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FOREWORD

The U.S. Envircnmental Protection Agency is charged by Congress with pro-
tecting the Nation's land, zir, and water resources. Under a mandate of national
environmental laws, the Agency strives to formulate and implement actions lead-
ing to a compatible balance between human activities and the ability of natural
systems to support and nurture life. To meet this mandate, EPA's research
program is providing data and technical support for solving environmental pro-
blems today and building a science knowledge base necessary to manage our eco-
logical resources wisely, understand how pellutants affect our health, and pre-
vent or reduce environmental risks in the future.

The National Risk Management Research Laboratory is the Agency's center for
investigation of technological and management approaches for reducing risks
from threats to human health and the environment. The focus of the Laboratory's
regsearch program is on methods for the prevention and control of pollution to air,
land, water, and subsurface resources; protection of water gquality in public water
systems; remediation of contaminated sites and groundwater; and prevention and
control of indoor air pollution. The goal of this research effort is to catalyze
development and implementation of innovative, cost-effective environmental
technologies; develop scientific and engineering information needed by EPA to
support regulatory and policy decisions; and provide technical support and infor—
mation transfer to ensure effective implementation of environmental regulations
and strategies.

This publication has been produced as part of the Laboratory's strategic long-
term research plan. It is published and made available by EPA's Cffice of Re-
search and Development to agsist the user community and to link researchers
with their clients.

E. Timothy Oppelt, Director
National Risk Management Research Laboratory

EPA REVIEW NOTICE

This report has been peer and administratively reviewed by the U.8. Environmental
Protection Agency, and approved for publication. Mention of trade names or
commercial products does not constitute endorsement or recommendation for use.

This document is available to the public through the National Technical information
Service, Springfield, Virginia 22161.
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DISCLAIMER

LEGAL NOTICE: This report was prepared by Radian International LLC as an account
of work sponsored by Gas Research Institute (GRI)} and the U.S. Environmental Protection
Agency (EPA). Neither EPA, GRI, members of GRI, nor any person acting on behalf of

either:

a. Makes any warranty or representation, express or implied, with respect to the
accuracy, completeness, or usefulness of the information contained in this
report, or that the use of any apparatus, method, or process disclosed in this
report may not infringe privately owned rights; or

b, Assumes any liability with respect to the use of, or for damages resulting

from the use of, any information, apparatus, method, or process disclosed in
this report.

NOTE: EPA’s Office of Research and Development quality assurance/quality control
{QA/QC) requirements are applicable to some of the count data generated by this project.
Emission data and additional count data are from industry or literature sources, and are not
subject to EPA/ORD’s QA/QC policies. In all cases, data and results were reviewed by the
panel of experts listed in Appendix D of Volume 2.
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This report describes the statistical methods used to quantify the annual
methane emissions from the natural gas industry. The objective was to
determine this quantity with an accuracy of 0.5% of production on the
basis of a 90% confidence interval.

The increased use of natural gas has been suggested as a strategy for
reducing the potential for global warming. During combustion, natural
gas generates less carbon dioxide (CO,) per unit of energy produced than
either coal or oil. On the basis of the amount of CO, emitted, the
potential for global warming could be reduced by substituting natural gas
for coal or oil. However, since natural gas is primarily methane, a potent
greenhouse gas, losses of natural gas during production, processing,
transmission, and distribution could reduce the inherent advantage of its
lower CO. emissions.

To investigate this, Gas Research Institute {GRI) and the U.S.
Environmental Protection Agency’s Office of Research and Development
(EPA/ORD) cofunded a major study to quantify methane emissions from
U.S. natural gas operations for the 1992 base year. The resuits of this
study can be used to construct giobal methane budgets and to determine
the relative impact on global warming of natural gas versus coal and oil.

The national emissions for the base year are 314 + 105 Bscf (2 33%),

which is equivalent to 1.4% + 0.5% of gross natural gas production. The
program reached its accuracy goal and provides an accurate estimate of
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Technical
Approach

Project
Implications

methane emissions that can be used to construct U.S. methane
inventories and analyze fuel switching strategies.

The technical approach involved several aspects, including statistical
sampling, estimation of annual emission values, and quantification of
uncertainty. :

To facilitate the sampling process, the industry was divided into emission
source categories. A target accuracy value was computed for each
category as an aid in allocating sampling resources. The target
accuracies were updated as the sampling process proceeded and more
was known about the characteristics of the categories.

Tests were performed to identify categories for which the sampling
process may have produced a bias. While these tests were designed to
identify bias, they were also sensitive to sampling anomalies. If
undetected, such anomalies could have led to larger than expected
random errors. While no test exists that would absolutely guarantee that
zero bias existed, the bias screening that was performed was of
significant benefit in the study. When evidence of bias was discovered,
steps were taken to remove it. Collecting more data is one possible step;
other remedies are discussed in the report.

For each source category, an activity factor and an emission factor were
computed. Typically, the activity factor is the number of sources
(population) of a source category, and the emission factor is the average
annual emissions of a source. The uncertainties of both the activity
factor and the emission factor were quantified on the basis of the data.

The national emissions for a source category equals the activity factor
times the emission factor. The annual emissions for the industry is the
sum of the annual emissions for all the categories. Analysis of error
propagation was performed to compute the uncertainty of the annual
emissions by category and the uncertainty of the national emissions.

An analysis was performed to determine the sensitivity of the uncertainty
in the national emissions to the presence of non-pormally disiributed
errors and correlated errors among source categories. The uncertainty of
the national annual emissions was computed under worst-case
assumptions.

For the 1992 base year the annual methane emissions estimate for the
U.S. natural gas industry is 314 Bscf £ 105 Bscf (£ 33%). This is

equivalent to 1.4% = 0.5% of gross natural gas production. Results from
this program were used to compare greenhouse gas emissions from the

iv



fuel cycle for natural gas, oil, and coal using the global warming
potentials (GWPs) recently published by the Intergovernmental Panel on
Climate Change (IPCC). The analysis showed that natural gas
contnibutes less to potential global warming than coal or oil, which
supports the fuel switching strategy suggested by IPCC and others.

In addition, results from this study are being used by the natural gas
industry to reduce operating costs while reducing emissions. Some
companies are also participating in the Natural Gas-Star program, a
voluntary program sponsored by EPA’s Office of Air and Radiation in
cooperation with the American Gas Association to implement cost-
effective emission reductions and to report reductions to the EPA. Since
this program was begun after the 1992 baseline year, any reductions in
methane emissions from this program are not reflected in this study’s
total emissions.

Robert A. Lott
Senior Project Manager, Environment and Safety
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1.0 SUMMARY

This report is one of several volumes that provide background information
supporting the Gas Research Institute and U.S. Environmental Protection Agency Office of
Research and Development (GRI-EPA/ORD) methane emissions project. The objective of
this comprehensive program is to quantify the methane emissions from the gas industry for
the 1992 base year to within +0.5% of natural gas production starting at the wellhead and

ending immediately downstream of the customer’s meter.

This report presents a detailed discussion of the statistical methods used in this
study. The major topics discussed include statistical sampling issues, calculation of the 1992

national emissions, and determination of the uncertainty of this value.

To facilitate the sampling process, the industry was divided into source
categories. A target accuracy value was computed for each category as an aid in allocating
sampling resources. The target accuracies were updated as the sampling process proceeded

and more was known about the categories.

Tests were performed to identify categories for which the sampling précess
may have introduced a bias. While these tests were designed to identify bias, they were also
sensitive t¢ sampling anomalies. If undetected, such anomalies could have led to larger than
expected random errors. While no tests exists that would absolutely guarantee that zero bias
existed, the bias screening that was performed was of significant benefit in the study. When
evidence of bias was discovered, steps were taken to remove it. Collectixig more data is one

possible step; other remedies are discussed later in the report.

For each source category, an activity factor and an emission factor were
computed. Typically, the activity factor is the number of sources (population) of a source

category, and the emission factor is the average annual emissions of a source. The



uncertainties of both the activity factor and the emission factor were quantified on the basis
of the data.

The national emissions for a source category equals the activity factor times the
emission factor. The annual emissions for the industry is the sum of the annual emissions
for all the categories. Analysis of error propagation was performed to compute the

uncertainty of the annual emissions by category and the uncertainty of the national emissions.

An analysis was performed to determine the sensitivity of the national annual
emissions to the presence of non-normally distributed errors and correlated errors among
source categories. The uncertainty of the national annual emissions was computed under

worst-case assurnptions.

National emissions were quantified to be 314 + 105 Bscf (£ 33%), which is
equivalent to 1.4% + 0.5% of natural gas production. The accuracy goals of the project

were met.



2.0 INTRODUCTION

In general, the first step for estimating methane emissions from the U.S.
natural gas industry was to identify, delineate, and characterize each emission source within
the industry, so that all significant sources were included. The industry characterization
affected the sanipling strategy and, therefore, is relevant to the statistical methodology
discussed later in the report. While the industry characterization is covered in detail in other

Tier 3 reports, a brief summary follows.

The industry was divided into its principal market segments: production,
processing, transmission, and distribution. Within each market segment, the process
facilities were identified, and within each facility, the individual pieces of equipment and
components contributing to emissions (the source categories) were identified. The
disaggregation ensured that no sources were overlooked or double counted and produced a
manageable framework within which the study would be conducted. The industry market
segments, major facilities within those segments, and the major equipment within the

faciiities are shown in Table 2-1.

After identifying the major equipment (source categories) in each industry
market segment, all possible emissions from each source were identified by examining the
operating modes of the equipment that may lead to emissions and by associating one of three
possible types of emissions with the source: fugitive emissions, vented emissions, or

combustion emissions.

In Section 3, sampling and methods for avoiding bias are discussed. in Section
4, the methods used to extrapolate emissions estimated for individual sources to obtain a
nationwide average are discussed. Methods for quantifying uncertainty are also discussed in
Section 4. In Section 5, the major statistical assumptions are summarized. Results

pertaining to the attainment of the target accuracy are presented in Section 6.



TABLE 2-1. INDUSTRY CHARACTERIZATION

. Segment . 'Facilities % | Equipment at the Facility
Production Well Sites, Wellheads, Separators,
Central Gathering Facilities Pneumatic Devices, Chemical
Injection Pumps, Dehydrators,
Compressors, Heaters, Meters,
Pipelines
Processing Gas Plants Vessels, Dehydrators,
1 Compressors, Acid Gas
Removal (AGR) units, Heaters,
Pneumatic Devices
l
Transmission !Transmission Pipeline Networks, | Vessels, Compressors,
| Compressor Stations, - Pipelines, Meters/Pressure
Meter and Pressure Reg. Stations Regulators, Pneumatic Devices
| ' ' L
Storage (Underground Injection/ Withdrawal iWelIheads, Vessels,
Facilities, and Liquefied Natural Gas | Compressors, Dehydrators,
{LNG) facilities Heaters, Pneumatic Devices
Distribution Main and Service Pipeline Networks, |Pipelines, Meters and Pressure

Meter and Pressure Reg. Stations

Regulators, Pneumatic Devices,
Customer Meters




39 SAMPLING AND AVOIDING BIAS

Data obtained in this project were necessarily collected from a limited number
of sources. These data were extrapolated to obtain nationwide estimates for similar sources
throughout the industry. The extrapolation techniques for creating nationwide emission
estimates were developed so that the emissions for each source category could be estimated

with a relatively high level of precision (given the nature of this study) and negligible bias.

The extrapolation approéch is a method to scale up the average emissions
from a source, determined by a limited sampling effort, to represent the entire population of
similar sources in the gas industry. The extrapolation approach uses the concept of
emission and activity factors to estimate emissions on the basis of a limited number of
samples. These factors are defined in sﬁch a way that their product equals the total annual

nationwide emissions from a source category in the natural gas industry.
EF x AF = National Emissions for a Category @
where:

EF = emission factor for a category, and

AF = activity factor for the same category

Typically, the emission factor for a source category represents the average
emissions per source, and the activity factor represents the total industry population of the
source. The emission factor is the summation of all measured or calculated emissions from
each of the sources sampled divided by the number of sources sampled. The activity factor
1s the total. number of sources in the entire target population or source category. However,
in applying this simplified approach to developing emission and activity factors, it is

important to ensure that there is no bias in the data.



The extrapolation methodology involves more than just the scaling up of
emissions data; it also includes the sampling approach, which is fundamental to the

accuracy of the emissions data.

Basic issues pertaining to accuracy, precision, and bias are discussed in
Section 3.1. The sampling approach designed specifically for this project is presented in
Section 3.2. Calculation of target precision by source category is discussed in Section 3.3.
The methods for estimating the emission factors and activity factors are discussed in
Sections 3.4 and 3.5, respectively. Summary comments regarding techniques used to screen

for bias are given in Section 3.6.

3.1 _ Accuracy, Precision, and Bias

Figtire 3-1 tllustrates the role of random and bias errors in the estimation
process. In each of the four illustrations in this figure, the center of the concentric circles
represents the correct answer. In the illustration in the upper left, there is a significant
amount of random scatter in the points. The term "precision™ refers to random variability
alone; in this case, the precision is poor. Additionally, the points are predominantly below
and to the right of the target. The systematic difference between the points and the correct
answer is a bias. The term "accuracy” refers to the total error, including random and bias

errors. Because of the large bias and the poor precision, the accuracy is also poor.

In the illustration in the upper right of Figure 3-1, the points are randomly
scattered about the correct answer; there is little or no bias in this case, but the precision
and accuracy are both poor. In the lower left, there is good precision, but there 1s again a
large bias; thus, the accuracy is poor. In the lower right, the bias is small, and the precision

is good. Thus, the accuracy is good in this case.

Sampling bias occurs if the methodology is flawed in a manner that leads to a

systematic under-representation of parts of the population and a systematic over-



High Bias + Low Precision
=Low Accuracy

Low Bias + Low Precision
= Low Accuracy

High Bias + High Precision
=Low Accuracy

G

Low Bias + High Precision
= High Accuracy

Figure 3-1. IHustration of Random and Bias Errors




representation of other parts. Bias, in a statistical sense, can be explained as follows.
Suppose it was possible to repeat the sampling and measurement process infinitely many
times, and that each time the process was repeated, an independent estimate of a given
emission factor was obtained. If the average of the entire infinite set of emission factor
estimates equalled the true value, then a bias would not exist. If the average of these
estimates differed from the true value, then the process would be wrong in a systematic
sense, and a bias would be said to exist. The point here is that averaging an infinite set of
independent estimates of the emission factor would remove random error altogether, leaving
only bias error, if any. While it is clearly impossible to obtain an infinite set of estimates

of an emission factor, the example given serves to illustrate the meaning of bias.

3.2 Sampling Approach |

Even if the overall precision of an estimate is acceptable because the
variability in the data is relatively low, the overall accuracy may still be poor if the data are

biased. Several sampling approaches can be applied in order to avoid bias.

Random Sampling—Random sampling produces a sample set obtained in
such a way that each source in the population has an equal probability of being selected. A
random sample is expected to "match” the industry population because no biases are
introduced when selecting the sites. The number of data points required in a random
sample depends on the target precision of the final emissions estimate, the confidence with
which this precision is to be met, and the underlying variability among the annual emissions

of the complete set of sources.

Random sampling is not a guarantee of accurate results. It is possible, for
example, that, by pure chance, random sampling would produce a disproportionately large
number of sources from the Guif Coast and an under-representation of sources from the

West Coast. While such an outcome is unlikely if the sample size is sufficiently large, this



particular problem can be avoided altogether by selecting an acceptable number of sources

from each of a set of regions (see the discussion of stratified random sampling below).

There are two major reasons why truly random sampling was not possible in
the GRI/EPA program. First, a complete list of sources did not and still does not exist. It
was possible, for example, to list all compressor stations whose owners were GRI members.
While this might account for 90% of the compressor stations, the list was not complete.
Another example is the production segment, where it was not possible to produce a list of
all the individual well owners for random selection. The second reason random sampling
was not possible is that the owners of the randomly selected sources would not have been
required to participate in the study. For this reason, there is no guarantee that a truly
random sample of the available list could be tested.

Stratified Random Sampling—In stratified random sampling, the population
of interest is divided into subsets, or strata. Then random samples are drawn from each
sttatum. For example, the sourcés of interest in this program could be stratified by
geographical region, and random sampling could be applied within each region.

Strata are typically chosen so that the variable of interest (emission factor or
activity factor) has a smaller variance within the strata than in the population as a whole. If
this objective is achieved, stratified sampling can usually allow a given precision

requirement to be achieved with a smaller sample size.

Sampling to include the different regions in the country was important. Each
producing region selected for the United States had unique production characteristics.
Failare to account for these regional differences in the extrapolation could have led to

significant bias in the estimate.

Stratified random sampling can be performed proportionately or

disproportionately. In proportionate stratified random sampling, the number of sources



sampled in a stratum is in proportion to the total number of sources in that stratum. For
example, if Region A had twice as many sources as Region B, then the sample would
include twice as many sources from Region A as from Region B. From an intuitive point
of view, a proportionate stratified random sample "matches” the population, at least with

respect to the criteria used to specify the stratification.

Proportionate stratified random sampling can be used to address the issue of
regional differences, but only if applied properly. In the paragraph above, it is suggested
that sources could be sampled in proportion to the total number of sources by region.
Alternatively, proportionality could be achieved on the basis of gas production, rather than
on the basis of the number of sources. The variable or variables used to achieve
proportionality must be closely related to emissions or proportionate random sampling

would serve no purpose.

It is common in practice, however, to sample in such a way that the sample
size for a stratum is not in proportion to the total number of sources in the stratum (and the
throughput of the sampled sources is not proportional to total throughput in the stratum).
This type of sample is called a "disproportionate stratified random sample.” This type of
sample does not "match” the population in the sense described above. As long as the
disproportionality is accounted for in computing the final statistics (e.g., mean emission rate

by source category), disproportionate sampling will not cause a bias in the final resuits.

There are various reasons for disproportionate stratified sampling.
Convenience and opportunity may be factors. On a given field trip, for example, there may
be the opportunity to sample more sources in a given category than are needed to achieve a
proportionate random sample. Given the opportunity, it is better to obtain the available
data than to restrict the sampling just to maintain a proportionate sample. Statistical issues
may also lead to disproportionate sampling. For example, it may be advantageous to obtain

more data points for a stratum within which the emission rate has a larger variance than

10



within another stratum with a small variance; i.e., a more accurate estimate of the total

emission rate may be achieved on the basis of a disproportionate sample.

Neither type of stratified random sampling was feasible in this study. The
obstacles to random sampling, discussed earlier in this section, were also obstacles to

random sampling within strata.

Further, at the outset of the program, it was not known which variables were
related to emissions; thus, it was not known which variables should be used as a basis for
stratification. If stratification had been performed on the basis of all variables that could
possibly influence emissions, the number of strata (determined by the number of variables
and the number of categories for each variable) could have become unreasonably large. For
example, for leakage from underground distribution mains and services, a number of
parameters were identified that potentially influence emissions: pipe material, age,
operating pressure, diameter, soil type, and parameters characterizing the leak detection and
repair practices of the company. The required sample size can become large because of the
total number of strata, especially if proportional stratified random sampling is used. One
company has embarked upon an independent program to quantify leakage from
underground mains and services using a proportional sampling approach. Even within this
single company, hundreds of samples were required to produce a proportionate stratified

random sample for underground pipelines.

Additionally, stratified sampling is of no use unless there are activity factors
that can be used to estimate the emission rate for the population. Complete information for
all variables of potential interest does not exist. For example, the age of a dehydrator may
not be known even by the owner of the equipment in some cases. It would be pointless to
stratify dehydrator emission factors with respect to age if the necessary activity factors

cannot be obtained.

11



Approach Selected For This Program—Thus, because of various practical
limitations, neither random sampling nor stratified random sampling was feasible in this
study. For this reason, an alternate approach was used. While this approach is not a
textbook sampling method, it is believed to be very effective for the specific needs of this
project. The selected approach is similar to disproportionate stratified random sampling,

with certain differences.

Initially, some data were collected to determine if a given source was a major
contributor to the methane emissions. For each source category, an initial estimate of the
number of sources to be sampled was calculated based on an estimate of the target
precision and the estimated standard deviation for the source category. The target
precisions are based on the need ultimately to estimate the annual national emissions to
within 0.5% of the annual national production (111 Bscf) on the basis of 2 90%
confidence limit. The approach for determining the target precisions for the different
source categories is discussed in the next subsection. Sites were selected in a random
fashion from known lists of facilities, such as GRI or A.G.A. member companies. _
However, the companies contacted were not required to participate, and a coinpleté list of
all sources in the United States was generally not available; therefore, the final set of
companies selected for sampling was not truly random. Each company that agreed to
participate in the program was asked to select representative sites for sampling, rather than

one-of-a-kind facilities.

After a limited set of data was collected, the data were screened for bias by
evaluating the relationship between emission rate and parameters that may affect emissions.
The topic of screening for bias is discussed fur&er in Section 3.4, which pertains to the
emission factor approach. If a relationship between emissions and a parameter was found,
then the ﬁopulation, or the number of sources in the industry, was stratified by that
parameter. For example, station type was determined to influence the emission rates from
metering and pressure regulating stations, so the number of stations under each station type

in the nation was determined. To stratify the population of sources by a parameter, data

12



were collected from companies on the distribution of sources in each stratum, and an

average covering all companies sampled was determined.

It is important to realize that just because a parameter or set of strata is
identified that has a large effect on the emissions from a given source category, it does not
mean that there is bias in the data. A second condition is necessary: The sampling
procedure would have to produce disproportionate numbers of samples in the strata. To
determine whether this has occurred, information is needed on the ratio of the total number
of sources in a given stratum to the total number of sources throughout the country. If this
ratio is different from the corresponding ratio for the sample data set, then there may be
bias. But this bias can be eliminated by applying the correct emission factors and activity

factors for the different strata.

Once the strata were identified, the precision of the emission rate extrapolated
to a national basis was evaluated and compared to the target precision for the source
category; the calculation of target precisions for all source categories is discussed in the
next subsection. Where necessary, additional data were collected in various strata to
improve the precision of the national estimate of emissions from the source. The number
of additional data points needed to meet the newly calculated target precision is computed

on the basis of measures of uncertainty {confidence intervals) introduced later in this report.

Tables showing the general data for the sites visited (sampied) in the
production, processing, transmission, and storage segments of the gas industry are presented
in Appendix A of Volume 5 on activity factors.! These tables are not central to the
discussion of statistical methods, but they are mentioned here because they provide an

indication of the magnitude of the sampling effort.
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3.3 Target Precisions

A further issue regarding sampling is the number of sources to sample in each
category. The ultimate objective is to estimate the industry annual emissions within 0.5% of
the annual natural gas production (within 111 Bscf) on the basis of a 90% confidence

interval. The sampling must be adequate to achieve this objective.

It is necessary to sample in a way that will lead to the required accuracy in the
estimate of the industry total emission rate. Given this objective and the finite resources
available for the project, it was not feasible to characterize the emissions from ail source

categories extremely accurately.

A large percentage error can be tolerated in the estimate of the emissions from
categories that have small emissions without jeopardizing the accuracy of the national
emissions. The percentage errors for the categories with the largest emissions would have

the largest contribution to the error in the national annual emissions.

Table 3-1 illustrates these ideas. A hypothetical case has been chosen with
two categories. The two source categories have emissions of 0.1 and 50 Bscf. (The range of
emissions by category in the gas industry is even greater, as shown by the summary table in

Appendix C.}

In Tabie 3-1a, the relative uncentainty of the emissions from each source is
20%. As a result, the relative uncertainty of the emissions for the two categories is 10.0

Bscf, or 20.0% of the emissions.
In Table 3-1b, the uncertainties are unequal percentages of the category

emissions. For the category with smaller emissions, the uncertainty is 100% of the

emissions. For the category with larger emissions, the uncertainty is only 10% of the
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emissions. In this case, the uncertainty of the emissions of the two categories is half the

previous value, despite the 100% uncertainty for the category with the smaller emissions.

TABLE 3-1. HYPOTHETICAL ILLUSTRATION OF ISSUES
RELATIVE TO TARGET ACCURACY

{a) Case with Equal Percentage Uncertainties

: Anpual R T B
Source ~ | . Emissions Tolerance . | . Uncertainties
- Category ' LD (BseD C O Bsef) s (%Y i e
I 0.1 (.02 200
'
2 50 10 . 20.0
Total © 50.1 | 10.0 200

{b) Case with Unequal Percentage Uncertainties

St i Annual NI I T
Sowrce | " Emissiar " Uncertainties
Category | @) o e
1 _ £.1 0.1 100.0
2 50 5 10.0
Total 50.1 5.0 10.0

In this hypothetical illustration, the percentage error for the category with
| larger emissions dominates the percentage error for the sum of the emissions for the two
categories. Similarly, in the actual case with 86 categories, the percentage errors in the
categories with larger emissions will have the greatest effect on the error in the industry

anmual emissions.

Note that, in Table 3.1, the uncertainty of a total is not the sum of the
uncertainties for the corresponding categories. Analysis of error propagation in a sum is

discussed in Section 4.4.

In view of the discussion above, 1t is advantageous to devote more of the
project resources to sources with larger emission values. It is necessary to devote some

resources, however, to all categories.
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The approach taken in this project was to establish a target precision for each
category, such that the required precision for the industry annual emissions is exactly met if
the individual target precisions are met for all categories. The target precision was updated
periodically during the program to indicate categories that require significantly more

sampling to meet their target precisions.

Inberent in this discussion is the fact that the uncertainty of the estimate of the
emissions for a category decreases as the number of data points increases. The relationship
between the uncertainty of an estimated quantity and the number of data points (sample size)

on which the estimate is based is discussed in Section 4.3.

The term "target precision” was used in the context of this section rather than
“target accuracy.” This is because the precision of the estimate of the emission rate for a
category can be quantified on the basis of the variability in the data (again, see Section 4.3).
Bias cannot be quantified. As is discussed elsewhere in the report, however, considerable
efforts have been made to avoid blas An assessment of the attainability of the desired
accuracy for the industry annual emissions in view of both random errors and the possibility

of undetected bias errors is presented in Section 6.2.

 The equation for target precision adopted is as follows:

TP = 100 | -2 7))
VER
where TP = target precision (%),

ER = annual emissions in Bscf, and

a = coefficient determined from the data (see below).
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This function is clearly unbounded as ER approaches zero. Therefore, a
maximum target precision of 1500% was imposed. While this sounds like an enormous
uncertainty, only the smallest categoties that contribute a fraction of a percent of the industry

annual emissions could be affected by this maximum.

The function is bounded below only by zero. To avoid caiculating an
unreasonably small target precision for categories with large emissions, a lower limit of
75% was imposed for each category. In other words, a target precision would not be set
lower than 75% for any one category. However, all calculated target precision values were

greater than 75%, so no values were changed as a result of this constraint.

The equation was iteratively solved for "a" so that the overall goal of +111
Bscf precision for the national estimate was met. The constant "3" in the equation above was
computed to be 6.24. That is, for this value of "a,” if the target precisions were just met for

all categories, the required precision would also be met for the industry annual emissions.

The target precisions were not used as absolute constraints. Suppose, for
example, that on a given field trip there was an opportunity to sample more sources than
were required to bring a given category into compliance with the target precision.
Moreover, given that the basic travel expenses were incurred in any case, the incremental
cost of obtaining the additional measurements was small. In a case such as this, a common-

sense approach was used, and the additional measurements were obtained.

Further, it is not absolutely required that the target precision be met for all
categories for the accuracy requirement to be met for the industry. It is possible for the
industry requirement to be met given that the uncertainties for some categories are less than
the target precisions and the uncertainties for other categories are greater than the target

precisions.
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The summary table in Appendix C includes both the uncertainties of the
emission rates and the target precisions by category.

34 Emission Factor Approach

If it had been possible to use a random or proportionate stratified random
sampling approach to collect data, then the emission factor could have been calculated by
simply summing the emissions data from all sources and dividing by the number of sources
sampled. In this case, the emission factor would be defined as the annual emissions per
source. By the nature of true random or proportionate stratified random sampling, the

resulting average emission factor would have had no inherent bias.

‘As discussed earlier, however, neither conventional random sampling nor
conventional stratified random sampling could be used. Regardless, the emission factor is
generally still defined as the annual emissions per source. In some cases, the variability of
the emissions data from source to source is very large. For source types of this nature, it is
normally possible to reduce variability by redefinition of the emission factor of by
stratification; reducing variability reduces the pumber of data points needed to achieve the-

target precision.

Redefinition of the Emission Factor. For a few types of sources, the
emissions can be more accurately estimated with fewer data points when the emission factor
is defined not as a simple average for the source but in relation to key parameters that
mfluence the emissions from the source. Since the variability is significantly reduced, fewer

data points are required to achieve an acceptable level of accuracy.

For example, the internal combustion engines that drive compressors in the gas
industry vary in size (i.e., horsepower rating). If data were collected on individual engines
in the industry, and an average emission rate per engine was established, the variability from

engine to engine would be very large because of the size differences. However, if the
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emission factor for the engines is defined by horsepower of the engine (i.e., annual emissions
per horsepower), then the variability from engine to engine and therefore the mumber of

samples required to reach an acceptable accuracy are both significantly reduced.

The number of data points required may alsc be reduced by stratifying on the
basis of parameters that affect emissions. An example is quantification of the methane
emissions from underground distribution mains and services. On the basis of the limited
data, the variability in emission measurements for underground distribution lines was
determined to be very large. By defining parameters that influence the emission rate from
distribution lines and stratifying the emission factor and activity factor for this source by
these parameters, the variability of emissions from source to source may be reduced, and
data collection resources can be allocated to the strata that contribute the most to the overall
uncertainty of the estimate. Therefore, source stratification can lead to optimization of the

number of samples required to meet the target precision.

Even if there were no bias, the actual estimate of the emission factor would be
expected to differ from the true value. First, the estimate is based on less than the total
mumber of sources. Random differences between the set of sampled sources and the
population of sources introduce a sampling error. Second, physical measurements have
uncertainties. As is indicated previously, the term "accuracy” refers to the closeness of an
estimate of a quantity to the true value. Accuracy is a measure of random error plus bias
error. The term "precision” refers to random error alone. Even if a process does not
produce a bias in the statistical sense described earlier, it is possible for a given segment of
the population to be seriously under-represented and another segment to be over-represented
by random chance (i.e., by an anomaly in the random selection of sources). The error that
results is a larger-than-expected random error; an error from a correct sampling and

measurement process is not a bias.
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Screening for Bias in the Emission Data Set

An estimate is precise if it has a small random error, regardiess of the bias.
Suppose, for example, that sources had been selected only from the Gulf Coast, but that a
very large number of sources had been sampled. Averaging a large mumber of emission
measurements would lead to an emission factor estimate that had a small random error.
Unless Gulf Coast sources were representative of the source type for the entire nation, the
estimate could have a large bias because the sample of sources was unrepresentative of the
population of sources of interest. The bias in this example, which serves for illustrative
purposeé, was avoided by sampling in a variety of regions of the country; more subtle
potential sources of sampling bias and methods for avoiding them are discussed in this

subsection.

Désign, operational, and regional parameters that may cause differences in
emissions across a source type were identified, and the data were analyzed to determine
whether there was an established relationship between those parameters and the emission
rate. Usually, these parameters were chosen on the basis of industry expertise and/or
engineering judgement. If these parameters were determined to exhibit statistically different
emission characteristics, then the population of sources was stratified into distinct categories
by these design, operational, or regional parameters. Emission factors and activity factors

were determined for each category within the source type to uniquely characterize emissions.

Metering and pressure-regulating stations provide an example where the
process of screening for bias was beneficial. Table 3-2 shows the average measured
emission factor for metering and pressure-regulating stations, in units of scf/station-hour, on
the basis of 86 measurements performed in 19 cities in the United States. Counts of
metering and pressure regulating stations were derived from data provided by distribution
companies and scaled up to a national count (the activity factor) using the methods described
later in Section 3.5. Assuming that the sample selection was random or representative, the

extrapolated annual emissions are 104.1 Bscf, based on the average of all measurements
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TABLE 3-2. ESTIMATED METHANE EMISSIONS FROM DISTRIBUTION
METERING AND PRESSURE REGULAT]NG STATIONS

(vauit or.' Ermsswn Factor ) (numbér"of : messxons

' iChtééory - above—ground}_ """ (scfistanon—hr) . stations) . (Bseh)
All Stations -- 90.2 131,970 104.1
M&R Stations - 154.1 23,922 32.3
Reg. Stations - 43.7 108,048 41.4
Total -- 131,970 73.7
M&R Stations -

> 300 psig A-G 179.8 3,460 ' 5.45
100-300 psig A-G 95.6 13,335 11.2
40-100 psig A-G 4.31 7,127 0.269
<40 psig _ A-G -- 0 0
Reg. Stations

> 300 psig A-G 161.9 3,995 5.67
> 300 psig Vault 1.30 2,346 0.0266
100-300 psig A-G 40.5 12,273 4.35
100-300 psig Vault 0.180 5,514 .0087
40-100 psig A-G 1.04 36,328 0.332
40-100 psig Vault 0.0865 32,215 0.0244
<40 psig Vault 0.133 15,377 0.017%
Total 131,970 27.3
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made to estimate the emission factor. However, if the data set is subdivided, or stratified,
by station type (i.e., metering and pressure-regulating versus pressure-regulating), then the
annual emissions from this source type decrease to 73.7 Bscf. If this source type is further
subdivided by discrete operating pressure ranges and by enclosure status, the emissions
decrease to 27.3 Bscf. As illustrated, the bias, which was caused by testing a
disproportionate number of high-pressure stations, can be minimized by using stratification to

estimate the emission and activity factors.

The screening process served to identify variables that are related 10 emission
characteristics. Then it was possible to determine whether sources were disproportionately
sampled in the different strata of these variables. Such 2 disproportionality need not lead to
a bias in the final estimate of the emissions, if this condition is identified and accounted for
properly. Moreover, the screening process was carried out during the course of the study.

Thus, additional sampling to correct 2 disproportionality, if present, was possible.

Note that the screening process would identify umeprcsehtativcness In the
sample, whetber the problem resulted from an inadvertent bias in the sampling process or a
purely random effect. The protection against both bias and anomalies in the random

selection of sources is considered to be a significant benefit of the method used in this study.

35 Activity Factor Approach

Activity factors are an essential element in the estimation of emission rate by
source category. There are many issues pertaining to the estimation of activity factors,
however, that are primarily engineering, rather than statistical, in nature. For this reason,
and since the subject of this report pertains o the statistical methods used in this study, only
a very brief overview of activity factor estimation will be given here. A detailed discussion
of activity factors is presented in Volume 5 on activity factors.! A much briefer summary of

activity factor issues is given in Section 5.3 of Volume 3 on general methodology.’
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In general, the activity factor is the total population of the source when the
emission factor is defined as the annual emissions per source. Exceptions to this general
definition of an activity factor would include only sources which have an emission factor that
can be more accurately represented by one or more parameters that influence emissions {e.g.,
the emission factor for IC engines is in terms of annual emissions per horsepower). For

these exceptions, the activity factor would apply to the parameter that influences emissions.

In some cases, existing programs track the total nationwide population of a
source type, such as gas wells, miles of transmission and distribution pipelines, and total
national producticn within the natural gas industry. However, in many cases, the total
population of a source type within the gas industry is unknown. Some of the activity factors
that are not tracked nationally were generated by this project.

For sources that have an unknown population, a limited number of site visits
were conducted to determine the number of sources at each site and to scale up the site data
to represent the total population. These site visits to collect activity factor data were
typically conducted in conjunction with the data collection efforts for the emission factor.
The site count data were scaled by using population data that were known and were related
to the source. For example, no data were available on the nationwide population of |
production éeparators. The ratio was computed by dividing (1) the number of production
separators at a site, gathered as part of the site visits, by (2) the number of wells at each site.
Then the average ratio of separators to wells from all site visit data was used to extrapolate
nationally by multiplying by the national well count. However, when scaling the site visit
data to represent the entire population, a check for bias was made (refer to the screening-for-

bias section below).

For some sources that are not tracked nationally, individual company data or
regional surveys (surveys by state agencies or trade organizations) were sometimes available.
Metering and pressure-regulating stations, glycol dehydrators, and compressor engines and

gas turbines are tracked on a company-wide basis or through regional surveys. For regional
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or company-tracked activity factors, sufficient company and regional data had to be gathered
to comprise a representative sample to extrapolate to a national population. In most cases,
entire companies or regions could be represented by the data collected from one sample;
therefore, few samples were required, in general, to represent the national population

accurately.

The extrapolation of equipment activity factors from individual site data within
a stratum was usually handled by selecting an "extrapolation activity factor™ that was known
for the site as well as regionally or nationally. Examples of extrapolation activity factors are
the total production, the number of wells for production, the number of plants for
processing, and the number of compressor stations for transmission. Ratios were computed
by dividing (1) populations of other equipment, such as the count of separators at the site, by
(2) the relevant extrapolation activity factors, allowing the resulting ratios to be easily

extrapolated to a regional or national total for separators.

Where individual site data were used to determine a national activity factor,
the ratio method was used to compute the activity factors. The general statistical ratio
method is discussed by Cochran.’

To illustrate the ratio method, consider the example of estimating the number
of separators in a region by using well count as the extrapolation parameter. This calculation
can be accomplished by (1) summing the numbers of separators at the sites visited,

{2) summing the numbers of wells at these sites, (3) dividing the total number of separators
by the total number of welis, and (4) multiplying this ratio by the number of wells in the

region. Extrapolation by production rather than wells can be performed in a similar manner.

The following hypothetical numerical example illustrates the calculation of the

number of separators in a region.
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TABLE 3-3. HYPOTHETICAL EXAMPLE DATA OF COMPILATION OF SITES
_IN REGION X

. Site Count of ite Count of Gas +~  Site Ratio
' Separators c o oWells 0 ¢ (separators/well)
1 140 138 1.01
2 324 321 1.01
3 100 100 1.00
4 5 15 0.33
5 500 1000 0.50
TOTAL 1069 1574

In this hypothetical example, the total number of separators at the sites visited
is 1,069, and the total number of gas wells is 1,574. Thus, the number of separators per
well, estimated from the data, is 1,069/1,574 = 0.68. Now, suppose there are 50,000 gas
wells in the region. Then the estimate of the number of separators in the region is 0.68 X
50,000 = 34,000.

In the ratio method, just described, a site with a large number of wells {e.g.,
site 5 in the table above) will have a larger effect on the results than will a site with a small
number of wells. This method is based on the assumption that the size of the field |
represented by a sampled site is proportional to the number of wells at the site. The ratio

method 1s described in much further detail in Section A.5 of Appendix A.

An alternate method was also considered. In this method, the site ratios are
averaged, so the data from all sites count equally. If the ratios of separators to wells in the
hypothetical example above are averaged, a value (.77 of separators per well is obtained,
compared to 0.68 separators per well produced by the ratio method. The main difference is
that the ratio method places a much greater weight on site 5, which has a large number of

wells and a relatively small ratio of separators per well.
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The argument for the alternate method is that there is some uncertainty
regarding the size of the field of which a given sampled site is representative. Changes in
ownership and leasing agreements can affect how an original field can be subsequently
subdivided. Thus, according to this argument, 2 site with a well count of 15 might be
representative of a fietd of 10,000 wells, while a site with 200 wells might constitute an

entire field.

After discussions with the industry advisors, it was decided that the number of
wells at a site does provide a measure of the representativeness of a site. For this reason,

the ratio method, described above, was employed.

Methods for computing a confidence interval for the number of devices
estimated by the ratio method are given by Cochran.® The ratio method, including methods

for calculation of a confidence interval, are discussed in further detail in Appendix A.

In addition, some equipment activity factors sources could be scaled up by
several possible "extrapolation activity factors,” called AF .. If 2 known
physical/technical relationship existed between the source population and one AF,.,,, then
that factor was selected. However, where the relationship between the source population and
the other parameters was not obvious from a technical perspective, many approaches having
technical merit were used, and either the average of the methods was used or the resulting
data from individual companies were statistically analyzed to determine the appropriate

extrapolation approach. Further discussion is given in the Tier 3 methods report.’

In the production segment, the two AF,, ., values are well count and
production rate. As is discussed in Section 5.3 of the methods report?, a tendency was
observed for results from the well method to be high-biased and results from the production
rate method to be low-biased. Nevertheless, averaging the two values to obtain the final
estimate of the activity factor tended to allow the biases with opposite signs to

counterbalance.
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For example, it was not clear from a technical perspective whether to scale up
the number of metering and pressure-regulating stations by miles of main pipeline or system
throughput, which were the only known population statistics. The station counts from
individual companies were examined both on a per-mile-main and per-system-throughput
basis. A linear regression analysis showed that the data would preferentially be extrapolated
using a per-mile-main basis, with lower variability in the resulting national extrapolation. In
production, the number of separators appears to be technically related to both well count and
throughput. Therefore, separator count was extrapolated by both methods, and the average

of the two national estimates was used.

36 Summary Comments Regarding Screening for Bias

It is impossible to prove technically that a given dataset has no bias. Tests can
be designed that are capable of revealing some bias, but there are no tests nor group of tests
that would reveal all possible biases. Assuming that a given dataset has no bias, even after
extensive testing, is only a theory. The following examples in this section show some of the

many bias tests used in this project.

The sample sets were tested for bias by continuous technical and industry
review. Numerous individual reviews and project advisors’ meetings were used to review
the project data with knowledgeable industry experts, so that systematic errors could be
discovered and eliminated. When possible biases in the activity factor sampling pian or
extrapolation method were theorized, the project was altered to test for that bias and

eliminate it if it existed. All provable biases were corrected. -

One example of the success of this bias review process includes the
identification of regional differences in production practices. These differences were brought
up by the advisors’ meeting review process. The differences were then accounted for by
stratifying the production data into two offshore and four onshore regions, sampling within

each region, and extrapolating by region.
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Some emission factor biases are eliminated by stratifying by an emission-
affecting parameter. Specific examples are discussed earlier in Section 3.4. Some specific

examples of eliminating activity factor bias are listed in Section 3.5.
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4.0 ESTIMATION OF NATIONAL ANNUAL EMISSIONS AND
UNCERTAINTY

Sampling to obtain the data necessary to estimate the activity factors and
emission factors for each source category is discussed in the preceding section. Subsequent
calculations leading to the estimation of the industry national emission rate and the

uncertainty of this etnission rate are discussed in this section.

These calculations involve several steps. First, the available data must be used
to estimate the activity faciors and emission factors for individual categories. Most of these
estimations are made by averaging a set of values (measurements of emission rates, counts of
emitters, etc.) to obtain the necessary activity or emission factor. It is necessary to avoid
corrupting any such calculation by the presence of an invalid data point. Issues pertaining to
outliers are discussed in Section 4.1. The calculation of the average value and uncertainty
thereof to obtain a given activity or emission factor is discussed in Section 4.2. The use of
these values to obtain an estimate of the annual emissions and uncertainty thereof for each
source category is discussed. in Section 4.3. Finally, the use of the annual emissions by
category to obtain the national annual industry emissions is discussed in Section 4.4. The
calculation of the uncertainty of this industry total is also discussed in Section 4.4. Further

1ssues pertaining to error propagation are discussed in Section 4.3,
4.1 QOutlier Tests

Radian did not reject any data points as outliers. However, outlier tests were

performed in the distribution area. This section discusses those tests.
In the following section, the use of data to estimate the emission factor or

activity factor for a source category is discussed. Suppose, for example, there are n

measurements, y;, i=1 to n, which are 10 be averaged to obtain the emission factor for a
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particular category. It is necessary to confirm that this data set does pot contain an

erroneous value that 1s so extreme that it invalidates the calculations.

It is possible to perform statistical tests to determine whether there is strong
reason to believe that a suspected outlier could not reasonably belong to the same distribution
as the other points. Even if the point was judged' to be an outlier from a strictly statistical
point of view, it would be very desirable to examine the point from an engineering

perspective to ensure that this point did not, in fact, contain valid information.

Further, in this study, there are 86 source. categories. Suppose it was decided
to routinely perform outlier tests for 86 sets of emission factor measurements, for example.
Suppose that the confidence level of the test was 99%, i.e., that there was a 1% chance of
erroneously concluding there was an outlier. This erroneous conclusion would occur if a
valid point was rejected, even though it resulted from the same statistical distribution as the
other points. Valid points that appear to be significantly larger or smaller than the other
points can occur by chance aloné. As is discussed above, it is desirable to avoid rejecting

such points if they are valid and contain important information.

It may appear that the 99% confidence level is sﬁfﬁcicntly conservative; i.e.,
this confidence level appears to provide a small probability of discarding points erroneously.
Consider, howe\}er, the effect of performing 86 independent tests in the case in which there
were no invalid data points in any category. The probability of correctly concluding that
there were no outliers in a single test would be 0.99. The probability of corre'ctly concluding
that there were no outliers in all of n independent tests would be 0.99. The probability of
erroneously concluding that there was an outlier in at least one of the n tests, then, would be
1 - 0.99". In 86 independent tests, the probability of erroneously concluding that there was
at least one outlier would be 0.58; this is a high probability of error. Ever if only half this
number of tests were performed, the probability of erronecusly concluding that there was an
outlier in at least one of the categories would be .35, which is still high. These calculations

illustrate the reason for caution regarding the blind use of outlier tests for all categories.
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The 99% confidence level was selected for illustration in this example because
it is conservative. If the 90 or 95% level were used, the probability of erronecusly

concluding that there was at least one outlier in the 86 categories would be much higher.

Moreover, the "outliers” may be the most important points in the data set. It
would be unfortunate if valid data points corresponding to high emitters were rejected from
the data base, since this could lead to a low bias in the final estimate of the industry annual

emissions.

Figure 4-1a presents the histogram of the emission-rate measurements for large
plastic mains. Notice that one data point is noticeably larger than the others. There has
been some discussion about this data point regarding its validity and whether it should be
excluded from the data set. Figure 4-1b presents the histogram of the natural logarithms of

the emission rate measurements.

This data set illustrates several limitations regarding the performance of outlier
tests for many of the categories. First, the data set is small, containing only six points. Any

statistical test involving only six points is likely not to be very sensitive.

Second, most outlier tests depend on the type of statistical distribution. That
is, one must assume a specific type of distribution in order to perform most tests. Figure 4-2
presents a conceptual comparison of the normal and the lognormal distributions. The normal
distribution is symmetric; i.e., the likelihood that a value will occur at a given distance above
the mean is the same as the likelthood that a value will occur at the same distance below the
mean. The lognormal distribution is asymmetric. There is a predominance of points roughly
in the vicinity of the mean, with a small number of much larger points. The distribution is
bounded below by zero. While a few points may be much larger than most, there is not a

corresponding chance for points much smaller than most.
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Figure 4-1. Frequency Histograms for the Emission Rate Data for Plastic Pipes
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Emission Measurements

a) Normal Distribution

Emission Measurements

b) Lognormal Distribution

NOTE: The ordinate of these curves is a mathematical quantity called
"probability density.” The probability density can be used to obtain the
probability that the variable falls within any given limits.

Figure 4-2. Conceptual Comparison of Normal and Lognormal Distributions
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A statistical test indicated that the six emission rates for large plastic mains
could pot reasonably have been drawn from a normal distribution but could reasonably have
been drawn from a lognormal distribution. One could debate the outcome of this test,
however, since 1} the suspected outlier was included in the test, and 2) this large value
would favor the lognormal over the normal distribution. With a larger sample size, the
largest value would have a smaller weight in the statistical test. In any case, it is difficult to

determine the type of distribution with high confidence with only six data points.

Tests were performed, however, for underground pipes with different types of
materials. These tests were based on 24 to 40 data points and, therefore, provided a better
opportunity to determine the type of statistical distribution. In these cases, the tests indicated
that the data could not reasonably have come from a normal distribution but could reasonably
have come from a lognormal distribution. Given the similar source type (underground
pipes), these results support the conclusion above, to use the lognommal distribution in the

outlier tests for the data for large plastic mains.

Several statistical tests were performed to determine whether the largest point
in the data set should be considered an outlier from a statistical point of view. These include
~ the Grubbs test,’ the Dixon test,* the fourth-spread test,’ and a conservative approach.® The
Grubbs and Dixon tests require that the data be normally distributed. Given the outcome of
the distributional tests discussed above, these tests were performed using the natural
logarithms of the emission rate data; if the data are lognormally distributed, then the natural
logarithms are normally distributed. The conservative approach does not require an a priori
assumption regarding the distribution but incorporates a distributional test as a first step.

Thus, the conservative approach was ultimately based on the lognormal distribution also.

The fourth-spread method relies on information from the center half of the
distribution, from which Ilimits beyond which data could be considered outliers are derived.
The point here is that the center half of the distribution is relatively insensitive to outliers

and, therefore, provides an effective basis for determining upper and lower limits beyond
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which data might be considered suspect. The fourth-spread method does not require an
explicit assumption regarding the type of distribution. Since this method works best if the

distribution is symmetric, the natural logarithms were again used.

None of the tests indicated that the largest point was an outlier. Further,
Pacific Gas and Electric Company’s {PG&E) statistician, who worked on the UAF study,’
agrees that there is no technical or statistical justification for omitting the largest data point in
this data set. Thus, the point has been retained in the data set. The details of the statistical

tests are presented in Appendix B.

4.2 Emission Factor and Activity Factor Calculations

The following basic statistical calculations were performed for emission
factors. A different and more complex approach, described briefly in Section 3.5 and in
more detail in Appendix A, was used for activity factors. Suppose there are n individual
estimates of a given emission factor. If y,, i=1 to n, are the individual data points, then the

factor is estimated as the average, y, of the n values:

o @

The next step is to compute the uncertainty of this valkue. First, the standard

deviation of, s,, the y values is needed:

%(yi - ?)2 (4)

n
—

We then calculate a 90% confidence interval for the mean value, y. The
confidence interval establishes lower and upper tolerances for the estimate. There is only a
5% chance that the true value falls below the lower limit of this confidence interval. There
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is also a 5% chance that the true value falls above the upper limit of the interval. Thus,
there is a combined 10% chance that the true value falls outside the confidence interval.
Since there is a 90% probability that the true value falls within the interval, it is called a

90% confidence interval. The 90% confidence interval is computed as follows:

¥+ ts,/yn )

The t value in this equation is obtained from a standard table for the t-
distribution; such tables are found in most basic statistics books. The t-value is a function of

the confidence Jevel (90% in this case) and the sample size, n.

The confidence iﬁtcrval computed above is strictly valid for normal
populations. Even if the distribution of y values on which ¥ is based is not normal; the
average of a large enough sample of values of y; would be approximately normally
distributed; the theorem on which this is based is called the central limit theorem. If the
mean value is approximately normally distributed, then the above method for computing a

confidence interval is justified.

While a sample of size n produces a single mean value, it is prdper to discuss
the distribution of this mean value. The mean value, being based on a sample of values with
random errors, is itself a random variable. The error of this mean may have a distribution

that is approximately normal.

The methodology described above produced uncertainties larger than 100% for
some parameters. This seems anomalous, since neither an activity factor nor an emission
factor can be negative. The explanation for this effect and the reasons why the methods used
are believed to be correct for estimating the uncertainty of the industry annual emissions are

presented in Section 4.5, after further discussion of the issues.

The method described above for calculating uncertainty is strictly applicable

for an infinite population. In fact, the number of sources in a given category is finite. The
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equation for the standard deviation of a finite population produces a smaller value than does
the equation above for an infinite population. Thus, the method used produced a somewhat

conservative (large) estimate of the uncertainties involved.

Both sampling and measurement errors contribute to the error in the estimate
of the emission factor. The sampling error penains to a finite set of sources. The
Ineasurement error pertains to an infinite population. (There is no limit on the number of
replicate measurements that could be made for a given source.) The source-to-source
variability is generally larger than the measurement variability, however. Thus, the
statement above stands; the equation used for the standard deviation produced a somewhat

conservative estimate of the uncertainties of the parameters involved.

4.3 Category Annual Emission Calculations

For most source categories, the emission value (ER) is expressed as the

product of the activity factor (AF) and the emission factor (EF):
ER = AF x EF | 6

For certain source categoties in the distribution segment, the emissions were
estimated directiy, and no separate activity and emission factors are shown in the data
summary table (Appendix C). In each of these cases, several subcategories were combined
to form a category. The emissions for these subcategories were summed to obtain the

emissions for the category shown in the summary table,

It is necessary to obtain the uncertainty of the emission value as a function of
the uncertainty of the activity and emission factors. The error propagation methods used
here are based on theorems given by Mood, Graybill, and Boes® and quality-control practices
described by Juran, et al.’ The details of the error propagation methods are discussed further
in Appendix A. |
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The tolerance (i.e., uncertainty) for ER as a function of the tolerance for AF

and EF 1s as follows:
Tol(ER) = [AF? X Tol(EF)? + EF? X Tol(AF)* + Tol(AF)? x TolEE}}'2(7)

where Tol() is the tolerance of the indicated quantity. The tolerance is the half-width of the
90% confidence interval. That is, if the confidence interval is given by

7 s ®

then the tolerance is

ol @) = ts, /7 | ©)

Recall that confidence intervals are discussed in the preceding subsection.

4.4 Industry Annual Emission Calculations

In this subsection, three topics are covered. First, the equation for calculating
the industry annual emissions is presented. Second, methods for computing the uncertainty
of the industry total are discussed. Third, the effect of correlated errors for different source

categories is discussed.

Industry Annual Emissions

The next step is to compute the industry annual emissions, ERy, and its
uncertainty. The industry annual emissions are simply the sum of the emissions for the

different categories:

ER; = LER (10)
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Methods for Computing the Uncertainty of the Industry Total

The tolerance of ER; is required as a function of the tolerances of the
mdividual ER values. First, the calculation is considered on the basis of the assumption that
the errors in the different ER values are independent. The errors in two quantities would be
considered independent if they were estimated by entirely separate processes and there was
no common source of error. The errors in two quantities would be dependent if they had a
common source of error. The issues related to correlated errors are discussed later in this

subsection.

The tolerance of ER; is the square root of the sum of squares of the tolerances
of the ER values:

Tol(ER,) = [E{TolER)}*]"* 1y
Method 1

This is the method for calculating the tolerance of a sum that is recommended
by Juran, et al., in the Quality Comtrol Handbook.® On the basis of the discussion by Juran
and more rigorous statistical information presented by Mood, Graybill, and Boes,? the use of
this method does not require the assumption that the separate terms in the sum have the same
means, the same uncertainties, or even the same types of statistical distributions; again, see
Appendix A for further details. Method 1 was used in this study.

An alternative to the method above is to express the tolerance of a sum as the

sum of the tolerances:

Tol(ER;) = LTol{ER) (12)
Method 2

However, this is overly conservative (overestimates the uncertainty), and was therefore not

used. An analysis of this alternate method appears in Appendix A.
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It can be shown that the tolerance of the industry total would equal the sum of
the category tolerances if the errors for all categories were perfectly correlated. While there
may be some cross-category correlations, there are many pairs of categories whose errors
could not reasonably be correlated at all. For example, it is reasonable to assume that the
errors in the transmission/storage categories are uncorrelated with the errors in the
distribution categories. No pair of categories has perfectly correlated errors. The issues

pertaining to the possibility of correlated errors among categories is addressed below.
Effect of Correlated Errors

It is mentioned above that it is not believed that the emissions for all pairs of
categories are strictly independent. An analysis has been performed to assess the possible
impact of correlated errors. The results of the analysis are outlined in Section 5.1 and show
that the target precision was still met with correlated errors. This section outlines technical

issues associated with errors.

First, certain categories have common activity factors. For such categories,
the activity factors have the same errors, although the emission factors have independent or

imperfectly correlated errors.

For any of a variety of other reasons, there may be correlations between the
errors in the emissions for different categories. Data for different categories were collected
from the same fields in some instances. It is possible, because of some characteristic of the
field, that nonindependent data resulted for two or more categories. For example, the
inspection and maintenance practices used for a particular field may have been significantly
better than the industry average. Consequently, emissions may have been significantly lower
than the industry average for all source categories for which data were collected from that
field. Deviation from the industry average is a sampling error in this context, since the

objective is to estimate the industry average for each category.
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Nevertheless, there is typically a large source-to-source variability within a
given field. For this reason, one could not say that all sources tested at a given field had a
common error or even similar errors. This source-to-source variability tends to limit the
correlation introduced by characteristics of a field that have a common effect on two or more
categories sampled at the field. Thus, it is not believed that the correlation between errors in

two categories could reasonably be very high, but the exact correlations are not known.

It is not believed that all possible source categories could reascnably have
correlated errors. Categories in different segments {production, transmission/storage, and
distribution segments) were assumed in most cases to have uncorrelated errors. Additionally,

not all categories within a segment could reasonably have correlated errors.

The uncertainty of the industry annual emissions would be smaller if (1) the
errors in the emissions for all source categories were independent than if (2) some positive
correlations existed among these errors. In the first case, the maximum possibility for errors
to "average out” when the emissions for 86 source categories were summed would exist. In

the second case, the nonindependence of certain pairs of errors would diminish this effect.

It is stated earlier that, by the preferred method of calculation, the uncertainty
of the national emissions is the square root of the sum of squares of the uncertainties of the

emissions for all categories:

Tol(ER;) = [E{TolER)}*]'* 13}
If the errors are not independent, the uncertainty of the national annual
emissions is increased by the addition of a term to account for each pair of categories with

correlated errors:

Tol(ER;) = [E{Tol(ER)}* + other terms}'? - (14)
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If categories i and j have emissions with correlated errors, then the term that is

added to account for this correlation is:

2r;;TOKER,)Tol(ER)) (15)
where

I = correlation between the two errors,

Tol(ER) = uncertainty of the emissions for category i, and

Tol(ER)) = uncertainty of the emissions for category j.

The correlation coefficient is a measure of the closeness of the linear
relationship between two random variables (here, the errors in two emission values). If there
was no association at all between the two variables, the correlation coefficient would be zero,
and the added term would also be zero. If the two variables were perfectly linearly related,
the correlation would be one. If the relationship between the variables were such that half
the variance of one could be explained, or predicted, in terms of the other, the correlation
would be approximately 0.7. Plots illustrating correlation levels considered in this analysis

are presented in Section 6.1.

Negative correlations exist if one variable tends to increase as the other
decreases. There is no apparent reason in this application why emissions from two
categories would have negatively correlated errors, however. The reasons discussed earlier
for correlated errors pertain to positive correlations. Suppose, for example, that the same
activity factor was used for two source categories. If this activity factor had a positive error,
the effect would be to make the emissions for both categories too large. If the activity factor
had a negative error, the effect t.vould be to make the emissions from both categories too

smali.
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One further comment will be made regarding the interpretation of the term
used to account for the correlation between the i and j® errors. This comment can be
skipped, but 1t is included here for completeness and to clarify an issue regarding the analysis
discussed above. Readers familiar with analysis of error propagation may have expected to

see the covarlance between the errors in place of the following term:

r,;Tol(ER)Tol(ER,) - (16)

The covariance, like the correlation coefficient, is a measure of the strength of the linear
association between two variables. The term used is analogous to the covariance, except that
uncertainties (half-widths of 90% confidence intervals) appear above in place of standard
deviations. That is, if the tolerances of ER, and ER; were replaced by the standard deviations
of the errors in these quantities, the expression would become the covariance. The use of
uncertainties (in place of standard deviations of errors) in the analysis of error propagation
throughout accounts for certain effects of the finite sample sizes used to estimate the different
parameters and 1s conservative, i.¢., tends to produce larger estimates of uncentainty than
alternative approaches. The mathematical reasons for this are discussed in some detail in

Appendix A.

The groups of source categories with correlated activity factors are given in
Appendix C, as are the groups of source categories with correlated emission factors. The
correlation coefficients are also presented. In terms of these guantities, the expression used

to account for correlated errors is as follows:

2r Tol(ER)Tol(ER)) =

2{AF AF r,, To(EF ) Tol(EF ) +EF EF 7, Tol AF ) Tol(AF )+

F A

rg; TOKEF )ToKEF )r,, TolAFYTol(AF)} an

i

where
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Tg; = correlation between the errors in the emission factors for the i*

and j® categories, and

Tai = correlation between the errors in the activity factors for the

sarne two categories.

The quantities AF and EF are used earlier, and the subscripts were
required here to indicate the two separate source categories involved. The covariance term
on which the expression on the right of the equals sign above is based can be derived

rigorously from relationships given by Mood, Graybill, and Boes®.

4.5 Issues Related to Statistical Distributions

In this subsection, certain issues that affect the calculation of error bounds are
covered. In Section 4.2, it is mentioned that the methodology used produces an uncertainty
larger than 100% for the activity factors or emission factors for some source categories. The
reasons why this occurred and the justification of the methods used as a basis for estimating

the uncertainty of the industry annual emissions are discussed in this subsection.

One possible reason for the uncertainties greater than 100% is as follows. The
population of y, i/alues on which the mean value of the activity or emission factor for a given
category was based may not have been normal in these cases, and the sample size may not
have been sufficient to produce an estimated value whose error was approximately normally
distributed. The activity factors and emission factors calculated produced emission values
with uncertainties greater than 100% for several categories. Even if the data were pormally
distributed, but highly variable, an uncertainty of greater than 100% could have resulted
from the small sample sizes that exist for some source categories. However, the sum of the
emissions whose individual uncertainties were over 100% totaled less than half (about 40%)

of the indusiry annual emissions (see the summary table in Appendix C).



The sample sizes for some of these categories were small. This is because it
was not consistent with the overall goal of the program to spend large amounts of money
refining the emissions of a source category that contributed a very small amount to the
industry annual emissions. It was advantageous to devote more resources to categories that
contributed a greater amount to the industry emissions; these issues are discussed earlier with

regard to target precisions by category.

It is generally true, however, that a sum is more nearly normally distributed
than are the individual terms in the sum. This statement is loosely based on the central limit
theorem, mentioned earlier, which strictly applies to sums of identically distributed random
variables. Thus, the sum of the emission rates with uncertainties greater than 100% will
tend to be more nearly normally distributed than are the individual terms in that sum. The
sum of the emission rates for all 86 source categories will tend to be more nearly normally
distributed still. Moreover, the sample sizes for the source categories with larger emissions
tended to be larger, and, thus, parameter estimates for these categories tended to be more

nearly normally distributed for this reason.

In Section 4.2, it is indicated that, although a sample of size n produces a
single mean value, it is proper to speak of the distribution of this mean. This is because the
mean is based on data that have random errors, and so the mean is affected by random
variability. Thus, the mean may be approximately normally distributed or may have some
other distribution. Similarly, a single value serves as the estimate of the national methane
emissions. By analogous reasoning, however, it is proper to talk about the statistical
distribution of this value, since it is affected by random variability in the estimates of the

activity factors, emission factors, and annual emissions for the categories.

Thus, even though the methodology described above may not produce a valid
confidence interval for all activity and emission factors for the smaller source categories,
these observations do not invalidate the methodology for the purpose of estimating the

uncertainty of the industry annual eniissions, which is the objective of this study. There are
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reasons for believing the industry annual emission value has an error that is approximately
normally distributed. Rigorously proving that this is the case is not possible without
knowing the distributions of the errors for the individual categories, and definitively
establishing these distributions is not possible on the basis of the small sample sizes for some

categories.



5.0 SUMMARY OF STATISTICAL ASSUMPTIONS

In the preceding sections, statistical issues and methods used to address
sampling requirements for different types of sources, sampling requirements specific to the
estimation of activity factors and to the estimation of emission factors, the analysis of error
propagation, etc. are discussed. In this section, the major statistical assumptions discussed in

the preceding sections are summarized.

Two major statistical assumptions are discussed that affect the calculation of
the uncertainty of the industry emission rate for the baseline case. One assumption is that
the error in the industry emission rate is normally distributed. Another assumption is that the
errors in parameter estimates for different source categories are independent {or that the

effects of any correlations present are negligibie).

Calculation of the uncertainty of the industry emission rate based on these
assumptions can be performed in a clearly defined manner. This is not the case if the
assumptions are not satisfied. If the distribution is not normal, then the distribution is not
known. (However, the lognormal distribution provides a very conservative possibility, and a
result midway between the resuits produced by the normal and lognormal assumptions |
provides a more reasonable conservative outcome.) If the intercategory correlations are not
zero, accurate estimates of the correlations do not exist, but approximate correlations can be

assigned to specific cases on the basis of engineering judgement.

As is discussed in Section 6, calculations for conditions contrary to the
baseline assumptions have been performed. These alternate calculations provide (1) an
assessment of the sensitivity of the results to deviations from the baseline assumptions and

(2) conservative (larger) estimates of the uncertainty of the industry annual emissions.

Assumptions regarding normality are discussed in Section 5.1. Assumptions

regarding independence of errors among categories are discussed in Section 5.2.
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5.1 Normality of Errors

In Section 4, the analysis of error propagation is discussed. The estimation of
an activity or emission factor for a source category in most cases involved averaging a set of
emission measurements from individual sources, counts of emitters from different sources of
mnformation, etc. In some instances, the uncertainty was assigned on the basis of engineering

judgement.

Confidence intervals were computed for both activity factors and emission
factors on the basis of the assumption that the data averaged were normally distributed.
Even if the data are not normally distributed, their mean will tend to normality as the sample
size increases (by the central limit theorem). Thus, for a sufficiently large sample size,
methods based on the normal distribution can be used, even if the individual data averaged
are pot normally distributed.

In some cases, uncertainties for specific activity or emission factors have
greater than 100% uncertainties, based on the 90% confidence intervals. This seems
anornalous, since neither the activity factor nor the emission factor can be negative. One
possible reason why this occurred is believed to be becailse the data on which these estimates
were based were not pormally distributed, and the sample sizes were not sufficient to
produce estimated values that were approximately normally distributed. In some instances,
the emissions computed from the activity and emission factors for an individual source

category had greater than 100% uncertainty.

However, a non-normal distribution of the data is not the only possible reason
why uncertainties greater than 100% could have occurred. Wide confidence intervals can
occur because of small sample sizes together with a high degree of variability, even if the
data are approximately normally distributed; further, there are small samples sizes in some
source categories. Thus, these considerations contributed to the large uncertainties for some

parameters, including the uncertainties greater than 100% in some cases.
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Another consideration is that the normal distribution is unbounded below,
while activity factors, emission factors, and annual emissions cannot be less than zero.
Thus, while the distribution of the estimate of one of these guantities may be approximately
normal, it cannot be exactly normal. For some sufficiently high confidence level, the
confidence interval will extend below zero. Suppose, for example, that an estimate based on
a sample of size 10 is 10,000, and the 80% confidence interval is (3,000, 17,000). The 90%
confidence interval then would be (755, 19,2435), which is still above zero. However, the
95% confidence interval, (-1,367, 21,367) extends below zero. The units of the numbers in
the illustration presented here have been omitted, since the principle applies to the estimmation
of activity factors, emission factors, annual emissions for a category, and the national annual

emissions.

The final resuli of this study, however, is the annual emissions for the entire
natural gas industry. The industry annual emissions are the sum of the emissions for 86
individual source categories. First, the categories with individual emissions greater than
100% produce approximately 40% of the industry’s emissions (see the summary table in
Appendix C). The distribution of a sum tends to be ' more nearly normally distributed than
are the terms in the sum. Thus, the sum of the emissions for the source categories with
" uncertainties larger than 100% is more nearly normally distributed as a reésult of the
summation. Further, the relative error in this sum is reduced by an "error averaging effect.”
The sum of the emissions for all 86 source categories is more nearly normally distributed
still. As a result of these and other considerations discussed in Section 4, it is believed that
the methods used are reasonable for characterizing the uncertainty of the estimate of the

industry annual emissions.

5.2 Independence of Errors Among Categories

Given the uncertainties of the emissions for individual source categories, it is
necessary to compute the uncertainty of the industry annual emissions. The industry annual

emissions (ER,) are the sum of the emissions (ER) for the categories:
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ER; = LER ‘ (18)

Thus, the uncertainty of the industry annual emissions requires analysis of the
error propagation in a sum. As is discussed in Section 4, the uncertainty of a sum is the
square root of the sum of the uncertainties of the terms in the sum, if the terms are

independent.

The uncertainty of the sum was computed on the basis of the assumption that
the errors for the different source categories are independent. An analysis was also
performed to assess the impact of correlations for source categories that could reasonably
have non-independent errors. A.dditionally, the possibility that the error in the industry
anmyal emissions is not normally distributed was addressed. The resuits of this analysis are

discussed in Section 6.
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6.0 RESULTS PERTAINING TO THE ATTAINMENT OF THE TARGET
ACCURACY

Section 6.1 presents an assessment of the uncertainty in the industry annual
emissions under various assumptions. Section 6.2 presents hypothetical calculations designed
to illustrate how the target accuracy can be satisfied in the presence of large random and bias

CITOrS.

6.1 Uncertainty in National Annual Emissions Under Varions Assumptions

In the preceding sections, issues pertaining to the distribution of the errors and
to independence or nonindependence of the errors in the emissions for different categories
are discussed. An assessment has been performed of the sensitivity of the uncertainty in the
estimate of the national annual emissions under different assumptions regarding these issues.
It is shown that the target precision, 0.5% of national production, is achieved under any
reasonable set of assumptions. While the primary purpose of this report is to present the
statistical methods, rather than results as such, these results are relevant to the statistical

methods and are presented here.

Calculations Under Baseline Assumptions

For the remainder of this subsection, "uncertainty” refers to the uncertainty of
the national annual emissions unless otherwise indicated. In the baseline case, the
uncertainty was calculated on the assumption that the error in the national annual emission
value was normally distributed, and errors in the emissions for different categories were

independent.
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Calculations Under Alternate Assumptions

Additionally, the uncertainty was computed assuming that the error in the
industry annual emission value was lognormally distributed. In this case, the standard error
(i.e., standard deviation of the error} in the industry annual emissions was held constant, but
the confidence interval was recalculated on the basis of a lognormal assumptiop. This is
illustrated conceptually in Figure 6-1. Under the normal assumption, the confidence interval
is symmetric about the estimated value. Under the lognormal assumption, the confidence

interval 1s asymmetric. The lower limit is nearer the estimate than is the upper limit.

Under the normal assumption, the uncertainty could be expressed as either (1)
the estimate minus the lower confidence limit or (2) the upper limit minus the estimate; the
result is the same. Under the lognormal assumption, the latter uncertainty estimate is larger
and quantifies the uncertainty of the estimate on the high side; this larger uncertainty estimate
was used in the lognormal case. Further discussion of the relationship between the normal

and lognormal distributions is given in Appendix A.

An assessment of the effect of correlated errors was also made. Source
categories were identified that had either activity factors or emission factors believed 1o have
correlated errors. These two types of errors were handled formally to derive the correlation
between the errors in the emission rates for each pair of source categories. The groups of

source categories with correlated activity or emission factors are shown in Appendix C.

Several levels of correlation were considered, including the following: weak
(correlation coefficient of 0.2), medium (correlation coefficient of 0.5), strong (correlation
coefficient of 0.8), and perfect (correlation coefficient of 1.0). A perfect correlation would
exist between the errors in the activity factors for two categories if the same activity factor

applied in both cases.
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Figure 6-1. Conceptual Comparison of Normal and Lognormal Distributions
with Confidence Intervals for the Mean
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The correlation level was considered more uncertain in a limited number of
cases. If a correlation was considered weak to medium, it was assigned a value of 0.3. Ifa

correlation was considered medium to strong, it was assigned a value of 0.6.

To illustrate the meaning of the different levels of correlation, random samples
of size 100 were generated for two variables which were both normally distributed.
Figures 6-2, 6-3, and 64 illustrate the cases in which the true correlation is 0.2 (weak
correlation), 0.5 (medium correlation), and 0.8 (strong correlation), respectively. When the
correlation is 0.2, the plot of y versus x reveals a suggestion of a trend, but there is so much
scatter about this trend that it is hard to discern visually. When the correlation is 0.5, there
is still a lot of scatter, but the trend is apparent visually. When the correlation is increased
to 0.8, the trend becomes much more clearly defined, but there is still some scatter about the
trend line. In each case, the trend line ti.e., the line of "best fit,"” or regression line) is
displayed. When the correlation is 1.0 (not shown), the two variables are perfectly linearly
related; i.e., all points fall on a straight line.

Results

The results of applying the assumptions discussed above to the national
emissions are shown in Table 6-1. Under the baseline case, the uncertainty is 90.4 Bscf, or
0.4% of production; under these assumptions, the target production of 0.5% of production is
satisfied. The uncertainty increases somewhat when lognormal errors, correlated errors, or

both are introduced.

The uncertainty is under 0.5% of production in all cases except when both the
lognormal distribution and correlated errors are both introduced. In this case, the uncertainty
exceeds 0.5% very slightly (by 0.007%). The lognormal assumption is considered to be
excessively conservative, however, in view of the amount of averaging (averaging of data to
" obtain activity and emission factors for individual categories) and summing (summing of

emissions for 86 categories) to obtain the industry annual emissions. Further, as discussed,
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Figure 6-2. Sample from Bivariate Normal Population with Correlation
Coefficient = 0.2, Regression Line Shown, Sample Size = 100
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Figure 6-3. Sample from Bivariate Normal Population with Correlation

Coefficient = 0.5, Regression Line Shown, Sample Size = 100
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Figure 6-4. Sample from Bivariate Normal Population with Correlation
Coefficient = 0.8, Regression Line Shown, Sample Size = 100
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TABLE 6-1. UNCERTAINTY IN ESTIMATE OF NATIONAL
ANNUAL EMISSIONS UNDER VARIOUS ASSUMPTIONS

g

.Cozrelatidﬁs Among

-

_ _ b Uncertamty m Ammal Nauonal EmISSIOIiS
Distribution of Brror | % -

Errors for Different | in Anmual National - NS b % of 'Nationai'
. Categories * Emissions ' Bscf } Production
Absent Normal 85.6 L 0.4
Absent Lognormal 102.8 ; 0.5
Present Normal 96.8 7 0.4
Present Lognormal 1123 ! 0.3

Industry emissions for 1992: 314 Bscf
Industry production for 1992: 22,132 Bscf
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the uncertainty measure based on the lognormal assumption is the most conservative one (the
upper confidence limit minus the estimate, which exceeds the estimate minus the lower

confidence 1imit and the half-width of the confidence interval).

Further, the exceedance of 0.007% is well within the uncertainty of the
estimation of intercategory correlations. If all nonzero correlations are reduced by 0.1 (by
0.2 for the set considered to be more uncertain), the uncertainty becomes slightly less than
0.5% of production. If the correlations are all increased by 0.2 (0.4 for categories
considered to be more uncertain), and the distribution 1s considered lognormal, the

uncertainty of the national production rate remains within 0.54% of production.

The postulation that there are correlated errors among categories is considered
reasonable. Given this assumption, it is believed that a point midway between the result for
normal and lognormal errors is a more reasonable conservative case than is the result based
on the lognormal assumption. The midway point represents the possibility that there is
asymmetry in the distribution of the error in the industry emission rate (see Figure 4-4).
While the selection of the midway point is arbitrary, it is considered a reasonable postulated
conservative case, given the various issues discussed (and especially the averaging and
summing of data performed to produce the industry emission rate). The midway point

produces an uncertainty of 105 Bscf, which is slightly under 0.5% of national production.

Thus, the conclusion is that, under assumptions that are not unrealistically

conservative, the target precision was achieved.

6.2 Attainability of the Target Accuracy

Practical considerations allow sampling only a small percentage of the large
number (tens of thousands) of sources that exist nationwide. Moreover, there is typically a
large amount of variability among the sources in a given category. In view of these

considerations, meeting the desired accuracy may seem insurmountable. The allowed
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uncertainty in the emissions is 0.5% of the national methane production, on the basis of a

90% confidence 1imit for the emissions.

Despite these facts, the target precision for the industry emissions was
achieved. The purpose of this section is to fllustrate, through hypothetical calculations, how
large errors in emission estimates for individual source strata can combine to allow this to

occur.

As is discussed in the preceding sections, bias is minimized by randomly
selecting sites (although from a limited list), analyzing the data, and creating strata in a
systematic way. The estimate of total emissions is the sum of the emissions for all the strata.
An essential point is that the uncertainties are not additive; the uncertainty of a sum is related
to the sum of squares of the individual uncertainties. If the errors in a sum vary
independently, the errors tend to "average out” to an extent; the relative error in the sum is

reduced by this averaging process.

Fugitive emission sources have been split into five major segments; each
segment has two to seven major source categories, and each source category ié divided into
10 to 40 strata. In total, these sources have been divided intc nearly 100 strata. Vented
sources have been divided into approximately 40 strata. Thus, in all there are approximately
140 strata. Some of these strata (such as distribution pipe type) have been aggregated in the
summary table shown in Appendix C, which shows 86 categories.

In this subsection, hypothetical calculations are presented that illustrate the
effect of summing the errors in the different strata. For the purposes of the hypothetical
calculations, it has been assumed that there are "n” sirata with equal emissions and equal
uncertainties based on random errors. While it is recognized that both the emission rate and
the variability change from stratum to stratum in actuality, the simplifying assumptions
facilitate a calculation that illustrates the effect of summing the emission estimates from a

large number of strata.
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Also, 1t has been assumed that undiscovered bias, if any, varies
"independently” from stratum to stratum. This type of error would exist if the sources
within a stratum were sampled in an unrepresentative manner, resuiting in a bias error.
Clearly, a systematic bias that was common to a large number of strata would have a more
serious effect on the final result. The processes described earlier for screening for bias
provide a protection against this (or any type of) bias error. Additionally, given the large
number and diversity of strata, it is reasonable to believe that any undetected bias will exhibit
a high degree of “independence” among the strata.

The bias error is represented as the stratum-to-stratum standard deviation of
the biases in the emission estimates; this quantity is presented as a percent of the emissions
for a stratum. In the calculations, three values have been considered for the bias: 0%, 15%,
and 30%. In view of the methods used for screening for bias, 30% is considered to be a
very high estimate. As indicated above, the total number of strata is approximately 140,
Under one scenario modeled, it was assumed that there are approximately 100 strata with

nearly equal emissions that represent the major part of the industry emissions.

Further calculations were performed assuming 40 and 20 strata, in addition to
the case with 100 strata. Given that the parameters discussed above of the random and bias
errors are fixed, the relative uncertainty in the final result decreases as the number of strata
increases. This is because the "error averaging effect” is greater if a larger number of
independent estimated quantities are summed. This does not mean that artificially increasing
the number of strata would improve the accuracy. There would be fewer data points per

stratum, and the uncertainty of the emission estimate for each stratum would increase.

Table 6-2 presents the results of the calculations. The random error was
chosen to be as large as plus or minus 130% of the emissions for each stratumn, based on a
90% confidence interval. This random uncertainty was selected so that the simulated

uncertainty of the industry emission rate here for zero bias errors and 20 strata would equal
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the actual uncertainty in Table 6-1 for baseline assumptions. This precision value in Table

6-1 aiso applies in the case of zero bias errors, since it is strictly a measure of precision.

Note that, for the purpose of matching actual and simulated uncertainties, the
simulated case with 20 strata was selected. This number of simulated strata is considerably
less than the actual number of strata, about 140, or the actual number of source categories,
86. However, selecting the case for 20 strata as a basis of matching the actual uncertainty
accounts for the fact that the 86 source categories do not have equal emissions or equal
uncertainties. Thus, the reduction of the relative uncertainty achieved by an "averaging
effect” when 86 category emissions are summed is less than that which would be achieved if

86 emission rates with identical statistical parameters were summed.

Thus, on the basis of points made in the last two paragraphs, the approach
selected provides a reasonable (but not exact) basis of comparability between the actual and

sttnulated results.

Table 6-2 presents the uncertainty in the simulated national emissions as a
percentage of the national annual production. The uncertainty is expressed in terms of a
90% confidence interval. Since bias errors were considered as well as random errors, the

numbers in Table 6-2 represent accuracy, not just precision.

TABLE 6-2, PERCENTAGE OF ERROR IN SIMULATED NATIONAL

- L ANNUAL EMISSIONS
[ -itornd B IR S U I T I
0 0.40 0.29 0.18
15 0.41 0.29 0.18
30 ﬁ_0.43 4(}_.31 0.1%

(Percent Random Error in a Given Stratum Based Upon a 90%
Confidence Interval = 130%)
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The target precision is met if the percentage error is no greater than 0.5%.
For all the scenarios modeled, the uncertainty is less than 0.5%. This is true even in the
case in which there are only 20 strata with approximately equal emissions, and the bias is
30%. These calculations, while hypothetical, illustrate the way in which errors combine in a
sum and show that meeting the target precision is feasible, even in the presence of large-
percentage random errors in the individual strata and an assumed large undetectable bias

€ITOor.

It must be remembered that the random and bias errors were expressed as
percentages of the emissions in the strata. For these calculations, the national annual
emissions were assumed to be approximately 314 Bscf. The target precision is expressed as
a percentage (0.5%) of the national gas production, which was 22,132 Bscf as of 1992.

Note how small the differences are between the corresponding results for 0%
bias and 30% bias. For a given number of strata, these differences are no larger than 0.03%
of the national production. This is a consequence of the way independent errors combine
when one error with a large uncertainty (random error assumed to be 130%) and a much
smaller error (bias error) afc added. Further, the 30% bias error is assumed to be very
conservative (large), given the various steps taken to screen for and ¢liminate bias. These
points imply that any remaining bias in the data probably impacted the actual final

uncertainty in the national emission rate by a very small amount.
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APPENDIX A

FURTHER DETAILS REGARDING CERTAIN STATISTICAL ISSUES

This appendix contains certain mathematical details pertaining to statistical issues
discussed in the text. The discussion in this appendix is not required in order to understand
the statistical methods used or the issues involved from a conceptual point of view. The
discussion here is included for completeness, as a further documentation of the basis for the
methods used. In Sections A.1 and A.2, methods for analysis of error propagation in a
product and in a sum, respectively, are discussed. In Section A.3, issues pertaining to the
calculation of confidence intervals are discussed. In Section A.4, a method for the
calculation of precision values based on consecutive assumptions is presented. In Section
A.5, the use of the ratio method for the estimation of an activity factor is described. In
Section A.6, the approach for combining two estimates of an activity factor obtained by the
ratio method is to obtain the final estimate is discussed. In Section A.7, methods for
computing the uncertainties of the industry annual emissions, given the uncertainties of the
emissions for the categories, are compared. In Section A.8, a complete set of numerical
examples is presented to illustrate the calculation of emission factors, activity factors, annual
emissions for a source category, annual emissions for the industry, and associated
uncertainties.

A.1 ERROR PROPAGATION IN A PRODUCT (EMISSION FACTOR TIMES
ACTIVITY FACTOR)

In general, the product of two sample means (such as EF X AF) does not have a
standard type of statistical distribution, such as the z-distribution or t-distribution. The type
of distribution is not standard even if the two variables that are multiplied are both normal;
the product of two lognormally distributed variables is lognormal, however. In this section,
two possible ways to approximate the tolerance of a product are discussed. It is shown that
the selected method more accurately accounts for the possibly different sample sizes on
which the estimates of the activity and emission factors are based. Moreover, it is shown
that the selected method produces a more conservative (somewhat larger) estimate of the
uncertainty than does the alternate method. The rationale for the selected method is
discussed.

In computing the uncertainty of the product EF X AF, it would be possible first to
use standard error propagation methods' to obtain the variance of this product. Then, under
normal theory, it would be possible to multiply this value by the appropriate z-value to
obtain the half-width of 2 90% confidence interval. According to this method, the tolerance
of EF X AF would be obtained as follows:

Tol (AF‘EF) = zy var (AF-EF)
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= z[E(AF)* var (EF)+ E(EF)* var(AF) +var (EF) var (AF)}'?

= z[AF? var (EF) + EF’ var (AF} +var (EF) var (AF)}'?

where Tol ( ) signifies the half-width of a 90% confidence interval, E { ) denotes the
expected value, i.e., the true value of the parameter, and var ( ) signifies the variance of the
error in the parameter estimate.

The equality 1s approximate in the final line because sample means have been used in
place of the unknown population means. For a 90% confidence interval, the z-value required
is 1.645.

The argument here is not that EF X AF has an approximately normally distributed
error for most source categories. One could argue, however, that the sum of the emission
rates for 86 source categories will tend to be nommally distributed, because of the large
number of terms added. Issues related to the error propagation of a sum are discussed in
Section 4.0 and are discussed in somewhat further mathematical detail in the following
section in this appendix. :

Under the normality assumption, the t-statistic is the proper statistic to use for the
purposes of computing a confidence interval of a mean value when the population standard
deviation is not known. Tables are readily available that give the t-statistic as a function of
the number of degrees of freedom and the confidence level. The number of degrees of
freedom is one less than the sample size in the case of quantifying the uncertainty of a mean
value (more complicated situations exist involving the comparison of two means).

One could argue that a t-statistic should be used in the eguations above rather than 2
z-statistic, since the AF and EF values are based in most cases on averages, and the standard
deviations are not known, but are estimated from the data. The sample sizes used to obtain
AF and EF may be different, however; thus, the number of degrees of freedom is not clearly
defined, as in the case of computing the confidence interval for the mean of a single sample.
Moreover, the product of two means does not have a t-distribution.

Thus, we have used the tolerances of the individual terms (EF and AF) in the error-
propagation equation:

Tol (AF - EF)
where

il

[AF*{Tol(EF)}* + EF*{Tol(AR)}* + {Tol(AF)}* {Tol(EF)}*]*?

TOl(EF) = tyy Sep Aftge
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tgz = appropriate t-value for a sample size of n,
Sgr = sample standard deviation of the individual EF values averaged,
O = sample size of the EF values, and

Tol(AF), ;. s,;, and n,; are defined analogously.

The tolerances of AF and EF are both half-widths of 90% confidence intervals. The
t-value for the appropriate sample size is used in determining the confidence interval for each
factor. Thus, the effect of each of the two finite sample sizes has been explicitly taken into
account in the error-propagation method.

The following derivation reveals that the method used is more conservative (produces
a somewhat larger value of the uncertainty) than does the alternate method.

Tol(AF - EF) Z[AF? var (EF) + EFZ var (AF) +

N

var (EF) var (AF)}'? {(by the alternate method)
= [AF? z? var (EF) + EF? 22 var (AF) +
22 var (EF) var (AF)]"?
< [AF? z? var (EF) + EF? z? var (AF) +
z* var (EF) var (AF)]\?
< [AF? ¢’ var (EF) + EF? tZAF. var (AF) +
t?. var (EF) t?,, var (AF))¥
= [AF? {Tol(EF)}* + EF? {Tol (AF)}* +

{Tol(EF)}* {Tol(AF)}*]\2

In the derivation above, we have used the fact that Z2 < Zz*; this follows because the
z-value of interest for a 90% confidence interval, 1.645, is greater than one. Other
inequalities follow from the fact that z < t for any finite sample size.
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A.2 ERROR PROPAGATION IN A SUM

In this section, two possible ways to approximate the tolerance of a sum are
discussed. It is shown that the selected method more accurately accounts for the different
sample sizes on which the estimates of the various activity and emission factors are based.
Moreover, it is shown that the selected method produces a more conservative (somewhat
larger) estimate of the uncertainty than does the alternate method. Again, the rationale for
the selected method is given.

The alternate method of expressing the tolerance of a sum is as follows:
Tol(ER,) = z[ T var (ER)}"

It is rigorously correct that the variance of a sum of independently distributed random
variables is the sum of the variances. This is proven as a theorem by Mood, Graybill, and
Boes.! This theorem does not depend on the distributions of the variables summed. The
variables are not required to have the same distributions, the same means, or the same
variances.

This expression for the half-width of a 90% confidence interval is based on the
assumption that the sum of 86 separate terms will be approximately normally distributed.
This expression, however, does not account for the fact that the activity and emission factors
are based on different, finite sample sizes. Thus, we choose to use the following expression
instead:

Tol(ERp) = [I {Tol(ER)}?1"*

It is easily shown that the preferred expression produces a somewhat larger
uncertainty than does the alternate method:

z / L var (ER) ~ (by the alternate method)

= J; z* var (ER)

</ £ Tol(ER y*

The final inequality follows from the derivation given.in the preceding section.

Tol(ER,)
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A.3 METHODS FOR NON-NORMAL DISTRIBUTIONS

Methodology exists for computing confidence intervals for certain types of non-
normally distributed random variables. The methods discussed by Finney? and Patterson® can
be used to calculate the confidence interval of the mean of a sample based on the lognormal
distribution. This distribution is discussed briefly in Section 4.1. The nawre of this
distribution may more nearly approximate that of the emission factor estimates for an
individual source category. Thus, the lognormal method may be appropriate for computing
the confidence interval for the emission or activity factor for a given source category.

Because of the properties of a sum discussed above, however, it is not believed that
the lognormal method is ultimately relevant for computing the confidence interval for the
industry total. Moreover, the sample sizes for some of the source categories are so small
that it would be difficult to confirm that the distribution was, in fact, approximately
lognormal. Thus, it could not be confirmed that the lognormal method was rigorously
correct, even for calculation of confidence intervals for parameters for individual source
categories.

Finally, the lognormal method, while mathematically correct, is not a panacea when
applied to chemical measurements. The logarithmic transformation required can produce
instabilities if there are values near the detection limit of the instrument, since these values
have large relative errors. Large relative errors in small values may be unimportant when
calculations are based on the original data values; these large relative errors can play a major
role, however, in calculations based on the logarithms of the data. The discussion here is
not intended to be a complete description of the lognormal method or of the various issues
regarding its use with chemical reasurements. The objective is only to acknowledge that
there are alternative ways of computing confidence intervals and to indicate the reasons for
the method selected. The bibliographic information for the papers by Finney® and Patterson®
is given in the References for readers who want to study these papers in detail.

A.4 CONSERVATIVE PRECISION ESTIMATES

In this section, an approach for computing a conservative uncertainty for an annual
emission value, either for a source category or for the industry, is developed. It was felt that
a derivation of the equations alone would not sufficiently convey the issues for all readers.
This is not only because of the mathematical nature of the material presented here, but also
because of the various nonstandard statistical issues.

Thus, Section A.4.1 presents a qualitative discussion, with graphical illustrations.
This section may suffice for readers who want to know the basic qualitative issues and the
objective to be achieved by computing a conservative confidence measure. Section A.4.2
presents a numerical example. Finally, the derivation of the equations is presented in
Section A 4.3,



A.4.1 Qualitative Discussion

The error propagation methods discussed in Sections A.1 and A.2 lead to a confidence
interval based on a normal assumption. Arguments that support the position that the error in
the industry annual emissions is approximately normally distributed are given in Section 4.5.
For reasons that have been discussed, it is not feasible to prove rigorously that this error is
approximately normal. Moreover, for some of the categoties with smaller sample sizes, the
error in the emission rate may niot be approximately normal.

In this section, an approach for approximating a conservative precision value is
presented. This precision value is larger than that based on the normal assumption. The
conservative precision value discussed i this section characterizes the uncertainty of the
emission rate on the high side, which is expected to be greater than the uncertainty on the
low side in this application if the error is not normally distributed.

A mean value is normally distributed if the data are normally distributed. By the
central limit theorem, if a sufficiently large mumber of non-normal data points (with the same
statistical distribution) are averaged, the uncertainty in the mean value will be approximately
normally distributed. The sample size required to produce an approximately normally
distributed mean value is strongly dependent on the underlying distribution (especially the
degree of asymmetry). Sums of large numbers of terms with non-identical distributions very
often tend to be normally distributed, even though the central limit theorem does not strictly

apply.

Figure A-1a illustrates the case in which the uncertainty in the sample mean is
approximately normally distributed. In this case, the confidence limits are symmetrically
placed about the sample mean; the distance between the lower confidence limit and the mean
is the same as the distance between the upper confidence limit and the mean.

In the lognormal distribution, the majority of the points fall roughly in the vicinity of
the mean, with a small percentage of much larger points. There is not a corresponding
percentage of points far below the mean; thus the distribution is asymmetric (see Figure 4-2).
This situation corresponds to the case in which there are a large number of sources with
moderate emission rates and a small percentage of high emitters.

If the data are non-normal and the sample size is small, the uncertainty in the mean
may not be approximately normally distributed. The lognormal distribution is a common
type of distribution in general in emission data, and this distribution was observed in this
study in the emission data for underground pipes, for example (see Section 4.1).

Figure A-1b illustrates the case in which the uncertainty in the mean is approximately
lognormally distributed. Because of the asymmetry of the distribution, the 90% confidence
limits are asymmetrically placed about the mean. The lower confidence limit is closer to the
mean than is the upper confidence limit.
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Figure A-1. Conceptual Comparison of Normal and Lognormal Distributions
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Figure A-2 presents a plot that furtber illustrates the relationship between the normal
and lognormal confidence limits. For the sake of illustration, the sample mean was assumed
to be 20 Bscf. The standard error of the sample mean was assumed to be the same under
both distributional assumptions; the standard error of the mean is the standard deviation of
the uncertainty.

The confidence limits have been plotted as a function of the relative uncertainty (half-
width of the 90% confidence interval) for the normal distribution. Consider, for example,
the case at the far right of Figure A-2, in which the uncertainty based on the normal
distribution is 100%. The confidence interval based on the normal distribution has a lower
limit of 0 Bscf and an upper limit of 40 Bscf. These limits are symmetrically placed about
the hypothetical sample mean of 20 Bscf. |

The confidence interval based on the lognormal distribution is asymmertric. The lower
limit for the lognormal distribution is closer to the mean than is the lower limit for the
normal distribution. The upper limit for the lognormal distribution is larger than the upper
limit for the normal distribution.

If the original data were lognormally distributed, then the sample mean would be
moere nearly normally distributed than were the original data. Thus, in the example discussed
above, one might expect the true upper confidence limit to be between the normal and
lognormal upper limits shown in Figure A-2. For this reason, by using the lognormal
distribution for the uncertainty in the mean, we have computed a conservative (large) upper
confidence limit. :

The offset between the two confidence intervals becomes larger as the relative
uncertainty increases. In the vicinity of 20% to 30% uncertainty, the difference is slight. In
the vicinity of 100% uncertainty, the difference is much larger. Notice, however, that the
widths of the normal and lognormal confidence intervals are approximately the same for any
given uncertainty value shown in Figure A-2.

Earlier in this report, various issues are discussed that militate against a rigorously
correct characterization of the error properties of the emissions for the categories or for the
industry as a whole; reasons have been given, however, supporting the hypothesis that the
error in the industry annual emissions is approximately normally distributed. For example,
the product EF X AF does not in general have a standard type of distribution; this product is
not normally distributed even if EF and AF are both normal. For another example, small
sample sizes in some instances prevent rigorously establishing the type of distribution of the
data averaged to obtain an activity factor or emission factor.

In view of these issues, half-widths of confidence intervals based on the normal
assumption for the activity factors and emission factors have been used in error propagation
analyses to approximate the uncertainty of a product (ER = EF X AF) and of a sum (the
sum of the emission rates by category). In Sections A.1 and A.2, it is shown that this
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methodology accounts for the additional uncertainty attributable to the finite and unequal
sample sizes used to estimate the different emission factors and activity factors. Moreover, it
is shown that the methods used produce more conservative (larger) measures of uncertainty
than would error propagation methods based on only error variances of the activity and
emission factors.

In the analysis presented here, the uncertainty of the parameter in question {(emissions
for a category or for the total industry) was converted to a standard error, and this standard
error was used as a basis for computing a confidence interval on the basis of the lognormal
assumption (the mean and standard deviation completely determine either a normal or
lognormal distribution). The conservative precision is the upper confidence limit minus the
estimated emissions, converted to a percentage of the emissions; because of the asymmetry of
the lognormal confidence limits, this precision reflects the uncertainty of the emissions on the
high side. The conservative precision as calculated is larger than either of the following
alternative precision values: (1) the difference between the emission estimate and the lower
confidence limit, converted to a percentage of the emissions, or (2) the half-width of the
lognormal confidence limit, converted to a percentage of the emissions. That is, the largest
of the three precision measures mentioned here was used.

The potentially varying types of distributions of the errors in the various emission
factors, activity factors, and emission rates by category have not been rigorously modeled in
computing the conservative precision values discussed here. Nevertheless, the lognormal
approach provides a measure of uncertainty that is conservative in several respects discussed
in Sections A.1 and A.2 and earlier in this section. :

A.4.2 Numerical Tllustration

In the numerical illustration in this subsection, three significant figures have been
reported at the intermediate points and in the final results. However, several additional digits
were carried through all calculations. It was felt that three significant digits were sufficient
for illustrative purposes. However, this comment is provided for the benefit of readers who
may want to reproduce the numerical results. Slight differences between their results and
reported values may be observed because of rounding. The practice of carrying several
significant figures through all calculations and rounding only for reporting purposes was used
in the analyses of the actual data in this project.

Consider a hypothetical case in which the estimated annual emission value y is 20.0
Bscf, as illustrated in Figure A-2. Suppose the precision given in the summary table based
on the normal assumption is 80.0 percent. The half-width of the confidence interval based

on the normal assumption is a simple conversion from a relative uncertainty in percent to an
absolute uncertainty

(20.0 Bscf)(80.0% uncertainty)/(100%) = 16.0 Bscf

From this uncertainty, a standard error is estimated:
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s,” = (16.0 Bscf)/1.645 = 9.73 Bscf

The divisor, 1.645, corresponds to the half-width of a 80 percent confidence limit
when the standard deviation is known; the quantity 1.645 is called a z-value. As is discussed
in the earlier development, t-values were used in quantifying the uncertainties of emission
factors and activity factors; the use of t-vatues accounts for the unknown standard deviations
and produces larger uncertainties than if z-values had been used. These uncertainties were
used in error propagation to obtain the uncertainties first of category annual emissions and
fipally of the industry annual emissions. However, a z-value was used as a divisor above
because, after the error propagation, the number of degrees of freedom to use in selecting a
t-value is generally not known, this is especially true in the case of the industry annual
emissions, the gquantity of ultimate interest in this study.

Use of the smaller divisor (z < t) produces a somewhat inflated estimate of the
standard error, s,”. The prime is included 1o signify that s,” is not a conventional estimate of
a standard error. The calculation of a somewhat inflated estimate here facilitates another
calculation discussed below.

Given the estimated emissions y and the value s, it is possible to compute the mean
and standard deviation in log space. The mean is as follows:

A2 o
s+ 2
Y = _}_In( )') Y = = —}_mw = 280
2 e 2 200°

The estimated standard deviation in log space is as follows:

) = V2 -7] = = ﬁm(20.0)~2.39] = 0.461

Again, the prime was used since this standard deviation, which is dependent on s, is
somewhat inflated.

The confidence interval for Y, the estimated logarithm of the annual emissions, is
symmetric:

(Y-1.645s,, Y+1.645s;)

or

(2.13, 3.65)

It may appear that a t value, rather than the z value of 1.645, should be used, since
the standard deviation is not known but is estimated from the data. Recall, however, that s’
is inflated because it results from dividing by 1.645, and s’ is also inflated, since it was
computed from s,”. The use of a z-value as a multiplier here counterbalances the use of a z-
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value as a divisor earlier. In view of the nonlinear transformations, the two effects do not
cancel exactly, but it is believed that this issue is unimportant relative to others, such as the
difficulty in determining the type of statistical distribution of the errors.

Finally, the asymmetric confidence interval based on the lognormal assumption for the
original annual emissions is as follows:

Y-1.645s] ¥+1.645s)
(F e r Fe 1

where F is a bias correction factor that is necessitated by the nonlinear transformation. The
factor F is as follows:

. %(s,’,)2
= £

The final confidence interval based on the lognormal assumption is:
(9.37 Bscf, 42.7 Bsef)
The confidence interval based on the normal assumption is:

{4.00 Bscf, 36.0 Bscf)

A.4.3 Derivation of Equations

Methods discussed briefly in Section A.3 exist for computing the confidence interval
for the mean of a lognormal population. These methods are applicable for computing the
mean of a single sample and do not apply to analysis of error propagation of the type
involved in computing annual emissions for the categories and for the industry total. Thus,
an approach specific for this application has been developed.

Suppose y is an estimate of the annual emissions for a given source category or for
the industry. Further, suppose that h, is the half-width of the absolute confidence interval for
this estimate; the half-width of the confidence interval as a relative error in percent is given
in the data summary table.

Now, suppose we compute the following quantity:

sy’ = hjz

where z is 1.645. Issues pertaining to the use of a z-value here and later in calculating the
confidence interval in log space are discussed in the preceding subsection.
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We are interested in a population of lognormally distributed estimates of a particular
parameter. Our estimate of the mean of this population is y. The (somewhat inflated)
standard deviation of the population is s,’.

Let Y denote the estimate of the mean of the logarithm of the parameter of interest.
Let sy’ denote the standard error of this estimate. The following eqguations express the
relationship between the parameters y and s,” in linear space and the parameters Y and s’ in
log space’:
i, 02
y = eY‘E(sr)

(sx}z _ ezr"z(s,’,)‘ _ ezzu(s;)’
y

The estimate y exists in the data summary table, and s,” can be obtained from this
table as described earlier. From these values, as an initial step to computing the desired
asymmetric confidence interval, we need to solve for Y and s,’. Taking the logarithm of
both sides of the first of the two equations above yields the following:

In(y) = y+_;.(s;)2

s = 2nE)-¥]

We substitute this result into the equation for s’ to obtain one equation in the one
unknown, sy,

(s f)z = @2YSlat)-4Y _ ,2Y+2m()-2Y
b

= o -2Y*4R0) _ ,umG)

- #2
g 240} _ ) +y?

£2 9

e 4in(y)
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_ (s)"+y?

y4

Taking the logarithms of both sides allows us to solve for Y:
(s,)+y?

y4

2Y =In

(s, +y?

}74

Y = -1
2

The equation above allows us to calculate Y in terms of known quantities. Now we
can substitute this Y vaiue into an earlier expression to obtain a solution for (s,’)* in terms of
known quantities. -

s = 2[nG)-¥]

We are pow in a position to compute a symmetric confidence interval for Y, from
which we can obtain the desired asymmetric confidence interval for y. The confidence
interval for Y is as follows:

Y + 1.645s,

It remains to perform the logarithmic transformation to obtain the confidence interval
in the original space. Following Patterson’s analysis®, we apply the appropriate bias
correction factor to both limits of the confidence interval. The resulting confidence interval
is as follows:

¥-1.645sy ¥+1.645s,
(Fe WFe n
where the multiplicative bias correction factor F is as follows:
1, 12
=5y
= £ 2

A.5 RATIO METHOD FOR ESTIMATION OF AN ACTIVITY FACTOR

As is discussed in Section 3.5, the ratio method has been used to estimate activity
factors on the basis of well counts or production. In that section, a numerical example is
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given which illustrates the ratio method for that purpose. This section provides a further
description of the ratio method, including calculation of a confidence interval for an estimate
obtained by this method. In Section A.5.1 estimation using the ratio method is described. In
Section A.5.2, methods for computing a confidence interval for the estimate produced by the
ratio method are discussed. Further discussion of the ratio method and methods for
computing confidence intervals is provided by Cochran.*

A.5.1 Estimation Using the Ratio Method

Suppose

Y; = device count (e.g., number of separators) at the i® sampled site,

X; = value of the extrapolation parameter (number of wells or gas production) at
the i® site,

o = pumber of sites sampled,

X = the regional value of the extrapolation parameter, ¢.g. the total number of
wells in the region, and

N = the total number of sites in the region.

For the purposes of illustration, we will discuss the estimation of the regional number
of separators by using the well method. Then, by the ratio method, the following is the
estimate of the number of separators per well:

R =

TR

or

n

P37

B = 2

n

]

X.
1

i=

This estimated mumber of separators per well and the regional number of wells is then used
to estimate the number of separators in the region:

Y,=RX
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A.5.2 Confidence Interval for Estimate Produced by the Ratic Method

Cochran presents two approaches for estimation on the basis of confidence intervals.
First, the issues pertaining to the two methods will be described, and reasons for selecting
one of these two methods will be discussed. Subsequently, the details of the selected method
will be discussed. We will continue to use estimation of the number of separators in a
region by the well method as an example.

One method for caiculation of the confidence interval is based on the assumption that
the ratio estimate, R, is approximately normally distributed. In many applications, the
normality assumption is satisfied only if the sample size (the number of sites visited in our
application) is sufficiently large (at least 30) and the relative uncertainties {coefficients of
variation) in both the average number of separators per site and the average number of wells
per site are both sufficiently small (less than 10%). The suggested rules of thumb are given
by Cochran. If the ratio is normally distributed, its confidence interval will be symmetric.

If the ratio itself is not approximately normally distributed, but the numerator and
denominator are both normally distributed, the ratio will tend to have an asymmetric
confidence interval in which the upper confidence limit is more separated from the mean than
is the lower confidence limit (see Figures A-1b and A-2). A second method handles this
case. As is discussed below, the cause of the asymmetry in some applications is a
fundamental consideration in the selection of a method. Thus, a brief discussion of the cause
will be given here.

Suppose we are concerned with a ratio a/b, such that "a" and "b" are both subject to
random variability but both are non-negative. Given that "b" is subject to random variability
and bounded below omly by zero, a value very close to zero could occur. The ratio has no
upper bound as "b" approaches zero; thus the error in the ratio is unbounded above. But the
ratio has an absolute lower bound of zero. The possibility of values extremely larger than
the true value, without a corresponding possibility of values extremely lower than the true
value, tends to cause the uncertainty in the ratio to be asymmetric.

The method based on the assumption that the ratio is approximately normally
distributed will be called Method 1. The method that produces asymmetric confidence
intervals will be called Method 2. Radian has performed calculations to compare these two
methods. Tests revealed that Method 2 is capable of producing an upper confidence level
that is unreasonably large from an engineering point of view (see the discussion below
pertaining to separators for the Central Plains Region). The confidence limits produced by
Method 1 under these circumstances are much more reasonable from this perspective.

Both engineering judgement and further statistical calculations have indicated that
Method 1 is preferable for this application. First, the asymmetric confidence interval is
based on the general mathematical situation described above, in which the denominator can
become arbitrarily close to zero. But in our application, the denominator is the sum of the
production levels or of the numbers of wells for the sites visited in a region. From 2
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practical perspective, it is not reasonable to expect that either of these sums can become
arbitrarily close to zero, causing an extrernely large ratio of separators per well or separators
per unit of production.

The number of wells at a site of interest must be at least one. Thus, the sum of the
numbers of wells has a lower bound equal to the number of sites visited. The production
does not have a definable lower bound of this nature. The argument above still applies,
however; it is not reasonable to expect an arbitrarily small production rate at all visited sites
in 4 region, allowing an unbounded ratio of devices per unit of production on the basis of the
data for all sites.

The argument above pertains to the possibility of an arbitrarily small denominator,
which could cause extreme skewness; Figure A-1b depicts a hypothetical distribution that is
skewed, or asymmetric. The relationship between the number of devices and the number of
wells or amount of production is also relevant. Theoretically, positive skewness in a ratio
could result from positive skewness in the numerator; this would be a special concern if the
numerator could increase without bound, independently of the value of the denominator. In
this application, however, it is not reasonable to expect that the number of separators
attached to a given well is unbounded; similar comments apply for other device types.
Further, it is not reasonable to expect that the mumber of separators at the visited sites in a
region is independent of the total production at those sites and can become arbitrarily large,
Independently of the production level.

The intuitive arguments above indicate that certain mathematical canses of marked
asymmeiry do not exist in this application. However, these arguments do not prove that
asymmetry cannot exist at all. A further investigation was performed on the basis of
statistical calculations. For each of a selected set of regions and device types, the number of
devices was divided by the exirapolation parameter (wells or production) for each site. This
produced a ratio for each site visited for a given region and device type. In most cases, the
number of sites is too small to allow a detailed characterization of the distribution. For
separators for the Atlantic/Great Lakes region, however, there were 19 sites. The
distribution of separators per well is displayed for this case in Figure A-3. The histogram is
somewhat ragged, because of the sample size; even 19 is a2 small sample size to characterize
a distribution. Nevertheless, there is no evidence of positive skewness. Despite the
raggedness of this empirical distribution, a hypothesis test indicated that this distribution does
not differ to a significant extent from a normal distribution.

Figure A-4 presents the histogram for the ratio of separators per unit of production for
the same region. In this case, there is evidence of asymmetry in the distribution of the site-
by-site ratios, and the hypothesis test indicated that this distribution differed significantly
from a normal distribution. The primary reason for the visual impression of asymmetry is a
single site with 2 ratio of 959.9 separators per MMcfd of production. Asymmetry in the site
ratios, however, does not necessarily imply that the error in the ratio for the region is
asymmetrically distributed. For the site with the large ratio, there are 1,582 separators and
16 MMcfd of production. Another site with a more moderate ratio has a much larger impact
on the ratio for the region. This site has 3,227 separators and 81 MMcfd of production, so
the ratio is 39.8 separators per MMcfd.
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The site values of the number of separators per well for the Central Plains region
revealed evidence of negative skewness. That is, instead of a long tail to the right, as in
Figure A4, there was some evidence of a long tzil to the left. Since there were only seven
sites, a histogram of this data set would not be meaningful and is not shown. In this case,
Method 2 produced an upper confidence limit for the ratio of separators per well that was
unreasonably large in this case from an engineering or a statistical point of view. This upper
limit was several times the largest site ratio of separators per well for the Central Plains
region and exceeded almost all the separator-per-well site values for several regions. In this
example, Method 1 produced results that were considered to be much more reasonable.
While negative skewness was the exception, this example provides another illustration of why
Method | was preferred over Method 2 for this application.

Moreover, asymmetric uncertainties of individual parameters exist for other reasons.
It is discussed elsewhere in this report (Sections 4.5 and 5.1) that confidence intervals with
greater than 100% uncertainty exist for activity factors, emission factors, or emission rates
for some source categories. One possible explanation is that the error in the estimated
parameter is not normally distributed. The ultimate objective of the study, however, is to
quantify the national annual emissions. The sum of the emissions for 86 source categories
will tend toward normality, even if some of the individual values summmed are nonnormal.
Thus, even if some category parameters were not normal, this would not necessarily
invalidate the confidence interval for the national annual emissions. Moreover, an
assessment has been made of the effect of a lognormal error in the industry annual emissions.
The upper confidence limits based on the normal and lognormal assumptions differ by a
small amount, and the target precision is met on the basis of either assumption (Section A.4).

Based on a finite sarnple of size n (1 e., n sampled sites), the following is an
approximation of the variance of the error in Y

_Nda-p
v( n{n-1} E 0K
The quantity N, the total number of sites in the region is not known and, therefore,
must be estimated. The total number of separators, X, in the region is known. The quantity
X divided by the average number of separators per site is an approximation of the number of
sites in the region. This method of estimating N was suggested to Radian by Jonathan Cohen
of ICF Kaiser in a private communication.

Thus, N is an estimate rather than a known constant. The value N is used only in
quantifying the uncertainty of Yy, however, and not in estimating ¥,. The quantity f is the
sampling fraction, n/N.

The equation given by Cochran for a symmetric confidence interval for Yy is as
follows:
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f’R £ Z v(ffR)

where z is a tabulated value of the standard normal distribution selected according to the
confidence level; for a 90% confidence interval, the z value is 1.645. The z value is
appropriate when the quantity estimated (Yg) has an uncertainty, but the uncertainty of the
variance [v(¥p)] can be neglected. The use of the z statistic is generally accepted if the
sample size is greater than 30. '

According to Cochran’s rules of thumb, the sample size would be at least 30 when
this expression for the confidence interval was used. In our case, however, the decision that
the symmetric confidence interval was preferable to the asymmetric confidence interval even
if the sample size was less than 30 was based on engineering considerations and data
analysis, as is discussed above. To account for the uncertainty in the variance as well as in
the estimate, therefore, we have replaced z in the expression above by the appropriate t
value. Even though the t-distribution does not apply exactly in this context, replacing z by t
provides a degree of conservatism; that is, somewhat wider confidence intervals are
produced, which tends to account for the uncertainty in v(Yy). The resulting confidence
mterval is as follows:

‘}:'R +t v(f’R)

A.6 COMBINATION OF ESTIMATES OF AN ACTIVITY FACTOR

The methods discussed in the preceding section were used to estimate the activity
factor and its uncertainty on the basis of both well counts and production for some source
categories. The arithmetic average of the two estimates was computed to obtain the final
estimate.

The two estimates are based on different extrapolation factors (values of the x,) but
common device counts (values of the y). The device counts vary by site and are subject to
sampling error. Thus, this soutce of sampling error was common to the two estimates of the
activity factor. It has been discussed elsewhere that separate measured quantities (e.g.,
emission rates from different types of devices) may have correlated sampling errors. The
evidence here for correlation is much stronger, however, since common data are used in the
two estimates. Thus, steps were taken to account explicitly for the correlation. To address
this issue, we introduce the following notation:

X = number of wells at the i% site,
X, = production at this site,
R, = estimate of R on the basis of wells,
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R,

Yr. = estimate of Yy on the basis of wells, and

]

estimate of R on the basis of production,

¥r, = estimate of Y, on the basis of production.

By substituting x,,; for x; in the appropriate equations in the preceding section, for
example, one obtains the estimate of the number of devices in the region on the basis of
wells and the confidence interval for this estimate. The following is a sample estimate of the
covariance between the errors in the two estimates:

2
COV( R,w’YRp) = Al (1 ﬂz(y wawx)(y Rpxp:

:!I

This expression satisfies important required properties of the covariance, such as the
symmetry property:

COV(-YR.\M YR;p) = COV(YR,p’ YR,W)

Additionally, the covariance between a quantity and itself equals the variance of that
quantity. This can be confirmed simply by replacing all "w" subscripts with a "p” subscript,
to obtain the variance of ¥,

In a textbook application of the ratio method, the quantity N would be known. As is
discussed earlier, N must be estimated in this application. In estimating the covariance
above, the average of the two estimates of N was used, both where N appears explicitly in
the covariance equation and in calculating f.

Now, the expression for the final estimate of the activity based on the arithmetic
average approach is as follows:

The variance of this expression is:

var{ f’Rp) +2c0V( }A’RP, }A’R,w) +var(¥ R,w)
4

var(f'x_ avg) =
The confidence interval for the final estimate is as follows:

}A’m + ¢ var(f'uvg)

In some instances, the number of sites for which data existed for both wells and
production did not coincide exactly. In these cases, the covariance was computed on the

A-23



basis of the sites for which common data did exist. This provided a somewhat conservative
(large) estimate of the covariance. This calculation of the covariance represents the case in
which the sites in common for the two extrapolation parameters are the only sites. But the
fact that sites exist with data for wells but not production (or vice versa) introduces an
element of independence between the estimates of Yy based on the two extrapolation
parameters. The somewhat conservative covariance estimate produces a somewhat
conservative confidence interval for the final estimate of Yy.

To account for this case, the correlation between the errors in the two estimates was
computed as follows:

con¥y,, ¥p)
Jvar(Fy var(fy, )

rFr =

Then the half-width of the confidence interval for ¥ was computed as follows:

N Var(Ey ) 2ty fvar(E VMt frar(Fy 1 +12Var(hy,)

where t; and t, are the t-values appropriate for the sample sizes for the two extrapolation
parameters. The expression involving the correlation coefficient was written in the manner
shown to emphasize that this is approximately an error propagation using half-widths of
confidence intervals, as has been used elsewhere (see Sections A.1 and A.2). Each t-value is
grouped with its respective standard error (the square root of an error variance is a standard
error). The expression above can be simplified aigebraically to the following:

1 7 PR P
E@mrﬁ'@) 12t 1, conTy,, Yy )+tVar(ly,)

This expression involving different sample sizes for the two estimates reduces to the
simpler expression for the half-width of the confidence interval given earlier if the sites for
which data exist for wells and production are the same.

A.7 UNCERTAINTY OF INDUSTRY ANNUAL EMISSIONS

This section provides the details of the reasons for the selection of an approach for
computing the uncertainty of the industry annual emissions, given the uncertainties of the
emissions by source category. Recall from Section 4.4 that Method 1 involves computing
the sum of squares of the uncertainties of the terms summed to obtain the industry emtission
rate. In Method 2, the uncertainty of the sum equals the sum of the uncertainties, or
tolerances, of the terms. The terms summed are the emission rates for the 86 source
categories.
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The sum of the tolerances is apparently used in some applications and provides a
conservative (large) estimate of the tolerance of a sum. Since the possibility of using Method
2 has been raised as an issue, a brief comparison of the two methods and the reasons for
selecting Method 1 will be given. The discussion will show that Method 2 is inappropriate
for this application.

Juran, et al.,’ give the following simple example to illustrate why the Method 2 is
"often too conservative.” Given the mechanical assembly shown in Figure A-5, suppose it is
necessary to compute the uncertainty of the sum of the three lengths. Suppose that there is
one chance in 100 that a given one of the three parts will be less than its lower tolerance,
and the errors in the three lengths are uncorrelated.

Now, suppose a lower tolerance for the sum of the three lengths is computed by
summing the three Iower tolerances. The probability that all three will be less than their
lower tolerances simultaneously is:

17100 x 17100 x 1/100 = 1/1,000,000

That is, there is only one chance in a million that all three components will fall below
their respective lower tolerances simultaneously. Thus, the sum of the tolerances produces a
very conservative estimate, in that there is po recognition of the fact that the probability that
all errors will be extreme in magnitude and have the same sign is very low. In Method 1,
the fact that the errors in the different terms in a sum may have different magnitudes and
even different signs is recognized.

If Method 2 produces very conservative results in the case of the sum of three terms,
this method produces unreasonably conservative results in the case involving 86 source
categories. The tolerances used in this project are based on 90% confidence limits. The
probability that all 86 true emission values will fall below the lower confidence limits
simultaneously is 1.3 X 102, The probability that all true emission values will fall above
the upper confidence limits is the same.

A.8 EXAMPLE CALCULATIONS

In this section, a set of numerical examples illustrating the calculation of emission
factors, activity factors, annual emissions for a source category, annual emissions for the
industry, and associated measures of uncertainty is presented. This is an appropriate place
for this set of examples, given the development of equations presented earlier in this
appendix.

Numerical examples illustrating specific points are given at various points earlier in
the report. The purpose of this section, however, is to combine an extensive set of examples
in one place.

A hypothetical example will be presented to illustrate the calculations for an individual
category. [t was desired to provide an example that was representative of the basic case.
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Length of Mechanical Assembly

Part 1 Part 2 Part 3
1.000 ——| < 0.500-- > < -2.000
+ 0.001 + 0.0005 + 0.002

YT T’ = 0.0023 (Preferred Method)

I T, = 0.0035 (Conservative Method)

T, = Tolerance of Part i

Figure A-5. Dlustration of Methods for Computing the Tolerance of a Sum
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However, many actual categories involve individual characteristics and exceptions. For
example, categories for which the ratio method was used to estimate the activity factor
involve application of this method for each geographical region. It was considered
undesirable to show the same basic calculations performed with different sets of numbers for
the different regions. The repetitious aspect of this type of example would have added length
to this section, but the repetition would have contributed nothing to the illustration and might
even have tended to obscure the message. Further, the use of relatively small data sets
facilitated presenting all data used in the calculations, without requiring large tables that
would have contributed nothing extra to the illustration.

As is discussed in Section A.4.2, three significant figures have been reported at
intermediate steps and in the final results. Several additional digits were carried through all
calculations, however.

In Section A.8.1, calculation of the emission factor for a hypothetical source category

is illustrated. In Section A.8.2, calculation of the activity factor for this category is
discussed. In Section A.8.3, calculation of the category annual emissions is presented.

In Section A.8.4, the industry annual emission calculations are discussed. Both the

real data given in Appendix C and hypothetical data are used as needed to illustrate different
aspects of the calculations.

A.8.1 Emission Factor Calculations
Table A-1 presents the hypothetical data for the calculation of the emission factor.

TABLE A-1. HYPOTHETICAL EMISSION FACTOR DATA

Measurement Number Annual Emissions (Scf}
1 18,000
2 17.000
3 3.000
4 10,000
5 15,000
6 7.000
7 2.000
8 13.000
9 2.000
i 10 13,000
( Mean _ 10.000
Standard Deviation __6.160
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Each measurement represents the annual emissions for one device for one year in Scf.
The symbol e; will be used to denote the i** emission measurement, and n will denote the
sample size, which is 10 in this example. The mean value of the measurements equals the
emission factor, EF:

2

EF <5 =i _ 18000+ ... 13,000

2 - =22 = 10,000 Scfidevice
n i0

The standard deviation is as follows:

i \! (18,000-10,000)"+ . . . +(13,000-10,000" _ ¢ ch o pevice

10-1

The standard deviation of the error in the mean, or the standard error of the mean,
equals the standard error of the emission factor, sgg:

A

The confidence interval based on the assumption that the errors are normally
distributed involves the t-statistic. The parameter of the t-distribution is called the "number
of degrees of freedom,” which is n-1, or 9, in this context. From standard tables, the
appropriate t-value for a 90% confidence interval for 9 degrees of freedom is 1.83. The
uncertainty of the estimated emission factor is calculated as follows:

ToKEF) = t s = (1.83)(1,950) = 3,570 Scfidevice

This value is readily converted to an uncertainty in percent:

(100%)Tol(EF) _ (100)(3,570) _
T = = = 35.7%
ol(EF) (%) EF 0.
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A.8.2 Activity Factor Cajculations

Table A-2 presents the data for the hypothetical calculation of the activity factor. The
notation and methodology used to calculate the activity factor using the ratio method are
given in Section A.5. Activity-factor issues are also discussed in Section 3.5. The activity
factor is the total number of devices (for example, separators) for this source category. Gas
production, a common extrapolation parameter, has been employed in this example.

TABLE A-2. HYPOTHETICAL ACTIVITY FACTOR DATA

Site Marketed Gas (x) (MMscfd) Number of Devices {y)
1 20.0 4
2 30.0 2
3 80.0 8
4 10.0 2 L
Totals 140LL 16 -

The quantity n in this context is the number of sites visited. Both the use of n as the
sample size in the preceding section and the use of n as the number of sites visited in this

section are consistent with standard notation.

The average number of devices per site is:

¥y = —— = — = 4,00 devices/site

The average production per site is:

n

Exs
P S 142'0 - 35.0 MMcfdjsite
n

Then R, the activity-factor ratio, is as follows:
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B=2 =239 _ 6114 devicessMMcrd

Suppose the published value of the total marketed gas for this source category is
X = 14,000 MMscfd. The activity factor, AF, is denoted Yy in the context of the ratio

method:
AF = ¥, = XR = (14,000)(0.114) = 1,600 devices

The quantity N, the total sumber of sites, is not known and must be estimated:

We are now ready to caiculate the error variance, V(¥y), of the activity factor:

V(.R N2 (l—f)z(},

(II 1) j=1
_ 400°(1-0.0100) x5 114)20)P . . . +[2-(0.114)(1O))
@)(@4-1) |
= 92,700

The standard error S(¥g), which is the standard deviation of the error of the activity
factor, is simply the square root of the error variance:

S(¥p = WYy = 304 devices

The uncertainty in the activity factor is obtained by multiplying the standard etrror by
the appropriate t-value from a standard statistical table. The appropriate t-value in this
context for a sample size, n, of four (i.e., for three degrees of freedom) and for a S0%
confidence level is 2.35. As is discussed earlier, the application of t here is not exact but is
more conservative than using a z value. The use of t provides for the extra uncertainty
attributable to the fact that the standard error of Yy is estimated from the data.
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Tke uncertainty, Tol(Yy), is estimated as follows:
Tol(Y,) = 18(¥,) = (2.35)(304) = 715 devices
The uncertainty of Yz in percent is obtained simply by multiplying this result by
100% and dividing by Yg:

(100%)Tol(¥)  (100)(715)
y 1,600

= 44.7%

Tol(Y) (%) =

R

A.8.3 Category Annual Emission Caiculations

From the previous subsections, we have the emission factor and the activity factor for
the hypothetical category. Thus, we can calculate the annual emissions and uncertainty
measures.

First, it is necessary to convert the emission factor and its uncertainty from Scf to
Bsef.

EF = 10,000 Scf = 0.0000100 Bscf
Tol(EF) = 3,570 Scf = 0.00000357 Bscf
The activity factor and its uncertainty are as follows:
| AF = 1,600 devices
Tol(AF) = 715 devices
The annual emissions value is as follows:
ER = (AFXEF) = (1,600)(0.00001) = 0.016 Bscf

The uncertainty of this quantity is as follows:

Tol(ER) = \/AF2Ta£(Ef)2+EF2Toz(AF)2+Toz(AF)2Tol(EF)2

By direct substitution of the values above, we obtain the following:
Tol(ER) = 0.00950 Bscf
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This is readily converted to a percent:

ToKERX(%) = (100%)Tol(ER) _ (100)(0.00950) _ 59 49
ER 0.016

It remains to calculate the conservative uncertainty. As is discussed in Section A.4,

this measure is based on the upper confidence limit, assuming the error in ER is lognormally
distributed.

In Section A.4, the term y was used to denote the annual emissions; the methodology
developed applies to either the emissions for a category (v equals ER) or the emissions for
the industry (y equals ER,). The development required transformations between linear space
and log space. The notation used facilitated the association of corresponding quantities in the
two spaces; expressions involving y correspond to linear space, while expressions involving
Y correspond to log space. For consistency and convenience, we retain the notation of
Section A.4 for the purposes of calculating the conservative uncertainty. Here, y is the
annual emissions ER for a hypothetical source category. First, we approximate the standard
error of the annual emissions: :

s/ = Tolo) . 0.00950
¥ 1.645 1.645

= 0.00578 Bscf

Regarding the use of the value 1.645 here and below, see Section A.4. Given the
estimated annual emissions y and the value s,’, it is possible to compute the mean and
standard deviation of the natural logarithm of emissions:

2
)+ 1, 0.00578%:0.0160 _

y? 2 0.0160*

-4.20

Y=-ln
2

The estimated standard deviation in log space is as follows:

sy = 2000)-7) = y2Z{In0.0160)—(-4.20)] = 0.350

The upper confidence limit for Y is as follows:
Y+1.645s; = -4.20+(1.645)(0.350) = -3.62
The bias correction factor is:

1, /2 1 2
={5y) ={0.350%
F=e¢% =¢g? = 1.06
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The conservative upper confidence limit is as follows:

U = FeU''%r o 106 420006450350 = 0 0285 Bscf

COns

The conservative uncertainty based on this upper confidence limit is:

Conservative Tol(y) = U, -y = 0.0285-0.0160 = 0.0125 Bscf

ORg

This is readily converted to a percentage value:

(100%)Conservative Tol(y)
Y

Conservative Tol(y) (%) =

_ {100)(0.0125)
. 0.0160

= 77.8%

A.8.4 Industry Annual Emission Calculations

The data set used for the industry annual emission calculations is included in
Appendix C. While this data set is not ideal for illustrative purposes in view of its size, it
was felt that illustration of the industry emissions calculations using the actual data in the
summary table would be beneficial. These calculations do not involve category-to-category
special cases, as do calculations of annual emissions and uncertainties for individual
categories. The role of correlated errors is illustrated through both a hypothetical example
and calculations with real data.

The first step is to calculate the industry annual emissions, ER;. This value is simply

the sum of the emissions for the 86 categories. Using values from the summary table in
Appendix C, ER, is computed as follows:

26
ER, = Y ER,
i=1

I

= 0.3352+0.0013+ . . . +2.0631 = 314 Bscf

where ER, denotes the annual emissions for the i® source category. The emissions for the
first two categories and the last category listed in the table in Appendix C are shown
explicitly here.

As is discussed in Section 6.1, uncertainties were computed on the basis of several
assumptions to illustrate the effect of certain factors and to arrive at a final measure of
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uncertainty. In the baseline case, the error in the industry annual emissions is assumed to be
normally distributed, and the errors for different source categories are assumed to be
uncorrelated. In this case, the uncertainty of the industry annual emissions is the square root
of the sum of squares of the uncertainties of the emissions for the categories:

86
Tol(ERp) = ,| ¥ Tol(ERY

i=1

= 0.2749%0.33522+2.176470.0013%+ . . . +19.2441%2.0631°

= 89.6 Bscf

where the uncertainty for a given category is the precision, expressed as a fraction, times the
annual emissions in Bscf. Again, the values shown are from Appendix C. It is felt that the
conversion from an absolute uncertainty to an uncertainty in percent is basic and has been
sufficiently illustrated. The absolute uncertainty above is equivalent to an uncertainty of
28.5% of annual emissions. This uncertainty is better than the target precision of 0.5% of
production (see Section 6.1).

The uncertainty given above can be converted to a conservative uncertainty. This
calculation is analogous to the conversion to a conservative uncertainty for category annual
emissions, which is illustrated in Section A.8.3. As shown in the data summary table in
Appendix C, the conservative uncertainty of the indusiry annual emissions is 32.7% of
emissions. This uncertainty is also better than the target precision.

The calculation of the uncertainty based on the assumption of correlated errors is the
same as the uncertainty calculation in the baseline case, except that additional terms are
involved. The following is the simplest expression for the additional terms:

2r, TOW(ER,) Tol(ER))

where 1 is the correfation coefficient between the errors in the annual emissions in the i* and
j® categories. Further intuitive discussion of correlated errors is given in Section 4.4. Plots
illustrating different levels of correlation are presented in Section 6.1. The exact role of
these other terms is discussed in Section 4.4. The number of terms, including the 86 squared
tolerances and the terms accounting for correlated errors, is large.

The errors in the emissions for two categories may be uncorrelated or may be
correlated because of a common influence on their activity factors or a common influence on
their emission factors. The correlation coefficients considered are given in Appendix C, as
are categories postulated to have correlated etrors.
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The calculations associated with cotrelated errors will be illustrated in two steps.
First, a simple hypothetical numerical example involving two sources will be used to
illustrate the manner in which the term used to account for the correlation is combined with
the uncertainties of the annual emissions for the categories. Second, the actual calculation of
the term used to account for the correlated errors using data from the summary table in
Appendix C is illustrated.

The following hypothetical numerical example involving two sources is more
manageable for illustrative purposes than is the actual case involving 86 source categories.
Consider two sources with emissions E, = 3.00 Bscf and E, = 4.00 Bscf. Suppose the
uncertainties are Tol(E,) = 1.00 Bscf and Tol(E,) = 2.00 Bscf. The total emissions are as
follows:

E, = E+E, = 7.00 Bscf

If the errors were uncorrelated, the uncertainty of the total emissions would be:

Tol(E;) = |Tol(E,Y*+ToKE,}* = 2.24 Bscf

Now, suppose the errors in the emissions for the two categories have a correlation
coefficient, r, of 0.5. A plot illustrating the strength of the relationship that exists when the
correlation coefficient is 0.5 is given in Figure 6-3. Then the uncertainty of the total
emissions would be as follows:

Tol(E,) = ﬁol(El)2+ToI(E2)2+2rTal(El)ToZ(Ez) = 265 Bsf

Thus, the correlation term increased the uncertainty of the total emissions by
- 0.041 Bscf, from 2.24 Bscf to 2.65 Bscf, in this hypothetical example.

Now the actual calculation of the uncertainty term using data in the summary table in
Appendix C will be illustrated. The two sources are the first and third source categories
listed on the first page of the table; this page pertains to the production segment. The first
category (category i) includes gas wells (Eastern on shore). The other category considered
here {category j) includes separators, listed under field separation equipment (Eastern on
shore).

Emission factors are given in Scfd/well in the table. These are converted to annual
Bscf/well for use in the calculations. The uncertainties are given in percentages. These are
converted to absolute uncertainties for use in the calculations. The values needed are as
follows:

EF, = 7.11 Scfd/well = 2.60 X 10°® Bscf/well

TolEF) = 27% = 7.01 X 107 Bscf/well
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AF, = 129,157 Wells

Tol(AF) = 5% = 6,460 Wells
EF; = 0.900 Scfd/Separator = 3.29 X 107 Bscf/Separator
Tol(EF) = 27% = 8.87 X 10 Bscf/Separator
AF, = 91,670 Separators
Tol(AF) = 23% = 21,100 Separators
The numerical value at the right of each equation above was used in the calculations.
In this case, both activity factors are involved in intercategory correlations but are not

correlated with each other. The errors in the two emission factors have a weak correlation
coefficient of 0.2. Thus,

Iegy= 0.2
and
I‘Mj = 0
where
Tg; = correlation between the errors in the emission factors for the i* and j*
categories, and :
Taj = correlation between the errors in the activity factors for the same two
categories.

From Section 4 .4, the expression actually used to quantify the contribution of the
correlated etrors appears after the equals sign in the following eguation:

2r,Tol(ER)Tol(ER) =
2(AF AF r; Tol(EF )TolEF)+EF EF 7, Tol(AF ) Tol(AF )+

r g, ToKEF YTol(EF )r ., ToWAF YTol(AF )}

.
Direct substitution of the data values given above into the expression for the
correlation term produces the value 0.000294. This term, and other correlation terms, are

added to the sum of squares of the uncertainties of the category annual emissions. The
square root of the resulting sum is the uncertainty of the industry annual emissions in Bscf
(see equation 14 in Section 4.4 and the two-category example given earlier in this
subsection). o
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The uncertainty of the industry emissions based on correlated errors is converted to a
conservative uncertainty in exactly the same way that the category annual emissions are so
converted; this conversion 1s illustrated numerically in Section A.8.3.

The results of the calculations of the uncertainty for the industry annual emissions for
all sets of assumptions considered are presented in Section 6.1. The uncertainties are given
in Bscf and as percentages of national production.
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APPENDIX B

FURTHER DETAILS REGARDING OUTLIER TEST

MEMORANDUM

TO: Bob Lott, GRI

David Kirchgessner, EPA
FROM: David Epperson and Lisa Campbeil, Radian
COPY: Mike Cowgill, Radian

Hugh Williamson, Radian

Mike Campbell, Radian

Matt Harrison, Radian
DATE: November 10, 1994

SUBJECT: Results of Statistical Outlier Tests for Plastic Main Leakage Data

Attached is a brief document that discusses the results of the statistical tests performed to
determine whether the large plastic main data point is an outlier. As you know, the issue of
omitting the very large leak test data point for plastic mains was brought up in the August
industry review meeting in Austin. The industry reviewers were concerned that a large
overall Jeak rate for plastic mains would be misinterpreted, even though the contribution
from plastic mains to the overall leakage from mains and services in the U.S. is very small.

On the basis of the results of the outlier tests performed, there is no statistical justification
for omitting the large data point from the plastic leak measurements. Furthermore, PG&E’s
statistician who worked on the UAF study confirms that there is no technical or statistical
Justification for omitting that data point. Consequently, we recommend that the data point
remain part of the distribution leak measurement database.

Results of Qutlier Tests for Plastic Pipe Leakage Data
Overview

The GRI gas data for plastic pipes were screened for potential outliers. The Grubbs

test,’ the Dixon test,' the Fourth-Spread test,? and a conservative approach,” were used to
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identify potential outliers in the plastic pipe data. The Grubbs and Dixon tests require that
the data being screened are normally distributed. The Fourth-Spread test does not strictly
require normality, but it could produce spurious resﬁlts if the data distribution were
markedly asymmetric. The conservative approach addresses cases of normality and

non-normality.

The largest value and the smallest value in the plastic pipe dataset were tested
separately. Table 1 lists the results of the four outlier tests for both the largest and smallest
plastic pipe data values. The smallest value is identified as a potential outlier only in the
Fourth-Spread test; all other tests indicate no outliers. However, the test criteria from both
the Grubbs and Dixon tests suggest that the smallest value is closer to being a potential

outlier than the largest value.

Data

The plastic pipe flow rate data and the natural logarithms of these data, as well as
the means and standard deviations, are shown in Table 2. The data in Table 2 are arranged
so that the smallest value appears in the first row and the largest value appears in the last
row of the table. Only six data points comprise the plastic pipe data and these six points
span: five orders of magnitude, ranging from 0.008 SCF/leak-hour to 61._000 SCF/leak-hour.

The Shapiro-Witk W statistic, generated by the SAS UNIVARIATE' procedure, was
used to determine whether the nontransformed and natural log-transformed plastic pipe data
were normally distributed. For the nontransformed data, the W-statistic was 0.6068 and the
associated p-value was 0.0001, indicating that the nontransformed data were not normally
distributed. However, for the natural log-transformed data, the W-statistic was 0.9396 and
the associated p-value was 0.6747, indicating that the natural log-transformed data were
normally distributed, within random variability. Because of the small sample size
{consisting of 6 data points), however, this test is not highly sensitive. Small or moderate
deviations from normality might not be detected on the basis of a hypothesis test with this
sample size. Figure 1 shows the frequency histogram for the nontransformed data and

Figure 2 shows the frequency histogram for the natural log-transformed data to illustrate the
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TABLE 1. RESULTS OF THE OUTLIER TESTS

. Data Value Tested e g
Qutlier Test _’ (natural logarithm) \ Criteria Result
Minimum: 1.71<1.82 not an outlier
-—4.8283 (ID 2014) . .
Grubbs Maxi
aximum: X
41109 (ID 2002) 1.26<1.82 not an outlier
Minimum: )
‘ —4.8283 (ID 2014) 0.50<0.56 not an outlier
Dixon Mo
aximum: )
4.1109 (ID 2002) 0.20<0.56 not an outlier
Minimum: outside bounds:
~4.8283 (ID 2014) | —4.3850 to 6.3571 OUTLIER
F-Spread
Maximum: inside bounds: not o cutli
4.1105 (ID 2002) | —4.3850 to 6.3571 Ot an outher
Minimum: inside bounds: not an outlie
Conservative ~4.8283 (ID 2014) | —8.7334 t0 9.3532 et
Approach Maximum: inside bounds: ot 20 outlier
4.1109 ID 2002) | —8.7334t09.3532 | '

2 The criteria are based on the 5% significance level for the Grubbs and Dixon tests
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TABLE 2. PLASTIC PIPE FLOW RATE DATA AND NATURAL

LOGARITHMS OF THE FLOW RATES

Test ID Number

Standard Flow Rate

Natural Log of Standard

(SCF/leak-hour) Flow Rate
2014 0.008 ~4.8283
3020 0.700 ~0.3567
3019 1.130 0.1222
3039 1.620 0.4824
11002 10.266 2.3288
2002 61.000 4.1109
Mean 12.454 0.309894
Standard Deviation 24.084 3.014434
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results suggested by the W-statistics. The nontransformed data are obviously skewed and
not normally distributed, while the natural log-transformed data are much more symmetric

and appear to be closer to the normal distribution.

On the basis of the results of the normal distribution tests, the natural logarithms of
the plastic pipe flow rates were tested for outliers using the Grubbs, Dixon, and
Fourth-Spread tests. Following is a discussion of outlier screening in general, followed by

specific details pertaining to each of the outlier tests used in this analysis.

Outlier Screening
Outliers have been defined as observations that do "not conform to the pattern

established by other observations,”® or as observations that appear "to deviate markedly
from other members of the sample in which” they occur.' Outliers may be caused by
transcription, keypunch, or data-coding errors, instrument breakdowns, calibration problems,
and power failures, or they may be manifestations of a greater amount of inherent spatial or

temporal variability than expected.®

Many different tests exist to screen for outliers, some of which have certain

- limitations that prevent them from being applied to all datasets. Some tests require that the
data be distributed normally because statistical parameters are used in the outlier test, while
other tests rely on other types of information from the data to perform the outlier test.
Because of the variety and number of different outlier tests, it is therefore important that no
datum be discarded solely on the basis of a single statistical test. There should always be
some plausible explanation other than the test result that warrants the exclusion or the
replacement of an outlier.® If possible, several different types of tests should be applied to

validate the results of the outlier screening process.

The four different tests applied to the GRI plastic pipe data represent some of the

different types of outlier tests. The Grubbs test relies on statistical parameters (mean and
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Figure 1. Frequency Histogram for Plastic Pipe Flow Rate Data
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Figure 2. Frequency Histogram for the Natural Logarithms of the
Plastic Pipe Flow Rate Data
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standard deviation), the Dixon test relies on ratios of values in the tails, the Fourth-Spread
test relies on the spread of the central half of the data, and the conservative approach is
capable of handling any data distribution. Following are specific details regarding how
each of these tests were applied to the plastic pipe data.

Grubbs Test'

The hypothesis tested in the Grubbs test is that all observations in the sample come
from the same normal population. Thus, the transformation of skewed data, such as taking
the natural logarithms, may be necessary. The data are ordered from smallest to largest for
the Grubbs test, such that:

(X X, <X, <. 5 X, (1)

The Grubbs test is then applied to a single suspect value—either the largest value (X)) or the
smallest value (X,). For the largest value (X,), the test statistic (T,) is calculated as

follows:

T, = @)

where:
X, = the largest data value,
X

the arithmetic average of all » values, and

s the sample standard deviation, with n—1 degrees of freedom.

For the smallest value (X,), the test statistic (T,) is calculated as follows:

3

where:
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X, = the smallest data value, and

X and s = the same as for Equation (2).

The test statistic (T, or T,) is compared with the appropriate critical value for the statistic.
When the test statistic is larger than the critical value, then the suspect data point is deemed

a potential outlier,

Using the mean and standard deviation shown in Table 2 for the plastic pipe data,
T,=1.71 and T,=1.26 for the natural logarithms of the flow rates. The critical value for a
one-sided test using the 5% significance level for a sample size of six is 1.82, and the
critical value using the recommended 1% significance level is 1.94." Therefore, neither the
largest nor the smaillest of the patural logarithms of the plastic pipe flow rates were
considefed outliers by the Grubbs test.

Dixon_Test'

The Dixon test is an alternative system that does not rely on the calculation of
statistical parameters (e.g., the mean or standard deviation), and is based entirely on ratios
of differences between some of the observations. As with the Grubbs test, the Dixon test
requires a normal data distribution because the ratios of differences are calculated from both
tails. One drawback to the Dixon test is that not all of the data are utilized—only data from
the tails are used. Similarly to the Grubbs test, the data are ordered from smallest to largest
for the Dixon test, as shown in Equation (1). The Dixon test is then applied to a single
suspect value, either the largest or smallest of all of the data values. A test statistic (r_)
that depends on sample size is calculated. The formula for the largest value (X)) from a
sample size of 6 (the plastic pipe data sample size) is:

) E0) &'
Tp= ———— 4)
X=X,

where:
X, = the largest data value,
the second largest data value, and

b
K
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X; = the smallest data value.

The corresponding formula for the smallest value (X;) from a sample size of 6 data points
(the plastic pipe data sample size) is:
XZ_X!
Ig= ——— (3}
X.~X,

where:
X, = the second smaliest data value,
X, = the smallest data value, and
X, = the largest data value.

The test statistic (r,;) is compared to the appropriate critical value for the statistic. When
the test statistic is larger than the critical value, the suspect data point is deemed a potential

outlier.

Using the data shown in Table 2 for the plastic pipe data, r,,;=0.20 for the largest
value and r,=0.50 for the smallest value of the natural logarithms of the flow rates. The
critical value for a one-sided test using the 5% significance level for a sample size of six is
0.560, and the critical value using the recommended 1% significance level is 0.698.!
Therefore, neither the largest nor the smallest of the natural logarithms of the plastic pipe

flow rates were considered outliers by the Dixon test.

Fourth-Spread Test®
The Fourth-Spread (F-Spread) test does not rely on the calculation of the mean or

standard deviation, rather it relies on information from the center half of the data mass to
define the distance, beyond which, data points should be considered potential outliers. The
center half of the distribution is relatively insensitive to outliers and, therefore, provides a
reasonable basis for characterizing the distribution under the hypothesis that no outliers are

present. As with the Grubbs and Dixon tests, the data must be arranged from smallest to
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largest, as shown in Equation (1). The data need not be normally distributed, but the
distribution should be symmetric. First, the lower and upper fourths (also called the 25th
and 75th percentiles, respectively) for the data distribution are calculated. The

F-Spread (d;) is then calculated by subtracting the lower-fourth (F,) from the upper-fourth
(Fy). Any data points larger than F+(1.5xd;) and any data points smaller than

F, —(1.5xdy) are then considered potential outliers. Figure 3 shows the relationship between

the fourths and cutoffs used to define outliers with the F-Spread method.

iy

i =
L F-l1lsxd)

Flgure 3._ Deplctwn of ’the fonrths (FL and Fy), |
boundanes (F L-I SXdF, : : \

The F-Spread for the plastic pipe flow rate data was 2.6855 (F,,=2.3288 and
F;=—0.3567). Thus, data values smaller than —4.3850 or larger than 6.3571 should be
considered potential outliers. One of the six plastic pipe data points, the smallest (ID=2014,
value=0.008 SCF/leak-hour, In value=—4.8283), was therefore considered a potential

outlier.
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Conservative Approach’

This approach is conservative because it screens for only the most blatant outliers.
Thus, data points that may be considered outliers in other methods, may not be considered
outliers by this approach, unless they are separated by a rather large distance from the main
data mass. The histogram for the nontransformed data and the histogram from the natural
log-transform of the data are used as visual aids in this method. Some measure of the
normality (e.g., the Shapiro-Wilk W-statistic) for the data distributions shown in the two
histograms is also used in this method. The following four steps are applied in sequence

until the conditions are met and the criteria are defined for identifying outliers:

{1} The untransformed data distribution is normal. Values more than 3 standard
deviations from the mean (mean+3xstandard deviation) are considered potential
outliers. |

{2) The natural log-transforrned data distribution is normal. Values more than 3
standard deviations from the mean of the patural logarithms (meant3xstandard
deviation) are considered potential outliers.

(3) The untransformed data distribution is visually symmetric, but not normal. Values
more than 3 standard deviations from the mean {meant3xstandard deviation) are
considered potential outliers. '

(4) The untransformed data distribution is not normal and not visually symmetric.
Values more than 6 standard deviations from the mean (meant6xstandard deviation)
are considered potential outliers. For the plastic pipe datz, this method produced the
following results for the first two steps (at which point the conditions were met and
outlier criteria were established):

(N The untransformed data distribution is not normal. Go to step 2.

2) The natural log-transformed data distribution is normal. Therefore, values
more than 3 standard deviations from the mean are considered potential
outliers. Thus, using the mean and standard deviation shown in Table 2 for
the natural logarithms of the flow rates, values more than 9.3532 or less than
—8.7334 should be considered potential outliers. None of the data points
met these criteria and therefore there were no outliers.
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APPENDIX C

SUMMARY DATA TABLE

Appendix C presents the data summary table referenced in various places in the
body of this report. This table summarizes the final results of the study, including the
estimate of the industry annual emissions and the uncertainty thereof.

The primary focus of this report is to discuss the statistical methods used in the
study, not to present final results. For this reason, a2 detailed discussion of results for
different source categories will not be presented here; Appendix C is presented here for
completeness. The results are discussed in other project reports, such as Volume 1,
executive summary,' and Volume 2, technical report.

The column titled "Precision of Annual Emissions” is calculated as described in
some detail in earlier parts of the report. This precision measure is based on the
assumption that the error is normally distributed. A second uncertainty measure, in the
column titled "Conservative Precision of Annual Emissions,” was also calculated. This
measure is based on the assumption that the error is lognormally distributed. The purpose
of reporting this second precision value is to provide an approximate assessment of the
uncertainties of the different emission rates if the normal assumption is not satisfied. The
conservative precision value is Jarger than the normal precision estimate.

It is possible that the different emissions (the emissions by category and the industry
annual emissions) have errors with different distributions. Thus, both types of precision
measures are provided for each emission value giver in the data summary table.

The conservative precision measure is briefly described as follows.

In computing the conservative precision, the same standard error was used as in the
precision based on the normal assumption. The standard error is the estimated standard
deviation of the error in the emission value. However, an approximate 90% asymmetric
confidence interval was computed on the assumption that the error was lognormaily
distributed. The conservative precision is based on the upper confidence limit of this
interval, i.e.,

Peonservatve — 100% x (ERU.consm\re - ER)/ER

where

conservative precision (%),

p conservative

upper confidence limit based on the lognormal
assumption, and

ERU.mnm\'ative
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ER = estimated emission value.

Because of the asymmetry of the lognormal distribution (see Figure 4-2 and the
accompanying discussion), the conservative precision value is larger than the precision
based on the normal assumption. A lognormal precision based on the upper confidence
limit was provided as a conservative (large) upper bound for the emissions. The analogous
precision based on the lognormal lower confidence interval would be smaller than the
precision based on the normal distribution. The issues related to the calculation of the
conservative preciston value are discussed in Section A.4. Figures A-1 and A-2 depict
confidence intervals based on the normal and lognormal assumptions.

The data summary table also provides information conceming source
categories with activity factors or emission factors that have possibly correlated errors.
First, consider the activity factor groupings. All source categories with group 1, for
example, are postulated to have activity factors with weakly correlated errors. However, a
source category with group 1 and a category with group 2 are postulated to have activity
factors with uncorrelated errors. If no group number is listed for a source category, its
activity factor is assumed to be uncorrelated with that of any other category. A similar
scheme was used for identifying groups of sources with emission factors whose errors may
be correlated. The groups of categories shown were identified through engineering
Judgement and discussions between Radian and GRI staff.

These correlated groups were used to assess the impact of correlated errors
among source categories on the uncertainty of the industry annual emissions. The results of
this analysis are discussed in Section 6.1.

The groups for the activity factors are numbered from 1 to 16; i.e., 16 groups
of categories were identified such that all members of a group had activity factors with
possibly cotrelated errors.” The groups for emission factors are numbered from 20 through
30. The group numbers have no quantitative meaning whatsoever. The fact that there are
no groups numbered 17 through 19 has no importance.

The data summary table lists weak, medium, strong, and perfect correlations.
The numerical values used are as follows:

weak 0.2
medium 0.5
strong 0.8
perfect 1.0
weak-medium 0.3
medium-strong 0.6

These correlations are postulated values, not accurate quantitative estimates,
which are not available. Nevertheless, the postulated correlations provide a basis for
assessing the sensitivity of the results 1o correlated errors.
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METHANE EMISSIONM AND ACCURACY ESTIMATES
AL SRS =iy

{#} Based on a fotal gross nationa? groduction of 22132 Bacf for 1992
(b) Piecision based on & 0% conlidence interval.
{e) Tarue! Precision = 100°(A 24/SART(ER]), whais ER = emissions in Bsef Overall TP is +/. 1101 88 Bsct

y TP i +1. 1500%, Minimun Relative Category TP is +/. 75%, where TP = target preciston,
1+ Consewaiwa pecision based on upper limit of 2 90% cantidence interval. This confidence interval is based on 3 lognormal assumption.

Relalive Cat

BSCF EMISSION REPORT 1046456

Percent | Parcent | Activity . — Emission . _| Precision servative | Target
PROCESS SEGMENT 1962 1992 of Tolal | of Total Uppar Activity Upper Emission of Annual | Precision  |Precision
Emission Type Emi Emi Emissions [Production]  Vaiue Unrits Bound Factor Valua Ut Bound Factor Emissians | of Annual {%}
Source Ty} {8scl) %} % {8} | Comelated by Corelated Emissions (s}
1) N .Groups ) _____A__4__G_w_uiw—4, o
FRODUCTION —]
MHo:mal Fugitves
Gas Wells {Eastamn on shore} 0.0064 03352 0.11 0.002 128457 welks S5%| 1 weak 711 Scldiwall 27%) 20 weak 27 49% 31.39% | 1077.82
Field Separation Equipmant
{Easless on shotre)
Heaters £ 0000 20013 g 000G 260 heaters 196% | 2 medium 1421 ecfdtheatnr 43% 1 20 weak 217 64% A42313% § 1500.00
Separatars [edi 0] 0o301 001 4000 91,870 separators 23%: | 2 madium 0.90 scidisep 2% | 20  weak kLl 42.74% | 150000
Gathering Compressors
Small Regip. Compr. 000G O 0008 500 {000 128 compinssors 33% | 2 mediom 121 sctdlcomp 2% 0 weak 43.56% 53.45% 1 150000
MatersiPiping 0004|2508 008 0001 78262  meters 100%] 1 weak 801 scidimeler 0% | 20 weak 108.523% 160 02% | 124802
Cehydiators S0002 00082 coa £.000 1,047 dahydratoms 20% | 2 madium 21.75 scididehy 35% ) 20 weak A0 81% 45 63% | 150000
Gas Wells {Rest of US on shors) 00385 1 8988 089 0009 142 77 weile %) 1 weak 38,40 Scfdhweil 24% ) 20 weak 24,54% 27 85% | 45304
Gult of Mexice {olishare plfrms)} 00223 11815 037 4005 1,082 plattorms 10%] 3 weak 2014 Sefdiplat 1% 2897% 324%; ST
Rest of US {olfshare platforms) 000zl aooes 000 0.000 22 platforms 0% 3 weak 1173 Scidiplat 8% 37.54% 44.55% | 150000
Fiald Separabcn Equipmant
(Rastol US on sham] . :
Haaters 00206 1.0688 0.34 ¢Q05 50,743  healers B5% | 2 medium 877 sctdhaater 0% 21 weak 109.86% 171.56% | 80384
Sepatators C0536; 33252 1.08 0.015 74874 separalors 57% | 2 medium 120 scidisap 3] 21 weak 838.50% B3.05% | 34220
Gathering Compressos
Small Reclp. Compr, 028 16534 052 0.007 198515 compressors  S2% | 2 medium 2878  xcfdlcomp Ba%|! 2t weak g262% 137.068% | 48520
Laige Recip Comipr. o002 05328 Q17 4.002 086 compressors  1D0W I 4 mediom | 152050 scidicomp 85% | 22 waak-med. 135.83% 22T 42% ; BSAED
{.arge Recip. Stations 0.0007 0.0381 oo Q.000 12 stations 100% | 4 medium B2470  schdistation 102% ] 21 weak 175.52% AM902% | 1500.0C
Meters/Fiping o1118f 58153 1.85 o028 31,180  meters 100%| 1 weak 529  scidimetars 0%, 21 weak 108.83% 18302% | 25878
Dehydrators 20235 1.222% 039 OH08 30,777 dehydrators 20% | 2 mwdium 1.1 scldidehy 25%| 21 weak 32.40% 37.84% | 56428
Pipeline Leaks G.1268 #8000 210 0033] 340200 tniles 1% 5 pedect 532  scidmite 107% |23 mad -strong|  108.00% 1a7.72% ] 24289
Ventad and Cambusted
Drilting and Wel Complation
Completion Flaring o000 | 20004 000 0000 844 compliyr 10% 7331 sclicamp! H0% 201.25% 332.35% | 1500.00
Normal Qperalions
Preumatic Device Vents C6037 ) 213548 o9 0142} 248111  controliers A8% | 2 medium 345  Scididevice 0% B weak B84 99% A710% ] 11137
Chsmicaf In| Pumps. 00205| 15365 .49 0007 18071 active pumps  143% | 2 medlum 24805  Scldipump B3% 203 53% IBBO0% | S0I.N
Kirray Pumps 02108 100648 349 00501 1.105E+07  WMsctiyr BI% 13 medium|  PO200  sctiMMc! 7% 110.03% 171.80% | 18847
Dahydrator Vents coas? 4171 1.09 D015 [ 1. 240887 MMseftyr B2% [13 medium| 27557  scliiMect 154% 181.90% ISR I6%; AT 57
Compiessar Exhaust Vented
Gas Engines o267 25004 210 ugeciyd 27,480  MMHPhr 200% 0240 scfHPhr 5%] 27 perect 0031% WO0a% [ 24207
Rouling Maintenzacs
Well Workovers
Gax Wells 0.0004 40230 oM 000 B2 woly 258% 2454  sciyfwa. 459% 1206.00% ! 2748.84% | 150000
Wall Clean Ups {LP Gas Wells) Q1088 548578 180 o026 114,130 LP gas wells 45% | 2 medium 49570  sclyLP well 344% |24 med. stiong]  379.00% BI458% ( 28234
Blowdowns
Vesset D o008 00200 oo 0.000 255698  vessels 26% [ 2 medlum 74 Sctyhs] 266% 124 med -stigng | 2TA.07% S71.10% | 150000
Pipetine BCr o020 O.F0ST o003 Q003! 240000 miles{gath) 1%} 6 padect ¥ Sclyimils 32% [ 24 med.-strong 33.86% 38.56% | 150000
Compressor Bl 20012 g.oa4e 002 c00g 17.112 compressors 5% 2 medium 3774 Sclylcomp 147% 124 med -strong |  173.86% 35.14% § 150000
Compressar Staits 000287 01445 205 0001 17,912 compressors  52% [ 2 medium 8443 Sctyicomp 157% [24 med .stong| 184 44% 341.19% | 1500.00
Upsets '
Prossurs Ralisf Valves 00037 CONBYG oot poog| 528440 PRV 53% | 2 medium M SRV 252% {24 med..strang!  200.08% 608 8% | 1500.00
£5D 00055 O28a4 002 G.001 1115 platfarms W3 weak 256888 Schyiplat 200% 201 25% 392.35% | 118595
Mishaps {Dig-ins} S0044 0.2275 007 0.061 340 000 miles 10%] 5 parfect | 609 sctmilefyr  1925%{ 25 medivm | 193482% 1 3760.88% | 130838




3

?;]' Based on 8 tolei gross national praduction of 22132 Byct for 1992,

{b) Precision based on 8 90% confidencs interval.
(c} Target Preciston = 100%(8 24/SORT{ERY), where ER = emissions In Bscf. Overall TP is +1 11068 Bacf.

Ralail

Categ

¥ TP s +/- {500%, Minimun Relative Category TR ja /. 75%, where TP = target pracisian.

METHANE EMISSION AND ACCURACY ESTIMATES
Peicent | Porcant Actiity Emission - _ I Precision [Conservative | Target
PROCESS SEGMENT 1092 1092 of Tolal | of Tatal Upper 1 Aclivity Uppes Emission of Anhual [ Pracision |Pracision
Emission Type i5%i Ermigsi Emissions {Production| Valus Units Bound Facter Value Units Baund Faclor Emissions | of Annuat (%)
Source {Tg) {B5ch} (%} L] {b} [ Cotetated 1.3 Conefated Emissions {c}
| . () Groups o Groupa | N @y 1|
{das Processing Plants
MNormal Fugitives
Plants Q.43 20950 087 0000 by ] planis 2% | 8 perfect 7908  scidiplant A8% | 30 weak 48.05% 80 119 | 43112
Raocip, Compressors 032181 18725¢ 532 agzre 4,082 compressors 5% 11188  scidicomp T4% | 22 weak-med 45.00% 141.87% | 15258
Centilugal Compressors 0.1082 58257 1.79 of2s 728 compressors 77% 21230 sefdicomp 9% | 22 weak-med a1.39% 13411% | 25309
Vented and Combusted
Notmal Cperations
Compressar Exhaust
Gas Engines 01281 86824 212 c.03g 27,760 MMHPhr 132% | 8 medlum 0240 seliHPhr 5% ) 27 pardect 133 20% 221.71% | 24175
Gus Turbines o0038 01878 .08 0.001 32910 MMHPhr 121% 1 8 medium 0.0057 sciHPhr AN 28 perfect 126.84% 214.17% { 144074
AGR Venta aO158 0.8237 o2 0.004 371 ABRunHs 2% 8083  wclfAGR 105% 108.85% 100.48% | @8754
Kirmray Pumps 00033 01703 Q.05 o001 F57H0C  MMscllyr 182% 114 medivm 17775 scfiMsct 57% 228.00% 448 12% | 150000
Crahydrator Vants 00202 1.0480 om 0.005| 8930,000 MMscliyr 2% |14 medlym 12155  sciMMsct 207% 208.20% g9.58% [ 60828
Presumatic Devices a.0022 01106 e} 0.001 728 gas plants 2% | 4 perfmct 184728 sctyiplant 133% | 28 weak 133.04% I21.23% | 1500.00
Routine Maintenance :
Elowdgwnalventing g.0587 28475 .54 c.013 7286  gas plants 2% | @ paifact 4000 Mscfylph 282%; 2 swong | 282 18% 535.66% | 18348

{d) Conservative precision based on upper limit of a 90% confidence interval. This contidence interval s based on @ lognormal ussumplion.
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METHANE EMISSION AND ACCURACY ESTIMATES

Peicent | Parcent Activity Emission Pracision [Consarvative | Tasget
[PROCESS SEGMENT 1992 1992 of Total | of Total Upper | Aclivity Lppar Emission of Annual | Pracision [Precision
Emission Typa Emissi Emissgi Eenigs Production] Vaksme Units Bound Fartor Vilue Units Baund Factor Emissions | of Annuat (%)
Sourcs {Ig} (8scf) {%) % (&) | Comelated {0} Correlated Emissiony le}
{8 Groups Groups | {d}
TRANSMISSIQNISTORAGE g
Fugitivas
Pipaling Leaks G003t 0.1800 oons 0.004 284,500 mites 5% 1 7 parect 1.541 scldimiln 8% | 23 med..atrang 23.00% 130.14% | 150000
Campressor Stations [TRANS})
Stalion 1047 g 4497 113 oo 1,700 stations 10% 8778 scfdistation 102% ) 0 weak 103 00% 157.55% | 267.37
Recip. Compressor 07256 37.7933 12.0t 0170 8799  comp 7% 15208  scidicomp. 85% | 22 warak-mad, 85.09% 62.35%| 158
Centnfugal Compressor 31449 7.5328 240 0.034 a8t comp. 26% 3305 scfdicomp, 4% | 22 woak-med, 43 T% HI07% | 22738
Compiessar Stations {(STOR}
Station QT 37288 1.18 oo1? 4TS stations - 5% 21507 scidistation: 100%| 30 weak 100.25% 152405% | 32315
Recip. Comprassor D2068; 1075684 42 0048 1,308 £Omp. 5% 21118 scidfcomp 48% | 22 werak.mad B0 27% 11388% | 19024
Canlritugal Comprassor 00192 15178 S48 oo0? 13 comp. 119% 30573 wscldicomp. 14% | 22 weak-mad. 130 2% 21407% ) S0853
Walls {STOR) 30145 07522 02 0003 17,009 walls 5% 1145 scidhwal] 5% 78.208% 106.04% | TI0.47
MER {Trans. Co intsrconnect) o.0rca 38004 7 0017 2533 stations TTE%N 3984 scidistation 80 e98.88% | N97.40% | 232514
MAR {Farm Taps + Diract Sates) 20159 08274 0¥ 0004 72,630  stations T80% 31.2  scidfstation B80% 100200 ) 2207.28%| 68813
Veanted and Combusted ’

Naoterat Cperations .
Dehydrator Vants (TRANS) o002 31018 003 G000 | 1,088,000 MMscfiyr 144% BIT72  scfMMMsct A% J91.75% B824.25% | 150000
Dehydtator Vents {STOR) 00045 0.2344 o007 000t 2000000 MMscityr 25% 117,18 scifiMised 150% 166 56% 2098 24% | 128808
Compressor Exhaust

Engines (TRANS} 01884 98912 e 0044 40380  MMHPhr 17% [IG medium 0243 echHPhe 5%f 7 pedect 17.74% 18235% | 20045
Turbines {TRANS Q001 0549 ooz 4000 9635 MMHPhr 33% {10 medium| DDOS7  sciHPhr 30%| 25 pertect 45.60% 56.58% | 1500.00
Engines (STOR) 0.0227 11913 438 0005 4922 MMHPhr 20% |11 medium 0240 sodHPhe 5%| 27 perdect 27.49% 31.3e%| S5T413
Turbinas {STOR} 0002 0.0009 000 0.000 1720 MMHPH #28% 11 medium| 00057 seffHPhe 30% ) 28 padect S54.26% 1 1485 72%. ] 150000
Gwneralors [Engines} 0.00%% 04148 015 0002 1,878 MMHPhr A5% 312 medim 0240 sclMPhe 5% | 27 perect 45.25% 55.04% | 90580
Generators {Turbines) £.0000 0.0001 000 0000 233 MMHPhr  1114% 12 medlin]| 0007 ectHPhr %] 28 perfect | 110332% 251001% | 150000
Preumatic Devices 02720 141448 450 S.084 87,200 dwvices 3% 18197 schyldevice 44% | 28 wesk B0, 45% To55%| 16592

Routine Malntenancaflipsaty
Pipelina Venting 01732 S0044 2587 oodt 284,500 mifes 5% ¥ peitect MB5 Mashimils 136% 236.25% 48992% | 207.95
Statian Venting 0.1823 B4800{ 3oz 0.043 2178 emp stations % 4350 Msclylstation  282%| 26 stong | 28286% 53883% | _202.67

{a) Based on & total gross national production of 22132 Bscf for 1992,
{t)} Pizcinion based on a P0% conlidance intrval.
{c) Targat Precision = 100%(8 24rSORT{ERY), where ER ¥ emissions in Heef  Overali TP i% +f- 110,68 Bsef.
Maximurm Retative Category TP ia +/- 1500%, Minimur: Relutive Category T8 {s +4 75%, wﬁars TP = target precision.
{d} Conservaliva pracision hased on uppsr limit ¢f & 90% canlid intarval This contid 'al s based on a Jognormal assumption.
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METHANE EMISSION AND ACCURACY ESTIMATES

{b} Pracialon basad on a BO% connidence interval.
{c} Targat Piecision = 10048 24SORT(ER)), whata ER = smissians in Bsel Cwverall TP Iy +f. 11056 Sscf.
Maximum Relative Category TP is +/. 1500%, Minimun Relative Category TR is +/ 75%, where TH* = taiget precision,

{d} Consarvalive piacision based on upper Timil of a 90% «

10716798

| This canfid

fis based on a fognormal assumption.

Paicent { Parcent Acity b Emisslon . .or. _} Puecision [Conservative | Tamiget
PROCESS SEGMENT 1692 1602 of Total | of Totat Upper |  Activity Upper Emission of Annual | Precision  [Precision)
Emission Type Emissi Emissi Emissi Production|  Value Units Bound | Factot Value Units Bound Faciar Emissions | of Annual %)
Source {Tg) {Bsch) {%} % (&) | Conetated {b} Conelated Emissions {©)
G _f fa) Groups Groups {4 i
DISTRIBUTION
Normal Fugitives
Fipefline Leaks

Mains - Cast fron 03538 131892 420 0.080 55,783 miles 5% 2367 Msctimile-yr 84% 83 97% a53a% | 17i76

Malng - Unprolacted Stas] 01740 8.0478 2.89 0041 174,857 equiv. leaks SERI15  weak 518 WMeclAsaky 93% 12242% 198 05% | 20745

Mains - Protected Stast C0268 1.3848 0.44 005 88,308 equiv. leaks 82% | 15 weak 203 Mscileak.yr B5% T18.00% 188 58% | 53030

Mains - Plastic 0.0845 49150 156 0022 48220 equiv leaks  TIH%[ 15 weak P98 Mscifwak.yr 185% 282, 18% 580.568% | 28147

Services - Unprotected Steel 01791 926830 295 0.042 458,478 equiv. loaks  109% |15  weak 202 Mscteak-yr 105% 188 27% 35292% | 20503

Services - Protectad Stasl 40881 16922 1.14 8018 300,628 equiv. Jeaks 135K ] 15 weak 020  MscHleakyr 81% 168.90% 300.78% ] 3204

Ssnices - Plastic 0.0032 31644 405 oo 58,603 equly. leaks B7% | 15 weak 239 Mscieakyr 143% 221.59% 433.02% | 1500.00

Sarvices - Coppar 00011 0.0593 00z D.D00 TT20 equiv. leaks  110% |15 weak 788 Mscifeak-y 2% 154. 5% 264 35% | 1500.00

Meter/Regulator {City Gates)}

MER= 20 Q1048 5.4510 1.73 Q025 3462  stations Ti% {18  waak 1788 scifvstation I9% 85 4% 12347T% | 28727

M & R $00.300 02148 11.1731 358 0058 13335 stotions 106% 119 weak 958  scthstation 112% 194 B7% 30686% | 194.688

MAR <100 8.0052 0.2603 009 2001 FA27  stations 118% |16 wwak 43t scthistalion 2% IT0H% S1206% ! 120235

Reg > 300 G 109G 5.8855 140 0.028 30865  stations 83% | 18 weak 1919 scitstation 58% Br.37% 144.35% | 20218

R-Waul » 300 00005 0.0268 oo 0.0 2340  atations 0% |14 weak 1% scthistation 182% 230 44% 455.26% | 1500.00

Reg 100-300 (0837 43520 1.3 o020 12273 stations B1% 18 weak 405  ecthistation 88% 93.47% 14B52% | 29012

R-Vaull 103-300 0.0002 {0087 0.00 0.000 5514 stations 4% [ 18 wezk G180  sctiistation 4% 120.14% 200.09% ) 1500.00

Reg 40-100 0.0064 03317 a1 0.001 30328 wtalions 4% [ 18 waak 1.04  scfhistation T4% 100.09% 1600.06% | 1083.42

R-Vault 40-10CG 0.0005% 00244 4313 0000 32215 statiens GA% |18 weak 00885 scfhistation £4% BE6T% 149.51% | 1500.00

Reg < 40 40003 Qo179 1024 0.000 15377 stations 85% | 16 wesk 0133 softvstation 135% 17397% 315.97% | 1500.00

LCustomar Meters
Residantial 0.1087 55488 178 0025 | 40,048,308 ouldr metars 10% 1385  schyimeler 17% 1880% 21.80% | 28465
Commerciallndustry £.0042 G 2207 047 3001] 4808000 malers 5% 479  scly/mater a5% 35 40% 4191%] 132820
Vented
Routine Maintenance
Piessura Reliel Valve Releases £.000a 00418 oot 0.000 833780  mile muin % 2050 Mschmile 3914% 3918.88% | 61BG.19% | 150000
Pipeline Blowdown 0025 01324 004 00017 1,297.580 miles 5% | A perfect 2102 Mschimile  2521% 2574.15% | 4578.78% ! 150000
Upsels '

Mishaps (Dig-ins) 00397 | 20631 088] 000B| 1207580  miles S% {8 padect 160 _ Mschy/mile  1922%| 25 medium ] 192441% | 3751.85% ) 434.43
INDUISTRY TOTAL EMISSIONS §0437 ) 3142714 | 100.0000 1.4200 28.51% 2% B2
UNGERTAINTY (+/) _ .t oo seece )

{a} Based on & total gross pationsl production of 22132 Bsc! lor 1992,
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