the Energy to Lead

Improving Methane Emissions Estimates for the Natural Gas Industry

Kristine Wiley
Khalid Farrag, PhD, PE
May 23, 2013

GTI at a Glance...

- Not-for-profit research, with 65+ year history
- Facilities
 - 18 acre campus
 - 200,000 ft², 28 labs
- \$60+ million in revenue
- Staff of 250
- A growing business
- Commercial partners take our technologies to market.

Energy & Environmental Technology Center

Defining the Problem:

More Accurate Emissions Information

> GTI is:

- Developing a methodology for calculating methane emissions that will provide an increased level of accuracy
- Securing appropriate industry partners to provide the technical validation of these methodologies
- Coordinating work with AGA, EPA, and other appropriate stakeholders
- Method is based on leak measurements made at the surface using current technology, Hi-Flow Sampler
- > Emission estimates will be based on leak rates and company specific leak records

Estimating Methane Emissions

Calculated Potential= Emission factor x Activity Data

- Emission Factors = Leak rate in scf/leak-year
- Activity Data = Number of equivalent leaks leaking year round, from database of leak repairs.

Measuring Methane Emissions

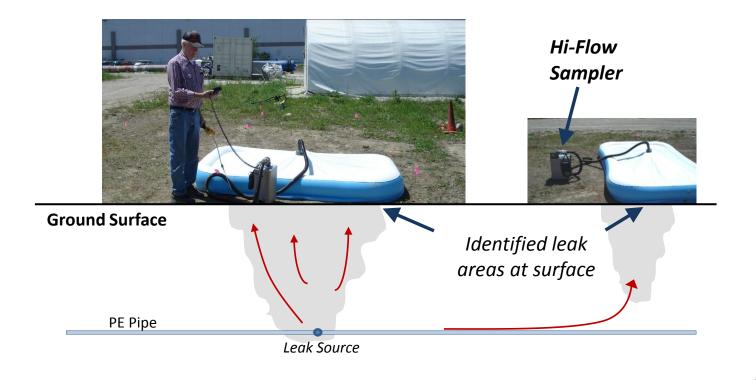
Obtained from surface measurements of methane emissions (*in scf/leak-hour*).

- a) Use the Hi-Flow Sampler for surface measurement.
- b) Correlate measurements with belowground leaks from isolated pipes (the old GRI/EPA method).

Measurement Tools

The Hi-Flow Sampler

- The Hi-Flow Sampler is a portable, intrinsically safe, battery-powered instrument designed to determine the rate of gas leakage.
- Commonly used around pipe fittings, valves, and compressor in natural gas facilities.



Surface Measurement Technique

Surface measurements of emissions

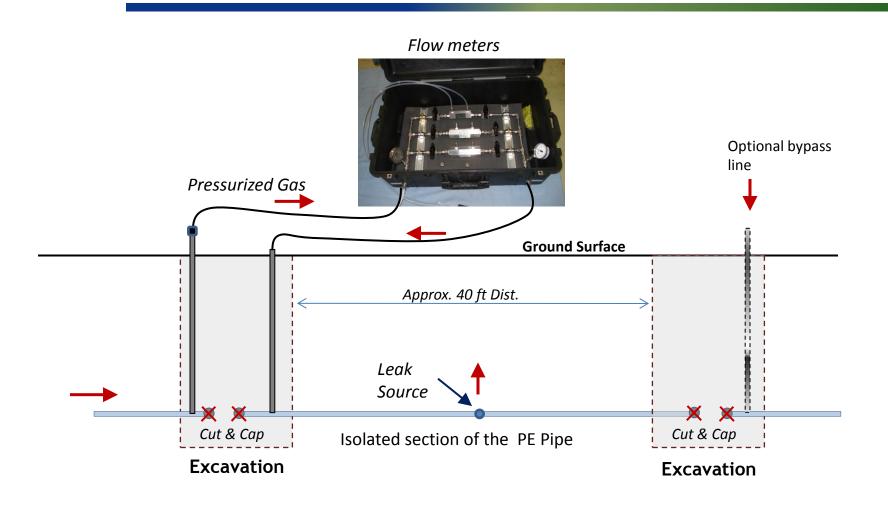
(in scf/leak-hour)

Field Tests Sites

Field Tests – Utility Sites

- Field tests were performed at 4 utilities.
- About three leak sites were tested at each utility.

 The measurements provided a comparison between the aboveground Hi-Flow Sampler with the earlier GRI/EPA method of isolating and measuring the leak belowground.



110

Excavate bellholes

Field Measurement Methodology

Isolating Leaks in the Field

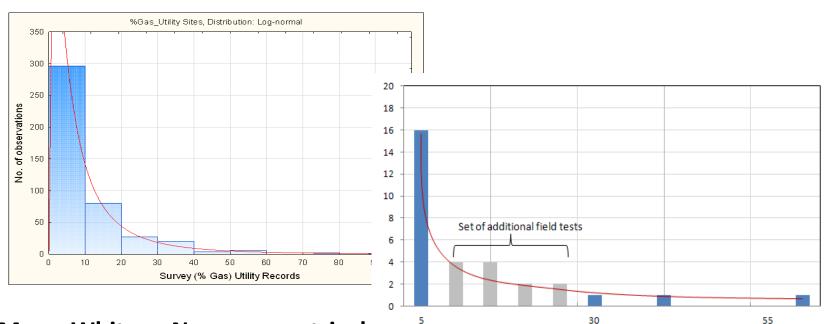
Isolate leaking section



Leak Types

- The leaks at most of the sites were grades 2 and 3, characterized by small flow rates.
- The surface measurements using the Hi-Flow Sampler compared well for the leak rates at and above 0.01 scfm.

Results from Field Tests



Hi-Flow and LFE measurements at Utilities and GTI sites

Results Con't

- Emission Factors (from surface reading at utilities and test sites) = 2.36 scf/leak-hour.
- Additional surface measurements using the Hi-Flow Device at utility sites will be performed to have a representative distribution to the utility leak records.
- The total Emission Factor can be updated with additional surface measurement test sets.

Additional Data is Needed

Mann-Whitney Non-parametrical

Analysis - (*) With additional 12 field tests

n1	n2	U	numerator	denominator	fraction	phi (or T)	1-phi
31	438	5879	-909.5	729.2496	-1.2472	0.1062	0.8938

Activity Data: Leaks vs Miles

Advantage of using Activity Data as the '<u>Number of</u> <u>Equivalent Leaks</u>' rather than miles:

- Uses data from utility repair & scheduled repair records.
- Takes quality of pipes into consideration.
- Identifies the utilities with aggressive leak repair policy & the ones with high leak records.
- Reflects improvements due to rehabilitation (as in using liners in cast iron pipes).
- Allows for incorporating recent advances in leak detection methods, thus resulting in more accurate numbers of leaks.

Revised Activity Data

Two Activity Factors are proposed:

a) National Emission Factors

- Utilities use national updated estimates [in leakyear],
- EF can be transferred to a [per mile] basis in the emission inventory estimations.

b) Utility-Specific Emission

 Utilities use their specific 'leak records' and 'repair records' to reach their emission estimates.

Utility Leak Records

08/19/2011

Region	<u>Area</u>	Sequence	Addr	ress	<u>.</u>	own	Report Date	Comments	Item	Material
N	8	1141782	258	Ε		(05/01/2007	2% gas leak found in pkwy 12 f	Short Serv	P.E.
S	1	1262221	603	Т		1. C	08/18/2010	5% leak SS SVC, 3' N DRIVEW/	Short Serv	P.E.
N	8	1114300	10				11/16/2006	got 2% over t on main on long si	Long Serv	P.E.
С	2	1114350	170	Г			11/21/2006	4% GAS 1' EAST OF DRIVEWA	Short Serv	P.E.
N	4	1120999	Ę				01/12/2007	15FT N OF TOPAZ 65 FT E OF	Short Serv	P.E.
N	6	1294192	60				07/16/2011	3% GAS @ TAP 1' N OF SW 17	Short Serv	P.E.
M	1	1260733	602	Ξ	LA	DS	08/04/2010	5% GAS 12' N OF DW 24' W OF	Short Serv	P.E.
С	2	1288729	6				05/20/2011	9% 27'E OF DRIVEWAY 1'S OF	Short Serv	P.E.
С	3	1134364	64				03/26/2007	' N OF SIDEWALK 33' W OF DA	Short Serv	P.E.
N	9	1141180	1251	/E	E	E	06/01/2007	leak on s/s under driveway apror	Short Serv	P.E.
С	3	1152511	92	1.125	100	C5/83	08/08/2007	10' N OF DRIVEWAY 7' W OF C	Short Serv	P.E.
M	4	1169850	2				11/21/2007	7'S OF PARK 43'W OF LINCOLI	Short Serv	P.E.
M	4	1169851					11/21/2007	2'N OF DRVWY AND 1'W OF CI	Short Serv	P.E.
M	1	1180175	6				04/01/2008	found 6% gas leaking 4ft N of N	Long Serv	P.E.
С	3	1182764	131	२			04/18/2008	75' S OF WINDOR 9' W OF LAN	Short Serv	P.E.
С	3	1182768	114				04/18/2008	27' W OF DW 1'S IF SDW 13% :	Short Serv	P.E.
M	4	1230336	809	D			09/17/2009	34' N OF DW 7' EO F ST 1% G	Short Serv	P.E.
M	2	1231234	14601	VE			09/23/2009	2% GAS 4' EAST OF CURB 60'	Short Serv	P.E.
N	9	1231386	601 E	٧Y			09/30/2009	LEAK @ UNION ON PRESSUF	Press Set	P.E.
N	6	1234658	4111)R			09/25/2009	LEAK ON SHORT SIDE IN PAR	Short Serv	P.E.
M	3	1235303	184	1			11/04/2009	GETTING 0% IN THE PKWY,	Long Serv	P.E.
С	3	1236426	3				11/05/2009	NIPPLE LEAKING PRESS SET	Press Set	P.E.
N	4	1240922	7810	LN	2		10/20/2009	28'S OF DRIVEWAY 1'E OF SIE	Short Serv	P.E.

Example of Utilities PE Leak Record

OL = Σ [Outstanding leak records carried out for the full year]

Quantifying Activity Data

Utility-Specific Equivalent Leak = OL + LI + UDL - RL (in Leak-year)

OL = Σ [Outstanding leak records carried out for the full year]

- $LI = \Sigma$ [New leak indications x (End of Year Report Date)/365]
- $UDL = \Sigma$ [Undetected leaks which cannot be found using industry standard survey procedures] (estimated 15% of LI, in full year)
- **RL** = Σ [No. of Repaired leaks x (Repair date Report Date)/365]

Activity Data: National vs Utility Specific

National Activity Factor

- General & simple
- Provides a conservative estimate
- Similar approach to the GRI study
- Used as emission inventory.

Utility-Specific Activity Factors

- Specific to the utility inventory
- Utilizes actual leak & repair records,
- Uses actual leak durations
- Flexible (easy to adjust when utilities change their inventory or pipe type)
- AF's are the responsibility of the utility to provide
- Identifies utilities aggressive repairs,
- Easy to update with changes in utility leak detection practices.

Next Steps

- Complete additional leak rate measurements to complete data set
- Project should be completed in the next few months
- Phase 3 is underway
 - Will focus on updating emission factors for cast iron and unprotected steel

Questions

For further information, contact: Kristine Wiley <u>Kristine.wiley@gastechnology.org</u> Khalid Farrag, Ph.D., P.E., PMP <u>Khalid.farrag@gastechnology.org</u>