
Microcystins Analysis Methods

April 28, 2016

Heather Raymond Ohio Harmful Algal Bloom Coordinator

Microcystins Testing

No "Perfect" Analytical Method for Detecting TOTAL Microcystins

- 7 N-Methyldehydroalanine
- Over 140 Microcystin Variants
- Standards Not Available for Majority

Microcystins Testing - ELISA

- Enzyme-Linked ImmunoSorbent Assay (ELISA) Microcystin-ADDA Method (detection of antigen using an antibody)
 - Measures Total Microcystins (all variants/congeners, based on ADDA)
 - Highly Selective/Specific (for ADDA)
 - Certified by USEPA (ETV Program)
 - Moderately sensitive (RL: 0.30ug/L)
 - Suitable for raw & finished water (complex matrices)
 - Quick (four hours), useful for operational adjustments
 - Relatively inexpensive
 - Does not require high end equipment or expertise to run (can be used in water system lab)
 - Does not require pre-concentration solid phase extraction (SPE) step
 - Does not provide concentrations of specific microcystin variants
 - Is an indirect measure of the toxin

Ohio EPA DES Method 701.0 Total Microcystins – ADDA by ELISA

- Developed in consultation with USEPA, PWSs, and National Experts.
- Helps ensure consistent sample handling, preparation, and application of analytical method.
 - Finished water samples and treatment train samples that are subjected to an oxidant must be quenched upon collection with 10 mg of sodium thiosulfate per 100 ml of sample.
 - At Lab, sample pH must be adjusted within the range of 5-11.
 - At Lab, all samples are subjected to three freeze/thaw cycles to lyse (break apart) cyanobacteria cells and release toxins.
- Labs must demonstrate they can achieve an acceptable level of precision and accuracy.
- Ohio EPA conducts site visits at labs preforming analysis; provides acceptance letters and certification
- Compliance microcystins monitoring under 3745-90-03 must use this method or "another method accepted by the director in writing."

A Standard Method Increases Consistency & Confidence in Results

High Performance Liquid Chromatography (HPLC) – Ultraviolet (UV) or Photodiode Array (PDA)

• HPLC-UV/PDA

- Liquid Chromatography separates components
- Microcystins have UV absorption maxima at 238 nm
- Non-selective detector; co-eluting interferents prevent accurate identification of components and quantitation (potential for false positives and false negatives)
- Less expensive than mass spectrometry.
- Less sensitive than mass spec (average LOQ \sim 0.3 μ g/L)

Liquid Chromatography(LC) –Tandem Mass Spectrometry (MS/MS)

- LC/MS/MS
 - Highly specific identification of components (based on standards)
 - MS can <u>identify</u> a component in the presence of co-eluting interferents but quantitation may be compromised
 - Presence of co-eluting interferents can act to suppress or enhance response resulting in analytical bias
 - Sensitive (LOQ ~ 0.02 μg/L)
 - Expensive and requires highly skilled analysts
 - USEPA Method 544
 - Standard Method- includes QA/QC protocols and reduces variability in results between labs
 - Limited to 6 microcystin variants and finished water only

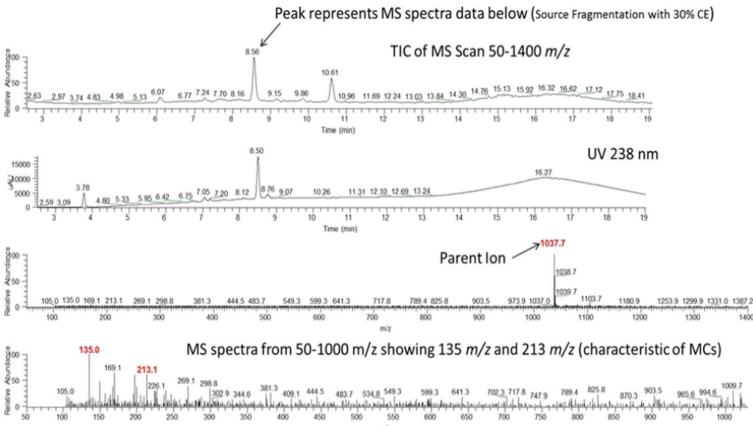
Adapted From USEPA

LC/MS/MS Additional Considerations

• Microcystins

- "Weak" product ion abundance limits sensitivity
- Limited based on available standards
- Requires preconcentration with SPE to augment sensitivity (LOQs < 0.02 μg/L)
 - Preconcentrates NOM too
- Anatoxin-a and Cylindrospermopsin
 - Abundant product ion responses
 - Direct injection (no SPE required to improve sensitivity LOQs: anatoxin-a ~ 0.02 μg/L; cylindrospermopsin ~ 0.06 μg/L)

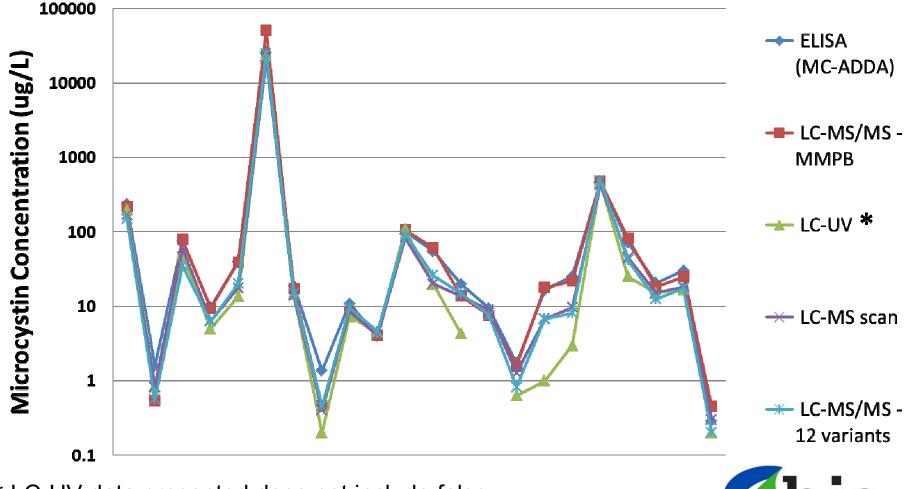
LC-MS/MS MMPB Method


- MMPB (2-methyl-3(methoxy)-4-phenylbutyic acid) method analyzes the chemically cleaved Adda group common to all microcystin variants
- Measures total microcystins (all variants)
- Quick (~2 hours, does not require freeze/thaw or sonication)
- Sensitive (0.05 ug/L)
- Suitable for raw and finished water
- Does not require standards for individual variants
- Utilizes 4 PB internal standard
- Does not provide data on individual congeners
- Requires oxidation step
- Potential for detection of microcystins disinfection byproducts

Toxicon 104 (2015) 91-101 (Foss & Aubel): Using the MMPB technique to confirm microcystin concentrations in water measured by ELISA and HPLC (UV, MS, MS/MS)

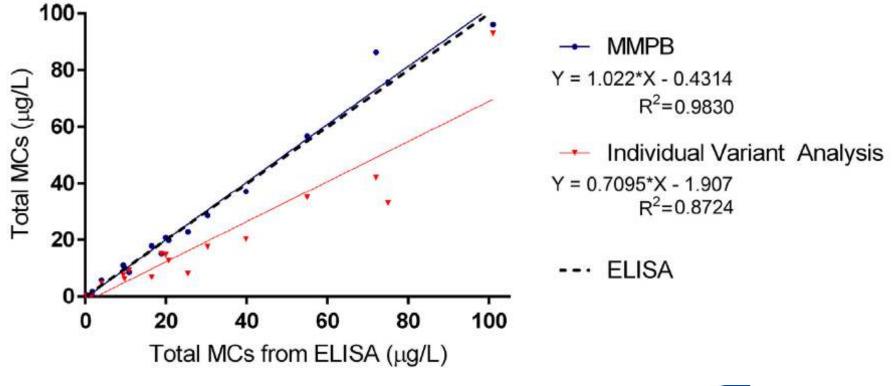
LC-UV/PDA & LC-MS Scan

- Uses two LC-based methods in tandem to independently confirm presence of microcystins
 - Can detect microcystin variants without standards
 - No standard methods, expensive, requires complex datainterpretation, time-consuming



Analytical Method Comparison & Microcystin Variant Evaluation

- 11 Sites: 4 Up-ground Reservoirs, 2 In-stream Reservoirs, 2 Lake Erie locations, 2 Canal-feeder Lakes, and 1 River Source.
- 22 Samples from 2014 Selected to Help Evaluate Spatial and Temporal Variability Within Source Waters
- Variety of Cyanobacteria Genera Represented
- Each Sample Analyzed Using 5 Separate Analytical Methods



Results of Method Comparison

* LC-UV data presented does not include falsepositives that were eliminated from total (Based on lack of confirmation with LC-MS methods). Sample # 14 was non-detect using LC-UV. Ohio Environmental Protection Agency

Results of LC-MS/MS MMPB and Individual Variant Analysis Compared to ELISA

Spatial and Temporal Variability in Microcystin Variants

Lake Erie Microcystin Variants					
MC-Variant	Site 1	Site 2	Site 2	Site 2	Site 2
	8/25/14	8/4/14	8/18/14	9/29/14	10/14/14
MC-RR	2.1	20	10	5.5	8.5
MC-YR	0.6	6	5	1.2	2.5
MC-LR	2.9	16	10	5.5	6.1
MC-WR	0.6		3-9	0.2-0.6	0.2-0.6
MC-LY			2-6		
8.7 min 1043.5 m/z			10-30	3.6	

Inland Lake Microcystin Variants (Planktothrix)				
MC-Variant	Site 1	Site 2	Site 2	
	6/16/14	6/16/14	9/2/14	
[DAsp3] MC-RR	5.3	6.1	17.5	
[Dha7] MC-LR	1.1	1.4	1.5	
MC-YR	0.2-0.6	0.2-0.6	1.2	
MC-RR		0.1-0.3		

Inland Lake Microcystin Variants (Mixed Bloom)				
MC-Variant	Site 1	Site 2	Site 2	Site 3
	6/18/14	6/18/14	7/9/14	6/30/14
[Dha7] MC-RR	2.9	3-9	1.0	0.08
MC-RR	1.4	39	1.0	0.01-0.03
MC-YR	1.1	15	1.0	
MC-LR	4.0	67	2.4	0.55
[DAsp3] MC-LR	0.6	18	0.4	0.03
[Dha7] MC-LR	3.6		1.0	0.05
MC-WR	0.2-0.6		0.2-0.6	
MC-LA	0.2-0.6			
MC-LY	0.2-0.6	6	0.2-0.6	0.10

Key Findings

- LC-based Methods Confirmed ELISA Results
- 16 Different MC-variants were detected
- MC-LR was only detected at 5 of 11 sites (45%)
- Most common variants were: MC-YR, [Dha7] MC-LR and [DAsp3] MC-RR
- HPLC-PDA Methods Prone to Interference, Especially at Lower Concentrations
- 91% of samples had MC-variants not detectable by USEPA Method 544 (including dominant MC-variant in some samples)
- LC-MS/MS individual variant analysis under-reported total microcystins, based on MMPB and LC-UV/MS Scan Data
- Generally, the Dominant/Co-Dominant MC-Variants Did Not Vary Spatially nor Temporally
- Secondary & Minor MC-Variants Did Vary.

ELISA MC-ADDA Matrix Interference Studies

Treatment Chemical	Microcystins – ADDA ELISA Assay Tolerance (< / =)
Sodium Carbonate (Soda Ash)	≤25 gpg
Sodium Hexametaphosphate	≤250 ppm
Sodium Silicofluoride	≤10 ppm
Aluminum Sulfate ¹	≤100 gpg (with pH adjustment within assay tolerance)
Calcium Oxide (Lime) ¹	<2000 gpg (with pH adjustment to within assay tolerance)
Potassium Permanganate ²	≤10 ppm (with quenching using 1 mg sodium thiosulfate per 1 ml sample)
Sodium Chlorite ²	≤10 ppm (with quenching using 1 mg sodium thiosulfate per 1 ml sample)
Carbon ³	≤2 ppm with filtering at time of sampling

¹ Natural pH of solution outside assay tolerance, Chemical

tolerance levels determined after pH adjustment.

² Oxidizers degrade microcystins, tolerance determined after quenching.

³ Tolerance level due to effect of carbon on toxin, not assay performance.

ELISA MC-ADDA Matrix Interference Studies

Lisa Kamp, et. at, 2016. The effects of water sample treatment, preparation, and storage prior to cyanotoxin analysis for cylindrospermopsin, microcystin and Saxitoxin. Chemico-Biological Interactions.

Studies by USEPA as part of ELISA MC-ADDA Method Development for UCMR 4:

- Storage Stability Holding Times
- Sample Preservation and Container Studies
- Matrix Interference Studies

-Microcystins Variant Fortified Sample Studies (finished water, raw water, reagent water with chemical addition, etc.)

-Dilution Experiments (real world raw/finished water samples)

• USEPA Method Validation & Interlab Validation

LC-MS/MS MMPB Method Evaluation

- Potential concern regarding detection of microcystins disinfection byproducts
- ELISA MC-ADDA does not detect microcystins disinfection byproducts

Ohio EPA Method Comparison Study-Round 2

- 17 Raw and treatment train samples from 2015 submitted for method comparison
- Additional MC variant standards available
- Preliminary LC-MS/MS results indicate MC-HtYR, MC-HilR, MC-LF, MC-LW, MC-RR, MC-YR, MC-LR, MC-WR, and MC-LY present in Lake Erie Samples
- 100% of samples had MC variants not included in USEPA Method 544
- Next Steps: Split sample interlab method comparison study

2015 PWS HAB Response Strategy

Analytical Methods

	Microcystins (µg/L)	Cylindro- spermopsin (µg/L)	Saxitoxins (μg/L)	Anatoxin-a (μg/L)
Surveillance sampling	ELISA (MC-ADDA)	ELISA	ELISA	LC-MS/MS
Repeat sampling in response to a finished water detection	ELISA (MC-ADDA)	LC-MS/MS	LC-MS/MS	LC-MS/MS

ELISA: Enzyme-Linked Immunosorbent Assay

LC-MS/MS: Liquid Chromatography followed by tandem Mass Spectrometry

Data Reporting Considerations

- Specify Analysis Method
- If reporting "total microcystins" using LC-MS/MS, include number of variants analyzing for in comment field
- For ELISA results greater than calibration curve, dilute and reanalyze sample or qualify result as estimate (or report using ">" symbol)

Questions?

Heather.Raymond@epa.ohio.gov (614) 644-2752 http://epa.ohio.gov/ddagw/HAB.aspx

