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7 Data Analysis 
By J. Spooner, J.B. Harcum, D.W. Meals, S.A. Dressing, and R.P. Richards 

7.1 Introduction 
This chapter of the guidance examines options for planning and analyzing data collected in nonpoint 
source watershed studies. The emphasis of this chapter is on projects at the watershed or subwatershed 
level, although evaluation of individual BMPs is also addressed. These analysis approaches complement 
the watershed project design considerations discussed in section 2.4 of this guidance. 

Specifically, this chapter discusses the following topics: 

 Exploratory data analysis 

 Data transformations that might be necessary to prepare data for valid statistical analysis 

 Methods to deal with extreme values, censored data, and missing data 

 Data analysis methods for water quality problem assessment 

 Data analysis methods for project planning 

 Data analysis methods for assessing BMP or watershed project effectiveness 

 Techniques for load estimation 

The reader may wish to refer to chapter 4 (Data Analysis) of the 1997 guidance (USEPA 1997b) which 
was written largely to provide a primer on statistical methods for analysis of data generated by nonpoint 
source watershed projects. The 1997 guidance addresses various topics on statistical analysis in 
considerable detail, including estimation and hypothesis testing, characteristics of environmental data, and 
basic descriptive statistics. In addition, the 1997 guidance compares parametric and nonparametric tests, 
recommends appropriate methods for routine analyses, and provides numerous examples of the 
application of various statistical tests. Additional resources for data analysis approaches are also available 
in various Tech Notes and other publications (see References). 

7.2 Overview of Statistical Methods 
A wide range of parametric and nonparametric methods exists for analyzing environmental data. In some 
cases, graphical methods will be suitable to meet analysis objectives; more rigorous statistical analysis 
approaches may be best otherwise. This section provides a brief overview and summary of key features of 
these various methods. Readers should consult the 1997 guidance (USEPA 1997b) and additional sources 
(e.g., statistics textbooks and software packages) for greater detail. 

Recommended statistical methods are summarized in Table 7-1 through Table 7-6 based on watershed 
project phase or need because experience indicates that this type of grouping will be practical for many 
involved in such efforts. Methods in these tables are recommended, but the tables do not include all 
possible alternative approaches. Additional discussion and illustrative examples follow in sections 7.3 
through 7.8. Because of its importance to many watershed projects, especially those addressing TMDLs, 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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pollutant load estimation is addressed separately in section 7.9. While most of the methods described in 
this chapter are more commonly applied to water chemistry, flow, and precipitation data, many can also 
be applied to biological data as well. Recommended approaches for analyzing biological data are 
described in detail in chapter 4, and some examples are also provided in this chapter. 

7.2.1 Exploratory Data Analysis and Data Transformations 
It is often necessary to work with a mix of information and data during the initial stages of watershed 
projects. A major first task involves gathering and organizing available information and data, followed by 
an initial examination of the data to help identify water quality problems, pollutants, sources, and 
pathways. Exploratory data analysis techniques are well suited to this project phase, and should also be 
applied as a first step to all data subsequently collected by the project. Exploratory data analysis is also a 
critical first step in beginning to analyze water quality data from watershed projects that are underway, 
before undertaking more complex analysis. 

Exploratory data analysis provides basic information about the data record, including the data distribution 
and an assessment of missing and extreme values. The presence of autocorrelation and seasonal cycles 
should also be evaluated. EDA can also be useful to examine clusters in the data or relationships between 
variables and/or sample locations. 

Table 7-1 summarizes exploratory data analysis methods by analytical objective. The type of method 
(parametric, nonparametric, graphical), basic data requirements (e.g., distribution, independence), and 
major cautions and concerns are also included in the table. 

Table 7-1. Exploratory data analysis methods (see discussion, section 7.3) 

Analytical Objective Recommended Method 
Method 
Type* 

Data 
Requirements Major Cautions and Concerns 

Describe behavior of 
variable(s) 
 

Univariate statistics (e.g., 
range, mean, median, 
interquartile range, variance) 

P, N Minimal  Mean is sensitive to extreme values; 
median may be preferred measure of 
central tendency. 

Evaluate distribution and 
assumptions of 
independence and 
constant variance  

Plots (histogram, probability, 
lag-n autocorrelation, 
cumulative distribution 
functions); skewness, kurtosis; 
Durbin-Watson statistic to 
detect presence of 
autoregressive lag 1 pattern; 
Shapiro-Wilk test; 
Kolmogorov-Smirnov test  

P, N, G Minimal to 
moderate 

Data transformations to satisfy likely 
statistical testing assumptions should 
be examined. 

Autocorrelation functions (ACF) which 
examine auto correlation at each lag 
require equal time-space data and 
appropriate software. 

Identify extreme values 
and anomalies 

Plots (e.g., time series, 
boxplots) 

Compute frequency or 
proportion of observations 
exceeding threshold value; 
cumulative frequency or 
duration plots 

G, P, N Minimal Outliers should not be deleted if error 
cannot be confirmed. 
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Analytical Objective Recommended Method 
Method 
Type* 

Data 
Requirements Major Cautions and Concerns 

Observe seasonal or 
other cycles  

Plots (time series, seasonal 
boxplots) 

G Minimal More intensive techniques are 
generally required to confirm and 
quantify trends. 

Examination of autocorrelation 
pattern 

  Use software that can generate 
autocorrelation function (ACF) graphs 
(see section 7.3.6). 

Find clusters or 
groupings 

Cluster analysis, principal 
components analysis, 
canonical correspondence 
analysis, discriminant function 
analysis  

P, N, G  Factors determining groupings may be 
difficult to discern or interpret. 

Preliminary comparison 
of two or more locations 
or time periods 

Boxplots G Minimal Visual comparisons should be 
confirmed by numerical tests. 

Examine relationships 
between variables 

Correlation, regression P Data must be 
normally 
distributed to 
apply parametric 
analysis 

Graphical analysis should be used to 
confirm and understand numerical 
correlation coefficient. Correlation does 
not guarantee causation. 

Spearman’s rho or rank 
correlation coefficient 

N Can be used 
when both 
independent and 
dependent 
variables are 
ordinal or when 
one variable is 
ordinal and the 
other is 
continuous   

Bivariate scatterplots 
LOWESS smoother 

G Minimal Visual comparisons should be 
confirmed by numerical tests. 

*Key to Method Type: G = Graphical, N = Nonparametric, P = Parametric 

Table 7-2 summarizes methods that can be applied to adjust (e.g., transform) data based on the 
requirements of methods (e.g., normal distribution required for parametric analyses) to be used in the next 
phase of data analysis. This table also identifies methods that can be used to address problems caused by 
unexpected events, including washed out monitoring equipment, floods, droughts, ice, failed BMP 
implementation plans, and equipment and laboratory errors. 
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Table 7-2. Methods for adjusting data for subsequent analysis (see discussion, section 7.3) 
Analytical 
Objective Recommended Method 

Method 
Type* Data Requirements Major Cautions and Concerns 

Obtain a 
normal 
distribution (for 
parametric 
approaches) 

log10 and loge (ln) are most 
commonly used transformations in 
water resources 

P Original data values must 
be positive and non-zero. 

Other transformations (e.g., Box-
Cox) may be required to achieve 
normal distribution. Very small 
numbers and legitimate zero 
values may require a different 
transformation (e.g., log10(value 
+ n). Transformations will not 
correct issues of independence. 
Back-transformations may be 
difficult to interpret. 

arc-sine square root transformation P Used for proportions  
If distribution assumptions cannot 
be met, adopt methods resistant to 
errors in results caused by 
deviations from the assumption of 
normality  

N Minimal Nonparametric procedures may 
still have other assumptions that 
must be met for usage. 

If distributional assumptions can 
be met, then parametric tools 
tend to be more powerful. 

Accommodate 
extreme values 

Use methods resistant to errors in 
results caused by extreme values 
such as: nonparametric trend tests 
or frequency analyses 

N, G Moderate If the data are missing due to 
right censoring (too high to 
measure), techniques discussed 
in section 7.4 should be 
considered. 

Data stratification (e.g., by seasons, 
base flow, storm, and floods)  

 Moderate  

Use covariate/ explanatory variable 
such as flow to help ‘explain’ the 
influence of extreme values 

   

Utilize log transformed data to 
minimize skewness caused by the 
extreme values 

P Minimal  

Manage 
missing data 

Data aggregation to create uniform 
time intervals by averaging or using 
the median value 

P Minimal Missing values are ignored in 
most nonparametric and 
parametric tests; however, some 
tests require equal spacing of 
observations. Data aggregation 
to accommodate missing data or 
changes in data frequency must 
be done with care.  

Estimate missing values based 
upon regression relationship from 
other sites or events 

 Regression relationship 
with data from similar 
basin (e.g., flow). 
Sometimes it may also be 
appropriate to use the 
flow/concentration 
relationship at the same 
station to estimate missing 
concentration data 

Only use when the data meet 
the assumptions for regression 
analysis and the sample size is 
large enough that the regression 
relationship is reliable. 
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Analytical 
Objective Recommended Method 

Method 
Type* Data Requirements Major Cautions and Concerns 

Adjust for 
autocorrelation 

Aggregation of data to less frequent 
observations 

N Minimal Aggregation must be consistent 
(e.g., monthly mean of n daily 
observations), not mix of 
different sample frequencies. 

Use of parametric time series 
analysis techniques available in 
many statistical software tests  

P Generally equally time-
space data observations 

Software may correct for both 
autocorrelation and seasonality. 

Adjust the standard error for the 
trend (difference or slope) to 
accommodate for the reduced 
effective degrees of freedom 

 Need to calculate the 
autocorrelation coefficient 
at lag 1 for this adjustment 
(see section 7.3.6)  

 

Adjust for 
seasonality or 
other cycles 

Use non-parametric trend tests that 
adjust for seasonality 

 Generally the month of 
year is needed for the 
input data set 

 

Add explanatory variables that 
‘explain’ the season affect 

 e.g., add data columns 
representing seasonal 
components for seasonal 
cycle (e.g., sin/cos terms) 
or monthly indicator 
variables 

 

Use time series models that 
incorporate a lag term(s) to 
incorporate for seasonal cycles into 
statistical models 

   

*Key to Method Type: G = Graphical, N = Nonparametric, P = Parametric 

7.2.2 Dealing with Censored Data 
Censored values are usually associated with limitations of measurement or sample analysis, and are 
commonly reported as results below or above measurement capacity of the available analytical 
equipment. Table 7-3 summarizes techniques to use when dealing with censored data. 

Table 7-3. Methods to deal with censored data (see discussion, section 7.4) 
Analytical 
Objective Recommended Method 

Method 
Type* Data Requirements 

Major Cautions and 
Concerns 

Accommodate 
censored data (i.e., 
values less than 
detection or reporting 
limits) 

Use parametric (e.g., 
maximum likelihood 
estimation (MLE) and 
robust regression on 
order statistics (ROS)) or 
nonparametric procedures 
designed to 
accommodate censored 
data. 

P, N, G Knowledge about analytical 
detection limits, practical 
quantitation limits, and data 
reporting conventions is 
required to interpret the 
meaning of censored data. 
 

Although common, substitution 
of half the detection limit is not 
recommended as more robust 
tools are readily available.  

*Key to Method Type: G = Graphical, N = Nonparametric, P = Parametric 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-6 

 
  

7.2.3 Data Analysis for Water Quality Problem Assessment 
Problem assessment is generally considered the first phase of a watershed project. Data analysis at this 
stage typically involves using historical data to assess whether water quality standards are being met or 
whether designated beneficial uses of waters are threatened, and the causes (e.g., pollutants) and sources 
of identified problems. More refined problem assessment will include determination of pollutant 
pathways and critical areas needing restoration or BMPs. Methods to support these types of analyses are 
summarized in Table 7-4. 

Table 7-4. Data analysis methods for problem assessment (see discussion, section 7.5) 
Analytical 
Objective Recommended Method 

Method 
Type* Data Requirements Major Cautions and Concerns 

Summarize 
existing 
conditions 

Univariate statistics (e.g., mean, 
median, range, variance, interquartile 
range) for different sampling 
locations, time series analysis for 
long-term trends and seasonality, and 
regression analysis comparing 
pollutant concentrations or loads to 
hydraulic variables 

P,N Minimal to moderate To compare locations within or 
across watersheds, data from 
different locations must be 
consistent and comparable 
(e.g., synoptic survey, multiple 
sampling stations). 

Boxplots and/or time series plots for 
different sampling locations 

G 

Assess 
compliance with 
water quality 
standards 

Identification of extreme values with 
boxplots or time series plots; 
calculation of means (arithmetic or 
geometric) over specific time 
period(s)  

P Minimal to moderate Criteria for determining 
impairment vary (e.g., single 
observation exceedance vs. 
geometric mean over n 
observations); both monitoring 
program and data analysis 
must be tailored to regulatory 
requirements. 

Frequency or probability plots, 
duration curves 

G 

Identify major 
pollutant sources 

Correlation or regression analysis or 
Kendall’s Tau for monotonic 
association of water quality 
constituent(s) vs. subwatershed 
characteristic(s) (e.g., total P 
concentration vs. manured acres) 

P, N, G Concurrent data 
from monitored 
subwatersheds: 
subwatershed land 
use and/or 
management data 

Correlation does not guarantee 
causation; consider transport 
and other pollutant delivery 
mechanisms. 

Compare boxplots or bivariate 
scatterplots from monitored 
subwatersheds with distinctive land 
use and/or management; ANCOVA 
analysis 

G, P 

Define critical 
areas 

t-Test, ANOVA, Kruskall-Wallis, 
cluster analysis to identify significant 
differences in pollutant 
concentration/load among multiple 
sampling points 

P, N Concurrent data 
from monitored 
subwatersheds:para
metric or 
nonparametric 
analysis can be used 
depending on data 
distribution 

Conditions determining 
pollutant generation (e.g., storm 
event, season, management 
schedule) must be considered 
in drawing conclusions about 
critical areas. Modeling may be 
useful. 

*Key to Method Type: G = Graphical, N = Nonparametric, P = Parametric 
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7.2.4 Project Planning Data Analysis 
Project planning involves both land treatment and monitoring design. Decisions regarding project 
duration, BMP and restoration needs and scheduling, and implementation tracking and monitoring should 
all be supported by information and appropriate analysis. The quality of information available will vary 
from project to project. In many cases, the analysis and decisions will have to rely on historical data 
(perhaps collected for other purposes) or on data from other sites in the region. The methods summarized 
in Table 7-5 are recommended to assist with various aspects of project planning. 

Table 7-5. Data analysis methods for project planning (see discussion, section 7.6) 
Analytical 
Objective Recommended Method 

Method 
Type* Data Requirements Major Cautions and Concerns 

Determine pollutant 
reductions needed to 
meet water quality 
objectives 

Mass balance/TMDL 
Receiving waterbody 
relationships 
Load-duration curves 
Reference watershed 

P, G   

Estimate BMP 
treatment needs 

Compare estimated 
pollutant reduction 
efficiencies of planned 
BMPs with reductions 
needed 

P Appropriate local or 
published values on BMP 
pollutant reduction 
efficiencies 

Published efficiencies do not 
generally account for interactions 
in multiple-BMP systems or 
pollutant transport or delivery 
issues beyond edge of field/BMP 
site. Modeling may be a better 
approach. 

Estimate minimum 
detectable change 
(MDC) 

MDC calculation (Spooner 
et al. 2011a) 

P Mean and variance of 
water quality variable(s) 
of interest; parameters of 
planned monitoring 
program (e.g., sampling 
frequency) 

If MDC is larger than anticipated 
response to treatment, may need 
to re-evaluate extent of planned 
land treatment and/or duration of 
water quality monitoring. 

If data are unavailable from 
subject watershed, data from 
elsewhere must be used. 

Locate monitoring 
stations 

Identify major pollutant 
sources, critical areas as in 
Table 7.5 if data are 
available 

P Concurrent data from 
subwatersheds (e.g., 
from a synoptic survey) 

Conditions determining pollutant 
generation (e.g., storm event, 
season, management schedule) 
must be considered. 

Target land areas of 
particular land 
use/management and/or 
expected treatment 
implementation 

G Land use and 
management data, 
estimates of treatment 
adoption 

Station location depends on many 
other factors, including project 
objectives, monitoring design, and 
site requirements. 

*Key to Method Type: G = Graphical, N = Nonparametric, P = Parametric 

7.2.5 BMP and Project Effectiveness Data Analysis 
Table 7-6 includes recommended methods for assessing the effectiveness of BMPs and watershed 
projects. In general, the analytical objective of both kinds of efforts is to document change in pollutant 
concentrations or loads or both in response to BMP implementation. These methods are linked to 
monitoring designs that are described in section 2.4. Methods for assessing BMP and project 
effectiveness using biological data are presented in chapter 4. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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Table 7-6. Data analysis methods for assessing BMP or watershed project effectiveness  
(see discussion, sections 7.7 and 7.8) 

Analytical 
Objective 

Monitoring Design 
Used 

Recommended 
Method 

Method 
Type* Data Requirements 

Major Cautions and 
Concerns 

BMP efficiency Plot ANOVA P Data must meet 
assumptions for 
parametric statistics to 
apply; otherwise use 
nonparametric test 

Plot data may not easily 
extrapolate to field or 
watershed scale. 

Kruskal-Wallis N 

Input/output Paired t-Test, 
Wilcoxon, or Mann-
Whitney tests of input 
vs. output EMCs 
(Event Mean 
Concentrations) or 
loads  

P, N Data must meet 
assumptions for 
parametric statistics to 
apply; otherwise use 
nonparametric test 

Representing change in 
load or concentrations as 
a percent reduction may 
not be representative for 
low input concentrations 
or loads. 

Effluent probability N 
Watershed project 
effectiveness 

Paired watershed ANCOVA, paired t-
Test, Wilcoxon Rank 
Sum, Mann-Whitney 

P, N Data from control and 
treatment watersheds 
must exhibit significant 
linear relationship. 
Conditions (e.g., 
precipitation, 
discharge) must be in 
similar range during 
calibration and 
treatment periods. 

Quality of relationship 
between control and 
treatment watersheds 
determines level of 
change that can be 
detected. Addition of 
covariates to paired 
regression model may 
improve ability to 
document response to 
treatment. 

Above/below-
Before/after 

t-Test of input vs. 
output EMCs or loads, 
ANCOVA, Wilcoxon 
Rank Sum, Mann-
Whitney 

P, N Data must meet 
assumptions for 
parametric statistics to 
apply; otherwise use 
nonparametric test 

Change in pollutant 
concentration or load 
measured at the below 
station may be difficult to 
detect if concentrations or 
loads at the above station 
are high. 

Single Watershed 
Monotonic 
Trend 

Linear regression on 
time 
Multiple linear 
regression on time 
and covariates 
Linear regression on 
time, covariates, and 
periodic functions 

P Numerous techniques 
are available, 
depending on 
objectives, available 
data on covariates, 
seasonality 

Trend analysis is most 
effective with data 
sampled consistently at 
fixed locations and fixed 
time intervals for period 
sufficient to overlap 
seasonal or management 
cycles that do not 
represent real trends. 

Covariates such as 
stream flow, season, etc. 
are essential to assist 
with isolating trends due 
to BMPs. 

Mann-Kendall 
Mann-Kendall on 
residuals from 
regression on 
covariates 
Seasonal Kendall 

N Numerous techniques 
are available, 
depending on 
objectives, available 
data on covariates, 
seasonality 
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Analytical 
Objective 

Monitoring Design 
Used 

Recommended 
Method 

Method 
Type* Data Requirements 

Major Cautions and 
Concerns 

 Single Watershed 
Step Trend 

t-Test before and after 
step, Wilcoxon Rank 
Sum, Mann-Whitney 

P, N Data must meet 
assumptions for 
parametric statistics to 
apply; otherwise use 
nonparametric test 

Selection of step change 
point in time must be 
made a priori and related 
to watershed activities, 
e.g., onset of treatment. 

Covariates such as 
stream flow, season, etc. 
are essential to assist 
with isolating trends due 
to BMPs. 

Multiple watersheds t-Test or Wilcoxon 
Rank-Sum test 

ANOVA or Kruskal-
Wallis test 

Regression analysis  

P, N Data must meet 
assumptions for 
parametric statistics to 
apply; otherwise use 
nonparametric test 

Watersheds need to fall 
into 2 groups (e.g., 
treated and untreated) for 
t-Test or Wilcoxon Rank-
Sum test. 

For more than two groups 
use ANOVA or Kruskal-
Wallis. 

Boxplots of results 
from watershed 
groupings (e.g., 
treated/untreated) 

G Minimal Visual comparisons 
should be confirmed by 
numerical tests. 

Linking land 
treatment to water 
quality changes 

Correlation, regression 
of pollutant 
concentration or load 
on land treatment 
metric(s) 

P, N Requires quantitative 
monitoring data on 
land treatment. Use of 
explanatory variables 
(e.g., precipitation, 
animal populations) 
may strengthen 
analysis. 

Water quality and land 
treatment data must be 
collected on comparable 
spatial and temporal 
scales. Monitored 
pollutants must match 
pollutants addressed by 
implemented BMPs. 

*Key to Method Type: G = Graphical, N = Nonparametric, P = Parametric 

7.2.6 Practice Datasets 
This chapter presents a wide range of parametric and nonparametric methods, including several 
illustrative examples. Because practice is the best way to learn how to apply these methods, example 
datasets and eight problems are provided to allow readers to test their skills. Using their own statistics 
software, readers are encouraged to apply the tests indicated in Table 7-7 to the example datasets listed in 
the fourth column. The objective and statistical tests are listed in the second and third columns of the 
table. The specific problems and the answers are given in the files identified in the last column. 
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Table 7-7. Practice datasets 
Problem 
Number Objective Test 

Dataset in 
Sampledata.xlsx 

Problem and Answer 
File 

1 Test for conformance to normal 
distribution 

Graphical, skewness, kurtosis, 
Shapiro-Wilk, Kolmogorov 1 normality.pdf 

2 Characterize data Descriptive statistics 1 description.pdf 

3 Compare two groups 
t-Test 

1 2groups.pdf 
Wilcoxon/Kruskal-Wallace 

4 Compare input/output for a 
BMP 

Paired t-Test 
2 pairedtests.pdf 

Wilcoxon Rank Sum Test 

5 Compare three groups 
ANOVA 

1 3groups.pdf 
Kruskal-Wallace 

6 Examine relationships between 
variables/stations 

Correlation 
1 correlationregress.pdf 

Simple linear regression 

7 
Assess change due to 
treatment in paired-watershed 
design 

ANCOVA 1 pairedancova.pdf 

8 Calculate MDC for a single 
station Minimum detectable change 3 mdc.pdf 

All files are available at: https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-and-evaluating-nonpoint-source-watershed 

7.3 Exploratory Data Analysis (EDA) and Data Adjustment 
After a monitoring program is up and running, it is never too soon to begin to evaluate the data. Basic 
data evaluation should not wait until the end of the project or when a report is due; regular examination of 
the data should be part of ongoing project activities. A carefully designed monitoring program will have 
the right kind of data, collected at appropriate times and locations to achieve the objectives, and a plan for 
analyzing the data. 

Describing and summarizing the data in a way that conveys their important characteristics is one purpose 
of EDA. When deciding how to analyze any data set, it is essential to consider the characteristics of the 
data themselves. Evaluation of characteristics like non-normal distribution and autocorrelation will help 
determine the appropriate statistical analysis. Some common characteristics of water quantity and quality 
data (Helsel and Hirsch 2002) include: 

 A lower bound of zero – no negative values are possible. 

 Presence of outliers, extreme low or high values that occur infrequently, but usually somewhere in 
the data set (outliers on the high side are common). 

 Skewed distribution, due to outliers or influential data. 

 Non-normal distribution. 

 Censored data – concentration data reported below some detection limit or above a certain value. 

 Strong seasonal patterns. 

 Autocorrelation – consecutive observations strongly correlated with each other. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-and-evaluating-nonpoint-source-watershed
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 Dependence on other uncontrolled or unmeasured variables – values strongly co-vary with such 
variables as streamflow, precipitation, or sediment grain size. 

As such, the overall goal of data exploration is to uncover the underlying structure of a data set and set the 
stage for more detailed analysis, including hypothesis testing. Specific objectives for data exploration 
might include: 

 To find potential problems with data quality such as data entry error, lab or collection errors 

 To find extreme values and potential anomalies 

 To describe the behavior of one or more variables 

 To test distribution and assumptions of independence and constant variance 

 To see cycles and trends 

 To find clusters or groupings 

 To make preliminary comparisons of two or more locations or time periods 

 To examine relationships between variables 

At the start, check the data for conformity with original plans and QA/QC procedures. Use the approved 
project Quality Assurance Project Plan (QAPP) as a guide; see section 8.3 for details on preparing a 
QAPP. A key part of EDA is to verify the data entered in the data sets are valid and not anomalies due to 
data entry, lab, or collection errors. 

Understanding how the data behave with respect to such features as distribution(s), cycles, clusters, 
seasonality, and autocorrelation assists with selecting the appropriate statistical tests to evaluate 
achievement of project goals. Data analysis to address project goals will involve more thorough statistical 
analysis that will be guided by understanding of the data set through EDA. 

A secondary reason for doing exploratory data analysis is to start to make sense of the data actually 
collected. The purpose of EDA is to get a feel for the data, develop ideas about what it can tell, and how 
to draw some preliminary conclusions. EDA is similar to detective work – sifting through all the facts, 
looking for clues, and putting the pieces together to find suggestions of meaning in the data. 

This process of data exploration differs from traditional hypothesis testing. Testing of hypotheses always 
requires some initial assumption or prediction about the data, such as “The BMP will reduce phosphorus 
loads.” Although formulating and testing hypotheses is the foundation of good data analysis, the first pass 
through of the data should not be too narrowly focused on testing a single idea. Hypothesis testing is 
discussed in section 7.6.1, which focuses on data analysis for project planning. EDA is an approach to 
data analysis that postpones the usual assumptions about what kind of model the data follow in favor of 
the more direct approach of allowing the data themselves to reveal their underlying structure. EDA uses a 
variety of techniques, both numerical and graphical, to open-mindedly search for new, perhaps 
unexpected, insights into the data. Approaches to EDA for aquatic system biological data have been 
described by EPA as part of the Causal Analysis/Diagnosis - Decision Information System (CADDIS) 
(USEPA 2010). 

Data exploration is a necessary first step in analyzing monitoring data. Unless initial exploration reveals 
indications of patterns and relationships, there is unlikely to be something for further analysis to confirm. 

http://www.epa.gov/caddis/index.html
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J. W. Tukey (1977), the founder of exploratory data analysis, said, “EDA can never be the whole story, 
but nothing else can serve as the …first step.” 

For more information, refer to Tech Notes 1: Monitoring Data Exploring Your Data, The First Step 
(Meals and Dressing 2005). 

7.3.1 Steps in Data Exploration 
Data exploration is a process of probing more deeply into the dataset, while being careful to stay 
organized and avoid errors. Here are some typical steps in the process of EDA (modified from Jambu 
1991), although not all of them may apply to every situation. 

1. Data management. In the process of working with the data, files will be created. These files 
should be updated, checked, and validated at regular intervals. The importance of data screening 
and validation cannot be overemphasized. This should always be done before embarking on 
specific analyses, plotting, or other procedures. Be as sure as possible that the data are free from 
entry errors, typos, and other mistakes before proceeding. 

2. One-dimensional analysis. The first step in really exploring the data is often to simply describe 
or summarize the information one variable at a time, independent of other variables. This can be 
done using basic statistics on range, central tendency, and variability, or with simple graphs like 
histograms, pie charts, or time plots. This kind of information is always useful to put data in 
context, even though more intensive statistical analysis will be pursued later. 

3. Two-dimensional analysis. Relationships between two variables are often of great interest, 
especially if there is a meaningful connection suspected (such as between suspended sediment 
and phosphorus) or cause and effect process (such as between rainfall and streamflow). 
Relationships between two sampling locations (such as treatment and control watersheds) or 
between two time periods (like spring snowmelt and summer) are often of interest. Graphical 
techniques like scatter plots and numerical techniques like correlation are often used for this 
purpose. 

Because graphs summarize data in ways that describe essential information more quickly and completely 
than do tables of numbers, graphics are important diagnostic tools for exploring the data. There is no 
single statistical tool that is as powerful as a well-chosen graph (Chambers et al. 1983). Enormous 
amounts of quantitative information can be conveyed by graphs and the human eye-brain system is 
capable of quickly summarizing information, simultaneously appreciating overall patterns and minute 
details. Graphs will also be essential in ultimately conveying project results to others. With computers and 
software available today, there are no real constraints to graphing data as part of EDA. Graphical display 
options are described in section 4.3 of the 1997 guidance (USEPA 1997b). 

There are more advanced steps in data exploration including analysis of multiple variables and cluster 
analysis (section 7.3.8). Also, see chapter 4 of the 1997 guidance (USEPA 1997b) for background on 
some of these methods. 

The project goals and the type of monitoring should guide exploration. If monitoring occurs at a single 
point while upstream BMPs are implemented gradually, trends may be of the greatest interest. If sampling 
for phosphorus above and below a land treatment area, a comparison of phosphorus concentrations at the 
two stations might be necessary. For an erosion problem, a relationship between streamflow and 
suspended solids concentrations before and after land treatment might be of interest. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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The following sections present some specific techniques for exploring data. 

7.3.2 Describe Key Variable Characteristics 
In most cases, the data should be examined to summarize key characteristics and to determine if the data 
satisfy statistical assumptions required for parametric statistical analyses. Data that do not meet 
parametric statistical assumptions should be transformed or nonparametric tests should be used. Key 
characteristics that are meaningful include central tendency, variability, and distribution. 

7.3.2.1 Central Tendency 
 The mean is computed as the sum of all values divided by the number of values. The mean is 

probably the most common data summary technique in use; however, an extreme value (either high 
or low) has much greater influence on the mean than does a more ‘typical’ value. Because of this 
sensitivity to extremes, the mean may not be the best summary of the central tendency of the data. 

 The median, or 50th percentile, is the central value of the distribution when the data are ranked in 
numerical order. The median is the data value for which half of the observations are higher and half 
are lower. Because it is determined by the order of observations, the median is only slightly 
affected by the magnitude of a single extreme value. When a summary value is desired that is not 
strongly influenced by a few extremes, the median is preferable to the mean. 

Both the mean and median should be calculated for comparison. 

7.3.2.2 Variability 
 The sample variance, and its square root the standard deviation, are the most common measures 

of the spread (dispersion) of a set of data. These statistics are computed using the squares of the 
difference between each data point and the mean, so that outliers influence their magnitudes 
dramatically. In data sets with major outliers, the variance and standard deviation may suggest a 
much greater spread than exists for the majority of the data. This is a good reason to supplement 
numerical statistics with graphical analysis. 

 The coefficient of variation (CV), defined as the standard deviation divided by the mean, is a 
relative measure of the variability (spread) of the data. The CV is sometimes expressed as a percent, 
with larger values indicating higher variability around the mean. Comparing the CV of two data 
groups can suggest their relative variability. 

 The interquartile range (IQR) is defined as the 75th percentile minus the 25th percentile. Because it 
measures the range of the central 50 percent of the data, it is not influenced at all by the 25 percent 
of the data on either end and is relatively insensitive to outliers. 
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  7.3.2.3 Skewness 
Water resources data are usually skewed, meaning that the data values are not symmetric around the mean  
or median, as extreme values extend out  farther in one direction.  Streamflow data, for example, are 
typically right-skewed because of occasional high-flow events (Figure 7 -1).  When data are skewed, the 
mean is not equal to the median, but is  pulled toward the long tail  of the distribution by the effects of the  
extreme values. The standard deviation  is also inflated by the extreme values. Because highly skewed  
data restrict the ability to  use hypothesis tests that assume the data have a normal distribution, it is useful  
to evaluate the skewness of the data. The coefficient of skewness (g) is a common measure of  skewness;  
a right-skewed distribution has a positive g and a left-skewed distribution has a negative g. There are 
multiple measures of skewness with varying  possible ranges. Interpretation of skewness values calculated  
by Excel, for  example, is aided by estimating the standard error of skewness with the following  
simplified1  equation for large (<5  percent  difference  from  true  value  for  n≥30) samples (Elliott 2012):  

   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆 = ට6ൗ𝑆𝑆

where n is the sample size.  For n=24,  the standard error of skewness is 0.5  using the simplified equation. 
A skewness value of more than twice this amount (i.e.,  less than  -1 or greater than 1 in this case) indicates 
a skewed distribution, but  a value between  -1 and 1 is not proof that the data are normally distributed. 
Other tests such as goodness-of-fit tests  (below)  must also be performed to determine if the distribution is  
normal.  

Figure  7-1.  Right-skewed distribution  

1  The  true  standard  error  of  skewness  is  calculated  as:   ට6𝑆𝑆(𝑆𝑆 − 1)൘(𝑆𝑆 − 2)(𝑆𝑆 + 1)(𝑆𝑆 + 3) 
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7.3.2.4 Data Distribution 
Many common statistical techniques for hypothesis-testing (parametric tests) require, among other 
characteristics, that the data be normally distributed. It is common practice to apply tests such as the 
Shapiro-Wilk test or the Kolmogorov-Smirnov (KS) test to evaluate the normality of the data; both of 
these tests are commonly available in statistical software. The probability plot correlation coefficient 
(PPCC) can also be used to test for normality. PPCC is essentially a correlation coefficient between the 
data values and their normal score (i.e., data on probability paper) and the interpretation of the PPCC is 
similar to that for the correlation coefficient r. This procedure is outlined by Helsel and Hirsch (2002) in 
section 4.4 and in Appendix Table B.3 which gives critical values for accepting/rejecting the normal 
assumption. 

Histograms are familiar graphs, where bars are drawn whose height represents the number or fraction of 
observations falling into one of several categories or intervals (see Figure 7-1). Histograms are useful for 
depicting the shape or symmetry of a data set, especially whether the data appear to be skewed. However, 
histogram appearance depends strongly on the number of categories selected for the plot. For this reason, 
histograms are most useful to show data that have natural categories or groupings, such as fish numbers 
by species, but are more problematic for data measured on a continuous scale such as streamflow or 
phosphorus concentration. 

Quantile plots (also called cumulative frequency plots) show the percentiles of the data distribution. Many 
statistics packages calculate and plot frequency distributions; instructions for manually constructing a 
quantile plot can be found in Helsel and Hirsch (2002) and other statistics textbooks. Quantile plots show 
many important data characteristics, such as the median or the percent of observations less than or greater 
than some critical threshold or frequency. With experience, an analyst can discern information about the 
spread and skewness of the data. Figure 7-2 shows a quantile plot of E. coli bacteria in a stream; the 
frequency of violation of the Vermont water quality standard can be easily seen (the standard was 
exceeded ~65 percent of the time). Flow and load duration curves (see section 7.9.3) are useful tools for 
visualizing the distribution of streamflows or pollutant loads across a full range of conditions. 

http://pubs.usgs.gov/twri/twri4a3/
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Figure 7-2. Quantile plot or cumulative frequency plot of E. coli data,  Berry Brook, 1996 
(Meals 2001) 

A boxplot presents a schematic of essential data characteristics in a simple and direct way: central 
tendency (median), spread (interquartile range), skewness (relative size of the box halves), and the 
presence of outliers are all indicated in a simple picture. There are many variations and styles of boxplots, 
but the standard boxplot (Figure 7-3) consists of a rectangle spanning the 25th and 75th percentiles, split by 
a line representing the median. Whiskers extend vertically to encompass the range of most of the data 
(e.g., the 5th and 95th percentiles), and outliers beyond this range are shown by dots or other symbols. The 
definition of whiskers and outliers may differ among graphing programs; standard definitions can be 
found in statistics textbooks (e.g., Cleveland 1993; Helsel and Hirsch 2002). When boxplots are 
presented, the definitions of the rectangle, whiskers, and outlier symbols should be clearly specified. 
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Figure 7-3. Boxplot of weekly TP concentration, Samsonville Brook, 1995 (Meals 2001) 
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7.3.2.5 Transformations to Handle Non-normal Data with Parametric Statistical Tests 
Evaluations conducted thus far may suggest that the data do not conform to a normal distribution. In cases 
where it is desirable or convenient to use statistical tools that require normally distributed data sets or 
have a constant variance, transformation may reduce skewness and result in a data set that is more 
normally distributed. Transformation is simply defined as applying the same mathematical operation to all 
records in the dataset. Helsel and Hirsch (2002) provide a summary of common transformations. 
Statistical software packages will often come with Box-Cox transformation tools that allow the analyst to 
identify the best transformation for achieving normality, although logarithmic (e.g., log10 or loge) 
transformation is certainly the most common strategy (Box and Cox 1964). Regardless of which 
transformation is used, the data analyst should verify that the transformation results in a dataset that 
satisfies applicable assumptions. 

Subsequent analysis of log-transformed data must be done with care, as quantities such as mean and 
variance calculated on the transformed scale are often biased when transformed back to the original scale. 
The geometric mean (the mean of the log-transformed data back-transformed to the arithmetic scale), for 
example, differs from the mean of the untransformed distribution. Furthermore, results of statistical 
analysis may be more difficult to understand or interpret when expressed on the transformed scale. 
Typically, when analysis is performed on the log transformed data, the final statistical results are 
converted to express the results as a percentage change (see Spooner et al. 2011a for additional details on 
this approach). 

Do not assume that a transformation will solve all the problems with the data distribution. Always test the 
characteristics of the transformed data set again. Violations of the assumption of a normal distribution can 
lead to incorrect conclusions about the data when parametric tests are used in subsequent hypothesis 
testing. With that said, some parametric trend tests are robust to some deviation from normality. From a 
practical standpoint it is best to be consistent. For example, if a log transformation is merited for TP 
concentrations at most locations in a particular data set, then log transforming all TP for all site locations 
is a practical course of action. 

If transformed data cannot satisfy the assumptions of parametric statistical analysis, consider 
nonparametric techniques for data analysis. With regard to hypothesis testing, there are a host of 
nonparametric tests that are robust against non-normality. These tests are often based on the ranks of the 
data and the influence of a few extreme values is reduced. However, keep in mind that while the 
normality assumption is relaxed, nonparametric tests have other assumptions (constant variance and 
independence of data observations) that must be met for their results to be valid. If distributional 
assumptions can be met, then parametric tools tend to be more powerful. Many nonparametric procedures 
are described in section 4.11.3 in the 1997 guidance and recommended in Table 7-1 through Table 7-6. 

7.3.3 Examination for Extreme, Outlier, Missing, or Anomalous Values 

7.3.3.1 Extremes and Outliers 
Extreme values are frequently encountered in NPS monitoring efforts and include the exceptionally high 
and low flow values associated with floods and droughts, respectively. Suspended sediment 
concentrations may be exceptionally high during spring runoff when cropland fields are bare or when 
streambank slumping occurs. Very low pesticide levels may be observed with increasing time elapsed 
since application on cropland. In some cases, the extremes may be more important for water quality than 
are typical conditions. For example, the extreme values in some lake variables (e.g., Secchi disc readings, 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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turbidity, and pH), the duration of the extreme values, and the season may be the dominant influence on 
the extent to which lakes support designated beneficial uses. In streams, it is often the extreme low 
dissolved oxygen condition that determines the character of the biological community the stream can 
support. Extreme concentrations in toxic contaminants such as pesticides may also be more important 
than the mean values with respect to acute toxicity to aquatic biota. Nevertheless, extreme concentrations 
can have an inordinate effect on some statistical analyses, and the analyst must consider these issues when 
selecting data analysis tools. 

On the other hand, outliers can result from measurement or recording errors and this should be the first 
thing checked (e.g., check lab and field logs). If no error can be found, an outlier should never be rejected 
just because it appears unusual or extreme. All samples considered valid after exploratory analysis 
contain information that should be considered when analyzing monitoring data. Different subsets of the 
same dataset may reveal varying aspects of the condition of the water resource. For example, extreme 
conditions may be most important when considering violations of water quality standards or load 
allocations from a watershed. Annual or monthly loads may not completely illuminate the severity of a 
problem, whereas high loads during extreme flow conditions may account for most of the pollutant load. 
It is commonly observed that the majority of annual pollutant export occurs during a small proportion of 
the time. Identifying these extremes and understanding the conditions under which they occur may be a 
key to understanding and interpreting watershed monitoring results. 

One approach for identifying and summarizing extreme values is to describe the situation by computing 
the frequency or proportion of observations exceeding some threshold value (e.g., a water quality 
criterion). Cumulative frequency or duration plots are also useful to visualize the influence of extreme 
values on a dataset. In addition, determine whether most or all of the extreme values can be attributed to 
certain conditions in the watershed (e.g., spring runoff, cropland tillage). In these cases, it might be more 
useful to stratify the dataset by season or management condition. In this way, monitoring results can be 
analyzed by season, and values that were “extreme” in the dataset as a whole may be more easily 
interpreted in their respective season(s). 

Histograms can be useful to illustrate exceedances of standards, targets, and goals by setting categories or 
classes that are outside the standard or target. Quartile plots and boxplots are also useful tools to evaluate 
the presence of extreme values. 

Boxplots can be a useful visual tool for highlighting extreme values in environmental data. They show 
both the spread and the range of the data. Important values visualized by boxplots include the mean (or 
the median), and standard error limits (or 25th and 75th percentiles). Values falling outside these ‘limits’ 
depict values that are from the tails of the data distribution. 

Plotting the data in sequence with date as the horizontal axis are time series plots. Figure 7-4 shows a time 
series plot of weekly phosphorus concentration data from three stream stations. It is clear that around the 
middle of the year, something occurred that led to dramatic spikes in P concentration at Station 2, a 
phenomenon demanding further investigation. Field investigation revealed concentrated overland flow 
from a new CAFO upstream. 

To analyze data sets with extreme values, consider using non-parametric trend tests. If documenting the 
number or occurrence of extreme values is an objective (e.g., for evaluation of violations of water quality 
standards or pesticide spikes), frequency analyses are useful. Stratifying the data by seasons or flow 
conditions (e.g., base flow, storm flows, and flooding) may be helpful in evaluating conditions and trends 
within each flow regime. Using flow as an explanatory variable/covariate in trend analysis may be helpful 
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to explain the influence/importance of the extreme values. Using the log transformation often minimizes 
the skewness caused by the extreme values and enables the use of parametric trend techniques. If the data 
are missing due to right censoring (too high to measure), techniques discussed in section 7.4 should be 
considered. 
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Figure 7-4. Time plot of weekly TP concentration, Godin Brook, 1999 (Meals 2001) 

7.3.3.2 Anomalous Values 
Plotting the data can also reveal data errors or anomalies. Figure 7-5 shows a time series plot of total 
Kjeldahl nitrogen (TKN) data collected from three Vermont streams. Something happened around May, 
1996 that caused a major shift in TKN concentrations in all three streams. In addition, it is clear that after 
October, no values less than 0.5 mg/L were recorded. In this case, this shift was not the result of some 
occurrence in the watersheds, but an artifact of a faulty laboratory instrument, followed by the 
establishment of a lower detection limit of 0.50 mg/L. Discovery of this fault, while it invalidated a 
considerable amount of prior data, led to correction of the problem in the lab and saved the project major 
headaches down the road. 
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Figure 7-5. Time plot of TKN data from three stream stations, 1995-1996 (Meals 2001) 
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7.3.3.3 Missing Data 
The reality of any watershed project monitoring program is that samples will be missed, equipment will 
fail or be overwhelmed, droughts and floods will occur, and sample analysis limitations will be exposed, 
resulting in missing and extreme (both high and low) values. However, if data are missing because of 
extreme conditions (e.g., streamflow was too high to obtain a measurement or water was so low a sample 
could not be drawn), then missing data may also represent extreme conditions. 

The presence of a few missing values in a data series is not generally a major cause for concern, although 
some parametric tests (e.g., trend analyses that include autocorrelation errors using time series) require 
equal spacing of observations2. One way to cope with extensive missing data is to aggregate data to a 
longer, uniform time interval by averaging or using the median value of a group of data points. Daily 
observations, for example, could be aggregated to weekly means or medians. Such an operation would 
have an additional potential benefit of reducing autocorrelation (see section 7.3.6). A downside to this 
approach, however, is a reduced significance level due to fewer degrees of freedom. Do not aggregate 
data when there is a systematic change in sampling. For example, if the early data were collected as 
monthly observations and the more recent data were collected as quarterly data, it is not correct to 
aggregate the monthly data to quarterly averages and then perform analyses. This is because the averaging 
calculation changes the variability of that portion of the record in comparison to the remainder of the 
record, resulting in a violation of “identically distributed” assumption of most (including nonparametric) 
hypothesis tests. In these cases, the analyst will need to subsample from the more intensely monitored 
data set to best mimic the sampling from the less sampled portion of the data. 

For loading analyses that require flow data, it is expected that the missing flow data due to equipment 
failure could be estimated by evaluating regression relationships with flow from nearby basins. On the 
other hand, flows that exceed the weir capacity or reach a stage so high that the technician cannot access 
the site are exceptional events. Certainly one approach to addressing this data gap is to apply the 
previously mentioned regression relationship with a nearby station. Another approach might be to treat 
these observations as “greater than the maximum flow” and apply methods appropriate for censored data 
described in section 7.4. 

7.3.4 Examination for Frequencies 
For categorical data such as watershed area in different land uses or number of aquatic macroinvertebrates 
in certain taxonomic groups, data can be effectively summarized as frequencies in histograms or pie 
charts. Figure 7-6 shows a pie chart of the percent composition of orders of macroinvertebrates in a 
Vermont stream, clearly indicating that dipterans dominate the community. 

                                                      
2 Some statistical software such PROC AUTOREG in SAS yield valid trend results with autocorrelated data with 
missing data points, as long as the input record contains equal spaced time intervals (e.g., weekly). 
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Figure 7-6. Percent composition of the orders of macroinvertebrates, 
Godin Brook, 2000 (Meals 2001) 

7.3.5 Examination for Seasonality or Other Cycles 
Monitoring data often consist of a series of observations in time, e.g., weekly samples over a year. One of 
the first, and the most useful, things to do with any time series data is to plot it. Plotting time series data 
can provide insight into seasonal patterns, trends, changes, and unexpected events more quickly and 
easily than tables of numbers. 

Figure 7-7 shows a time series plot of E. coli counts in a Vermont stream. The extreme range of the 
counts (five orders of magnitude) and the pronounced seasonal cycle are readily apparent, with the lowest 
counts occurring during the winter. It is easy to see the times of year when the stream violates the water 
quality standard for bacteria. 

 
Figure 7-7. Time series plot of weekly E. coli counts, Godin Brook, 1995-1999 (Meals 2001). 
Red line indicates Vermont WQS of 77 E. coli/100 ml.  
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7.3.6 Autocorrelation 
Because many hypothesis-testing statistical techniques require that residuals from the statistical tests be 
independent, it is useful to check the data set for autocorrelation during EDA. Typically, if the data points 
exhibit autocorrelation, so will the residuals from a statistical test which does not correct for 
autocorrelation. 

Time series data collected through monitoring of water resources often exhibit autocorrelation (also called 
serial correlation or dependent observations) where the value of an observation is closely related to a 
previous observation (usually the one immediately before it). Autocorrelation in water quality 
observations is usually positive in that high values are followed by high values and low values are 
followed by low values. For example, streamflow data often show autocorrelation, as numerous high wet-
weather flows tend to occur in sequence, while low values follow low values during dry periods. 

 

Terms Used in this Section 
Lag: the difference in time steps by which one observation comes after another. The lag value is the 
number of time steps. 

Autocorrelation: the correlation between lagged values in a time series (data collected over equal 
intervals of time, can also be spatial distances) 

Correlation Coefficients, ρj: a set of correlations for each lag. The autocorrelation coefficient for lag 1 
is the correlation between each data in a time series and its previous (lag 1) observation. The 
autocorrelation coefficient, ρj, for lag j is the correlation between each datumin a time series and the 
observation that lags by j time steps. 

Autoregressive: situation where past values (or nearby values for spatial analyses) have an effect on 
current values. For example, when most of the correlation between the lag variables is between each 
current value and the immediately preceding value, it is a first-order autoregressive process denoted 
as AR(1). AR(2) is second order, where previous two values effect the current value, etc. 
Autoregressive, order 1, AR(1) is common for weekly and monthly water quality samples. 

Moving Average: an averaging of a fixed number of consecutive observations, with or without weights. 
Moving average models are denoted MA(1), MA(2), …MA(q) to indicate the order or maximum lag for 
consecutive observations that are averaged. 

ARIMA (autoregressive integrated moving average) models: time series models that include both 
autoregressive terms and/or moving average terms 

Autocorrelation Function (ACF): the set of correlations (e.g., autocorrelation coefficients) between 
each value in a series of values (e.g., xt) and the lagged values within the same series (e.g., xt-1, xt-2, 
etc.). Alternatively stated, this is the pattern of correlation coefficients vs. lag value. This is generally 
depicted as a graph of each lag and its autocorrelation coefficient with a standard error bar to help 
determine the statistical significance of each of the correlation coefficients for each lag. The 
pattern/shape of the ACF, along with the PACF, is used to assist in determining if the data follow an 
AR, MA, or ARIMA pattern, and by what order (lag). For example, a seasonal AR(1) series has a large 
ρ1, with subsequent ρj’s trailing off, and a strong seasonal lag correlation. 

Partial Autocorrelation Function (PACF): the correlation between two variables, taking into account the 
relationships of other variables to these two variables. The PACF for an AR(1) series drops to 0 after 
lag 1). 

http://www.wikipedia.org/wiki/Correlation
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Autocorrelation usually results in a reduction of the effective sample size (degrees of freedom). It 
therefore affects statistical trend analyses and their interpretations. As the magnitude of autocorrelation 
increases, the effective sample size decreases, and the true standard error is therefore greater than if 
autocorrelation is incorrectly ignored. Adjustment for autocorrelation is needed so that the power of 
detecting a difference or trend is not incorrectly inflated. For data sets with high autocorrelation, a larger 
sample size (e.g., longer monitoring duration) than would be necessary in the absence of autocorrelation 
may be required to correctly detect significant changes or trends. 

Autocorrelation is often significant in very frequent data collection, such as that done with recording 
sensors (e.g., temperature, turbidity). Daily, weekly, and monthly samples also exhibit autocorrelation, 
but usually to a lesser extent. The time interval between independent samples differs with the water 
resource and variable. The magnitude of autocorrelation in surface water quality concentrations is usually 
quite large for samples collected more frequently than monthly (Loftis and Ward 1980a and 1980b, 
Lettenmaier 1976, Lettenmaier 1978, Whitfield and Woods 1984). Loftis and Ward (1980a and 1980b) 
verified that some surface water quality samples collected less frequently than once a month may be 
considered independent if the seasonal variation is removed, although Whitfield (1983) found significant 
autocorrelation between stream discharge samples taken as much as 60 days apart. Compared to surface 
water data series, ground water data series tend to retain significant autocorrelation, even with longer 
sample intervals. Similarly, a ground water data series tends to have greater autocorrelation when 
compared to surface water data series taken at the same time intervals. This may be due to slower water 
movement and mixing in ground water as compared to surface waters. 

There are numerical techniques to test for autocorrelation, but a simple graphical method can suggest 
whether data have significant autocorrelation: the lag plot. A lag plot is a graph where each data point is 
plotted against its predecessor in the time series, i.e., the value for day two and the value for day one are 
plotted as an x, y pair, then day three, day two, and so on. Different time lags can be examined. A “lag-1“ 
plot uses each data value paired with its immediate predecessor (t2, t1), a “lag-2” plot uses each data 
value paired with the value observed two steps previously (t3, t1), and so on. Random (independent) data 
should not exhibit any identifiable structure or pattern in the lag plot. Non-random structure in the lag plot 
indicates that the underlying data are not random and that autocorrelation may exist. Figure 7-8 shows a 
lag-1 plot of weekly streamflow data, suggesting that autocorrelation needs to be addressed. 
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Figure 7-8. Lag-one plot of streamflow observations, Samsonville Brook, 1994 (Meals 2001) 
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Autocorrelation can be expressed numerically by calculating the correlation between observations 
separated by j lag time periods. The autocorrelation corresponding to the jth lag is the correlation between 
the observation at a given time and the observation taken j observation periods earlier. It is denoted by ρj 
or ρ(j). For example, for the first lag (j=1), ρ1 represents the autocorrelation of data points one time period 
removed. The time period is a function of the sample frequency and corresponds to the length of time 
between samples (e.g., daily, weekly, monthly). The range of values for ρj is -1 to +1, where +1 represents 
a perfect positive autocorrelation and -1 is a perfect negative correlation. The sample estimate of 
autocorrelation is given by rj (in practice, ρj is often used to depict the sample autocorrelation 
coefficients). 

Time series generally exhibit patterns indicated by the pattern of autocorrelation coefficients at various 
lags. These patterns reveal key characteristics about the data that should be incorporated into subsequent 
trend analyses. For weekly and less frequent water quality sample collection, the autoregressive, lag 1 or 
AR(1) data structure is usually appropriate. In this case, most of the autocorrelation can be explained by 
the correlation between each observation and its previous observation. Moving Average (MA) data 
structures occur when an observation is only related to the observations up to the lag value (q) and not 
observations before3. Rarely is a MA structure alone useful with water quality samples. However, for 
some daily or more frequent sampling, a combination of AR and MA data structures become appropriate, 
known as ARIMA (AutoRegressive Integrated Moving-Average) models. 

One common test for autocorrelation is the Durbin-Watson (DW) test. The DW test is appropriately used 
when the data exhibit first order (lag 1) autoregressive (AR(1)) behavior. AR(1) is common with water 
quality data collected weekly, biweekly, or monthly. Daily or samples collected more frequently usually 
exhibit ARIMA autocorrelation structures. Even so, the DW test can be useful to indicate the presence of 
autocorrelation with such samples as well. The DW test may also be used to test for independence 
(i.e., the absence of autocorrelation) in the residuals from regression models. 

Many statistical software packages offer tools for examining autocorrelation. For example, the 
Autocorrelation Function (ACF) is the set of all the lag j autocorrelations and is usually depicted as a plot 
of each lag autocorrelation versus the lag number (Figure 7-9 from Minitab (2016) and Figure 7-10 from 
JMP (SAS Institute 2016b)) for the same data set. Visual inspection of the ACF is useful to detect the 
presence of autocorrelation and define the structure of the autocorrelation. Typically, the lag 
autocorrelation confidence limits (approximately two-standard deviation errors) are also shown on the 
ACF graphs. This helps analysts determine if the autocorrelation coefficient at lag j is significant. 
Seasonal patterns show up as cycles in the ACF. As a point of comparison, Figure 7-11 shows a time 
series plot of independent data (i.e., zero correlation) together with its ACF graph. 

Another useful graph is the Partial Autocorrelation Function (PACF) which is included as the last chart in 
Figure 7-9 and in the last column of Figure 7-10. The PACF is the partial amount of R-square 
(i.e., correlation) gained due to the additional lag term added to the right hand side of the model (Box and 
Jenkins 1976). Patterns of the PACF that show dramatic decrease to non-significant values after a lag j, 
indicate an autoregressive series of order (lag) j. For a qth order moving average model, MA(q), the 
theoretical ACF function drops off to 0 after lag q with an exponentially decaying PACF value between 
lag 0 and lag q. 

                                                      
3 j and q both refer to the number of lags, j for  AR and q for MA. 
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Figure 7-9. A) Time series plot, B) autocorrelation function (ACF) graph, and C) partial 
autocorrelation function (PACF) graph of Log(10) weekly flow from the Corsica River National 
Nonpoint Source Monitoring Program Project generated by Minitab. The steps are: Stat > Time 
Series > Autocorrelation (or Partial Autocorrelation). Identify the time series variable and enter 
number of lags. Select options for storing ACF, PACF, t statistics, and Ljung-Box Q statistics as 
desired. Press ok. 
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Figure 7-10. Autocorrelation Function (ACF) graph of weekly flow from the Corsica River 
National Nonpoint Source Monitoring Program Project generated by JMP. The steps are: 
Click “Analyze” tab, select “Modeling” followed by “Time Series.” Select Y time series 
(LFLOW) and X time series (Date). 
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Figure 7-11. A) Time series plot, B) autocorrelation function (ACF) graph, and C) partial 
autocorrelation function (PACF) graph of data with zero autocorrelation (i.e., independent data 
with respect to time) 
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An autoregressive error pattern of order 1, AR(1) means that an observation is correlated with the 
previous observation. And, because each previous observation is related to the observation prior to it, 
each observation is related to all past values, but the highest correlation is with the most recent 
observation. A theoretical4 AR(1) time series structure is identified by an ACF pattern that trails off 
bounded by an exponential decay after the first lag and the PACF dropping to 0 after lag 1 (or lag j for 
higher order AR series). 

The patterns for both ACF and PACF in Figure 7-9A and Figure 7-9B are typical of a water quality data 
set with AR(1) and a strong seasonal pattern (some might argue for an AR(2) in this case which speaks to 
the fact that interpretation of the patterns is required, with analysts often relying on the preponderance of 
evidence across monitoring sites). The lag autocorrelations for weekly flow data from the Corsica River 
(MD) NNPSMP project in these figures do show some significant autocorrelation coefficients. The ρj 
falling outside of the red/blue lines are significant at the 95 percent confidence level. Significant 
autocorrelation for lag 1, as well as a strong seasonal autocorrelation pattern is evident. 

Readers should consult statistics textbooks and software packages for greater detail on this and other 
methods to test for autocorrelation. 

7.3.6.1 Methods to Handle Autocorrelation 
Autocorrelation in analysis of time series data can sometimes be reduced by aggregating data over 
different time periods, such as weekly means rather than daily values. Use of weekly means preserves 
much of the original information of a daily data series, but separates data points far enough in time so that 
autocorrelation is reduced. When aggregating data, it is important to use a consistent procedure, e.g., 
using the weekly mean of 7 daily values for each week in the year, rather than mixing weekly means for 
some weeks with single grab samples for other weeks. Aggregation has disadvantages including: reducing 
the degrees of freedom and potential power of a statistical test and dampening out the potentially 
important high or low data. 

Several statistical packages can incorporate a time series error term in the statistical model to address 
autocorrelation. For example, PROC AUTOREG in SAS (SAS Institute 2016d) can be used for linear 
regression when the error terms are autoregressive. Similar tools are available in Minitab’s time series 
tools (i.e., Stat > Time Series) or R’s statistics package. 

Alternatively, if the data exhibit AR(1), which is typical for water quality data collected weekly, 
biweekly, or monthly, an adjustment can be made to the standard error of the trend (step or slope) terms. 
The correction factor was derived by Matalas and Langbein (1962) and simplified with a large sample 
size approximation by Fuller (1976):5 

𝑠𝑠𝑆𝑆𝑆𝑆. 𝑆𝑆𝑑𝑑𝑑𝑑.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑠𝑠𝑆𝑆𝑆𝑆. 𝑆𝑆𝑑𝑑𝑑𝑑.𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
1 + 𝜌𝜌
1 − 𝜌𝜌

 

                                                      
4 Patterns from water quality sampling data will resemble theoretical patterns but will usually deviate in some way, 
requiring that the analyst develop a feel for interpreting such graphics. 
5 The exact formula is given by 𝑠𝑠𝑆𝑆𝑆𝑆. 𝑆𝑆𝑑𝑑𝑑𝑑.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑠𝑠𝑆𝑆𝑆𝑆. 𝑆𝑆𝑑𝑑𝑑𝑑.𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  �1+𝜌𝜌

1−𝜌𝜌
− 2

𝑢𝑢
 𝜌𝜌(1−𝜌𝜌 )

(1−𝜌𝜌)2
  

𝑛𝑛
where n is the 

sample size. 
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Where ρ = autocorrelation coefficient at lag 1 
Std. dev = the standard deviation of the trend term (e.g., standard error of the difference 

between mean values between two time periods or standard error of the slope of a linear 
regression). 

See Spooner et al. (2011a) for additional details on this approach. 

7.3.6.2 Methods to Handle Autocorrelation Caused by Seasonality 
When the data exhibit seasonal cycles, incorporation of explanatory variables can be added to parametric 
methods to allow for adjustment of seasons. Four common approaches are used. One is to add 1 or 
2 cycles by using sine and cosine terms to a linear regression model, for example, as described in  
Tech Notes 6: Statistical Analysis for Monotonic Trends (Meals et al. 2011). This approach assumes that 
the sine or cosine terms realistically simulate annual or semiannual seasonal cycles. 

A second approach is to incorporate seasonality into the time series model. An ARIMA time series model 
could be used that incorporates a time series model with seasonal lag value (“differencing value” or “d”6 
in an ARIMA model, ARIMA(p,d,q)) corresponding to the length of the seasonal cycle. For example, an 
annual cycle will appear as a strong positive autocorrelation at lag 12 when the data series consists of 
monthly values or at lag 4 for quarterly values. As noted above, readers should consult statistics textbooks 
and software packages for greater detail on ARIMA models. 

A third approach is to simply add monthly (or other seasonal) indicators to each observation in the dataset 
and incorporate these indicator variables in a regression model. The number of indicator variables needed is 
S-17. For example S-1 would be 11 when the cycle is annual, but where the same months behave similarly 
over the years. Each indicator variable (X1 through X11) is assigned a value of 0 or 1, as indicated below: 

X1 = “1” for “January” but “0” otherwise 
X2 = “1” for “February” but “0” otherwise 
… 
X11 = “1” for November” but “0” otherwise 
Note: December values would all be depicted by “0” values for X1-X11 

After the indicator variables are added to the dataset, regress Yt on the indicator variables and other 
independent variables (e.g., time). 

A fourth approach to address seasonality is to use non-parametric tests that can handle monthly 
seasonality. The Seasonal Wilcoxon Rank Sum Test or Seasonal Mann-Whitney Rank Sum Test 
compares two or more groupings (e.g., seasonal t-test or analysis of variance). The Seasonal Kendall Test 
incorporates seasonal components when testing monotonic trends. Both parametric and non-parametric 
trend tests are featured in section 7.8.2.4. There is also a variant of the Kendall tau test (seasonal Kendall 
tau test with serial correlation correction (Hirsch and Slack 1984)) that can handle seasonality while also 
adjusting for autocorrelation. 

                                                      
6 Differencing is a term used in time series analyses, where d is the order of differencing which creates a new time 
series, Wt, whose values at time t is the difference between x(t) and x(t+d). Wt then becomes the series used in the 
time series analysis. 
7 Where S would represent the number of time periods (e.g., months, seasons). 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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7.3.7 Examination of Two or More Locations or Time Periods 
Comparison of two or more variables with EDA can mean comparing different data sets, such as stream 
nitrogen concentrations above and below a feedlot or phosphorus concentrations from a control and a 
treatment watershed, or comparing data from the same site over two different time periods, such as 
phosphorus loads from calibration vs. treatment periods. 

The characteristics that make boxplots useful for summarizing and inspecting a single data set make them 
even more useful for comparing multiple data groups representing multiple sites or time periods. The 
essential characteristics of numerous groups of data can be shown in a compact form. Boxplots of 
multiple data groups can help answer several important questions, such as: 

 Is a factor (location, period) significant? 

 Does the median appear to differ between groups? 

 Does apparent variability differ between groups? 

 Are there outliers? Where? 

Boxplots are helpful in determining whether central values, spread, symmetry and outliers differ among 
groups. If the main boxes of two groups, for example, do not substantially overlap on the vertical scale, 
there may be a reason to suspect that the two groups differ significantly (note that such difference should 
be tested using quantitative statistical techniques). Interpretation of boxplots can help formulate 
hypotheses about differences between groups. Figure 7-12 shows a boxplot of total suspended solids 
concentrations in three Vermont streams. The plot suggests that TSS concentrations may tend to be 
slightly lower at Station 3 compared to the other two stations; however, because the boxes overlap, it is 
unlikely that any comparison of medians would result in statistically significant differences. 

Inferences about differences between locations or time periods resulting from graphical evaluation of the 
data must be confirmed by more rigorous hypothesis testing analyses (see sections 7.7 and 7.8). 
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Figure 7-12. Boxplots of TSS concentration for three stream stations, 1998 (Meals 2001) 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-31 

 
  

7.3.8 Examine Relationships between Variables 
Looking at how variables relate to each other is a way to begin to consider causality, i.e., is the behavior 
of one variable the result of action by another. Such ideas can suggest sets of variables to evaluate 
together. For example, if variable B (e.g., suspended sediment concentration) goes down as variable A 
(e.g., acres of reduced tillage) goes up, has the BMP program improved water quality? Examination of 
correlations between different variables observed simultaneously (e.g., SSC and total P or turbidity and 
SSC) can suggest relationships that might change with BMP programs or indicate where one variable 
could serve as a surrogate for another. Graphical analysis (e.g, scatterplots of variable A vs. variable B) 
can suggest meaningful correlations that would need to be confirmed with more rigorous statistical tests. 

The two-dimensional scatterplot is one of the most familiar graphical methods for data exploration. It 
consists of a scatter of points representing the value of one variable plotted against the value of another 
variable from the same point in time. Scatterplots illustrate the relationship between two variables. They 
can help reveal if there appears to be any association at all between two variables, whether the 
relationship is linear, whether different groups of data lie in separate regions of the scatterplot, and 
whether variability is constant over the full range of data. 

Figure 7-13 shows a scatterplot of phosphorus export in a control and a treatment watershed in Vermont. 
Note that the data are plotted on a log scale to obtain a linear relationship. There is a strong positive 
association between P in the two streams. This simple scatterplot indicates that it is probably worth 
proceeding with more rigorous statistical analysis to evaluate calibration between the two watersheds in a 
paired-watershed design. As with this example, it is common that the relationship between variables is 
exponential. In such cases, the log transformation allows the relationship to be expressed linearly and 
evaluated using linear regression. 
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Figure 7-13. Scatterplot of weekly TP export from control 
and treatment watersheds, calibration period (Meals 2001) 

Figure 7-14 shows another scatterplot examining the relationship between streamflow and E. coli counts 
in another Vermont stream. In a nonpoint source situation, a positive association between streamflow and 
bacteria counts may be expected, as runoff during high flow events might wash bacteria from the land to 
the stream. In this case, however, it does not require application of advanced statistics to conclude from 
Figure 7-14 that there is no such association (in fact the correlation coefficient r is close to zero). 
However, recall that EDA involves an open-minded exploration of many possibilities. In Figure 7-15, the 
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data points have been distinguished by season. The open circles represent data collected in the summer 
period and there still appears to be no association between streamflow and E. coli counts. The solid 
circles, representing winter data, now appear to show some positive correlation (r = 0.45) between 
streamflow and bacteria counts, with high bacteria counts associated with high flows. This picture 
suggests that something different is happening in winter compared to summer with respect to streamflow 
and E. coli in this watershed, a subject for further investigation. 
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Figure 7-14. Scatterplot of E. coli vs. 
streamflow, Godin Brook, 1995-1998, all data 
combined (Meals 2001) 
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Figure 7-15. Scatterplot of E. coli vs. 
streamflow, Godin Brook, 1995-1998, where 
solid circles = winter, open circles = summer 
(Meals 2001) 

In looking for correlations in scatterplots, choose the variables carefully. A common mistake is the 
comparison of variables that are already related by measurement or calculation. An example of such 
spurious correlation is the comparison of streamflow with load. Because load is calculated as 
concentration multiplied by flow, a scatterplot of flow vs. load has a built-in correlation that means very 
little, even though it looks good in a scatterplot. Also remember that correlation does not guarantee 
causation – just because two variables are correlated does not mean that the variation in one is caused by 
variation in the other. 

There are many numerical techniques available to examine and test the relationship between two or more 
variables. In EDA, the simplest technique is correlation, which measures the strength of an association 
between two variables. The most common measure of correlation is Pearson’s r, also called the linear 
correlation coefficient. If the data lie exactly on a straight line with positive slope, r will equal 1; if the 
data are perfectly random, r will equal 0. For Pearson’s r, both variables should be normally distributed 
and continuous (Statistics Solutions 2016). The test also assumes a straight-line relationship between the 
variables and constant variance (homoscedasticity). Pearson’s r is sensitive to outliers. 

Other measures of correlation that are less sensitive to outliers include the nonparametric Kendall’s tau 
and Spearman’s rho (Spearman’s rank correlation coefficient). Spearman’s rho makes no assumptions 
about the distribution of the data and is an appropriate test when the variables are at least ordinal and the 
variables are monotonically related (Statistics Solutions 2016). With ordinal variables, the ordering of 
values is known but the differences between them are not quantified (e.g., Excellent, Good, Fair, Poor).  
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Measures of correlation are easily calculated by most statistical software packages and are described in 
chapter 4 of the 1997 guidance (USEPA 1997b). It must be cautioned that whenever a numerical 
correlation is calculated, the data should also be plotted in a scatterplot and examined visually as 
described above. Many different patterns can result in the same correlation coefficient. Never compute a 
correlation coefficient and assume that the data follow a simple linear pattern. 

There are several methods of simultaneously evaluating variables that are likely related to each other. 
Cluster analyses group variables and/or observations into similar categories usually based on an 
agglomerative hierarchical algorithm which is the most common clustering pattern used in water quality 
analyses. In this clustering procedure, each observation begins as an individual “cluster.” The similarities 
or distances between these clusters are measured using one of several options, including Euclidian 
distance and correlation coefficients. The closest two clusters are then merged into a new cluster. 
Distances are calculated again using the updated set of clusters, and the process repeated until only one 
cluster remains. The result of this analysis is a sequence of groupings that can be represented in a cluster 
tree or dendrogram. The analyst can then perform a visual analysis to infer potential groupings and 
relationships among variables. It is important to note that cluster analysis does not consider 
multicollinearity between the variables. Cluster analysis conducted as part of EDA might be used to 
explore and define site or time groupings that would be useful to explore in later analysis. 

Other multivariate techniques that can be applied in subsequent analysis include principal components 
analysis, canonical correlation, and discriminant analysis (SAS Institute 1985). These methods are 
discussed further in section 7.5.2.5. 

7.3.9 Next Steps 
Data exploration results (knowledge of how data are distributed, their characteristics, and their 
relationships) will help illustrate any needs to adjust the data to enable the appropriate subsequent 
statistical tests. In addition, hypotheses can be refined to facilitate more advanced statistical techniques. 
section 7.4 describes methods for accounting for censored data. Sections 7.5 through 7.9 present various 
advanced procedures for analyzing data for a range of purposes. Section 7.10 presents a list of tools and 
other resources for data analysis. 

7.4 Dealing with Censored Data 

7.4.1 Types of Censoring 
Monitoring programs such as those analyzing for pesticides, metals, or other constituents often present at 
very low concentrations may report lab results where concentration is below the detection limit of the 
analysis. Bacteriological tests may report very high results as “too numerous to count” (TNTC). Such data 
– typically reported as “<” or “>” (left- and right-censored, respectively) some value – are referred to as 
“censored” data. 

Censored values are usually associated with limitations of measurement or sample analysis, and are 
commonly reported as results below or above measurement capacity of the available analytical 
equipment. Results that are indistinguishable from a blank sample are normally reported as less than the 
detection limit (DL). The true values of these left-censored observations are considered to lie between 
zero and the DL. Depending on the laboratory, some results greater than the DL may be identified as less 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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than the quantitation limit (QL) or reported as a single value and given a data qualifier to indicate the 
value is less than the QL. Typically, results reported as less than the QL indicate that the analyte was 
detected (i.e., greater than the detection limit), but at a low enough concentration where the precision was 
deemed too low to reliably report a single value. These interval-censored observations are considered to 
lie between the DL and QL. 

Left- and interval-censored observations are less commonly encountered when working with sediment 
and nutrients because they are usually present at levels above their QLs. However; left censoring is 
common when toxics and pesticides are being analyzed. 

An example of right-censoring includes microbiological analyses with misestimated dilution resulting in 
TNTC (too numerous to count) and exceedance of flow gage limits during floods. Right-censoring may 
also be encountered when lakes and estuaries are monitored for light penetration via Secchi depth and the 
result is reported as visible on bottom, i.e., the Secchi disk is observable on the bottom. 

Helsel (2012) provides a seminal discussion of varying reporting limits and concerns with some data 
censoring practices. This guidance recommends that detection limits and quantitation limits be stored with 
the measurements and each result be clearly qualified to indicate its relation to the DL or QL as 
appropriate. 

7.4.2 Methods for Handling Censored Data 
There is no single ideal method for managing censored data in statistical analyses. When comparing 
various methods, this guidance recommends that analysts use methods that minimize bias and error. 
Extensive research in water resources as well as other fields of science such as survival analysis 
(e.g., how long does a cancer patient live after treatment) has considered numerous techniques. One 
deficiency over the last 20 years has been the lack of readily available tools for widespread use, making 
many of these tools out of reach for general use. Efforts continue to improve upon the availability of these 
tools. The most notable is a compilation of methods and recommendations developed by Helsel (2012) 
with additional information provided at Practical Stats. Much of the remaining discussion in this section 
is derived from Helsel’s book (Helsel 2012) and the reader is encouraged to review his book for a more 
in-depth discussion. 

7.4.2.1 Past Methods 
With improved tool access, past methods for accommodating censored observations can be avoided. The 
most notable past method is simple substitution. This involves the replacement of censored observations 
with zero, ½DL, or DL. Although simple substitution is commonly used (and even recommended) in 
some state and federal government reports as well as some refereed journal articles, there is no real 
theoretical justification for this procedure. Substitution may perform poorly compared to other more 
statistically robust procedures, especially where censored data represent a high proportion of the entire 
dataset. More egregiously, some reports have simply deleted observations less than the detection limit. 
Some past researchers have recommended simply reporting the actual measured concentrations even if 
the concentrations are below the DL (Gilliom et al. 1984). This approach has not gained traction as 
laboratories are reluctant to implement such a practice, although Porter et al. (1988) suggested that an 
estimate of the observation error could be reported to better qualify the measurement. While simple 
substitution might be convenient for initial exploratory analyses using spreadsheet tools, more robust 
procedures are available and are recommended. 

http://practicalstats.com/
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7.4.2.2 Using Probability Distribution Theory to Estimate the Summary Statistics 
In environmental sciences, two common methods considered for estimating summary statistics from 
censored data sets include maximum likelihood estimation (MLE) and robust regression on order 
statistics (ROS). Both methods ultimately rely on a distributional assumption and both methods allow for 
multiple detection limits and estimation of confidence intervals. The reader is referred to Helsel (2012) 
for a more detailed discussion. 

MLE uses the uncensored observations, the proportion of censored observations, and a distributional 
assumption to compute estimates of summary statistics. A lognormal distribution is commonly assumed 
with water quality data; however, commercial software will usually allow a variety of assumptions to be 
considered. 

The robust ROS procedure (Helsel and Cohn 1988) relies on fitting a regression line to a normal 
probability plot of the uncensored observations and is applicable for multiple censoring levels. If the 
uncensored data do not fit a normal distribution, the analyst can transform the uncensored data with 
lognormal or other appropriate transformation. The process of selecting the best transformation is similar 
to that if all data were uncensored and diagnostics are typically available in current statistical software. 
The regression is then used to impute values for the censored data. The imputed and uncensored data are 
then, if necessary, transformed back to their original data scale, allowing summary statistics to be 
estimated using standard techniques. Confidence intervals for the mean and standard error estimates can 
be computed using bootstrapping (e.g., Helsel 2012). In summary for the mean, a random sample (with 
replacement) is selected from the site data. These data are passed through the robust ROS procedure 
described above, and a resulting mean is computed. The process of selecting a random sample, 
implementing the robust ROS procedure and computing a resulting mean is repeated, say, 1,000 times. 
Confidence limits are then empirically selected from this set of 1,000 means (e.g., the 5th and 95th 
percentile of these 1,000 means would be the 90 percent confidence interval on the mean). 

The MLE tool can be applied to less-thans and TNTC in the same data set. Helsel (2012) provides 
recommendations for which method to use based on the number of observations and degree of censoring. 
Notably, no method works well when the degree of censoring exceeds 80 percent. In the situations where 
the censoring level exceeds 80 percent, Helsel (2012) recommends reporting information on the percent 
of observations above a meaningful threshold and no further summary statistics. For all summary 
statistics with censored data, this guidance recommends reporting the maximum detection limit, number 
of observations, and number of censored observations with all summary statistics. 

7.4.2.3 Hypothesis Testing with Censored Data 
There are a variety of nonparametric hypothesis tests that can be directly used with raw data sets that have 
censored observations and generally rely on the rank (or order) of the data. These tests include the Mann-
Whitney test (two random samples), Wilcoxon (paired samples), and Kruskal-Wallis (several random 
samples), and Kendall and Seasonal Kendall tau (monotonic trends). In these tests, censored observations 
are treated as tied values, no different from cases where ties might occur between uncensored 
observations. Consider the ordered data set of <1, <1, 1.5, 4, 8, 9, 10, and 10. The two censored 
observations (of <1) are less than all the other observations, but are treated as tied to each other. The 
handling of the two “<1’s” is no different than the two 10’s which are both greater than all the other 
values, but tied with each other. One deficiency of these tests is that they are limited to a single detection 
limit (e.g., the tests do not have a method to compare “<1” and “<2”). To apply the above nonparametric 
tests with data sets that have multiple detection limits, the analyst will need to re-censor the data to the 
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highest detection limit. Note: do not use the previously described ROS procedure to impute values for 
censored data and then apply one of the nonparametric tests described in this paragraph (or parametric 
tests), as erroneous results might be computed because the rank of the imputed values were calculated 
based upon the order of data set entry, which is not related to any true ranking of the actual water quality 
values. 

An alternative approach is to apply MLE regression tools that are designed for multiply censored 
dependent variables. Similar to simple regression or multiple regression, relationships between singly- or 
multiply-censored dependent variables can be established with independent variables. Indicator variables 
can be used to set up groupings to expand the MLE regression tool for comparing two or more groups or 
seasonal/explanatory adjustments as well. 

7.5 Data Analysis for Problem Assessment 

7.5.1 Problem Assessment – Important Considerations 
One of the most critical steps in controlling NPS pollution is to correctly identify and document the 
existence of a water quality problem. The water quality problem may be defined either as a threat to or 
impairment of the designated use of a water resource. Impairments are generally defined and identified as 
violations of water quality standards (WQS). Water quality standards define the goals for a waterbody by 
designating its uses, setting criteria to protect those uses, and establishing provisions such as 
antidegradation policies to protect waterbodies from pollutants. A WQS consists of four basic elements: 

1. A designated use of the water body. States and Tribes specify appropriate water uses to be 
achieved and protected, taking into consideration the use and value of the waterbody for public 
water supply, for protection of fish, shellfish, and wildlife, and for recreational, agricultural, 
industrial, and navigational purposes. In designating uses for a water body, States and Tribes 
consider the suitability of a water body for the uses based on the physical, chemical, and 
biological characteristics of the water body, its geographical setting and scenic qualities, and 
economic considerations. 

2. Water quality criteria. Water quality criteria are science-based numeric pollutant concentrations 
or narrative requirements that, if met, will protect the designated use(s) of the water body. Criteria 
may be based on physical, chemical, or biological characteristics. Numeric criteria may, for 
example, establish limits for concentrations of toxic pollutants to protect human health or aquatic 
life. Narrative criteria stating that a water body must be “free from” toxic contaminants can serve 
as a basis for limiting the toxicity of waste discharges to aquatic life. 

3. An antidegradation policy. Water quality standards include an antidegradation policy that 
maintains and protects existing uses and water quality conditions necessary to support such uses, 
maintains and protects high quality waters where existing conditions are better than necessary to 
protect designated uses, and maintains and protects water quality in outstanding national resource 
waters. Except for certain temporary changes, water quality cannot be lowered in such waters. 

4. General policies. States and Tribes may adopt policies and provisions regarding implementation 
of water quality standards, such as mixing zones, variances, and low-flow policies. Such policies 
are subject to EPA review and approval. 

http://water.epa.gov/scitech/swguidance/standards/
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Water quality monitoring to support problem assessment is usually focused on documenting violations of 
WQS in time (e.g., frequency of exceedance) and space (e.g., geographic extent of exceedance). Water 
quality data for such purposes may be collected by an ongoing monitoring program (e.g., a state ambient 
monitoring program) or by a reconnaissance study designed to provide a preliminary, low-cost overview 
of water quality conditions in the area of interest (see section 2.4.2.1). The EPA ATTAINS database is the 
repository for information from state integrated reporting (IR) on water quality conditions under sections 
305(b), 303(d), and 314 of the Clean Water Act, and the Reach Address Database contains state IR 
geospatial data. ATTAINS includes state-reported information on support of designated uses in assessed 
waters, identified causes and sources of impairment, identified impaired waters, and TMDL status. 

A detailed discussion of monitoring designs has been presented in chapter 2 of the 1997 guidance 
(USEPA 1997b). Some designs appropriate for problem assessment have been discussed in section 2.4 of 
this guidance. In general, monitoring designs appropriate for collecting data to support NPS problem 
assessment include: 

 Synoptic surveys designed to determine the magnitude and geographic extent of WQS violations, 
often used to identify pollutant source areas within a watershed; 

 Above/below monitoring, wherein a potential pollutant source area is bracketed between upstream 
and downstream sampling points to assess the impact of the source area on pollutant levels; and 

 Trend monitoring designed to collect long-term time-series data at one or more watershed 
sampling points that are useful in determining the frequency and magnitude of exceedance of WQS. 

Both above/below (if pre- and post BMP data is collected) and trend monitoring designs can also be 
applied to other monitoring objectives such as project effectiveness evaluation using permanent 
monitoring stations equipped with automatic sampling equipment and continuous flow measurement 
devices. 

Grab samples with instantaneous flow measurements for a few sampling events may be sufficient for 
initial problem assessment and source identification, but monitoring data for problem assessment should 
include both baseflow and stormwater monitoring necessary to fully characterize the system. Storm 
sampling is useful for documenting the delivery of pollutants by runoff and overland flow, critical 
considerations for waters impacted by NPS. Combined with hydrologic data, basic climatic information 
can be used to evaluate the seasons or times of the year when pollutant levels are highest or lowest and 
when high flow events, drought, or other factors affect water quality. Note that concentration data alone 
without concurrent flow or stage data are often of limited utility. 

Biological monitoring is used widely in water quality assessments and EPA provides information and 
links to resources addressing various aspects of the application of aquatic life criteria in water quality 
assessments. Chapter 4 of this guidance is devoted to biological monitoring. The discussion below, 
however, emphasizes the use and application of statistical analysis to chemical and physical monitoring 
data for which there is a greater body of literature. See chapter 7 of Handbook for Developing Watershed 
Plans to Restore and Protect Our Waters (USEPA 2008) for a broad discussion of approaches to 
assessing water quality problems and identifying causes and sources of those problems using a wide range 
of information sources. 

https://www.epa.gov/waterdata/assessment-and-total-maximum-daily-load-tracking-and-implementation-system-attains
https://www.epa.gov/waterdata/reach-address-database-rad
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/index.cfm
http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/index.cfm
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/watershed-plannning-builder-and-guides
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/watershed-plannning-builder-and-guides
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7.5.2 Data Analysis Approaches 

7.5.2.1 Summarize Existing Conditions 
In a single stream or subwatershed, one monitoring location may be sufficient for problem assessment. 
More often, sampling at two or more locations is necessary to evaluate existing conditions of the 
watershed. Concurrently, sampling at two or more locations can aid in identification of subwatersheds 
that merit further evaluation for pollution reductions or water resource protections. 

When data from different locations in a watershed or different sampling time periods are consistent and 
comparable (e.g., from a synoptic survey or from multiple watershed stations in the same monitoring 
regime), a first step is to summarize existing conditions using univariate statistics – mean, median, range, 
variance, interquartile range – for different sampling locations. If differences over time or flow conditions 
are evident, it may be useful to group the data into separate baseflow and wet-weather strata or by season. 
If enough samples have been collected (i.e., at least three), existing water quality can be compared across 
multiple sites. Visual comparisons between sites can be depicted graphically using boxplots. Figure 7-16 
shows a set of boxplots for one year of weekly conductivity data from three small watershed trend 
stations in Vermont (Meals 2001). Conductivity at site WS1 appears to be substantially lower than that 
observed at the other two stations; conductivity at WS2 tended to be somewhat higher than that observed 
at WS3, with more frequent high extreme values. Mean or median values can be compared between two 
sites using the unpaired Student’s t-Test or a nonparametric equivalent such as the Wilcoxon Rank Sum 
Test (also known as the Mann-Whitney Rank Sum Test). More than two sites can be compared using 
Analysis of Variance or the Kruskal-Wallis k Sample Test. Adjustments for seasons or hydrologic 
explanatory variables should be considered by employing appropriate statistical tests such as Analysis of 
Covariance or the Seasonal Wilcoxon Rank Sum Test (also known as the Mann Whitney Rank Sum Test). 
If the data between two sites are paired, differences can be tested using the paired Student’s t-Test or the 
Wilcoxon Signed Rank Sum Test. Paired tests are generally more powerful and should be used when 
enabled by collecting samples at the same time period at two sites. 
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Figure 7-16. Boxplots of conductivity at three Vermont monitoring stations, October 1999 – 
September 2000 (Meals 2001) 

Time series plots can visually reveal relationships over time and between locations. Figure 7-7 from section 
7.3, for example, shows very clearly the seasonal cycle in E. coli counts in a Vermont stream, and  
Figure 7-4 reveals a different behavior at Station 2 compared to other stations regarding P concentrations. 
Time series statistical analyses can reveal autocorrelation and seasonality (see section 7.3.6). 

Regression analysis between variables of primary interest (e.g., pollutant concentration/loads) and 
explanatory variables such as stream discharge can assist in documenting hydraulic relationships at a 
single monitoring location or between subwatersheds. Establishing relationships among variables can be 
very helpful in project planning as well. Scientists involved in the Upper Grande Ronde (OR) NNMP 
project, for example, explored relationships between fish and environmental factors via multivariate 
analysis and found that management and restoration activities that focus on reducing the maximum annual 
stream temperature would be the most effective in creating stream conditions that support salmonids 
(Drake 1999). 

7.5.2.2 Assess Compliance with Water Quality Standards 
Water quality data can be evaluated for violation of water quality standards (WQS). Note that specific 
requirements for documenting impairment in a regulatory sense may vary by circumstance. For some 
states and for some pollutants, a single observation exceeding a WQS may be sufficient to designate 
impairment. In other cases, determination of impairment must be based on violation of a WQS over a 
defined period of time or number of observations. A WQS for bacteria to support shellfishing may, for 
example, be based on a geometric mean of a number of different samples collected over a 30-day period, 
rather than on a single sample. Sanitary surveys in North Carolina, for example, include a shoreline 
survey to identify potential pollutant sources, a hydrographic and meteorological survey, and a 

http://portal.ncdenr.org/web/mf/sanitary-survey?p_p_id=56_INSTANCE_mZ8B&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_pos=1&p_p_col_count=2&page=1
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bacteriological survey (NCDENR 2016). Both the monitoring program and data analysis must be tailored 
to the regulatory requirements that apply to the watershed under study. 

A data series should be plotted and the pattern evaluated for exceedance of WQS; plots of a time series at 
a single station or boxplot of multiple stations can be examined. Figure 7-17 shows how a time series plot 
can illustrate both the frequency and magnitude of violations of WQS. The dashed line represents the 
water quality criterion for chronic exposure; all of the observations exceed that level. The red line marks 
the acute criterion and shows that several observations exceeded that concentration. Moreover, most of 
the excursions above the acute criterion occurred around April, suggesting a seasonal aspect to the 
impairment. This kind of pattern may support inferences about pollutant source activity. 

One way to evaluate the frequency or probability of violating WQS is to use probability plots or duration 
curves. Figure 7-18 shows a cumulative frequency plot of three years of E. coli data from a Vermont 
agricultural watershed (Meals 2001). In this case, it can be seen that compliance with the Vermont WQS of 
77 cfu/100 ml E. coli occurred about 36 percent of the time and the stream was therefore considered 
impaired for E. coli about 64 percent of the time. If the USEPA criterion of 235 cfu/100 ml were applied, 
the stream would be in compliance with that criterion about 48 percent of the time and impaired about 
52 percent of the time. 

 
Figure 7-17. Example time series plot of observed aluminum concentrations compared to water 
quality criteria 
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Figure 7-18. Cumulative frequency plot of three years of E. coli data from a Vermont stream 
(adapted from Meals 2001). Red lines represent frequency of observations at or below the VT WQS 
of 77 cfu/100 ml and the frequency of observations at or below the EPA criterion of 235 cfu/100 ml. 

7.5.2.3 Identify Major Pollutant Sources 
Cost-effective treatment of watersheds to address the pollutants and other causes of water quality 
problems requires knowledge of the sources contributing to the problems. Commonly used approaches to 
identifying and characterizing sources use both water quality and land-based information at varying levels 
of detail and quality (USEPA 2008). This section describes methods for analyzing water quality and 
associated monitoring data to characterize and aid in the prioritization of pollutant sources as part of the 
watershed planning process. See section 4.4.5 for an example of using biological monitoring in the Lake 
Allatoona/Upper Etowah River (GA) watershed. 

Data from a synoptic survey or from regular monitoring of several subwatersheds combined with data on 
land use, management, or other land-based characteristics can inform understanding of major pollutant 
sources in a watershed. Correlation or regression analysis can be applied to explore relationships between 
pollutant concentrations and subwatershed characteristics, e.g., total P (TP) concentrations vs. manured 
cropland or suspended sediment concentration vs. cropland in cover crops. Annual mean or median values 
for pollutant concentrations could be compared to annual data on land use/management activities because 
concentrations will vary widely between individual events against land characteristics that are relatively 
constant within a single year or crop season. However, this simplification will not reveal seasonal and 
hydrologic variability in water quality or responses to short term land use changes such as animal 
numbers or fertilization. Where suitable knowledge of land use or land management is available, it may 
be more useful to provide water quality summary data for different periods that reflect distinctly different 
land use/management conditions (e.g., after spring manure applications vs. remainder of the year) during 
the monitoring period. 
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Boxplots or bivariate scatterplots can be compared between monitoring sites that reflect distinctive land 
use or management, thereby suggesting important pollutant source activities. If sufficient data from 
different subwatersheds or sampling stations exist, analysis of variance (ANOVA), or the nonparametric 
Kruskal-Wallis k Sample test can be used to test for significant differences in pollutant concentrations 
between sites and then compare these findings to differences in land use between the drainage areas 
sampled (graphical or tabular summaries). Analysis of covariance (ANCOVA) should be considered in 
cases where data are sufficient to test for differences among sites or seasons with adjustment for 
covariates such as precipitation or flow. See sections 4.6 and 4.8 of the 1997 guidance (USEPA 1997b) 
for a discussion of ANOVA and ANCOVA. 

If flow data are available with concentration data, load estimates can be calculated to compare the 
magnitudes of pollutant sources (see section 7.9 for load estimation methods). The spatial and temporal 
resolution possible for load estimates will be determined by the number and location of sampling sites 
and the time frame and frequency of sampling events, respectively. Source-specific or subwatershed loads 
will generally be more helpful than loads at the watershed outlet, and in many cases seasonal loads or a 
classification of event vs. baseflow loads will be very helpful in the watershed project planning phase (see 
section 7.6). 

It should be noted that correlation does not guarantee causation. Specifics of pollutant source activity and 
transport/delivery mechanisms must be considered to focus in on causation. Time of travel studies for 
various points in the watershed, for example, can be helpful in better characterizing the relationship 
between various sources or subwatersheds and downstream water quality. USGS describes methods for 
measuring time of travel (Kilpatrick and Wilson 1989). 

7.5.2.4 Define Critical Areas 
Data collected in the problem assessment phase can be used to help define critical source areas for 
pollutants, knowledge that is key to understanding the watershed, prioritizing land treatment, and evaluating 
project effectiveness. With concurrent data from monitored subwatersheds or tributaries (e.g., from a 
synoptic survey), statistical tests such as the Student’s t Test or ANOVA can be used to identify significant 
differences in pollutant concentration or load among multiple sampling points. Such data can be displayed 
graphically in a map to show watershed regions that may be major contributors of pollutants. Figure 7-19, 
for example, shows a map of NO2+NO3-N concentrations from an April, 2003 synoptic survey in the 
Corsica River (MD) watershed (Primrose 2003). Nitrate/nitrite concentrations were found to be excessive in 
four subwatersheds, high in sixteen, and moderately elevated in seventeen others. Benchmarks for 
determining excessive/high/moderate or similar categories can be based on numeric water quality criteria or 
reference watershed values. If flow data were also available, it would be possible to estimate loads and 
compare subwatersheds on the basis of absolute (e.g., kg TP) or areal (e.g., kg TP/ha) loads. Figure 4-3 of 
section 4.4.5 illustrates how biological monitoring data from the Lake Allatoona/Upper Etowah River (GA) 
watershed were used for site-specific assessments of biological condition. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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Figure 7-19. Map of synoptic sampling results from 41 stations in the Corsica River Watershed 
(Maryland) for NO2+NO3-N concentration (Primrose 2003). Pink and red shaded subwatersheds 
represent drainage areas contributing high (3-5 mg/L) and excessive (>5 mg/L) NO2+NO3-N 
concentrations, respectively.  

Assessment of critical areas using a small set of water quality data has some limitations. Conditions 
determining pollutant generation (e.g., storm event, season, management schedules) must be considered in 
drawing conclusions about critical areas. Data collected during the active crop growth season may show a 
very different situation from data collected in winter, although for source identification purposes, it may be 
preferable to sample during the most critical times of year. The data mapped in Figure 7-19, for example, 
were collected in April, during or immediately following the spring planting and fertilizer application season 
when N losses from recently applied fertilizers might be expected to be high. Secondly, the spatial 
resolution of source area identification is limited by the resolution of the sampling network. Detailed site 
evaluation and/or modeling may be required to identify critical source areas on a finer scale. 

Another problem with using only a small set of water quality samples to determine critical areas is that 
some sources are by default removed from consideration. For example, the role of streambanks and 
stream channels in delivering sediment and sediment-bound pollutants such as P is often only partially 
understood at the beginning of watershed projects. The Sycamore Creek (MI) NNMP project, for 
example, focused on no-till and continuous cover to reduce sediment loads, but later concluded that the 
stream channel stabilization implemented in one subwatershed must have been at least as important as no-
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till in reducing suspended solids loads (Suppnick 1999). Solutions to sedimentation problems in Lake 
Pittsfield (IL) progressed from an initial emphasis on no-till, terraces, and waterways (1979-1985), to 
numerous water and sediment control basins and a single large sedimentation basin (1992-1996), and then 
to stream restoration using stone weirs and streambank vegetation (1998) when it was learned that 
massive bank erosion was increasing sediment yield (Roseboom et al. 1999). See section 4.4.5 for a 
detailed example of using biological monitoring in the Lake Allatoona/Upper Etowah River (GA) 
watershed. 

7.5.2.5 Additional Approaches 
In most cases, projects in the planning phase have limited information with which to perform statistical 
analyses, particularly advanced procedures. Where such data exist, however, multivariate statistical 
procedures such as factor analysis, principal component analysis, canonical correlation analysis, and 
cluster and discriminant analysis can be used to define (and perhaps subsequently adjust for) complex 
relationships among variables such as precipitation, flow, season, land use, or agricultural activities that 
influence NPS problems. Spatial and temporal patterns can be revealed with these techniques. Scatterplots 
of ordination scores can be a useful method to summarize multivariate datasets and visualize spatial and 
temporal patterns.  

Ordination techniques can also be powerful during the EDA phase when looking for patterns and 
structure in the data. The upper Grande Ronde basin project, for example, used correlation and canonical 
correspondence analysis to determine which environmental variables are largely responsible for 
differences in fish assemblages between reference and impaired sites (Drake 1999). Figure 7-20 shows a 
correspondence analysis plot showing intermediate/impaired sites and reference sites ordinating on the 
left and right side of the origin (Drake 1999). Scatterplots such as Figure 7-20 can be a useful way to 
summarize multivariate datasets and visualize these spatial and temporal patterns. With such variables 
identified, the next step was applying principal component analysis to determine if these variables could 
be used to track stream improvements over time. These statistical procedures are discussed briefly below. 
The reader is referred to statistics textbooks and other resources for additional information. Further, it is 
recommended that these procedures are performed by or in consultation with a trained statistician. 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-45 

 
  

 
Figure 7-20. Correspondence analysis biplot of Grande Ronde fish data (Drake, 1999) 

Principal component analysis (PCA) is a multivariate technique for examining linear relationships among 
several quantitative variables, particularly when the variables are correlated to each other. PCA can be 
used to determine the relative importance of each independent variable and determine the relationship 
among several variables. Given a data set with p numeric variables, p principal components or factors can 
be computed. Each principal component (or factor) is a synthesized variable that is a linear combination 
of the original variables (SAS Institute 1985). The first principal component explains the most variance in 
the original data, while the second principal component is uncorrelated with (i.e., orthogonal to or 
statistically independent from) the first principal component and explains the next greatest proportion of 
the remaining variance. This process is continued until there are p statistically independent principal 
components that explain as much of the variance as possible. The results of PCA can often be enhanced 
through factor analysis, which is a procedure that can be used to identify a small number of factors that 
explain the relationships among the original variables. One important aspect of factor analysis is the 
ability to transform the factors (i.e., reconfigure the linear combinations of original variables) from PCA 
so that they make more sense scientifically. The SAS procedures PROC PRINCOMP and PROC 
FACTOR can be used for these analyses (SAS Institute 2010). 

Principal component analyses and factor analysis can be used in regression analysis to reduce the number 
of variables or degree of freedoms (d.f.) by using a subset of the principal components (factors) that 
explain the majority of the variance of the data set instead of using all of the original variables. This 
essentially reduces the degrees of freedom used, but incorporates most of the information from each of 
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the explanatory variables, hence increasing the validity and power of the regression analysis. Using PCA 
to incorporate many explanatory variables into a regression model is superior to other techniques that 
arbitrarily drop explanatory (X) variables; those may incorrectly drop the more important variables due to 
multicollinearity between the X’s. In principle, PCA and factor analysis could be beneficial to projects in 
a number of other ways, including helping investigators focus problem assessments on the most important 
indicators and stressors, aiding in the selection of water quality and land use/treatment variables to be 
used in the monitoring program, and guiding BMPs toward the most important pollutant sources. 

Canonical correlation analysis (CCA8) is a technique for analyzing the relationship between two sets of 
multiple variables (e.g., a set of nutrient variables and a set of biomass-related variables). This 
multivariate approach examines said relationship “by finding a small number of linear combinations from 
each set of variables that have the highest possible between-set correlations" (SAS Institute 1985). These 
linear combinations of variables from each set are synthetic variables called ‘canonical variables’ and the 
coefficients of the linear combinations (which are similar to Pearson r) are referred to as the ‘canonical 
weights’ (SAS Institute 1985). The first canonical correlation is the correlation between the canonical 
variables from each set that maximizes the correlation value in accounting for as much as possible of the 
variance in the variable sets. The second canonical correlation is between a second set of canonical 
variables, is uncorrelated with the first canonical variables, and produces the second highest correlation 
coefficient. Additional correlations are established until all variance is explained or the maximum number 
of canonical correlations has been used (i.e., the number of variables in the smaller set). As such, the 
canonical variables are similar to principal components in summarizing total variation (SAS Institute 
1985). 

In simple terms, CCA can be used in problem assessment to look for relationships between sets of 
grouped variables to help better understand existing water quality problems or the relationships between 
land use/management variables (e.g., imperviousness, acreage receiving manure) and pollution variables 
(e.g., discharge, pollutant concentrations) to help guide decisions on BMP selection and placement. There 
are several output statistics (e.g., significance, correlations, coefficients) in CCA, and the reader is 
referred to statistical textbooks and other sources for additional details. It should be noted, however, that 
while many correlations may be output from a specific analysis, only the strongest correlations should be 
considered for interpretation. 

Discriminant analysis is used to assess relationships between a categorical (grouping) variable 
(e.g., presence or absence of a fish species) and multiple quantitative (predictor) variables (e.g., pH, 
temperature, D.O.). The category options (e.g., present or absent) are assigned a priori—normally 
verification of the a priori grouping is performed during discriminant function analysis. Discriminant 
analysis can be used to verify the observational groupings defined by each cluster (see section 7.3.8) or 
other defined grouping based on the values of the quantitative variables. This type of analysis is referred 
to as `classificatory discriminant analysis' and is probably the most common application of discriminant 
analysis in water quality research. The SAS procedures DISCRIM (parametric) and NEIGHBOR 
(nonparametric) can be used to perform classificatory discriminant analyses (SAS Institute 1985). 

Discriminant analyses can also be used to define a subset of quantitative variables that best describes the 
differences among the groups; see, for example, the SAS procedure STEPDISC (SAS Institute 1985). 
Canonical discriminant analysis is equivalent to canonical analysis described above except that a set of 
quantitative variables is related to a set of classification variables (SAS Institute 1985). Principal 

                                                      
8 Canonical correspondence analysis is also often abbreviated as CCA. 
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component analysis is used as an intermediate step in the calculation of the canonical variables. The SAS 
procedure CANDISC can be used to perform canonical discriminant analyses (SAS Institute 1985). 

Cluster and discriminant analyses can be used to understand and adjust for relationships among water 
variables. For example, spatial heterogeneity and homogeneity can be revealed. This may be necessary to 
study the transport of a pollutant in a system or to remove the spatial component in order to detect 
changes over time. 

In many cases, watershed projects use simulation models to help with problem assessment and planning. 
Water quality models that include land use/land treatment and are calibrated using water quality data from 
the watershed or similar watershed(s) can also assist with identification of critical pollutant sources. The 
reader is referred to USEPA’s watershed project planning guide (USEPA 2008) and TMDL modeling 
website for additional information on water quality models. 

7.6 Data Analysis for Project Planning 
Existing data or data collected specifically in support of a developing watershed project may play 
important roles in project planning, including determination of land treatment needs and design of a water 
quality monitoring program. These and other aspects of watershed planning are addressed in detail in 
Handbook for Developing Watershed Plans to Restore and Protect Our Waters (USEPA 2008). 

7.6.1 Estimation and Hypothesis Testing 
Project planning – including setting clear project goals – should result in the articulation of hypotheses 
that can be tested using appropriate statistical tests. The hypothesis must be stated in quantitative terms 
that can be adequately addressed by statistical analyses and must be directly related to the stated water 
quality monitoring goals. 

The null hypothesis (Ho) is a specific hypothesis about a population that is being tested by analyzing the 
collected sample data. In water quality studies, the null hypothesis is generally a statement of no change, 
no trend over time or space, or no relationship(s). In contrast, the alternative hypothesis (Ha or H1) is 
generally the opposite of the null, e.g., a statistically significant change, a trend over time or space, a 
relationship between 2 or more variables. 

The general approach to hypothesis testing is to: 

1. State the null and alternative hypotheses. For example: 

• Ho – There is no statistically significant trend over 10 years in TP at the subwatershed stream 
outlet 

• Ha – There is a statistically significant trend over 10 years in TP at the subwatershed stream 
outlet 

2. Determine a parameter (e.g., mean, median, slope/trend over time) that would provide a point 
estimate to test if the sample data follow a distribution that would be expected if the null 
hypothesis was true, or more importantly, to test if there is evidence that the data come from an 
alternative population. 

3. Design a sampling plan that would collect data to test if there is statistical evidence to reject the 
null hypothesis and accept the alternative hypothesis. 

https://www.epa.gov/tmdl/tmdl-modeling
https://www.epa.gov/tmdl/tmdl-modeling
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/watershed-plannning-builder-and-guides
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4. Analyze the sample data to calculate the sample point estimate and its confidence interval based 
upon the collected data variability. 

5. Compare the confidence interval to the point estimate under the null hypothesis to determine if 
there is statistical evidence to reject the null and accept the alternative hypothesis (e.g., statistical 
evidence that a trend has occurred over time). 

It should be noted that if the null hypothesis is not rejected, it is inappropriate to state that the null 
hypothesis is accepted. Instead, failure to reject the null or failure to detect significant differences or 
trends is the proper way to state such results. Failure to reject the null could be due to high sample 
variability, low sample size, or no real differences or trends. The chance of documenting a true difference 
or trend with statistical significance is improved by increasing sample frequency and longevity, and by 
using a monitoring design that will isolate the change/trend, while accounting for some of the high 
variability in data values observed in natural water quality systems. Effective monitoring designs are 
described in chapters 2-4. 

There are two types of errors in hypothesis testing: 

1. Type I: The null hypothesis (Ho) is rejected when H0 is really true. 

2. Type II: The null hypothesis (Ho) is not rejected when H0 is really false. 

The probability of making a Type I error is equal to the significance level (α). The probability of a Type II 
error is β. The power of a test (1- β) is the probability of correctly rejecting Ho when Ho is false. While 
the significance level is often taken for granted to be 0.05, a different value might be more appropriate for 
some NPS studies. 

7.6.2 Determine Pollutant Reductions Needed 
To set goals for a watershed project, it is important to estimate the pollutant reduction required to meet 
water quality objectives, usually to meet WQS. There are several approaches to developing such 
estimates: 

 Mass balance/TMDL. In a TMDL setting, a load reduction goal is established based on a mass 
balance approach. Monitoring data are used to estimate the pollutant load a waterbody can receive 
while complying with WQS. The pollutant load reduction goal for a watershed project becomes the 
difference between the current load and the TMDL which is defined by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑊𝑊𝑇𝑇𝑊𝑊 + 𝑇𝑇𝑊𝑊 + 𝑇𝑇𝑀𝑀𝑆𝑆 
 

Where WLA is the Waste Load Allocation (the allowable point source load); 
 LA is the Load Allocation (the allowable nonpoint source load); and 
 MOS is the Margin of Safety to account for uncertainty in the other estimates. 

Note that the LA term (NPS load) is often estimated by difference and is not subdivided 
by source type. The pollutant load reduction goal for a watershed project focused on 
agricultural sources, for example, will not necessarily address the full difference between 
current load and LA because there may be other significant nonpoint sources in the 
watershed such as urban and residential nonpoint sources. TMDLs are frequently based 
on modeling analysis, but also use available water quality data to the extent possible. 
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Detailed information on TMDL analysis is available through USEPA (2013). See Case Study 5 for 
an illustration of how water quality data can be used in the development of a watershed-scale mass 
balance. The accuracy of this approach, however, depends on the quality and representativeness of 
the data used in the analysis. In Case Study 5, for example, because internal P loading is being 
computed based on estimates of the other terms, underestimation of external P loading will lead to 
an equal overestimate of internal P loading, thus confounding interpretation of the effects of alum 
application. For this and other reasons, the adaptive management approach is a cornerstone of 
TMDL implementation. As additional data are collected, mass balances should be revisited. 

 Receiving waterbody relationships. Numerous tools exist to evaluate the impacts of pollutant 
loads on waterbodies that may be helpful in estimating pollutant load reduction goals. In lakes, for 
example, there are many analytical procedures and modeling tools to relate phosphorus load to lake 
eutrophication, including the “Vollenweider models” (Vollenweider 1976, Vollenweider and 
Kerekes 1982) and BATHTUB (Walker 1999). Such tools may be used to “back-calculate” 
permissible phosphorus loads to lakes. Other receiving water models may be used for similar 
purposes in other types of waterbodies, e.g., QUAL2K, CONCEPTS, and WASP. All of these 
models can employ available monitoring data to both establish model parameter values and to 
conduct calibration and validation. Additional information on models useful in this kind of analysis 
can be found in the USEPA TMDL Modeling Toolbox. Many of these models need to be calibrated 
with water quality collected from the study watershed or similar watershed(s). 

 Load duration curves. A flow or load duration curve is a cumulative frequency plot of mean daily 
flows or daily loads at a monitoring station (e.g., a watershed trend station or tributary outlet) over a 
period of record, with values plotted from their highest value to lowest without regard to 
chronological order (see section 7.9.3). For each flow or load value, the curve displays the 
corresponding percent of time (0 to 100) that the value was met or exceeded over the specified 
period – the flow or load duration interval. Extremely high values are rarely exceeded and have low 
flow duration interval values; very low values are often exceeded and have high flow duration 
interval values. An estimate of the pollutant reductions needed is obtained by comparing a load 
duration curve developed from monitored loading data against a similar curve with loads estimated 
as the product of monitored flows and the pollutant concentration established in a WQS. Detailed 
information on the application of load duration curves to pollutant load reduction estimates can be 
found in An Approach for Using Load Duration Curves in the Development of TMDLs (USEPA 
2007). 

 

http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/index.cfm
http://www.qual2k.com/
http://afrsweb.usda.gov/SP2UserFiles/Place/64080510/AGNPS/Concepts/Doc/manual.pdf
https://www.epa.gov/exposure-assessment-models/water-quality-analysis-simulation-program-wasp
https://www.epa.gov/sites/production/files/2015-10/documents/toolbox-overview.pdf
https://www.epa.gov/tmdl/approach-using-load-duration-curves-development-tmdls
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CASE STUDY 5: MASS-BALANCE APPROACH USED FOR ESTIMATING 
PHOSPHORUS LOADS 
Grand Lake St. Marys (GLSM) is located in the Grand Lake 
St. Marys watershed in western Ohio (Figure CS5-1). GLSM 
is a large (5,000 ha), man-made, shallow (mean depth: 1.6 
m) lake originally constructed as a “feeder reservoir” for 
the Miami-Erie Canal (Hoorman et al. 2008; ODNR 2013; 
Tetra Tech, Inc. 2013). Over 90 percent of the watershed is 
in cropland with associated livestock operations. 
Cyanobacteria blooms in GLSM result both from external 
and internal phosphorus loading (Tetra Tech, Inc. 2013). 

The lake was treated with aluminum sulfate (alum) in June 
2011 (23.6 mg Al/L, 49.6 g/m2) and in April 2012 (21.5 mg 
Al/L, 45.2 g/m2) to reduce internal phosphorus loads. The 
combined treatments totaled approximately 70 percent of 
the recommended treatment for the lake (recommended treatment was 86 mg Al/L, 120 g/m2). 
Monitoring data from 2012 were compared against monitoring data collected between 2010 and 
2011 to analyze the results of the treatments (Tetra Tech, Inc. 2013). While the assessment also 
included analysis of algal biomass and aluminum in the water column and sediments, this 
summary focuses on total phosphorus (TP). 

 

Western Ohio 

 Treated a large, shallow 
lake with aluminum sulfate 
to reduce internal 
phosphorus loads 

 Used the mass-balance 
approach to estimate 
internal phosphorus loads 
pre- and post-treatment 

Figure CS5-1. Grand Lake St. Marys watershed 
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Monitoring and Sampling 
Data from eleven water column 
monitoring sites were used in the 
assessment, with the five lake sites 
(shown in Figure CS5-2) sampled every 
two weeks after alum treatment. 
Samples at these five sites were always 
collected at 0.5 m from the surface, 
while some sampling events also 
included samples at the bottom of the 
water column. Samples were analyzed 
for TP, soluble reactive phosphorus, 
alkalinity, and chlorophyll. The Ohio 
Environmental Protection Agency 
(OEPA) also conducted routine sampling 
of tributaries, with sample analysis 
including TP (Tetra Tech, Inc. 2013). 

Figure CS5-2. Tributary and lake sampling stations Mass-Balance Approach 
The mass-balance approach helped 
estimate internal TP loading before and 
after alum treatment. This approach consisted of five basic steps: (1) Estimating the water budget 
for GLSM; (2) Developing a basic P budget for the same time period as the water budget (May 
2010 through May 2011 prior to any alum addition); (3) Predicting GLSM mean TP concentrations 
using a P mass balance model for which input values are based on available monitoring data for 
inflows and outflows; (4) Comparing estimated GLSM mean TP concentrations with measured TP 
concentrations; and (5) Adjusting the rates of P sedimentation and release of P into the water 
column (internal loading) to match predicted with measured TP concentrations in GLSM (Tetra 
Tech, Inc. 2013). 

Water budget 
A water budget for GLSM was determined at a two-week time step. Change in lake storage was 
determined using the following equation: 

Change in GLSM lake storage = Inflow (creek and WWTP inputs) + Precipitation – 
Outflow (water treatment plant withdrawal, groundwater loss, outlets) – Evaporation 
+ Groundwater 

The only tributary for which flow data were collected continuously was Chickasaw Creek where 
USGS has a gaging station (see Figure CS5-2). Wastewater treatment plant (WWTP) flow volumes 
were obtained from WWTP records and removed from the creek flow volumes so that loads from 
the four WWTPs in the watershed to GLSM could be calculated separately. Flow volumes from 
ungaged tributaries and areas draining directly to the lake were estimated by multiplying the 
adjusted Chickasaw Creek flow (minus WWTP) by the ratio between the other contributing 
drainage and Chickasaw Creek drainage areas. If creeks were observed to be dry, the flow was 
assumed to be zero for that period (Tetra Tech, Inc. 2013). 

 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-52  

 
  

 

Precipitation records were obtained from a nearby weather station and multiplied by the surface 
area of the lake to get a volume of direct inflow from precipitation. Monthly mean pan 
evaporation rates were taken from the Hydrologic Atlas for Ohio (Harstine 1991; after Farnsworth 
and Thompson 1982). 

Groundwater inflow was negligible and the rate for groundwater loss was assumed based on 
productivity of the underlying aquifer. This rate was adjusted such that there was more loss or 
recharge during the drier months when there was no outflow. Daily WWTP withdrawals were 
obtained from plant records. GLSM has two spillways, neither of which is continuously gaged. 
Lake level data were used to determine when losses would occur over the spillways and two 
instantaneous flow measurements were used to check estimated flows over the west spillway 
which is the major outflow. Outflow over the east spillway was assumed to be 10 percent of the 
west spillway outflow based on communication with local experts (Tetra Tech, Inc. 2013). 

Total Phosphorus mass-balance model 
A TP mass balance model was developed using the same two-week time step as used for the 
water budget (Perkins et al. 1997; Tetra Tech, Inc. 2013). Mass was estimated for two-week 
periods by multiplying the estimated flow volume and mean TP concentration. The principal use 
of the mass-balance model was to estimate changes in internal P loading for GLSM based on input 
of measured and estimated values for other terms in the model. Model calibration was based on 
matching predicted with measured lake TP concentration (Tetra Tech, Inc. 2013). 

The following model was used to predict whole lake TP concentrations: 
dTP/dt = Wext + Wint – Ws – Wout, 

where Wext is external loading, Wint is internal loading, Ws is loss to sediments, and Wout is loss 
through the lake outlet. Predicted whole-lake TP concentrations were compared to observed 
whole lake mean TP concentrations determined from monitoring at the five lake sites (Figure 
CS5-2). 

Tributary TP concentrations were based on samples collected by OEPA during its routine 
monitoring. An average of all tributary TP concentrations was used for the ungaged portion of the 
basin. The TP concentration in direct precipitation was assumed to be 20 µg/L based on an 
average areal loading rate at Lake Erie from 1996 to 2002 (Dolan and McGunagle 2005). 
Concentration data for WWTPs were obtained from OEPA where available, and a concentration of 
2 mg/L based on an OEPA analysis was assumed otherwise. 

Assuming complete mixing, all but one outflow TP concentration was set equal to the whole lake 
average TP concentration predicted by the model. The actual measured TP concentration of the 
outflow, 210 µg/L, was used in the model for a single, very large storm event. Sedimentation rates 
(loss of TP to sediments) and sediment release rates (internal loading) of TP were adjusted in the 
model to reflect alum applications and to improve the relationship between predicted and 
measured lake TP concentrations (Tetra Tech, Inc. 2013). 

Results 
The phosphorus mass balance model was used to determine whole-lake mean TP concentrations 
based on external loading, internal loading, TP sedimentation, and TP loss through outflows. 
Whole-lake mean TP concentrations predicted by the 2012 model were compared to observed 
concentrations as collected and analyzed by OEPA. Sedimentation rates were adjusted to fit the 
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predicted to measured TP concentrations in the lake (Figure CS5-3). With the 2012 model thus 
calibrated, results were compared with those from 2010 and 2011 to determine if changes in 
internal TP loading had occurred as a result of alum treatments (Tetra Tech, Inc. 2013). 

Figure CS5-3. GLSM predicted vs. observed TP concentrations from May 2010 through October 
2012 (Adjustments made to internal loading estimates to match predicted November 2011 – 
October 2012 values to observed TP concentrations) 

Table CS5-1 shows that gross summer internal TP loading to GLSM declined steadily from 2010 to 
2012. The mass-balance modeling showed that average summer internal loading rate decreased 
from 4.0 mg/m2 per day before alum treatment to 1.8 mg/m2 per day after the two alum 
treatments, even though the combined 2011 and 2012 treatments totaled only 70 percent of the 
recommended treatment for the lake (Tetra Tech, Inc. 2013). 

Table CS5-1. Comparison of internal TP loading in GLSM (2010–2012) 
2010 2011 2012 

Total Gross Summer Internal TP Load (kg) 26,470 16,487 11,374 

Average Summer Internal Loading Rate (SRR) 
(mg/m2-day) 

4.0 2.4 1.8 

(Tetra Tech, Inc. 2013) 
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7.6.3 Estimate Land Treatment Needs 
A watershed project must set land treatment goals based on estimates of pollutant reductions needed and 
the BMPs available to accomplish those reductions. Where aquatic habitat improvement is needed, the 
project’s plan must also be based on an assessment of the change in habitat parameters (e.g., water 
temperature, cobble embeddedness, flow characteristics as well as pollutant loadings) needed to support 
aquatic life. Various approaches to determining land and in-stream treatment needs to restore and protect 
aquatic habitat have been documented (e.g., OWEB 1999, Rosgen 1997). Obviously, the BMPs selected 
must be those capable of addressing the pollutants and sources identified in the planning process. Setting 
goals for the level and extent of BMP implementation is necessary, but is an inexact science, partially 
because of the largely voluntary (and hence poorly predictable) nature of land treatment programs, and 
partially because it is difficult to predict water quality response to BMP implementation at the watershed 
level. See USEPA (2008) for a comprehensive discussion of watershed project planning. 

Where local data on BMP performance exist (e.g., a documented 45 percent reduction in suspended 
sediment load through a water and sediment control structure or a 25 percent reduction in runoff 
phosphorus concentration from fields in conservation tillage), they can be applied to estimate pollutant 
reductions anticipated from different levels of implementation. Where locally-validated data do not exist, 
there is ample information in published literature (e.g., Simpson and Weammert 2009, USDA-NRCS 
2012). Planners should use caution when applying performance data from other studies due to potential 
local site differences. 

It should be noted that published BMP efficiencies do not generally account for interactions in multiple 
practice systems or address pollutant transport or delivery processes beyond the edge of field or BMP site 
scale. Modeling, e.g. the Soil Water Assessment Tool (SWAT), may be a better method for estimating 
treatment needs because some models account for routing of BMP effects through a watershed. Simple 
pollutant load estimation tools such as USEPA’s STEPL (Spreadsheet Tool for Estimating Pollutant 
Load) can be used to provide general estimates of load reductions achievable via various BMP 
implementation options, but STEPL, for example, addresses a limited set of pollutants and simulates a 
limited set of BMPs. 

7.6.4 Estimate Minimum Detectable Change 
One critical step in watershed project planning is to use the data that have already been collected to 
evaluate the Minimum Detectable Change (MDC), the smallest monitored change in a pollutant 
concentration or load over a given period of time required to be considered statistically significant. 
Understanding of the MDC will assist in planning both land treatment and water quality monitoring 
design and will support predictions of project success. See section 3.4.2 for details. 

The basic concept in the calculation of MDC is simple: variability in water quality measurements is 
examined to estimate the magnitude of changes in water quality needed to detect significant differences 
over time. The MDC is a function of pollutant variability, sampling frequency, length of monitoring time, 
explanatory variables or covariates (e.g., season, meteorological, and hydrologic variables) used in the 
analyses which ‘adjust’ or ‘explain’ some of the variability in the measured data, magnitude and structure 
of the autocorrelation, and statistical techniques and the significance level used to analyze the data. In 
general, MDC decreases with an increase in the number of samples and/or duration of sampling in a 
monitoring program. 

http://swat.tamu.edu/
http://it.tetratech-ffx.com/steplweb/
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The MDC for a system can be estimated from data collected within the same system during the planning 
or the pre-BMP project phase or from data collected in a similar system, such as an adjacent watershed. 

As noted above, MDC is influenced by the statistical trend test selected. For the MDC estimate to be 
valid, the required assumptions must be met. Independent and identically distributed residuals are 
requirements for both parametric and nonparametric trend tests. Normality is an additional assumption 
placed on most parametric trend tests. However, parametric tests for step or linear trends are fairly robust 
and therefore do not require ‘ideally’ normal data to provide valid results. 

The standard error on the trend estimate, and therefore, the MDC estimate, will be minimized if the form 
of the expected water quality trend is correctly represented in the statistical trend model. For example, if 
BMP implementation occurs in a short period of time after a pre-BMP period, a trend model using a step 
change would be appropriate. MDC in this case is an extension of the Least Significant Difference (LSD) 
concept (Snedecor and Cochran 1989). If the BMPs are implemented over a longer period of time, a 
linear or ramp trend would be more appropriate. Calculation of the MDC is discussed in detail in Spooner 
et al. (2011a) and illustrated in section 3.4.2. The reader is advised to consult that publication to calculate 
and apply the MDC analysis. 

MDC provides an excellent feedback to whether the planned BMPs (type and location, acres served) will 
result in an amount of change in pollutant concentration or loads that can be statistically documented. 
Results of the MDC analysis can also be applied to the design of a long-term monitoring program 
(e.g., sampling frequency, monitoring duration). Decisions about data analysis such as the use of 
covariates to reduce effective variability and thereby reduce MDC can be made, or MDC calculations can 
be used to better understand the potential and limitations of an ongoing monitoring effort. Note that the 
MDC technique is applicable to water quality monitoring data collected under a range of monitoring 
designs including single fixed stations and paired watersheds. MDC analysis can be performed on 
datasets that include either pre- and post-implementation data or just limited pre-implementation data that 
watershed projects have in the planning phase. 

7.6.5 Locate Monitoring Stations 
The general location of monitoring stations is described for each monitoring design in section 2.4. 
Analysis of pre-project data, in conjunction with monitoring objectives, can provide insight into optimum 
location of monitoring stations to be used in watershed project effectiveness evaluation. Section 3.3 
provides a discussion on how site characteristics, access, and logistics influence decisions on locating 
monitoring stations. Spatial analysis of land use and management data, including understanding of 
relationships between land use and management patterns and water quality (see section 7.5.2.3) can be 
used to inform monitoring site selection. Inferences on critical source areas (section 7.5.2.4) should also 
be used to guide station location. Subwatersheds showing very high and very low NO2+NO3-N 
concentrations in Figure 7-19, for example, might be selected for monitoring as treatment and control 
watersheds, respectively. 

7.7 Data Analysis for Assessing Individual BMP Effectiveness 
The availability of BMPs that perform a known water quality function is fundamental to NPS watershed 
projects. Many practices have a long history (e.g., buffers, conservation tillage for erosion control, 
grassed waterways) and their efficiency in reducing NPS pollutants is well-documented by research, 
although highly variable depending on site, management, and other factors. The performance of other 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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BMPs, such as novel practices or practices not common locally, may not be fully understood. In such 
cases, and in cases where specific assurance that BMPs will perform adequately in local circumstances is 
required, the effectiveness of individual BMPs may be assessed through monitoring. 

Common monitoring designs for assessing BMP effectiveness include: 

 Plot studies 

 Input/output at the BMP practice scale 

 Above/below at the site scale 

 Paired watershed at the edge-of-field scale 

Data analysis for above/below and paired-watershed BMP monitoring is essentially the same as for these 
designs at the watershed project level (see section 7.8). This section will focus on discussion of data 
analysis for plot studies and for BMP input/output studies. 

7.7.1 Analysis of Plot Study Data 
Controlled, replicated plot or field studies are effective for testing specific practices of undocumented 
effectiveness or evaluating the effectiveness of a BMP program or system at a farm or watershed scale 
(USEPA 1997b). To some extent, plots represent microcosms of an area where a full-scale BMP might be 
applied, where inputs, management, and outputs can be controlled and measured to a degree that would 
be extremely challenging at full scale. Most importantly, because plots are small (often less than 100 m2), 
it is possible to test different levels of treatment and replicate treatments in the same experiment, thus 
potentially capturing enough variability to have some statistical confidence in the outcome. 

As discussed in section 2.4.2.2, there are a variety of plot study designs, including factorial experiments, 
Latin Squares, and complete and incomplete block designs. Approaches to analyzing data from these 
various options differ to some degree, but most follow three basic steps: 

 Test to see if there are significant differences among the treatments 

 Test to find which treatments are significantly different 

 Determine the magnitude of differences 

Statistical approaches discussed in this section focus on one- and two-factor designs (generally 
Randomized Complete Block, RCB). Readers should consult statistics textbooks and other resources for 
information on procedures to analyze data from the more complicated designs such as Latin Squares and 
incomplete block designs. 

Data from simple plot studies are usually analyzed using ANOVA (parametric) or the Kruskal-Wallis test 
(nonparametric). These procedures allow the determination of significant differences in group means for 
pollutant concentration or load coming from plots. When a plot study is conducted for a single 
precipitation/runoff event (either natural or simulated rainfall), the groups tested would be the replicate 
plots for each type or level of treatment, plus control plots. For a plot study conducted over a series of 
events, the groups tested could be data from replicate groups within individual events or mean 
concentration or total load over the entire series of events, depending on the study design. Note that the 
ANOVA and Kruskal-Wallis procedures only document that one or more group means differ significantly 
from the other groups. To determine which of the group means are significantly different, use a multiple 
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comparison test such as Tukey’s or the Least Significant Difference tests (Snedecor and Cochran 1989, 
USEPA 1997b). Applications of the Least Significant Difference and Tukey’s tests are illustrated in 
section 4.6.1 (pages 4-55 to 4-56) and 4.6.4 (pages 4-63 to 4-64), respectively, of the 1997 guidance 
(USEPA 1997b). 

The ANOVA procedure can also be used where there is more than one factor or explanatory variable 
(e.g., plot, slope), whereas the Kruskal-Wallis test handles only one factor. The Friedman nonparametric 
test is recommended for more than one factor. Application of these tests is described and illustrated in 
section 4.6 (pages 4-52 to 4-64) of the 1997 guidance (USEPA 1997b). 

One-factor comparisons using ANOVA assume random samples, independent observations, and normal 
distributions for each group, as well as the same variance across groups. Group sample sizes can differ, 
however. An illustrative example application of the Kruskal-Wallis test for one-factor comparisons is 
included in the 1997 guidance (USEPA 1997b), pages 4-56 to 4-58. 

Two-factor comparisons using ANOVA depend on whether the factors interact. An example of an 
interaction is the relationship between crop yield and precipitation, both of which can independently 
influence soil nitrate levels; greater yields remove more nitrate from the soil profile and greater 
precipitation moves more nitrate through the soil profile. Yield, however, is also influenced by 
precipitation (e.g., drought or excessively wet soil conditions), so there is an interaction between the two 
factors. The plot study analysis from Vermont (see Example 7.7-1) illustrates consideration of 
interactions. 

Both the scope of inferences that can be made and the F statistic calculation differ for fixed effect models 
(e.g., rainfall simulation studies in which rainfall rates are not randomly selected) versus models using 
randomly selected or combinations of randomly selected and fixed factors. Readers are recommended to 
section 4.6.2 (pages 4-58 to 4-61) of the 1997 guidance (USEPA 1997b) for an illustrative example and a 
discussion of these and other important considerations when applying ANOVA to two-factor 
comparisons. If the data are log-transformed prior to ANOVA, the treatment effects are then interpreted 
as multiplicative (rather than additive) in the original units. An alternative approach is to rank-transform 
the data prior to ANOVA, resulting in a comparison of the medians of the data in the original units (see 
pages 4-61 of the 1997 guidance for details). 

Once a statistically significant difference has been demonstrated and the different group means have been 
identified, it is possible to explore the magnitude of such differences. Methods for two random samples, 
two paired samples, or a single sample versus a reference (e.g., criterion for a WQS) are described in 
section 4.5.3 (pages 4-51 to 4-52) of the 1997 guidance. It is important to take the extra step of 
determining confidence intervals for difference estimates. 

In addition to using statistical tests to document differences among treatment groups, plot data can be 
evaluated by direct comparison of event mean concentration (EMC) or event load (or areal load) among 
treatments. For plot studies evaluating practice performance over a series of events, a cumulative export 
plot (where the sum of cumulative mean export from each group is plotted sequentially over the study) 
will illustrate the behavior of treatment groups in different events. It must be cautioned that data and 
quantitative inferences about practice performance from plots are usually very difficult to extrapolate to 
field or watershed scale because physical processes like runoff velocity are not well-represented in very 
small areas. 

  

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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Example 7.7-1. Plot Study Analysis: Bacteria Runoff from Manure Application in Vermont 

Objective 
Evaluate several practical methods for controlling 
E. coli in runoff from manure application sites. 
Specific objectives included: (1) determine the 
effect of manure storage time on E. coli losses in 
runoff from hay and corn land receiving liquid dairy 
manure; (2) determine the effect of manure 
incorporation on E. coli losses from corn land 
receiving manure; (3) determine the effect of 
vegetation height on E. coli losses in runoff from 
hay land; and (4) determine the effect of delay 
between manure application and rainfall on E. coli 
losses in runoff from hay land and corn land. 

Monitoring Design 
Two runoff experiments were conducted at 
separate hay land and corn land sites. For each 
experiment, 40 1.5- by 3-m plots were created, 
representing a factorial design of 3 replicates for 
each treatment combination, 3 manure ages, 
2 vegetation heights (for hay) or 
incorporated/unincorporated (for corn), 2 delay to 
rain durations, resulting in 3 x 3 x 2 x 2 (36) 
treatments, plus three control plots (no manure 
applied), and one extra plot reserved as a backup. 
Specific treatments were assigned to plots 
randomly. A rainfall simulator was used to 
generate runoff from the test plots by continuously 
and uniformly applying water at an intensity 
resembling natural rainfall. For each experiment, 
the first hour or first 19 L of runoff was collected 
from each plot. 

ANOVA table for hay land runoff experiment. Results show 
significant manure age, delay to rain, and two interactions 

Analysis of Variance 

Source df 
Sum of 
Squares 

Mean of 
Squares F Ratio P 

Model 7 34.8385 4.9769 37.135 <0.001 
Error 26 3.4846 0.1340 

  Total 33 38.32311 
   Effects Tests 

Source df 
Sum of 
Squares 

 
F Ratio P 

Manure Age 2 31.1188 
 

116.096 <0.001 
Vegetation Height 1 0.0673 

 
0.502 0.485 

Delay to Rain 1 0.602 
 

4.494 0.044 
Manure Ag x 
Vegetation Height 2 0.7427 

 
2.771 0.081 

Vegetation Height 
x Delay to Rain 1 1.2076 

 
9.011 0.006 

Levels of E. coli in hay land plot runoff by two treatment factors. 
Error bars represent +1 standard deviation; bars labeled with 
different letter(s) differ significantly (P < 0.1). 

Data Analysis 
Statistical analysis of E. coli data was conducted 
on log10 transformed data to satisfy the 
assumptions of normality and equal variances. All 
statistical tests were performed using JMP 
software at an α of 0.1. The effect of treatment on 
levels of E. coli in runoff was evaluated by multi-
factor analysis of variance (ANOVA). After an 
initial pass that included all treatment factors and 
all possible interactions, nonsignificant (P > 0.1) 
interactions were removed from the model and a 
final reduced-model ANOVA was conducted. 
Interpretations of treatment effects were based on 
the reduced model. 

     Source: Meals and Braun 2006 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-60 

 
  

7.7.2 Analysis of BMP Input/Output Data 
For some BMPs, such as agricultural water and sediment control basins or stormwater treatment devices, 
it is possible to assess practice effectiveness by directly monitoring input and output pollutant 
concentration and load. In either an agricultural or an urban setting, inflow and outflow variables such as 
flow volume, peak flow, EMC, or pollutant loads, are measured and the effectiveness of the BMP is 
calculated by comparing input vs. output. 

Paired input and output data can be compared by testing for significant differences in group means using 
the parametric paired Student’s t or the nonparametric Wilcoxon Rank Sum test. Comparison of random 
observations from two samples (e.g., input and output from a large constructed wetland for which it is not 
possible to collect paired samples due to uncertain or variable flow pathways or time of travel) can also be 
made with a t-test if equal variance is confirmed (e.g., F test); the Mann-Whitney test is the nonparametric 
alternative in this case. These tests are described and illustrated in detail in chapter 4 (pages 4-34 to 4-52) 
of the 1997 guidance (USEPA 1997b). 

Once a statistically significant difference is confirmed, BMP efficiency can be reported in a number of 
ways, including: 

 Efficiency ratio (percent reduction in flow, EMC, or load), 

 Summation of loads (percent reduction in sum of all monitored loads) 

 Regression of loads (reduction efficiency is expressed as the slope of a regression line for input 
load vs. output load) 

 Efficiency of individual storm load reductions across all monitored events 

 Percent removal relative to a water quality criterion 

All of these methods are described and illustrated by Geosyntec and WWE (2009). It is recommended 
that more than one method is used wherever possible because the results may differ. For example, results 
from the summation of loads and efficiency ratio (e.g., EMC) methods may not agree because of 
differences in how the water budgets are represented (Erickson et al. 2010b). 

The EMC is the total event load divided by the total runoff volume. It should be noted that, for large 
practices such as some constructed wetlands, the influent EMC (EMCI) must be adjusted to account for 
rain that falls directly onto the practice (Erickson et al. 2010a). Long-term performance can be determined 
by calculating the average EMCs (AvgEMC) for both influent (input or AvgEMCI) and effluent (output 
or AvgEMCO) and using these values to calculate the percent reduction in concentration (Erickson et al. 
2010b). The simple equation becomes: 

 

𝐿𝐿𝐿𝐿𝐿𝐿     
 


� 

 
An alternative approach that can add statistical power is to pair the input and output EMCs for each storm 
and calculate the average of the differences as an estimate of pollutant reduction efficiency. A paired t-
test can then be used to determine both the statistical significance of and confidence interval for the 
reduction. See section 4.2.1 (pages 4-11 to 4-14) of the 1997 guidance (USEPA 1997b) for additional 
information and an illustrative example of EMC calculations. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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The percent reduction in the sum of all monitored loads is calculated using the summed loads for both the 
input (LI) and output (LO): 

 

𝑃𝑃𝑑𝑑𝑆𝑆𝐸𝐸𝑑𝑑𝑆𝑆𝑆𝑆 𝑅𝑅𝑑𝑑𝑆𝑆𝑅𝑅𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆 = 100 ×
(𝑇𝑇𝐼𝐼 − 𝑇𝑇𝑂𝑂)

𝑇𝑇𝐼𝐼
 

 
Similar to the alternative proposed for EMCs, the average differences between paired input and output 
loads can also be used as an estimate of pollutant reduction efficiency. 

Erickson et al. (2010b) illustrate a method for determining the uncertainty of long-term performance 
estimates that are based on either the EMC or summation of load method they describe. Required input is 
the number of storm events, the standard deviation of the performance data, and a Student’s t value. 

Using data from Erickson et al. (2010b), Figure 7-21 illustrates regression of effluent against influent 
event loads. It should be noted that in this example the y-intercept was not constrained to the origin as 
recommended9 by Geosyntec and WWE (2009). The slope of the line indicates that effluent concentration 
is 37 percent of influent concentration above the baseline level (y intercept) of 0.01 kg TP. In other 
words, the BMP reduces the load by 63 percent (100-37), a number that agrees well with the 57.5 percent 
removal rate calculated by summation of loads (Erickson et al. 2010b). Regression analysis is illustrated 
and described at CADDIS Volume 4: Data Analysis. 

 

y = 0.3731x + 0.0109
R² = 0.6012
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Figure 7-21. Regression of output versus input load (data from Erickson et al. 2010b) 

                                                      
9 While specified in the definition of the regression of loads method, Geosyntec and WWE (2009) includes a 
comment suggesting that such a constraint “is questionable and in some cases could significantly misrepresent the 
data.” 

http://www.epa.gov/caddis/da_basic_2.html
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Constructing an Effluent Probability Plot 
The cumulative distribution function for the EMCs 
for the outflows and inflows can be created from 
the following steps: 
• Calculate the EMC for each storm’s outflows. 
• Rank all EMCs for all storms from smallest to 

largest. 
• Assign a 0 to 1 ‘probability’ to the data based 

upon their ranked order. For example, if 10 
storms were monitored, the ranked values 
would receive a ‘probably ranking’ value of 
0.1, 0.2, … 1.0 for the lowest to highest EMC 
values. 

• Plot the ‘probability ranking’ values on the 
Y-scale and the EMCs on the X-scale. The 
Y-scale should be plotted on a probability 
scale. Alternatively, the Y-axis could be 
expressed as the number of standard 
deviations (e.g., +/- 3). Because the EMCs 
are likely to follow a log-normal distribution, 
the X-axis should be a log scale. 

• Repeat the procedure for the inflows and plot 
on the same graph. 

BMP efficiency evaluated by input/output 
monitoring is frequently reported as simply 
percent removal of a pollutant. In most cases, 
this is an inadequate basis for assessing BMP 
performance. Percent removal is primarily a 
function of input quality, and BMPs with a 
high apparent removal percentage may still 
have unacceptably high concentrations or 
loads in their output. Some BMPs with long 
retention times (e.g., constructed wetlands) 
show long-term performance that is not 
evident in comparing paired input-output 
samples because material from one event is 
not discharged until a subsequent event (i.e., 
the samples are not paired or matched). 
Finally, a simple percent removal calculation 
can be dominated by outliers that distort an 
average performance indicator. 

For these and other reasons, USEPA and 
ASCE have recommended the Effluent 
Probability Method for evaluating 
input/output data from a BMP (Geosyntec and 
WWE 2009). In this procedure, a statistically 
significant difference between input and 
output EMC or load is verified (e.g., by 
Student’s t Test). Then, a normal probability plot is constructed of input and output data that allows 
comparison of BMP performance over the full range of monitored conditions. For example, Figure 7-22 
shows an effluent probability plot for chemical oxygen demand (COD) from an urban wet detention pond 
evaluation The plot shows that COD was poorly removed at low concentrations (<20 mg/L), but that 
removal increased substantially for higher concentrations. 

The Effluent Probability Method is essentially a cumulative distribution function for the EMCs of the 
inflows and outflows. The cumulative distribution function depicts the probability of values being below 
a given EMC value or the EMC values that a percentage (e.g., 50 percent) of the data falls above. 

The magnitude of the difference in EMC (or loads) from the inflow and outflows can be examined across 
the range of EMC values. The Kolmogorov–Smirnov test is based on cumulative distribution functions 
and can be used to determine if the two empirical distributions are significantly different (Snedecor and 
Cochran 1989). 

http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
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Figure 7-22. Effluent probability plot for input/output monitoring of a wet detention pond 

𝑃𝑃𝑑𝑑𝑆𝑆𝐸𝐸𝑑𝑑𝑆𝑆𝑆𝑆 𝑅𝑅𝑑𝑑𝑇𝑇𝐸𝐸𝑑𝑑𝑆𝑆𝑅𝑅 𝑑𝑑𝑠𝑠 𝐴𝐴𝑆𝑆𝐸𝐸𝑆𝑆𝑑𝑑𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆 =  100 ×
(𝐴𝐴𝐼𝐼 − 𝐴𝐴𝑂𝑂)
(𝐴𝐴𝐼𝐼 − 𝐴𝐴𝐶𝐶) 

 
Percent removal relative to a water quality criterion provides an indication of how well a BMP is 
performing compared to limits or expectations established for the local waterbody. Use of this method is 
recommended for specific event analysis, but not for a series of events (Geosyntec and WWE 2009). 
Calculation requires values for the criterion (CC), input (CI), and output (CO), all expressed in the same 
units (concentration in this case): 

For example, in a watershed with a target total N concentration of 0.75 mg/L, storm inlet and outlet 
concentrations of 3.6 mg/L N and 1.6 mg/L N, respectively, would yield a relative percent removal of 
70 percent. 

The reader is referred to Urban Stormwater BMP Performance Monitoring (Geosyntec and WWE 2009) 
for additional information on evaluating urban stormwater BMP performance through monitoring. 

7.7.3 Analysis of BMP Above/Below Data 
As noted earlier, BMP performance can be assessed using an above/below-before/after monitoring design, 
as long as the added area monitored by the downstream station is either entirely or predominantly 
influenced by the BMP. In such cases, analysis of monitoring data is done by the same approach as 
described in section 7.8.2.2. An example of this kind of above/below-before/after analysis of a single 
BMP can be found in the Otter Creek (WI) NNMP project, which assessed the effects of barnyard runoff 
control (see Example 7.7-2). This example illustrates application of the Hodges-Lehmann estimator 
described in section 4.5.3 of the 1997 guidance (USEPA 1997b). 

http://www.bmpdatabase.org/Docs/2009%20Stormwater%20BMP%20Monitoring%20Manual.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/319monitoring/nmp_profiles/wi_otter_profile.pdf
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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Example 7.7-2. Above/Below-Before/After Analysis: Barnyard Runoff BMPs in Wisconsin 

Monitoring Design 
Sampling stations upstream and downstream of two investigated dairy barnyards were established in 
1994/1995. At the upstream sampling stations, stream stage and precipitation were continuously 
monitored, and discrete water samples were collected automatically; at the downstream stations, only 
water quality samples were collected. Over the course of the study, 11 – 15 storm runoff periods were 
sampled at each of the sites. Continuous streamflow and instantaneous concentration data were used to 
estimate pollutant loads for individual storm-runoff periods. 

Pre-BMP Analysis 
A critical aspect of obtaining useful conclusions for this study was the ability to document that 
downstream loads were significantly greater than upstream loads before the BMP systems were 
implemented. Results of t-Tests showed that, for the pre-BMP period at both creeks, downstream loads 
of total P, ammonia, BOD, and fecal coliform bacteria were significantly greater than upstream loads. At 
Otter Creek, pre-BMP downstream loads of total suspended solids also were significantly greater than 
those upstream. These significant differences indicated that each barnyard was an important contributor 
to the instream pollutant loads for the storm-runoff periods monitored. 

Effects of Treatment 
The difference between upstream and downstream constituent loads was computed for each pre- and 
post-BMP storm-runoff period. These differences were considered to be the load contributed by each 
barnyard. The bar graphs indicate that both barnyard BMP systems have reduced loads in the stream for 
each constituent. Each bar represents the median of all the differences between upstream and 
downstream constituent loads for both pre- and post-BMP storm-runoff periods. Although these medians 
could have been used to determine the percentage reduction achieved by each barnyard BMP system, it 
was decided that use of the Hodges-Lehmann estimator would be a more accurate approach (Helsel and 
Hirsch 2002). The Hodges-Lehman 
estimator is the median of all possible 
pairwise differences between pre- and 
post-BMP barnyard loads. This median 
difference was then divided by the pre-
BMP median barnyard load for each 
constituent. The result was a percentage 
load reduction for each constituent. 
The barnyard BMP system at Otter 
Creek reduced loads of total suspended 
solids by 85 percent, total P by 85 
percent, ammonia by 94 percent, BOD 
by 83 percent, and microbial loads of 
fecal coliform bacteria by 81 percent; the 
respective loads at Halfway Prairie 
Creek have been reduced by 47, 87, 95, 
92, and 9 percent. 
 

Source: Stuntebeck and Bannerman 1998 
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7.7.4 Analysis of BMP Paired-Watershed Data 
Some BMPs – especially agricultural BMPs that involve treatment of an entire field such as conservation 
tillage, cover crops, or nutrient management – can be evaluated using a paired-watershed design. In this 
case, monitoring takes place at the edge of field-sized watersheds, wherein one entire monitored field is 
designated to receive the BMP treatment. Automated samplers are required to collect storm event runoff. 
In the paired-watershed design, monitoring occurs during a calibration period in which both fields or 
subwatersheds have identical management. Then, after their pollutant responses to the same rainfall 
events are correlated, a treatment period occurs in which one of the subwatersheds receives the BMP 
treatment and the other remains in the ‘controlled’ management. Analysis of covariance (ANCOVA) is 
used to analyze the monitoring data from this type of study. See section 7.8.2.1 for details. 

7.8 Data Analysis for Assessing Project Effectiveness 

7.8.1 Recommended Watershed Monitoring Designs 
Assessing the effectiveness of a watershed project where multiple BMPs are implemented in a land 
treatment program across a broad watershed area is a complex task with many sources of variability and 
uncertainty. Attributing changes in water quality documented through monitoring to land treatment, rather 
than to other causes such as drought or extreme weather, is another significant challenge. Monitoring 
designs (see chapter 2) recommended for assessing watershed project effectiveness are: 

 Paired-watershed (link to section 2.4.2.3) 

 Above/below-before/after (link to section 2.4.2.6) 

 Nested-watershed (link to 2.4.2.3) 

 Single watershed trend (link to section 2.4.2.5) 

While not generally recommended because of cost and logistical constraints (see section 2.4.2.8), data 
analysis for multiple-watershed studies is also discussed here. These designs vary in their ability to 
evaluate watershed project effectiveness while controlling for sources of change other than land 
treatment; the designs also vary in the appropriate approach to data analysis. The paired-watershed design 
is generally considered to be the best design for this purpose because it strives for a controlled experiment 
to evaluate BMP effectiveness at a watershed scale, accounting for year-to-year variability in weather and 
streamflow through the use of a control watershed. Several common watershed project designs are 
excluded from the above list because they are not generally capable of reliably documenting water quality 
change and attributing the change to land treatment. Single watershed before/after and side-by-side 
watersheds, for example, cannot be recommended for watershed project effectiveness monitoring because 
they cannot be used directly to separate the effects of the BMPs from those of climate or watershed 
differences (e.g., soils, slope, land management) which may be the actual causes of the observed 
differences (see section 3.4). The single watershed before/after design can, however, be useful in 
comparing pollutant loads over time to determine if TMDL goals have been achieved (see section 7.9). 

None of these designs will perform effectively, however, if all the requirements of the design are not met. In 
some cases, failure to meet a single criterion (e.g., unexpected treatment in the control watershed of a paired 
design, or changing analytical procedures during a long-term single-station study) may doom the effort. 
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Each of these designs is discussed in chapter 2; information relevant to data analysis procedures are 
provided in this section. 

7.8.2 Recommended Statistical Approaches 
The following sections recommend statistical approaches to analysis of data from recommended 
watershed monitoring designs. Additional details on specific statistical tests can be found in chapter 4 
(Data Analysis) of the 1997 guidance (USEPA 1997b). 

7.8.2.1 Paired Watershed 
As described in chapter 2, the most effective 
practical design for evaluating watershed-level 
BMP effectiveness through monitoring is the 
paired-watershed design due to the presence of an 
experimental control for year-to-year hydrologic 
variability (Clausen and Spooner 1993). The 
paired-watershed design has been discussed in 
section 2.4.2.3. The basic design involves two 
watersheds (a control, where no BMPs are to be 
implemented, and a treatment watershed where 
land treatment will be applied) and two periods (a 
pre-treatment or calibration period, and a treatment 
period). Analysis of paired data (i.e., frequently 
collected chemical or physical data) from treatment 
vs. control areas should show a statistically 
significant correlation and result in a strong linear 
regression model (usually using log-transformed 
data) that changes from the pre-treatment to post-
treatment period. In the case of biological monitoring (e.g., sampling twice per year), relationships 
between treatment and control watersheds should change in a more qualitative manner from pre- to post-
treatment periods. For example, treatment and control watersheds may both be of “poor” quality in the 
pre-treatment (or pre-BMP) period, whereas the treatment watershed improves to “good” quality while 
the control watershed remains at “poor” quality during the post-treatment period. Additional 
considerations for paired-watershed designs with more than one treatment watershed are discussed at the 
end of this section. 

Additional Information on ANCOVA 
• USEPA. 1997b. Monitoring Guidance for 

Determining the Effectiveness of 
Nonpoint Source Controls Chapter 4; 

• Clausen and Spooner. 1993. Paired 
Watershed Study Design. 841-F-93-009; 

• Grabow et al. 1999. Detecting Water 
Quality Changes Before and After BMP 
Implementation: Use of SAS for 
Statistical Analysis; and 

• Grabow et al. 1998. Detecting Water 
Quality Changes Before and After BMP 
Implementation: Use of a Spreadsheet 
for Statistical Analysis of Paired 
Watershed, Upstream/Downstream and 
Before/After Monitoring Designs. 

See section 4.8 of the 1997 guidance (USEPA 1997b) for details and an example including a method for 
determining if enough calibration data has been collected to warrant advancing to the BMP treatment 
period. Failure to establish a statistically valid pre-treatment correlation will doom the evaluation design. 

7.8.2.1.1 Analysis of Covariance (ANCOVA) Procedure – Paired-Watershed Analysis 
The Analysis of Covariance (ANCOVA) procedure is used to analyze data from a paired-watershed study 
(Clausen and Spooner 1993, Wilm 1949, Clifford et al. 1986, Meals 2001). ANCOVA combines the 
features of ANOVA with regression (Snedecor and Cochran 1989) and is an appropriate statistical 
technique to use in analysis of watershed designs that compare pre- and post-BMP periods using 
treatment and control watershed measurements. When applied to the analysis of paired-watershed data, 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
http://nepis.epa.gov/Exe/ZyNET.exe/20004PR6.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1991+Thru+1994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C91thru94%5CTxt%5C00000008%5C20004PR6.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=p%7Cf&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
http://nepis.epa.gov/Exe/ZyNET.exe/20004PR6.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1991+Thru+1994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C91thru94%5CTxt%5C00000008%5C20004PR6.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=p%7Cf&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
http://www.bae.ncsu.edu/programs/extension/wqg/issues/93.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/93.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/93.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/93.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/92.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/92.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/92.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/92.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/92.pdf
http://www.bae.ncsu.edu/programs/extension/wqg/issues/92.pdf
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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ANCOVA is used both (a) to compare pre- and post-BMP regression equations between water quality 
measurement values (e.g., sediment concentration) for the treatment and control watersheds and (b) to test 
for differences in the average value (e.g., of sediment concentration) for the treatment watershed between 
the two time periods after adjusting measured values for covariates such as flow. Covariates are added to 
the analysis to decrease the residual error and give a more precise comparison between covariate-adjusted 
mean values. 

There are three basic steps to performing ANCOVA: 

1. Obtain paired observations 

2. Select the proper form of linear model 

3. Calculate the adjusted means (LS-means) and their confidence intervals 

Paired observations could represent observations collected on the same date, the same time period for 
composite samples, or from the same storm event. Weekly flow-weighted composite samples taken at the 
outlet of both control and study watersheds would satisfy this requirement. 

The second step is to select the proper form of the model. There are two basic statistical models here for 
paired-watershed studies: 

 The change in treatment watershed concentration with change in control watershed concentration 
(i.e., the slope of the linear relationship between paired samples) remains constant through both the 
calibration and treatment periods. 

 The slope of the relationship changes from calibration to treatment period. 

ANCOVA for paired-watershed studies is illustrated by Figure 7-23 where pollutant concentration (or 
load) pairs are plotted with the treatment basin values on the Y-axis and the control basin values on the 
X-axis. The slopes of the pollutant concentrations plotted for both periods are tested to determine if they 
are significantly different (see B in Figure 7-23) or if the same slope can be assumed (see A in Figure 7-
23). A change in slope and/or mean value indicates that pollutant concentrations for the treatment 
watershed exhibited different patterns, or magnitude, after BMPs were applied as compared to the 
calibration period. For example, in both A and B of Figure 7-23 the same concentration in the control 
watershed corresponds to a lower concentration in the treatment watershed in the post- (treatment) versus 
the pre-BMP (calibration) period, indicating beneficial effects from the BMPs. In the case of B, both the 
mean and the slope are reduced in the treatment period. The adjusted mean concentrations (LS-means) for 
the calibration and treatment periods are also compared for differences as described above under 
“ANCOVA Procedure.” 

The best statistical model for a particular dataset is determined with a test for homogeneity of slopes 
(i.e., same or different slopes) using the ‘full analysis of covariance model’ that allows for separate 
regression lines (i.e., different slopes and intercepts, Figure 7-23B) for the calibration and treatment 
periods (i.e., the groups) for the regression of the treatment watershed variable (Y) on the control 
watershed variable (X): 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-68 

 
  

Yij = b0i + �b1i

𝑘𝑘

𝑖𝑖=1

�Xij�  + eij        ("Full statistical model" for different slopes) 

Where: 

Yij = the jth observation for Y in period i (e.g., pollutant concentration or load from treatment 
watershed) 

b0i = the intercept (B0) for period i 
b1i = the regression coefficient (B1) of Y on X for period i 
Xij = the jth observation for X in period i (e.g., pollutant concentration or load from control 

watershed paired with same sample time as Yij) 
k = number of time periods (with ‘calibration’ and ‘treatment’ periods, k=2) 
eij = the residuals or experimental error for the jth observation for Y in period i. Note: if the data 

are weekly, biweekly, or monthly, this error series is likely autocorrelated with 
Autoregressive, Lag 1 or AR(1) and depicted as Vij or Vt. A statistical model that allows 
for this autocorrelated error structure should be used (e.g., PROC AUTOREG in SAS 
software (SAS Institute 2016d) or use a correction for the standard error on the test of 
LS-means (See section 7.3.6) 

The F-Test for the homogeneity of slopes is used to see if the best model requires separate slopes for each 
period or the same (pooled) slope (Clausen and Spooner 1993). The best model will have the lowest 
residual sum of squares (SSE). The F-statistic for testing the homogeneity of slopes is: 

F statistic = �
(SSER − SSEF)

(k − 1) � /MSEF 

Where: 

SSER = Residual sum of squares for the reduced model with a common (pooled) slope (see 
below) 

SSEF = Residual sum of squares for the full model which allows for separate slopes for the 
calibration and treatment periods 

k = number of groups (calibration + treatment periods = 2 in this case) 
MSEF = Mean square error from the full model 

This F-statistic is compared to an F distribution with (k-1) and (N-2k) degrees of freedom (d.f.), where k 
is the number of groups and N is the total sample size (i.e., the total number of paired samples used in the 
analysis). See Example 7.8-1 below for examples of how to test if the slopes are different using an 
‘interaction’ term in the statistical software programs. 

If there is no evidence for separate slopes, then a “reduced model” with the same slopes assumed for each 
group (based on pooled data) should be used (see Figure 7-23A). If the interaction term is significant, 
then the “full model” is the correct model and the significance of the difference between all possible pairs 
can be obtained (see Figure 7-23B). 
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Figure 7-23. Conceptualized regression plots for paired-watershed data. The red line indicates the 
comparison of the treatment watershed from the calibration vs. treatment periods evaluated at the 
LSMEANS value of 2.5 (the mean of all sampled values in the control watershed over the entire 
sampling duration (both treatment and calibration period). 
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Example 7.8-1. Software Examples for the Statistical Analyses using Analysis of 
Covariance (ANCOVA) for the Paired-Watershed Study 

Statistical software packages may vary in how they address ANCOVA. A few examples are given below. 
NOTE: We will provide a sample dataset (e.g., Walnut Creek, IA) and results for this example so users 
can test their own techniques and software. 

A. SAS Software, assuming no autocorrelation 
The SAS (SAS Institute 2010) program statements that generate a covariance model with unique slopes 
for each group (“full model”, different slopes) are: 

PROC GLM; CLASS PERIOD; 
MODEL Y = X PERIOD PERIOD*X/ SOLUTION; 
LSMEANS PERIOD /PDIFF; 

Where the user inputs the variable names used for their project data for: 
Y =  Name of variable which contains the treatment watershed values (e.g., concentration/load) 
X =  Name of variable which contains the control watershed values (e.g., concentration/load) 
PERIOD = calibration or treatment period 
PERIOD*X = the “interaction” term that allows for different slopes for each PERIOD 

The other terms are part of the SAS program software syntax. SOLUTION is optional but generates the 
regression equation for each PERIOD. The LSMEANS SAS statement generates the LS-means for each 
PERIOD. The PDIFF option produces significance tests to compare the LS-means for each PERIOD for 
statistically significant differences. 

If there is no evidence for separate slopes (i.e., the PERIOD*X interaction term in the SAS output is not 
significant), then a “reduced model” with the same slopes assumed for each group (based on pooled 
data) should be used. If the interaction term is significant, then the “full model” is the correct model and 
the significance of the difference between all possible pairs can be obtained from the PDIFF option in the 
LSMEANS statement above. 

The SAS program statements that generate a covariance model with common slope but unique 
intercepts for each period (“reduced model”) are: 

PROC GLM; CLASS PERIOD; 
MODEL Y = PERIOD X/ SOLUTION SS1 SS3; 
LSMEANS PERIOD /PDIFF; 

NOTE regarding data setup: 
The input data set has columns for each of the variables: Y, X, PERIOD, and DATE. Although DATE is 
not used in this software example, it is useful to match the values in each row for Y, X, and PERIOD to 
the correct sample collection date so that the Y and X values are correctly paired up. For the PROC 
GLM software procedure, PERIOD can be “0” and “1” or “Pre” and “Post” or any other numeric or 
character value desired. But, be aware that internal to SAS, “0” and “1” values will be generated based 
upon the alphabetical order – something to consider when interpreting the solutions for the regression 
line equations for each time period. 
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Example 7.8-1. Continued 

B. SAS Software, data set with autoregressive, lag 1, AR(1) autocorrelation 
The SAS (SAS Institute 2010) program statements that generate a covariance model with unique slopes 
for each group (“full model”, different slopes) and accommodate an AR(1) error structure are: 

PROC AUTOREG; 
MODEL Y = X PER PER_INTER/NLAG=1 DWPROB; 

Where the user inputs the variable names used for their project data for: 
Y =  Name of variable which contains the treatment watershed values (e.g., 
concentration/load) 
X =  Name of variable which contains the control watershed values (e.g., concentration/load) 
PER = calibration or treatment period (“0” for pre-BMP period values; “1” for post-BMP values) 
PER_INTER = the “interaction” term that allows for different slopes for each period. This is a 
numeric variable whose values are created by multiplying the values of X and PER for each 
observation 

The other terms are part of the SAS program software syntax. NLAG=1 indicates a lag 1 error structure 
(PROC AUTOREG assumes an autoregressive error structure). 
If there is no evidence for separate slopes (i.e., the PER_INTER interaction term in the SAS output is not 
significant), then a “reduced model” with the same slopes assumed for each group (based on pooled 
data) should be used. If the interaction term is significant, then the “full model” is the correct model. 
The SAS program statements that generate a covariance model with common slope but unique 
intercepts for each period (“reduced model”) are: 

PROC AUTOREG; 
MODEL Y = X PER /NLAG=1 DWPROB; 

NOTE regarding data setup: 
The data setup is similar to the PROC GLM software example in A above, except there is no CLASS 
option in PROC AUTOREG. Numeric input variables needs to be created for all input variables (e.g., 0 
and 1 for pre- and post- BMP periods). Since this model includes is a time series error structure, the data 
must be sorted by date order and have equal spaced time intervals. PROC AUTOREG can correctly 
handle missing values. In such cases, a data record for the date should be included, but with missing 
values (indicated by a “.” for the missing data input values. 

 
When the reduced model with common slopes is used, the following equation (Snedecor and Cochran 
(1989) should be used to describe the linear regression for each time period, i, which would have the same 
slope, but be allowed to have different intercepts: 

             ("Reduced model" for same slopes) Yij = b0i + b1�Xij� + eij  
Where: 

Yij = the jth observation for Y in period i (e.g., treatment watershed concentration or load) 
b0i = the intercept for period i 
b1 = the regression coefficient of Y on X pooled over all periods 
Xij = the jth observation for X in period i (e.g., control watershed concentration or load) 
eij = the residual or experimental error for the jth observation for Y in period i (Vt for autocorrelated 

error series) 
Note that this version of the covariance model forces the slope of the regression of Y on X to be the same 
for each group, but allows the intercept to be unique (i.e., the regression lines representing each group are 
parallel). 
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Example 7.8-1. Continued 

C. JMP Software, data set with no autocorrelation 
Steps: Analyze => Fit Model => Select “Y’ Variable, Add variables to the Model Effects (“X” and 
“PERIOD, highlight PERIOD and X variables in Select Colum and then select ‘Cross’ in Model Effects to 
include interaction term=>Run 
NOTE regarding data setup: 
The input data set has columns for each of the variables: Y, X, PERIOD, and DATE. Although DATE is 
not used in this software example, it is useful to match the values in each row for Y, X, and PERIOD to 
the correct sample collection date so that the Y and X values are correctly paired up. For the PROC 
GLM software procedure, PERIOD can be “0” and “1” or “Pre” and “Post” or any other numeric or 
character value desired. But, be aware that internal to SAS, “0” and “1” values will be generated based 
upon the alphabetical order – something to consider when interpreting the solutions for the regression 
line equations for each time period. 
Note: if data has autocorrelated, autoregression, order 1 or AR(1) error series, the standard error on the 
differences between the LS-means can be adjusted and then the corrected significant differences can be 
determined by: 

𝑠𝑠𝑆𝑆𝑆𝑆. 𝑆𝑆𝑑𝑑𝑑𝑑.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=𝑠𝑠𝑆𝑆𝑆𝑆. 𝑆𝑆𝑑𝑑𝑑𝑑.𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
1+𝜌𝜌
1−𝜌𝜌

 

Where ρ = autocorrelation coefficient at lag 1 
 Std. dev = standard error on the differences of the LS-means 

D. MiniTab Software, data set with no autocorrelation 
Steps: Stat > ANOVA > General Linear Model. In the responses, model, and random factors dialogue 
boxes, enter “Y”, “X PERIOD X*PERIOD”, and “PERIOD”, respectively. The user can choose whether to 
use adjusted or sequential sum of squares under the options button and pairwise comparisons can be 
chosen from the comparisons button. Pressing OK button runs the general linear model. 
 
Reference: Minitab (2016) 

 
Lastly, calculation of the adjusted means and their confidence intervals can be performed. After the 
correct model is determined (“Full” or “Reduced” model), then the adjusted LS-means10 which correct for 
the bias in X between periods can be calculated. The LS-mean of each period (i.e., calibration and 
treatment periods in this case) is the period mean for Y adjusted to an overall common value of X. In 
other words, the LS-means are the calibration and treatment period regression values for the treated 
watershed evaluated at the mean of all the control watershed values over both time periods (e.g., mean of 
all the X values). Operationally, inserting the mean of all X values into the regression equations for the 
calibration and treatment periods will yield the LS-mean values for each period, respectively. An F-test of 
the adjusted LS-means then determines if there is sufficient evidence to conclude that the adjusted LS-
mean for the treatment period is different from the adjusted LS-mean for the calibration period. The SAS 
program performs this F-test on the “Period” variable in Example 7.8-1. 

                                                      
10 LS-means (least square means) are used in ANCOVA as a better comparison of average values between periods 
as compared to arithmetic means. LS-means are estimated values that are evaluated at the average value of the 
specified covariate(s) such as the control watershed values in the paired-watershed study design. 
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Caution must be used when interpreting the results for the comparisons of adjusted means when 
individual slopes are used. When the slopes are not parallel, the comparisons of adjusted means may not 
be the most meaningful question. One may be more interested in the behavior over the entire range of X. 
In this case a graphical presentation may be most appropriate. 

For samples collected daily, weekly, biweekly, or monthly, autocorrelation may be significant. In these 
cases, autocorrelation can be addressed by using a software regression program that incorporates the 
autocorrelation in the error term, for example PROC AUTOREG by SAS (SAS Institute 2016d); see 
Example 7.8-1. 

7.8.2.1.2 Multivariate ANCOVA-Paired Watershed with Explanatory Variables 
Note that the above analysis employed a basic univariate ANCOVA model that included only data on the 
pollutant variable of interest (e.g., concentration or loads) from the control and treatment watersheds. The 
New York NNPSMP project demonstrated the successful use of a multivariate ANCOVA technique that 
included hydrologic variables (e.g., instantaneous peak flow rate, event flow volume, and average event 
flow rate) in the model (Bishop et al. 2005). The project found that including the flow covariates 
explained 80 to 90 percent of observed variability in annual and seasonal event P loads, an improvement 
of 16 to 50 percent versus a simpler univariate model. In addition, inclusion of covariates reduced the 
minimum detectable treatment effect by 11 to 53 percent versus the univariate model, a result that 
indicates potential cost savings through reduced sample size requirements. It is important to note that the 
inclusion of additional covariates (i.e., those in addition to the variable of interest in the control 
watershed) is prefaced upon the assumption that they are not affected by BMP implementation. In this 
example, testing indicated no influence of BMPs on farm runoff volume, event peak flow, or average 
event flow. 

In the case of a paired-watershed study, explanatory variables (covariates) would be added to the 
statistical model. The full model which allows for different slopes for each time period and covariate is: 

Yij = b0i + �b1i

𝑘𝑘

𝑖𝑖=1

�X1ij� +   � bci

𝑐𝑐+1

𝑐𝑐=2

�Xcij� + eij    

Where: 

Yij = the jth observation for Y in period i (e.g., pollutant concentration or load from treatment 
watershed) 

b0i = the intercept (b0) for period i 
b1i = the regression coefficient (b1) of Y on X1 for period i 
bci = the regression coefficient (bc) for covariate Xc for period i 
k = number of time periods (with ‘calibration’ and ‘treatment’ periods, k=2) 
X1ij = the jth observation for X1 in period i (X1 is the pollutant concentration or load from control 

watershed paired with same sample time as Yij) 
d = number of explanatory variables in addition to the control watershed variable. For example, if 

only flow was used as a covariate, d=1 and the explanatory variable for flow would be 
X2. 

Xcij = the jth observation for Xc covariate in period i 
eij = the residuals or experimental error for the jth observation for Y in period i (Vij for 

autocorrelated error structure) 
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As discussed above, a test for the homogeneity of slopes (by including interaction terms) would be 
performed to see if a full or reduced model is the best choice, followed by calculation of adjusted means 
and their confidence intervals to see if a significant difference exists between the two periods. 

While the focus above has been on a basic paired-watershed study design consisting of two watersheds 
(control and treatment) and two periods (calibration and treatment), ANCOVA is a powerful tool that can 
also be applied to paired-watershed studies with multiple control and treatment watersheds and more than 
two periods, as well as to above-below studies that have two or more time periods. 

7.8.2.1.3 Multiple Paired Watersheds 
Both the Jordan Cove (CT) and Lake Champlain Basin (VT) NNMP projects included three watersheds in 
their paired-watershed designs. The Jordan Cove project included a previously developed drainage area as 
a control, and two newly developed drainage areas, one following traditional subdivision requirements 
and another using low-impact development BMPs (Clausen 2007). The Vermont project employed a 
three-way paired design including one control watershed and two treatment watersheds receiving similar 
BMP systems at different intensities (Meals 2001). For both studies, the two treatment watersheds were 
separately compared versus the control watershed using ANCOVA. 

Changes versus the control watershed for the Jordan Cove project were represented by the percent change 
in flow, concentration, and export (Clausen 2007). These calculations were made by comparing mean 
predicted values (P) from the calibration regression equations to observed values (O) using the equation: 

 

%𝐴𝐴ℎ𝑆𝑆𝑆𝑆𝐿𝐿𝑑𝑑 =
(𝑀𝑀 − 𝑃𝑃)

𝑃𝑃
× 100 

 
Meals (2001) performed a series of analyses to examine the results of the Lake Champlain Basin study. 
Where full ANCOVA models were used, the calibration and treatment period regression lines intersected, 
suggesting, for example, that TP concentrations in one of the treatment watersheds decreased in the high 
range, but not in the lower range (Figure 7-24). The importance of this observation is that the higher range 
is where active runoff conditions occur, indicating that the BMPs may have been performing as expected. 

Calculations similar to those performed for the Jordan Cove project were performed to estimate the 
magnitude of change (i.e., %Change), but two additional analyses were carried out to estimate this change 
from different perspectives: 

 Breakpoint analysis for intersecting or crossed regression lines, and 

 Assessment of predicted-without-treatment versus observed-with-treatment. 
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Figure 7-24. Example of intersecting regression lines (Meals 2001) 

For the former analysis, the point where the regression lines crossed (the “breakpoint”) was used in 
conjunction with the cumulative frequency of the breakpoint value in the control watershed to derive the 
proportion of time or conditions at which concentration or load reductions did or did not occur in the 
treatment watershed (Meals 2001). For example, the breakpoint in Figure 7-24 occurs at 0.055 mg/L in 
the control watershed (WS 3), a value for which the cumulative frequency for the entire project period 
was 0.32, or 32 percent. This is interpreted to mean that TP levels in the treatment watershed (WS 1) were 
not reduced 32 percent of the time when the concentration in the control watershed was less than 0.055 
mg/L. Conversely, TP levels were reduced 68 percent of the time when control watershed concentrations 
exceeded 0.055 mg/L. This compares with an ANCOVA result that TP concentrations were reduced 15 
percent in the treatment watershed. 

The latter analysis was intended to assess the net treatment response regarding pollutant export over the 
full range of project conditions (Meals 2001). In this analysis, all weekly values for the treatment period 
in the control watershed were input to the calibration period regression for each treatment watershed to 
estimate what the pollutant export would have been for the hydrologic conditions of the treatment period 
under pre-treatment management, a what-if scenario. In other words, it is an estimate of the difference 
between measured loads for the treatment period and what those loads would have been if the BMPs had 
not been implemented. 

7.8.2.1.4 Multiple Time Periods within a Paired-Watershed Study 
Small watershed projects will generally have a period before BMP implementation, a period during BMP 
implementation, and a period after BMP implementation. The implementation and post-implementation 
periods are often lumped into the same period for data analysis, but this can complicate interpretation of 
results if the BMPs are not fully functional throughout the post-BMP period. Where feasible, it may be 
most appropriate to separate true implementation, and in some cases maturation of living BMPs, from 
post-implementation, to establish a better test of BMP or project effectiveness. There is also a very real 
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possibility that BMP implementation will occur in phases, creating the potential for more than two or 
three periods of interest. For example, in the Waukegan River NNMP project, the state Water Survey 
designed biotechnical and other practices to resist high velocity runoff while increasing riparian habitat 
for stream fisheries within the stream channel (White et al. 2011). However, as the project progressed it 
became clear that insufficient pool depth and the lack of pools and riffles were important impairments yet 
to be addressed. As a result, pool-and-riffle sequences were later added to the restoration program, 
creating a two-phase implementation effort. Still, however, project scientists concluded that there is a 
remaining need to address sewage and stormwater management problems and take steps to increase 
implementation of alternative conservation practices that infiltrate and treat stormwater. Were the 
monitoring program to be continued, these could be considered additional BMP implementation phases. 

Taken to the extreme, each year could also be considered its own period or group and the groups tested 
for differences, but this is not recommended11. In some cases, BMPs may have different effects 
depending on the season of the year, so including a seasonal covariate(s) may be appropriate. The New 
York NNMP project identified four seasons that reflect seasonal variation in both source activities and 
hydrologic runoff processes (Bishop et al. 2005). ANCOVA was performed separately on both seasonal 
and full-year datasets. Despite the wide range of possibilities, time periods for the types of projects 
envisioned by this guidance will largely be drawn from the following set of options: 

 pre-BMP or calibration, 

 BMP implementation (may be subdivided by growth stage if it involves vegetative BMPs), and 

 post-BMP implementation (which may include BMP implementation as well). 

Where multiple phases of BMPs are to be implemented, however, there could be a separate pre-BMP 
implementation and post-BMP implementation for each phase. It is important to identify and plan for 
these phases at the beginning of the monitoring project. Adjustments may be warranted later, however, 
because the implementation of BMPs may be more gradual or sporadic than anticipated during the 
planning phases of a study, and some BMPs, like forested buffers, may take longer than expected to reach 
critical growth stages. 

For example, in a 15-year project monitoring the effectiveness of a riparian forest buffer in an agricultural 
watershed, it was expected that it would take several years for the planted seedlings to have a measureable 
influence on water quality (Newbold et al. 2009). To account for this, the calibration period was taken to 
be the first five years (1992-1996) of monitoring, a period during which the seedlings became established 
but remained too small to affect stream nutrient concentrations. Regression analysis was used to detect 
gradual change and one-way ANOVA was performed on the differences between paired samples, with 
year treated as the main effect. 

7.8.2.1.5 Other Statistical Approaches for Paired-Watershed Analyses 
Paired watersheds can also be analyzed with other statistical techniques. For example, some authors have 
used the differences between sample pairs taken at each watershed for each sampling date (Carpenter et 
al. 1989; Bernstein and Zalinski 1983; MacKenzie et al. 1987; and Palmer and MacKenzie 1985) for input 
into t-test or intervention analysis. Hornbeck et al. (1970), Hibbert (1969), and Meals (1987) calculated a 

                                                      
11 It is feasible that a 2-year study could include one year each of pre-BMP and post-BMP monitoring, but this 
would be highly unusual and not, in fact, recommended. A similar situation would be a 3-year study with a pre-
BMP, BMP-implementation, and post-BMP year. 
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linear regression equation relating the observations from the two watersheds for the calibration period. 
Observations from the treated watershed in the treatment period were compared to predicted values from 
the calibration period regression. If the deviations exceeded the 95 percent confidence intervals placed 
about the calibration regression, the treatment was thought to be significant (Hornbeck et al. 1970). 

7.8.2.2 Above/Below – Before/After 
An above/below-before/after watershed design monitors a water resource (e.g., a stream) above and 
below the drainage area in which land treatment is applied for multiple years before and after BMP 
implementation (see section 2.4.2.6). Consistency of sampling regime at both stations over time is 
essential. Hydrologic explanatory variables (e.g., covariates) such as stream flow must also be monitored 
to permit correction for changes in these conditions. 

7.8.2.2.1 Comparing Means and Differences between Means 
Two principal approaches can be taken to statistical analysis of data from this monitoring design. Both 
approaches are illustrated by the projects in Examples 7.8-2–7.8-5. In the first approach, mean upstream 
and downstream pollutant concentrations and/or loads can be compared (e.g., with the Student’s t or 
Wilcoxon Rank Sum tests) prior to the application of BMPs to evaluate statistically significant 
differences between group means. The purpose of this analysis is to confirm and quantify the pre-
treatment (“before”) pollutant contribution of the untreated downstream area. This analysis is then 
repeated for the “after” data to document the changes in pollutant contribution of the treated downstream 
area. Differences between upstream and downstream conditions from the before to the after condition can 
be evaluated simply by examining the percent reductions in concentration or load or by conducting a 
group means test of the differences between upstream and downstream concentrations or loads from the 
before to the after period. A significant decrease in this upstream/downstream difference in the “after” 
period, for example, would suggest a significant effect of treatment. In addition to quantitative statistical 
tests, it is also possible to visualize differences between above/below and before/after using comparative 
boxplots, bar graphs, or other graphical techniques (see section 7.3.2). 

A more statistically powerful approach would be to use the paired Student’s t-test to test the differences 
between the downstream and upstream sample values in the pre-BMP period. In the post-BMP period, a 
Student’s t-test can be applied to the average downstream-upstream differences in the pre- vs. post-BMP 
periods. Other explanatory variables can be added (e.g., stream discharge) by using an ANCOVA 
statistical approach. 

Differences between above and below stations were examined as part of the analyses performed for the 
Otter Creek (WI) watershed project (Stuntebeck 1995). This project also incorporated innovative 
sampling procedures to maximize the potential for distinguishing between upstream and downstream 
water quality, including programming water quality samplers to be activated by precipitation so that time-
integrated samples were collected initially before stage-triggered samples were collected. This allowed 
sampling of barnyard runoff in the stream before stage increased, thereby isolating runoff from sources 
upstream. It also allowed sampling during small storms where barnyard runoff occurred in the absence of 
substantial upstream contributions. In addition, investigators collected concurrent samples from both the 
above and below sites via computer linkage to aid data interpretation. Paired Student’s t-tests were used 
to determine that the pre-BMP average of the differences between downstream and upstream event-mean 
concentrations was different from zero at the 95 percent confidence level. An MDC analysis revealed that 
the average downstream post-BMP event-mean concentrations of TP would need to decrease by at least 
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50 percent for the change to be considered statistically significant at the 95 percent confidence level. In 
the final analysis, the Hodges-Lehmann estimator was used to determine that the barnyard BMP system at 
Otter Creek reduced loads of suspended solids by 85 percent, TP by 85 percent, ammonia by 94 percent, 
BOD by 83 percent, and microbial loads of fecal coliform bacteria by 81 percent (Stuntebeck and 
Bannerman 1998; See Example 7.7-2). The nonparametric Hodges-Lehmann estimator is the median of 
all possible pairwise differences between pre- and post-BMP barnyard loads (see section 4.5.3 of the  
1997 guidance (USEPA 1997b) for a discussion of the Hodges-Lehmann estimator). This median 
difference was divided by the pre-BMP median load for each constituent to determine percentage load 
reductions. 

7.8.2.2.2 ANCOVA 
A second approach for analysis of the above/below-before/after design involves the application of 
ANCOVA. The statistical analysis approach is the same as with the paired-watershed study (see section 
7.8.2.1) In this case, a significant linear regression relationship for a water quality variable (e.g., weekly 
mean total P concentration, weekly suspended sediment load) between the upstream and downstream 
stations is obtained during the “before” period. The upstream station is considered to be the “control” 
watershed. This regression relationship is then compared to a similar relationship during the “after” 
period and significant difference between the two regression models indicates the effect of treatment. 
Note that the analysis can include explanatory variables (e.g., covariates) like precipitation or flow in a 
multiple regression model that may explain more of the variability in the water quality variable than a 
simpler model. 

Example 7.8-2. Above/Below-Before/After Design - Long Creek, NC NNPSMP 
A number of successful projects have used multiple approaches to analyzing their data. For example, 
data from an above/below-before/after study of livestock exclusion as part of the Long Creek (NC) 
NNPSMP project were first log-transformed and then analyzed using t-tests, two-way ANOVA, and 
ANCOVA (Line et al. 2000). While the specific questions addressed by each method differ somewhat, 
the results all supported the conclusion that livestock exclusion and establishment of riparian vegetation 
reduced mean weekly loads of TSS, TKN, and TP. 

 

Example 7.8-3. Above/Below-Before/After Design (biological data) - Waukegan River, IL 
NNPSMP 

The Waukegan River (IL) NNPSMP project illustrates the application of the above/below design for 
biological monitoring. In this project, the South Branch was divided into an upstream untreated reference 
site designated as station S2 and a severely eroding downstream treated area designated as station S1 
(Spooner et al. 2011b). At each location fish, macoinvertebrates, and habitat were sampled during the 
spring, summer, and fall seasons. Sampling was also conducted at stations N1 and N2 on the North 
Branch for reference. Qualitative analysis of biological data collected through 2006 indicated that the 
number of fish species and abundance in the South Branch had improved after the construction of 
lunkers and rock grade control structures. The IBI rose sharply from a limited aquatic resource into the 
moderate category after construction. Sites on both the South and North Branches where lunkers and 
Newbury Weirs were applied averaged higher IBI scores and fish population with more fish species than 
the untreated control at S2 or the N2 bank armored site from 1996 through 2006. 

 
  

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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Example 7.8-4. Above/Below-Before/After Design with Flow as an Explanatory Variable - 
Pequea and Mill Creek Watershed, PA NNPSMP 

A Pennsylvania study of the effects of streambank fencing on surface-water quality, near-stream ground 
water, and benthic macroinvertebrates employed both a paired-watershed and above/below-before/after 
design (Galeone et al. 2006). Data for this Section 319 NNMPMS project were collected from 1993 to 
2001, with the calibration period from October 1993 through mid-July 1997. Streambank fencing was 
installed from May 1997 through July 1997. The above/below-before/after design featured two sites 
above fence installation (T-3 and T-4) and two sites located to show the effects of fencing (T-1 and T-2); 
T1 and T2 were paired with T3 and T4, respectively, for data analysis. Both low-flow and storm-flow 
samples were collected and analyzed for nutrients, suspended sediment, and fecal streptococcus (only 
low-flow samples). Explanatory data collected during the study included precipitation, inorganic and 
organic nutrient applications, and the number of cows. 

Figure 7-25 illustrates the major data preparation steps and statistical procedures used by the project to 
analyze the chemical/physical data. Low-flow, storm-flow, pre-treatment, and post-treatment data were 
separated as a preliminary step. Concentrations were flow adjusted using a LOcally WEighted 
Scatterplot Smoothing (LOWESS) procedure (Helsel and Hirsch 2002). Statistical tests were performed 
on both original and flow-weighted data to determine if factoring out the variability caused by flow 
affected the results. 

After the above steps were completed, the project applied the nonparametric rank-sum test (see Mann-
Whitney test and Wilcoxon Rank Sum test on pages 4-50 of the 1997 guidance, USEPA 1997b) to 
determine if data for any one site significantly changed from the pre-treatment to the post-treatment 
period. In addition, the nonparametric Kruskal-Wallis test (see pages 4-56 of the 1997 guidance) was 
carried out to determine if there were significant differences between any of the sites, considering pre-
treatment and post-treatment data separately. Where significant differences were found, the Tukey 
multiple-comparison test (see Multiple Comparisons on pages 4-63 of the 1997 guidance) was used to 
identify which sites were significantly different. The nonparametric signed-rank test (see Wilcoxon 
Signed Ranks test on pages 4-42 of the 1997 guidance) was used to determine if there were significant 
differences (i.e., not zero) between paired observations (e.g., matched samples from above/below sites). 
Finally, ANCOVA (see section 4.8 of the 1997 guidance and section 7.8.2.1 for detailed discussions of 
the ANCOVA procedure) was applied to determine the effects of streambank fencing using a procedure 
highlighted by Grabow et al. (1999). ANCOVA was performed on concentrations and loads for both low-
flow and storm-flow samples. Loads were analyzed in two ways, as actual measured loads and as 
weighted loads adjusted with a factor determined by dividing the annual mean discharge for each water 
year by the mean discharge for the entire period for each station. 

The procedures used by Galeone et al. (2006) demonstrated improvements relative to control or 
untreated sites in surface-water quality (nutrients and suspended sediment) during the post-treatment 
period at T-1, but T-2 showed reductions only in suspended sediment. N species at T-1 were reduced by 
18 percent (dissolved nitrate) to 36 percent (dissolved ammonia); yields of total P dropped by 14 
percent. Conversely, T-2 had increases in N species of 10 percent (dissolved ammonia) to 43 percent 
(total ammonia plus organic N), and a 51-percent increase in total P load. The average reduction in 
suspended-sediment load for the treated sites was about 40 percent. Two factors were evident at T-2 
that helped to overshadow any positive effects of fencing on nutrient yields. One was the increased 
concentration of dissolved P in shallow ground water (also monitored). In addition, cattle excretions at 
the low-cost, in-stream cattle crossings appeared to increase concentrations of dissolved ammonia plus 
organic N and dissolved P. See chapter 3 Case Study #1 for a discussion of how the benthic 
macroinvertebrate data were analyzed. 

 

  

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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Figure 7-25. Basic data preparation and analysis procedure for above/below-before/after 
study in Pennsylvania (Galeone et al. 2006) 
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Example 7.8-5. Above/Below-Before/After Design with Upstream Concentration and Flow 
as Explanatory Variables - Walnut Creek, IA NNPSMP 

In some cases, projects are forced to develop alternative plans for data analysis due to unforeseen 
circumstances they cannot control. The Walnut Creek (IA) NNMP project, for example, began as a ten-
year paired-watershed study that also included an above/below-before/after design and three 
subwatershed single-station designs within each of the paired watersheds (Schilling and Spooner 2006). 
The primary purpose of the project was to evaluate the response of stream nitrate concentrations to 
conversion of row crops to native prairie. The normal approach of analyzing project data (both for the 
paired-watershed and above/below-before/after designs) using ANCOVA was compromised by two 
facts: prairie conversion began before the calibration period was completed, and conversion to prairie 
was gradual instead of rapid. Based on the guidelines and experiences of others (Spooner et al. 1987, 
Grabow et al. 1998 and 1999), multiple linear regression analysis on all ten monitoring sites was 
selected as an alternative approach to project evaluation (see Example 7.8-7 for the general form of 
equation used). Treatment in this case was modeled as time with covariates such as upstream 
concentration used to factor out hydrologic variability. For the downstream site in the treatment 
watershed, a model using month (for seasonality), upstream nitrate concentration, and downstream 
nitrate concentration in the control watershed provided the best fit to the data. For all other sites, month 
and the log of baseflow discharge from the same or a different site were used as covariates in the best-fit 
regression model. All tests resulted in detection of significant trends in nitrate concentrations, with the 
downstream treatment site trend indicating nitrate reductions due to conversion to prairie (the treatment). 
A negative coefficient on the time variable (-0.119 mg l-1yr-1) indicated a nitrate reduction of 1.2 mg l-1 
over 10 years at this site. It was also found that in the control site, where land was unexpectedly 
converted from grassland to row crops, nitrate concentrations increased during the project period. 

 

If the errors (e.g., residuals) in the statistical models are autocorrelated, a statistical software procedure 
should be used that incorporates the autocorrelation structure into the model. For example, PROC 
AUTOREG of the SAS software (SAS Institute 2010) is useful with autoregressive autocorrelation 
typical of weekly, biweekly, and monthly series. Alternatively, a correction of the standard deviation of 
the slope estimate and revised confidence intervals can be used with the correction given in section 7.3.6. 

It should be cautioned that changes in pollutant concentrations or loads measured at a downstream station 
(either before or after land treatment) versus upstream may be difficult to detect if incoming 
concentrations or loads at the upstream station are high and the contribution of the additional area 
draining to the downstream station is small. Conversely, if the upstream contribution is very low 
compared to that of the treated area, a change or difference due to treatment may be difficult to attribute 
to BMPs because of dilution. If the upstream pollutant inputs do not respond similarly to hydraulic 
changes (e.g., rainfall), then the design effectively becomes a single watershed design. The Walnut Creek 
(IA) NNPSMP project provides an example of the former case where annual mean nitrate concentrations 
ranged from 10.0 to 12.7 mg/L at the upstream site and 6.8 to 9.5 mg/L at the site below the treatment 
area (Schilling and Spooner 2006). The treatment in this case was conversion of row crops to native 
prairie, and the study design (paired watersheds and above/below-before/after) was compromised by the 
fact that land conversion began before pre-treatment conditions could be established. See Example 7.8-5 
for a discussion of how data from this project were analyzed using multiple linear regression, a technique 
typically applied to single watershed trend designs. 
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7.8.2.3 Nested Watershed 
As described in section 2.4.2.3, it is preferred that the nested subwatershed is used as the control 
watershed12 and is located above the remainder of the watershed where treatment occurs (Hewlett and 
Pienaar 1973). However, a valid nested design can also entail the treatment watershed in a small 
headwater subbasin; the control being the much larger watershed outlet. This design requires calibration 
(before) and treatment (after) periods similar to the paired-watershed design. 

Analysis of data from a nested watershed design can be done using the same ANCOVA procedure 
described in section 7.8.2.1 for the paired-watershed design. In the case of nested watersheds, the paired 
data represent observations collected on the same date, time period, or storm at both the nested and main 
watershed stations. As noted above, data from the nested watershed should represent the control 
watershed, while data from the main watershed outlet represent the treatment watershed. 

7.8.2.4 Single Watershed Trend Station 
As noted in section 2.4.2.5, monitoring at a single watershed outlet is not a strong design for documenting 
the effectiveness of watershed land treatment on water quality. Without the ability to control for the 
effects of varying weather and hydrology, it is difficult to attribute any observed changes in water quality 
to the land treatment program. However, because the coupling of budget limitations and accountability 
requirements often leads to single-station designs, the unfortunate fact that some paired-watershed and 
other superior designs fail due to unforeseen circumstances, and the simple reality that some NPS 
watershed programs must rely on watershed outlet monitoring conducted by another party (e.g., a state 
long-term surveillance program or a USGS network station), it is useful to discuss how best to analyze 
data from such stations to assess the effects of a watershed project. In addition, experience has shown that 
projects with failed paired-watershed or above/below-before/after designs may resort to trend analysis as 
the best option for analyzing project data (see Example 7.8-6). 

Long-term water quality data may show a monotonic trend (a continuous change, consistent in direction, 
either increasing or decreasing) or a step trend (an abrupt shift up or down). Trend analysis may be the 
best — or perhaps only — approach to documenting response to treatment in situations where water 
quality data are collected only at a single watershed outlet station or where land treatment was 
widespread, gradual, and inadequately documented. Data from long-term, fixed-station monitoring 
programs where gradual responses such as those due to incremental BMP implementation or continual 
urbanization are likely to occur are more aptly evaluated with monotonic trend analyses that correlate the 
response variable (i.e., pollutant concentration or load) with time or other independent variables. These 
types of analyses are useful in situations where vegetative BMPs like the riparian buffers implemented in 
the Stroud Preserve NNPSMP project (Newbold et al. 2008) must mature, resulting in gradual effects 
expressed over time. Analysis of step trends, on the other hand, is most appropriate when the change in 
response to BMP implementation is rapid and abrupt (e.g., when a municipal stormwater management 
regulation is enforced) and the timing of that change is known and well-documented. Biological data can 
also be evaluated with either monotonic or step-trend tests. A potential limitation is that most biological 
programs will only sample once a year and the time to acquire sufficient samples to detect a meaningful 
trend might be longer than what is practical. 

                                                      
12 A reverse situation, where the downstream subwatershed area is the control is possible in theory, but all effort 
would need to be made to ensure that upstream contributions to constituents measured at the downstream control 
area are minimized. 
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Example 7.8-6. Single Trend Watershed with Covariates - Sycamore Creek, MI NNPSMP 
This project planned a paired-watershed study with two treatment watersheds (Willow Creek and 
Marshall Drain) and one control watershed (Haines Drain), but implementation of no-till and continuous 
cover in the control watershed compromised the study (Suppnick 1999). Each watershed was then 
analyzed independently, with regression analysis ultimately successful in linking reductions in TSS 
(95 percent confidence level) and TP (90 percent confidence level) loads to the percentage of land in no-
till in the Willow Creek watershed (Grabow 1999, Suppnick 1999). Following is a summary of the steps 
taken to establish the TSS relationship for Willow Creek (Grabow 1999): 

1. Regression analysis on sediment yield versus storm discharge and/or peak flow to reduce the 
analysis to water quality change over time independent of hydrologic variability. All variables 
were log-transformed. 

2. Two methods were then used to answer the question of whether there was a water quality trend 
over time. 

a. Regression equation incorporating elapsed time and explanatory variables. This 
addresses the question of whether there has been a change in water quality over time 
while simultaneously accounting for hydrologic variability. 

b. Regression of residuals1 from regression on the water quality variable and explanatory 
variables versus elapsed time. This addresses the question of whether there has been a 
water quality change over time after adjusting for hydrologic variability. 

3. Correlation of land use change to water quality change via multiple linear regression analysis. 
Terms incorporated in the regression model were percent of land in no-till, percent of land in 
continuous cover, storm discharge, and peak flow. 

Step 1 yielded correlation between TSS load (kg/storm) and both storm discharge (mm) and peak flow 
(liters/second). Discharge and peak flow were tested for collinearity which was found to be not an issue 
(see Box 7.8-1). 
Step 2 analyses indicated statistically significant trends in TSS and TP in Willow Creek watershed. 
Method “a” used the following basic equation: 

𝑙𝑙𝑙𝑙𝑙𝑙       

Where TSS is the TSS storm load (kg), Q is the total storm discharge, Qp is the peak stream discharge, t 
is elapsed time in days, and the β terms are regression parameter estimates. A significant negative 
value for β3 indicated a reduction in TSS load over time. Insertion of average log values of total storm 
discharge and peak discharge, and setting the beginning and ending days (1 and 2,629 for tbegin and tend 
in this case) would then yield the average change in loadings from the first to last data of data collection. 

1Residuals are the differences between actual and predicted values: Actual-Predicted. 
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Example 7.8-6. (continued) 
Sycamore Creek, MI NNPSMP 
Method “b” of Step 2 used the following equation: 

𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑠𝑠 =  𝛽𝛽0 + 𝛽𝛽1𝑆𝑆 

Where TSSres is the residuals (log kg/storm) from the regression in Step 1 and t is again elapsed time. 
In this approach, a statistically significant value for β1 would indicate a change in the relationship 
between TSS and the explanatory variables (total and peak discharge), suggesting an impact due to 
land use change. The value β1×tend would then estimate the change in loading (in log units) over the data 
collection period. The average change in loading is determined by then plugging the average values for 
log [Q] and log[Qp] into the regression equation used in Step 1. 

In this case, method “a” indicated a 60 percent reduction in TSS load, whereas method “b” estimated a 
59 percent reduction. 

With a statistically significant reduction in TSS load now documented, Step 3 explored the linkage 
between that reduction and land use change by adding the percentage of land in no-till (NoTill) and the 
percentage of land in continuous cover (ContCov) as additional terms in the multiple linear regression 
used for method “a” in Step 2. Statistically significant regression parameters β3 and/or β4 in the following 
equation would indicate correlation between log[TSS] and the percentage of land in no-till and/or 
continuous cover. 

𝑙𝑙𝑙𝑙𝑙𝑙           

A statistically significant value of -0.01969 was found for β3, but β4 was insignificant, suggesting that for 
every percent increase in the percentage of land under no-till, the TSS load (as log kg) would decrease 
by 0.01969 log units. Regression estimates based on average storm discharge and peak flow were then 
used in conjunction with first-year and last-year values of no-till percentages to estimate a TSS load 
reduction of 52 percent, with a 95 percent confidence interval of 18-72 percent. This agreed well with the 
estimates of 59 and 60 percent reduction from Step 2. 

Combining the results from the above analyses by Grabow (1999) with additional project information, it 
was concluded that it is very likely that streambank stabilization also contributed to the reduction in TSS 
observed in Willow Creek (Suppnick 1999). 

 

 
 

Box 7.8-1. Collinearity 

What is Collinearity? 
Collinearity in multiple regression analysis occurs when there is a linear relationship 
between two explanatory (x) variables. Although this does not impact the reliability of 
the overall model, it does create great uncertainty regarding the model coefficients. 
There are ways to address collinearity, including recognizing the ambiguity in the 
interpretation of regression coefficients (USF n.d.) or simply removing one of the 
variables from the regression model (Martz 2013). 
Various statistics programs have tests for collinearity (or multicollinearity), including 
the Variance Inflation Factor (VIF), Tolerance (1/VIF), and the Condition Index (SAS 
2016a and 2016c, USF n.d.). Guidelines vary, but VIF values greater than 5 to 10, 
Tolerance values close to 0, and Condition Index values greater than 15 to 30 
indicate problems with collinearity. See Belsley et al. (1980) for additional details. 
 

http://en.wikipedia.org/wiki/Explanatory_variable


Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-85 

 
  

Several statistical trend analysis techniques will be mentioned in this section; the topic of trend analysis is 
covered in more detail in Tech Notes 6: Statistical Analysis for Monotonic Trends (Meals et al. 
2011). Before proceeding, it is important to recognize some limitations of trend analysis. First, trend 
analysis is most effective with long periods of record; general guidelines are ≥5 years of monthly data for 
monotonic trends and ≥2 years of monthly data before and after a step trend (Hirsch 1988). Short 
monitoring periods and small sample sizes make documentation of trends difficult, and it must be 
recognized that - especially over the short term - some increasing or decreasing patterns in water quality 
are not trends. A snapshot of water quality data over a few months may suggest a trend, but examination 
of a full year may show this “trend” to be part of a regular cycle associated with temperature, 
precipitation, or cultural practices. Autocorrelation may also be mistaken for a trend, especially over a 
short time period. Changes in sampling schedules, field methods, or laboratory practices can cause shifts 
in data that could be erroneously interpreted as step trends. 

Perhaps most importantly, statistical trend analysis can help to identify trends and estimate the rate of 
change, but will not provide much insight into attributing a trend to a particular cause (e.g., land 
treatment). Interpreting the cause of a trend requires knowledge of the watershed and a deliberate study 
design (see section 7.8.1). 

Before proceeding to numerical analysis, it is useful to examine time series plots for visual evidence of a 
trend. Visualization of trends in noisy data can be clarified by various data smoothing techniques. Plotting 
moving averages or medians, for example, instead of raw data points, reduces apparent variation and may 
reveal general tendencies. Spreadsheets can display a moving-average trend line in time-series 
scatterplots with adjustable averaging periods. A more complex smoothing algorithm, such as LOWESS 
(LOcally Weighted Scatterplot Smoothing), can reveal patterns in very large datasets that would be 
difficult to resolve by eye (see Helsel and Hirsch 2002). Most pollutant concentrations and loads in 
surface waters show strong seasonal patterns. Seasonal variations in precipitation and flow are often main 
drivers of these patterns, but seasonal changes in land management and use may also play a role. See 
section 4.3 of the 1997 guidance (USEPA 1997b) for additional information on seasonality. 

Some techniques to address seasonality beyond controlling for the effects of flow covariates are often 
necessary for water quality trend analysis. For example, the relationship between concentration and 
discharge may not be consistent over time, perhaps due to seasonal variations in BMP implementation. 
The relationship (or slope) can be allowed to change between time periods by the use of interaction terms 
between the time periods and discharge in an analysis of covariance (ANCOVA) statistical model. An 
alternative that might develop more traction with experiences is to consider a weighted regressions on 
time, discharge and season (WRTDS) proposed by Hirsch et al. (2010) (see section 7.9.2 for more 
information on WRTDS). 

When multiple explanatory variables are included in the trend models, it is common that these variables 
will be related to each other (collinearity) and/or a few data points may have a lot of ‘influence’ over the 
regression results (Belsley et al. 1980). Regression analysis performed with various software programs 
will provide leverage plots as part of the output to help identify these data features. 

7.8.2.4.1 Monotonic Trends 

Table 7-8 lists some monotonic trend tests available for different circumstances, including adjustments for 
a covariate and the presence of seasonality. The tests are further divided into parametric, nonparametric, 
and mixed types. Regression tests require that the expected value of the dependent variable is a linear 
function of each independent variable, the effects of the independent variables are additive, the errors in 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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the model are independent (e.g., no correlation between consecutive errors in the case of time series data), 
and the errors exhibit both normality and constant variance. Nonparametric tests require only constant 
variance and independence. Parametric trend tests (see Examples 7.8-7 and 7.8-8) are considered more 
powerful and/or sensitive to detect significant trends than are nonparametric tests (see Example 7.8-9), 
especially with a small sample number. However, unless the assumptions for parametric statistics are met, 
it is generally advisable to use a nonparametric test (Lettenmaier 1976, Hirsch et al. 1991, Thas et al. 
1998). 

Table 7-8. Classification of tests for monotonic (nonparametric) or linear (parametric) trend 
(adapted from Helsel and Hirsch 2002) 

 Type of Test 
Not Adjusted for 

covariate (X) Adjusted for covariate (X) 
No 
Seasonality 

Parametric Linear regression of Y on t Multiple linear regression of Y on X and t 
Mixed - Mann-Kendall on residuals from regression of Y on X 
Nonparametric Mann-Kendall Mann-Kendall on residuals from LOWESS of Y on X 

Seasonality Parametric Linear regression of Y on t and 
periodic functions or indicator 
X’s for months 

Multiple linear regression of Y on X, t, and periodic 
functions or indicator X’s for months 

Mixed Regression of deseasonalized Y 
on t 

Seasonal Kendall on residuals from regression of Y on X 

Nonparametric Seasonal Kendall on Y Seasonal Kendall on residuals from LOWESS of Y on X 
Other 
Explanatory 
variables or 
covariates 
(e.g., stream 
discharge) 

Parametric Linear regression of Y on t and 
covariates (X) 

Multiple linear regression of Y on t, X covariates 

Mixed Regression of deseasonalized Y 
on X 

Seasonal Kendall on residuals from regression of Y on X 

Nonparametric Seasonal Kendall on Y Seasonal Kendall on residuals from LOWESS of Y on X 

Y = dependent variable of interest; X = covariate; t = time 

Refer to Tech Notes 6: Statistical Analysis for Monotonic Trends (Meals et al. 2011) for details on 
the tests listed in Table 7.8-1. Chapter 4 (pages 4-86 through 4-89) of  the 1997 guidance (USEPA 1997b) 
also discusses the computation of Mann-Kendall and Seasonal Kendall statistics. 

If the trend model has autocorrelated errors, a statistical model that incorporates the autoregessive errors 
should be employed. Alternatively, a correction of the standard error of the slope that is given in section 
7.3.6 can be used to calculate the correct confidence interval of the slope on t (time, date) to determine if 
it is significantly different from zero (e.g., evidence of a trend over time) in the pollutant concentration or 
load. 

  

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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Example 7.8-7. Simple Linear Regression - Samsonville Brook in Vermont 
• Eight years of monthly TP concentration data from Samsonville Brook in Vermont
• Data satisfy assumptions for regression after log transformation: normal distribution, constant

variance, independence (low autocorrelation)

Simple linear regression (using Excel® or any basic statistical package) 
Log[TP] = -0.8285-0.00414(Time) 
r2 = 0.18, F = 21.268 P ≤ 0.001 

Rate of change: 
Slope of log-transformed date = -0.00414 
(10-0.00414 – 1)×100 = -0.95%/month or about -11%/year 

This result suggests that TP concentrations have decreased significantly over the period at a rate of 
approximately 11 percent per year. 
Note: Data used in this example are taken from the Vermont NNMP project, Lake Champlain Basin agricultural 
watersheds section 319 national monitoring program project, 1993 – 2001 (Meals 2001). 
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Example 7.8-8. Linear Regression with Monthly Seasons as a Covariate - Corsica River, 
MD NNPSMP 

A significant trend was detected in a small watershed within the Corsica River Basin, Maryland, using 
times series analysis that adjusted for autocorrelation as well as monthly (seasonal) differences for log 
transformed, flow-weighted total nitrogen (TN) concentrations. In this example, monthly indicator 
variables were used to adjust for seasonality in an ANOVA regression model. See section 7.3.6 for 
details on adjustments for autocorrelation and seasonality. 
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By addressing seasonality in the regression model with monthly indicator variables, most of the 
regression degrees of freedom were preserved, a more powerful approach than if each month was 
evaluated separately. Each line in the plot on the left represents the trend line (log transformed, ffflow-
weighted TN concentration) for a single month (i.e., January, February … December). The trend slopes 
for each month were assumed to be the same, but the intercept was allowed to vary, enabling the 
differences in concentration due to season to be removed from the test for trends and therefore making it 
easier to isolate and detect trends due to other factors (e.g., BMPs). 
 
The bottom right graph shows the raw data. The noise due to seasonal differences and other factors 
makes it difficult to pick out any trends. The top right graph shows the predicted value from the seasonal 
regression model with the indicator variables. A downward trend is apparent and it is also clear from this 
graph that the highest TN concentration is found in February, followed by January, March, May, April, 
June, Sept, August, October, November, December, and July (lowest). 
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Example 7.8-9. Mann-Kendall Procedure – Single Trend Watershed - Samsonville Brook 
in Vermont. 

The data from Samsonville Brook in Vermont: 
• Eight years of quarterly mean TP concentration data 
• Data satisfy assumptions for constant variance and independence, but are not normally 

distributed without transformation 

   
The Mann-Kendall trend test for this example may be evaluated in two ways. First, in a 
manual calculation, use the formulas below. The value of S (sum of the signs of 
differences between all combinations of observations) can be determined either manually 
or by using a spreadsheet to compare combinations, create dummy variables (-1, 0, and 
+1), and sum for S. 

Month 
(n=25) 

[TP] 
mg/L 

1 0.180 
5 0.200 
9 0.250 
13 0.068 
17 0.201 
21 0.063 
25 0.099 
29 0.125 
33 0.205 
37 0.078 
41 0.216 
45 0.059 
49 0.098 
53 0.102 
57 0.137 
61 0.037 
65 0.100 
69 0.051 
73 0.180 
77 0.060 
81 0.095 
85 0.021 
89 0.120 
93 0.063 
97 0.035 

Mann-Kendall  𝑆𝑆 = ∑  𝑢𝑢−1
𝑖𝑖=1 ∑ 𝑠𝑠𝐸𝐸𝐿𝐿𝑆𝑆 �𝐸𝐸𝑗𝑗 − 𝐸𝐸𝑖𝑖� = −106𝑢𝑢

𝑗𝑗=𝑖𝑖+1  

Calculating Zs as (S±1)/σs where 

 𝜎𝜎𝑠𝑠 = �( 𝑢𝑢
18

) × (𝑆𝑆 − 1) × (2𝑆𝑆 + 5) = 42.817 

𝑍𝑍 = −105
42.817

= −2.454    (USEPA 1997a) 

 
 𝜏𝜏 = 𝑆𝑆

𝑢𝑢(𝑢𝑢−1)/2
= −106

300
= −0.353  (decreasing trend) 

 
 
 
This Z statistic is significant at P=0.014, indicating a significant trend, i.e., we are 
98.6 percent confident there is a decreasing trend in TP. See USEPA (1997a) for the 
calculation of σs when there are ties among the data. 
To estimate the rate of change, use the Sen slope estimator: 

𝛽𝛽1 = 𝑇𝑇𝑑𝑑𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆 �
𝑦𝑦𝑗𝑗−𝑦𝑦𝑖𝑖
𝑥𝑥𝑗𝑗−𝑥𝑥𝑖𝑖

�   211 individual slopes -000945 to +0.0076
 Median slope = -0.0011 mg/L/month = -0.013 mg/L/yr 

6 

 
This result suggests that TP concentration decreased significantly over the period 
at a rate of about 0.013 mg/L/yr. 

Note: Data used in this example are taken from the Vermont NNMP project, Lake Champlain Basin agricultural 
watersheds section 319 national monitoring program project, 1993 – 2001 (Meals 2001). 
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7.8.2.4.2 Step Trends 
Monotonic trend analysis may not be appropriate for all situations. Other statistical tests for discrete 
changes (step trends) should be applied where a known discrete event (like BMP implementation over a 
short period) has occurred. Testing for differences between the “before” and “after” conditions is done 
using two-sample procedures such as the Student’s t test and ANCOVA (parametric techniques with and 
without covariates) and nonparametric alternatives such as the rank-sum test, Mann-Whitney test, and the 
Hodges-Lehmann estimator of step trend magnitude (Helsel and Hirsch 2002, Walker 1994). Application 
of the Mann-Whitney/Wilcoxon’s rank sum test and the Hodges-Lehmann estimator are illustrated in 
sections 4.5.2 and 4.5.3, respectively, of the 1997 guidance (USEPA 1997b). A key principle in step trend 
analysis is that the hypothesized timing of the step change must be selected in advance (i.e., define the 
pre- and post- periods before conducting statistical tests). Knowledge of watershed management activities 
and examination of data plots will be helpful in identifying a potential step in time. 

For example, the Mann-Whitney test was used to associate changes in P management practices with a 
decrease in annual median soluble reactive P concentration from a 9-ha grassland catchment in Northern 
Ireland (Smith et al. 2003). Weekly samples were collected from 1989 through 2000, with the change in P 
management instituted in 1998. A comparison of data from 1997 with data from 2000 indicated that the 
change from whole-farm to site-specific P management reduced SRP concentrations significantly. 

If the trend model has autocorrelated errors, a statistical model that incorporates the autoregessive errors 
should be employed. Alternatively, a correction of the standard error of the slope that is given in section 
7.3.6 can be used to calculate the correct confidence interval of the step change (difference) between time 
periods to determine if it is significantly different from zero (e.g., evidence of a step change) in the 
pollutant concentration or load. 

7.8.2.5 Multiple Watersheds 
In the simplest case of a multiple watershed design, where monitored watersheds fall into two groups, 
treated and untreated, data may be analyzed by Student’s t test or the non-parametric Wilcoxon Rank-
Sum test. Such an analysis would test the (null) hypothesis that there was no significant difference in 
mean pollutant concentration or load between the treated and untreated watershed groups. Where 
monitored watersheds occur in more than two groups (e.g., untreated, treatment A, treatment B, etc.), 
significant differences in group means can be evaluated using ANOVA or the Kruskal-Wallis test. For 
example, Clausen and Brooks (1983) assessed mining impacts on MN peat lands using a multiple 
watershed design. Results – analyzed by ANOVA for normally distributed variables and otherwise by 
nonparametric Kruskal-Wallis and Chi-Square tests – documented significant impacts of peat mining on 
water quality. Lewis (2006) describes application of fixed-effect and mixed-effect (i.e., includes random 
effects) regression models to multiple-watershed studies involving logging. A 13-watershed study 
involving 3 controls, 5 clear-cuts, and 5 partial cuts was carried out over sixteen years with monitoring of 
storm volumes during four years before cutting, three years of logging, and nine years13 of post-logging. 
The best fit was obtained when the proportion harvested, antecedent wetness, regrowth, and spatial 
autocorrelation were all incorporated into the model. This study design and analytic approach allows the 
prediction of streamflow response to harvesting in other watersheds considered part of the same 
population of watersheds included in the study. 

                                                      
13 Three years of post-cut monitoring at seven stations and nine years at six stations. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/monitoring-guidance-determining-effectiveness-nonpoint
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7.8.3 Linking Water Quality Trends to Land Treatment 
A central objective of many NPS watershed projects is to determine not only if water quality changes can 
be documented but also if water quality changes can be associated with changes in land treatment. Such 
documentation is necessary to help build an information base to support continued improvement in 
preventing and solving water quality problems. It is also needed in many cases to justify expenditure on 
clean-up efforts. 

For a range of reasons, including budgets and programmatic constraints, watershed project monitoring 
efforts are almost never designed to satisfy the rigorous criteria for establishing true cause and effect 
relationships (see Box 7.8-2). Rather, project effectiveness monitoring designs are generally intended to 
measure improvements in water quality and, hopefully, relate that improvement to activities undertaken to 
influence water quality. A plausible argument that 
what was done on the ground improved water 
quality is often the best that can be hoped for and 
that is usually not a simple task at the watershed 
level. The ability to control for factors other than 
land treatment (e.g., weather, hydrology, land use 
change) is a key ingredient in making such a 
plausible argument. 

Box 7.8-2. Cause-effect requirements 
(Mosteller and Tukey 1977). 

A cause-effect relationship must satisfy the 
following criteria: 
• Consistency - the direction and degree of 

the relationship between the measured 
variables (such as TP loads and acres 
treated with nutrient management) holds 
in each data set. 

• Responsiveness - as one variable 
changes in a known manner, the other 
variable changes similarly. For example, 
as the amount of land treatment 
increases, further reduction of pollutant 
delivery to the water resource is 
documented. 

• Mechanistic - the observed water quality 
change is that which is expected based 
on the known or hypothesized physical 
processes involved in the installed BMPs. 

Control refers to eliminating or accounting for all 
factors that may affect the response to the treatment 
so that the treatment effect can be isolated. In a 
laboratory experiment, control is usually obtained 
by subjecting the entire system to the same 
conditions, varying only the treatment variable and 
selecting replicates at random to assure that 
unmeasured sources of variability do not affect the 
interpretation. Such an approach is rarely if ever 
possible for monitoring projects in watersheds 
dominated by nonpoint sources. Instead, we hope to 
show an association between change in water 
quality and change in land use or management by 
selecting a project design that includes monitoring for important explanatory variables (covariates) and 
applying appropriate statistical tools to include and adjust for these covariates in the analysis. By 
factoring explanatory variables into trend analyses, we remove some of the noise in the data to uncover 
water quality trends that are closer to those that would have been measured had no changes in climatic or 
other explanatory variables occurred over time. When performing statistical analyses with both water 
quality and land treatment data, it is important to note that it is not necessary to summarize the water 
quality data on the same (less frequent) time scale as the land treatment data. Rather, land treatment data 
can be incorporated within a trend analysis, for example, as repeating explanatory variables. That is, the 
values of land treatment and land use are treated as X variables in a statistical trend model. Because land 
management data are usually taken less frequently than water quality data, the land management 
information for a given X variable can be repeated for the time range of water quality samples that is 
represented by the land management value. 

Although association by itself is not sufficient to infer causal relationships, it can contribute to a plausible 
argument that pollution control activities have resulted in environmental improvement. Thus, knowledge 
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of land management and land treatment in the watershed is essential to demonstrate an association 
between changes on the land and changes in water quality. For example, section 7.8.2.2 described how 
the Sycamore Creek (MI) NNMP project used multiple linear regression to link log[TSS] load to the 
percentage of land under no-till cropping (Grabow 1999). Additional explanatory variables included the 
logs of total storm discharge and peak stream discharge. 

Data on both the temporal progress and spatial extent of land treatment and other watershed land 
use/management activities should be used to build an association between land treatment and observed 
water quality. For example, on a temporal scale, land treatment and management data can be analyzed 
and linked to water quality in these ways: 

Define monitoring periods: Documentation of BMP implementation can be used to define critical 
project periods, like pre- and post-treatment periods in before/after and paired-watershed designs or to 
establish a hypothesis on the timing of a step trend. 

Explain observed water quality: Knowledge of not only BMP implementation history but also dates of 
tillage, manure or agrichemical applications, street sweeping, and other watershed management activities 
can be extremely useful in qualitatively explaining observed water quality patterns, especially extreme or 
unusual values. 

Quantify the level of treatment: Quantitative expressions of land treatment can become the independent 
variable in an analysis of correlation between land management and water quality. Analyze land treatment 
data collected in the watershed monitoring program to form such variables as: 

 Number or percent of watershed animal units under animal waste management 

 Acres or percent of cropland in cover crops 

 Acres or percent of cropland under conservation tillage 

 Annual manure or fertilizer application rate and extent 

 Extent and capacity of stormwater infiltration practices 

Such variables can be tested for correlation with mean total P concentration, annual suspended sediment 
load, or other annual water quality variables. 

Document areas receiving BMPs: Use knowledge of locations of land treatment to: 

 Select appropriate watersheds for analysis in a multiple watershed design 

 Confirm conditions in above/below and nested watershed designs 

 Document the integrity of the control and treatment watersheds in a paired-watershed design 

Relate land treatment to critical source areas: A comparison of critical pollutant sources to locations 
that received treatment can assist in evaluating effectiveness of land treatment efforts and establish 
expectations for how much of the NPS problem the land treatment program potentially addresses. 

The Walnut Creek (IA) NNPSMP project, for example, monitored stream NO3-N concentrations and 
tracked conversion of row crop land to restored prairie vegetation (Schilling and Spooner 2006). By 
linking the two monitored variables, the project was able to suggest a clear association between restoring 
native prairie and reducing stream nitrate levels (see Figure 7-26). 
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Relationship between change in percentage of land cover in row crops and 

change in stream NO3-N concentrations in Walnut Creek, IA 

Relating Changes in Stream Nitrate Concentrations 
To Changes in Row Crop Land Cover 

In Walnut Creek, Iowa 

 
Figure 7-26. Linking stream nitrate concentration to land cover (Schilling and Spooner 2006) 

7.9 Load Estimation 
Determination of pollutant load is a key objective for many NPS monitoring projects. The mass of 
nutrients delivered to a lake or estuary drives the productivity of the waterbody. The annual suspended 
sediment load transported by a river is usually a more meaningful indicator of soil loss in the watershed 
than is a suspended sediment concentration. The foundation of water resource management embodied in 
the TMDL concept lies in assessment of the maximum pollutant load a waterbody can accept before 
becoming impaired and in the measurement of changes in pollutant loads in response to implementation 
of management measures. 

Estimation of pollutant load through monitoring is a complex task that requires accurate measurement of 
both pollutant concentration and water flow and careful calculation, often based on a statistical approach. 
It is imperative that an NPS monitoring program be designed for good load estimation at the start. This 
section addresses important considerations and procedures for developing good pollutant load estimates in 
NPS monitoring projects. Much of the material is taken from an extensive monograph written by Dr. R. 
Peter Richards, of Heidelberg University, Estimation of Pollutant Loads in Rivers and Streams: A 
Guidance Document for NPS Programs. The reader is encouraged to consult that document and its 

http://141.139.110.110/sites/default/files/jfuller/images/Load_Est1.pdf
http://141.139.110.110/sites/default/files/jfuller/images/Load_Est1.pdf
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associated tools for additional information on load estimation. Much of this information is also 
summarized in Meals et al. (2013). 

7.9.1 General Considerations 

7.9.1.1 Definitions 
Load may be defined as the mass of a substance that passes a particular point of a river (such as a 
monitoring station on a watershed outlet) in a specified amount of time (e.g., daily, annually). 
Mathematically, load is essentially the product of water discharge and the concentration of a substance in 
the water. Flux is a term that describes the 
loading rate, i.e., the instantaneous rate at which 
the load passes a point in the river. Water 
discharge is defined as the volume of water that 
passes a cross-section of a river in a specified 
amount of time, while flow refers to the 
discharge rate, the instantaneous rate at which 
water passes a point. Refer to Meals and 
Dressing (2008) for guidance on appropriate 
ways to estimate or measure surface water flow 
for purposes associated with NPS watershed 
projects. 

Basic Terms 
Flux – instantaneous loading rate (e.g., kg/sec) 
Flow rate – instantaneous rate of water passage 
(e.g., L/sec) 
Discharge – quantity of water passing a 
specified point (e.g., m3) 
Load – mass of substance passing a specified 
point (e.g., metric tons) 

If we could directly and continuously measure the flux of a pollutant, the results might look like the plot 
in Figure 7-27. The load transported over the entire period of time in the graph would simply be equal to 
the shaded area under the curve. 

 
Figure 7-27. Imaginary plot of pollutant flux over time at a monitoring station (Richards 1998) 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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However, we cannot measure flux directly, so we calculate it as product of instantaneous concentration 
and instantaneous flow: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  




where c is concentration and q is flow, both a function of time (t), and k is a unit conversion factor. 
Because we must take a series of discrete samples to measure concentration, the load estimate becomes 
the sum of a set of n products of concentration (c), flow (q), and the time interval (Δt) over which the 
concentration and flow measurements apply: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 






The main monitoring challenge becomes how best to take the discrete samples to give the most accurate 
estimate of load. Note that the total load is the load over the timeframe of interest (e.g., one year) 
determined by summing a series of unit loads (individual calculations of load as the product of 
concentration, flow, and time over smaller, more homogeneous time spans). The central problem is to 
obtain good measures of concentration and flow during each time interval; calculation of total load by 
summing unit loads is simple arithmetic. 

7.9.1.2 Issues of Variability 
Both flow and concentration vary considerably over time, especially in NPS situations. Accurate load 
estimation becomes an exercise in both how many samples to take and when to take them to account for 
this variability. 

Sampling frequency has a major influence on the accuracy of load estimation, as shown in Figure 7-28. 
The top panel shows daily suspended solids load (calculated as the products of daily total suspended 
solids (TSS) concentration and mean daily discharge measured at a continuously recording USGS station) 
for the Sandusky River in Ohio. The middle panel represents load calculated using weekly TSS samples 
and mean weekly discharge; the lower panel shows load calculated from monthly TSS samples and mean 
monthly discharge data. Clearly, very different pictures of suspended solids load emerge from different 
sampling frequencies, as decreasing sampling frequencies tend to miss more and more short-term but 
important events with high flow or high TSS concentrations. 

Because in NPS situations most flux occurs during periods of high discharge (e.g., ~80 – 90 percent of 
annual load may be delivered in ~10 – 20 percent of time), choosing when to sample can be as important 
as how often to sample. The top panel in Figure 7-29 shows a plot of daily suspended solids load derived 
from weekly sampling superimposed on daily flux data; the bottom panel shows daily loads derived from 
monthly and quarterly sampling on top of the same daily flux data. Weekly samples give a reasonably 
good visual fit over the daily flux pattern. The monthly series gives only a very crude representation of 
the daily flux, but it is somewhat better than expected, because it happens to include the peaks of two of 
the four major storms for the year. A monthly series based on dates about 10 days later than these would 
have included practically no storm observations, and would have seriously underestimated the suspended 
solids load. Quarterly samples result in a poor fit on the actual daily flux pattern. 
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Figure 7-28. Plot of suspended solids loads for the Sandusky River, water year 1985 (Richards 
1998). Top, daily TSS samples; Middle, weekly samples; Bottom, monthly samples. Weekly and 
monthly sample values were drawn from actual daily sample data series. Flux is on y-axis, time is 
on x-axis, and area under curve is load estimate. 

The key point here is that many samples are typically needed to accurately and reliably capture the true 
load pattern. Quarterly observations are generally inadequate, monthly observations will probably not 
yield reliable load estimates, and even weekly observations may not be satisfactory, especially if very 
accurate load estimates are required to achieve project objectives. 

7.9.1.3 Practical Load Estimation 
Ideally, the most accurate approach to estimating pollutant load would be to sample very frequently and 
capture all the variability. Flow is relatively straightforward to measure continuously (see Meals and 
Dressing 2008), but concentration is expensive to measure and in most cases impossible to measure 
continuously. It is therefore critically important to choose a sampling interval that will yield a suitable 
characterization of concentration. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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Figure 7-29. Weekly (red line in top panel), monthly (red line), and quarterly (black line in bottom 
panel) suspended solids load time series superimposed on a daily load time series (Richards 
1998). Log of flux is on y-axis, time is on x-axis, and area under curve is load estimate. 

There are three important considerations involved in sampling for good load estimation: sample type, 
sampling frequency, and sample distribution in time. Grab samples represent a concentration only at a 
single point in time and the selection of grab sampling interval must be made in consideration of the 
issues of variability discussed above. Integrated samples (composite samples made up of many individual 
grab samples) are frequently used in NPS monitoring. Time-integrated or time-proportional samples are 
either taken at a constant rate over the time period or are composed of subsamples taken at a fixed 
frequency. Time-integrated samples are poorly suited for load estimation because they are taken without 
regard to changes in flow (and concentration) that may occur during the integration period and are usually 
biased toward the low flows that occur most often. Flow-proportional samples (where a sample is 
collected for every n units of flow that pass the station), on the other hand, are ideally suited for load 
estimation, and in principle should provide a precise and accurate load estimate if the entire time interval 
is properly sampled. However, collecting flow-proportional samples is technically challenging and may 
not be suitable for all purposes. Also, even though a flow-proportional sample over a time span (e.g., a 
week) is a good summation of the variability of that week, ability to see what happened within that week 
(e.g., a transient spike in concentration) is lost. Flow-proportional sampling is also not compatible with 
some monitoring demands, such as monitoring for ambient concentrations that are highest at low flow or 
for documenting exceedance of critical values (e.g., a water quality standard). 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-98 

 
  

Sampling frequency determines the number of unit load estimates that can be computed and summed for 
an estimate of total load. Using more unit loads increases the probability of capturing variability across 
the year and not missing an important event (see Figure 7-29); in general, the accuracy and precision of a 
load estimate increases as sampling frequency increases. Over a sufficiently short interval between 
samples, a sampling program will probably not miss a sudden peak in flux. If, for example, unit loads are 
calculated by multiplying the average concentration for the time unit by the discharge over the same time 
unit, the annual load that is the sum of four quarterly unit loads will be considerably less accurate than the 
annual load that is the sum of twelve monthly loads. Note that this example does not mean that an annual 
load calculated from 12 monthly loads is sufficiently accurate for all purposes. 

There is a practical limit to the benefits of increasing sampling frequency, however, due to the fact that 
water quality data tend to be autocorrelated (see section 7.3.6). The concentration or flux at a certain point 
today is related to the concentration or flux at the same point yesterday and, perhaps to a lesser extent, to 
the concentration or flux at that spot last week. Because of this autocorrelation, beyond some point, 
increasing sampling frequency will accomplish little in the way of generating new information. This is 
usually not a problem for monitoring programs, but can be a concern, however, when electronic sensors 
are used to collect data nearly continuously. 

Consideration of the basic sampling frequency – n samples per year – does not address the more complex 
issue of timing. The choice of when to collect concentration samples is critical. Most NPS water quality 
data have a strong seasonal component as well as a strong association with other variable factors such as 
precipitation, streamflow, or watershed management activities such as tillage or fertilizer application. 
Selecting when to collect samples for concentration determination is essentially equivalent to selecting 
when the unit loads that go into an annual load estimate are determined. That choice must consider the 
fundamental characteristics of the system being monitored. In northern climates, spring snowmelt is often 
the dominant export event of the year; sampling during that period may need to be more intensive than 
during midsummer in order to capture the most important peak flows and concentrations. In southern 
regions, intensive summer storms often generate the majority of annual pollutant load; intensive summer 
monitoring may be required to obtain good load estimates. For many agricultural pesticides, sampling 
may need to be focused on the brief period immediately after application when most losses tend to occur. 
Issues of random sampling, stratified random sampling, and other sampling regimes should be 
considered. Simple random sampling may be inappropriate for accurate load estimation if, as is likely, the 
resulting schedule is biased toward low flow conditions. Stratified random sampling – division of the 
sampling effort or the sample set into two or more parts which are different from each other but relatively 
homogeneous within – could be a better strategy. In cases where there is a conflict between the number of 
observations a program can afford and the number needed to obtain an accurate and reliable load 
estimate, it may be possible to use flow as the basis for selecting the interval between concentration 
observations. For example, planning to collect samples every x thousand ft3 of discharge would 
automatically emphasize high flux conditions while economizing on sampling during baseflow 
conditions. Sampling levels following this strategy could be based on an annual average flow, recognizing 
that the number of samples per year would vary. 
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7.9.1.4 Planning for Load Estimation 
Both discharge and concentration data are needed to calculate pollutant loads, but monitoring programs 
designed for load estimation will usually generate more flow than concentration data. This leaves three 
basic choices for practical load estimation: 

1. Find a way to estimate un-measured concentrations to go with the flows observed at times when 
chemical samples were not taken; 

2. Throw out most of the flow data and calculate the load using the concentration data and just those 
flows observed at the same time the samples were taken; and 

3. Do something in between - find some way to use the more detailed knowledge of flow to adjust 
the load estimated from matched pairs of concentration and flow. 

The second approach is usually unsatisfactory because the frequency of chemical observations is likely to 
be inadequate to give a reliable load estimate when simple summation is used. Thus almost all effective 
load estimation approaches are variants of approaches 1 or 3. 

Unfortunately, the decision to calculate loads is sometimes made after the data are collected, often using 
data collected for other purposes. At that point, little can be done to compensate for a data set that 
contains too few observations of concentration, discharge, or both, collected using an inappropriate 
sampling design. Many programs choose monthly or quarterly sampling with no better rationale than 
convenience and tradition. A simulation study for some Great Lakes tributaries revealed that data from a 
monthly sampling program, combined with a simple load estimation procedure, gave load estimates 
which were biased low by 35 percent or more half of the time (Richards and Holloway 1987). 

To avoid such problems, the sampling regime needed for load estimation must be established in the initial 
monitoring design, based on quantitative statements of the precision required for the load estimate. The 
resources necessary to carry out the sampling program must be known and budgeted for from the beginning. 

The following steps are recommended to plan a monitoring effort for load estimation: 

 Determine whether the project goals require knowledge of load, or if goals can be met using 
concentration data alone. In many cases, especially when trend detection is the goal, concentration 
data may be easier to work with and be more accurate than crudely estimated load data. 

 If load estimates are required, determine the accuracy and precision needed based on the uses to 
which they will be put. This is especially critical when the purpose of monitoring is to look for a 
change in load. It is foolish to attempt to document a 25 percent load reduction from a watershed 
program with a monitoring design that gives load estimates +50 percent of the true load (see 
Spooner et al. 2011a). 

 Decide which approach will be used to calculate the loads based on known or expected attributes of 
the data. 

 Use the precision goals to calculate the sampling requirements for the monitoring program. 
Sampling requirements include both the total number of samples and, possibly, the distribution of 
the samples with respect to some auxiliary variable such as flow or season. 

 Calculate the loads based on the samples obtained after the first full year of monitoring, and 
compare the precision estimates (of both flow measurement and the sampling program) with the 
initial goals of the program. Adjust the sampling program if the estimated precision deviates 
substantially from the goals. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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It is possible that funding or other limitations may prevent a monitoring program from collecting the data 
required for acceptable load estimation. In such a case, the question must be asked: is a biased, highly 
uncertain load estimate preferable to no load estimate at all? Sometimes the correct answer will be no. 

7.9.2 Approaches to Load Estimation 
Several distinct technical approaches to load estimation are discussed below. The reader is encouraged to 
consult Richards (1998) for details and examples of these calculations. Do not estimate annual loads 
based on simple multiplication of an annual average concentration and average discharge as load 
estimates will be biased low for positively correlated parameters such as suspended sediment and total 
phosphorus. 

7.9.2.1 Numeric Integration 
The simplest approach is numeric integration, where the total load is given by 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 







where ci is the concentration in the ith sample, qi is the corresponding flow, and ti is the time interval 
represented by the ith sample, calculated as: 

1
2

(𝑆𝑆𝑖𝑖+1 − 𝑆𝑆𝑖𝑖−1) 
 
It is not required that ti be the same for each sample. 

The question becomes how fine to slice the pie – few slices will miss much variability, many slices will 
capture variability but at a higher cost and monitoring effort. Numeric integration is only satisfactory if 
the sampling frequency is high - often on the order of 100 samples per year or more, and samples must be 
distributed so that all major runoff events are captured. Selection of sampling frequency and distribution 
over the year is critical – sampling must focus on times when highest fluxes occur, i.e., periods of high 
discharge. 

As noted above, flow-proportional sampling is a special case of mechanical rather than mathematical 
integration that assumes that one or more samples can be obtained that cover the entire period of interest, 
each representing a known discharge and each with a concentration that is in proportion to the load that 
passed the sampling point during the sample's accumulation. If this assumption is met, the load for each 
sample is easily calculated as the discharge times the concentration, and the total load for the year is 
derived by summation. In principle, this is a very efficient and cost-effective method of obtaining a total 
load. 

7.9.2.2 Regression 
When, as is often the case with NPS-dominated systems, a strong relationship exists between flow and 
concentration, using regression to estimate load from continuous flow and intermittent concentration data 
can be highly effective. In this approach, a regression relationship is developed between concentration 
and flow based on the days for which concentration data exist. Usually, these data are based on grab 
samples for concentration and mean daily flow for the sampling day (see Example 7.9-1). This 

http://141.139.110.110/sites/default/files/jfuller/images/Load_Est1.pdf
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relationship may involve simple or multiple regression analysis using covariates like precipitation. In 
most applications, both concentration and flow are typically log-transformed to create a dataset suited for 
regression analysis (see section 7.3.2 and Meals and Dressing 2005) for basic information on data 
transformations). The regression relationship may be based entirely on the current year's samples, or it 
may be based on samples gathered in previous years, or both. This method requires that there be a strong 
linear association between flow and concentration that does not change appreciably over the period of 
interest. If BMP implementation is expected to affect the relationship between flow and concentration, 
such relationships must be tracked carefully - if BMPs change the relationship, the concentration 
estimation procedure must be corrected. 

Once the regression relationship is established, the regression equation is used to estimate concentrations 
for each day on which a sample was not taken, based on the mean daily flow for the day. The total load is 
calculated as the sum of the daily loads that are obtained by multiplying the measured or estimated daily 
concentration by the total daily discharge. 

The goal of chemical sampling under this approach is to accurately characterize the relationship between 
flow and concentration. The monitoring program should be designed to obtain samples over the entire 
range of expected flow rates. If seasonal differences in the flow/concentration relationship are likely, the 
entire range of flows should be sampled in each season. In some cases, separate seasonal flow-
concentration regressions may need to be developed and used to estimate seasonal loads. Examples of 
such flow-concentration regressions are shown in Figure 7-30 and example 7.9-1. 

This approach is especially applicable to situations where continuous flow data already exist, e.g., from 
an ongoing USGS hydrologic station. Grab samples can be collected as needed and then associated with 
the appropriate flow observations. Economy is another significant advantage of this approach. After an 
initial intensive sampling period to develop the regression, it may be possible to maintain the regression 
model with ~20 samples a year for concentration, focusing on high-flow or critical season events. 
Software exists to calculate and manage this approach, e.g. Flux32 (Walker 1990, Soballe 2014). Flux32 
is an interactive program designed for use in estimating the loadings of nutrients or other water quality 
components passing a tributary sampling station over a given period of time. Data requirements include 
(a) grab-sample nutrient concentrations, typically measured at a weekly to monthly frequency for a period 
of at least 1 year, (b) corresponding flow measurements (instantaneous or daily mean values), and (c) a 
complete flow record (mean daily flows) for the period of interest. Using six calculation techniques, 
Flux32 maps the flow/concentration relationship developed from the sample record onto the entire flow 
record to calculate total mass discharge and associated error statistics. An option to stratify the data into 
groups based upon flow, date, and/or season is also included. The USGS program LOADEST is also 
available and is widely used to estimate loads together with an estimate of precision using the regression 
approach. LOADEST includes an adjusted maximum likelihood estimation method that can be used for 
censored data sets and a least absolute deviation method to use when the regression residuals are not 
normally distributed. A web-based version of LOADEST program is available at 
https://engineering.purdue.edu/~ldc/LOADEST/. Another USGS load estimation calculation tool – 
FLUXMASTER – has been used in the SPARROW (SPAtially Referenced Regressions On Watershed 
attributes) watershed modeling technique to compute unbiased detrended estimates of long-term mean 
flux, and to provide an estimate of the associated standard error (Schwarz et al. 2006). These models 
include seasonal and temporal terms in their formulation that can improve the estimate of load; however, 
care is needed to ensure the model form is correct by reviewing the diagnostic plots. 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
https://www.pca.state.mn.us/wplmn/flux32
http://water.usgs.gov/software/loadest/
https://engineering.purdue.edu/%7Eldc/LOADEST/
http://pubs.usgs.gov/tm/2006/tm6b3/
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Figure 7-30. Flow-concentration regressions from the Maumee River, Ohio (Richards 1998). Top 
panel, regression relationship between log of total suspended solids concentration and log of 
flow for the 1991 water year dataset; Bottom panel, plot of same data divided into two groups 
based on time of year. Within each season, the regression model is stronger, has lower error, and 
provides a more accurate load estimate. 
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Example 7.9-1. Mill Creek Watershed, PA NNPSMP 
In this project, loads per unit area of nutrients and suspended sediment were estimated by combining 
the non-storm (i.e., low flow) and storm-flow loads (Galeone et al. 2006). Low-flow and storm-flow 
loads were computed using a multiple regression technique that included explanatory variables such 
as discharge, season, and time to estimate concentrations (and subsequently loads). Regressions 
were developed separately for low-flow and storm-flow periods, and for both low flow and storm flow, 
separate models were generated for the pre- and post-treatment periods for each site. Models were 
selected on the basis of the highest adjusted R2 and residuals plots to detect trends, and all F-values 
had to exceed the value for the F distribution for the appropriate degrees of freedom and an alpha 
equal to 0.05. 

Continuous discharge data for the four sites was first separated into low-flow and storm-flow periods 
using site-specific criteria defining a storm event. Sampled storms were reviewed to determine the 
typical rate of stage-height increase that initiated storm sampling. The recession and subsequent 
completion of storm sampling was also reviewed to determine the typical endpoint of storm sampling 
at each of the four sites. This information was used with 5- or 15-minute stage data to manually 
separate storm-flow discharge data from low-flow data. 

For low-flow periods, a subset of the grab-sample data was used to develop the relation between 
constituent concentrations and explanatory variables. Prior to using the grab-sample data, the 
cumulative frequency distribution for each site was determined using the continuous discharge data 
for the entire period of record. Grab samples collected at flows above the 97th percentile were deleted 
prior to load analysis. With these higher flows deleted, the relation between constituent concentrations 
and explanatory variables was developed. The low-flow constituent concentrations were estimated on 
a daily basis using the daily-mean discharge data for low-flow periods. The estimated concentrations 
were multiplied by the daily-mean discharge to estimate daily loads. 
Storm-flow loads for nutrients and suspended sediment were estimated by use of the mean discharge 
and mean constituent concentration for sampled storms. The mean discharge-concentration relation 
developed for sampled storms using regression analysis was used to predict the concentrations for 
unsampled storms. The mean discharge was calculated for unsampled storms using the 5- or 
15-minute continuous-stage data for the sites. This mean discharge was applied to the predicted 
concentration to estimate constituent loads for unsampled storms. Increases in stage caused by 
snowmelt events were analyzed separately by subsetting the storm events sampled during snowmelts 
and using these regression relations to estimate loads for non-sampled snowmelt events. The 
percentage of the storms sampled at each site was somewhat dependent on the location of the 
surface-water site, ranging from about 50-60 percent at outlet sites and 35-45 percent at upstream 
sites where flashiness was greater and defined storms more frequent. 
Constituent loads for each continuous surface-water site were estimated by summing the low-flow and 
storm-flow loads. The annual load data for the constituents were divided by the basin drainage areas 
to determine constituent yields. The percentage of the total yield in storm-flow was determined by 
summing the sampled and unsampled storm yields and dividing by the total yield. The remaining yield 
was attributed to low-flow periods. Data also were separated into pre- and post-treatment periods. 

 

There are a few potential disadvantages to this approach. First, as mentioned earlier, potential changes or 
trends in the concentration-flow relationship – sometimes a goal of watershed projects – must be tracked. 
If the relationship changes a new regression model must be constructed. Second, the monitoring program 
must be managed to effectively capture the entire range of flows/conditions that occur; the use of data 
from fixed-interval time-based sampling is not appropriate for this purpose because of bias toward low 
flow conditions. 



Monitoring and Evaluating Nonpoint Source Watershed Projects  Chapter 7 

  
7-104 

 
  

Hirsch et al. (2010) propose a weighted regression on time, discharge, and season (WRTDS) method that 
addresses some of these shortcomings. Principally, the WRTDS method relies on the same function 
regression structure as LOADEST; however, the fitted coefficients are allowed to vary with time. For 
example, the amplitude of the seasonal cycle could be relatively large in some periods of the record and 
then dampen to smaller cycles in other portions of the record. This is achieved through using a weighted 
regression that “windows in” on a portion of the record in time, flow and season. It is noteworthy that the 
researchers recommend that this method is primarily developed for data sets with more than 200 samples 
collected over 20 years. Like other flow adjustment tools there is a requirement of flow stationarity, that 
is, there isn’t a basis for expecting a change in flow over time such as a new reservoir whether that change 
is observed over the entire year or just during a portion of the year. Extended dry or wet periods are 
simply an expected part of the long term record. WRTDS is generally intended for gradual changes that 
might be expected with NPS projects or sites that represent the cumulative effect of multiple point 
sources, and less for abrupt changes. WRTDS has been built into Exploration and Graphics for RivEr 
Trends (EGRET): An R-package for the analysis of long-term changes in water quality and streamflow. 
User guidance is available at https://github.com/USGS-R/EGRET/wiki although more current releases are 
available through R (R Core Team 2013). The WRTDS method was applied to eight monitoring sites on 
the Mississippi River investigating nitrate (Sprague et al. 2011) and compared to the more traditionally 
recommended ESTIMATOR by Moyer et al. (2012) in an evaluation using data from the Chesapeake 
Bay. 

7.9.2.3 Ratio Estimators 
The concept of ratio estimators is a powerful statistical tool for estimating pollutant load from continuous 
flow data and intermittent concentration data. Ratio estimators assume that there is a positive linear 
relationship between load and flow that passes through the origin. On days when chemistry samples are 
taken, the daily load is calculated as the product of grab-sampled concentration and mean daily flow, and 
the mean of these loads over the year is also calculated. The mean daily load is then adjusted by 
multiplying it by a flow ratio, which is derived by dividing the average flow for the year as a whole by the 
average flow for the days on which chemical samples were taken. A bias correction factor is included in 
the calculation, to compensate for the effects of correlation between discharge and load. The adjusted 
mean daily load is multiplied by 365 to obtain the annual load. 

When used in a stratified mode (e.g., for distinct seasons), the same process is applied within each 
stratum, and the stratum load is calculated by multiplying the mean daily load for the stratum by the 
number of days in the stratum. The stratum loads are then summed to obtain the total annual load. The 
Beale Ratio Estimator is one technique, with an example provided by Richards (1998). Several formulas 
are available to calculate the number of samples (random or within strata) required to obtain a load 
estimate of acceptable accuracy based on known variance of the system. Stratification may improve the 
precision and accuracy of the load estimate by allocating more of the sampling effort to the aspects which 
are of greatest interest or which are most difficult to characterize because of great variability such as high 
flow seasons. 

7.9.2.4 Comparison of Load Estimation Approaches 
Although strongly driven by available resources, the monitoring program design (that should have 
included consideration of load estimation issues from the beginning), and the natural system itself, the 
choice of load estimation approach can make an enormous difference in the resulting load estimate. 

https://github.com/USGS-R/EGRET/wiki
http://141.139.110.110/sites/default/files/jfuller/images/Load_Est1.pdf
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In an analysis of total suspended solids data from the Maumee River in water year 1991, Richards (1998) 
demonstrated that different methods of load estimation applied to different datasets can result in 
substantially different estimates of pollutant load. Richards (1998) found that loads were often 
underestimated with the Beale Ratio Estimator and regression techniques, attributing this finding to 
missed high flow/TSS events and/or the estimation methods being biased toward low flow conditions. 
Notably, the Beale Ratio Estimator gave a load estimate closer to the true load (estimated through 
numeric integration) than did the regression method. For the full daily dataset, the single flow-
concentration regression over the entire year appeared to seriously underestimate suspended solids load; 
while separating the data into summer and winter seasons improved the fit and the accuracy of the load 
estimate. In a summary of findings, Harmel et al. (2006) reported that the USGS regression method could 
result in annual constituent loads to within 10 percent of true loads in larger watersheds but no less than 
30 percent for smaller watersheds. 

Harmel and King (2005) and Harmel et al. (2006) concluded that flow-proportional, composite sampling 
was the most effective method to obtain high quality data for estimating loads from small agricultural 
watersheds. They concluded that composite sampling extended the sampler capacity with little effect on 
error, noting that intensive sampling strategies could achieve errors less than 10 percent. In their study, 
smaller sampling intervals should be used for constituents such as sediment which varies more during the 
course of a rainfall event in comparison to other constituents which vary less during a rainfall event. 

Dolan et al. (1981) evaluated total phosphorus loadings to Lake Michigan from Grand River in 1976-77. 
They found that the Beale ratio estimator performed better than regression or other simplified 
calculations. Quilbé et al. (2006) evaluated a 1989-1995 nutrient and sediment data set from the 
Beaurivage River (Québec, Canada). They chose to estimate loadings with a Beale ratio estimator because 
they found that the correlation between flow and various water quality parameters was too weak to 
develop regression equations while noting that regression techniques would have been preferred if good 
correlations were found. Marsh and Waters (2009) also found few cases with strong correlations in their 
evaluation of 31 storm events in Queensland. They concluded that there was no clear best technique, but 
noted that the ratio methods were more robust and regression techniques worked well when there was a 
“tight” correlation. Using hourly model output, Zamyadi et al. (2007) found that the Beale ratio did not 
perform well in comparison to averaging and interpolation procedures. 

Taking the above literature into account, this guidance recommends that numeric integration be used 
when the full time series of water quality and flow data are available as in the case of flow-proportional 
composited samples. Regression approaches are appropriate for incomplete water quality records if good 
correlations between water quality and flow exist, with the Beale ratio recommended otherwise. It is 
important to take into account stratification by flow regime, season, and other covariates for both 
regression and the Beale ratio. 

7.9.3 Load Duration Curves 
A particularly useful diagnostic tool for load estimation data is the load duration curve. Simply stated, a 
duration curve is a graph representing the percentage of time during which the value of a given parameter 
(e.g., flow, concentration, or load) is equaled or exceeded. A load duration curve is therefore a cumulative 
frequency plot of mean daily flows, concentrations, or daily loads over a period of record, with values 
plotted from their highest value to lowest without regard to chronological order. For each flow, 
concentration, or load value, the curve displays the corresponding percent of time (0 to 100) that the value 
was met or exceeded over the specified time – the flow, concentration, or load duration interval. 
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Extremely high values are rarely exceeded and have low duration interval values; very low values are 
often exceeded and have high duration interval values. 

The process of using load duration curves generally begins with the development of a flow duration 
curve, using existing historical flow data (e.g., from a USGS gage), typically using mean daily discharge 
values. A basic flow duration curve runs from high to low along the x-axis, as illustrated in Figure 7-31. 
The x-axis represents the duration or percent of time, as in a cumulative frequency distribution. The y-
axis represents the flow value (e.g., ft3/sec (cfs)) associated with that percent of time. Figure 7-31 
illustrates that the highest observed flow for the period of record was about 5,400 cfs, while the lowest 
flow was 6 cfs. The median flow – the flow exceeded 50 percent of the time – was about 200 cfs. 

In the next step, a load duration curve is created from the flow duration curve by multiplying each of the 
flow values by the applicable numeric water quality target (usually a water quality criterion) and a unit 
conversion factor, then plotting the results as for the flow duration curve. The x-axis remains as the flow 
duration interval, and the y-axis depicts the load rather than the flow. This curve represents the allowable 
load (e.g., the TMDL) at each flow condition over the full range of observed flow. An example is shown 
in Figure 7-32 for the same site as shown in the flow duration curve, using a target of 0.05 mg/L total P. 
Then, observed P load observations associated with the flow intervals are plotted along the same axes. 
Points located above the curve represent times when the actual loading is exceeding the target load, while 
those plotting below the curve represent times when the actual loading is less than the target load. 

A key feature of load duration curve analysis is that the pattern of loads – and impairment – can be easily 
visualized over the full range of flow conditions. Because flow variations usually correspond to seasonal 
patterns, this feature can address the requirement that TMDLs account for seasonal variations. The pattern 
of observed loads exceeding target loads can be examined to see if impairments occur only at high flows, 
only during low flows, or across the entire range of flow conditions. A common way to look at a load 
duration curve is by dividing it into zones representing, for example: high flows (0-10 percent flow 
duration interval), moist conditions (10-40 percent), mid-range flows (40-60 percent), dry conditions 
(60-90 percent), and low flows (90-100 percent). Data may also be grouped by season (e.g., spring runoff 
versus summer base flow). Sometimes, analysis of the load duration curve can provide insight on the 
source of pollutant loads. Measured loads that plot above the curve during flow duration intervals above 
80 percent (low flow conditions), for example, may suggest point sources that discharge continuously 
during dry weather. Conversely, measured loads that plot above the curve during flow duration intervals 
of about 10 to 70 percent tend to reflect wet weather contributions by NPS such as erosion, washoff, and 
streambank erosion. Figure 7-32 illustrates that allowable total P loads in the Sevier River were exceeded 
during all flow intervals, and that P concentrations were independent of flow. 

It should be noted that an individual load duration curve applies only to the point in the stream where the 
data were collected. A load duration curve developed at a watershed outlet station (e.g., for a TMDL) 
applies only to loads observed at that point. If significant pollution sources exist upstream, a single load 
duration analysis at the watershed outlet can underestimate the extent of impairment in upstream 
segments. For this reason, it is usually wise to develop multiple load duration curves throughout the 
watershed to address the spatial distribution of impairments. Such an exercise can also be useful in 
targeting land treatment to critical watershed source areas. 
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Figure 7-31. Flow duration curve for the Sevier River near Gunnison, UT, covering the period 
January 1977 through September 2002 

 
Figure 7-32. Load duration curve for the Sevier River near Gunnison, UT, January 1977 through 
September 2002. Blue line represents allowable total P load calculated as the product of each 
observed flow duration interval and the target total P concentration of 0.05 mg/L. Yellow points 
represent observed total P loads at the same flow duration intervals. 
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For more detailed discussion of load duration curves, particularly their application to the TMDL process, 
refer to: 

 USEPA. 2007. An Approach for Using Load Duration Curves in the Development of TMDLs 

7.9.4 Assessing Load Reductions 
The same statistical tools recommended for flow and concentration data in section 7.8.2 and elsewhere in 
this chapter can be used to analyze program effectiveness with regard to load reductions. For example, 
loads might be estimated on a weekly basis using numeric integration and flow-proportional, composite 
sample data. Under a paired-watershed approach, the weekly-paired loads would be grouped as pre- and 
post-treatment and analyzed using ANCOVA. 

For comparisons of annual loadings, the analyst will have limited data to perform analyses (i.e., one 
annual loading value per site-year) and will be generally limited to reporting simple change in loading and 
drawing anecdotal comparisons to the control watershed. Normalizing the loadings based on watershed 
size, annual rainfall, and other covariates might prove helpful. 

Depending on the watershed and the types of installed BMPs, it is also appropriate to compare storm 
loadings from individual storms before and after BMP implementation in a single watershed. The particular 
challenge here is to control for other covariates and select/analyze storms of a certain size (e.g., rainfall 
between 2.5-5.0 cm) and occurring at key times during the year (e.g., within 6 weeks of spring planting). 
This type of analysis might also be limited to drawing simple comparisons due to sample size. 

7.10 Statistical Software 
Modern computers and software packages make it simple to perform the statistical analyses described in 
this chapter. Most standard spreadsheet programs include basic statistical functions and graphing 
capabilities, but more sophisticated and powerful statistical software packages might be needed for 
advanced analyses such as ANCOVA or cluster analysis. An extensive list and comparison of statistical 
software packages is available at Wikipedia. Practical Statistics, a web site maintained by Dennis Helsel, 
provides a more environmental-centric review of low-cost software tools. Table 7-9 lists some examples 
and websites to visit for more information about the many statistical packages available. 

Table 7-9. Sampling of available statistics software packages 
Package Name Web Site URL 
Analyse-It (add in for MS Excel) http://www.analyse-it.com 
DataDesk http://www.datadesk.com 
JMP http://www.jmp.com/en_gb/software.html 
Mathematica http://www.wolfram.com/mathematica/ 
MATLAB http://www.mathworks.com/products/matlab/ 
MINITAB https://www.minitab.com/en-us/ 
R https://www.r-project.org/ 
SAS/Stat, SAS/Insight http://www.sas.com/technologies/analytics/statistics/index.html 
SPSS http://www.spss.com/spss/ 
SYSTAT http://www.systat.com/products/Systat/ 
WINKS http://www.texasoft.com/ 

https://www.epa.gov/tmdl/approach-using-load-duration-curves-development-tmdls
http://en.wikipedia.org/wiki/List_of_statistical_packages
http://en.wikipedia.org/wiki/Comparison_of_statistical_packages
http://practicalstats.com/news/bydate_files/Evaluation2013.pdf
http://www.analyse-it.com/
http://www.datadesk.com/
http://www.jmp.com/en_gb/software.html
http://www.wolfram.com/mathematica/
http://www.mathworks.com/products/matlab/
https://www.minitab.com/en-us/
https://www.r-project.org/
http://www.sas.com/technologies/analytics/statistics/index.html
http://www.spss.com/spss/
http://www.systat.com/products/Systat/
http://www.texasoft.com/
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