			
1		7.3				
2		7.5				
Initial Disso	ved Oxygen-mg/	/L				
Conc-gm/L	Control Type	1 😒	2			
0	Dilution Water	8.2	7.6			
0.125		8.4	7.9			
0.25		8.3	7.9			
0.5		8.1	8			
1		8.3				
2		8.2				10
Final pH-Uni	ts		10		к. —	
Conc-gm/L	Control Type	1	2			
0	Dilution Water	7.8	7.9		0	
0.125		7.9	8			
0.25		7.9	8			
0.5		8	8			
1		8.1				
2		8.2				2
Initial pH-Un	its					
Conc-gm/L	Control Type	1	2			
0	Dilution Water	8.1	8			
0.125		8.2	8.1			
0.25		8.2	8.1			
0.5		8.2	8.2			
1		8.2				
2	•	8.2		·		
Final Salinit	/-ppt					
Conc-gm/L	Control Type	1	2	·		-
0	Dilution Water	33.4	33.1			
0.125		33.2	32.5			
0.25		33	31.5			
0.5		33.4	32.6			
1		32.2				
2		32.3				
Initial Salini						
Conc-gm/L	Control Type	1	2			
0	Dilution Water	30.8	30.5			
0.125		31	30.6			
0.25		31.1	30.6			
0.5		31.3	31			
1 2		31.9 32.8				
		-3-3 0				

26 Sep-13 0	8:41 (p 4 of 4)
Ref00502	02-9960-5253

Tetra Tech, Inc.

Report Date:

Test Code:

Americamysis 96-h Acute Survival Test

Final	Tem	perat	ture	°C
r mai	1 4111	heiai	ເພເຮ	•••

i mai rompo									
Conc-gm/L	Control Type	1	2						
0	Dilution Water	25.6	25.2					1.1	
0.125		25.6	25.2						
0.25		25.6	25.2						
0.5		25.6	25.2						
1		26.1							
2		26.1		9		5			
Initial Tempe	erature-°C								
Conc-gm/L	Control Type	1	2		 3		ž.		
0	Dilution Water	25.1	25.6						

0	Dilution Water	25.1	25.6					
0.125		25.1	25.6					
0.25		25.1	25.6					
0.5		25.1	25.6					
1		25.1						
2		25.1						

START Date/Time (MMDDYYYY HH:MM):

9/10/13 1245

Dilution Water:

LAB DOSOS

Client/Project:

Totin Toch

FINISH Date/Time (MMDDYYYY HH:MM):

9/14/13 1205

Test Substance:

KCI

Species/Source:

A, bahia Chasapah

Test Conc.	Chemical		Hour	of Test		Commonte
Units: QL	Parameters	0	48 Before	48 A Frer	96	Comments
)	Salinity (‰)	30.8	33.4		33.1	
	DO (mg/L)	8.2	7.1	30.5 7.6	7.3	
0 [pH (su)	8-1	7.8	8:0	7.9	
Ŭ	Temp (°C)	25.1	25.6	25.C	25.2	
	Salinity (‰)	31.0	33.2	30.6	32.5	
	DO (mg/L)	8.4	7.1	7.9	7.4	
0.125	pH (su)	8.4 8.2	7.9		8.0	
	Temp (°C)	25.)	25.6	8.1	25.1	
	Salinity (‰)	31.1	330	30.6	31.5	
	DO (mg/L)	83	7.3	7.9	7.4	
0,25	pH (su)	8-2	7.9	8.1	8.0	
	Temp (°C)	25.1	25.6	25.6	25.2	
	Salinity (‰)	31.3	33.4	31.0	32.6	
	DO (mg/L)	8.1	7.3	0io	7.5	
0.5	pH (su)	8.2	80	0.0 8.2	8.0	
0	Temp (°C)	25-1	25,4	25.6	25.2	
	Salinity (‰)	31.9	32.2 9	· N		
	DO (mg/L)	8.3	734			
1	pH (su)	8.2	5.1			
t	Temp (°C)	25.1	261 4			
	Salinity (‰)	32.8	32.3 9			
	DO (mg/L)	6.8	1.9	₽		
ð	pH (su)	8-2	8.2	>		P.
	Temp (°C)	251	26.0	>		
ŀ	Analyst	Pr	BS PS	PS	65	
Time	e Analyzed	100	0840 0840	0955 ut 24 hour	1210 10090 00/10	

Tetra Tech, Inc. Ecological Testing Facility

Data Checked and Approved: <u>JF</u>

Page 2 of 2

Toxicity Test Procedure Check Sheet

Date 04/10/15

Type of Test Chamber 1 L bookat

Number of replicates per concentration $\frac{1}{2}$

Specify vessel type and volume used to measure and deliver effluent and dilutent to test chambers 4

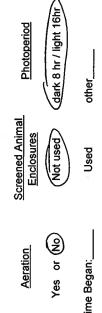
Pipet(s). Graduated Cylinder(s)

Other ષ્ટ Volumetric Flask(s)_

Specify materials used to place the test organisms into the test chambers <u>Noch</u>

Loading QC Initials	PTS	Feeding Schedule
Test ID Number	REFOUSOD	Exposure Chamber

Test Solution volume <u>975</u> Total Vessel Capacity <u>IL</u>


Fed Daily &

Not fed_

Type of food Other

Specify below the number of milliliters (mls) of diluent and effluent

	Total Volume		3000	000 J	0007	2000	2000	5.19291 5 3
is test.	Diluent	(600	(000)	Ood	(000)	(000)	Q	
measured out per concentration in this test.	Working Stock Solution	Q	000)	(1000)	(@O	(060	2000	
measured out per	Treatment Concentration	0	0.125	0.25	S'0	_	ي.	

Time Began:___

Tetra Tech, Inc. Ecological Testing Facility

Test #: 100 50 7

START Date/Time (MMDDYYYY HH:MM):

1245 9/10/13

Dilution Water:

10600505

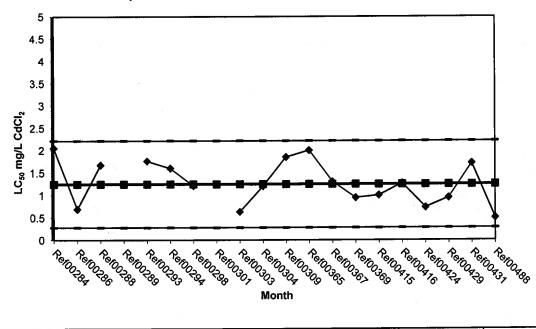
Client/Project:

Teta Fech

FINISH Date/Time (MMDDYYYY HH:MM):

1205

9/14/13


Test Substance:

Species/Source: Chesqueake A. bahia

Concent Repli			Num	ber alive/hou	r of test		# alive # exposed	Comments
Units:		Start	24	48	72	96	(percent survival)	Commenta
	А	10	16	10	lo	10		
	В	10	{o	15	10	10	001	
$ 0 \rangle$	Ċ	()	0	(৩	16	(0		
	D	(0)	10	ເວ	10	10		
	A	6	10	8	8	8		
	В	10	(0	9	9	9	92.5	
0.125	C	10	(0	to	10	10		
	D	0	(0	0	(0	10		
	Α	10	lo	10	(0	10		
	В	(0	10	9	9	9	92.5	
0,25	C	10	16	9	9	9	70.5	
	D	10	10	10	(0	9		
	Α	10	10	10	(0	10	_	
	В	10	10	10	10	10	- 95	
0.5	C	10	1	9	7	9		
	D	()	(0	9	1	9		
	A	10	0	0	0	6	4	
	B	10	Ð	0	0	0	-0	
(C	10	0	0	G	0		
	D	10	0	<u> </u>	0	0		
	A	10	0	Ū.	0	0	4	
2	В	0	0	0	0	Ø	6 -	
	C	10	0	0	0	0		PS apple
	D	10	0	0	0	6		//////
ANAL	YST	B	69	05	hs	ng		
TIN	ИЕ	1245	6939	0940	1302	1205		

Tetra Tech, Inc. Ecological Testing Facility

Test Log #	Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
Ref00284	09/22/10	2.0480	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00286	09/28/10	0.6888	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00288	10/06/10	1.6720	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00289	10/13/10	1.2080	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00293	10/20/10	1.7600	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00294	10/22/10	1.6000	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00298	10/27/10	1.2080	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00301	10/29/10	0.6792	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00303	11/05/10	0.6304	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00304	11/05/10	1.2000	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00309	11/12/10	1.8480	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00365	10/12/11	2.0000	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00367	10/18/11	1.3000	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00369	10/25/11	0.9440	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00415	10/09/12	1.0000	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00416	11/12/12	1.2660	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00424	11/07/12	0.7300	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00429	11/13/12	0.9484	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00431	11/20/12	1.7110	1.2471	0.7635	0.2799	1.7307	2.2143
Ref00488	07/30/13	0.5000	1.2471	0.7635	0.2799	1.7307	2.2143

Mean	1.2471
SD	0.4836
CV%	38.7777

CETIS Sun	nmary Repo	rt						Report Date Test Code:	ə: 		ug-13 08:44 f00488 01-	
Leptocheirus	96-h Acute Surv	ival Test	:				Ш				Tetra	Tech, Inc.
Batch ID: Start Date: Ending Date: Duration:	03-0842-1774 30 Jul-13 10:55 03 Aug-13 10:0 95h	P: 7 S	est Type: rotocol: pecies: ource:	Survival (96h) EPA/600/R-94/0 Leptocheirus pl Aquatic Resear	umulosus	ns, NH		Analyst: Diluent: Brine: Age:	20 ppt S	altwater		
Sample ID: Sample Date: Receive Date: Sample Age:		M	ode: aterial: ource: tation:	4B621EB4 Cadmium chlor Reference Toxi		Ð		Client: Project:	Tetra Te Referen	ech ce Toxic	ant	
Batch Note:	Organism size:	2-4mm										
Point Estimat	e Summary											
Analysis ID	Endpoint		Leve	mg/L	95% LCL	95% UCL	TU	Meth	nod			
20-2250-9046		ate	EC5	0.25	N/A	0.375		Linea	ar Interpo	lation (I	CPIN)	
			EC10	0.2778	0.1667	0.4167						
			EC15	0.3056	0.1833	0.4583						
			EC20	0.3333	0.2	0.5						
			EC25	0.3611	0.2167	0.5417						
			EC40	0.4444	0.2667	0.6667						
			EC50	0.5	0.3	1.167			2			
96h Survival	Rate Summary								_		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ = **
Conc-mg/L	Control Type	Count	Mear	n 95% LCL	95% UCL	Min	Max			td Dev	CV%	%Effec
0	Dilution Water	2	1	1	1	1	1	0	0		0.0%	0.0%
0.25		2	0.95	0.9236	0.9764	0.9	1	0.05		.07071	7.44%	5.0%
0.5		2	0.5	0.4472	0.5528	0.4	0.6	0.1		.1414	28.28%	50.0%
1		2	0.15	0.07079	0.2292	0	0.3	0.15		.2121	141.4%	85.0%
2		2	0.1	0.1	0.1	0.1	0.1	0	0		0.0%	90.0%
4		2	0	0	0	0	0	0	0	· · · · · · · · · · · · · · · · · · ·	· · · ·	100.0%
96h Survival	Rate Detail											
Conc-mg/L	Control Type	Rep 1	Rep	2								
0	Dilution Water	1	1									
0.25		1	0.9									
0.5		0.4	0.6									
1		0.3	0									
2		0.1	0.1									
4		0	0									

CETIS Mea	surement F	Repor	rt					port Date: st Code:		•	43 (p 1 of 2) 1-1959-2411
Leptocheirus 9	96-h Acute Surv	vival Te	est							Tetra	a Tech, Inc.
Batch ID: Start Date: Ending Date: Duration:	03-0842-1774 30 Jul-13 10:55 03 Aug-13 10:0 95h		Test Type: Protocol: Species: Source:	Survival (96h) EPA/600/R-94/ Leptocheirus p Aquatic Resea	lumulosus	ns, NH	Di	ine:	ppt Saltwate	r	
Sample ID: Sample Date: Receive Date: Sample Age:	12-6472-1588 30 Jul-13 10:55 N/A	5	Code: Material: Source: Station:	4B621EB4 Cadmium chlor Reference Tox					ra Tech ference Toxic	cant	
Batch Note:	Organism size:	2-4mn	n	······································							
Dissolved Oxy	/gen-mg/L			· · · · · ·					22		
	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
<u> </u>	Dilution Water	3	7.8	7.698	7.902	7.5	8.1	0.1732	0.3	3.85%	0
0.25		3	7.733	7.663	7.804	7.5	7.9	0.1202	0.2082	2.69%	0
0.5		3	7.833	7.748	7.918	7.6	8.1	0.1453	0.2517	3.21%	0
1		3	7.8	7.698	7.902	7.5	8.1	0.1732	0.3	3.85%	0
2		3	7.867	7.758	7.975	7.5	8.1	0.1856	0.3215	4.09%	0
4		3	7.9	7.753	8.047	7.4	8.2	0.2517	0.4359	5.52%	0
Overall		18	7.822			7.4	8.2			147	0 (0%)
pH-Units											
Conc-mg/L	Control Type	Coun	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Coun
0	Dilution Water	3	7.467	7.389	7.545	7.2	7.6	0.1333	0.2309	3.09%	0
0.25		3	7.567	7.458	7.675	7.2	7.8	0.1856	0.3215	4.25%	0
0.5		3	7.667	7.558	7.775	7.3	7.9	0.1856	0.3215	4.19%	0
1		3	7.733	7.636	7.831	7.4	7.9	0.1667	0.2887	3.73%	0
2		3	7.767	7.689	7.845	7.5	7.9	0.1333	0.2309	2.97%	0
4		3	7.833	7.763	7.904	7.6	8	0.1202	0.2082	2.66%	0
Overall		18	7.672			7.2	8				0 (0%)
Salinity-ppt											
Conc-mg/L	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Cour
0	Dilution Water	3	20.6	20.22	20.98	19.3	21.4	0.6557	1.136	5.51%	0
0.25		3	20.47		20.81	19.3	21.2	0.5897	1.021	4.99%	0
0.5		3	20.1	19.86	20.34	19.3	20.7	0.4163	0.7211	3.59%	0
1		3	20.43	20.07	20.79	19.3	21.4	0.6119	1.06	5.19%	0
2		3	20.17		20.39	19.4	20.6	0.3844	0.6658	3.3%	0
4	<u> </u>	3	20.2	20	20.4	<u>19.6</u> 19.3	20.8 21.4	0.3464	0.6	2.97%	0 0 (0%)
Overall		18	20.33			19.5	21.4			15	
Temperature									Std Dev	CV%	QA Cou
Conc-mg/L	Control Type	Cour					Max	Std Err		0.84%	0
0	Dilution Water		24.77		24.84	24.6	25	0.1202	0.2082	0.84% 0.84%	0
0.25		3	24.77		24.84	24.6	25	0.1202	0.2082 0.2082	0.84% 0.84%	0
0.5		3	24.77		24.84	24.6	25 25	0.1202	0.2082	0.84%	0
1		3	24.77		24.84	24.6	25 25	0.1202	0.2082	0.84%	0
2		3	24.77		24.84	24.6	25 25	0.1202	0.2082	0.84%	0
4		3	24.77		24.84	24.6	25	0.1202	0.2002	0.0470	0 (0%)
Overall		18	24.77	,		24.6	25				0 (0 /0)

Analyst: () QA: JF

Report Date:

Test Code:

							1651 000	IC.	110100-100 0	1000 2111
Leptocheirus	s 96-h Acute Sur	vival Tes	t				×		Tetra	Tech, Inc.
Dissolved O	xygen-mg/L									
Conc-mg/L	Control Type	1	2	3						
0	Dilution Water	7.8	8.1	7.5						
0.25		7.9	7.8	7.5						
0.5		8.1	7.8	7.6						
1		8.1	7.8	7.5						
2		8	8.1	7.5						
4		8.1	8.2	7.4		V)				
pH-Units										
Conc-mg/L	Control Type	1	2	3						
0	Dilution Water	7.2	7.6	7.6						
0.25		7.2	7.7	7.8						
0.5		7.3	7.8	7.9						
1		7.4	7.9	7.9						
2		7.5	7.9	7.9						
4		7.6	8	7.9						
Salinity-ppt										
Conc-mg/L	Control Type	1	2	3						
0	Dilution Water	19.3	21.1	21.4			S			
0.25		19.3	21.2	20.9						
0.5		19.3	20.3	20.7						
1		19.3	20.6	21.4						
2		19.4	20.5	20.6						
4		19.6	20.2	20.8			1.			
Temperature	e-°C									
Conc-mg/L	Control Type	1	2	3	8					
0	Dilution Water	24 7	24.6	25						

Conc-mg/L	Control Type	1	2	3	2		 _	
0	Dilution Water	24.7	24.6	25				
0.25		24.7	24.6	25				
0.5		24.7	24.6	25				
1		24.7	24.6	25				
2		24.7	24.6	25				
4		24.7	24.6	25				

000-013-180-1

CETIS™ v1.8.0.10

ACUTE TOXICITY TEST BENCH SHEET

 \bigcirc

START Date/Time (MMDDYYYY HH:MM):

7/30/13 1055

FINISH Date/Time (MMDDYYYY HH:MM):

8/3/13 1007

Dilution Water:

20 ppt Salt water

Client/Project:

TI

Test Substance:

Species/Source:

L. plumulosus

Concenti Repli			Num	iber alive/hour	of test		<u># alive</u> # exposed	Comments
Units: Ma	IL	Start	24	48	72	96	(percent survival)	
	Α	lo	15	10	10	(8		
	В	10	()	10	10	10	100	
0	C							
	D					ি সাহা		
	А	10	0	10	10	10	- 1	
0.1-	В	10	10	9	9	9	95	
0.25	С				·	a		
	D					108/p/13		
	Α	10	10	-4	5	4		
0.5	В	ω	10	9	7	6	50	
0.5	C					158/12/12	-	
	D						-	
	A	10	10	10	7	3		
1	B	10	10	٩	8	Ð	15	
	<u> </u>					Brita		
	D					5 8/12/13		
	A	10	9	7	4	(
	B	lo	10	9	4	35 0 1	10	
2	<u> </u>					- Relui		
	D			;		es sibles		
	A	10	0	5	4	Ð		
4	B	10	10	6	3	0	0	
	C					Asilit	4	81413
	D					BSHOB		811213
ANAI	YST	Bs	PS	ßs	P5	BS		
וד	ИE	1065	1045	1249	0900	loot		

Tetra Tech, Inc. Ecological Testing Facility

Data Checked and Approved: $\underline{55}$

Page 2 of 3

START Date/Time (MMDDYYYY HH:MM): 7/30/13 1055

Dilution Water:

20 ppt salt water

Client/Project:

τ τ

FINISH Date/Time (MMDDYYYY HH:MM): $\mathscr{B}/\mathscr{J}/\mathscr{I}$ 1007

Test Substance: C \mathcal{J} C \mathcal{L}

Species/Source:

L. plumilosus

Test Conc.	Chemical		Hour	of Test		Commerte
Unitsmall	Parameters	0	48	96	<u>^.</u>	Comments
0	Salinity (‰)	19.3	21.1	21.4		
	DO (mg/L)	7.8	8.1	7.5		
Ű	pH (su)	7.2	7.6	7.6		
	Temp (°C)	24.7	24.6	25.0		
	Salinity (‰)	19.3	21.2	20.9		
	DO (mg/L)	7.9	7.8	7.5		
0,25	pH (su)	7.2	7.7	7-8		
	Temp (°C)	24.7	24.6	25.0		
	Salinity (‰)	19.3	20.3	20.7		
(1)	DO (mg/L)	8.1	7.8	7.6		
0,5	pH (su)	7.3	7.8	7.9		
2 -	Temp (°C)	24.7	24.6	25.0		
	Salinity (‰)	19.3	20.6	21.4		
ι [DO (mg/L)	8-1	7.8	7.5		
	pH (su)	7.4	7.9	7.9		
	Temp (°C)	24.7	入件 16	250		
	Salinity (‰)	19.4	20.5	20.6		
<u>م</u> [DO (mg/L)	8.0	8.(7.5		
2	pH (su)	7.5	7.9	7.9		
	Temp (°C)	24.7	24.6	25.0		
	Salinity (‰)	19.6	20.2	20.8		
4	DO (mg/L)	8-1	8.2	7.4		
[pH (su)	7.6	8.0	7.9		B
	Temp (°C)	24.7	24.6	250		ଣାମ ।
A	nalyst	35	おら	Pos	·	-0.
Time	Analyzed	1320	1305	1015]

Tetra Tech, Inc. Ecological Testing Facility

Page of 3

Toxinity Test Procedure Check Sheet

Date 7/30//3

RE F00488 Test ID Number

beaker Ľ Type of Test Chamber ർ Number of replicates per concentration_ Specify vessel type and volume used to measure and deliver effluent and dilutent to test chambers_

Pipet(s)_ Graduated Cylinder(s)_ Other Specify materials used to place the test organisms into the 0: Sposable pipet test chambers

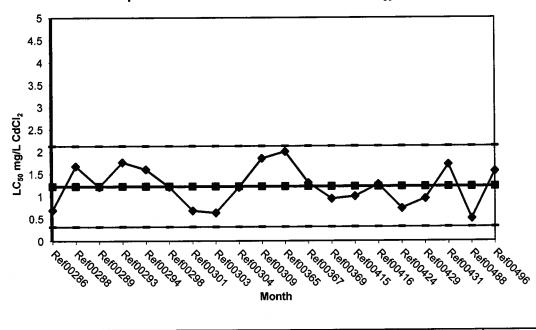
Loading QC Initials	PS	Feeding Schedule
Test ID Number	REFout 88	Exposure Chamber

Τ

< Not fed

5 Total Vessel Capacity_<u>i</u> └ Test Solution volume

Fed Daily.


Type of food Other____

Specify below the number of mililiters (mls) of diluent and effluent

		-		11+			<u>~</u> ~
Total Volume	00 C	000£,	a ou ti	4000	n on h	gro	8.8% W
Diluent	Jeco	000	4060	7000	200	Q	
Treatment Working Stock D Concentration Solution	O	100 O	hove	2000	0004	4000	
Treatment Concentration	Ð	0,25	05	_	~6	÷	

Ecological Testing Facility Tetra Tech, Inc.

Test Log #	Dates	Values	Mean	-1 SD	-2 SD	+1 SD	+2 SD
Ref00286	09/28/10	0.6888	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00288	10/06/10	1.6720	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00289	10/13/10	1.2080	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00293	10/20/10	1.7600	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00294	10/22/10	1.6000	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00298	10/27/10	1.2080	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00301	10/29/10	0.6792	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00303	11/05/10	0.6304	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00304	11/05/10	1.2000	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00309	11/12/10	1.8480	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00365	10/12/11	2.0000	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00367	10/18/11	1.3000	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00369	10/25/11	0.9440	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00415	10/09/12	1.0000	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00416	11/12/12	1.2660	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00424	11/07/12	0.7300	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00429	11/13/12	0.9484	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00431	11/20/12	1.7110	1.2225	0.7703	0.3181	1.6747	
Ref00488	07/30/13	0.5000	1.2225	0.7703	0.3181	1.6747	2.1269
Ref00496	08/28/13	1.5560	1.2225	0.7703	0.3181	1.6747	2.1269

Mean	1.2225
SD	0.4522
CV%	36.9903

CETIS Sum	mary Repo	rt						Report Date: Test Code:		600496 15	
								est code:			Tech, Inc.
_eptocheirus	96-h Acute Surv	vival lest				·					
Batch ID:	12-4776-5080		• •	Survival (96h)				Analyst:			
Start Date:	28 Aug-13 12:1		otocol:	EPA/600/R-94/0	• •		-		0 ppt Saltwater		
Ending Date:	01 Sep-13	•	ecies:	Leptocheirus pl	umulosus		-	Brine:			
Duration:	84h	So	urce:	Chesapeake			/	Age:			
Sample ID:	03-2246-7032	Co	de:	133874D8			C	Client: T	etra Tech		
	28 Aug-13 12:1	5 Ma	terial:	Cadmium chlori	de		F	Project: R	eference Toxic	ant	
Receive Date:		Sc	urce:	Reference Toxic	cant						
Sample Age:	N/A	St	ation:								
Batch Note:	Organism size:	2-4mm								- •	
Point Estimate	e Summary										
Analysis ID	Endpoint		Leve	mg/L	95% LCL	95% UCL	τu	Metho	d		
17-4464-0406		ate	EC5	2.4	1.8	4.8		Linear	Interpolation (I	CPIN)	
			EC10	2.8	1.6	7.6					
			EC15	3.2	1.4	N/A					
			EC20	3.6	1.2	N/A					
			EC25		1	N/A					
			EC40		N/A	N/A					
			EC50		<u>N/A</u>	N/A					
09-4495-6127	96h Survival Ra	ate	EC5	0.3	0.2429	0.4333		Linear	Interpolation (I	(PIN)	
			EC10		0.2357	0.6167					
			EC15		0.2286	2.8					
			EC20		0.2214 N/A	3.031 1.762					
			EC25 EC40		0.8	2					
			EC40		0.9333	2.19					
48h Survival I	Rate Summary	0									
Conc-mg/L	Control Type	Count	Mear	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Effec
0	Dilution Water	2	1	1	1	1	1	0	0	0.0%	0.0%
0.25		2	1	1	1	1	1	0	0	0.0%	0.0%
0.5		2	1	1	1	1 🥫	1	0	0	0.0%	0.0%
1		2	1	1	1	1	1	0	0	0.0%	0.0%
2		2	1	1	1	1	1	0	0	0.0%	0.0%
4		2	0.75	0.6708	0.8292	0.6	0.9	0.15	0.2121	28.28%	25.0%
96h Survival I	Rate Summary										
Conc-mg/L	Control Type	Count	Mear	n 95% LCL	95% UCL	Min	Max	Std Er		CV%	%Effec
0	Dilution Water	2	1	1	1	1	1	0	0	0.0%	0.0%
0.25		2	1	1	1	1	1	0	0	0.0%	0.0%
0.5		2	0.7	0.6472	0.7528	0.6	0.8	0.1	0.1414	20.2%	30.0%
1		2	0.8	0.7472	0.8528	0.7	0.9	0.1	0.1414	17.68%	20.0%
2		2	0.25	0.2236	0.2764	0.2	0.3	0.05	0.07071	28.28%	75.0%
4		2	0.35	0.2708	0.4292	0.2	0.5	0.15	0.2121	60.61%	65.0%

Analyst: B QA: SF

CETIS Summary Report					Report Date: Test Code:	03 Sep-13 14:40 (p 2 of 2) Ref00496 15-0629-2764		
Leptocheirus	s 96-h Acute Sur	vival Test				Tetra Tech, Inc.		
48h Survival	Rate Detail			· · · · · · · · · · · · · · · · · · ·		18 - 10 - 10		
Conc-mg/L	Control Type	Rep 1	Rep 2					
0	Dilution Water	1	< 1					
0.25		1	1					
0.5		1	1					
1		1	1					
2		1	1					
4		0.6	0.9					

96h Survival Rate Detail

Conc-mg/L	Control Type	Rep 1	Rep 2				
0	Dilution Water	1	1				
0.25		1	1				
0.5		0.6	0.8				
1		0.7	0.9				
2		0.2	0.3				
4		0.2	0.5				

Analyst QA: JE

CETIS Mea	surement	Repo	rt					Report Date: Test Code:		•	:39 (p 1 of 2) 15-0629-2764
Leptocheirus	96-h Acute Sur	vival Te	est						8	· · ·	a Tech, Inc.
Batch ID: Start Date: Ending Date: Duration:	12-4776-5080 28 Aug-13 12: 01 Sep-13 84h	15	Test Type: Protocol: Species: Source:	Survival (96h) EPA/600/R-94 Leptocheirus p Chesapeake	. ,			Analyst: Diluent: 20 ppt Saltwater Brine: Age:		er	
Sample ID: Sample Date: Receive Date: Sample Age:	03-2246-7032 28 Aug-13 12: N/A	15	Code: Material: Source: Station:	133874D8 Cadmium chlo Reference Tox					ra Tech ference Tox	cant	2c III
Batch Note:	Organism size	: 2-4mm	1 1								
Dissolved Ox	ygen-mg/L										
Conc-mg/L	Control Type	Count	. Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	7.667	7.569	7.764	7.5	8	0.1667	0.2887	3.77%	0
0.25		3	7.833	7.755	7.911	7.7	8.1	0.1333	0.2309	2.95%	0
0.5		3	8	7.883	8.117	7.8	8.4	0.2	0.3464	4.33%	0
1		3	8	7.883	8.117	7.8	8.4	0.2	0.3464	4.33%	0
2		3	7.967	7.896	8.037	7.8	8.2	0.1202	0.2082	2.61%	0
4		3	7.9	7.899	7.901	7.9	7.9	0	0	0.0%	0
Overall	2	18	7.894			7.5	8.4				0 (0%)
pH-Units											
Conc-mg/L	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	7.833	7.725	7.942	7.6	8.2	0.1856	0.3215	4.1%	0
0.25		3	7.833	7.748	7.918	7.6	8.1	0.1453	0.2517	3.21%	0
0.5		3	7.767	7.747	7.786	7.7	7.8	0.03334	0.05774	0.74%	0
1		3	7.867	7.796	7.937	7.7	8.1	0.1202	0.2082	2.65%	0
2		3	7.867	7.796	7.937	7.7	8.1	0.1202	0.2082	2.65%	0
4		3	7.967	7.896	8.037	7.8	8.2	0.1202	0.2082	2.61%	0
Overall		18	7.856			7.6	8.2				0 (0%)
Salinity-ppt											
Conc-mg/L	Control Type	Count	t Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	19.5	19.09	19.91	18.2	20.6	0.7	1.212	6.22%	0
0.25		3	19.23	18.93	19.54	18.2	19.9	0.5239	0.9074	4.72%	0
0.5		3	19.37	19.07	19.66	18.4	20.1	0.5044	0.8737	4.51%	0
1		3	19.13	18.95	19.32	18.5	19.5	0.318	0.5508	2.88%	0
2		3	20	19.49	20.51	18.4	21.4	0.8718	1.51	7.55%	0
4		3	19.27	19.01	19.52	18.4	19.8	0.4372	0.7572	3.93%	0
Overall		18	19.42			18.2	21.4				0 (0%)
Temperature-	°C										
Conc-mg/L	Control Type	Count		95% LCL	95% UCL		Max	Std Err	Std Dev	CV%	QA Count
0	Dilution Water	3	23.83	23.79	23.87	23.7	23.9	0.06665	0.1154	0.48%	0
0.25		3	23.83	23.79	23.87	23.7	23.9	0.06665	0.1154	0.48%	0
0.5		3	23.83	23.79	23.87	23.7	23.9	0.06665	0.1154	0.48%	0
1		3	23.83	23.79	23.87	23.7	23.9	0.06665	0.1154	0.48%	0
2		3	23.83	23.79	23.87	23.7	23.9	0.06665	0.1154	0.48%	0
4		3	23.83	23.79	23.87	23.7	23.9	0.06665	0.1154	0.48%	0
4 Overall	· · · · · · · · · · · · · · · · · · ·	3 18	23.83	23.79	23.8/	23.7 23.7	23.9	0.06665	0.1154	0.48%	0 (0%

Leptocheirus 96-h Acute Survival Test

Report Date:

Test Code:

Tetra	Tech.	Inc

Loptoonena	5 VV-II Acute Oui	vival ics					
Dissolved O	xygen-mg/L						
Conc-mg/L	Control Type	1	2	3			
0	Dilution Water	7.5	7.5	8			
0.25		7.7	7.7	8.1			
0.5		7.8	7.8	8.4			
1		7.8	7.8	8.4			
2		7.9	7.8	8.2			
4		7.9	7.9	7.9			
pH-Units							
Conc-mg/L	Control Type	1	2	3			
0	Dilution Water	7.6	7.7	8.2			
0.25		7.6	7.8	8.1			
0.5		7.7	7.8	7.8			
1		7.7	7.8	8.1			
2		7.7	7.8	8.1			
4		7.8	7.9	8.2			
Salinity-ppt							
Conc-mg/L	Control Type	1	2	3			
0	Dilution Water	18.2	19.7	20.6			
0.25		18.2	19.6	19.9			
0.5		18.4	19.6	20.1			
1		18.5	19.4	19.5			
2		18.4	20.2	21.4			
4		18.4	19.6	19.8			
Temperature	÷°C		÷				
Conc-mg/L	Control Type	1	2	3	 		
0	Dilution Water	23.9	23.9	23.7			
0.25		23.9	23.9	23.7			
0.5		23.9	23.9	23.7			
1		23.9	23.9	23.7			
2		23.9	_~ 23.9	23.7			
4		23.9	23.9	23.7			
				1.2			

Analyst: RS QA: JF

Page of <u>3</u>

ACUTE TOXICITY TEST BENCH SHEET

START Date/Time (MMDDYYYY HH:MM):

828/13 1215

Dilution Water:

20 ppt twater

Client/Project:

Jefra Tech

FINISH Date/Time (MMDDYYYY HH:MM):

9 1130 2

Test Substance:

AC1

Species/Source: Charloke plunulosus

Replic	ation & ate		Num	<u># alive</u> # exposed	Comments			
Units: MA)		Start	24	48	72	96	(percent survival)	Comments
5	Α	lo	10	10	10	10		
A -	В	lo .	16	١ð	10	10	100	
0 _	С					R		
	D					<u>Rajau</u>	:	
_	A	(0	10	10	10	10		
0,25 -	В	(0	(0	10	03	10	100	
0,07	С				_	PS 9 13/15	(00)	
	D							
- 	<u>A</u>	10	l d	(0	10	6		
0.5 -	В	10	. (0	10	8	8	70	
0.) _	С		<u> </u>				ω	
	D	s				PSqials	2	
-	A	10	10	10	9	7		
-	B	(0	10	10	9	9	80	
1	С					PS 91313		
	D							
-	A	10	10	10	5	2	<	
ე -	B	(0	10	10	6	>	25	
9 _	C D				_	হিনায়া	Ú.	
	A	1		<i>r</i>	1	7		
_	B	10 (0	10	9	6	5	25	
4 -	C						J~	P5 913113
I _	D					E9/312		-4711-
ANALY		Р5	63	BS	65	MS		
TIME	1	ILIS	0920	1016	1020	1130 617		

Data Checked and Approved:

START Date/Time	(MMDDYYYY	HH:MM):
82813	1215	

Dilution Water:

Deat Soltwoter

Client/Project:

Tetra Tech

FINISH Date/Time (MMDDYYYY HH:MM):

1130 911113

Test Substance:

Species/Source: Che Sopeake L. plumulosus

Test Conc.	Chemical		Ηοι	ur of Test		Commente
Jnits/Mg)	Parameters	0	48	96	1	Comments
	Salinity (%)	18.2	19.7	20,6	$\left \right\rangle$	
	DO (mg/L)	7.5	7.5	8.0		
0	pH (su)	7.6	7,7	8.2		
)	Temp (°C)	23,9	23.9	23.7		
	Salinity (‰)	18.2	19.6	19.9		
	DO (mg/L)	7.7	7-1	8.		
0.25	pH (su)	7.6	78	8.1		
0.05	Temp (°C)	23.9	23.9	23.7		
	Salinity (‰)	18.4	19-6	20.1		
	DO (mg/L)	7.8	7.8	8-4 7,8		
0.5	pH (su)	7.7	7.8	7,8		
	Temp (°C)	63.9	23.9	23-7		
	Salinity (‰)	19.5	19.4	19,5		
	DO (mg/L)	7.8	7.8	8,4		\backslash
1	pH (su)	7.7	7.8	8.1		
	Temp (°C)	23.9	23.9	23.7		
	Salinity (‰)	18.4	20.2	21.4		
	DO (mg/L)	7.9	7.8	8.2		
2	pH (su)	7.7	1.8	8.)		
~	Temp (°C)	23.9	23.9	23.7		
	Salinity (‰)	19.4	19.6	19.8		
4	DO (mg/L)	7.9	79	7.9		85
	pH (su)	7.8	7.7	8.2		93
	Temp (°C)	23.9	23.9	23.7		
A	nalyst	BS	HS.	1215 MS		
Time	Analyzed	1240	(0.10	1215		

Tetra Tech, Inc. Ecological Testing Facility

Data Checked and Approved:

Page Z of Z

Toxicity Test Procedure Check Sheet

		1	he			
	ration <u>A</u> sed to measure and t	Pipet(s) Other	le test organisms into t	Loading QC Initials	SY	Feeding Schedule Not fed <u>X</u> Fed Daily Other Type of food
Date Sp8/13 Test ID Number & 600 49 b Type of Test Chamber L Digber	Number of replicates per concentration	Graduated Cylinder(s)	Specify materials used to place the test organisms into the iest chambers <u>ଏଫେଟିଟ</u> ି କୁଡିଧିର	Test ID Number	12660496	Exposure Chamber Fotal Vessel Capacity <u>I/</u> Fest Solution volume <u> L</u>

Specify below the measured out per	Specify below the number of milliliters (mls) of diluent and effluent measured out per concentration in this test.	s (mls) of diluent a his test.	and effluent
Treatment Concentration	Working Stock Solution	Diluent	Total Volume
$\hat{\mathbf{Q}}$	70	21	2 L
0,25	31	θL	2L
0,5	76	70	31
	dL	10	51
8	SL	٥L	78
Ч	JL	70	ы Г

other 24hrobet dark 8 hr / light 16hr **Photoperiod** Screened Animal Enclosures Not used Used Time Began: Yes or No <u>Aeration</u>

and the second s

R Skeliz

Tetra Tech, Inc. Ecological Testing Facility

APPENDIX D – RAW LABORATORY DATA; BENTHIC INFAUNA (Excel Spreadsheet; Provided as Electronic Copy Only)

This Page Left Intentionally Blank

APPENDIX E – FIELD DATA SHEETS; TRAWL SAMPLING

CONNECTICUT	MARINE	TRAWL	SURVEY
TOW INFO DA	ATA AND	PHYSICA	L DATA

3 · · ·

Initials: Recorder: JB Lab Check: <u>79</u> Data Entry: <u>54</u>

AB

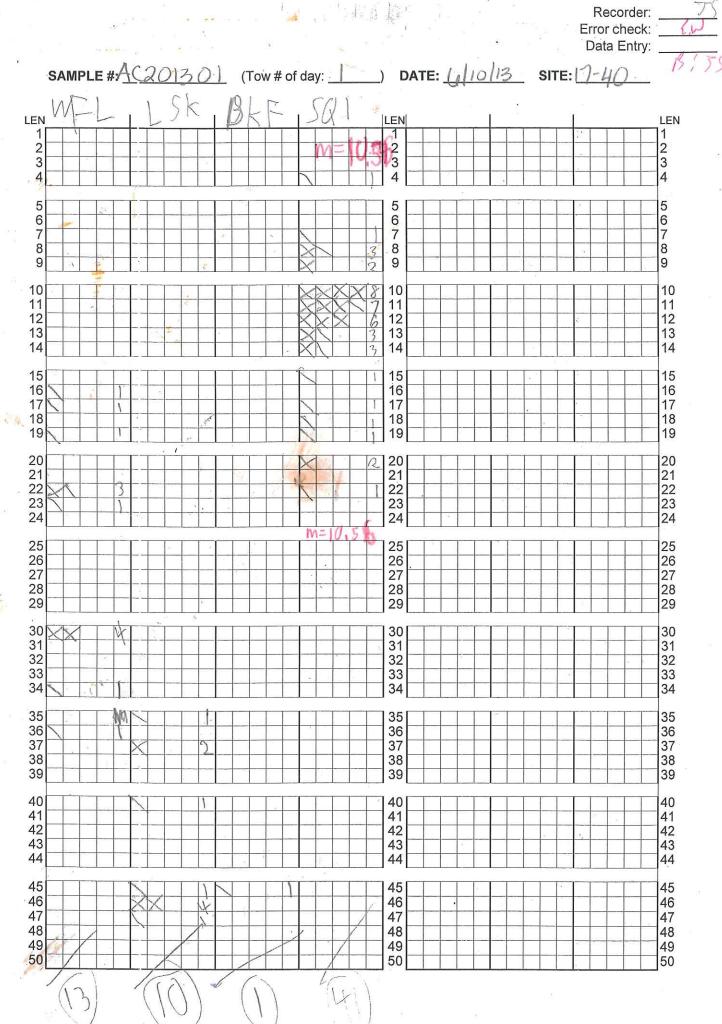
LAT $41 \cdot 11 \cdot 55$ LONG $12 \cdot 04 \cdot 55$ DEPTH ft: $40.7 \text{ m}: 12.4$ 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.6 13.1 12.6 13.1 12.6 13.1 12.6 13.1 12.6 13.1 12.6 13.2 13.1 12.6 13.2 13.1 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6 13.2 12.6					
TIME START (military): 0.54 DURATION (minutes): 30 DURATION (minutes): 30 DATE: $0.1 0.12013$ NAV. DATA: START $\frac{1}{0.59(10)}$ STOP STOP STOP $\frac{12013}{9:24:21}$ METER YSI M30 \downarrow CTD OTHER LAT $\frac{41.0}{11.55}$ LAT $\frac{41.0}{1.55}$ LAT $\frac{41.0}{1.55}$ DEPTH ft: 40.7 m: 12.4 START B STOP B LAT $\frac{41.0}{1.5}$ Colspan="2">Colspa=				ράρτ δ	
DATE: $O_{(\underline{l}, \underline{l}, \underline{l},$		TIME START (n	nilitary):	8:54	
SITE (strata): 1740 (72) NAV. DATA: START $3.57.15$ METER YSI M30 \checkmark CTD OTHER STOP LAT $41 - 17.56$ LAT STOP A LAT $41 - 17.56$ LAT STOP A LONG $12 - 04$ 35 LAT $41 - 17.56$ LAT DEPTH ft: 40.7 m: 12.4 START B $@$ 1m $@$ 11.9 m TEMP (c) 15.0 13.1 SAL $2.7.6$ 30.8 COND $3.4 69$ $3.7.3.7$ LENGTH OF WIRE 200^{2} DIFF Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp.: Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?: Coriginal Strata: Why moved: Original Strata: Strata:		DURATION (mi	nutes):	30	
SITE (strata): 1740 (12) STOP $9:24:21$ METER YSI M30_J CTDOTHER LAT 41_{-} 11_{-} 55_{-} LONG 12_{-} 04_{-} 35_{-} DEPTH ft: 40_{-} 35_{-} DEPTH ft: 40_{-} 7_{-} 7_{-} $@$ $1m_{-}$ $@$ $11.9m_{-}$ $@$ $1m_{-}$ $@$ $11.9m_{-}$ $@$ $1m_{-}$ $@$ $11.9m_{-}$ $@$ $1m_{-}$ $@$ $11.9m_{-}$ LAT 41_{-} 17.10_{-} LAT $@$ $1m_{-}$ $@$ $11.9m_{-}$ LAT 41_{-} 17.10_{-} LAT $@$ $11.9m_{-}$ 13_{-} 1 SAL $2.7.6_{-}$ 30_{-} 30_{-} COND 3.4_{-} 90_{-} 90_{-} LENGTH OF WIRE 20_{-} 13_{-} 13_{-} Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. <td>DATE: 00 10 12013</td> <td>NAV. DATA:</td> <td>START</td> <td>8:54:18</td> <td></td>	DATE: 00 10 12013	NAV. DATA:	START	8:54:18	
LAT $41 \cdot 17 \cdot 56$ LAT $41 \cdot 17 \cdot 56$ LAT $ -$ LONG $12 \cdot 04 \cdot 31$ LONG $ -$	SITE (strata): <u>1740 (T2</u>)			9:24:21	
LAT $\underline{I} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} C$	METER YSI M30 J CTD OT	THER	START A	50 1	STOP A
DEPTH ft: 40.7 m: 12.4 Im Im Im Im Im <t< td=""><td>LAT 41.17 55</td><td>LAT</td><td>41.1.1</td><td>.<u>56</u> LAT</td><td>°</td></t<>	LAT 41.17 55	LAT	41.1.1	. <u>56</u> LAT	°
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LONG 12.04 35	LONG	72.0	<u>+.31</u> LONG	°
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEPTH #: UN 7 m: 12 U		START B	· · · · · ·	STOP B
@ 1m @ 1l 9m TEMP (C) 15 0 13 1 SAL 27 6 30 8 COND 3.4 09 3.137 LENGTH OF WIRE 200' WEATHER CONDITIONS/QC COMMENTS: QC CHECK FOR SALINITY SCALE CAL. USING kg STD. WT. Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?:	12.7			110	
TEMP (C) 15_0 13_1 SAL 27_6 30_8 COND 34_09 3737 LENGTH OF WIRE 200' NET # C QC CHECK FOR SALINITY SCALE CAL. USING kg STD. WT. Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?:					·
SAL 2.7.6 30.8 COND 3.4.69 3.7.37 LENGTH OF WIRE 200' NET # C QC CHECK FOR SALINITY SCALE CAL. USING kg STD. WT. Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?:			12.03	<u>0</u> LONG	°·
SAL 2.7.6 30.6 COND 3.4.00 3.7.37 LENGTH OF WIRE 200' NET # C QC CHECK FOR SALINITY SCALE CAL. USING kg STD. WT. Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?:	темр (с) <u>15</u> 0 1 <u>3</u>				NTC.
LENGTH OF WIRE QOO' QC CHECK FOR SALINITY SCALE CAL. USING kg STD. WT. Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?: Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?: FILL OUT IF SITE MOVED, TOW IS SHORT, OR IN PARTS: Why moved: (P, H, U) (P, H, U) Original Site: Why moved: (P, H, U) (PV, PE, RI) (A, I, U)	sal 27.6 30	<u> </u>		ONSIGE COMME	N15:
QC CHECK FOR SALINITY SCALE CAL. USING kg STD. WT. Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?:	cond <u>3464</u> <u>3</u> -	137			
Sal. Stan. YSI Diff Pre-Cal. Wt. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?: Temp.: Image: Standard Standar			Λ .		A. ma
FILL OUT IF SITE MOVED, TOW IS SHORT, OR IN PARTS: Temp.: Original Site: Why moved: (P, H, U) Original Strata: Gear Interaction: (PV, PE, RI) Attempts: Pots: (A, I, U)	200	NEIA			1
FILL OUT IF SITE MOVED, TOW IS SHORT, OR IN PARTS: Original Site: Why moved: (P, H, U) Original Strata: Gear Interaction: (PV, PE, RI) Attempts: Pots: (A, I, U)	QC CHECK FOR SALINITY SCALE CAL.		g STD. WT.	- 	
FILL OUT IF SITE MOVED, TOW IS SHORT, OR IN PARTS: Original Site: Why moved: (P, H, U) Original Strata: Gear Interaction: (PV, PE, RI) Attempts: Pots: (A, I, U)	QC CHECK FOR SALINITY SCALE CAL.		g STD. WT.		
Why moved: (P, H, U) Original Site: Gear Interaction: (PV, PE, RI) Attempts: Pots: (A, I, U)	QC CHECK FOR SALINITY SCALE CAL.		g STD. WT.		
Original Site: Why moved: (P, H, U) Original Strata: Gear Interaction: (PV, PE, RI) Attempts: Pots: (A, I, U)	QC CHECK FOR SALINITY SCALE CAL.		g STD. WT.		
Original Strata: Gear Interaction: (PV, PE, RI) Attempts: Pots: (A, I, U)	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt.	USING	g STD. WT.		
	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Image: Stan Stan Stan Stan Stan Stan Stan Stan	USING KIN PARTS:	g STD. WT.	Temp.:	oyed?:
Parts: (P#, I#)	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt.	USING K Cal. Fit Values P	g STD. WT.	Temp.: (P, H, U (PV, PE	byed?:
	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Sal. Stan. YSI Short, OF Original Site:	USING Cal. Fit Values P Cal. Fit Values P	cg STD. WT. ost-Cal. Wt.	Temp.: (P, H, L (PV, PE (A, I, U) (P#, T#) /) =, RI)
A: Active, I: Inactive, U: Unknown	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Sal. Stan. YSI Diff Pre-Cal. Wt. FILL OUT IF SITE MOVED, TOW IS SHORT, OF Original Site: Original Site: Original Site:	USING Cal. Fit Values P Cal. Fit Values P	g STD. WT. ost-Cal. Wt.	Temp.: (P, H, U (PV, PE (A, I, U) (P#, T# Rl: recently informed) /) =, RI)
ara H (volundeer) Ara H (volundeer) Ara H (volundeer) Ara H (volundeer) Ara H (volundeer)	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Sal. Stan. YSI Diff Pre-Cal. Wt. FILL OUT IF SITE MOVED, TOW IS SHORT, OF Original Site: Original Site: Original Site:	USING Cal. Fit Values P Cal. Fit Values P	g STD. WT. ost-Cal. Wt.	Temp.: (P, H, U (PV, PE (A, I, U) (P#, T# Rl: recently informed) /) =, RI)
ara H (volundeer) Ara H (volundeer) Ara H (volundeer) Ara H (volundeer) Ara H (volundeer)	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Sal. Stan. YSI Diff Pre-Cal. Wt. FILL OUT IF SITE MOVED, TOW IS SHORT, OF Original Site: Original Site: Original Site:	USING Cal. Fit Values P Cal. Fit Values P	g STD. WT. ost-Cal. Wt.	Temp.: (P, H, U (PV, PE (A, I, U) (P#, T# Rl: recently informed) /) =, RI)
Acque i wes, John, Eric, Martha A: Active, I: Inactive, U: Unknown P1, P2, etc. for pots; T1, T2, etc. for trawls	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Sal. Stan. YSI Diff Pre-Cal. Wt. FILL OUT IF SITE MOVED, TOW IS SHORT, OF Original Site: Original Site: Original Site:	USING Cal. Fit Values P Cal. Fit Values P	g STD. WT. ost-Cal. Wt.	Temp.: (P, H, U (PV, PE (A, I, U) (P#, T# Rl: recently informed) /) =, RI)
Acque, Wes, John, Eric, Martha I A: Active, I: Inactive, U: Unknown P1, P2, etc. for pots; T1, T2, etc, for trawls	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Sal. Stan. YSI Diff Pre-Cal. Wt. FILL OUT IF SITE MOVED, TOW IS SHORT, OF Original Site: Original Site: Original Site:	USING Cal. Fit Values P Cal. Fit Values P	g STD. WT. ost-Cal. Wt.	Temp.: (P, H, U (PV, PE (A, I, U) (P#, T# Rl: recently informed) /) =, RI)
bara H (volunteer) Pripots visible, PE: pots entangled, RI: recently informed A: Active, I: Inactive, U: Unknown P1, P2, etc. for pots; T1, T2, etc. for trawls	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Sal. Stan. YSI Diff Pre-Cal. Wt. FILL OUT IF SITE MOVED, TOW IS SHORT, OF Original Site:	USING Cal. Fit Values P Cal. Fit Values P	g STD. WT. ost-Cal. Wt.	Temp.: (P, H, U (PV, PE (A, I, U) (P#, T# Rl: recently informed) /) =, RI)
bara H (volunteer) Pripots visible, PE: pots entangled, RI: recently informed A: Active, I: Inactive, U: Unknown P1, P2, etc. for pots; T1, T2, etc. for trawls	QC CHECK FOR SALINITY SCALE CAL. Sal. Stan. YSI Diff Pre-Cal. Wt. Image: Stan Stan. YSI Image: Stan Stan Stan Stan Stan Stan Stan Stan	USING Cal. Fit Values P Cal. Fit Values P	g STD. WT. ost-Cal. Wt.	Temp.: (P, H, U (PV, PE (A, I, U) (P#, T# Rl: recently informed) /) =, RI)

1997

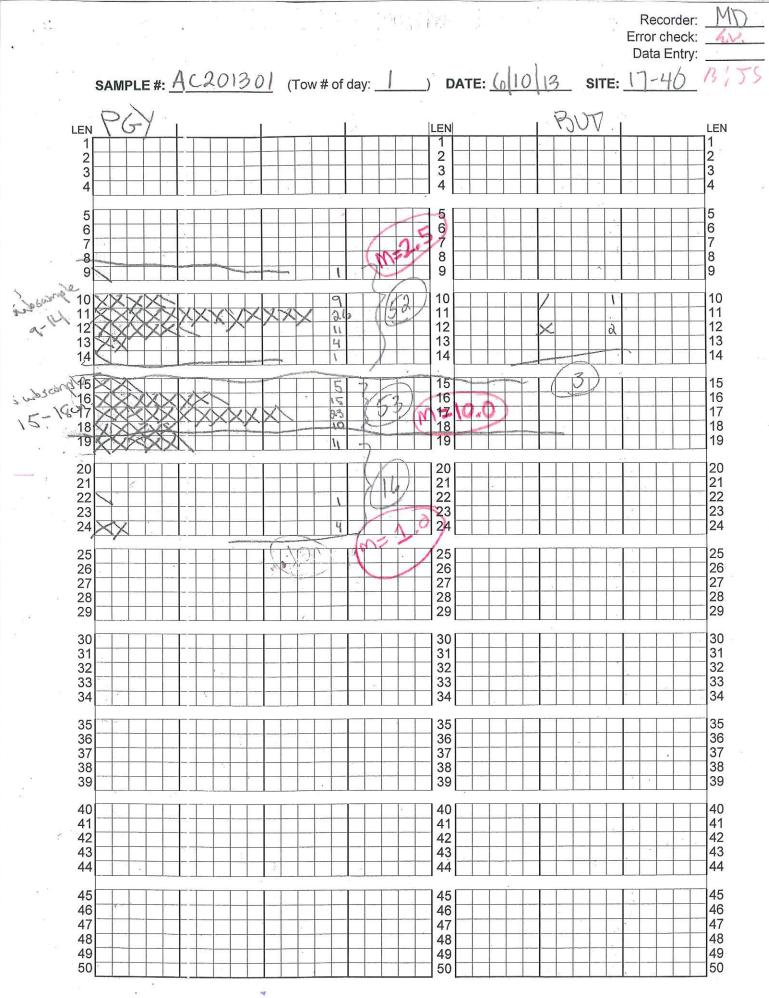
A

AMPLE #:	SPRING SURVEY-1 AC2013 01 (tow # of day: 1)	. 1		SITE #:_ 니기스	Data entry: $\frac{10}{10}$
pecies	# Counted / Meas / to Lab / Scales	Total		Weights	Total
KF	1 m	1	1,8		1.8
LF'	m=10.0		1	8	
GY 15-18)	198+180+99+ 53m_1+	676	18, [+]].	3+12,6+19;	7-0,1 61,16
1-14) FL	18+52m + 16m m=2.5		•		
ТВ				•	
/KF					
/FL	13m	13	3.6 .		3,6
LW		-			
SD					1993 - 1997 - 19
JT	3m	3	0,1	* * *	. 0.1.
SF		-		-	
SK	Jom	10	5,2	*	5.2
SR				د (۱۹۹۰ - ۲۰۰۰) مرکز میروند (۲۰۰۰ - ۲۰۰۰) (۲۰۰۰ - ۲۰۰۰) مرکز میروند (۲۰۰۰ - ۲۰۰۰) (۲۰۰۰ - ۲۰۰۰) (۲۰۰۰ - ۲۰۰۰)	
СК		•		ч.	
ED					
MD				•.	
PH					
SR					
HI					
PF					
SK		A - 1 - 4 - C - mark		e e e e e e e e e e e e e e e e e e e	
	•				
		-			

4.


•

and the


w

x

ample#: Ac2013_01	INVERTEBRATE / AL (tow # of day:		AND WEIGHTS DATE: <u>(10)13</u>	Data entry:
·	COUNT	TOT CNT	WEIGHT	TOT WI
		TOTON		n af it sources teamers and consider digage a second to a consequence of a second constant of the second of the
ALGAE, MIXED (ALG)	no count		0.7	017
KELP (KLP)	no count	energia de la composición la del se de la composición la composición de la composición la composición de la composición la composición de la composición	014	0.6
ULVA (ULV)	no count		0.1	
3USHY BRYOZOA (BBI)	no count			
CRABS, ROCK (RCR)	no count			
BLUE (BCR)				
LADY (LCR)	no count			
F.C. HERMIT (HER)	no count		· .	
SPIDER (SPI)	no count		5.9	5.9
HORSESHOE (HOR)				
MUD (BMC)	no count		- -	
LION'S MANE (JEL)	and data provide and a second s	**************************************		ании на ставини и на ставини на конструкци на ставини на ставини на ставини на раз на ставини на ставини на ст -
OBSTER (LOB)	5m	5	1.2	1.2
		×.		
		· .		
MANTIS SHRIMP (MAN)		******		
N. MOON SHELL (NMS)	no count 🌆 🗆 🚺	5 6 1	i i i i i i i i i i i i i i i i i i i	
SQUID, LONG-FINNED ((3QI)	391+1+41m	433	22,3	22,
STARFISH (STF)	no count		2) กระหว่าง พระสาราวานหมือน และ เสรียน สาราวา สาราว สาราว และสาราวาน 	charleson Annan Bragaer And Ann Ar Suin an Inna Dharleshain Annaich ann Annaich
WHELK, CHANNEL (CHVV)				
KNOBBED (KN\V)		989-989-989-989-989-989-989-989-989-989		######################################
HSA	۵٬۱۹۳۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ماریک میرون می		8.8	8.8
(frith)	ana na ana ana ana ana ana ana ana ana	nana yang gan pangangka (nanadarin ngangka (nan labaran dalam kan	9 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	
	·	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -		
Sector back to be a back of the sector of		And D. 1997 D. 29-19-19-19-19-19-19-19-19-19-19-19-19-19		
う D'LAB, COMMENTS:		·		· · · · · · · · · · · · · · · · · · ·
	ч у .			

🖌 . 1946 (s.

Recorder: <u>Mach</u> Lab check: ____ Data entry: ____

LISTS Lobster Measurement Data Sheet

Samp	ole: AC	2013-	<u>001</u> Dat	· · · · · · · · ·		Site:	a s lass E		Data	entry
	asured: _	5. Deb		nted:	<i>k.</i> -	a .	5			
•.	V- notch	Sex	Length	Egg Be	earing	Shell Disease	Shell Condition	Cull S	Status	Con- dition
	V/R Females Only	Male / Female	(mm)	Color G B T	Comp 0 - 4	0 - 3	Hardness H N S R	Crusher P M B S	Pincher P M B S	Alive Dead
1	74	M-	72.7					B:		
2		F	58.8					5		
3		F	70.7		· · ·	1	N	1		to the state of the
4		M	67.4			2			$\mathcal{J}_{+}^{\delta} = \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	
5		M	169.7		-24 	C.S.				Harristaan Harristaan
6		and A day	and the second							
7			· · · · · · · · · · · · · · · · · · ·	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		n - Territer Name	an a		Distributed and a	ar Maria (1901) Maria
8	and the second		d'anti Protection.				1. 建立的 化化化化化化	W. 1998		
9 10	North Arristo	s Série de la desta de la de		(Page 1997)		Contraction of the	一般的人们就能够			
and the second second	Adalating y	and and and an		國語是現代的	And the first	al contracts de la	eri betakori akterio		lination and an	han Shapharta
1	641-2-126			Thomas Inst			an an a ferrar		1 - Carlos Tor	
3		<u>n Aligur, arthdoar</u> m		ta estado a la construcción de la c	india de la del	Banda santa Banda				general entertainte
4										
5		<u> </u>	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and the second		and a string starting	 Contracting and a second se Second second sec		appendent of second of	de stax e factor de
6			a a parte par							
7	and the second se		P	a construction of the provider states of					in the second	
8				1	and a second					
9				e e		- 10 - 1 ⁻¹	2 N			4 - ²
10					n an		en de la companya de			
¹ T			<	é	lines.				3	
2										
3	-		1			a	•		-	+2
4										
5		in the second	**************************************			The Process of Product Honorow			······································	and the second second
6					的复数				Salts a	
.7	1			ning an	at i	No APPROVEMENTS	and a start of the second			n en al catal
8						No philip		<u>i nikareni</u> k	的复数形式 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	的现在分词
9				an a the second second	enter altratat		in an	1945 (F. 61) (1993) 1945 (F. 61) (1993)		 CONTRACTORS
10							用1. A. 对 4. 44 44	17-13-14-14		Statistics Distance

- -

CONNECTICUT MARINE TRAWL SURVEY TOW INFO DATA AND PHYSICAL DATA

SAMPLE #: $ACA013 - 00.2$ Other Sample #: $ACa013 - 00.2$ (Tow # of Day): 2 DATE: $OCO1 = 01.2013$ SITE (strata): $18-40$ ($T1$)	TIME START DURATION (NAV. DATA:	(minutes):	PARTA 10:48 ~41/2 10:47:45	PART B <u>11:34</u> <u>25'/2</u> <u>30</u> <u>11:34:02</u> <u>11:59:21</u>
METER YSI M30 X CTDOTH LAT 410° 19 .65 LONG 72° 05 .10				STOP A 41. 18.57 72.05.25
DEPTH ft: 28,3 m: 8.62		START B		STOP B
@ 1m @ <u>08</u>	LA	T° NG°		° ·
TEMP (C) $1.5.9$ 1.4 SAL 18.3 3.0 240.82 3.0	<u>).</u>	EATHER CONDIT	IONS/QC COMME	NTS:
COND <u>24.90</u> <u>36</u> LENGTH OF WIRE 1501		T #		
QC CHECK FOR SALINITY SCALE CAL. U	ISING	kg STD. WT.		
Sal. Stan. YSI Diff Pre-Cal. Wt.	Cal. Fit Values	Post-Cal. Wt.	Temp. Log. Deple Temp.:	oyed?:
FILL OUT IF SITE MOVED, TOW IS SHORT, OR				4 ₁₀ 2 2 ¹
Original Site: V Original Strata: O Attempts: F	Why moved: Gear Interaction: Pots: Number of Pots: P: Pots, H: Hang PV: pots visible, A: Active, I: Inac	PE: pots entangled, tive, U: Unknown pots; T1, T2, etc, for		E, RI))) ¢)
COMMENTS:		they were ,	nore in c	hannel
Project o train	led de	se by	in that	before us.
LOST GPS date feed -	for Navl	ogfile ~	Ricenva	ted @ To: 49:4
	No bus	n lines		2 · · · 8
* Conch pots Stofe	·lind -	on both	doors & i	ineaccoss
also one about	lot. Do	A: Sli,	owed lines	off both door.

Einshed around codend & we had to cut !

.(

but them

H

Las iy al on net seel due to the end we tank it this had to move const.

late of Arma

el

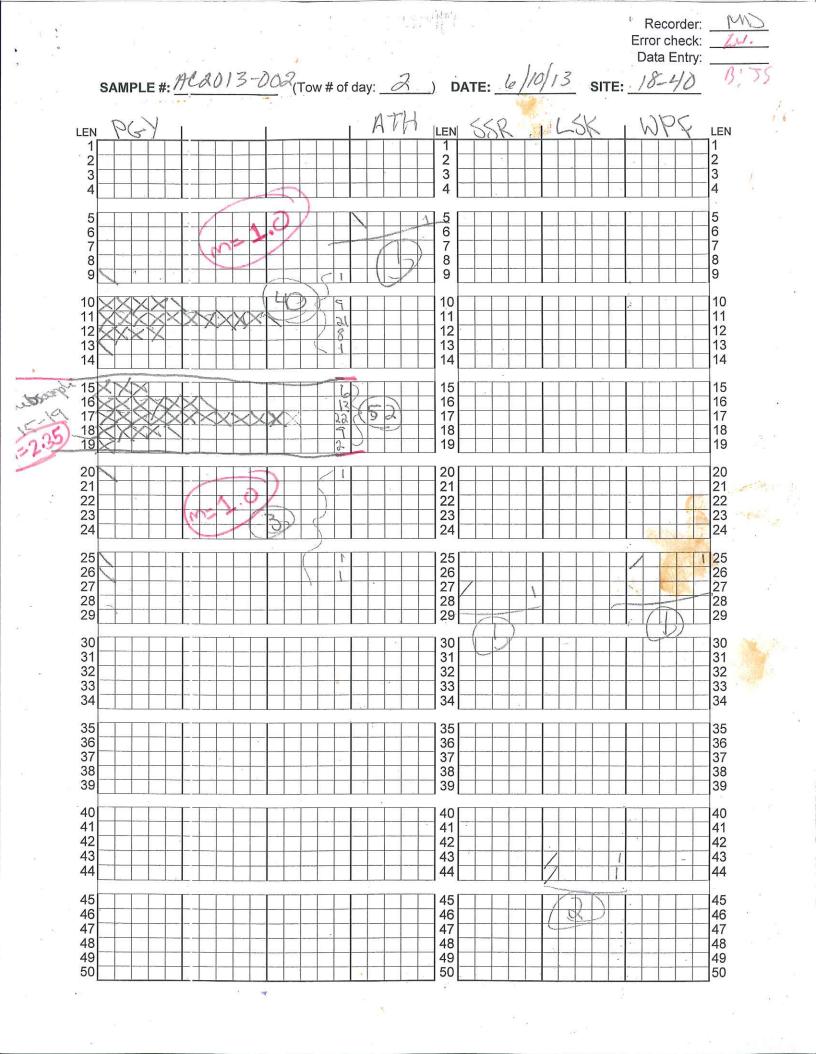
SH

22

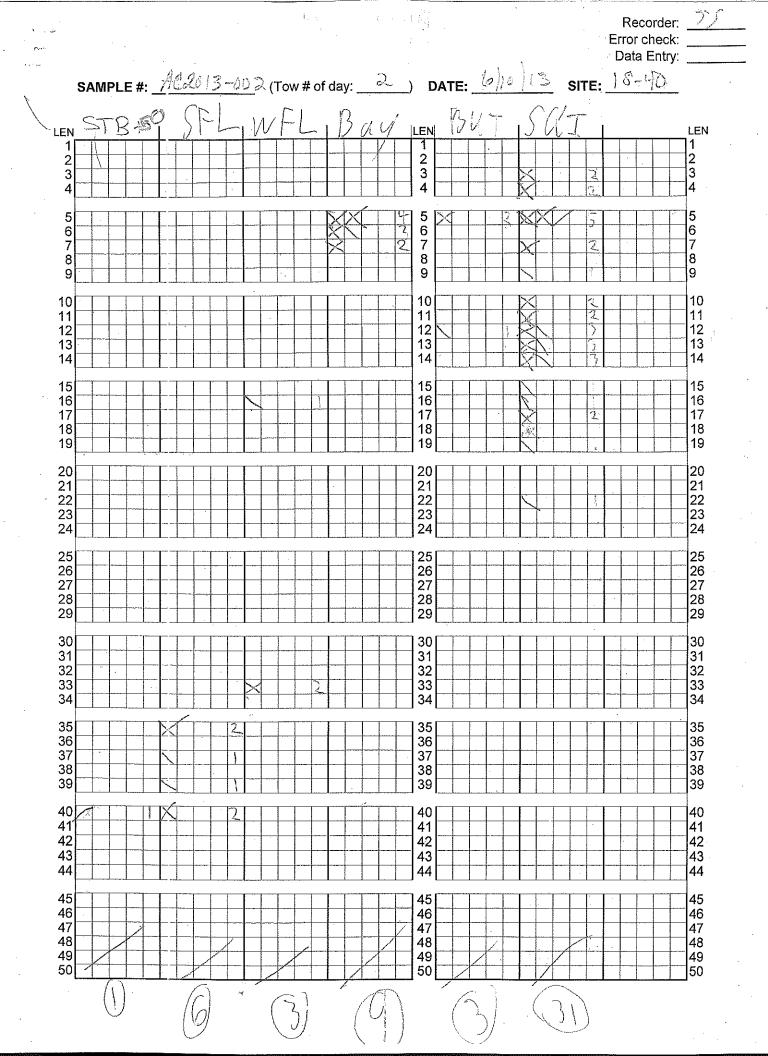
B

Initials: Recorder: ___ Lab Check: Data Entry: <u>4</u>

Recor	der:JB
Lab cho	eck:
Data er	itry:
site #: <u>18-40</u>	17:29


SPRING SURVEY-TOTAL COUNT / WEIGHT

SAMPLE #: AC2013-002 (tow # of day: 2) DATE: 6/10/13


ŝ

Species	# Counted / Meas / to Lab / Scales	Total	Weights	Total
BKF	×			
BLF	1F 10 CW			
PGY	$(70^{+}, 52^{-}) + 43^{-}$ all $(m=2.35)$	165	16-0	16-0
SFL	6	. 6	3.4	3.4
STB		1 .	8.1	8.7
WKF	n a statu a st	•	· · · ·	
WFL	. 3	3	1.4	1.4
ALW				
ASD			•	
BUT	3	3	0-1	0.1
FSF	· · · · · · · · · · · · · · · · · · ·			
LSK	2	2	1.3	1.3
NSR		17 - 13 18		
RCK				
RED				
SMD	. :	~		
SPH	·			
SSR			0.5	0.5
WHI				
WPF			0.4	0-4
WSK		-		
56	3	3	0.5	0.5
TH		<u> </u>	0.1	0.1
3A-1	. 9	9	0	0-1
O LAB / C	OMMENTS:		٩,	2

SAMPLE#: AC2013-602	INVERTEBRATE / ALG (tow # of day:	1. X	AND WEIGHTS DATE: <u>6/10/13</u>	Recorder: The Lab check: Z.V. Data entry: SITE#: <u>18-408</u>
SPECIES	COUNT	TOT CNT	WEIGHT	тот wт
ALGAE, MIXED (ALG)	no count		0.4+0.4	0.8
KELP (KLP)	no count		2.3	2.3
ULVA (ULV)	no count		0.2	0.2
BUSHY BRYOZOA (BBI)	no count			, g
CRABS, ROCK (RCR)	no count			,
BLUE (BCR)	8	8	1.2	1,4
LADY (LCR)	no count			×
F.C. HERMIT (HER)	no count			-
SPIDER (SPI)	no count		2.0	2.0
HORSESHOE (HOR)			· · ·	and the second
MUD (BMC)	no count			анын алын алын алын алын алын түүнө алын алын алын алын алын алын алын алын
LION'S MANE (JEL)	L)	4	0.2	0-2
LOBSTER (LOB)				<i></i>
	2	2	0.6	0-6
	a na sa	,		
MANTIS SHRIMP (MAN)	4.74			
N. MOON SHELL (NMS)	no count	A .		•
SQUID, LONG-FINNED (SQI)	116+31	147	6.0	6.0
STARFISH (STF)	no count			
WHELK, CHANNEL (CHW)				
KNOBBED (KN\V)				
CSL			0-1	0.1
HSA			1.0+1.8	7.2
งขาง ขางการของของของของของของของของของของเป็นของผู้สุดของมีสุดของของของของของของของของของของของของของข				
ναμή του ματροποιού του ματροποιού μου το του του του του του του του του το				2
			• •	
	INK ALG in	ch Gra	cilevin??)	
	18m 20-1 k	0		<u> </u>

SAMPLE #: AC2013-002	(Tow # of day:) DATE: /10/13 SITE;	Recorder: <u>Mb</u> , Error check: <u>4,0,</u> Data Entry:
LEN D5K		LEN
6 7 8 9		6 7 8 9
10 11 12 13 14	10 10 11 12 13 14	10 11 12 13 14
15 16 17 18 19	15 15 16 17 17 18 19 19	15 16 17 18 19
20 21 22 23 24	20 21 21 22 22 23 24 24	20 21 22 23 23 24
25 26 27 28 29	25 1 1 1 26 27 1 1 1 28 29 1 1 1	25 26 27 28 28 29
30 31 31 32 33 33 34 34	30 31 31 32 33 33 33 34	30 31 32 33 34
35	35 36 36 37 38 39	35 36 37 37 38 39
40 41 42 43 44	40 41 42 43 44 44	40 41 42 43 44
45 46 47 48 49 50	45 46 46 47 48 49 50 50	45 46 47 48 49 50

Recorder Lab check: Data entry:

LISTS Lobster Measurement Data Sheet

Sample: AC2013-002 Date: 61013 Site: 1478-40

Total:

Measured: (Jacque)

Counted: ______

	N-V- notch	Sex	Length	Egg B	earing	Shell Disease	Shell Condition	Cull S	Status	Con- dition
	V/R Females Only	Male / Female	(mm)	Color GBT	Comp 0 - 4	0 - 3	Hardness H N S R	Crusher P M B S	Pincher P M B S	Alive Dead
1	e.	y nu	70,3							
2		MAG	54.4							
3										
4			· · ·							
5					.† 1	l				•
6										
7						<u> </u>				<u> </u>
8										
9									:	
: 10										
1										
2										
3			·····		• <u>•</u> ••••					
4 ¹			ent sur e ar	n fa serie A a serie a series						
5								*.		T
6								1		
7										
8					National An					
9	·									*
10									1	
1							er te de la companya			
2										
3		·		·				:		
4										
5	s. @@.		••••••••••••••••••••••••••••••••••••••							
6										
7	The state of the s	·····			n de la composición No composición de la c		a Mariana			
8			ing the second states in the							
9	- 19 g.		Nj	e terreta de la						
10										

Initials: Recorder: Lab Check: Data Entry: A SH B JJ

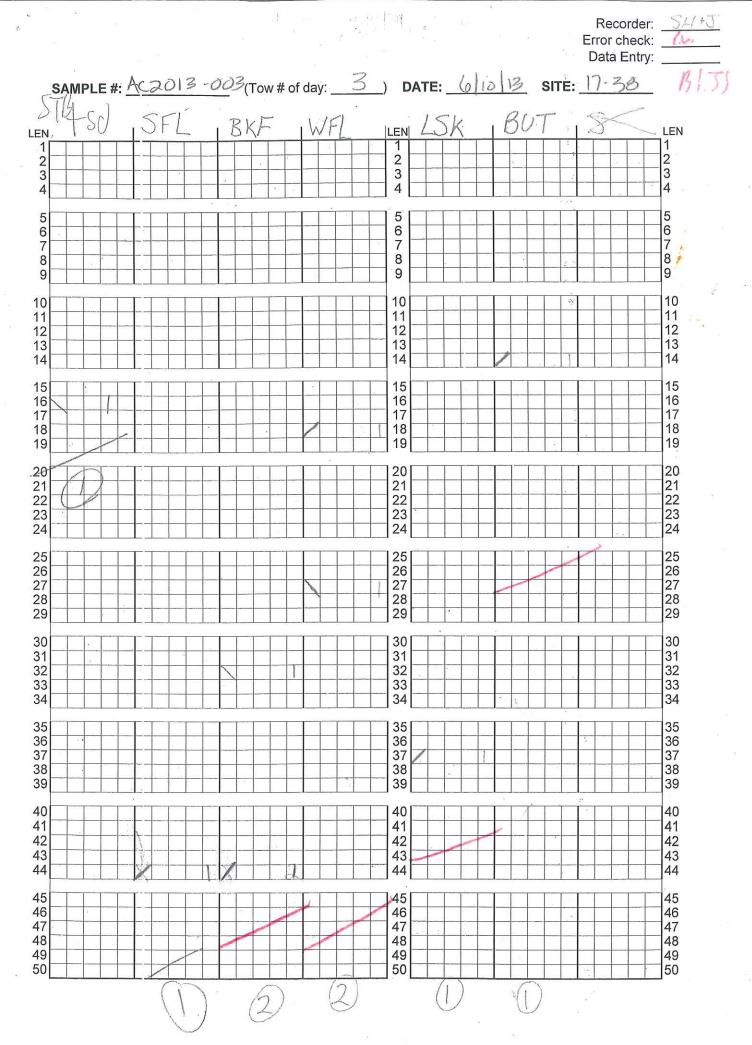
CONNECTICUT MARINE TRAWL SURVEY TOW INFO DATA AND PHYSICAL DATA

SAMPLE #: $H = 20/3 - 003$ Other Sample #: $A = 20/3 - 003$	TIME ST	ART (military):	PART A	PART B
(Tow # of Day):		DN (minutes):	30	-
DATE: 0611012013				-
SITE (strata): 17-38 (72)	NAV. DA	TA: START STOP	13:28:29	
METER YSI M30 / CTD OTHE	R	START	4	STOP A
LAT 41. 17.11	а - с	LAT 41_0	7_21_LAT	^
LONG 12.09.04	~ .	LONG 72.0	9.40 LONG	·
DEPTH ft: 38.4 m: 11.7		START	3	STOP B
		LAT <u>4</u> L°	17.39 LAT	• ·
@ 1m @ <u> </u> .	_	LONG 12.1	1 10 LONG	°:
темр (с) 152 14	2	WEATHER COND	ITIONS/QC COMME	=NTS:
SAL <u>27.7</u> 30.	Ò.			
COND 34 26 36	<u>63</u>	OVercast <1'chop 2	10 Kts E	
LENGTH OF WIRE 200		NET #	•	
QC CHECK FOR SALINITY SCALE CAL. US		kg STD. WT.		
Sal. Stan. YSI Diff Pre-Cal. Wt.	Cal. Fit Valu	es Post-Cal. Wt.	Temp. Log. Dep Temp.:	loyed?:
	19	22.68		1
	1			
FILL OUT IF SITE MOVED, TOW IS SHORT, OR IN				
Original Strata: Ge	hy moved: ear Interactio	on: <u>'</u> ₽√		PE, RI)
	ots: umber of Pot	s:	(A, I, U (P#, T	
CREW: (list if first tow of day):	PV: pots vis A: Active, I:	Hangs, U: Unknown sible, PE: pots entangle Inactive, U: Unknown for pots; T1, T2, etc, f	ed, RI: recently informe	
COMMENTS: Pots visible along	our to		rad to tori) a tad South
	9 - 3 9			2 ¹⁷⁶
<u> </u>	<u></u>	in in the second s	<u>}</u>	and a second sec
* *	· ,		191 2	
			2	

11 ²⁰	Recorder: Lab check: Data entry:	flet
SITE #:_	17-38	875

SPRING SURVEY-TOTAL COUNT / WEIGHT

SAMPLE #:_	AC2013-003	3 (tow # of day: 3 DA	1

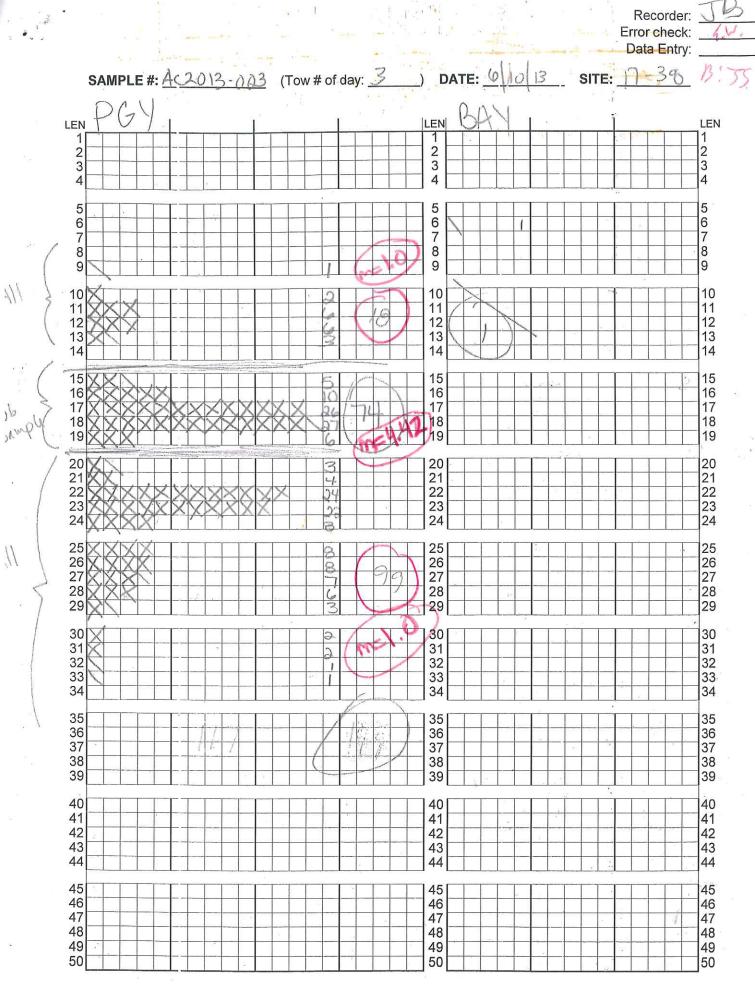

ATE: 6 10 13

Species	# Counted / Meas / to Lab / Scales	Total	Weights	Total
BKF	2m	2	2.4	2.4
BLF	(m=4.42)			
PGY 15-19)	F16+78+1+48+26+24+74m]+	444	14,1+14,4+12,5+15,5+ 8,9+11,0	76.4
SFL	lm		0,9.	0,9
STB	Im	1	3,2	3,2
WKF				
WFL	dm	2	0.4	10.4
ALW				
ASD				
BUT	lm i		0.]	0.1
FSF				
LSK	Im		0,4	0.4
NSR		•		
RCK			.*	and the second
RED	· · · · · · · · · · · · · · · · · · ·		×	
SMD				-
SPH			·	
SSR				
WHI				
WPF			· · ·	
WSK)		0.1
3A4	(m	 	6.1	Orl
				-
			1	
O LAB / (COMMENTS:	and the second		
	*		· ·	ŝ

AMPLE#: <u>AC2013-003</u>	INVERTEBRATE / ALGA		AND WEIGHTS	_ab check: ` Data entry: E#: _\] - 3& ß!
SPECIES	COUNT	TOT CNT	WEIGHT	TOT WT
ALGAE, MIXED (ALG)	no count	automent	0,2+0,3+2.4	2.9
KELP (KLP)	no count	P	3,5+3,3+0,2	7,0
ULVA (ULV)	no count		6.7	0.7
BUSHY BRYOZOA (BBI)	no count			
CRABS, ROCK (RCR)	no count		0.1	0.)
BLUE (BCR)				
LADY (LCR)	no count			-
F.C. HERMIT (HER)	no count		3	
SPIDER (SPI)	no count		2.1+1.3	3.4
HORSESHOE (HOR)				× I
MUD (BMC)	no count	N. Charles		S
LION'S MANE (JEL)				
LOBSTER (LOB)				,
MANTIS SHRIMP (MAN)				
N. MOON SHELL (NMS)	no count	X		
SQUID, LONG-FINNED (SQI)	60+70m=1.80	130	4,9	. 4.9.
STARFISH (STF)	no count	1 Hopage		
WHELK, CHANNEL (CHW)				
KNOBBED (KN\V)				
(Everth) HSA.			14.0 +1.0 +6.5+2.4	23.9
BOR			1.5	1,5
Sg. E66			0.1	. 0.1
O LAB, COMMENTS:	Took pics	& sam	ples	19 ¹⁰ .

.

and the second



1 -

j

·				Data En	try:
sample #: <u>AC2</u>	<u>013 - 00</u> 3 (Tow # of da	ау: <u>3</u>) ДАТ	е: <u>6/10/13</u>	SITE: 17-3	<u>8 07</u>
SOT	· · · ·	li esti	Ş ^a	F	
					LEN 1
2 2 2		2 3			2
4 XXXXXX					4
		5 6			5
		7 8			7
					9
		10			10
	<u> </u>	12			12
		13			13
		15			15
		16			16
		18			18
					20
		21			21 22 23
		23			23
					25
		26			26 27
		28			28
		31			30 31 32 33
		32			32
	861	34		Ļ	34
		35 36			35 36
		37 38			36 37 38
		39			39
		40 41			40
		42 43			41 42 43
		44			44
		45 46			45
		47 48			46
		49			48
		50			50
(90)					
Law State			3 7		

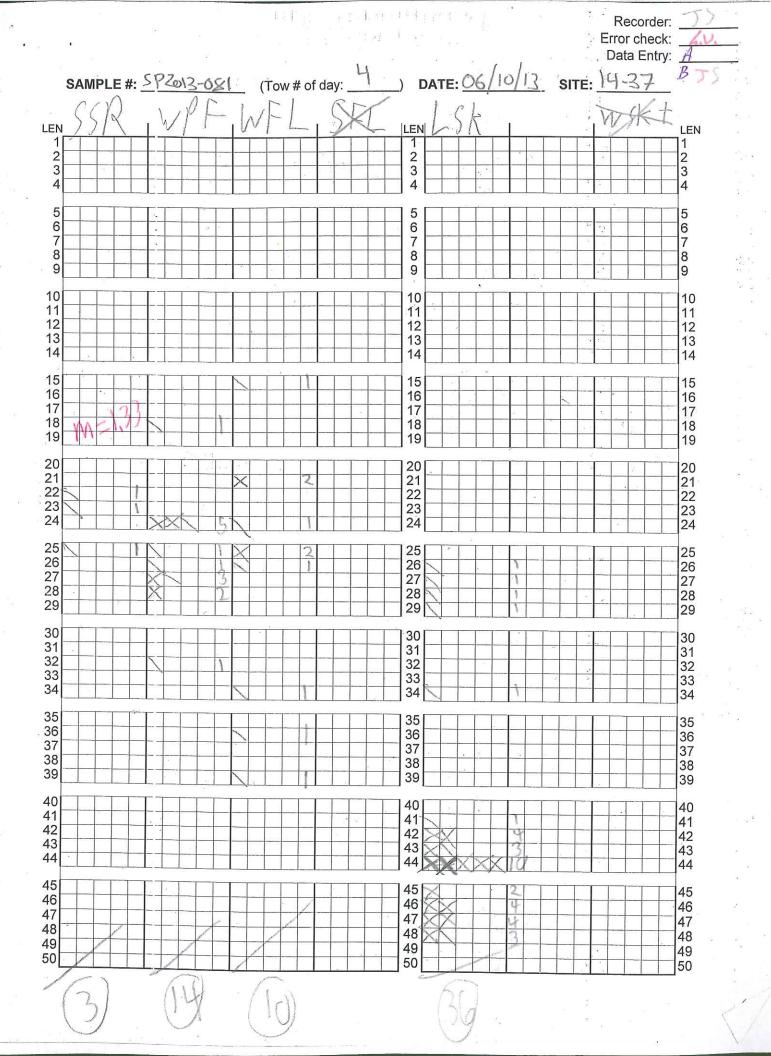
Recorder: Said Error check: <u>AU</u> Data Entry: _____

de

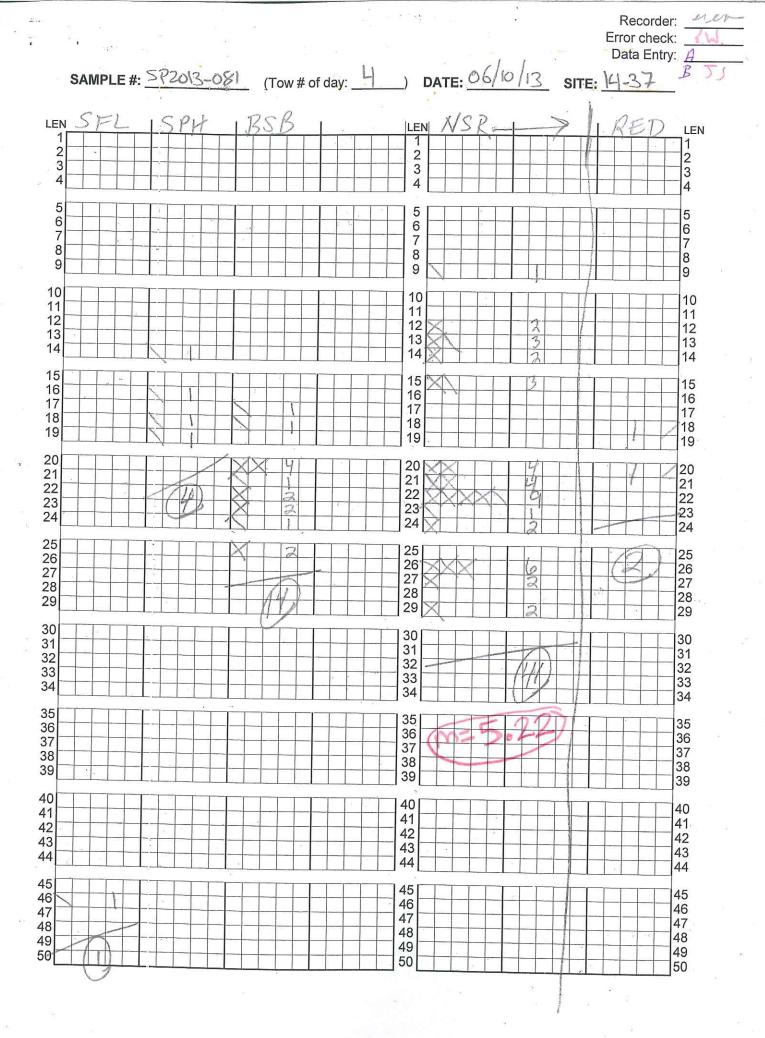
[]

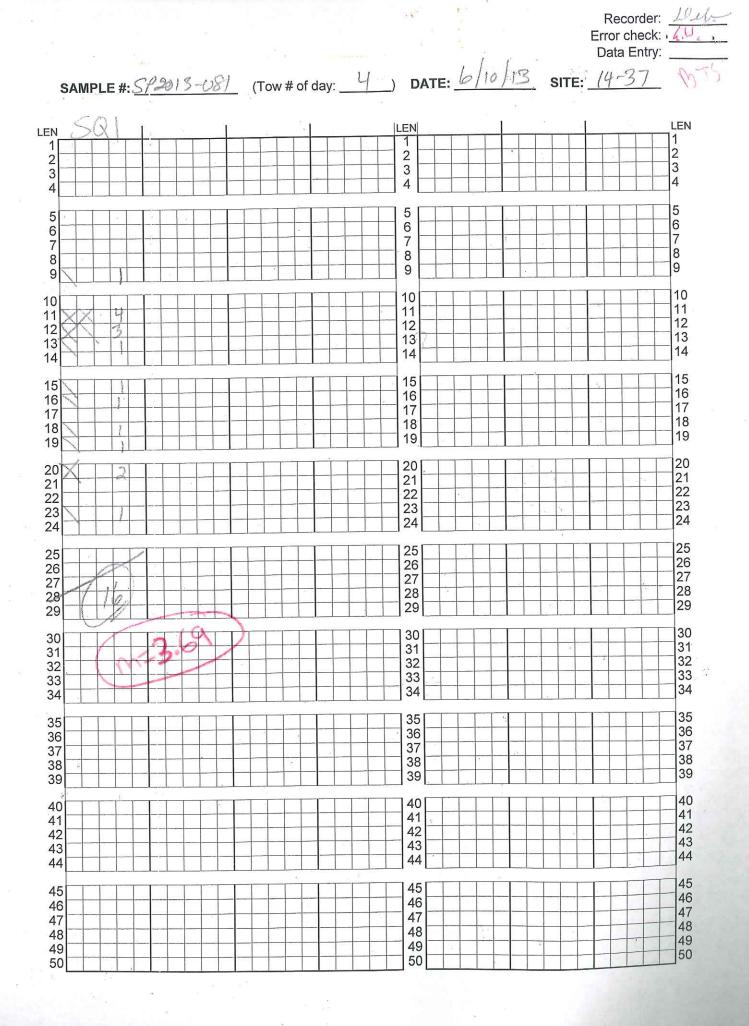
2.0 Initials: Recorder: Lab Check: Data Entry: CONNECTICUT MARINE TRAWL SURVEY TA AND PHYSICAL DATA SP2013-81 PART A PART B 開:37 TIME START (military): 20 **DURATION** (minutes): DATE: 0.6/10/2013 14:37:03 NAV. DATA: START SITE (strata): 14-37 (T4 STOP 15:07:05

	METER YSI M30 CTD OTHER		START A STOP A
	LAT <u>41.14</u> .70	-	LAT <u>41.14.64</u> LAT
11 N 11	LONG 72.12 74	e.	LONG 72.13.26 LONG
	DEPTH # 123.4 m: 37.6		START B STOP B
		.50	LAT 41.14 31 LAT
1.00	@ 1m @ <u>37</u> . <u>1</u> m		LONG 72.14.74 LONG
	темр (с) <u>19.6</u> <u>13.9</u>	14 12	
	SAL <u>29.7</u> <u>30.6</u>	2	WEATHER CONDITIONS/QC COMMENTS:
	COND <u>36.73</u> <u>37.05</u>		
	LENGTH OF WIRE 650 \$4.		NET#
	QC CHECK FOR SALINITY SCALE CAL. USING	-	kg STD. WT.
	Sal. Stan. VSI Diff Pre-Cal. Wt. Cal. Fit V	/alu	ues Post-Cal. Wt. Temp. Log. Deployed?:


(Tow # of Day): 4

Temp. 22.68 " 26.9


FILL OUT IF SITE MOVED, TOW IS SHORT, OR IN PARTS: Original Site: Why moved: (P, H, U) Original Strata: Gear Interaction: (PV, PE, RI) Attempts: (A; I, U) Pots: (P#, T#) Parts: 1.4 Number of Pots: CREW: (list if first tow of day): P: Pots, H: Hangs, U: Unknown PV: pots visible, PE: pots entangled, RI: recently informed A: Active, I: Inactive, U: Unknown P1, P2, etc. for pots; T1, T2, etc, for trawls COMMENTS:


Species	# Counted / Meas / to Lab / Scales	Total	Weights	Total
BKF				•
	5-2000)	· · · · · · · · · · · · · · · · · · ·		
PGY	(m=3.11) 13sc	- 292	14.5+18-4	32.9
SFL	1	.	0.8	0.8
STB	an a	· · · · · · · · · · · · · · · · · · ·	a y ga tilban en synteen opsken op i Art Akaler ande og y sen efters det skreadersken ek en sen et sen forste s	
WKF	•			
WFL	. 16	16	3.7.	3-2
ALW				
ASD				
BUT		W 1977 - Ar W Sand Juda in 1997 - Arringen av 1997	and a super contract of the second	
FSF	11.		1.8	1.8
LSK	36 (m=5.22)	36/	19.7	19.7
NSR (15° + 108° + 41m	214	10.7+4.5-0.650	15.8
RCK	n en			
RED	2	2	0.1	0-1
SMD	· (6	16.8	16.8
	1+3m (m=1.33)	1	0.2 0.4 + 0.2 ert (6.10) ()	0.2
SSR	1+3" (M=1,33)	4	0-4 + 0.2 est (for 10) (T)	06
	14	10		0.7
NPF NSK	.10	1.1.1	3.0	3.0
DD		10		220
1	· · · · · · · · · · · · · · · · · · ·	14	and the second	?3,9
5.6	17	17	2.0	2.0
	аналана и прода и продавления и продавления и прода страйна проток сама и сама страналана и сама страе со област С			
	MMENTS: 19 PGY Scales 4.4		rest wt from NMFS-NI	

SPECIES	COUNT	TOT CNT	WEIGHT		TOT WT
ALGAE, MIXED (ALG)	no count			4	ŕ
KELP (KLP)	no count		0.3		0.3
ULVA (ULV)	no count		03		0:3
BUSHY BRYOZOA (BBI)	no count				z 7
CRABS, ROCK (RCR)	no count		O.I.		0.1
BLUE (BCR)		_			
LADY (LCR)	no count				
F,C. HERMIT (HER)	no count		0.1		0.)
SPIDER (SPI)	no count		0.7		0.7
HORSESHOE (HOR)					
MUD (BMC)	no count			n a de la secta de la seconda da se de la deservación de la deservación de la de la defensación de la defensaci	
-ION'S MANE (JEL)					
-OBSTER (LOB)					
		¥ ¹¹		2 4 2 2	* 1
		2			14.

MANTIS SHRIMP (MAN)					5
N. MOON SHELL (NMS)	no count 43°+	59	112	•	- L1 *
		154	4.3		4.3
	no count				-
WHELK, CHANNEL (CHW)				•	
KNOBBED (KN\V)			En	5.2	5 0
·IFA			2.0		5.0
2.					
·					-
Phanoneseumeneneseumeneneseumeneneseumenen.					

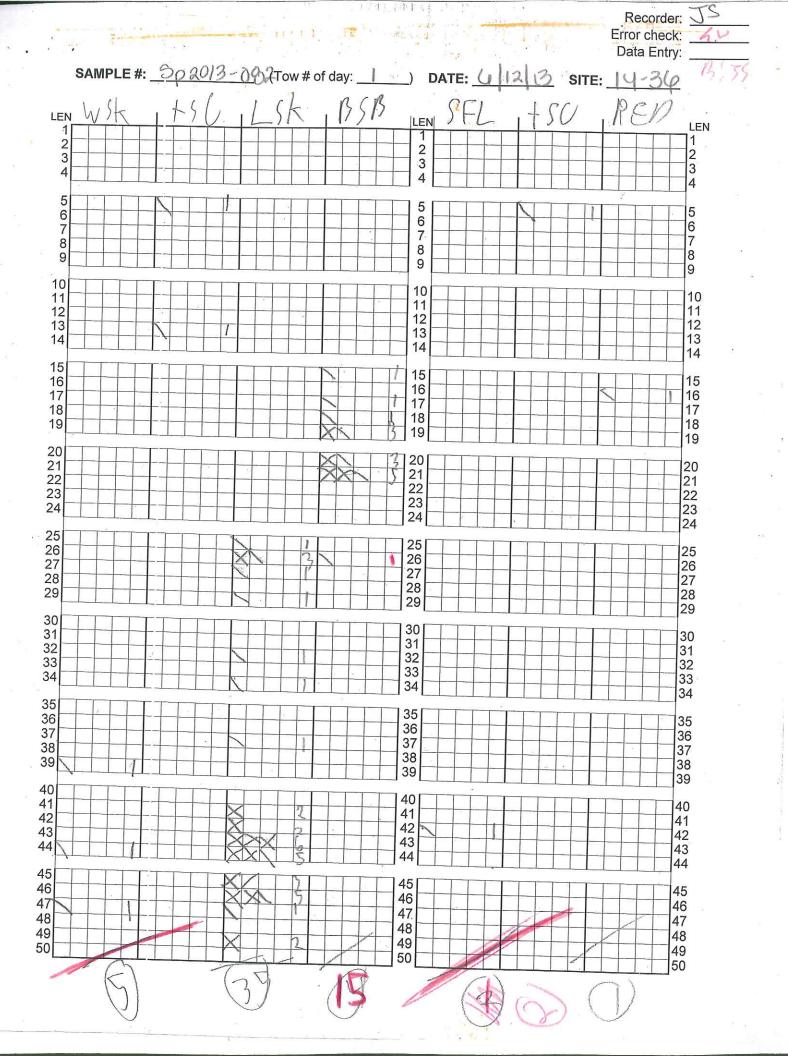
SA	MPLE	#:	SP2	20	12	5-(8	١	۲)	Гом	v #	of	da	y: _		1)A ⁻	TE:	C	6	10		3		SIT	E:	Er E	Re ror Data	cor ch a E	rder eck ntry		TS 4.4.
	14	+			ĵ F			1		67	Y	/			-	•		LEN 1 2											-					LEN 1 2
2 3 4		_		1									3	_	1			3 4										1	_		z			3 4
5 6 7 8 9			· · · · · · · · · · ·							2								5 6 7 8 9										1		-		•		5 6 7 8 9
10 11 12 13 14								XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXX		X	X	X	X	X	X	10 11 12 13 14		12/2012	5	K	B	7		-				-			7	10 11 12 13 14
15 16 17 18 19		1							XXXXXX		XXX		XXX			X	X	15 16 17 18 19	-		5220	2		5	5,9		1	1		6	0115	0		15 16 17 18 19
20 21 22 23 24		2					t 2											20 21 22 23 24		1	3			AV I		Î)) 					20 21 22 23 24
25 26 27 28 29					•		N 14 10											25 26 27 28 29		8)(<u>.</u>	0	D								25 26 27 28 29
30 31 32 33 34		•												4,7				30 31 32 33 34	2				4											30 31 32 33 34
35 36 37 38 39																		35 36 37 38 39]					35 36 37 38 39
40 41 42 43 44							14											40 41 42 43 44																40 41 42 43 44
45 46 47 48 49							/					·						45 46 47 48 48		2														45 46 47 48
50	10		Ţ.	1	- 4 - 4		4											50						<u> </u>		L.								49 50

SPP: <u>SPD</u>		WL SURVEY UREMENT SHEET	Recorder: Error Check: <u>A</u> Data Entry: <u>A</u>
SAMPLE #: <u>SP 2013-08</u> 1	(Tow # of day:) DATE: 6/10/13	SITE: 14-37 B TS
LEN LEN	LEN	LEN LEN	FEMALE
1 51 51	101	1 51 52	101
2 52 52 3 53 53	102	2 52 3 53	102
4 54	104	4 54	104
5 55	105	5 55	105
6 56 57 57 57 57 57 57 57 57 57 57 57 57 57	106	6 56 7 57	106
8 58	107	8 58	108
9 59	109	9 59	109
10 60	110	10 60	110
11 61 12 62	111	11 61 12 62	111
13 63	113	13 63	113
14 64	114	14 64	114
15 65	115	15 65	115
16 66 66 77 77 67 77 77 76 77 77 77 77 77	116	16 66 17 67	116
18 68	118	18 68	118
19 69	119	19 69	119
20 70 70	120	20 70	120
21 71 22 72	121	21 71 22 72	121
23 73 73	123	23 73	123
24 74	124	24 74	124
25 75 75	125	25 75	125
26 76 76 77 77 77 77 76 77	126	26 76 27 77	126
28 78	128	28 78	128
29 79 79	129	29 79	129
30 80	130	30 80	130
-31 81 32 82	131	31 81 32 82	131
33 83	133	33 83	133
34 84	134	34 84	134
35 85	135	35 85	135
36 86 37 87	136	36 ⁶ 86 37 87	136
38 88	138	38 88	138
39 89	139	39 89	139
40 90 41 91	140	40 90	140
41 91 92	141	41 91 42 92	141
43 93	143	43 93	143
44 94	144	44 94	144
45 95 46 96	145	45 95	145
46 96 47 97 97	146	46 96 47 97	146
48 98	148	48 . 98	148
49 99 50 100	149	49 99 50 100	149
50100	150	50 100	150

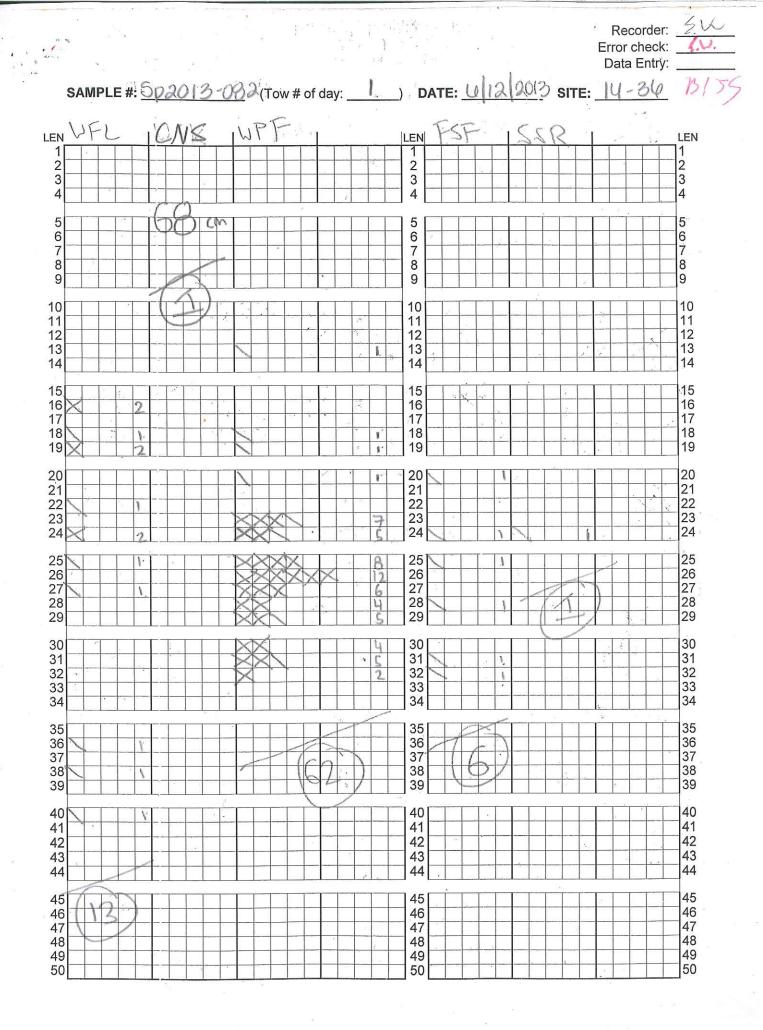
		· · · · · · · · · · · · · · · · · · ·	in the second second
SPP: <u>SMD</u>		RAWL SURVEY	Recorder: Error Check:
SFF.		ASUREMENT SHEET	Data Entry:
			
SAMPLE #: <u>රු</u>	· · · · · · · · · · · · · · · · · · ·) DATE: <u>6/10/13</u>	
	MALE		FEMALE
LEN LEN 1 51	LEN		
2 52		1 51 2 52	101
3 53	103	3 53	
4 54	104	4 54	104
5 55	105	5 55	105
6 56 7 57	106	6 56	106
8 57 58	107	7 57 8 58	107
9 59	109	9 59	
10 60	110	10 60	110
11 61	111	11 61	111
12 62	112	12 62	112
13 63 14 64	113	13 63 14 64	113
			114
15 65	115	15 65	
16 66	116	16 66	
17	117	17 67	117
18 68	118	18 68	118
19 69	119	19 69	119
20 70		20 70	
20 21 70 71		20 70 21 71	
22 72		22 72	
23 73	123	23 73	123
24 74	124	24 74	124
25 75 26 76	125	25 75 26 76	125
26 76 27 77	120	27 77 77	126
28 78		28 78	
29 79		29 79	
30 80	130	30 80	130
31 81 32 82	131	31 81	131
32 82 33 83	132	32 82 33 83	
34 84	134	34 84	133
35 85	135	35 .85	135
36 86	136	36 86	136
37 87	137	37 87	137
38 88 39 89	138	38 88 39 89	138
			139
40 90	140	40 90	
41 91	141	41 91	141
42 92	142	42 92	142
43 93	143	43 93	143
44 94	144	44 94	
45 95	145	45 95	145
46 96		46 96	
47 97	147	47 97	147 147
48 98	148	48 98	148 148
49 99	149	49 99	
50 100	150	50 100	
and the second			

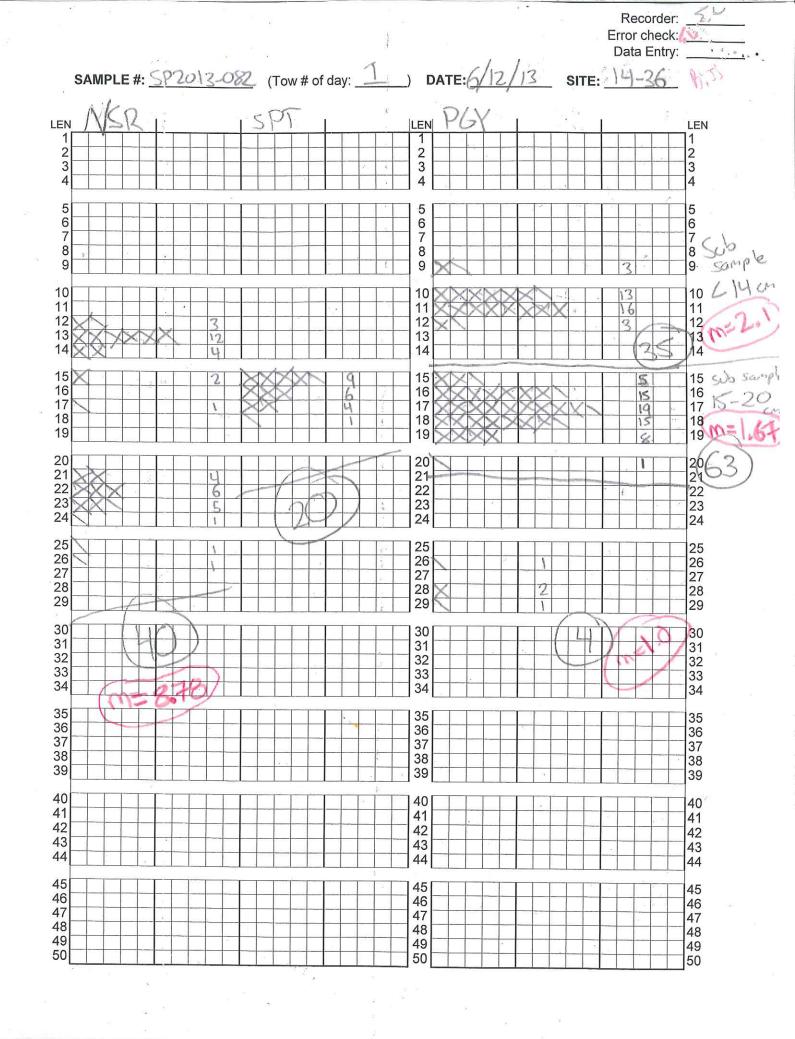
50013-081 L	LIS TRAWL SURVEY ARGE FISH MEASUREMENT SHEET	Recorder: Error Check: Data Entry: A
	of day:) DATE: _6/10/13	SITE: 14-37 BJS
SPECIES: W3 F 101 1 51 101 2 52 102 3 53 103 4 54 104	SPECIES: 1 51 2 52 3 53 4 54	101 102 103 104
5 55 / 105 6 56 / 106 7 57 107 8 58 108 9 59 109	5 55 6 56 7 57 8 58 9 59	105 106 107 108 109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 60 11 61 12 62 13 63 14 64	110 111 111 112 113 114
15 65 115 16 66 116 17 67 117 18 68 118 19 69 119	15 65 16 66 17 67 18 68 19 69	115 116 117 118 119
20 70 120 21 71 121 22 72 122 23 73 123 24 74 124	20 70 21 71 22 72 23 73 24 74	120 121 122 123 124
25 75 125 26 76 126 27 77 127 28 78 128 29 79 129	25 75 26 76 27 77 28 78 29 79	125 126 127 128 129
30 80 130 31 81 131 32 82 132 33 83 133 34 84 134	30 80 31 81 32 82 33 83 34 84	130 131 132 133 134
35 85 135 36 86 136 37 1 87 137 38 88 138 39 89 139	35 85 36 86 37 88 38 88 39 89	135 136 137 138 139
40 90 140 41 91 141 42 1 92 142 43 93 143 44 1 94 144	40 90 41 91 42 92 43 93 44 94	140 141 142 143 144
45 95 145 46 96 146 47 97 147 48 98 148 49 99 149 50 100 150	45 95 46 96 47 97 48 98 49 99 50 100	145 146 147 148 149 150

MARINE TRAWL SURVEY


Initials: Recorder: ______ Lab Check: _____ Data Entry: _____

B 55


SAMPLE #: $S_{P2013-082}$ Other Sample #: <u>AC2013005</u> (Tow # of Day): <u>1</u> DATE: $O(4_112_12013)$	TIME START (military):PART A O 7:3)PART B DURATION (minutes):
SITE (strata): 14-36 (T4)	NAV. DATA: START 07:31:10 STOP 05:01:13
METER YSI M30 CTDOTHE LAT 41° 14 80 LONG 72° 13 72° DEPTH ft: $116,5'$ m: $35.5'$ @ 1m @ $35.5'$ @ $35.5'$ TEMP (C) 14.7 14.7 14.7 SAL 260 $30.5'$ COND 31.13 $36.5'$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
LENGTH OF WIRE 600'	NET# C''
QC CHECK FOR SALINITY SCALE CAL. US Sal. Stan. YSI Diff Q(, 8)	SING kg STD. WT. Cal. Fit Values Post-Cal. Wt. Temp. Log. Deployed?: この目的 この目的 Temp.:
Original Strata: G Attempts: Po	N PARTS: /hy moved: (P, H, U) ear Interaction: (PV, PE, RI) ots: (A, I, U) umber of Pots: (P#, T#) P: Pots, H: Hangs, U: Unknown (P#, T#) PV: pots visible, PE: pots entangled, RI: recently informed A: Active, I: Inactive, U: Unknown P1, P2, etc. for pots; T1, T2, etc, for trawls
COMMENTS:	


Species	# Counted / Meas / to Lab / Scales	Total	Weights	Total
BKF				v.
BLF	15 m=2. 15-20 (m=1.69)			
PGY	(44++57+35M)(46+65+63M)	209	20.5	20.5
SFL	1sc+2m	3	5.9	5.9
STB				
WKF				
WFL	13	13	3.7	3.7
ALW				
ASD			•	
BUT	· · · · · · · · · · · · · · · · · · ·			
FSF	6	6	0.9	0.9
LSK	35 02218	35	16.8	16,8
NSR	257 + 54 ° + 40m - 8.10	351	12.4+13.9	26.3
RCK				
RED			0.1	0.1
SMD	16	14	19.7+20.2+9,6	49.5
SPH	14	14	0.4	0.6
SSR	1		0.3	03
WHI	9	9	0.7	0.7
WPF	62	62	12.7	12.
WSK	5	5	5.1	5-1
SPD	5.	5	21.4	21-4
CNS		1	1.9	1.9
,53	14 15 m	1415	2.4	2.4
PT	20	20	1.4	1.4

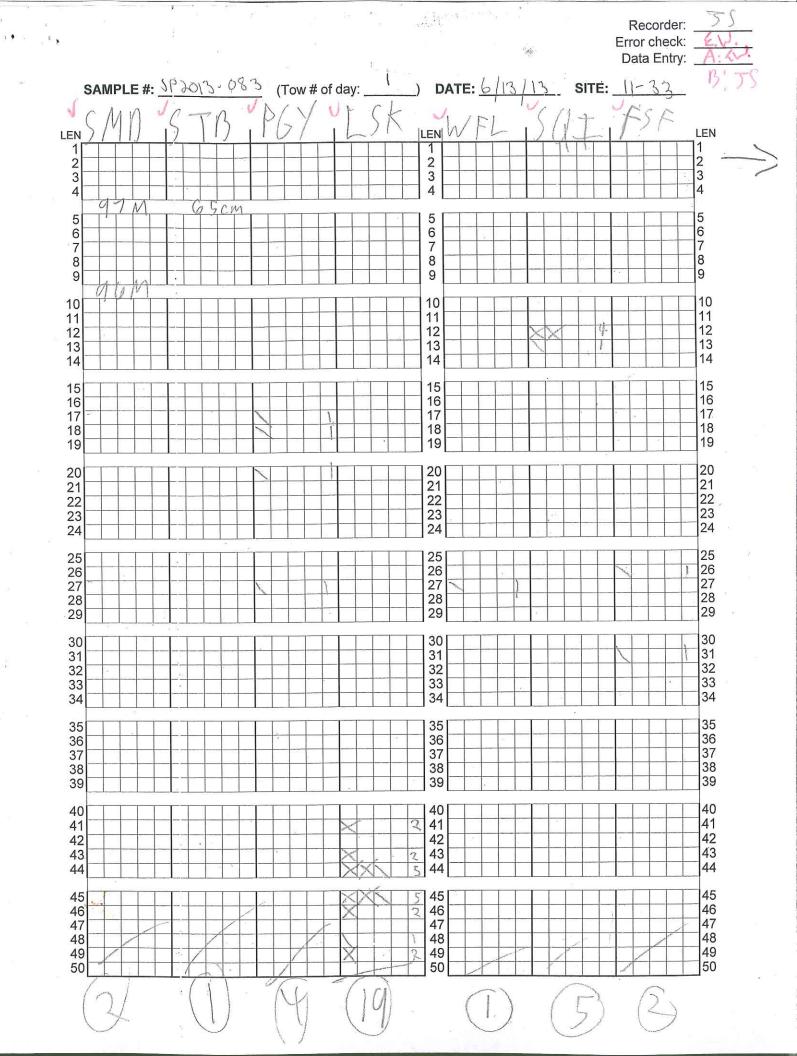
	INVERTEBRATE / AL	GAE COUNTS	AND WEIGHTS	Recorder: <u>1</u> Lab check: Data entry:
SAMPLE#: <u>Sp2013-082</u>	(tow # of day)		DATE: (1) 12/2013	SITE#: 14-348
SPECIES	COUNT	TOT CNT	WEIGHT	τοτ ωτ
ALGAE, MIXED (ALG)	no count		0.2	0.2
KELP (KLP)	no count		0,1	0.1
ULVA (ULV)	no count		(),]	0-1
BUSHY BRYOZOA (BBI)	no count			
CRABS, ROCK (RCR)	no count			
BLUE (BCR)				
LADY (LCR)	no count			ריין בעיני איז איז איז איז איז איז איז איז איז אי
F.C. HERMIT (HER)	no count			0.2
SPIDER (SPI)	no count		V:A	
HORSESHOE (HOR)				
MUD (BMC)	no count		می این این این این این این این این این ای	
I-ION'S MANE (JEL)			nandelingen gester versten som en	Numer of Vision Development (Stationary Stationary S
-OBSTER (LOB)	1999-1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1		************************************ ****	
				. 1
MANTIS SHRIMP (MAN)		987.941 (Sec. 1999) (Sec. 1999) (Sec. 1994) (Sec. 1994	-	
N. MOON SHELL (NMS)	no count		nayaa maa haany saliga ahay yaala too ahaa kaya kaala maasa kaala maasa kaa ahaa ahaa ahaa kaa ahaa kaana kaana	
3QUID, LONG-FINNED (3QI)	78	10	U Q	
STARFISH (STF)	no count	16	4.8	4.8
WHELK, CHANNEL (CH\V)				AN APPARTURE AND
KNOBBED (KNVV)				
MSE	Tour and participation of the same	-		
1 to State	and a second		0.1	0.1
			1.2	1.2
99 U 1999 No. 1999 No. 1999 No. 1997 No. 19		2		
	₩₩₽₽₽₩₩₩₩₽₽₽₩₩₩₩₽₽₩₩₽₩₩₩ ₩ ₽₩₩₩₽₩₩₽₩₩₩₽₩		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
LAB, COMMENTS:	-			the second se

	Recorder: Error check:
SAMPLE #: 572013-082 (Tow # of day: 1) DATE: 6/12/2013	SITE: 14-36 HA
IEN SPH WHI SQI LEN	LEN
5 6 7 8	5 6 7 8 9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 13 14
15 <u>15</u> 15 16 17	15 16 17
17 18 19	18
20 20 20 20 21 2 2 21 22 1 22 23 23 24 24 24	20 21 22 23 23 24
	25 26 27
27 27 27 28 28 29 28 29 29 29 29 29 29 29 29 20 20	28
30 30 30 31 31 31 32 32 32	30 31 32 33
34 34 34	35
36 36 36 37 38 38	36 37 38 39
39 40 40 40 41 41 41	40
41 42 42 42 43 44 43 44	42 43 44
45 45 45 46 46 47 46 47	45 46 47 48
48 48 48 49 49 49 50 50 50	48 49 50
(y. (9)	

		$= \frac{1}{2} \int_{-\infty}^{\infty} dx$	Recorder: E.W.
SPP: SMD	LIS TRA	WL SURVEY	Recorder: <u>Error Check:</u> Data Entry: <u>A.V.</u>
SAMPLE #: <u>Sp2013-08</u> (Tow # of day: MALE		UREMENT SHEET	Data Entry:
SAMPLE #: Sp20	013-08°(Tow # of day: 1) DATE: (1213 SITE	14-36 R! JS
	MALE	FEM	IALE
LEN LEN		LEN	LEN
1 51 2 52		1 51 51 52	101
3 53	102 102	3 53	103
4 54	104	4 54	104
5 55	105	5 55 6 56	105
7 57	107	7 57	107
8 58	108	8 58	108
9 59	109	9 59	109
10 60		10 60	110
11 61		11 61	
12 62	1 112	12 62	112
13 63	113	13 63	113
14 64	114	14 64	114
15 65	115	15 65	115
16 66	116	16 66	1 116
17 67	117	17 67	117
18 68 19 69	118	18 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69	118
	119		
20 70 21 71	120	20 70	120
21 71	121	21 71	121
22 72 23 73	122	22 72 23 73	122
24 74 74		24 74 74	123
25 75 26 76	125	25 75	125
26 76 27 77	126	26 76 76 77 77 77 77 76 77	126
28 78	127	28 78	127
29 79	129	29 79	129
30 80			
30 80 31 81	130	30 80 31 81	130
32 82	132	32 82	132
33 83	133	33 83	133
34 84	134	34 84	134
35 85	135	35 85	135
36 86	136	36 86	136
37 87	137	37 87	137
38 88 39 89	138	38 88 39 89	138
09	139	39 89	139
40 90	140	40 90	140
41 91	141	41 91	141
42 92 43 93	142	42 43 93	142
44 94		44 93 94	143
45 95	145	45 95	145
46 96 47 97	146 147	46 47 47 47 47 47	146
48 98	147	48 98	147
49 99	149	49 99	149
50 100	150	50 100	150
	5		*

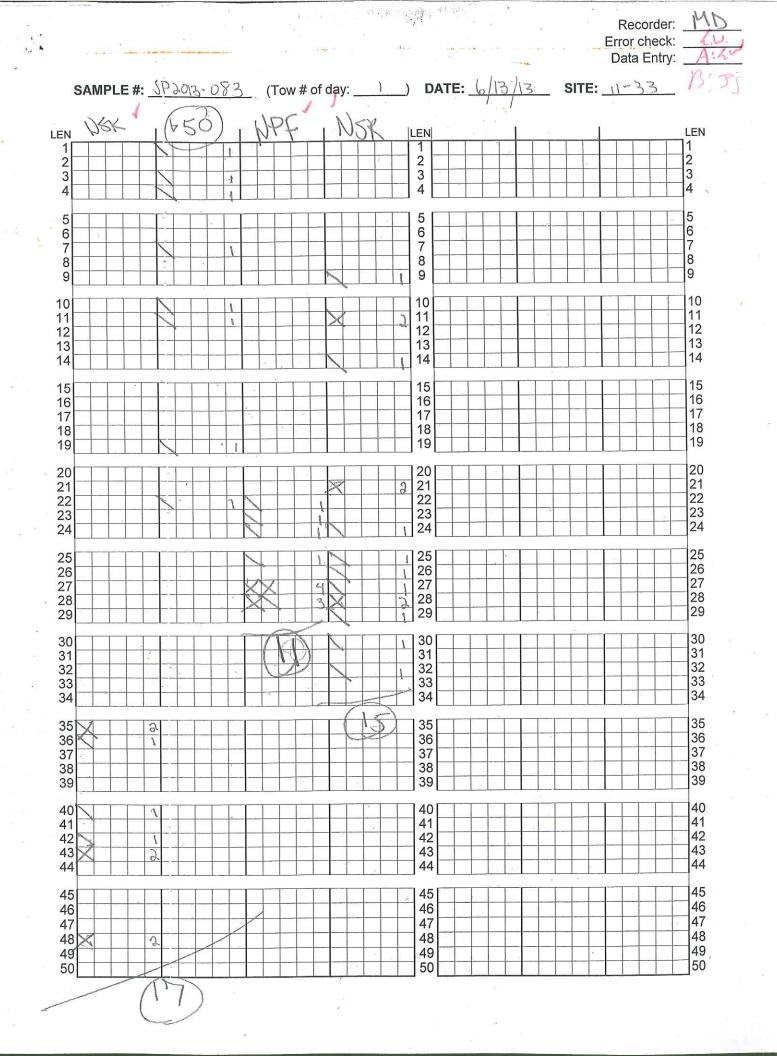
SPP: PD: LIS TRANL SURVEY Recording to the construction of the constru				27-26 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
SAMPLE #: 2020 DATE: 6020 SITE: 10-36 MALE FEMALE EN Len		SPD. SPI		WI CUDVEY	Recorder: 2.W
SAMPLE #: 102 DATE: 6124* SITE: 14-36 MALE FEMALE Image: 102		3FF. <u>~1 G</u>	DOGFISH MEAS		Data Entry
MALE FEMALE LEN LEN<	.85	SAMPLE #:			SITE: 14-36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			MALE	ř.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	î		53 103	3 53	103
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4	54 104	4 54	104
7 57 107 107 9 59 109 10 60 110 11 64 111 111 111 111 12 63 113 111 111 111 111 13 63 113 114 65 115 115 14 66 116 116 65 116 117 14 66 116 16 65 116 116 17 66 116 116 65 116 116 17 72 122 72 122 121 121 20 76 126 76 126 126 127 12 72 72 122 122 122 123 123 24 76 126 76 126 126 126 127 127 122 122 127 122 123 133 134 134 134 134 134 134 134 134 134 <	- 20				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
9 59 109 9 59 109 11 60 110 61 110 110 111 12 63 111 111 111 111 111 111 13 63 111 111 111 111 111 111 111 14 66 116 66 116 65 113 114 14 14 15 66 116 66 116 16 65 116 16 66 116 17 120 121 121 121 121 121 121 121 121 122	i i	(2) A second se second second sec			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9		9 59	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10		10 10 60	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		11	61 111	11 61	111
14 64 114 64 114 15 65 115 66 116 66 17 67 117 16 66 116 67 18 68 118 19 69 119 10 10 110 111 18 68 118 19 69 119 10 10 110 110 111 </td <th></th> <td></td> <td></td> <td></td> <td></td>					
16 66 117 66 118 17 68 118 118 68 118 19 69 119 69 119 69 119 20 70 120 71 121 122 72 122 21 71 121 122 22 73 123 22 73 122 23 73 125 22 76 126 25 76 126 26 76 126 27 77 122 22 77 124 24 24 74 124 24 25 76 126 26 76 126 27 77 127 122 26 76 126 26 76 126 27 77 127 126 27 77 127 128 130 31 32 33 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34					
16 66 117 66 118 17 68 118 118 68 118 19 69 119 69 119 69 119 20 70 120 71 121 122 72 122 21 71 121 122 22 73 123 22 73 122 23 73 125 22 76 126 25 76 126 26 76 126 27 77 122 22 77 124 24 24 74 124 24 25 76 126 26 76 126 27 77 127 122 26 76 126 26 76 126 27 77 127 126 27 77 127 128 130 31 32 33 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34		15			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		17	67 117	17 67	117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			73 123		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	24	124		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		26		26 76	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		28		28 78	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		29	79 129	29 79	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	80 130	30 80	130
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			81 131	31 81	131
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a	32			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34	84 134		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		35		35 85	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		36	86 136	36 86	
39 89 139 39 39 89 139 40 90 140 40 90 140 140 41 91 141 41 91 141 141 42 92 142 42 92 142 142 43 93 143 143 143 143 143 44 94 144 94 144 94 144 45 95 145 95 145 146 96 146			87 137	37 87	137
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X I I	an in some i		
42 92 142 42 92 142 43 93 143 43 93 143 44 94 144 43 93 143 45 95 145 46 95 145 46 96 146 46 96 145					
44 94 144 94 144 45 95 145 45 95 145 46 96 146 96 146 96		42	92 142	42 92	142
45 95 145 45 95 145 46 96 146 96 146					
46 96 146 46 96 146 146		E		· · · · · · · · · · · · · · · · · · ·	
48 98 148 48 98 148		48	98 148	48 98	148
49 99 149 49 99 149 50 100 150 50 100 150					
		~~			

	Initials: Recorder: MD Lab Check:
P2013683	T MARINE TRAWL SURVEY ATA AND PHYSICAL DATA
50: AC2013006	2 20 20 20 20 20 20 20 20 20 20 20 20 20
Other Sample #:	PARTA / PARTB
(Tow # of Day):]	E START (military): $0733/ 08:06$
DATE: 06,13,2013, DUF	RATION (minutes): $5/2.30$
SITE (strata): 11 33 (54) * NAV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
METER YSI M30 CTD OTHER	_ START A STOP A
LAT 41. 41	LAT LAT
LONG 72.23.77	LONG LONG
DEPTH ft: \\\ m: 22.9	START B STOP B
	LAT 41.11.75 LAT 41.11.45
@ 1m @ <u>33.3</u> m	LONG <u>72. 33.29</u> LONG <u>72.23.55</u>
TEMP (C) 15.5 14.2	WEATHER CONDITIONS/QC COMMENTS:
SAL 2.7.7 29.7	WEATHER CONDITIONS/QC COMMENTS.
COND 35.23 , 36.43	
LENGTH OF WIRE (00) 500 /	NET # 11 _ "
QC CHECK FOR SALINITY SCALE CAL. USING	kg STD. WT.
	it Values Post-Cal. Wt. Temp. Log. Deployed?: Temp.:
26.88 26.8 1	4 22,68
FILL OUT IF SITE MOVED, TOW IS SHORT, OR IN PART Original Site: 0330 Why move	
Original Strata: SH Gear Inter Attempts: Pots:	
Parts: Number of	of Pots: (P#, T#)
V. J. V. Love Line First PV:p	oots visible, PE: pots entangled, RI: recently informed tive, I: Inactive, U: Unknown
Martha, John P1, P	22, etc. for pots; T1, T2, etc, for trawls
COMMENTS:	30 moved from Scheckel Side list
	for cooperative 2PH / H3 Dompsiks
Study	- See HC2013001 - AC2013066
- 0738 - stopped town - could	14hall al a 121 Hittory
	alternol of the alternol of the alternol
Scrap part H - No l'ime	- Tod file to span3083_screp - 1


	SPRING SURVEY-TO	TAL COUNT	/ WEIGHT Dat	a entry: <u>A</u>
AMPLE #	: <u>57201308:3</u> (tow # of day:]) AC2013006	DATE: 6	/ 1.	
Species	# Counted / Meas / to Lab / Scales	Total	Weights	Total
BKF		•	· · · · · · · · · · · · · · · · · · ·	
BLF	1 126		1.85	1.9
PGY	4m. + 13/25	j 7	4,31 +0,1 +0,1	4,5
SFL		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	a second descent and the second of the second se	
STB			3,35	3,4
ŴKF				
NFL	lm		0.28	0.3
ALW			· · · · · · · · · · · · · · · · · · ·	
ASD	<u> </u>			-
BUT				1.429 - 440- 440 - 470 -
FSF	2m	2	0,40	0.4
SK	19.m	19	11.99	12.0
NSR	15n	15	2.18	2.2
RCK				
RED		2		-1
SMD SPH	Zm	2	5.6	5.6
SSR	2 m	2	0.71	0.7
VHI				
VPF	Im))	2.124	2.2
VSK	17 ~	17	19.0	19.0
	3 			
D LAB / C	OMMENTS:	1 BLI		
		13 PG	y Vin.	

1

P.A.


SAMPLE#: <u>512013083</u>	INVERTEBRATE / ALG (tow # of day:	AE COUNTS A	and weights date: <u><u><u>1</u>13/)3</u></u>	Recorder: Lab check: Data entry: SITE#: <u>// 33</u> 0
SPECIES	COUNT	TOT CNT	WEIGHT	TOT WT
ALGAE, MIXED (ALG)	no count		0,)	Oil
KELP (KLP)	no count		1. 1.	
ULVA (ULV)	no count		<u>),(</u>	0,1
BUSHY BRYOZOA (BBI)	no count			
CRABS, ROCK (RCR)	no count			
BLUE (BCR)				
LADY (LCR)	no count		a a ann an Anna an Anna ann an Anna ann ann	
F.C. HERMIT (HER)	no count	a sere sere and a sere and a series of the s	(ϕ_1)	0,1
SPIDER (SPI)	no count		0,23	0.2
HORSESHOE (HOR)				
MUD (BMC)	no count			
LION'S MANE (JEL)	an a			
LOBSTER (LOB)				
•				
MANTIS SHRIMP (MAN)				
N. MOON SHELL (NMS)	no count			
SQUID, LONG-FINNED (SQI)	5 m	5	0,29	0.3
STARFISH (STF)	no count	and a start		
WHELK, CHANNEL (CH\V)		5 ₁ .		
KNOBBED (KN\V)				
HSA	1		02	0,2
FUC			0,1	0,1
т те сталанала на нали на				
· · · · · · · · · · · · · · · · · · ·				
O LAB, COMMENTS:		******	สีภาพทางทางการการการการการการการการการการการการการก	aueraannaannaannaannaannaannaannaannaannaa

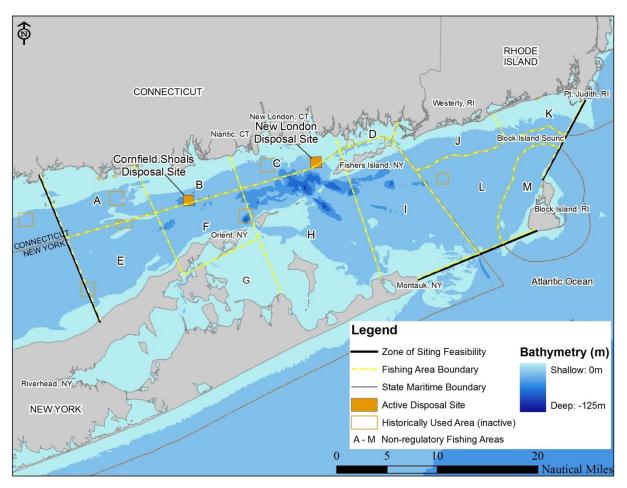
n

Recorder:

This Page Left Intentionally Blank

APPENDIX F – FISHING ACTIVITY SURVEY

Eastern Long Island Sound Fishing Activities Survey


Fall/Winter 2013

Tetra Tech, Inc. is requesting your assistance to help us investigate the locations and activities of commercial and recreational fishing in eastern Long Island, Block Island, and Rhode Island Sounds. Your **anonymous** answers, along with other fisheries and biological data, will be used to evaluate fishery use in these areas. This data will be used to characterize fisheries and lobster habitat in support of the U.S. Environmental Protection Agency's (EPA's) preparation of a Supplemental Environmental Impact Statement (SEIS) for the potential designation of one or more dredged material disposal sites in eastern Long Island Sound. Any information we receive will remain confidential (i.e., not associated with specific fishermen or vessel names). We appreciate hearing about your experiences whether you are currently fishing or not. **Thank you** in advance for your time and for your candid responses.

Questions:

- 1. What is your occupation or relationship to the fishing industry?
 - a. Commercial fisherman or lobsterman
 - b. Recreational fisherman
 - c. Charter boat operator
 - d. Other (Please specify):
- 2. How long have you been fishing in Long Island Sound? (Choose one.)
 - a. 0–5 years
 - b. 5–15 years
 - c. 15-30 years
 - d. 30+ years
- 3. Have you actively fished during 2013?
 - a. Yes
 - b. No; the last year I actively fished was: ____
- 4. Which species do you (or did you) primarily target?
 - a. Lobster
 - b. Scup
 - c. Flounder
 - d. Tautog
 - e. Mollusks (e.g., clams, scallops, mussels, conch)
 - f. Other (Please specify):
- 5. Throughout your career, have you shifted your target species?
 - a. No.
 - b. Yes.
- i. From what species to what species?:_
- ii. Why (e.g., market demand, decreased catch/quality)?: _____
- iii. When did you make this shift?: _
- 6. Please refer to the map on the following page to answer part a and b. Note that the grey lines represent the boundaries of state waters. The areas delineated by dashed yellow lines (labeled with the letters A–M) have been generated for the sole purpose of identifying locations, and do not represent official fishing areas.

a. In the following table, please indicate what gear you use in each area during each season. Please write in **Active** (e.g., trawl, dredge, purse seine), **Passive** (e.g., gillnets, longline), **Pots/traps**, or **specify** a different gear type in each relevant box. (Fill in all that apply.)

Area	Spring	Summer	Fall	Winter
А				
В				
С				
D				
E				
F				
G				
н				
1				
J				
К				
L				
М				

- b. In which areas do you expend less than 25 percent of your overall fishing effort? (Choose all that apply.)
 - i. A
 - ii. B
 - iii. C
 - iv. D
 - v. E vi. F
 - vii. G
 - viii. H
 - ix. I
 - x. J
 - xi. K
 - xii. L
 - xiii. M

7. When do you fish? (Indicate the percent of your fishing effort applied by month.)

Month	Percent Effort
January	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	

8. During which months do you **not** have gear in the water?

Month	Select
January	
February	
March	
April	
Мау	
June	
July	
August	
September	
October	
November	
December	
I fish year-round	

- 9. How many other fishermen actively fish in the area where you spend the majority of your time fishing? (Choose one.)
 - a. 0–3
 - b. 3–10
 - c. 10+

10. If you use active gear, how long do you fish your gear before emptying your net?

- a. <30 minutes
- b. 30-90 minutes
- c. >90 minutes
- 11. Has this trawl time changed over your fishing career?
 - a. No, the trawl time has not changed.
 - b. Yes, trawl time has increased.
 - c. Yes, trawl time has decreased.
- 12. If you use **passive** gear, in a typical set, how long does the gear remain in the water? (Choose one.)
 - a. <1 day
 - b. 1–3 days
 - c. 4–7 days
 - d. 7–14 days
 - e. 14+ days
- 13. If you use pots or traps, do you use warp (lines connecting pots) to haul out your gear? (Choose one.)
 - a. Yes
 - b. No
 - c. Sometimes
- 14. Throughout your career, have you noticed any of the following changes in catches of your *target species* (as identified in question 4)?
 - a. Quantity: (Choose one.)
 - i. No change.
 - ii. Yes increase.
 - iii. Yes decrease.
 - b. Size: (Choose one.)
 - i. No change.
 - ii. Yes increase.
 - iii. Yes decrease.
 - c. Location: (Provide detail if applicable.)
 - i. No change.
 - ii. Fishing effort has diminished in this area (specify):
 - iii. Fishing effort has increased in this area (specify):
 - d. Change in gender composition of catch: (Choose one.)
 - i. No change
 - ii. Proportion of females has increased
 - iii. Proportion of males has increased
 - e. Health of catch: (Choose one.)
 - i. No change
 - ii. Health has improved
 - iii. Health is poorer
- 15. What species do you see in your bycatch, and in what percentage? (Please specify. For example, 60% butterfish, 25% spider crabs, 15% scup)______

- 16. What changes have you noticed in the composition of your bycatch (e.g., changes in quantity, quality, and/or size of various species)? (Choose one and provide detail if applicable.)
 - a. No change.
 - b. Bycatch composition has changed in the following ways (specify):
- 17. If you have experienced gear fouling, how and when (seasonally or annually) has it occurred? (Choose one and provide detail if applicable.)
 - a. I have not had any gear fouling.
 - b. Fouling has occurred in the following ways: _____
- 18. Have you noticed any changes in the frequency of needing to clean your gear?
 - a. No change.
 - b. Yes increase.
 - c. Yes decrease.
- 19. Do you fish within 0.5 nautical miles (nm) of the center of an existing dredged material disposal site? (Choose one.)
 - a. Yes, regularly, near (specify site name): ______
 - b. Yes, occasionally, near (specify site name): ______
 - c. No.
 - d. I don't know.
- 20. What have you noticed about species diversity in your catch within 0.5 nm of the center of a dredged material disposal site?
 - a. I do not fish near disposal sites.
 - b. I have not noticed a difference in fishing near dredged material disposal sites.
 - c. Other (specify): _
- 21. Please provide any additional information or suggestions that you think might be helpful:

22. Optional. If you would like to speak with us further regarding fishing activity in eastern Long Island Sound or regarding our findings, please call Deena Anderson, a Tetra Tech biologist, at (603) 314-0760 between 9:00 a.m. and 5:00 p.m. Monday through Friday or by email: Deena.Anderson@tetratech.com. If you prefer to be contacted, include your contact information (phone or email) below:

APPENDIX G – FISHING ACTIVITY SURVEY RESULTS (Excel Spreadsheet; Provided as Electronic Copy Only)

This Page Left Intentionally Blank