Introduction to MOVES2010

EPA Office of Transportation and Air Quality FHWA Resource Center

Webinar Logistics

• Please use "question box" on your control panel to send your questions

- We'll pause periodically during the webinar to answer them
- We can address any unanswered questions after the webinar
- During this webinar, we'll conduct a few polls
 - Please participate

	File View Help						
	- Attendee List (2 Max 201)						
*	Attendees (1)	Stoff (1)	1				
	A NAME:	S - ALPHABETICALLY	-				
DIFT:	Z Corena Bahr ()	le)					
b (4)							
-							
		Search	0				
	- Audio						
[Audio Mode:	OUse Telephone					
		Use Mic & Speak	ters				
c							
	MUTED	-4> 00000	0000				
	Audio Setup						
	Talking: Suzie Smi	th.					
	- Questions		2				
d	Questions Log		10				
	Q is there a volum	e discount?					
	A:Yea!We will be event.	nd you more info after t	he				
0	Yes		2				
e	I		N.				
			Send				
r	Webinar Now Webinar ID: 731-938-951						
	GoTo Webinar™						

Course Outline

- What is MOVES?
- How is MOVES different from MOBILE?
- Why are emissions different from MOBILE?
- How has MOVES improved over time?
- How does MOVES work?
 - Demonstration of MOVES2010 interface
- What other information is available for MOVES?

Course Goals

- Provide a general overview of MOVES for non-modelers who need to understand the transition from MOBILE to MOVES
- Provide background information on MOVES for modelers
 - Formerly provided this kind of information in our hands-on course but we removed it from there to give more time for detailed exercises
- First of a series of webinars
 - Some will be more technical
 - Others will focus more on policy
 - Will talk more about webinars and other training at the end of this course

What is MOVES?

- MOtor Vehicle Emission Simulator
- State-of-the-art modeling framework
- Replaces MOBILE for on-road vehicle emissions
 - Significant expansion of capabilities compared to MOBILE
 - Will also eventually include nonroad emissions to replace separate NONROAD model
- Designed to allow easier incorporation of large amounts of in-use data from a variety of sources
 - MOBILE structure limited ability to incorporate new emissions data

Why Did EPA Develop MOVES?

- CAA requires EPA to regularly update emission factors and emission factor models
- FORTRAN code used in MOBILE6.2 is obsolete and increasingly difficult to maintain
- Modular database structure more modern, easier to update with new emissions, fleet and activity data

*S*FPA

MOVES

Why Did EPA Develop MOVES?

- National Research Council 2000 review of EPA's mobile source modeling program included several recommendations that are addressed by MOVES:
 - Support for smaller-scale analyses (project-level analysis)
 - Improved characterization of high emitters, heavy-duty vehicles and nonroad sources
 - Improved characterization of particulate matter and toxics
 - Improved model evaluation and uncertainty analysis
 - Improved ability to interface with other models

S FPA

How Is MOVES Different from MOBILE?

MOVES Software Structure Is More Flexible

- MOVES uses a Graphical User Interface (GUI)
 - MOBILE used text input and output files
- MOVES uses Java and MySQL software and operates in Windows
 - MOBILE written in Fortran and operated in DOS
- MOVES uses a relational database structure to store data in tables that are easy to modify and update
 - In MOBILE, many data elements were hard-coded, requiring changes to model code to update

SEPA

MOVES Offers More Output Options

 MOVES can estimate total emissions as well as emission rates

 MOBILE only provided emission rates, requiring extensive external post-processing to produce an emission inventory

 MOVES output is easily customizable with many levels of aggregation and disaggregation possible

- MOBILE had limited fixed output formats

MOVES Covers Multiple Scales and Time Periods

- MOVES can generate emissions estimates at multiple geographic scales, from national level to county level to project level with different input options at each level
 - MOBILE only produced emissions based on regional-scale trip patterns with no geographic specificity
- MOVES can generate emissions by hour, day (weekday or weekend), month, or year
 - MOBILE had very limited temporal capabilities

MOVES Is a Modal Model

- MOVES emission rates are based on "operating modes" that can account for different patterns of acceleration, cruising, and deceleration, as well as average speed
 - MOBILE was based on aggregate driving cycles and only accounted for differences in average speed

MOVES Is Also a Greenhouse Gas Model

- MOVES was designed from the ground up as an energy consumption model incorporating the latest methods for GHG estimation
- Also estimates methane, N₂O

🕗 🌮 EPA

Why Did Emissions Estimates Change from MOBILE to MOVES?

MOVES

Summary of Data Differences

- MOVES includes a much larger data set, including the first inuse data on light duty vehicles meeting Tier 1 and NLEV standards
 - MOBILE had in-use data for pre-1994 vehicles; 1994-and-later vehicle emissions were primarily based on certification data
- MOVES includes first in-use PM data for light duty vehicles with temperature effects
 - MOBILE PM based on certification data with no temperature effects
- MOVES includes first in-use data for heavy duty vehicles, including speed effects and crankcase, start, and extended idle emissions
 - MOBILE based on certification data with no speed effects, or crankcase, start, and extended idle emissions.

2 - **EPA**

Extensive Analysis of Car & Light Truck Emissions

- HC/CO/NOx rates based on ~ 70,000 vehicles randomly selected from Arizona IM program
 - Able to tease out emissions from I/M and non I/M areas

• Checked against data from multiple sources

- I/M data from Illinois, New York, Missouri and Colorado
- Roadside remote sensing data from several cities
- Kansas City Study
- Extended to newest technology vehicles using compliance data
 - In-use emissions data manufacturers required to collect
 - About 2,000 laboratory tests per year

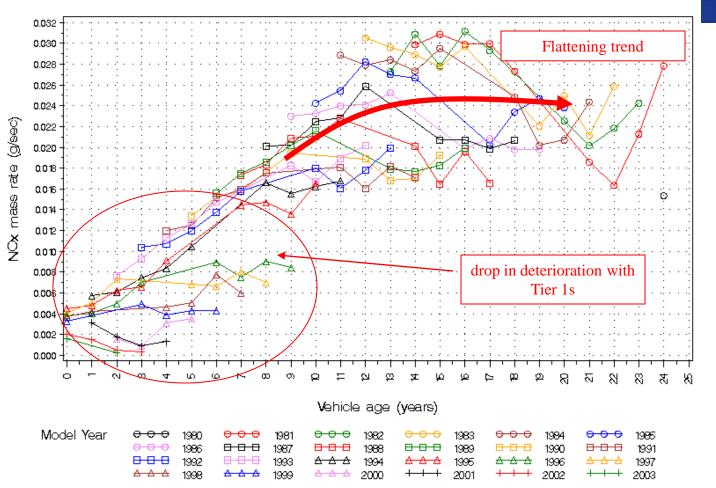
Gasoline PM a Major Focus

- Landmark study conducted in Kansas City 2004-05 to improve gas PM estimates
 - Collaboration between EPA, DOE, DOT, States, Auto/Oils
- 496 gasoline light-duty cars and trucks tested
 - Model Years 1968-2005
- Summer and winter testing
 - ~ half of the vehicles tested each season @ ambient temps
 - 43 vehicles tested in <u>both</u> winter and summer
- More information at

http://www.epa.gov/otaq/emission-factors-research/

What We've Learned About Car & Light Truck Emissions

- New standards have been successful in reducing deterioration of HC/CO/NOx emissions
- On-Board Diagnostic (OBD) systems are a contributing factor to lower deterioration
 - Owner response to repair identified malfunctions is better than MOBILE6 projected, particularly in non-I/M areas
- Gas PM emissions are much higher than MOBILE6 projected
 - Higher in-use deterioration
 - Significant increase at cold temperatures


⇒++//

Arizona I/M NOx data by Model Year and Age

LDV, WEIGHTED NOx vs. Age (years), LDV

Heavy Duty Diesel Emissions Updated Based on Real World Data

- MOBILE6 relied on certification data
 - Engine tests only
- Much research on in-use trucks since MOBILE6
 - CRC E-55
 - 75 trucks on chassis dynamometer
 - Only real-time PM data of it's kind
 - On-Board Measurement: ~350 trucks on road
 - Provided most robust assessment of NOx emissions available
- Extended idle, crankcase, starts, tampering & malmaintenance factored in (not in MOBILE6)

What We've Learned About Heavy Duty Diesel Emissions

• NOx

- In-use emissions moderately higher than MOBILE6 projected
- Extended idle (hoteling) emissions are significant
 - And projected to grow as percent of NOx inventory
- PM
 - Significant speed effect
 - MOBILE6 did not model any speed impacts
 - Large increase in emissions at lower speeds vs. MOBILE6
 - Crankcase emissions significant

) 🌮 EPA

How Do Emissions Differ from MOBILE?

Analysis of Local Area Impacts

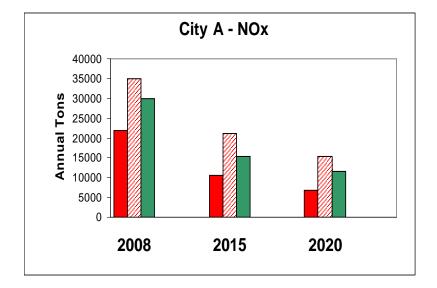
- EPA compared MOVES2010 and MOBILE6 using surrogate local data to represent 3 different urban counties
 - Local data very limited, may not be consistent with what states will actually use

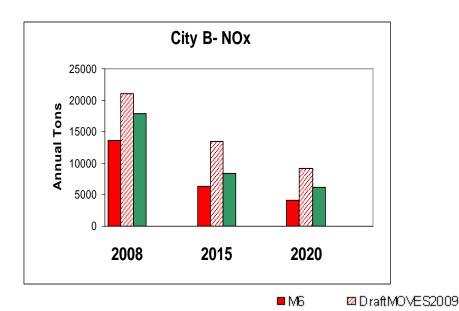
• Local data varied by:

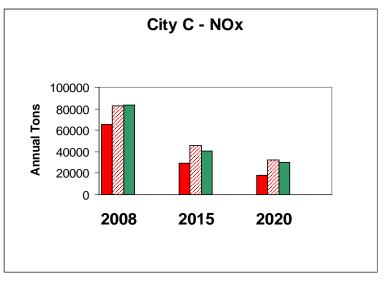
- Fleet age distribution
- Fraction of light and heavy duty VMT
- Local fuel specifications

MOVES

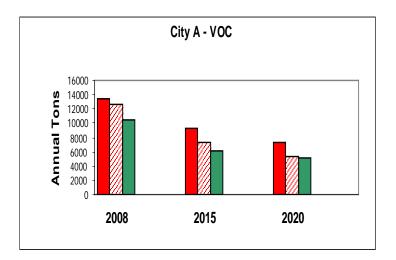
- Meteorology
- Other input factors

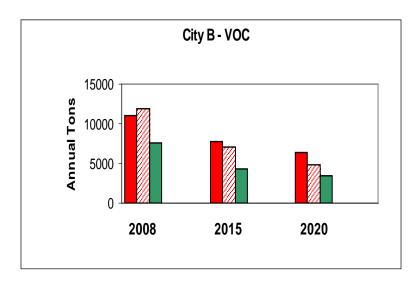


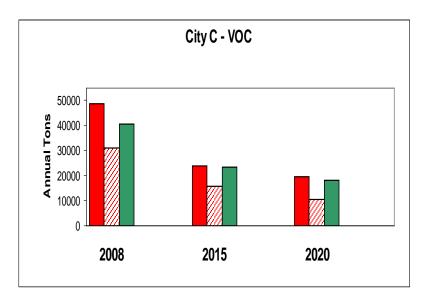

MOVES2010 Results


- Data collected since MOBILE6 released drives differences between MOVES and MOBILE6
- National trends
 - HC and CO emissions similar or lower than MOBILE6.2
 - Total NOx emissions higher than MOBILE6.2
 - Total PM emissions substantially higher than MOBILE6.2
- Local results may vary
 - Local fleet mix, fuels, activity are important
 - Temperature drives PM emissions
- For attainment analysis, relative change in emissions between base year and attainment year is more important than absolute emissions

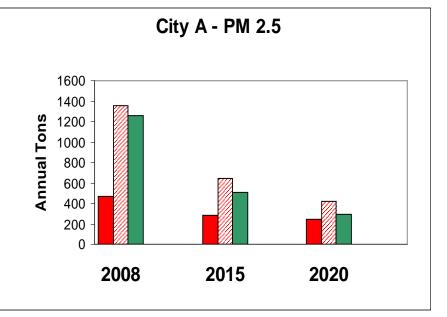
- I/M program data shows MOBILE6 underestimated NOx emissions from light trucks
- On-road data on heavy trucks shows higher emissions than MOBILE6 estimated from cert data
- Extended idle emissions become significant share of heavy-duty inventory in future

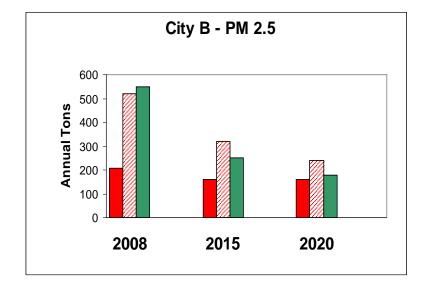


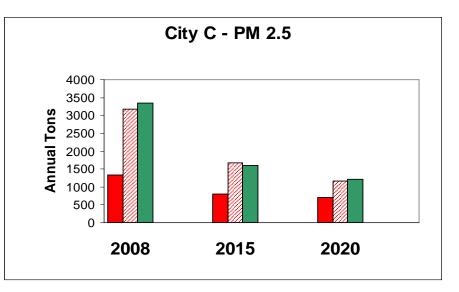




- I/M program data shows MOBILE6 overestimated HC emissions from newer technology cars
- Evaporative emissions on newer technology vehicles very low







- Kansas City program found high gas PM emissions esp. at cold temps
- New data on heavy trucks shows higher deterioration than MOBILE6
- MOVES accounts for impact of vehicle speed – MOBILE did not

Percent Reduction in On-Road Emissions 2008 to 2015

	City A		City B		City C		
	M6	MOVES2010	M6	MOVES2010)	M6	MOVES2010
VOC	31%	41%	30%	43%		51%	42%
NOx	52%	49%	53%	53%		56%	51%
PM2.5	40%	60%	23%	54%		40%	52%

What It Means

- Higher NOx and PM emissions mean on-road mobile sources have bigger role in attainment
- Percent reduction from base year is key to attainment analysis
 - PM2.5 shows higher overall emissions and higher % reductions
 - Effect on attainment demonstrations could be positive
 - NOx shows higher overall emissions but lower % reduction
 - Could be harder to show attainment
 - Future NOx control measures could have a bigger impact
- States need to evaluate these impacts and consider their effects on SIP and conformity requirements

I/M Effects In MOVES

- Benefits are comparable to MOBILE6 now, but will shrink over time.
 - Conservative M6 OBD assumptions not supported by data
 - CRC did comprehensive survey of MIL response in non-I/M areas
 - Found high response even after warranty
 - Our analysis of I/M program data confirms that OBD works

How Has MOVES Improved Over Time?

MOVES Versions

• Draft MOVES2009

- Draft model released April 2009

• MOVES2010

- Released December 2009
- Approved March 2010 for use in SIPs and regional conformity analyses
- Improved emission rates database
- Added start and evap emissions to emissions rate calculator
- Faster performance
- Added new features
- Added new pollutants and pollutant processes
- Added motorcycle emissions

Updates After MOVES2010 Release

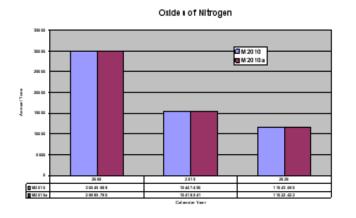
- These updates add features, improve performance and correct errors
 - Impact on criteria pollutants is small

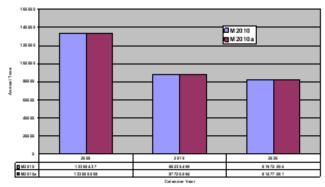
MOVES

They are not considered new emission models for SIPs and conformity

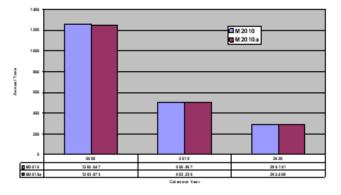
• 5/15/2010 Database

- Updated MOVES database that corrects several minor errors in the original MOVES2010 default database
- To use this database, it must be installed separately from the MOVES2010 installation
- MOVES2010a released September

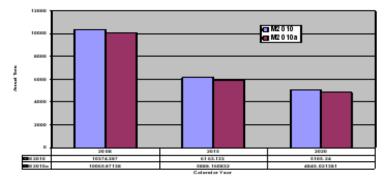

What is MOVES2010a?


- Developed to allow users to easily estimate emissions that incorporate new car and light truck energy and greenhouse gas rates.
 - LD GHG 2012+
 - LD GHG 2008 2011
- Also
 - Improved methane algorithm
 - Improved ramp algorithm
 - Faster runtime
 - Code modified to make more compatible with LINUX operating systems
 - Includes 5/15 database in installation package
 - Other improvements
- SIP/Conformity Policy-- users can choose to continue significant work with 2010 or switch to 2010a.

2010 vs. 2010a Inventory Comparisons


Net impact

Reduced future year Energy Increased CH4 Small (3-5%) decrease in VOC

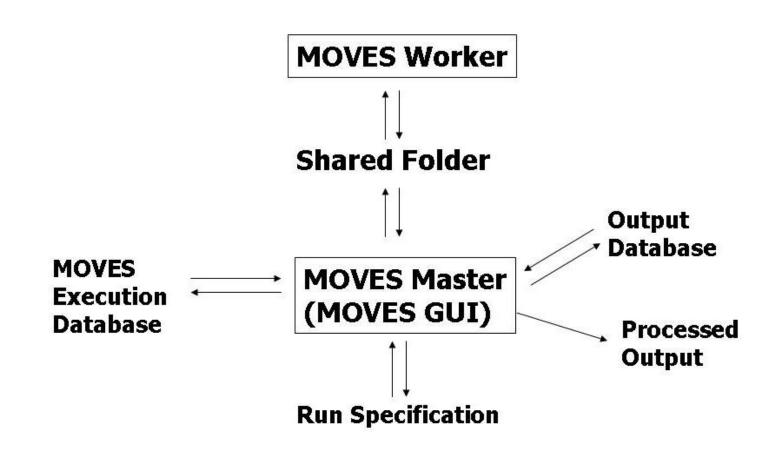


Total PM 2.5

Volatile Organic Compounds

Carbon Monoxide (CO)

How Does MOVES Work?



Master – Worker Structure

Geography and Time in MOVES

• Modeling domain is entire U.S.

- 50 States plus (DC, Puerto Rico, & Virgin Islands)
- 3222 Political subdivisions (counties as of CY 1999)

• Calendar years (1990, 1999-2050)

- 12 months of the year
- Week days and weekend days
- 24 hours of the day

Emission Processes

- Running Exhaust
- Start Exhaust
- Extended Idle
- Evaporative Processes
 - Permeation, Vapor Venting, Leaks, Refueling Displacement, Refueling Spillage
- Crankcase
- Tire Wear
- Brake Wear

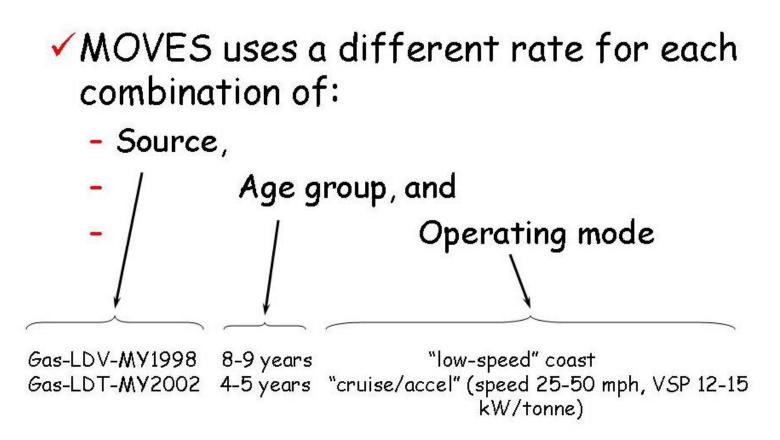
MOVES Source Types (vs. HPMS Vehicle Types)

HPMS Vehicle Type	MOVES SourceType
Motorcycle	Motorcycle
Passenger Car	Passenger Car
Other 4-tire, 2-axle	Passenger Truck
	Light Commercial Truck
Bus	Intercity Bus
	Transit Bus
	School Bus
Single Unit Truck	Refuse Truck
	Short-haul Single Unit
	Long-haul Single Unit
	Motor home
Combination Truck	Short-haul Comb. Truck
	Long-haul Comb. Truck

Sub-categories (like refuse trucks and motor homes) are discussed in guidance; EPA does not expect areas to have local data for all subcategories.

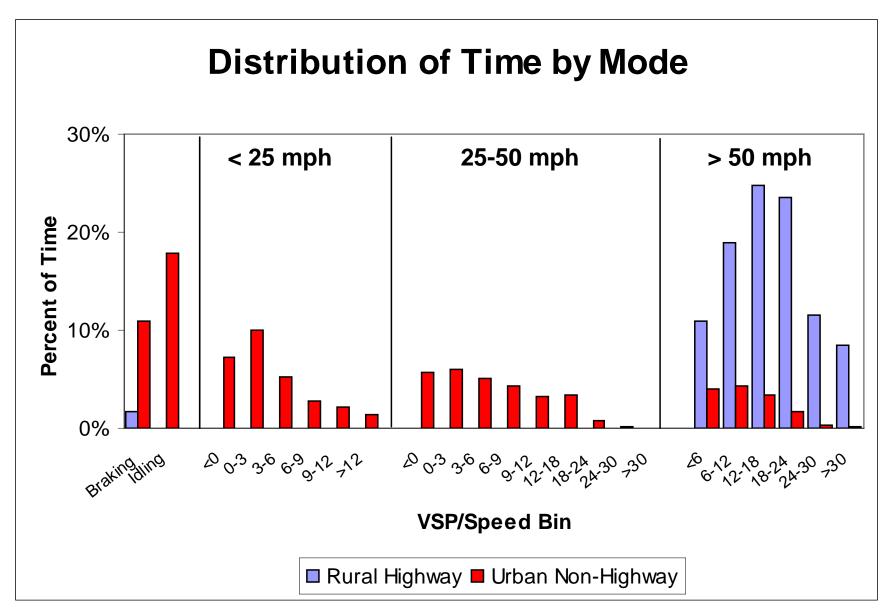
Road Types

- For running emissions, county-level VMT is distributed to four road types:
 - Rural Restricted Access (freeways and Interstates),
 - Rural Unrestricted Access,
 - Urban Restricted Access (freeways and Interstates),
 - Urban Unrestricted Access
- A fifth road type, "off-network", is included to capture start, evaporative and extended idle emissions
 - This is not the same as "off-network" vehicle activity in the travel modeling world.


Vehicle Ages

- Emission rates can vary by age as well as model year; activity also varies by age
- Vehicles 0-29 & 30+ years old modeled
- Age groups used for emissions calculations
 - 0 to 3 years old
 - 4 or 5 years old
 - 6 or 7 years old
 - 8 or 9 years old
 - 10 to 14 years old
 - 15 to 19 years old
 - 20 or more years old

Emissions by Source, Age, Mode



MOVES: Operating Mode Bins

- Division of total activity into categories that differentiate emissions
- Defined by speed and power for running emissions
- There are additional operating mode distributions for start and evaporative emissions

Operating Modes Facilitate Project Level Analysis

- Modal emission structure allow more flexibility in calculation of Project-level emission changes
 - Changes in operating mode distribution \rightarrow changes in emissions
- Includes an "importer" to help users input project-specific information on driving activity
 - Users can enter operating mode distribution or driving pattern by link
- Creates opportunity to estimate emissions when changing road design affects operating modes
 - Adding lanes?
 - Synchronizing signals?
 - Replacing stop signs with rotaries?

MOVES Databases

- MOVES stores information in MySQL databases
- The MOVES2010 default database has over 100 different tables that store
 - Lookup/reference information
 - Conversion/adjustment factors
 - Emissions data
 - Activity data

• MOVES also uses databases to store intermediate results and final output

MOVES Databases

• Input Databases (default or user-created)

- Default Input Database
- User Input Database(s) (optional-MOVES will run with just defaults for the National Scale)

• Execution Database (created by MOVES)

- Resolves differences between the user input and default data
- Contains information needed for a particular run
- Temporary storage for intermediate results
- Resources for new modeling applications
- Interpreting tables can be complicated
- Output Database (created by user)
 - Run results
 - Run diagnostics and documentation

Output

MOVES Summary Reports

 Summary reporter that provides limited options for displaying MOVES output is provided with MOVES

• MySQL can also be used to summarize output

- Full relational database capabilities for managing and manipulating output
- Users can create, save, and share scripts to automate postprocessing tasks
- Can be done through MySQL Query Browser (GUI interface) or through a DOS window
- Option to work though other database managers such as Access
- Can also export data from MySQL Query Browser to Excel or other spreadsheet programs for additional post-processing

Demonstration of MOVES2010 Interface

MOVES Documentation

MOVES Documentation

- User Guide
- Guidance Documents
- Software Design/Reference Manual
- Technical documentation
- Presentations and other materials

MOVES User Guide

• The MOVES User Guide describes:

- Installation instructions
- The features of the graphical user interface (GUI)
- Instructions on how to access each feature
- Step-by-step example run
- Exporting results to MS Access
- Running MOVES in a batch mode
- "MOVES Decoder"

MOVES Policy and Guidance Documents

• Federal Register Notice of Availability

- Published March 2, 2010 (75 FR 9411)
 - Link at www.epa.gov/otaq/models/moves/index.htm
- Approves the use of MOVES2010 for SIPs in states other than California
- Starts a two-year grace period for use of MOVES2010 in regional conformity analyses

• MOVES2010 SIP and Conformity Policy Guidance

- Published December 2009
 - www.epa.gov/otaq/models/moves/420b09046.pdf
- Provides detailed guidance on when MOVES2010 should be used in SIPs and transportation conformity analyses

MOVES Policy and Guidance Documents

MOVES2010 Technical Guidance

- Published December 2009
 - www.epa.gov/otaq/models/moves/420b10023.pdf
- Provides guidance on appropriate inputs for MOVES2010 in SIPs and regional conformity analyses
 - Defaults vs. local information
 - Developing appropriate local inputs

• Guidance documents under development

- Quantitative PM hot-spot analyses for transportation conformity (includes PM project-level MOVES guidance)
- CO project-level MOVES guidance
- MOVES to be approved for PM and CO hot-spot conformity analyses once guidance finalized (with grace period)

MOVES Software Design and Reference Manual

• The Software Design and Reference Manual (SDRM) describes:

- The hardware and software requirements
- Software design components
- Overview of processing, data and control flow
- Functional design:
 - Generators (process input data)
 - Calculators (generate results)
 - Aggregators (summarize input and outputs)
- Input and output database tables and design

• Draft available, final will be posted when complete

MOVES Database Documentation

- MOVES database documentation is included when MOVES is installed
- The documentation is located in the "ReadMe" directory of the MOVES MySQL database folder
- Documents include:
 - Table and field descriptions with units
 - Table relationship charts

MOVES

Database quality checks

SEPA

Technical Reports

- MOVES technical reports describe the development of:
 - Activity algorithms and default data
 - Adjustment factors (fuels, temperature, etc.)
 - Emission rate algorithms and default data
- These reports address the sources of the data used by MOVES
- New reports are written when the algorithms or the default data are updated
- Drafts are available, final versions will be posted when complete

MOVES Presentations and Other Materials

- Presentations (such as this one) are made available on the MOVES web site
 - Presentations can provide a summarized version of the information in the more detailed documentation
 - Presentations often contain examples that were not included in the original detailed documentation
- The MOVES web site contains other documents that may be of interest to MOVES users:
 - Physical Emission Rate Estimator (PERE)
 - MOVES Design and Emissions Analysis Plans
 - Federal Advisory Committee Act (FACA) Modeling Workgroup materials
 - MOVES Training materials
 - Validation results

MOVES Training

• MOVES training a cooperative effort of EPA and FHWA staff

 Last year, gave hands-on Draft MOVES2009 training in 20 locations to over 400 participants

• Currently giving MOVES2010 hands-on course:

- Training already given in 9 locations
- 6 more locations have been scheduled
- Several additional locations yet to be scheduled
- Starting a series of webinars
 - Introduction to MOVES is the first
 - Planning two upcoming technical webinars on running MOVES in batch mode and on a distributive network
 - Will schedule additional webinars as we develop them
 - Suggest a topic and we will see what we can do!

Visit the MOVES Website:

• Main Page

- www.epa.gov/otaq/models/moves/
- Training Sessions
 - <u>www.epa.gov/otaq/models/moves/trainingsessions.htm</u>
- Training Materials
 - www.epa.gov/otaq/models/moves/training.htm
- Background Information
 - www.epa.gov/otaq/models/moves/movesback.htm
- Listserver Information
 - www.epa.gov/otaq/models/mobilelist.htm

Thank You

- Thanks for attending this Introduction to MOVES
- Please answer the questions in the webinar exit survey to help us improve our training
- If you have additional questions, email us:
 - mobile@epa.gov