Methane Emissions and Mitigation Opportunities: 9 CCAC Sources, Other GMI Sources

OIL & GAS SECTOR WORKSHOP METHANE MITIGATION TECHNOLOGIES AND PRACTICES HOSTED BY ARAMCO, GLOBAL METHANE INITIATIVE AND CLIMATE & CLEAN AIR COALITION Dhahran, Saudi Arabia April 27 – 28, 2015

Donald Robinson

Vice President ICF International

Methane Emissions and Mitigation Opportunities: 9 CCAC Sources, Other GMI Sources Agenda

- Nine major upstream/midstream sources of methane emissions
- For each of the nine sources
 - What are uncontrolled methane emissions
 - What are "controlled" emissions
 - Brief description of control options
- Offshore platform and other sources

Following presentations will discuss:

- Methane Emissions Detection and Measurement Techniques, and
- Control/Reduction Project Evaluation and Implementation

CCAC Core Emissions Sources

Nine sources in oil and gas production and processing account for half of total methane emissions from U.S. oil & gas operations

		Total 2012 U.S. Oil &	% of Total
Rank	Emissions Source	Gas Emissions (Bcf)	O&G Industry
1	Natural gas driven pneumatic controllers and pumps	91.530	17.5%
2	Fugitive equipment and process leaks	31.264	6.0%
3	Glycol dehydrators	30.018	5.8%
4	Reciprocating compressors rod seal/packing vents	27.609	5.3%
5	Hydrocarbon liquid storage tanks	25.585	4.9%
6	Well venting for liquids unloading	14.204	2.7%
7	Centrifugal compressors with "wet" (oil) seals	12.343	2.4%
8	Well venting/flaring during well completion for hydraulically fractured wells	11.274	2.2%
9	Casinghead gas venting	0.739	0.1%
	Total	244.567	46.9%
	Total U.S. Oil & Gas Industry	521.59	

Automated valve control loops

Natural Gas Driven Pneumatic Controllers and Pumps: Controlled vs Uncontrolled

Configuration	Controlled or Uncontrolled	
A high-bleed pneumatic controller continuously bleeds gas to the atmosphere	Uncontrolled	
A chemical injection pump is pneumatically-powered and continuously vents methane to the atmosphere		
A gas-assisted glycol pump vents methane to the atmosphere entrained in the rich TEG sent to the glycol regenerator		
A high-bleed pneumatic gas controller is replaced with a low-/no-bleed controller to reduce gas emitted		
A high-bleed pneumatic gas controller is retrofitted to convert it to low-bleed or intermittent bleed	Controlled (if confirmed to be functioning with low or no emissions)	
A chemical injection pump is replaced with a solar, electric, or instrument air pump		
A gas-assisted glycol pump is followed by a flash tank separator (with separated gas directed to a low-pressure usage)		
A gas-assisted glycol pump is replaced with an electric pump		
An instrument air system is installed for pneumatic gas supply/use for all facility controllers and pumps		

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 1: Natural gas pneumatic driven controllers and pumps

ارامكو السعودية Saudi Aramco

Fugitive Equipment and Process Leaks: Schematic

Fugitive Equipment and Process Leaks: Controlled vs Uncontrolled

Summary of Screening and Measurement Techniques		
Instrument/ Technique	Effectiveness	Approximate Capital Cost
Soap Solution	**	\$
Electronic Gas Detector	*	\$\$
Acoustic Detector/ Ultrasound Detector	**	\$\$\$
TVA (Flame Ionization Detector)	*	\$\$\$
Calibrated Bagging	*	\$\$
High Volume Sampler	***	\$\$\$
Rotameter	**	\$\$
Infrared Leak Detection	***	\$\$\$
Source: EPA's Lessons Learned		

Infrared Leak Detection

Infrared Leak Detection Camera

Source: Leak Surveys Inc.

High Volume Sampler

Source: Heath Consultants

Glycol Dehydrator Vent Emissions: Description

Remove water from wet gas stream using, most commonly, triethylene glycol (TEG)

Vent from reboiler contains methane

Glycol Dehydrators: Controlled vs Uncontrolled

Configuration	Controlled or Uncontrolled
Dehydrator does not have a flash tank separator, uses a gas	Uncontrolled
assisted or electric pump, and reboiler vents are routed to the	
atmosphere	
Dehydrator has a flash tank separator that vents to atmosphere,	Uncontrolled
uses a gas or electric assisted pump, and reboiler vents are	
routed to the atmosphere	
Dehydrator has a flash tank separator that directs gas to	Controlled (if confirmed to
beneficial use (e.g. fuel gas, low pressure sales line, compressor	be functioning with low or
suction) or flare, uses a gas assisted or electric pump, and	no methane emissions)
reboiler vents are routed to the atmosphere	
Dehydrator does not have a flash tank separator, uses a gas	Controlled (if confirmed to
assisted or electric pump, and reboiler vents are routed to a flare,	be functioning with low or
VRU, or other beneficial use	no methane emissions)

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 3: Glycol dehydrators.

Glycol Dehydrators: Schematic of Emissions Reductions

Reciprocating Compressors Rod Seal/Packing Vents: Description

Emit methane during normal operation

ارامكو السعودية Saudi Aramco

 Emissions can be vented from the rod packing and blowdowns or as fugitives from the various compressor components.

Reciprocating Compressors Rod Seal/Packing Vents: Controlled vs Uncontrolled

Maintenance of rod packing when gas leakage is more value than cost of ring replacement

Configuration	Controlled or Uncontrolled	
"Distance piece" or packing case vents (point where rod packing leakage exits the compressor) are vented to the atmosphere and rings are replaced only on a fixed schedule (e.g. during an engine overhaul (26,000 running hours))	Uncontrolled	
Rod packing is vented to the atmosphere and operator conducts periodic (annual) emissions <u>measurement</u> around each rod seal for excessive seal/packing leakage, and replaces rings/rods on seals/packing found to be excessively leaking		
Each rod "distance piece" or packing case is equipped with a leak indicating device and rings/packing-cups/gaskets are replaced when the rod packing exhibit excessive leaking	Controlled (if confirmed to be functioning with low or no emissions)	
Reciprocating compressor "distance piece" or rod packing vents (point where rod packing leakage exits the compressor) are routed to recovery (e.g. VRU) or flare		

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 4: Reciprocating compressor rod seal/packing vents.

ارامكو السمودية Saudi Aramco

Vent Emissions from Hydrocarbon Liquid Storage Tanks

ارامکو السعودیة Saudi Aramco

Hydrocarbon Liquid Storage Tanks: Controlled vs Uncontrolled

Configuration	Controlled or Uncontrolled	
Tank vapors are emitted to the atmosphere via routing through an open vent, unlit flare, and/or through openings in the fixed roof of an oil or condensate production tank (e.g., open/unsealed thief hatch, cracks/corrosion in tank roof, ENARDO pressure/vacuum relief valve)	Uncontrolled	
Tank vapors are recovered by routing to a Vapor Recovery Unit (VRU) system and directing to productive use (e.g., fuel gas, compressor suction, gas lift)		
Tank vapors are emitted to the atmosphere via routing through an open vent, unlit flare, and/or through openings in the fixed roof of an oil or condensate production tank, but are minimized by having reduced the differential pressure between the last gas/oil separation step prior to the tank to near atmospheric pressure to reduce the amount of gas emitted from the tank(s)	Controlled (if confirmed to be functioning with low or no emissions)	
Stabilization towers are installed ahead of tanks to reduce the amount of		
entrained gas and flash gas emitted from the tank(s)	1	
Tank vapors are routed to a flare/combustion device		

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 5: Hydrocarbon liquid storage tanks.

ارامكو السعودية Saudi Aramco

Hydrocarbon Liquid Storage Tanks: Emissions Reductions – Vapor Recovery Unit

Capturing low pressure, wet gas from oil storage tanks requires a special designed vapor recovery system

Well Venting for Liquids Unloading: Description

- Liquids (water) accumulation in the tubing of a mature gas well slows and stops production
 - The quick fix is to blow the well to the atmosphere to blow out water
 - Vents significant methane

Taken by Arlington Fire Department From Star-Telegram article

بزارة البترول والثروة المعدذ

المملكة العربية السعودية

Well Venting for Liquids Unloading: Controlled vs Uncontrolled

Configuration	Controlled or Uncontrolled	
Well is vented directly to the atmosphere.		
Well is equipped with a plunger lift and is vented to the atmosphere during the plunger cycle.	Uncontrolled	
Well is equipped with artificial lift (e.g., a plunger lift, downhole pump) that reduces the frequency of well venting to maintain productivity and may be tied directly into the sales line through a gas/liquid separator (when cycling the plunger).	Controlled (if confirmed to be	
Well is equipped with other liquids removal techniques (e.g., foaming agents, velocity tubing).	methane emissions)	
Well is horizontal and uses gas lift, a downhole pump in a "rat hole," sequential lift, or another form of artificial lift to remove liquids.		

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 6: Well venting for liquids unloading.

Vent Emissions from Wet Seal Centrifugal Compressors

ارامکو السمودية Saudi Aramco

وزارة البترول والثروة المعدنية المملكة العربية السعودية

Centrifugal Compressors with "Wet" (Oil) Seals: Controlled vs Uncontrolled

Centrifugal compressors with dry seals are controlled

Configuration	Controlled or Uncontrolled
Seal oil is degassed at atmospheric pressure and the gas is routed to an open vent stack	Uncontrolled
Seal oil is degassed at intermediate pressure and intermediate pressure gas is routed to an open vent stack; seal oil is degassed again at atmospheric pressure, venting the small portion of gas remaining in the oil to the atmosphere	Uncontrolled
Seal oil is degassed at intermediate pressure and intermediate pressure gas is routed to productive use (e.g. compressor suction, fuel gas) or routed to flare ; seal oil is degassed again at atmospheric pressure, and there is typically a smaller volume of gas vented to the atmosphere	Controlled (if confirmed to be functioning with low or no emissions)
Seal oil is degassed at atmospheric pressure and the gas is recovered and used (e.g., routed to a vapor recovery unit (VRU) or other destination and not vented) or flared	Controlled (if confirmed to be functioning with low or no emissions)

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 7: Centrifugal compressors with "wet" (oil) seals.

للملكة العربية السعودية

Routing Wet Seal Degassing Emissions: 4 Options

Well Venting/Flaring during Well Completions for Hydraulically Fractured Wells

Configuration	Controlled or Uncontrolled	
During completion of hydraulically fractured gas well, well is produced to a pit or tanks	Uncontrolled	
where water, hydrocarbon liquids and sand are captured and slugs of gas vented to the		
atmosphere		
During completion of hydraulically fractured gas well, reduced emission (green)	Controlled (if confirmed to be	
completion is implemented, using speciality flow-back equipment if necessary, and	functioning with low or no methane	
flow-back gas is routed to sales or flare rather than vent to the atmosphere	emissions)	

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 8: Well Venting/Flaring During Well Completion for Hydraulically Fractured Gas Wells.

Source: Newfield

Reduced emissions completions

Casinghead Gas Venting: Description

Low pressure oil reservoirs must be pumped

 To avoid vapor locking downhole beam or electric submergence pump, gas is vented to the atmosphere from the casing

Configuration	Controlled or Uncontrolled	
Casinghead gas is vented directly to the atmosphere, either continuously or periodically to relieve pressure build-up	Uncontrolled	
Casinghead gas is recovered by a wellhead compressor/vapor recovery unit (VRU) and routed to sales or for on-site use	Controlled (if confirmed to be functioning with low or no	
Casinghead gas is routed to tanks with new or existing VRU systems and routed to sales or for on-site use	emissions)	
Casinghead gas is routed to a flare		

Source: CCAC O&G Methane Partnership – DRAFT Technical Guidance Document Number 9: Casinghead venting.

Casinghead Gas Vapor Recovery Unit

Casinghead gas can be captured with vapor recovery unit

The benefits are gas recovery, increased oil production and methane emissions reduction

AND CLEAN AIR COALITIO

Casinghead Pressure Reduction Unit

Source: Hy-Bon and Natural Gas STAR

وذارة البترول والثروة المعا المملكة العربية السعودية

Offshore Platform and Other Sources

- Storage Tank Venting
 - Install vapor recovery unit
 - Scrubber dump valve repair
- Reciprocating Compressor
 - Economic replacement of rod packing
- Glycol Dehydrator
 - Route non-condensable gas from condenser vent to vapor recovery unit
- Fugitive Emissions
 - Leak detection, quantification and repair

- Platform Cold Vents
 - Route individual vented emissions sources to vapor recovery unit (including pig launcher venting)
 - Route routine compressor blowdowns to fuel gas system
- Centrifugal Compressor Wet Seals
 - Replace centrifugal compressor wet seals with dry seals
 - Route centrifugal compressor wet seal oil vent to fuel
- Produced Water Tank Vents
 - Manifold water tanks with oil tanks to vapor recovery units

Contact and Further Information

Scott Bartos

U.S. Environmental Protection Agency Global Methane Initiative – Oil & Gas Natural Gas STAR International +1 (202) 343-9167 Bartos.Scott@epa.gov

Donald Robinson

ICF International Vice President +1 (703) 218-2512 donald.robinson@icfi.com

