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FOREWORD 

The U. S. Environmental Protection Agency is charged by Congress with pro-
tecting the Nation's land, air, and water resources. Under a mandate of national 
environmental laws, the Agency strives to formulate and implement actions lead-
ing to a compatible balance between human activities and the ability of natural 
systems to support and nurture life. To meet this mandate, EPA's research 
program is providing data and technical support for solving environmental pro-
blems today and building a science knowledge base necessary to manage our eco-
logical resources wisely, understand how pollutants affect our health, and pre-
vent or reduce environmental risks in the future. 

The National Risk Management Research Laboratory is the Agency's center for 
investigation of technological and management approaches for reducing risks 
from threats to human health and the environment. The focus of the Laboratory's 
research program is on methods for the prevention and control of pollution to air, 
land, water and subsurface resources; protection of water quality in public water 
systems; remediation of contaminated sites and groundwater; and prevention and 
control of indoor air pollution. The goal of this research effort is to catalyze 
development and implementation of innovative, cost-effective environmental 
technologies; develop scientific and engineering information needed by EPA to 
support regulatory and policy decisions; and provide technical support and infor—
mation transfer to ensure effective implementation of environmental regulations 
and strategies. 

This publication has been produced as part of the Laboratory's strategic long-
term research plan. It is published and made available by EPA's Office of Re-
search and Development to assist the user community and to link researchers 
with their clients. 

E. Timothy Oppelt, Director 
National Risk Management Research Laboratory 

EPA REVIEW NOTICE 

This report has been peer and administratively reviewed by the U.S. Environmental 
Protection Agency, and approved for publication. Mention of trade names or 
commercial products does not constitute endorsement or recommendation for use. 

This document is available to the public through the National Technical Information 
Service, Springfield, Virginia 22161. 
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DISCLAIMER 

LEGAL NOTICE: This report was prepared by Radian International LLC as an account 

of work sponsored by Gas Research Institute (GAD and the U.S. Environmental Protection 

Agency (EPA). Neither EPA, GRI, members of GM, nor any person acting on behalf of 

either: 

a. Makes any warranty or representation, express or implied, with respect to the 

accuracy, completeness, or usefulness of the information contained in this 

report, or that the use of any apparatus, method, or process disclosed in this 

report may not infringe privately owned rights; or 

b. Assumes any liability with respect to the use of, or for damages resulting 

from the use of, any information, apparatus, method, or process disclosed in 

this report. 

NOTE: EPA's Office of Research and Development quality assurance/quality control 

(QA/QC) requirements are applicable to some of the count data generated by this project. 

Emission data and additional count data are from industry or literature sources, and are not 

subject to EPA/ORD's QA/QC policies. In all cases, data and results were reviewed by the 

panel of experts listed in Appendix D of Volume 2. 
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RESEARCH SUMMARY 

Title 
	

Methane Emissions from the Natural Gas Industry, 
Volume 4: Statistical Methodology 
Final Report 

Contractor 	Radian International LLC 

GRI Contract Number 5091-251-2171 
EPA Contract Number 68-D1-0031 

Principal 	Hugh J. Williamson 
Investigators 	Mary B. Hall 

Matthew R. Harrison 

Report Period 	March 1991 - June 1996 
Final Report 

Objective 	This report describes the statistical methods used to quantify the annual 
methane emissions from the natural gas industry. The objective was to 
determine this quantity with an accuracy of 0.5% of production on the 
basis of a 90% confidence interval. 

Technical 	The increased use of natural gas has been suggested as a strategy for 
Perspective 	reducing the potential for global warming. During combustion, natural 

gas generates less carbon dioxide (CO2) per unit of energy produced than 
either coal or oil. On the basis of the amount of CO, emitted, the 
potential for global warming could be reduced by substituting natural gas 
for coal or oil. However, since natural gas is primarily methane, a potent 
greenhouse gas, losses of natural gas during production, processing, 
transmission, and distribution could reduce the inherent advantage of its 
lower CO2  emissions. 

To investigate this, Gas Research Institute (GRI) and the U.S. 
Environmental Protection Agency's Office of Research and Development 
(EPA/ORD) cofunded a major study to quantify methane emissions from 
U.S. natural gas operations for the 1992 base year. The results of this 
study can be used to construct global methane budgets and to determine 
the relative impact on global warming of natural gas versus coal and oil. 

Results 
	

The national emissions for the base year are 314 ± 105 Bscf (± 33%), 
which is equivalent to 1.4% ± 0.5% of gross natural gas production. The 
program reached its accuracy goal and provides an accurate estimate of 
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methane emissions that can be used to construct U.S. methane 
inventories and analyze fuel switching strategies. 

Technical 	The technical approach involved several aspects, including statistical 
Approach 	sampling, estimation of annual emission values, and quantification of 

uncertainty. 

To facilitate the sampling process, the industry was divided into emission 
source categories. A target accuracy value was computed for each 
category as an aid in allocating sampling resources. The target 
accuracies were updated as the sampling process proceeded and more 
was known about the characteristics of the categories. 

Tests were performed to identify categories for which the sampling 
process may have produced a bias. While these tests were designed to 
identify bias, they were also sensitive to sampling anomalies. If 
undetected, such anomalies could have led to larger than expected 
random errors. While no test exists that would absolutely guarantee that 
zero bias existed, the bias screening that was performed was of 
significant benefit in the study. When evidence of bias was discovered, 
steps were taken to remove it. Collecting more data is one possible step; 
other remedies are discussed in the report. 

For each source category, an activity factor and an emission factor were 
computed. Typically, the activity factor is the number of sources 
(population) of a source category, and the emission factor is the average 
annual emissions of a source. The uncertainties of both the activity 
factor and the emission factor were quantified on the basis of the data. 

The national emissions for a source category equals the activity factor 
times the emission factor. The annual emissions for the industry is the 
sum of the annual emissions for all the categories. Analysis of error 
propagation was performed to compute the uncertainty of the annual 
emissions by category and the uncertainty of the national emissions. 

An analysis was performed to determine the sensitivity of the uncertainty 
in the national emissions to the presence of non-normally distributed 
errors and correlated errors among source categories. The uncertainty of 
the national annual emissions was computed under worst-case 
assumptions. 

Project 	For the 1992 base year the annual methane emissions estimate for the 
Implications 	U.S. natural gas industry is 314 Bscf ± 105 Bscf (± 33%). This is 

equivalent to 1.4% ± 0.5% of gross natural gas production. Results from 
this program were used to compare greenhouse gas emissions from the 
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fuel cycle for natural gas, oil, and coal using the global warming 
potentials (GWPs) recently published by the Intergovernmental Panel on 
Climate Change (IPCC). The analysis showed that natural gas 
contributes less to potential global warming than coal or oil, which 
supports the fuel switching strategy suggested by IPCC and others. 

In addition, results from this study are being used by the natural gas 
industry to reduce operating costs while reducing emissions. Some 
companies are also participating in the Natural Gas-Star program, a 
voluntary program sponsored by EPA's Office of Air and Radiation in 
cooperation with the American Gas Association to implement cost-
effective emission reductions and to report reductions to the EPA. Since 
this program was begun after the 1992 baseline year, any reductions in 
methane emissions from this program are not reflected in this study's 
total emissions. 

Robert A. Lott 
Senior Project Manager, Environment and Safety 
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1.0 	SUMMARY 

This report is one of several volumes that provide background information 

supporting the Gas Research Institute and U.S. Environmental Protection Agency Office of 

Research and Development (GRI-EPAJORD) methane emissions project. The objective of 

this comprehensive program is to quantify the methane emissions from the gas industry for 

the 1992 base year to within ±0.5% of natural gas production starting at the wellhead and 

ending immediately downstream of the customer's meter. 

This report presents a detailed discussion of the statistical methods used in this 

study. The major topics discussed include statistical sampling issues, calculation of the 1992 

national emissions, and determination of the uncertainty of this value. 

To facilitate the sampling process, the industry was divided into source 

categories. A target accuracy value was computed for each category as an aid in allocating 

sampling resources. The target accuracies were updated as the sampling process proceeded 

and more was known about the categories. 

Tests were performed to identify categories for which the sampling process 

may have introduced a bias. While these tests were designed to identify bias, they were also 

sensitive to sampling anomalies. If undetected, such anomalies could have led to larger than 

expected random errors. While no tests exists that would absolutely guarantee that zero bias 

existed, the bias screening that was performed was of significant benefit in the study. When 

evidence of bias was discovered, steps were taken to remove it. Collecting more data is one 

possible step; other remedies are discussed later in the report. 

For each source category, an activity factor and an emission factor were 

computed. Typically, the activity factor is the number of sources (population) of a source 

category, and the emission factor is the average annual emissions of a source. The 
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uncertainties of both the activity factor and the emission factor were quantified on the basis 

of the data 

The national emissions for a source category equals the activity factor times the 

emission factor. The annual emissions for the industry is the sum of the annual emissions 

for all the categories. Analysis of error propagation was performed to compute the 

uncertainty of the annual emissions by category and the uncertainty of the national emissions. 

An analysis was performed to determine the sensitivity of the national annual 

emissions to the presence of non-normally distributed errors and correlated errors among 

source categories. The uncertainty of the national annual emissions was computed wider 

worst-case assumptions. 

National emissions were quantified to be 314 ± 105 Bscf (± 33%), which is 

equivalent to 1.4% ± 0.5% of natural gas production. The accuracy goals of the project 

were met. 
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2.0 	INTRODUCTION 

In general, the first step for estimating methane emissions from the U.S. 

natural gas industry was to identify, delineate, and characterize each emission source within 

the industry, so that all significant sources were included. The industry characterization 

affected the sampling strategy and, therefore, is relevant to the statistical methodology 

discussed later in the report. While the industry characterization is covered in detail in other 

Tier 3 reports, a brief summary follows. 

The industry was divided into its principal market segments: production, 

processing, transmission, and distribution. Within each market segment, the process 

facilities were identified, and within each facility, the individual pieces of equipment and 

components contributing to emissions (the source categories) were identified. The 

disaggregation ensured that no sources were overlooked or double counted and produced a 

manageable framework within which the study would be conducted. The industry market 

segments, major facilities within those segments, and the major equip:tent within the 

facilities are shown in Table 2-1. 

After identifying the major equipment (source categories) in each industry 

market segment, all possible emissions from each source were identified by examining the 

operating modes of the equipment that may lead to emissions and by associating one of three 

possible types of emissions with the source: fugitive emissions, vented emissions, or 

combustion emissions. 

In Section 3, sampling and methods for avoiding bias are discussed. In Section 

4, the methods used to extrapolate emissions estimated for individual sources to obtain a 

nationwide average are discussed. Methods for quantifying uncertainty are also discussed in 

Section 4. In Section 5, the major statistical assumptions are summarized. Results 

pertaining to the attainment of the target accuracy are presented in Section 6. 
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TABLE 2-1. INDUSTRY CHARACTERIZATION 

Segment Facilities Equipment at the Facility 

Production Well Sites, 
Central Gathering Facilities 

Wellheads, Separators, 
Pneumatic Devices, Chemical 
Injection Pumps, Dehydrators, 
Compressors, Heaters, Meters, 
Pipelines 

Processing Gas Plants Vessels, Dehydrators, 
Compressors, Acid Gas 
Removal (AGR) units, Heaters, 
Pneumatic Devices 

Transmission Transmission Pipeline Networks, 
Compressor Stations, 
Meter and Pressure Reg. Stations 

Vessels, Compressors, 
Pipelines, Meters/Pressure 
Regulators, Pneumatic Devices 

Storage Underground Injection/ Withdrawal 
Facilities, and Liquefied Natural Gas 
(LNG) facilities 

Wellheads, Vessels, 
Compressors, Dehydrators, 
Heaters, Pneumatic Devices 

Distribution Main and Service Pipeline Networks, 
Meter and Pressure Reg. Stations 

Pipelines, Meters and Pressure 
Regulators, Pneumatic Devices, 
Customer Meters 
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3.0 	SAMPLING AND AVOIDING BIAS 

Data obtained in this project were necessarily collected from a limited number 

of sources. These data were extrapolated to obtain nationwide estimates for similar sources 

throughout the industry. The extrapolation techniques for creating nationwide emission 

estimates were developed so that the emissions for each source category could be estimated 

with a relatively high level of precision (given the nature of this study) and negligible bias. 

The extrapolation approach is a method to scale up the average emissions 

from a source, determined by a limited sampling effort, to represent the entire population of 

similar sources in the gas industry. The extrapolation approach uses the concept of 

emission and activity factors to estimate emissions on the basis of a limited number of 

samples. These factors are defined in such a way that their product equals the total annual 

nationwide emissions from a source category in the natural gas industry. 

EF x AF = National Emissions for a Category 	 (1) 

where: 

EF = emission factor for a category, and 

AF = activity factor for the same category 

Typically, the emission factor for a source category represents the average 

emissions per source, and the activity factor represents the total industry population of the 

source. The emission factor is the summation of all measured or calculated emissions from 

each of the sources sampled divided by the number of sources sampled. The activity factor 

is the total number of sources in the entire target population or source category. However, 

in applying this simplified approach to developing emission and activity factors, it is 

important to ensure that there is no bias in the data. 
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The extrapolation methodology involves more than just the scaling up of 

emissions data; it also includes the sampling approach, which is fundamental to the 

accuracy of the emissions data. 

Basic issues pertaining to accuracy, precision, and bias are discussed in 

Section 3.1. The sampling approach designed specifically for this project is presented in 

Section 3.2. Calculation of target precision by source category is discussed in Section 3.3. 

The methods for estimating the emission factors and activity factors are discussed in 

Sections 3.4 and 3.5, respectively. Summary comments regarding techniques used to screen 

for bias are given in Section 3.6. 

3.1 	Accuracy, Precision, and Bias 

Figure 3-1 illustrates the role of random and bias errors in the estimation 

process. In each of the four illustrations in this figure, the center of the concentric circles 

represents the correct answer. In the illustration in the upper left, there is a significant 

amount of random scatter in the points. The term "precision" refers to random variability 

alone; in this case, the precision is poor. Additionally, the points are predominantly below 

and to the right of the target. The systematic difference between the points and the correct 

answer is a bias. The term "accuracy" refers to the total error, including random and bias 

errors. Because of the large bias and the poor precision, the accuracy is also poor. 

In the illustration in the upper right of Figure 3-1, the points are randomly 

scattered about the correct answer; there is little or no bias in this case, but the precision 

and accuracy are both poor. In the lower left, there is good precision, but there is again a 

large bias; thus, the accuracy is poor. In the lower right, the bias is small, and the precision 

is good. Thus, the accuracy is good in this case. 

Sampling bias occurs if the methodology is flawed in a manner that leads to a 

systematic under-representation of parts of the population and a systematic over- 
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High Bias + Low Precision 	 Low Bias + Low Precision 
= Low Accuracy 	 = Low Accuracy 

High Bias + High Precision 	 Low Bias + High Precision 
= Low Accuracy 	 = High Accuracy 

Figure 3-1. illustration of Random and Bias Errors 
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representation of other parts. Bias, in a statistical sense, can be explained as follows. 

Suppose it was possible to repeat the sampling and measurement process infinitely many 

times, and that each time the process was repeated, an independent estimate of a given 

emission factor was obtained. If the average of the entire infinite set of emission factor 

estimates equalled the true value, then a bias would not exist. If the average of these 

estimates differed from the true value, then the process would be wrong in a systematic 

sense, and a bias would be said to exist. The point here is that averaging an infinite set of 

independent estimates of the emission factor would remove random error altogether, leaving 

only bias error, if any. While it is clearly impossible to obtain an infinite set of estimates 

of an emission factor, the example given serves to illustrate the meaning of bias. 

3.2 	Sam_pling Approach  

Even if the overall precision of an estimate is acceptable because the 

variability in the data is relatively low, the overall accuracy may still be poor if the data are 

biased. Several sampling approaches can be applied in order to avoid bias. 

Random Sampling—Random sampling produces a sample set obtained in 

such a way that each source in the population has an equal probability of being selected. A 

random sample is expected to "match" the industry population because no biases are 

introduced when selecting the sites. The number of data points required in a random 

sample depends on the target precision of the final emissions estimate, the confidence with 

which this precision is to be met, and the underlying variability among the annual emissions 

of the complete set of sources. 

Random sampling is not a guarantee of accurate results. It is possible, for 

example, that, by pure chance, random sampling would produce a disproportionately large 

number of sources from the Gulf Coast and an under-representation of sources from the 

West Coast. While such an outcome is unlikely if the sample size is sufficiently large, this 
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particular problem can be avoided altogether by selecting an acceptable number of sources 

from each of a set of regions (see the discussion of stratified random sampling below). 

There are two major reasons why truly random sampling was not possible in 

the GRI/EPA program. First, a complete list of sources did not and still does not exist. It 

was possible, for example, to list all compressor stations whose owners were GRI members. 

While this might account for 90% of the compressor stations, the list was not complete. 

Another example is the production segment, where it was not possible to produce a list of 

all the individual well owners for random selection. The second reason random sampling 

was not possible is that the owners of the randomly selected sources would not have been 

required to participate in the study. For this reason, there is no guarantee that a truly 

random sample of the available list could be tested. 

Stratified Random Sampling—In stratified random sampling, the population 

of interest is divided into subsets, or strata. Then random samples are drawn from each 

stratum. For example, the sources of interest in this program could be stratified by 

geographical region, and random sampling could be applied within each region. 

Strata are typically chosen so that the variable of interest (emission factor or 

activity factor) has a smaller variance within the strata than in the population as a whole. If 

this objective is achieved, stratified sampling can usually allow a given precision 

requirement to be achieved with a smaller sample size. 

Sampling to include the different regions in the country was important. Each 

producing region selected for the United States had unique production characteristics. 

Failure to account for these regional differences in the extrapolation could have led to 

significant bias in the estimate. 

Stratified random sampling can be performed proportionately or 

disproportionately. In proportionate stratified random sampling, the number of sources 
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sampled in a stratum is in proportion to the total number of sources in that stratum. For 

example, if Region A had twice as many sources as Region B, then the sample would 

include twice as many sources from Region A as from Region B. From an intuitive point 

of view, a proportionate stratified random sample "matches" the population, at least with 

respect to the criteria used to specify the stratification. 

Proportionate stratified random sampling can be used to address the issue of 

regional differences, but only if applied properly. In the paragraph above, it is suggested 

that sources could be sampled in proportion to the total number of sources by region. 

Alternatively, proportionality could be achieved on the basis of gas production, rather than 

on the basis of the number of sources. The variable or variables used to achieve 

proportionality must be closely related to emissions or proportionate random sampling 

would serve no purpose. 

It is common in practice, however, to sample in such a way that the sample 

size for a stratum is not in proportion to the total number of sources in the stratum (and the 

throughput of the sampled sources is not proportional to total throughput in the stratum). 

This type of sample is called a "disproportionate stratified random sample." This type of 

sample does not "match" the population in the sense described above. As long as the 

disproportionality is accounted for in computing the final statistics (e.g., mean emission rate 

by source category), disproportionate sampling will not cause a bias in the final results. 

There are various reasons for disproportionate stratified sampling. 

Convenience and opportunity may be factors. On a given field tip, for example, there may 

be the opportunity to sample more sources in a given category than are needed to achieve a 

proportionate random sample. Given the opportunity, it is better to obtain the available 

data than to restrict the sampling just to maintain a proportionate sample. Statistical issues 

may also lead to disproportionate sampling. For example, it may be advantageous to obtain 

more data points for a stratum within which the emission rate has a larger variance than 
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within another stratum with a small variance; i.e., a more accurate estimate of the total 

emission rate may be achieved on the basis of a disproportionate sample. 

Neither type of stratified random sampling was feasible in this study. The 

obstacles to random sampling, discussed earlier in this section, were also obstacles to 

random sampling within strata. 

Further, at the outset of the program, it was not known which variables were 

related to emissions; thus, it was not known which variables should be used as a basis for 

stratification. If stratification had been performed on the basis of all variables that could 

possibly influence emissions, the number of strata (determined by the number of variables 

and the number of categories for each variable) could have become unreasonably large. For 

example, for leakage from underground distribution mains and services, a number of 

parameters were identified that potentially influence emissions: pipe material, age, 

operating pressure diameter, soil type, and parameters characterizing the leak detection and 

repair practices of the company. The required sample size can become large because of the 

total number of strata, especially if proportional stratified random sampling is used. One 

company has embarked upon an independent program to quantify leakage from 

underground mains and services using a proportional sampling approach. Even within this 

single company, hundreds of samples were required to produce a proportionate stratified 

random sample for underground pipelines. 

Additionally, stratified sampling is of no use unless there are activity factors 

that can be used, to estimate the emission rate for the population. Complete information for 

all variables of potential interest does not exist. For example, the age of a dehydrator may 

not be known even by the owner of the equipment in some cases. It would be pointless to 

stratify dehydrator emission factors with respect to age if the necessary activity factors 

cannot be obtained. 
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Approach Selected For This Program—Thus, because of various practical 

limitations, neither random sampling nor stratified random sampling was feasible in this 

study. For this reason, an alternate approach was used. While this approach is not a 

textbook sampling method, it is believed to be very effective for the specific needs of this 

project. The selected approach is similar to disproportionate stratified random sampling, 

with certain differences. 

Initially, some data were collected to determine if a given source was a major 

contributor to the methane emissions. For each source category, an initial estimate of the 

number of sources to be sampled was calculated based on an estimate of the target 

precision and the estimated standard deviation for the source category. The target 

precisions are based on the need ultimately to estimate the annual national emissions to 

within 0.5% of the annual national production (±111 Bscf) on the basis of a 90% 

confidence limit. The approach for determining the target precisions for the different 

source categories is discussed in the next subsection. Sites were selected in a random 

fashion from known lists of facilities, such as GRI or A.G.A. member companies. 

However, the companies contacted were not required to participate, and a complete list of 

all sources in the United States was generally not available; therefore, the final set of 

companies selected for sampling was not truly random. Each company that agreed to 

participate in the program was asked to select representative sites for sampling, rather than 

one-of-a-kind facilities. 

After a limited set of data was collected, the data were screened for bias by 

evaluating the relationship between emission rate and parameters that may affect emissions. 

The topic of screening for bias is discussed further in Section 3.4, which pertains to the 

emission factor approach. If a relationship between emissions and a parameter was found, 

then the population, or the number of sources in the industry, was stratified by that 

parameter. For example, station type was determined to influence the emission rates from 

metering and pressure regulating stations, so the number of stations under each station type 

in the nation was determined. To stratify the population of sources by a parameter, data 

12 



were collected from companies on the distribution of sources in each stratum, and an 

average covering all companies sampled was determined. 

It is important to realize that just because a parameter or set of strata is 

identified that has a large effect on the emissions from a given source category, it does not 

mean that there is bias in the data. A second condition is necessary: The sampling 

procedure would have to produce disproportionate numbers of samples in the strata. To 

determine whether this has occurred, information is needed on the ratio of the total number 

of sources in a given stratum to the total number of sources throughout the country. If this 

ratio is different from the corresponding ratio for the sample data set, then there may be 

bias. But this bias can be eliminated by applying the correct emission factors and activity 

factors for the different strata. 

Once the strata were identified, the precision of the emission rate extrapolated 

to a national basis was evaluated and compared to the target precision for the source 

category; the calculation of target precisions for all source categories is discussed in the 

next subsection. Where necessary, additional data were collected in various strata to 

improve the precision of the national estimate of emissions from the source. The number 

of additional data points needed to meet the newly calculated target precision is computed 

on the basis of measures of uncertainty (confidence intervals) introduced later in this report. 

Tables showing the general data for the sites visited (sampled) in the 

production, processing, transmission, and storage segments of the gas industry are presented 

in Appendix A of Volume 5 on activity factors.' These tables are not central to the 

discussion of statistical methods, but they are mentioned here because they provide an 

indication of the magnitude of the sampling effort. 
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3.3 	Target Precisions 

A further issue regarding sampling is the number of sources to sample in each 

category. The ultimate objective is to estimate the industry annual emissions within 0.5% of 

the annual natural gas production (within 111 Bscf) on the basis of a 90% confidence 

interval. The sampling must be adequate to achieve this objective. 

It is necessary to sample in a way that will lead to the required accuracy in the 

estimate of the industry total emission rate. Given this objective and the finite resources 

available for the project, it was not feasible to characterize the emissions from all source 

categories extremely accurately.  

A large percentage error can be tolerated in the estimate of the emissions from 

categories that have small emissions without jeopardizing the accuracy of the national 

emissions. The percentage errors for the categories with the largest emissions would have 

the largest contribution to the error in the national annual emissions. 

Table 3-1 illustrates these ideas. A hypothetical case has been chosen with 

two categories. The two source categories have emissions of 0.1 and 50 Bscf. (The range of 

emissions by category in the gas industry is even greater, as shown by the summary table in 

Appendix C.) 

In Table 3-la, the relative uncertainty of the emissions from each source is 

20%. As a result, the relative uncertainty of the emissions for the two categories is 10.0 

Bscf, or 20.0% of the emissions. 

In Table 3-1b, the uncertainties are unequal percentages of the category 

emissions. For the category with smaller emissions, the uncertainty is 100% of the 

emissions. For the category with larger emissions, the uncertainty is only 10% of the 
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emissions. In this case, the uncertainty of the emissions of the two categories is half the 

previous value, despite the 100% uncertainty for the category with the smaller emissions. 

TABLE 3-1. HYPOTHETICAL ILLUSTRATION OF ISSUES 
RELATIVE TO TARGET ACCURACY 

(a) Case with Equal Percentage Uncertainties 

Source 
Category 

Annual 
Emissions 

(Esc() 
Tolerance 

(Esc!) 
Uncertainties 

(%) 

1 0.1 0.02 20.0 

2 50 10 20.0 

Total ' 	50.1 10.0 20.0 

(b) Case with Unequal Percentage Uncertainties 

Source 
Category 

Annual 
Emissions 

( 3srl) 
Tolerance 

(Bsen 
Uncertainties 

(tY0) 

1 0.1 0.1 100.0 

2 50 5 10.0 

Total 50.1 5.0 10.0 

In this hypothetical illustration, the percentage error for the category with 

larger emissions dominates the percentage error for the sum of the emissions for the two 

categories. Similarly, in the actual case with 86 categories, the percentage errors in the 

categories with larger emissions will have the greatest effect on the error in the industry 

annual emissions. 

Note that, in Table 3.1, the uncertainty of a total is not the sum of the 

uncertainties for the corresponding categories. Analysis of error propagation in a sum is 

discussed in Section 4.4. 

In view of the discussion above, it is advantageous to devote more of the 

project resources to sources with larger emission values. It is necessary to devote some 

resources however, to all categories. 

15 



The approach taken in this project was to establish a target precision for each 

category, such that the required precision for the industry annual emissions is exactly met if 

the individual target precisions are met for all categories. The target precision was updated 

periodically during the program to indicate categories that require significantly more 

sampling to meet their target precisions. 

Inherent in this discussion is the fact that the uncertainty of the estimate of the 

emissions for a category decreases as the number of data points increases. The relationship 

between the uncertainty of an estimated quantity and the number of data points (sample size) 

on which the estimate is based is discussed in Section 4.3. 

The term "target precision" was used in the context of this section rather than 

"target accuracy." This is because the precision of the estimate of the emission rate for a 

category can be quantified on the basis of the variability in the data (again, see Section 4.3). 

Bias cannot be quantified. As is discussed elsewhere in the report, however, considerable 

efforts have been made to avoid bias. An assessment of the attainability ,  of the desired 

accuracy for the industry annual emissions in view of both random errors and the possibility 

of undetected bias errors is presented in Section 6.2. 

The equation for target precision adopted is as follows: 

TP = 100 [-1—} 	 (2) 
(E—R. 

where 
	

TP = target precision (%), 

ER = annual emissions in Bscf, and 

a = coefficient determined from the data (see below) 
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This function is clearly unbounded as ER approaches zero. Therefore, a 

maximum target precision of 1500% was imposed. While this sounds like an enormous 

uncertainty, only the smallest categories that contribute a fraction of a percent of the industry 

annual emissions could be affected by this maximum. 

The function is bounded below only by zero. To avoid calculating an 

unreasonably small target precision for categories with large emissions, a lower limit of 

75% was imposed for each category. In other words, a target precision would not be set 

lower than 75% for any one category. However, all calculated target precision values were 

greater than 75%, so no values were changed as a result of this constraint. 

The equation was iteratively solved for "a" so that the overall goal of +111 

Bscf precision for the national estimate was met The constant "a" in the equation above was 

computed to be 6.24. That is, for this value of "a," if the target precisions were just met for 

all categories, the required precision would also be met for the industry annual emissions. 

The target precisions were not used as absolute constraints. Suppose, for 

example, that on a given field trip there was an opportunity to sample more sources than 

were required to bring a given category into compliance with the target precision. 

Moreover, given that the basic travel expenses were incurred in any case, the incremental 

cost of obtaining the additional measurements was small. In a case such as this a common-

sense approach was used, and the additional measurements were obtained. 

Further, it is not absolutely required that the target precision be met for all 

categories for the accuracy requirement to be met for the industry. It is possible for the 

industry requirement to be met given that the uncertainties for some categories are less than 

the target precisions and the uncertainties for other categories are greater than the target 

precisions. 
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The summary table in Appendix C includes both the uncertainties of the 

emission rates and the target precisions by category. 

3.4 	Emission Factor Approach 

If it bad been possible to use a random or proportionate stratified random 

sampling approach to collect data, then the emission factor could have been calculated by 

simply summing the emissions data from all sources and dividing by the number of sources 

sampled. In this case, the emission factor would be defined as the annual emissions per 

source. By the nature of true random or proportionate stratified random sampling, the 

resulting average emission factor would have had no inherent bias. 

As discussed earlier, however, neither conventional random sampling nor 

conventional stratified random sampling could be used. Regardless, the emission factor is 

generally still defined as the annual emissions per source. In some cases, the variability of 

the emissions data from source to source is very large. For source types of this nature, it is 

normally possible to reduce variability by redefinition of the emission factor or by 

stratification; reducing variability reduces the number of data points needed to achieve the 

target precision. 

Redefinition of the Emission Factor.  For a few types of sources, the 

emissions can be more accurately estimated with fewer data points when the emission factor 

is defined not as a simple average for the source but in relation to key parameters that 

influence the emissions from the source. Since the variability is significantly reduced, fewer 

data points are required to achieve an acceptable level of accuracy. 

For example, the internal combustion engines that drive compressors in the gas 

industry vary in size (i.e., horsepower rating). If data were collected on individual engines 

in the industry, and an average emission rate per engine was established, the variability from 

engine to engine would be very large because of the size differences. However, if the 
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emission factor for the engines is defined by horsepower of the engine (i.e., annual emissions 

per horsepower), then the variability from engine to engine and therefore the number of 

samples required to reach an acceptable accuracy are both significantly reduced. 

The number of data points required may also be reduced by stratifying on the 

basis of parameters that affect emissions. An example is quantification of the methane 

emissions from underground distribution mains and services. On the basis of the limited 

data, the variability in emission measurements for underground distribution lines was 

determined to be very large. By defining parameters that influence the emission rate from 

distribution lines and stratifying the emission factor and activity factor for this source by 

these parameters, the variability of emissions from source to source may be reduced, and 

data collection resources can be allocated to the strata that contribute the most to the overall 

uncertainty of the estimate. Therefore, source stratification can lead to optimization of the 

number of samples required to meet the target precision. 

Even if there were no bias, the actual estimate of the emission factor would be 

expected to differ from the true value. First, the estimate is based on less than the total 

number of sources Random differences between the set of sampled sources and the 

population of sources introduce a sampling error. Second, physical measurements have 

uncertainties. As is indicated previously, the term "accuracy" refers to the closeness of an 

estimate of a quantity to the true value. Accuracy is a measure of random error plus bias 

error. The tent "precision" refers to random error alone. Even if a process does not 

produce a bias in the statistical sense described earlier, it is possible for a given segment of 

the population to be seriously under-represented and another segment to be over-represented 

by random chance (i.e., by an anomaly in the random selection of sources). The error that 

results is a larger-than-expected random error; an error from a correct sampling and 

measurement process is not a bias. 
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Screening for Bias in the Emission Data Set 

An estimate is precise if it has a small random error, regardless of the bias. 

Suppose, for example, that sources had been selected only from the Gulf Coast, but that a 

very large number of sources had been sampled. Averaging a large number of emission 

measurements would lead to an emission factor estimate that had a small random error. 

Unless Gulf Coast sources were representative of the source type for the entire nation, the 

estimate could have a large bias because the sample of sources was unrepresentative of the 

population of sources of interest. The bias in this example, which serves for illustrative 

purposes, was avoided by sampling in a variety of regions of the country; more subtle 

potential sources of sampling bias and methods for avoiding them are discussed in this 

subsection. 

Design, operational, and regional parameters that may cause differences in 

emissions across a source type were identified, and the data were analyzed to determine 

whether there was an established relationship between those parameters and the emission 

rate. Usually, these parameters were chosen on the basis of industry expertise and/or 

engineering judgement. If these parameters were determined to exhibit statistically different 

emission characteristics, then the population of sources was stratified into distinct categories 

by these design, operational, or regional parameters. Emission factors and activity factors 

were determined for each category within the source type to uniquely characterize emissions. 

Metering and pressure-regulating stations provide an example where the 

process of screening for bias was beneficial. Table 3-2 shows the average measured 

emission factor for metering and pressure-regulating stations, in units of scf/station-hour, on 

the basis of 86 measurements performed in 19 cities in the United States. Counts of 

metering and pressure regulating stations were derived from data provided by distribution 

companies and scaled up to a national count (the activity factor) using the methods described 

later in Section 3.5. Assuming that the sample selection was random or representative, the 

extrapolated annual emissions are 104.1 Bscf, based on the average of all measurements 
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TABLE 3-2. ESTIMATED METHANE EMISSIONS FROM DISTRIBUTION 
METERING AND PRESSURE REGULATING STATIONS 

Category 

Location 
(vault or 

above-ground) 
Emission Factor 
(scostation-hr) 

Activity Factor 
(number of 

stations) 
Emissions 

(Bscf) 

All Stations 90.2 131,970 104.1 

M&R Stations 

Reg. Stations 

154.1 

43.7 

23,922 

108,048 

32.3 

41.4 

Total 131,970 73.7 

M&R Stations 

>300 psig A-G 179.8 3,460 5.45 

100-300 psig A-G 95.6 13,335 11.2 

40-100 psig A-G 4.31 7,127 0.269 

<40 psig A-G 0 0 

Reg. Stations 

>300 psig A-G 161.9 3,995 5.67 

>300 psig Vault 1.30 2,346 0.0266 

100-300 psig A-G 40.5 12,273 4.35 

100-300 psig Vault 0.180 5,514 0.0087 

40-100 psig A-G 1.04 36,328 0.332 

40-100 psig Vault 0.0865 32,215 0.0244 

<40 psig Vault 0.133 15,377 0.0179 

Total 131,970 27.3 
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made to estimate the emission factor. However, if the data set is subdivided, or stratified, 

by station type (i.e., metering and pressure-regulating versus pressure-regulating) then the 

annual emissions from this source type decrease to 73.7 Bscf. If this source type is further 

subdivided by discrete operating pressure ranges and by enclosure status, the emissions 

decrease to 27.3 Bscf. As illustrated, the bias, which was caused by testing a 

disproportionate number of high-pressure stations, can be minimized by using stratification to 

estimate the emission and activity factors. 

The screening process served to identify variables that are related to emission 

characteristics. Then it was possible to determine whether sources were disproportionately 

sampled in the different strata of these variables. Such a disproportionality need not lead to 

a bias in the final estimate of the emissions, if this condition is identified and accounted for 

properly. Moreover, the screening process was carried out during the course of the study. 

Thus, additional sampling to correct a disproportionality, if present, was possible. 

Note that the screening process would identify unrepresentativeness in the 

sample, whether the problem resulted from an inadvertent bias in the sampling process or a 

purely random effect. The protection against both bias and anomalies in the random 

selection of sources is considered to be a significant benefit of the method used in this study. 

3.5 	Activity Factor Approach 

Activity factors are an essential element in the estimation of emission rate by 

source category. There are many issues pertaining to the estimation of activity factors, 

however, that are primarily engineering, rather than statistical, in nature. For this reason, 

and since the subject of this report pertains to the statistical methods used in this study, only 

a very brief overview of activity factor estimation will be given here. A detailed discussion 

of activity factors is presented in Volume 5 on activity factors.' A much briefer summary of 

activity factor issues is given in Section 5.3 of Volume 3 on general methodology.2  
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In general, the activity factor is the total population of the source when the 

emission factor is defined as the annual emissions per source. Exceptions to this general 

definition of an activity factor would include only sources which have an emission factor that 

can be more accurately represented by one or more parameters that influence emissions (e.g., 

the emission factor for IC engines is in terms of annual emissions per horsepower). For 

these exceptions, the activity factor would apply to the parameter that influences emissions. 

In some cases, existing programs track the total nationwide population of a 

source type, such as gas wells, miles of transmission and distribution pipelines, and total 

national production within the natural gas industry. However, in many cases, the total 

population of a source type within the gas industry is unknown. Some of the activity factors 

that are not tracked nationally were generated by this project. 

For sources that have an unknown population, a limited number of site visits 

were conducted to determine the number of sources at each site and to scale up the site data 

to represent the total population. These site visits to collect activity factor data were 

typically conducted in conjunction with the data collection efforts for the emission factor. 

The site count data were scaled by using population data that were known and were related 

to the source. For example, no data were available on the nationwide population of 

production separators. The ratio was computed by dividing (1) the number of production 

separators at a site, gathered as part of the site visits, by (2) the number of wells at each site. 

Then the average ratio of separators to wells from all site visit data was used to extrapolate 

nationally by multiplying by the national well count. However, when scaling the site visit 

data to represent the entire population, a check for bias was made (refer to the screening-for-

bias section below). 

For some sources that are not tracked nationally, individual company data or 

regional surveys (surveys by state agencies or trade organisations) were sometimes available. 

Metering and pressure-regulating stations, glycol dehydrators, and compressor engines and 

gas turbines are tracked on a company-wide basis or through regional surveys. For regional 
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or company-tracked activity factors, sufficient company and regional data had to be gathered 

to comprise a representative sample to extrapolate to a national population. In most cases, 

entire companies or regions could be represented by the data collected from one sample; 

therefore, few samples were required, in general, to represent the national population 

accurately. 

The extrapolation of equipment activity factors from individual site data within 

a stratum was usually handled by selecting an "extrapolation activity factor" that was known 

for the site as well as regionally or nationally. Examples of extrapolation activity factors are 

the total production, the number of wells for production, the number of plants for 

processing, and the number of compressor stations for transmission. Ratios were computed 

by dividing (1) populations of other equipment, such as the count of separators at the site, by 

(2) the relevant extrapolation activity factors, allowing the resulting ratios to be easily 

extrapolated to a regional or national total for separators. 

Where individual site data were used to determine a national activity factor, 

the ratio method was used to compute the activity factors. The general statistical ratio 

method is discussed by Cochran.' 

To illustrate the ratio method, consider the example of estimating the number 

of separators in a region by using well count as the extrapolation parameter. This calculation 

can be accomplished by (1) summing the numbers of separators at the sites visited, 

(2) summing the numbers of wells at these sites, (3) dividing the total number of separators 

by the total number of wells, and (4) multiplying this ratio by the number of wells in the 

region. Extrapolation by production rather than wells can be performed in a similar manner. 

The following hypothetical numerical example illustrates the calculation of the 

number of separators in a region. 
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TABLE 3-3. DATA OF COMPILATION OF SITES 
X 

ITYPOIHLTICAL EXAMPLE 
IN REGION 

Site 
Site Count of 

Separators 
Site Count of Gas 

Wells 
Site Ratio 

(separators/well) 

1 140 138 1.01 

2 324 321 1.01 

3 100 100 1.00 

4 5 15 0.33 

5 500 1000 0.50 

TOTAL 1069 1574 

In this hypothetical example, the total number of separators at the sites visited 

is 1,069, and the total number of gas wells is 1,574. Thus, the number of separators per 

well, estimated from the data, is 1,069/1,574 = 0.68. Now, suppose there are 50,000 gas 

wells in the region. Then the estimate of the number of separators in the region is 0.68 x 

50,000 = 34,000. 

In the ratio method, just described, a site with a large number of wells (e.g., 

site 5 in the table above) will have a larger effect on the results than will a site with a small 

number of wells. This method is based on the assumption that the size of the field 

represented by a sampled site is proportional to the number of wells at the site. The ratio 

method is described in much further detail in Section A.5 of Appendix A. 

An alternate method was also considered. In this method, the site ratios are 

averaged, so the data from all sites count equally. If the ratios of separators to wells in the 

hypothetical example above are averaged, a value 0.77 of separators per well is obtained, 

compared to 0.68 separators per well produced by the ratio method. The main difference is 

that the ratio method places a much greater weight on site 5, which has a large number of 

wells and a relatively small ratio of separators per well. 
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The argument for the alternate method is that there is some uncertainty 

regarding the size of the field of which a given sampled site is representative. Changes in 

ownership and leasing agreements can affect how an original field can be subsequently 

subdivided Thus, according to this argument, a site with a well count of 15 might be 

representative of a field of 10,000 wells, while a site with 200 wells might constitute an 

entire field. 

After discussions with the industry advisors, it was decided that the number of 

wells at a site does provide a measure of the representativeness of a site. For this reason, 

the ratio method, described above, was employed. 

Methods for computing a confidence interval for the number of devices 

estimated by the ratio method are given by Cochran.' The ratio method, including methods 

for calculation of a confidence interval, are discussed in further detail in Appendix A. 

In addition, some equipment activity factors sources could be scaled up by 

several possible "extrapolation activity factors," called AF(cnp). If a known 

physical/technical relationship existed between the source population and one AF(t  ), then 

that factor was selected. However, where the relationship between the source population and 

the other parameters was not obvious from a technical perspective, many approaches having 

technical merit were used, and either the average of the methods was used or the resulting 

data from individual companies were statistically analyzed to determine the appropriate 

extrapolation approach. Further discussion is given in the Tier 3 methods report! 

In the production segment, the two AF(extrap)  values are well count and 

production rate. As is discussed in Section 5.3 of the methods report', a tendency was 

observed for results from the well method to be high-biased and results from the production 

rate method to be low-biased. Nevertheless, averaging the two values to obtain the final 

estimate of the activity factor tended to allow the biases with opposite signs to 

counterbalance. 
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For example, it was not clear from a technical perspective whether to scale up 

the number of metering and pressure-regulating stations by miles of main pipeline or system 

throughput, which were the only known population statistics. The station counts from 

individual companies were examined both on a per-mile-main and per-system-throughput 

basis. A linear regression analysis showed that the data would preferentially be extrapolated 

using a per-mile-main basis, with lower variability in the resulting national extrapolation. In 

production, the number of separators appears to be technically related to both well count and 

throughput. Therefore, separator count was extrapolated by both methods, and the average 

of the two national estimates was used. 

3.6 	Summary Comments Regarding Screening for Bias 

It is impossible to prove technically that a given dataset has no bias. Tests can 

be designed that are capable of revealing some bias, but there are no tests nor group of tests 

that would reveal all possible biases. Assuming that a given dataset has no bias, even after 

extensive testing, is only a theory The following examples in this section show some of the 

many bias tests used in this project. 

The sample sets were tested for bias by continuous technical and industry 

review. Numerous individual reviews and project advisors' meetings were used to review 

the project data with knowledgeable industry experts, so that systematic errors could be 

discovered and eliminated. When possible biases in the activity factor sampling plan or 

extrapolation method were theorized, the project was altered to test for that bias and 

eliminate it if it existed. All provable biases were corrected. 

One example of the success of this bias review process includes the 

identification of regional differences in production practices. These differences were brought 

up by the advisors' meeting review process. The differences were then accounted for by 

stratifying the production data into two offshore and four onshore regions, sampling within 

each region, and extrapolating by region. 
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Some emission factor biases are eliminated by stratifying by an emission-

affecting parameter. Specific examples are discussed earlier in Section 3.4. Some specific 

examples of eliminating activity factor bias are listed in Section 3.5. 
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4.0 	ESTIMATION OF NATIONAL ANNUAL EMISSIONS AND 
UNCERTAINTY 

Sampling to obtain the data necessary to estimate the activity factors and 

emission factors for each source category is discussed in the preceding section. Subsequent 

calculations leading to the estimation of the industry national emission rate and the 

uncertainty of this emission rate are discussed in this section. 

These calculations involve several steps. First, the available data must be used 

to estimate the activity factors and emission factors for individual categories. Most of these 

estimations are made by averaging a set of values (measurements of emission rates, counts of 

emitters, etc.) to obtain the necessary activity or emission factor. It is necessary to avoid 

corrupting any such calculation by the presence of an invalid data point. Issues pertaining to 

outliers are discussed in Section 4.1. The calculation of the average value and uncertainty 

thereof to obtain a given activity or emission factor is discussed in Section 4.2. The use of 

these values to obtain an estimate of the annual emissions and uncertainty thereof for each 

source category is discussed in Section 4.3. Finally, the use of the annual emissions by 

category to obtain the national annual industry emissions is discussed in Section 4.4. The 

calculation of the uncertainty of this industry total is also discussed in Section 4.4. Further 

issues pertaining to error propagation are discussed in Section 4.5. 

	

4.1 	Outlier Tests 

Radian did not reject any data points as outliers. However, outlier tests were 

performed in the distribution area. This section discusses those tests. 

In the following section, the use of data to estimate the emission factor or 

activity factor for a source category is discussed. Suppose, for example, there are n 

measurements, y„ i = 1 to n, which are to be averaged to obtain the emission factor for a 
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particular category. It is necessary to confum that this data set does not contain an 

erroneous value that is so extreme that it invalidates the calculations. 

It is possible to perform statistical tests to determine whether there is strong 

reason to believe that a suspected outlier could not reasonably belong to the same distribution 

as the other points. Even if the point was judged to be an outlier from a strictly statistical 

point of view, it would be very desirable to examine the point from an engineering 

perspective to ensure that this point did not, in fact, contain valid information. 

Further, in this study, there are 86 source. categories. Suppose it was decided 

to routinely perform outlier tests for 86 sets of emission factor measurements, for example. 

Suppose that the confidence level of the test was 99%, i.e., that there was a I% chance of 

erroneously concluding there was an outlier. This erroneous conclusion would occur if a 

valid point was rejected, even though it resulted from the same statistical distribution as the 

other points. Valid points that appear to be significantly larger or smaller than the other 

points can occur by chance alone. As is discussed above, it is desirable to avoid rejecting 

such points if they are valid and contain important information. 

It may appear that the 99% confidence level is sufficiently conservative; i.e., 

this confidence level appears to provide a small probability of discarding points erroneously. 

Consider, however, the effect of performing 86 independent tests in the case in which there 

were no invalid data points in any category. The probability of correctly concluding that 

there were no outliers in a single test would be 0.99. The probability of correctly concluding 

that there were no outliers in all of n independent tests would be 0.99'. The probability of 

erroneously concluding that there was an outlier in at least one of the n tests, then, would be 

I - 0.99". In 86 independent tests, the probability of erroneously concluding that there was 

at least one outlier would be 0.58; this is a high probability of error. Even if only half this 

number of tests were performed, the probability of erroneously concluding that there was an 

outlier in at least one of the categories would be 0.35, which is still high. These calculations 

illustrate the reason for caution regarding the blind use of outlier tests for all categories. 
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The 99% confidence level was selected for illustration in this example because 

it is conservative. If the 90 or 95% level were used, the probability of erroneously 

concluding that there was at least one outlier in the 86 categories would be much higher. 

Moreover, the "outliers" may be the most important points in the data set. It 

would be unfortunate if valid data points corresponding to high emitters were rejected from 

the data base, since this could lead to a low bias in the final estimate of the industry annual 

emissions. 

Figure 4-la presents the histogram of the emission-rate measurements for large 

plastic mains. Notice that one data point is noticeably larger than the others. There has 

been some discussion about this data point regarding its validity and whether it should be 

excluded from the data set. Figure 4-lb presents the histogram of the natural logarithms of 

the emission rate measurements. 

This data set illustrates several limitations regarding the performance of outlier 

tests for many of the categories. First, the data set is small, containing only six points. Any 

statistical test involving only six points is likely not to be very sensitive. 

Second, most outlier tests depend on the type of statistical distribution. That 

is, one must assume a specific type of distribution in order to perform most tests. Figure 4-2 

presents a conceptual comparison of the normal and the lognormal distributions. The normal 

distribution is symmetric; i.e., the likelihood that a value will occur at a given distance above 

the mean is the same as the likelihood that a value will occur at the same distance below the 

mean. The lognormal distribution is asymmetric. There is a predominance of points roughly 

in the vicinity of the mean, with a small number of much larger points. The distribution is 

bounded below by zero. While a few points may be much larger than most, there is not a 

corresponding chance for points much smaller than most. 
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a) Frequency Histogram for Plastic Pipe Flow Rate Data 
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b) Frequency Histogram for the Natural Logarithms of the Plastic 
Pipe Flow Rate Data 

Figure 4-1. Frequency Histograms for the Emission Rate Data for Plastic Pipes 
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Emission Measurements 

a) Normal Distribution 

Emission Measurements 

b) Lognormal Distribution 

NOTE: The ordinate of these curves is a mathematical quantity called 
"probability density." The probability density can be used to obtain the 
probability that the variable falls within any given limits. 

Figure 4-2. Conceptual Comparison of Normal and Lognormal Distributions 
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A statistical test indicated that the six emission rates for large plastic mains 

could not reasonably have been drawn from a normal distribution but could reasonably have 

been drawn from a lognormal distribution. One could debate the outcome of this test, 

however, since I) the suspected outlier was included in the test, and 2) this large value 

would favor the lognormal over the normal distribution. With a larger sample size, the 

largest value would have a smaller weight in the statistical test. In any case, it is difficult to 

determine the type of distribution with high confidence with only six data points. 

Tests were performed, however, for underground pipes with different types of 

materials. These tests were based on 24 to 40 data points and, therefore, provided a better 

opportunity to determine the type of statistical distribution. In these cases, the tests indicated 

that the data could not reasonably have. come from a normal distribution but could reasonably 

have come from a lognormal distribution. Given the similar source type (underground 

pipes), these results support the conclusion above, to use the lognormal distribution in the 

outlier tests for the data for large plastic mains. 

Several statistical tests were performed to determine whether the largest point 

in the data set should be considered an outlier from a statistical point of view. These include 

the Grubbs test,' the Dixon test,' the fourth-spread test,' and a conservative approach.' The 

Grubbs and Dixon tests require that the data be normally distributed. Given the outcome of 

the distributional tests discussed above, these tests were performed using the natural 

logarithms of the emission rate data; if the data are lognormally distributed, then the natural 

logarithms are normally distributed. The conservative approach does not require an a priori 

assumption regarding the distribution but incorporates a distributional test as a first step. 

Thus, the conservative approach was ultimately based on the lognormal distribution also. 

The fourth-spread method relies on information from the center half of the 

distribution, from which limits beyond which data could be considered outliers are derived. 

The point here is that the center half of the distribution is relatively insensitive to outliers 

and, therefore, provides an effective basis for determining upper and lower limits beyond 
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which data might be considered suspect. The fourth-spread method does not require an 

explicit assumption regarding the type of distribution. Since this method works best if the 

distribution is symmetric, the natural logarithms were again used. 

None of the tests indicated that the largest point was an outlier. Further, 

Pacific Gas and Electric Company's (PG&E) statistician, who worked on the UAF study,' 

agrees that there is no technical or statistical justification for omitting the largest data point in 

this data set. Thus, the point has been retained in the data set. The details of the statistical 

tests are presented in Appendix B. 

4.2 	Emission Factor and Activity Factor Calculations 

The following basic statistical calculations were performed for emission 

factors. A different and more complex approach, described briefly in Section 3.5 and in 

more detail in Appendix A, was used for activity factors. Suppose there are n individual 

estimates of a given emission factor. If 	i=1 to n, are the individual data points, then the 

factor is estimated as the average, Si, of the n values: 

= 
	E yi 	 (3) 

The next step is to compute the uncertainty of this value. First, the standard 

deviation of, sy, the y values is needed: 

Et (37, - yr 
I-1 

n-1 

(4) 

We then calculate a 90% confidence interval for the mean value, y. The 

confidence interval establishes lower and upper tolerances for the estimate. There is only a 

5% chance that the true value falls below the lower limit of this confidence interval. There 
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is also a 5% chance that the true value falls above the upper limit of the interval. Thus, 

there is a combined 10% chance that the true value falls outside the confidence interval. 

Since there is a 90% probability that the true value falls within the interval, it is called a 

90% confidence interval. The 90% confidence interval is computed as follows: 

y 	tsy  /VT1 	 (5) 

The t value in this equation is obtained from a standard table for the t-

distribution; such tables are found in most basic statistics books. The t-value is a function of 

the confidence level (90% in this case) and the sample size, n. 

The confidence interval computed above is strictly valid for normal 

populations. Even if the distribution of y values on which rr is based is not normal, the 

average of a large enough sample of values of yi  would be approximately normally 

distributed; the theorem on which this is based is called the central limit theorem. If the 

mean value is approximately normally distributed, then the above method for computing a 

confidence interval is justified. 

While a sample of size n produces a single mean value, it is proper to discuss 

the distribution of this mean value. The mean value, being based on a sample of values with 

random errors, is itself a random variable. The error of this mean may have a distribution 

that is approximately normal. 

The methodology described above produced uncertainties larger than 100% for 

some parameters. This seems anomalous, since neither an activity factor nor an emission 

factor can be negative. The explanation for this effect and the reasons why the methods used 

are believed to be correct for estimating the uncertainty of the industry annual emissions are 

presented in Section 4.5, after further discussion of the issues. 

The method described above for calculating uncertainty is strictly applicable 

for an infinite population. In fact, the number of sources in a given category is finite. The 
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equation for the standard deviation of a finite population produces a smaller value than does 

the equation above for an infinite population. Thus, the method used produced a somewhat 

conservative (large) estimate of the uncertainties involved. 

Both sampling and measurement errors contribute to the error in the estimate 

of the emission factor. The sampling error pertains to a finite set of sources. The 

measurement error pertains to an infinite population. (There is no limit on the number of 

replicate measurements that could be made for a given source.) The source-to-source 

variability is generally larger than the measurement variability, however. Thus, the 

statement above stands; the equation used for the standard deviation produced a somewhat 

conservative estimate of the uncertainties of the parameters involved. 

4.3 	Category Annual Emission Calculations 

For most source categories, the emission value (ER) is expressed as the 

product of the activity factor (AF) and the emission factor (EF): 

ER = AF x EF 	 (6) 

For certain source categories in the distribution segment, the emissions were 

estimated directly, and no separate activity and emission factors are shown in the data 

summary table (Appendix C). In each of these cases, several subcategories were combined 

to form a category. The emissions for these subcategories were summed to obtain the 

emissions for the category shown in the summary table. 

It is necessary to obtain the uncertainty of the emission value as a function of 

the uncertainty of the activity and emission factors. The error propagation methods used 

here are based on theorems given by Mood, Graybill, and Roes' and quality-control practices 

described by Juran, et al.9  The details of the error propagation methods are discussed further 

in Appendix A. 
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The tolerance (i.e., uncertainty) for ER as a function of the tolerance for AP 

and EF is as follows: 

Tol(ER) = [AV x Tol(EF)2  + EF2  x Tol(AF)2  + Tol(AF)2  X Tol(EF)2r2(7) 

where Tol() is the tolerance of the indicated quantity. The tolerance is the half-width of the 

90% confidence interval. That is, if the confidence interval is given by 

	

± tsy/fil 
	 (8) 

then the tolerance is 

tol 	= tsy / 	 (9) 

Recall that confidence intervals are discussed in the preceding subsection. 

4.4 	Industry Annual Emission Calculations 

In this subsection, three topics are covered. First, the equation for calculating 

the industry annual emissions is presented. Second, methods for computing the uncertainty 

of the industry total are discussed. Third, the effect of correlated errors for different source 

categories is discussed. 

Industry Annual Emissions 

The next step is to compute the industry annual emissions, ERT, and its 

uncertainty. The industry annual emissions are simply the sum of the emissions for the 

different categories: 

EAT  = EER 	 (10) 
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Methods for Computing the Uncertainty of the Industry Total 

The tolerance of ERT  is required as a function of the tolerances of the 

individual ER values. First, the calculation is considered on the basis of the assumption that 

the errors in the different ER values are independent. The errors in two quantities would be 

considered independent if they were estimated by entirely separate processes and there was 

no common source of error. The errors in two quantities would be dependent if they had a 

common source of error. The issues related to correlated errors are discussed later in this 

subsection. 

The tolerance of ERT  is the square root of the sum of squares of the tolerances 

of the ER values: 

Tol(E.RT) = [E{Tol(ER)Yr2 
	

(11) 
Method 1 

This is the method for calculating the tolerance of a sum that is recommended 

by Juran, et al., in the Quality Control Handbook.9  On the basis of the discussion by Juran 

and more rigorous statistical information presented by Mood, Graybill, and Roes,' the use of 

this method does not require the assumption that the separate terms in the sum have the same 

means, the same uncertainties, or even the same types of statistical distributions; again, see 

Appendix A for further details. Method 1 was used in this study. 

An alternative to the method above is to express the tolerance of a sum as the 

sum of the tolerances: 

Tol(ERT) = ETol(ER) 
	

(12) 
Method 2 

However, this is overly conservative (overestimates the uncertainty), and was therefore not 

used. An analysis of this alternate method appears in Appendix A. 
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It can be shown that the tolerance of the industry total would equal the sum of 

the category tolerances if the errors for all categories were perfectly correlated. While there 

may be some cross-category correlations, there are many pairs of categories whose errors 

could not reasonably be correlated at all. For example, it is reasonable to assume that the 

errors in the transmission/storage categories are uncorrelated with the errors in the 

distribution categories. No pair of categories has perfectly correlated errors. The issues 

pertaining to the possibility of correlated errors among categories is addressed below. 

Effect of Correlated Errors 

It is mentioned above that it is not believed that the emissions for all pairs of 

categories are strictly independent. An analysis has been performed to assess the possible 

impact of correlated errors. The results of the analysis are outlined in Section 5.1 and show 

that the target precision was still met with correlated errors. This section outlines technical 

issues associated with errors. 

First, certain categories have common activity factors. For such categories, 

the activity factors have the same errors, although the emission factors have independent or 

imperfectly correlated errors. 

For any of a variety of other reasons, there may be correlations between the 

errors in the emissions for different categories. Data for different categories were collected 

from the same fields in some instances. It is possible, because of some characteristic of the 

field, that nonindependent data resulted for two or more categories. For example, the 

inspection and maintenance practices used for a particular field may have been significantly 

better than the industry average. Consequently, emissions may have been significantly lower 

than the industry average for all source categories for which data were collected from that 

field. Deviation from the industry average is a sampling error in this context, since the 

objective is to estimate the industry average for each category. 
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Nevertheless, there is typically a large source-to-source variability within a 

given field. For this reason, one could not say that all sources tested at a given field had a 

common error or even similar errors. This source-to-source variability tends to limit the 

correlation introduced by characteristics of a field that have a common effect on two or more 

categories sampled at the field. Thus, it is not believed that the correlation between errors in 

two categories could reasonably be very high, but the exact correlations are not known. 

It is not believed that all possible source categories could reasonably have 

correlated errors. Categories in different segments (production, transmission/storage, and 

distribution segments) were assumed in most cases to have uncorrelated errors. Additionally, 

not all categories within a segment could reasonably have correlated errors. 

The uncertainty of the industry annual emissions would be smaller if (I) the 

errors in the emissions for all source categories were independent than if (2) some positive 

correlations existed among these errors. In the first case the maximum possibility for errors 

to "average out" when the emissions for 86 source categories were summed would exist. In 

the second case, the nonindependence of certain pairs of errors would diminish this effect. 

It is stated earlier that, by the preferred method of calculation, the uncertainty 

of the national emissions is the square root of the sum of squares of the uncertainties of the 

emissions for all categories: 

Tol(ERT) = [E{Tol(ER)}21"2 	 (13) 

If the errors are not independent, the uncertainty of the national annual 

emissions is increased by the addition of a term to account for each pair of categories with 

correlated errors: 

Tol(ERT) = [E{Tol(ER)}2  + other termsr2 	 (14) 
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If categories i and j have emissions with correlated errors, then the term that is 

added to account for this correlation is: 

2rJohER)Tol(ER)) 	 (15) 

where 

rid 	 = 	correlation between the two errors, 

TohER) 	= 	uncertainty of the emissions for category i, and 

To1(ER)) 	= 	uncertainty of the emissions for category j. 

The correlation coefficient is a measure of the closeness of the linear 

relationship between two random variables (here, the errors in two emission values). If there 

was no association at all between the two variables, the correlation coefficient would be zero, 

and the added term would also be zero. If the two variables were perfectly linearly related, 

the correlation would be one. If the relationship between the variables were such that half 

the variance of one could be explained, or predicted, in terms of the other, the correlation 

would be approximately 0.7. Plots illustrating correlation levels considered in this analysis 

are presented in Section 6.1. 

Negative correlations exist if one variable tends to increase as the other 

decreases. There is no apparent reason in this application why emissions from two 

categories would have negatively correlated errors, however. The reasons discussed earlier 

for correlated errors pertain to positive correlations. Suppose, for example, that the same 

activity factor was used for two source categories. If this activity factor had a positive error, 

the effect would be to make the emissions for both categories too large. If the activity factor 

had a negative error, the effect would be to make the emissions from both categories too 

small. 
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One further comment will be made regarding the interpretation of the term 

used to account for the correlation between the P and jth errors. This comment can be 

skipped, but it is included here for completeness and to clarify an issue regarding the analysis 

discussed above. Readers familiar with analysis of error propagation may have expected to 

see the covariance between the errors in place of the following term: 

riiTol(ER)Tol(ER.j) 
	

(16) 

The covariance, like the correlation coefficient, is a measure of the strength of the linear 

association between two variables. The term used is analogous to the covariance, except that 

uncertainties (half-widths of 90% confidence intervals) appear above in place of standard 

deviations. That is, if the tolerances of ER;  and ER;  were replaced by the standard deviations 

of the errors in these quantities, the expression would become the covariance. The use of 

uncertainties cm place of standard deviations of errors) in the analysis of error propagation 

throughout accounts for certain effects of the finite sample sizes used to estimate the different 

parameters and is conservative, i.e., tends to produce larger estimates of uncertainty than 

alternative approaches. The mathematical reasons for this are discussed in some detail in 

Appendix A. 

The groups of source categories with correlated activity factors are given in 

Appendix C, as are the groups of source categories with correlated emission factors. The 

correlation coefficients are also presented. In terms of these quantities, the expression used 

to account for correlated errors is as follows: 

27-uTol(ER)To1(E19 = 

2 (AF AFr&Tol(EF)Tol(EFJ)+EF eEFjr AgTol(AF)Tol(AFJ)+ 

raTo1(EF)Tol(EF)rAyTol(AF1)Tol(AF)} 
	

(17) 

where 
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rEu 	correlation between the errors in the emission factors for the 

and jth categories, and 

rAu 	correlation between the errors in the activity factors for the 

same two categories. 

The quantities AF and EF are used earlier, and the subscripts were 

required here to indicate the two separate source categories involved. The covariance term 

on which the expression on the right of the equals sign above is based can be derived 

rigorously from relationships given by Mood, Graybill, and Hoes'. 

4.5 	Issues Related to Statistical Distributions 

In this subsection, certain issues that affect the calculation of error bounds are 

covered. In Section 4.2, it is mentioned that the methodology used produces an uncertainty 

larger than 100% for the activity factors or emission factors for some source categories. The 

reasons why this occurred and the justification of the methods used as a basis for estimating 

the uncertainty of the industry annual emissions are discussed in this subsection. 

One possible reason for the uncertainties greater than 100% is as follows. The 

population of y, values on which the mean value of the activity or emission factor for a given 

category was based may not have been normal in these cases, and the sample size may not 

have been sufficient to produce an estimated value whose error was approximately normally 

distributed. The activity factors and emission factors calculated produced emission values 

with uncertainties greater than 100% for several categories. Even if the data were normally 

distributed, but highly variable, an uncertainty of greater than 100% could have resulted 

from the small sample sizes that exist for some source categories. However, the sum of the 

emissions whose individual uncertainties were over 100% totaled less than half (about 40%) 

of the industry annual emissions (see the summary table in Appendix C). 
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The sample sizes for some of these categories were small. This is because it 

was not consistent with the overall goal of the program to spend large amounts of money 

refuting the emissions of a source category that contributed a very small amount to the 

industry annual emissions. It was advantageous to devote more resources to categories that 

contributed a greater amount to the industry emissions; these issues are discussed earlier with 

regard to target precisions by category. 

It is generally true, however, that a sum is more nearly normally distributed 

than are the individual terms in the sum. This statement is loosely based on the central limit 

theorem, mentioned earlier, which strictly applies to sums of identically distributed random 

variables. Thus, the sum of the emission rates with uncertainties greater than 100% will 

tend to be more nearly normally distributed than are the individual terms in that sum. The 

sum of the emission rates for all 86 source categories will tend to be more nearly normally 

distributed still. Moreover, the sample sizes for the source categories with larger emissions 

tended to be larger, and, thus, parameter estimates for these categories tended to be more 

nearly normally distributed for this reason. 

In Section 4.2, it is indicated that, although a sample of size n produces a 

single mean value, it is proper to speak of the distribution of this mean. This is because the 

mean is based on data that have random errors, and so the mean is affected by random 

variability. Thus, the mean may be approximately normally distributed or may have some 

other distribution. Similarly, a single value serves as the estimate of the national methane 

emissions. By analogous reasoning, however, it is proper to talk about the statistical 

distribution of this value, since it is affected by random variability in the estimates of the 

activity factors, emission factors, and annual emissions for the categories. 

Thus, even though the methodology described above may not produce a valid 

confidence interval for all activity and emission factors for the smaller source categories, 

these observations do not invalidate the methodology for the purpose of estimating the 

uncertainty of the industry annual emissions, which is the objective of this study. There are 
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reasons for believing the industry annual emission value has an error that is approximately 

normally distributed. Rigorously proving that this is the case is not possible without 

knowing the distributions of the errors for the individual categories, and definitively 

establishing these distributions is not possible on the basis of the small sample sizes for some 

categories. 
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5.0 	SUMMARY OF STATISTICAL ASSUMPTIONS 

In the preceding sections, statistical issues and methods used to address 

sampling requirements for different types of sources, sampling requirements specific to the 

estimation of activity factors and to the estimation of emission factors, the analysis of error 

propagation etc are discussed. In this section, the major statistical assumptions discussed in 

the preceding sections are summarized. 

Two major statistical assumptions are discussed that affect the calculation of 

the uncertainty of the industry emission rate for the baseline case. One assumption is that 

the error in the industry emission rate is normally distributed. Another assumption is that the 

errors in parameter estimates for different source categories are independent (or that the 

effects of any correlations present are negligible). 

Calculation of the uncertainty of the industry emission rate based on these 

assumptions can be performed in a clearly defined manner. This is not the case if the 

assumptions are not satisfied. If the distribution is not normal, then the distribution is not 

known. (However, the lognormal distribution provides a very conservative possibility, and a 

result midway between the results produced by the normal and lognormal assumptions 

provides a more reasonable conservative outcome.) If the intercategory correlations are not 

zero, accurate estimates of the correlations do not exist, but approximate correlations can be 

assigned to specific cases on the basis of engineering judgement. 

As is discussed in Section 6, calculations for conditions contrary to the 

baseline assumptions have been performed. These alternate calculations provide (1) an 

assessment of the sensitivity of the results to deviations from the baseline assumptions and 

(2) conservative (larger) estimates of the uncertainty of the industry annual emissions. 

Assumptions regarding normality are discussed in Section 5.1. Assumptions 

regarding independence of errors among categories are discussed in Section 5.2. 
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5.1 	Normality of Errors 

In Section 4, the analysis of error propagation is discussed. The estimation of 

an activity or emission factor for a source category in most cases involved averaging a set of 

emission measurements from individual sources, counts of emitters from different sources of 

information, etc. In some instances, the uncertainty was assigned on the basis of engineering 

judgement. 

Confidence intervals were computed for both activity factors and emission 

factors on the basis of the assumption that the data averaged were normally distributed. 

Even if the data are not normally distributed, their mean will tend to normality as the sample 

size increases (by the central limit theorem). Thus, for a sufficiently large sample size, 

methods based on the normal distribution can be used, even if the individual data averaged 

are not normally distributed. 

In some cases, uncertainties for specific activity or emission factors have 

greater than 100% uncertainties, based on the 90% confidence intervals. This seems 

anomalous, since neither the activity factor nor the emission factor can be negative. One 

possible reason why this occurred is believed to be because the data on which these estimates 

were based were not normally distributed, and the sample sizes were not sufficient to 

produce estimated values that were approximately normally distributed. In some instances, 

the emissions computed from the activity and emission factors for an individual source 

category had greater than 100% uncertainty. 

However, a non-normal distribution of the data is not the only possible reason 

why uncertainties greater than 100% could have occurred. Wide confidence intervals can 

occur because of small sample sizes together with a high degree of variability, even if the 

data are approximately normally distributed; further, there are small samples sizes in some 

source categories. Thus, these considerations contributed to the large uncertainties for some 

parameters, including the uncertainties greater than 100% in some cases. 
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Another consideration is that the normal distribution is unbounded below, 

while activity factors, emission factors, and annual emissions cannot be less than zero. 

Thus, while the distribution of the estimate of one of these quantities may be approximately 

normal, it cannot be exactly normal. For some sufficiently high confidence level, the 

confidence interval will extend below zero. Suppose, for example, that an estimate based on 

a sample of size 10 is 10,000, and the 80% confidence interval is (3,000, 17,000). The 90% 

confidence interval then would be (755, 19,245), which is still above zero. However, the 

95% confidence interval, (-1,367, 21,367) extends below zero. The units of the numbers in 

the illustration presented here have been omitted, since the principle applies to the estimation 

of activity factors, emission factors, annual emissions for a category, and the national annual 

emissions. 

The final result of this study however, is the annual emissions for the entire 

natural gas industry. The industry annual emissions are the sum of the emissions for 86 

individual source categories. First, the categories with individual emissions greater than 

100% produce approximately 40% of the industry's emissions (see the summary table in 

Appendix C). The distribution of a sum tends to be'more nearly normally distributed than 

are the terms in the sum. Thus, the sum of the emissions for the source categories with 

uncertainties larger than 100% is more nearly normally distributed as a result of the 

summation. Further, the relative error in this sum is reduced by an "error averaging effect." 

The sum of the emissions for all 86 source categories is more nearly normally distributed 

still. As a result of these and other considerations discussed in Section 4, it is believed that 

the methods used are reasonable for characterizing the uncertainty of the estimate of the 

industry annual emissions. 

5.2 	Independence of Errors Among Categories 

Given the uncertainties of the emissions for individual source categories, it is 

necessary to compute the uncertainty of the industry annual emissions. The industry annual 

emissions (ER7) are the sum of the emissions (ER) for the categories: 
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ERT  = EER 	 (18) 

Thus, the uncertainty of the industry annual emissions requires analysis of the 

error propagation in a sum. As is discussed in Section 4, the uncertainty of a sum is the 

square root of the sum of the uncertainties of the terms in the sum, if the terms are 

independent. 

The uncertainty of the sum was computed on the basis of the assumption that 

the errors for the different source categories are independent. An analysis was also 

performed to assess the impact of correlations for source categories that could reasonably 

have non-independent errors. Additionally, the possibility that the en-or in the industry 

annual emissions is not normally distributed was addressed. The results of this analysis are 

discussed in Section 6. 
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6.0 	RESULTS PERTAINING TO THE ATTAINMENT OF THE TARGET 
ACCURACY 

Section 6.1 presents an assessment of the uncertainty in the industry annual 

emissions under various assumptions. Section 6.2 presents hypothetical calculations designed 

to illustrate how the target accuracy can be satisfied in the presence of large random and bias 

errors. 

6.1 	Uncertainty in National Annual Emissions Under Various Assumptions 

In the preceding sections, issues pertaining to the distribution of the errors and 

to independence or nonindependence of the errors in the emissions for different categories 

are discussed. An assessment has been performed of the sensitivity of the uncertainty in the 

estimate of the national annual emissions under different assumptions regarding these issues. 

It is shown that the target precision, 0.5% of national production, is achieved under any 

reasonable set of assumptions. While the primary purpose of this report is to present the 

statistical methods, rather than results as such, these results are relevant to the statistical 

methods and are presented here. 

Calculations Under Baseline Assumptions 

For the remainder of this subsection, "uncertainty" refers to the uncertainty of 

the national annual emissions unless otherwise indicated. In the baseline case, the 

uncertainty was calculated on the assumption that the error in the national annual emission 

value was normally distributed, and errors in the emissions for different categories were 

independent. 
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Calculations Under Alternate Assumptions 

Additionally, the uncertainty was computed assuming that the error in the 

industry annual emission value was lognormally distributed. In this case, the standard error 

(i.e., standard deviation of the error[ in the industry annual emissions was held constant, but 

the confidence interval was recalculated on the basis of a lognormal assumption. This is 

illustrated conceptually in Figure 6-1. Under the normal assumption, the confidence interval 

is symmetric about the estimated value. Under the lognormal assumption, the confidence 

interval is asymmetric. The lower limit is nearer the estimate than is the upper limit. 

Under the normal assumption, the uncertainty could be expressed as either (1) 

the estimate minus the lower confidence limit or (2) the upper limit minus the estimate; the 

result is the same. Under the lognormal assumption, the latter uncertainty estimate is larger 

and quantifies the uncertainty of the estimate on the high side; this larger uncertainty estimate 

was used in the lognormal case. Further discussion of the relationship between the normal 

and lognormal distributions is given in Appendix A. 

An assessment of the effect of correlated errors was also made. Source 

categories were identified that had either activity factors or emission factors believed to have 

correlated errors. These two types of errors were handled formally to derive the correlation 

between the errors in the emission rates for each pair of source categories. The groups of 

source categories with correlated activity or emission factors are shown in Appendix C. 

Several levels of correlation were considered, including the following: weak 

(correlation coefficient of 0.2), medium (correlation coefficient of 0.5), strong (correlation 

coefficient of 0.8), and perfect (correlation coefficient of 1.0). A perfect correlation would 

exist between the errors in the activity factors for two categories if the same activity factor 

applied in both cases. 
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Figure 6-1. Conceptual Comparison of Normal and Lognormal Distributions 
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The correlation level was considered more uncertain in a limited number of 

cases. If a correlation was considered weak to medium, it was assigned a value of 0.3. If a 

correlation was considered medium to strong, it was assigned a value of 0.6. 

To illustrate the meaning of the different levels of correlation, random samples 

of size 100 were generated for two variables which were both normally distributed. 

Figures 6-2, 6-3, and 6-4 illustrate the cases in which the true correlation is 0.2 (weak 

correlation), 0.5 (medium correlation), and 0.8 (strong correlation), respectively. When the 

correlation is 0.2, the plot of y versus x reveals a suggestion of a trend, but there is so much 

scatter about this trend that it is hard to discern visually. When the correlation is 0.5, there 

is still a lot of scatter, but the trend is apparent visually. When the correlation is increased 

to 0.8, the trend becomes much more clearly defined, but there is still some scatter about the 

trend line. In each case, the trend line (i.e., the line of "best fit," or regression line) is 

displayed. When the correlation is 1.0 (not shown), the two variables are perfectly linearly 

related; i.e., all points fall on a straight line. 

Results 

The results of applying the assumptions discussed above to the national 

emissions are shown in Table 6-1. Under the baseline case, the uncertainty is 90.4 Bscf, or 

0.4% of production; under these assumptions, the target production of 0.5% of production is 

satisfied. The uncertainty increases somewhat when lognormal errors, correlated errors, or 

both are introduced. 

The uncertainty is under 0.5% of production in all cases except when both the 

lognormal distribution and correlated errors are both introduced. In this case, the uncertainty 

exceeds 0.5% very slightly (by 0.007%). The lognormal assumption is considered to be 

excessively conservative, however, in view of the amount of averaging (averaging of data to 

obtain activity and emission factors for individual categories) and summing (summing of 

emissions for 86 categories) to obtain the industry annual emissions. Further, as discussed, 
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Figure 6-2. Sample from Bivariate Normal Population with Correlation 
Coefficient = 0.2, Regression Line Shown, Sample Size = 100 

55 



Y 

' I " 

-4 -3 -2 -1 0 
	

2 3 4 

X 

Figure 6-3. Sample from Bivariate Normal Population with Correlation 
Coefficient = 0.5, Regression Line Shown, Sample Size = 100 
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Figure 6-4. Sample from Bivariate Normal Population with Correlation 
Coefficient = 0.8, Regression Line Shown, Sample Size = 100 
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TABLE 6-1. UNCERTAINTY IN ESTIMATE OF NATIONAL 
ANNUAL EMISSIONS UNDER VARIOUS ASSUMPTIONS 

Uncertainty in Annual National Frnicsions 

Correlations Among 
Errors for Different 

Categories 

Distribution of Error 
in Annual National 

Emissions Bscf 
% of National 

Production 

Absent Normal 89.6 0.4 

Absent Lognormal 102.8 0.5 

Present Normal 96.8 0.4 

Present Lognormal 112.3 	I 0.5 

Industry emissions for 1992: 314 Bscf 
Industry production for 1992: 22,132 Bscf 
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the uncertainty measure based on the lognormal assumption is the most conservative one (the 

upper confidence limit minus the estimate, which exceeds the estimate minus the lower 

confidence limit and the half-width of the confidence interval). 

Further, the exceedance of 0.007% is well within the uncertainty of the 

estimation of intercategory correlations. If all nonzero correlations are reduced by 0.1 (by 

0.2 for the set considered to be more uncertain), the uncertainty becomes slightly less than 

0.5% of production. If the correlations are all increased by 0.2 (0.4 for categories 

considered to be more uncertain), and the distribution is considered lognormal, the 

uncertainty of the national production rate remains within 0.54% of production. 

The postulation that there are correlated errors among categories is considered 

reasonable. Given this assumption, it is believed that a point midway between the result for 

normal and lognormal errors is a more reasonable conservative case than is the result based 

on the lognormal assumption. The midway point represents the possibility that there is 

asymmetry in the distribution of the error in the industry emission rate (see Figure 4-4). 

While the selection of the midway point is arbitrary, it is considered a reasonable postulated 

conservative case, given the various issues discussed (and especially the averaging and 

summing of data performed to produce the industry emission rate). The midway point 

produces an uncertainty of 105 Bscf, which is slightly under 0.5% of national production. 

Thus, the conclusion is that, under assumptions that are not unrealistically 

conservative, the target precision was achieved. 

6.2 	Attainability of the Target Accuracy 

Practical considerations allow sampling only a small percentage of the large 

number (tens of thousands) of sources that exist nationwide. Moreover, there is typically a 

large amount of variability among the sources in a given category. In view of these 

considerations, meeting the desired accuracy may seem insurmountable. The allowed 
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uncertainty in the emissions is 0.5% of the national methane production, on the basis of a 

90% confidence limit for the emissions. 

Despite these facts, the target precision for the industry emissions was 

achieved. The purpose of this section is to illustrate, through hypothetical calculations, how 

large errors in emission estimates for individual source strata can combine to allow this to 

Occur. 

As is discussed in the preceding sections, bias is minimized by randomly 

selecting sites (although from a limited list), analyzing the data, and creating strata in a 

systematic way. The estimate of total emissions is the sum of the emissions for all the strata. 

An essential point is that the uncertainties are not additive; the uncertainty of a sum is related 

to the sum of squares of the individual uncertainties. If the errors in a sum vary 

independently, the errors tend to "average out" to an extent; the relative error in the sum is 

reduced by this averaging process. 

Fugitive emission sources have been split into five major segments; each 

segment has two to seven major source categories, and each source category is divided into 

10 to 40 strata. In total, these sources have been divided into nearly 100 strata. Vented 

sources have been divided into approximately 40 strata. Thus, in all there are approximately 

140 strata. Some of these strata (such as distribution pipe type) have been aggregated in the 

summary table shown in Appendix C, which shows 86 categories. 

In this subsection, hypothetical calculations are presented that illustrate the 

effect of summing the errors in the different strata. For the purposes of the hypothetical 

calculations, it has been assumed that there are n strata with equal emissions and equal 

uncertainties based on random errors. While it is recognized that both the emission rate and 

the variability change from stratum to stratum in actuality, the simplifying assumptions 

facilitate a calculation that illustrates the effect of summing the emission estimates from a 

large number of strata. 
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Also, it has been assumed that undiscovered bias, if any, varies 

"independently" from stratum to.  stratum. This type of error would exist if the sources 

within a stratum were sampled in an unrepresentative manner, resulting in a bias error. 

Clearly, a systematic bias that was common to a large number of strata would have a more 

serious effect on the final result. The processes described earlier for screening for bias 

provide a protection against this (or any type of) bias error. Additionally, given the large 

number and diversity of strata, it is reasonable to believe that any undetected bias will exhibit 

a high degree of "independence" among the strata. 

The bias error is represented as the stratum-to-stratum standard deviation of 

the biases in the emission estimates; this quantity is presented as a percent of the emissions 

for a stratum. In the calculations, three values have been considered for the bias: 0%, 15%, 

and 30%. In view of the methods used for screening for bias, 30% is considered to be a 

very high estimate. As indicated above, the total number of strata is approximately 140. 

Under one scenario modeled, it was assumed that there are approximately 100 strata with 

nearly equal emissions that represent the major part of the industry emissions. 

Further calculations were performed assuming 40 and 20 strata, in addition to 

the case with 100 strata. Given that the parameters discussed above of the random and bias 

errors are fixed, the relative uncertainty in the final result decreases as the number of strata 

increases. This is because the "error averaging effect" is greater if a larger number of 

independent estimated quantities are summed. This does not mean that artificially increasing 

the number of strata would improve the accuracy. There would be fewer data points per 

stratum, and the uncertainty of the emission estimate for each stratum would increase. 

Table 6-2 presents the results of the calculations. The random error was 

chosen to be as large as plus or minus 130% of the emissions for each stratum, based on a 

90% confidence interval. This random uncertainty was selected so that the simulated 

uncertainty of the industry emission rate here for zero bias errors and 20 strata would equal 
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the actual uncertainty in Table 6-1 for baseline assumptions. This precision value in Table 

6-1 also applies in the case of zero bias errors, since it is strictly a measure of precision. 

Note that, for the purpose of matching actual and simulated uncertainties, the 

simulated case with 20 strata was selected. This number of simulated strata is considerably 

less than the actual number of strata, about 140, or the actual number of source categories, 

86. However, selecting the case for 20 strata as a basis of matching the actual uncertainty 

accounts for the fact that the 86 source categories do not have equal emissions or equal 

uncertainties. Thus, the reduction of the relative uncertainty achieved by an "averaging 

effect" when 86 category emissions are summed is less than that which would be achieved if 

86 emission rates with identical statistical parameters were summed. 

Thus, on the basis of points made in the last two paragraphs, the approach 

selected provides a reasonable (but not exact) basis of comparability between the actual and 

simulated results. 

Table 6-2 presents the uncertainty in the simulated national emissions as a 

percentage of the national annual production. The uncertainty is expressed in terms of a 

90% confidence interval. Since bias errors were considered as well as random errors, the 

numbers in Table 6-2 represent accuracy, not just precision. 

TABLE 6-2. PERCENTAGE OF ERROR IN SIMULATED NATIONAL 
ANNUAL EMISSIONS 

Bias 
(Percent of 
Emissions) 

Number of Strata 

20 40 100 

0 0.40 0.29 0.18 

15 0.41 0.29 0.18 

30 0.43 0.31 0.19 

(Percent Random Error in a Given Stratum Based Upon a 90% 
Confidence Interval = 130%) 
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The target precision is met if the percentage error is no greater than 0.5%. 

For all the scenarios modeled, the uncertainty is less than 0.5%. This is true even in the 

case in which there are only 20 strata with approximately equal emissions, and the bias is 

30%. These calculations, while hypothetical, illustrate the way in which errors combine in a 

sum and show that meeting the target precision is feasible, even in the presence of large-

percentage random errors in the individual strata and an assumed large undetectable bias 

error. 

It must be remembered that the random and bias errors were expressed as 

percentages of the emissions in the strata. For these calculations, the national annual 

emissions were assumed to be approximately 314 Bscf. The target precision is expressed as 

a percentage (0.5%) of the national gas production, which was 22,132 Bscf as of 1992. 

Note how small the differences are between the corresponding results for 0% 

bias and 30% bias. For a given number of strata, these differences are no larger than 0.03% 

of the national production. This is a consequence of the way independent errors combine 

when one error with a large uncertainty (random error assumed to be 130%) and a much 

smaller error (bias error) are added. Further, the 30% bias error is assumed to be very 

conservative (large), given the various steps taken to screen for and eliminate bias. These 

points imply that any remaining bias in the data probably impacted the actual final 

uncertainty in the national emission rate by a very small amount. 
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APPENDIX A 

FURTHER DETAILS REGARDING CERTAIN STATISTICAL ISSUES 

This appendix contains certain mathematical details pertaining to statistical issues 
discussed in the text. The discussion in this appendix is not required in order to understand 
the statistical methods used or the issues involved from a conceptual point of view. The 
discussion here is included for completeness, as a further documentation of the basis for the 
methods used. In Sections A.I and A.2, methods for analysis of error propagation in a 
product and in a sum, respectively, are discussed. In Section A.3, issues pertaining to the 
calculation of confidence intervals are discussed. In Section A.4, a method for the 
calculation of precision values based on consecutive assumptions is presented. In Section 
A.S, the use of the ratio method for the estimation of an activity factor is described. In 
Section A.6, the approach for combining two estimates of an activity factor obtained by the 
ratio method is to obtain the final estimate is discussed. In Section A.7, methods for 
computing the uncertainties of the industry annual emissions, given the uncertainties of the 
emissions for the categories, are compared. In Section A.8, a complete set of numerical 
examples is presented to illustrate the calculation of emission factors, activity factors, annual 
emissions for a source category, annual emissions for the industry, and associated 
uncertainties. 

A.1 ERROR PROPAGATION IN A PRODUCT (EMISSION FACTOR TIMES 
ACTIVITY FACTOR) 

In general, the product of two sample means (such as EF x AF) does not have a 
standard type of statistical distribution, such as the z-distribution or t-distribution. The type 
of distribution is not standard even if the two variables that are multiplied are both normal; 
the product of two lognormally distributed variables is lognormal, however. In this section, 
two possible ways to approximate the tolerance of a product are discussed. It is shown that 
the selected method more accurately accounts for the possibly different sample sizes on 
which the estimates of the activity and emission factors are based. Moreover, it is shown 
that the selected method produces a more conservative (somewhat larger) estimate of the 
uncertainty than does the alternate method. The rationale for the selected method is 
discussed. 

In computing the uncertainty of the product EF x AF, it would be possible first to 
use standard error propagation methods' to obtain the variance of this product. Then, under 
normal theory, it would be possible to multiply this value by the appropriate z-value to 
obtain the half-width of a 90% confidence interval. According to this method, the tolerance 
of EF x AF would be obtained as follows: 

Tol (AF •EF) = zivar (AF •EF) 
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= z[E(AF)2  var (EF) + E(EF)2  var(AF) + var (EF) var (AF)r2  

z[AF2  var (EF) + EF2  var (AF) + var (EF) var (AF)]"' 

where Tol ( ) signifies the half-width of a 90% confidence interval, E ( ) denotes the 
expected value, i.e., the true value of the parameter, and var ( ) signifies the variance of the 
error in the parameter estimate. 

The equality is approximate in the final line because sample means have been used in 
place of the unknown population means. For a 90% confidence interval, the z-value required 
is 1.645. 

The argument here is not that EF x AF has an approximately normally distributed 
error for most source categories. One could argue, however, that the sum of the emission 
rates for 86 source categories will tend to be normally distributed, because of the large 
number of terms added Issues related to the error propagation of a sum are discussed in 
Section 4.0 and are discussed in somewhat further mathematical detail in the following 
section in this appendix. 

Under the normality assumption, the t-statistic is the proper statistic to use for the 
purposes of computing a confidence interval of a mean value when the population standard 
deviation is not known. Tables are readily available that give the t-statistic as a function of 
the number of degrees of freedom and the confidence level. The number of degrees of 
freedom is one less than the sample size in the case of quantifying the uncertainty of a mean 
value (more complicated situations exist involving the comparison of two means). 

One could argue that a t-statistic should be used in the equations above rather than a 
z-statistic, since the AF and EF values are based in most cases on averages, and the standard 
deviations are not known, but are estimated from the data. The sample sizes used to obtain 
AF and EF may be different, however; thus, the number of degrees of freedom is not clearly 
defined, as in the case of computing the confidence interval for the mean of a single sample. 
Moreover, the product of two means does not have a t-distribution. 

Thus, we have used the tolerances of the individual terms (EF and AF) in the error-
propagation equation: 

Tol (AF EF) = [AF2{ToI(EF)}2  + EF2{Tol(AF)}2  + {Tol(AF)}2  {Tol(EF)}2P2  
where 

Tol(EF) = tEF  sEF  /1c 
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tEF  = appropriate [-value for a sample size of nEF, 

sEF  = sample standard deviation of the individual EF values averaged, 

= sample size of the EF values, and 

Tol(AF), 	su, and nu  are defined analogously. 

The tolerances of AF and EF are both half-widths of 90% confidence intervals. The 
t-value for the appropriate sample size is used in determining the confidence interval for each 
factor. Thus, the effect of each of the two finite sample sizes has been explicitly taken into 
account in the error-propagation method. 

The following derivation reveals that the method used is more conservative (produces 
a somewhat larger value of the uncertainty) than does the alternate method. 

Tol(AF EF) a" z[AP var (EF) + EF2  var (AF) + 

var (EF) var (AF)J"2 	 (by the alternate method) 

= [A.F2  var (EF) + EF2  z2  var (AF) + 

var (EF) var (AF)]" 

< [AF2  z2  var (EF) + EF2  z2  var (AF) + 

z` var (EF) var (AF)1"2  

< [AF2 
I
-2

17  var (EF) + EF2  t 2 AF  var (AF) + 

t2 EF  var (EF) t2AF  var (AF)V'2  

= [AF2  {Tol(EF)}2  + EF2  {Tol (AF)}2  + 

{Tol(EF)}2  {Tol(AF)}9112  

In the derivation above, we have used the fact that z2  < z4; this follows because the 
z-value of interest for a 90% confidence interval, 1.645, is greater than one. Other 
inequalities follow from the fact that z < t for any finite sample size. 
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A.2 ERROR PROPAGATION IN A SUM 

In this section, two possible ways to approximate the tolerance of a sum are 
discussed. It is shown that the selected method more accurately accounts for the different 
sample sizes on which the estimates of the various activity and emission factors are based. 
Moreover, it is shown that the selected method produces a more conservative (somewhat 
larger) estimate of the uncertainty than does the alternate method. Again, the rationale for 
the selected method is given. 

The alternate method of expressing the tolerance of a sum is as follows: 

Tol(ERT) = z[ E var (MIT)]' 

It is rigorously correct that the variance of a sum of independently distributed random 
variables is the sum of the variances. This is proven as a theorem by Mood, Graybill, and 
Boes.' This theorem does not depend on the distributions of the variables summed. The 
variables are not required to have the same distributions, the same means, or the same 
variances. 

This expression for the half-width of a 90% confidence interval is based on the 
assumption that the sum of 86 separate terms will be approximately normally distributed. 
This expression, however, does not account for the fact that the activity and emission factors 
are based on different, finite sample sizes. Thus, we choose to use the following expression 
instead: 

Tol(ERT) = [ E (ToVER)}9112  

It is easily shown that the preferred expression produces a somewhat larger 
uncertainty than does the alternate method: 

Tol(ERT) = z,rE var (ER1) 

= ,{YE z var ( 

(by the alternate method) 

< 	E Tol(Elt)' 

The final inequality follows from the derivation given in the preceding section. 
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A.3 METHODS FOR NON-NORMAL DISTRIBUTIONS 

Methodology exists for computing confidence intervals for certain types of non-
normally distributed random variables. The methods discussed by Finney2  and Patterson' can 
be used to calculate the confidence interval of the mean of a sample based on the lognormal 
distribution. This distribution is discussed briefly in Section 4.1. The nature of this 
distribution may more nearly approximate that of the emission factor estimates for an 
individual source category. Thus, the lognormal method may be appropriate for computing 
the confidence interval for the emission or activity factor for a given source category. 

Because of the properties of a sum discussed above, however, it is not believed that 
the lognormal method is ultimately relevant for computing the confidence interval for the 
industry total. Moreover, the sample sizes for some of the source categories are so small 
that it would be difficult to confirm that the distribution was, in fact, approximately 
lognormal. Thus, it could not be confirmed that the lognormal method was rigorously 
correct, even for calculation of confidence intervals for parameters for individual source 
categories. 

Finally, the lognormal method, while mathematically correct, is not a panacea when 
applied to chemical measurements. The logarithmic transformation required can produce 
instabilities if there are values near the detection limit of the instrument, since these values 
have large relative errors. J arge relative errors in small values may be unimportant when 
calculations are based on the original data values; these large relative errors can play a major 
role, however, in calculations based on the logarithms of the data. The discussion here is 
not intended to be a complete description of the lognormal method or of the various issues 
regarding its use with chemical measurements. The objective is only to acknowledge that 
there are alternative ways of computing confidence intervals and to indicate the reasons for 
the method selected. The bibliographic information for the papers by Finney' and Patterson' 
is given in the References for readers who want to study these papers in detail. 

A.4 CONSERVATIVE PRECISION ESTIMATES 

In this section, an approach for computing a conservative uncertainty for an annual 
emission value, either for a source category or for the industry, is developed. It was felt that 
a derivation of the equations alone would not sufficiently convey the issues for all readers. 
This is not only because of the mathematical nature of the material presented here, but also 
because of the various nonstandard statistical issues. 

Thus, Section A.4.1 presents a qualitative discussion, with graphical illustrations. 
This section may suffice for readers who want to know the basic qualitative issues and the 
objective to be achieved by computing a conservative confidence measure. Section A.4.2 
presents a numerical example. Finally, the derivation of the equations is presented in 
Section A.4.3. 
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A.4.1 Oualitative Discussion 

The error propagation methods discussed in Sections A.1 and A.2 lead to a confidence 
interval based on a normal assumption. Arguments that support the position that the error in 
the industry annual emissions is approximately normally distributed are given in Section 4.5. 
For reasons that have been discussed, it is not feasible to prove rigorously that this error is 
approximately normal. Moreover, for some of the categories with smaller sample sizes, the 
error in the emission rate may not be approximately normal. 

In this section, an approach for approximating a conservative precision value is 
presented. This precision value is larger than that based on the normal assumption. The 
conservative precision value discussed in this section characterizes the uncertainty of the 
emission rate on the high side, which is expected to be greater than the uncertainty on the 
low side in this application if the error is not normally distributed. 

A mean value is normally distributed if the data are normally distributed. By the 
central limit theorem, if a sufficiently large number of non-normal data points (with the same 
statistical distribution) are averaged, the uncertainty in the mean value will be approximately 
normally distributed. The sample size required to produce an approximately normally 
distributed mean value is strongly dependent on the underlying distribution (especially the 
degree of asymmetry). Sums of large numbers of terms with non-identical distributions very 
often tend to be normally distributed, even though the central limit theorem does not strictly 
apply. 

Figure A-la illustrates the case in which the uncertainty in the sample mean is 
approximately normally distributed. In this case, the confidence limits are symmetrically 
placed about the sample mean; the distance between the lower confidence limit and the mean 
is the same as the distance between the upper confidence limit and the mean. 

In the lognormal distribution, the majority of the points fall roughly in the vicinity of 
the mean, with a small percentage of much larger points. There is not a corresponding 
percentage of points far below the mean; thus the distribution is asymmetric (see Figure 4-2). 
This situation corresponds to the case in which there are a large number of sources with 
moderate emission rates and a small percentage of high emitters. 

If the data are non-normal and the sample size is small, the uncertainty in the mean 
may not be approximately normally distributed. The lognormal distribution is a common 
type of distribution in general in emission data, and this distribution was observed in this 
study in the emission data for underground pipes, for example (see Section 4.1). 

Figure A-lb illustrates the case in which the uncertainty in the mean is approximately 
lognormally distributed. Because of the asymmetry of the distribution, the 90% confidence 
limits are asymmetrically placed about the mean. The lower confidence limit is closer to the 
mean than is the upper confidence limit. 
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Figure A-2 presents a plot that further illustrates the relationship between the normal 
and lognormal confidence limits. For the sake of illustration, the sample mean was assumed 
to be 20 Bscf. The standard error of the sample mean was assumed to be the same under 
both distributional assumptions; the standard error of the mean is the standard deviation of 
the uncertainty. 

The confidence limits have been plotted as a function of the relative uncertainty (half-
width of the 90% confidence interval) for the normal distribution. Consider, for example, 
the case at the far right of Figure A-2, in which the uncertainty based on the normal 
distribution is 100%. The confidence interval based on the normal distribution has a lower 
limit of 0 Bscf and an upper limit of 40 Bscf. These limits are symmetrically placed about 
the hypothetical sample mean of 20 Bscf. 

The confidence interval based on the lognormal distribution is asymmetric. The lower 
limit for the lognormal distribution is closer to the mean than is the lower limit for the 
normal distribution. The upper limit for the lognormal distribution is larger than the upper 
limit for the normal distribution. 

If the original data were lognormally distributed, then the sample mean would be 
more nearly normally distributed than were the original data. Thus, in the example discussed 
above, one might expect the true upper confidence limit to be between the normal and 
lognormal upper limits shown in Figure A-2. For this reason, by using the lognormal 
distribution for the uncertainty in the mean, we have computed a conservative (large) upper 
confidence limit. 

The offset between the two confidence intervals becomes larger as the relative 
uncertainty increases. In the vicinity of 20% to 30% uncertainty, the difference is slight. In 
the vicinity of 100% uncertainty, the difference is much larger. Notice, however, that the 
widths of the normal and lognormal confidence intervals are approximately the same for any 
given uncertainty value shown in Figure A-2. 

Earlier in this report, various issues are discussed that militate against a rigorously 
correct characterization of the error properties of the emissions for the categories or for the 
industry as a whole; reasons have been given, however, supporting the hypothesis that the 
error in the industry annual emissions is approximately normally distributed. For example, 
the product EF x AF does not in general have a standard type of distribution; this product is 
not normally distributed even if EF and AF are both normal. For another example, small 
sample sizes in some Stances prevent rigorously establishing the type of distribution of the 
data averaged to obtain an activity factor or emission factor. 

In view of these issues, half-widths of confidence intervals based on the normal 
assumption for the activity factors and emission factors have been used in error propagation 
analyses to approximate the uncertainty of a product (ER = EF x AF) and of a sum (the 
sum of the emission rates by category). In Sections A.I and A.2, it is shown that this 
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methodology accounts for the additional uncertainty attributable to the finite and unequal 
sample sizes used to estimate the different emission factors and activity factors. Moreover, it 
is shown that the methods used produce more conservative (larger) measures of uncertainty 
than would error propagation methods based on only error variances of the activity and 
emission factors. 

In the analysis presented here, the uncertainty of the parameter in question (emissions 
for a category or for the total industry) was converted to a standard error, and this standard 
error was used as a basis for computing a confidence interval on the basis of the lognormal 
assumption (the mean and standard deviation completely determine either a normal or 
lognormal distribution). The conservative precision is the upper confidence limit minus the 
estimated emissions, converted to a percentage of the emissions; because of the asymmetry of 
the lognormal confidence limits, this precision reflects the uncertainty of the emissions on the 
high side. The conservative precision as calculated is larger than either of the following 
alternative precision values: (I) the difference between the emission estimate and the lower 
confidence limit, converted to a percentage of the emissions, or (2) the half-width of the 
lognormal confidence limit, converted to a percentage of the emissions. That is, the largest 
of the three precision measures mentioned here was used. 

The potentially varying types of distributions of the errors in the various emission 
factors, activity factors, and emission rates by category have not been rigorously modeled in 
computing the conservative precision values discussed here. Nevertheless, the lognormal 
approach provides a measure of uncertainty that is conservative in several respects discussed 
in Sections A.1 and A.2 and earlier in this section. 	 • 

L4.2 Numerical Illustration 

In the numerical illustration in this subsection, three Significant figures have been 
reported at the intermediate points and in the final results. However, several additional digits 
were carried through all calculations. It was felt that three significant digits were sufficient 
for illustrative purposes. However, this comment is provided for the benefit of readers who 
may want to reproduce the numerical results. Slight differences between their results and 
reported values may be observed because of rounding. The practice of carrying several 
significant figures through all calculations and rounding only for reporting purposes was used 
in the analyses of the actual data in this project. 

Consider a hypothetical case in which the estimated annual emission value y is 20.0 
Bscf, as illustrated in Figure A-2. Suppose the precision given in the summary table based 
on the normal assumption is 80.0 percent. The half-width of the confidence interval based 
on the normal assumption is a simple conversion from a relative uncertainty in percent to an 
absolute uncertainty 

(20.0 Bscf)(80.0% uncertainty)/(100%) = 16.0 Bscf 

From this uncertainty, a standard error is estimated: 
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sy ' = (16.0 Bscf)/1.645 = 9.73 Bscf 

The divisor, 1.645, corresponds to the half-width of a 90 percent confidence limit 
when the standard deviation is known; the quantity 1.645 is called a z-value. As is discussed 
in the earlier development, t-values were used in quantifying the uncertainties of emission 
factors and activity factors; the use of t-values accounts for the unknown standard deviations 
and produces larger uncertainties than if z-values bad been used. These uncertainties were 
used in error propagation to obtain the uncertainties fast of category annual emissions and 
finally of the industry annual emissions. However, a z-value was used as a divisor above 
because, after the error propagation, the number of degrees of freedom to use in selecting a 
[-value is generally not known; this is especially true in the case of the industry annual 
emissions, the quantity of ultimate interest in this study. 

Use of the smaller divisor (z < t) produces a somewhat inflated estimate of the 
standard error, sy'. The prime is included to signify that sy' is not a conventional estimate of 
a standard error. The calculation of a somewhat inflated estimate here facilitates another 
calculation discussed below. 

Given the estimated emissions y and the value sy', it is possible to compute the mean 
and standard deviation in log space. The mean is as follows: 

1 9.732+20.02  - - 	In 	 - 2.89 
2 	

y 4 
	2 	20.04  

The estimated standard deviation in log space is as follows: 

(4) = 1.41n(y) -111 = = V2[121(20.0) -2.89] = 0.461 

Again, the prime was used since this standard deviation, which is dependent on sy', is 
somewhat inflated. 

The confidence interval for Y, the estimated logarithm of the annual emissions, is 
symmetric: 

(Y-1.645syc Y+1.6454) 

Or 

(2.13, 3.65) 

It may appear that a t value, rather than the z value of 1.645, should be used, since 
the standard deviation is not known but is estimated from the data. Recall, however, that sy' 
is inflated because it results from dividing by 1.645, and sy' is also inflated, since it was 
computed from 	The use of a z-value as a multiplier here counterbalances the use of a z- 

A-12 

(53
52 +y2  



value as a divisor earlier. In view of the nonlinear transformations, the two effects do not 
cancel exactly, but it is believed that this issue is unimportant relative to others, such as the 
difficulty in determining the type of statistical distribution of the errors. 

Finally, the asymmetric confidence interval based on the lognormal assumption for the 
original annual emissions is as follows: 

(F e 	F 
Y-1.645s1 	• 

e 
Y 1.645s /  

where F is a bias correction factor that is necessitated by the nonlinear transformation. The 
factor F is as follows: 

1 12 try) 
F = e 2  

The fatal confidence interval based on the lognormal assumption is: 

(9.37 Bscf 42 7 Bscf) 

The confidence interval based on the normal assumption is: 

(4.00 Bscf, 36.0 Bscf) 

A.4.3 Derivation of Equations 

Methods discussed briefly in Section A.3 exist for computing the confidence interval 
for the mean of a lognormal population. These methods are applicable for computing the 
mean of a single sample and do not apply to analysis of error propagation of the type 
involved in computing annual emissions for the categories and for the industry total. Thus, 
an approach specific for this application has been developed. 

Suppose y is an estimate of the annual emissions for a given source category or for 
the industry. Further, suppose that by  is the half-width of the absolute confidence interval for 
this estimate; the half-width of the confidence interval as a relative error in percent is given 
in the data summary table. 

Now, suppose we compute the following quantity: 

sy' = hy/z 

where z is 1.645. Issues pertaining to the use of a z-value here and later in calculating the 
confidence interval in log space are discussed in the preceding subsection. 
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We are interested in a population of lognorrnally distributed estimates of a particular 
parameter. Our estimate of the mean of this population is y. The (somewhat inflated) 
standard deviation of the population is sy'. 

Let Y denote the estimate of the mean of the logarithm of the parameter of interest. 
Let sy' denote the standard error of this estimate. The following equations express the 
relationship between the parameters y and sy ' in linear space and the parameters Y and sy' in 
log space': 

r-1(4)2  e  

(s
y

52 = 
e 

2).414 - 
e 

2y.4 ? 

The estimate y exists in the data summary table, and sy' can be obtained from this 
table as described earlier. From these values, as an initial step to computing the desired 
asymmetric confidence interval, we need to solve for Y and sy'. Taking the logarithm of 
both sides of the first of the two equations above yields the following: 

hi(y) = f+-1-(442  
2 

(s;.)2  = 21n(y) -F1 

We substitute this result into the equation for sy' to obtain one equation in the one 
unknown, sy'. 

(4)2  = e2Y+412131-4Y  - e 2Y+2111(Y)-2Y  

= e -2Y•414(Y) - e 224.  (Y) 

e -2Y .4k4Y) = (sy)2 y
2 

_2y 
	

y
/ 2 2 
) +3,  

e 	- 	 
eagy) 
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Taking the logarithms of both sides allows us to solve for Y: 

(s 52+y 2  
2Y - ln 	 

y4 

Y - - I  In 
 (s)52+372 

	

2 	y4  

The equation above allows us to calculate Y in terms of known quantities. Now we 
can substitute this Y value into an earlier expression to obtain a solution for (sy')2  in terms of 
known quantities. 

(4)2  = 2(111(y) -11 

We are now in a position to compute a symmetric confidence interval for Y, from 
which we can obtain the desired asymmetric confidence interval for y. The confidence 
interval for Y is as follows: 

Y ± 1.645syt  

It remains to perform the logarithmic transformation to obtain the confidence interval 
in the original space. Following Patterson's analysis', we apply the appropriate bias 
correction factor to both limits of the confidence interval. The resulting confidence interval 
is as follows: 

	

(F e
V-1.645st 	11+1.645s /  

F e 	7.) 

where the multiplicative bias correction factor F is as follows: 

1(42 

F = e 2  

A.5 RATIO METHOD FOR ESTIMATION OF AN ACTIVITY FACTOR 

As is discussed in Section 3.5, the ratio method has been used to estimate activity 
factors on the basis of well counts or production. In that section, a numerical example is 
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given which illustrates the ratio method for that purpose. This section provides a further 
description of the ratio method, including calculation of a confidence interval for an estimate 
obtained by this method. In Section A.5.1 estimation using the ratio method is described. In 
Section A.5.2, methods for computing a confidence interval for the estimate produced by the 
ratio method are discussed. Further discussion of the ratio method and methods for 
computing confidence intervals is provided by Cochran.°  

A.5.1 Estimation Using the Ratio Method 

Suppose 

= device count (e.g., number of separators) at the ith  sampled site, 

= value of the extrapolation parameter (number of wells or gas production) at 
the 	site, 

= number of sites sampled, 

X 	= the regional value of the extrapolation parameter, e.g. the total number of 
wells in the region, and 

N 	= the total number of sites in the region. 

For the purposes of illustration, we will discuss the estimation of the regional number 
of separators by using the well method. Then, by the ratio method, the following is the 
estimate of the number of separators per well: 

y 
x 

Or 

E yi 
_ 1=1  

E xi  
i-I 

This estimated number of separators per well and the regional number of wells is then used 
to estimate the number of separators in the region: 

11.R  = X 
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A.5.2 Confidence Interval for Estimate Produced by the Ratio Method 

Cochran presents two approaches for estimation on the basis of confidence intervals. 
First, the issues pertaining to the two methods will be described, and reasons for selecting 
one of these two methods will be discussed. Subsequently, the details of the selected method 
will be discussed. We will continue to use estimation of the number of separators in a 
region by the well method as an example. 

One method for calculation of the confidence interval is based on the assumption that 
the ratio estimate, R., is approximately normally distributed. In many applications, the 
normality assumption is satisfied only if the sample size (the number of sites visited in our 
application) is sufficiently large (at least 30) and the relative uncertainties (coefficients of 
variation) in both the average number of separators per site and the average number of wells 
per site are both sufficiently small (less than 10%). The suggested rules of thumb are given 
by Cochran. If the ratio is normally distributed, its confidence interval will be symmetric. 

If the ratio itself is not approximately normally distributed, but the numerator and 
denominator are both normally distributed, the ratio will tend to have an asymmetric 
confidence interval in which the upper confidence limit is more separated from the mean than 
is the lower confidence limit (see Figures A-lb and A-2). A second method handles this 
case. As is discussed below, the cause of the asymmetry in some applications is a 
fundamental consideration in the selection of a method. Thus, a brief discussion of the cause 
will be given here. 

Suppose we are concerned with a ratio a/b such that "a" and "b" are both subject to 
random variability but both are non-negative. Given that "b" is subject to random variability 
and bounded below only by zero, a value very close to zero could occur. The ratio has no 
upper bound as "b" approaches zero; thus the error in the ratio is unbounded above. But the 
ratio has an absolute lower bound of zero. The possibility of values extremely larger than 
the true value, without a corresponding possibility of values extremely lower than the true 
value, tends to cause the uncertainty in the ratio to be asymmetric. 

The method based on the assumption that the ratio is approximately normally 
distributed will be called Method 1. The method that produces asymmetric confidence 
intervals will be called Method 2. Radian has performed calculations to compare these two 
methods. Tests revealed that Method 2 is capable of producing an upper confidence level 
that is unreasonably large from an engineering point of view (see the discussion below 
pertaining to separators for the Central Plains Region). The confidence limits produced by 
Method 1 under these circumstances are much more reasonable from this perspective. 

Both engineering judgement and further statistical calculations have indicated that 
Method 1 is preferable for this application. First, the asymmetric confidence interval is 
based on the general mathematical situation described above, in which the denominator can 
become arbitrarily close to zero. But in our application, the denominator is the sum of the 
production levels or of the numbers of wells for the sites visited in a region. From a 
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practical perspective, it is not reasonable to expect that either of these sums can become 
arbitrarily close to zero, causing an extremely large ratio of separators per well or separators 
per unit of production. 

The number of wells at a site of interest must be at least one. Thus, the sum of the 
numbers of wells has a lower bound equal to the number of sites visited. The production 
does not have a definable lower bound of this nature. The argument above still applies, 
however; it is not reasonable to expect an arbitrarily small production rate at all visited sites 
in a region, allowing an unbounded ratio of devices per unit of production on the basis of the 
data for all sites. 

The argument above pertains to the possibility of an arbitrarily small denominator, 
which could cause extreme skewness; Figure A-lb depicts a hypothetical distribution that is 
skewed, or asymmetric. The relationship between the number of devices and the number of 
wells or amount of production is also relevant. Theoretically, positive skewness in a ratio 
could result from positive skewness in the numerator; this would be a special concern if the 
numerator could increase without bound, independently of the value of the denominator. In 
this application, however, it is not reasonable to expect that the number of separators 
attached to a given well is unbounded; similar comments apply for other device types. 
Further, it is not reasonable to expect that the number of separators at the visited sites in a 
region is independent of the total production at those sites and can become arbitrarily large, 
independently of the production level. 

The intuitive arguments above indicate that certain mathematical causes of marked 
asymmetry do not exist in this application. However, these arguments do not prove that 
asymmetry cannot exist at all. A further investigation was performed on the basis of 
statistical calculations. For each of a selected set of regions and device types, the number of 
devices was divided by the extrapolation parameter (wells or production) for each site. This 
produced a ratio for each site visited for a given region and device type. In most cases, the 
number of sites is too small to allow a detailed characterization of the distribution. For 
separators for the Atlantic/Great Lakes region, however, there were 19 sites. The 
distribution of separators per well is displayed for this case in Figure A-3. The histogram is 
somewhat ragged, because of the sample size; even 19 is a small sample size to characterize 
a distribution. Nevertheless, there is no evidence of positive skewness. Despite the 
raggedness of this empirical distribution, a hypothesis test indicated that this distribution does 
not differ to a significant extent from a normal distribution. 

Figure A-4 presents the histogram for the ratio of separators per unit of production for 
the same region. In this case, there is evidence of asymmetry in the distribution of the site-
by-site ratios, and the hypothesis test indicated that this distribution differed significantly 
from a normal distribution. The primary reason for the visual impression of asymmetry is a 
single site with a ratio of 99.9 separators per MMcfd of production. Asymmetry in the site 
ratios, however, does not necessarily imply that the error in the ratio for the region is 
asymmetrically distributed. For the site with the large ratio, there are 1,582 separators and 
16 MMcfd of production. Another site with a more moderate ratio has a much larger impact 
on the ratio for the region. This site has 3,227 separators and 81 MMcfd of production, so 
the ratio is 39.8 separators per MMcfd. 
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Figure A-3. Distribution of the Number of Separators per Well for 
19 Sites in the Atlantic/Great Lakes Region 
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Figure A-4. Distribution of the Number of Separators per Unit of Production 
for 19 Sites in the Atlantic/Great Lakes Region 
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The site values of the number of separators per well for the Central Plains region 
revealed evidence of negative skewness. That is, instead of a long tail to the right, as in 
Figure A-4, there was some evidence of a long tail to the left. Since there were only seven 
sites, a histogram of this data set would not be meaningful and is not shown In this case, 
Method 2 produced an upper confidence limit for the ratio of separators per well that was 
unreasonably large in this case from an engineering or a statistical point of view. This upper 
limit was several times the largest site ratio of separators per well for the Central Plains 
region and exceeded almost all the separator-per-well site values for several regions. In this 
example, Method I produced results that were considered to be much more reasonable. 
While negative skewness was the exception, this example provides another illustration of why 
Method 1 was preferred over Method 2 for this application. 

Moreover, asymmetric uncertainties of individual parameters exist for other reasons. 
It is discussed elsewhere in this report (Sections 4.5 and 5.1) that confidence intervals with 
greater than 100% uncertainty exist for activity factors, emission factors, or emission rates 
for some source categories. One possible explanation is that the error in the estimated 
parameter is not normally distributed. The ultimate objective of the study, however, is to 
quantify the national annual emissions. The sum of the emissions for 86 source categories 
will tend toward normality, even if some of the individual values summed are nonnormal. 
Thus, even if some category parameters were not normal, this would not necessarily 
invalidate the confidence interval for the national annual emissions. Moreover, an 
assessment has been made of the effect of a lognormal error in the industry annual emissions. 
The upper confidence limits based on the normal and lognormal assumptions differ by a 
small amount, and the target precision is met on the basis of either assumption (Section A.4). 

Based on a finite sample of size n (Le., n sampled sites), the following is an 
approximation of the variance of the error in IR: 

v(YR) = N2(1-fii (Yr n(n-1) ,=1  

The quantity N, the total number of sites in the region is not known and, therefore, 
must be estimated. The total number of separators, X, in the region is known. The quantity 
X divided by the average number of separators per site is an approximation of the number of 
sites in the region. This method of estimating N was suggested to Radian by Jonathan Cohen 
of ICF Kaiser in a private communication. 

Thus, N is an estimate rather than a known constant. The value N is used only in 
quantifying the uncertainty of YR, however, and not in estimating IR. The quantity f is the 
sampling fraction, n/N. 

The equation given by Cochran for a symmetric confidence interval for IR  is as 
follows: 
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YR  f  z Vv(1 R) 

where z is a tabulated value of the standard normal distribution selected according to the 
confidence level; for a 90% confidence interval, the z value is 1.645. The z value is 
appropriate when the quantity estimated (YR) has an uncertainty, but the uncertainty of the 
variance [v(iR)] can be neglected. The use of the z statistic is generally accepted if the 
sample size is greater than 30 

According to Cochran's rules of thumb, the sample size would be at least 30 when 
this expression for the confidence interval was used. In our case, however, the decision that 
the symmetric confidence interval was preferable to the asymmetric confidence interval even 
if the sample size was less than 30 was based on engineering considerations and data 
analysis, as is discussed above. To account for the uncertainty in the variance as well as in 
the estimate, therefore, we have replaced z in the expression above by the appropriate t 
value. Even though the t-distribution does not apply exactly in this context, replacing z by t 
provides a degree of conservatism; that is, somewhat wider confidence intervals are 
produced, which tends to account for the uncertainty in v(YR). The resulting confidence 
interval is as follows: 

YR  t r iv(YR) 

A.6 COMBINATION OF ESTIMATES OF AN ACTIVITY FACTOR 

The methods discussed in the preceding section were used to estimate the activity 
factor and its uncertainty on the basis of both well counts and production for some source 
categories. The arithmetic average of the two estimates was computed to obtain the final 
estimate. 

The two estimates are based on different extrapolation factors (values of the x) but 
common device counts (values of the y). The device counts vary by site and are subject to 
sampling error. Thus, this source of sampling error was common to the two estimates of the 
activity factor. It has been discussed elsewhere that separate measured quantities (e.g., 
emission rates from different types of devices) may have correlated sampling errors. The 
evidence here for correlation is much stronger, however, since common data are used in the 
two estimates. Thus, steps were taken to account explicitly for the correlation. To address 
this issue, we introduce the following notation: 

= number of wells at the site, 

= production at this site, 

RW 	= estimate of R on the basis of wells, 
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estimate of R on the basis of production, 

= estimate of YR  on the basis of wells, and 

ICTR.p 
	= estimate of 1FR  on the basis of production. 

By substituting x,„, for xi  in the appropriate equations in the preceding section, for 
example, one obtains the estimate of the number of devices in the region on the basis of 
wells and the confidence interval for this estimate. The following is a sample estimate of the 
covariance between the errors in the two estimates: 

_A n 
cov(YR,,,,,YRp) = n  

Ar2/1 
 d'E(yi 

n(n-1) 

This expression satisfies important required properties of the covariance, such as the 
symmetry property: 

cove7R.„„ irt.p) = cov(iritp, YR.„) 

Additionally, the covariance between a quantity and itself equals the variance of that 
quantity. This can be confirmed simply by replacing all "wa subscripts with a "p" subscript, 
to obtain the variance of tp. 

In a textbook application of the ratio method, the quantity N would be known. As is 
discussed earlier, N must be estimated in this application. In estimating the covariance 
above, the average of the two estimates of N was used, both where N appears explicitly in 
the covariance equation and in calculating f. 

Now, the expression for the final estimate of the activity based on the arithmetic 
average approach is as follows: 

The variance of this expression is: 

var(2.R.)+2cov(YRR, YR)+var(YR,„) 

4 

The confidence interval for the final estimate is as follows: 

tRavg  t \jvar(YR ) 

In some instances, the number of sites for which data existed for both wells and 
production did not coincide exactly. In these cases, the covariance was computed on the 

var(tR„g) - 
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basis of the sites for which common data did exist. This provided a somewhat conservative 
(large) estimate of the covariance. This calculation of the covariance represents the case in 
which the sites in common for the two extrapolation parameters are the only sites. But the 
fact that sites exist with data for wells but not production (or vice versa) introduces an 
element of independence between the estimates of yR  based on the two extrapolation 
parameters. The somewhat conservative covariance estimate produces a somewhat 
conservative confidence interval for the final estimate of II. 

To account for this case, the correlation between the errors in the two estimates was 
computed as follows: 

r - 
tR.p) 

 

ilvar(&)var(tRio) 

Then the half-width of the confidence interval for 'irk  was computed as follows: 

ilt;Var(4)+2ritplvar(i)Rd][tivivar(tz)]+t!Var(kR) 

where tp  and c are the t-values appropriate for the sample sizes for the two extrapolation 
parameters. The expression involving the correlation coefficient was written in the manner 
shown to emphasize that this is approximately an error propagation using half-widths of 
confidence intervals, as has been used elsewhere (see Sections A.1 and A.2). Each t-value is 
grouped with its respective standard error (the square root of an error variance is a standard 
error). The expression above can be simplified algebraically to the following: 

1 2 

2 P  
var(t Rp)+2t 

P 
 cov(Y

gvd 
, TILD)+t,„Var(Ŷ  

This expression involving different sample sizes for the two estimates reduces to the 
simpler expression for the half-width of the confidence interval given earlier if the sites for 
which data exist for wells and production are the same. 

A.7 UNCERTAINTY OF INDUSTRY ANNUAL EMISSIONS 

This section provides the details of the reasons for the selection of an approach for 
computing the uncertainty of the industry annual emissions, given the uncertainties of the 
emissions by source category. Recall from Section 4.4 that Method I involves computing 
the sum of squares of the uncertainties of the terms summed to obtain the industry emission 
rate. In Method 2, the uncertainty of the sum equals the sum of the uncertainties, or 
tolerances, of the terms. The terms summed are the emission rates for the 86 source 
categories. 
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The sum of the tolerances is apparently used in some applications and provides a 
conservative (large) estimate of the tolerance of a sum. Since the possibility of using Method 
2 has been raised as an issue, a brief comparison of the two methods and the reasons for 
selecting Method I will be given. The discussion will show that Method 2 is inappropriate 
for this application. 

Juran, et al.,' give the following simple example to illustrate why the Method 2 is 
"often too conservative." Given the mechanical assembly shown in Figure A-5, suppose it is 
necessary to compute the uncertainty of the sum of the three lengths. Suppose that there is 
one chance in 100 that a given one of the three parts will be less than its lower tolerance, 
and the errors in the three lengths are uncorrelated. 

Now, suppose a lower tolerance for the sum of the three lengths is computed by 
summing the three lower tolerances. The probability that all three will be less than their 
lower tolerances simultaneously is: 

1/100 x 1/100 x 1/100 = 1/1,000,000 

That is, there is only one chance in a million that all three components will fall below 
their respective lower tolerances simultaneously. Thus, the sum of the tolerances produces a 
very conservative estimate, in that there is no recognition of the fact that the probability that 
all errors will be extreme in magnitude and have the same sign is very low. In Method 1, 
the fact that the errors in the different terms in a sum may have different magnitudes and 
even different signs is recognized. 

If Method 2 produces very conservative results in the case of the sum of three terms, 
this method produces unreasonably conservative results in the case involving 86 source 
categories. The tolerances used in this project are based on 90% confidence limits. The 
probability that all 86 true emission values will fall below the lower confidence limits 
simultaneously is 1.3 x 10'2. The probability that all true emission values will fall above 
the upper confidence limits is the same. 

A.8 EXAMPLE CALCULATIONS 

In this section, a set of numerical examples illustrating the calculation of emission 
factors, activity factors, annual emissions for a source category, annual emissions for the 
industry, and associated measures of uncertainty is presented. This is an appropriate place 
for this set of examples, given the development of equations presented earlier in this 
appendix. 

Numerical examples illustrating specific points are given at various points earlier in 
the report. The purpose of this section, however, is to combine an extensive set of examples 
in one place. 

A hypothetical example will be presented to illustrate the calculations for an individual 
category. It was desired to provide an example that was representative of the basic case. 
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± 0.002 
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Figure A-5. illustration of Methods for Computing the Tolerance of a Sum 
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However, many actual categories involve individual characteristics and exceptions. For 
example, categories for which the ratio method was used to estimate the activity factor 
involve application of this method for each geographical region. It was considered 
undesirable to show the same basic calculations performed with different sets of numbers for 
the different regions. The repetitious aspect of this type of example would have added length 
to this section, but the repetition would have contributed nothing to the illustration and might 
even have tended to obscure the message. Further, the use of relatively small data sets 
facilitated presenting all data used in the calculations, without requiring large tables that 
would have contributed nothing extra to the illustration. 

As is discussed in Section A.4.2, three significant figures have been reported at 
intermediate steps and in the final results. Several additional digits were carried through all 
calculations, however. 

In Section A.8.1, calculation of the emission factor for a hypothetical source category 
is illustrated. In Section A.8.2, calculation of the activity factor for this category is 
discussed. In Section A.8.3, calculation of the category annual emissions is presented. 

In Section A.8.4, the industry annual emission calculations are discussed. Both the 
real data given in Appendix C and hypothetical data are used as needed to illustrate different 
aspects of the calculations. 

A.8.1 Emission Factor Calculations 

Table A-1 presents the hypothetical data for the calculation of the emission factor. 

TABLE A-1. HYPOTHETICAL EMISSION FACTOR DATA 

Measurement Number Annual Emissions (Set) 

1 18.000 
2 17 000 
3 3.000 
4 10.000 

5 15 000 
6 7 000 
7 _2,000 
8 13.000 
9 2 000 

10 13.000 

Mean 10 000 

Standard Deviation 6.160 
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Each measurement represents the annual emissions for one device for one year in Set 
The symbol e will be used to denote the ie emission measurement, and n will denote the 
sample size, which is 10 in this example. The mean value of the measurements equals the 
emission factor, ER 

E r.r 	_ 18,000+ 	. . . 13,000 EF = 7 = 	 - 10,000 Scfldevice 
10 

The standard deviation is as follows: 

s - 

E (e.4)2  
is 

 

n-1 

 

(18,000-10,000)2+ . . , +(13,000-10,000)2  - 6,160 Se/Me-vice 
10-1 

The standard deviation of the error in the mean, or the standard error of the mean, 
equals the standard error of the emission factor, sEE: 

s 	6,160 
sue,. = 	= 	 - 1,950 Scfidevice 

ill 116  

The confidence interval based on the assumption that the errors are normally 
distributed involves the t-statistic. The parameter of the t-distribution is called the "number 
of degrees of freedom," which is n-1, or 9, in this context. From standard tables, the 
appropriate [-value for a 90% confidence interval for 9 degrees of freedom is 1.83. The 
uncertainty of the estimated emission factor is calculated as follows: 

Tol(EF) = t se,. = (1.83)(1,950) = 3,570 St fidevice 

This value is readily converted to an uncertainty in percent: 

To/(EF) (%) 	
(100%)Tol(EF) _ (100)(3,570) _ 35.7%  

EF 	 10,000 
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A.8.2 Activity Factor Calculations 

Table A-2 presents the data for the hypothetical calculation of the activity factor. The 
notation and methodology used to calculate the activity factor using the ratio method are 
given in Section A.S. Activity-factor issues are also discussed in Section 3.5. The activity 
factor is the total number of devices (for example, separators) for this source category. Gas 
production, a common extrapolation parameter, has been employed in this example. 

TABLE A-2. HYPO.' 111,TTCAL ACTIVITY FACTOR DATA 

Site Marketed Gas (x) (MMscfd) Number of Devices (y) 

1 20.0 4 

2 30.0 2 

3 80.0 8 

4 10.0 2 

Totals 140.0 16 

The quantity n in this context is the number of sites visited. Both the use of n as the 
sample size in the preceding section and the use of n as the number of sites visited in this 
section are consistent with standard notation. 

The average number of devices per site is: 

EYi 
i=3 

The average production per site is: 

140.0 _ = 35.0 MMcfdlsite 
rs 	4 

Then A, the activity-factor ratio, is as follows: 

4.00 devices/site 
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Y 	4.00 

	

= 	- 0.114 devices/MMcfd 
1 35.0 

Suppose the published value of the total marketed gas for this source category is 
X = 14,000 MMscfd. The activity factor, AF, is denoted 'irk  in the context of the ratio 
method: 

AF = tR  = XR = (14,000)(0.114) = 1,600 devices 

The quantity N, the total number of sites, is not known and must be estimated: 

X 	14 000 

	

N = 	= 	' 	- 400 sites 
35 

The ratio f of sites visited, n, to total sites, N, is: 

f= N 
40 

= —4 
0 
 - 0.0100 

We are now ready to calculate the error variance, WYE), of the activity factor: 

Yard = N2" 	-fri (Yi 

4002(1-0.0100) 

(4)(4-1) 
([(4 (0.114)(20)12+ . . +12-(0.114)(10)12) 

92,700 

The standard error S(7R), which is the standard deviation of the error of the activity 
factor, is simply the square root of the error variance: 

S(I)R) = VFITz) = 304 devices 

The uncertainty in the activity factor is obtained by multiplying the standard error by 
the appropriate t-value from a standard statistical table. The appropriate t-value in this 
context for a sample size, n, of four (i.e., for three degrees of freedom) and for a 90% 
confidence level is 2.35. As is discussed earlier, the application oft here is not exact but is 
more conservative than using a z value. The use of t provides for the extra uncertainty 
attributable to the fact that the standard error of IR  is estimated from the data. 
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The uncertainty, To1(7R), is estimated as follows: 

Tol(YR) = tS(fR) = (2.35)(304) = 715 devices 

The uncertainty of IR  in percent is obtained simply by multiplying this result by 
100% and dividing by IR 

Tol(YR) 
(%) - (100%)ToktR) 	(100)(715) - 44.7% 

Q
R 
	1,600 

A.8.3 Category Annual Emission Calculations 

From the previous subsections, we have the emission factor and the activity factor for 
the hypothetical category. Thus, we can calculate the annual emissions and uncertainty 
measures. 

First, it is necessary to convert the emission factor and its uncertainty from Scf to 
Bscf. 

EF = 10,000 Scf = 0.0000100 Bscf 

Tol(EF) = 3,570 Scf = 0.00000357 Bscf 

The activity factor and its uncertainty are as follows: 

AF = 1,600 devices 

Tol(AF) = 715 devices 

The annual emissions value is as follows: 

ER = (AF)(EF) = (1,600)(0.00001) = 0 016 Bscf 

The uncertainty of this quantity is as follows: 

To1(ER) = VAF2Tol(EF)2+EF2Tol(AF)2+To1(AF)2To1(EF)2  

By direct substitution of the values above, we obtain the following: 

To1(ER) = 0.00950 Bscf 
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This is readily converted to a percent: 

(100%)To1(ER)  _ (100)(0.00950) Tol(ER)(%) =     - 59.4% 
ER 	 0.016 

It remains to calculate the conservative uncertainty. As is discussed in Section A.4, 
this measure is based on the upper confidence limit, assuming the error in ER is lognormally 
distributed. 

In Section A.4, the term y was used to denote the annual emissions; the methodology 
developed applies to either the emissions for a category (y equals ER) or the emissions for 
the industry (y equals ERy). The development required transformations between linear space 
and log space. The notation used facilitated the association of corresponding quantities in the 
two spaces; expressions involving y correspond to linear space, while expressions involving 
Y correspond to log space. For consistency and convenience, we retain the notation of 
Section A.4 for the purposes of calculating the conservative uncertainty. Here, y is the 
annual emissions ER for a hypothetical source category. First, we approximate the standard 
error of the annual emissions: 

sr= To1(y) _ 0.00950 _ 
0.00578 Bscf 

1.645 	1.645 

Regarding the use of the value 1.645 here and below, see Section A.4. Given the 
estimated annual emissions y and the value sy, it is possible to compute the mean and 
standard deviation of the natural logarithm of emissions: 

1 (4)24-Y2 	1 0.005782+0.01602  Y = —In 	 - 	1n -  4.20 
2 2 	y4 	 0.01604  

The estimated standard deviation in log space is as follows 

sy = 1/2(1n(y)-Y) = V2I1n(0.0160)-(-4.20)} = 0.350 

The upper confidence limit for Y is as follows: 

Y+1.6454 = -4.20+(1.645)(0.350) - -3.62 

The bias correction factor is: 

101)2 	im350)2  
F = e 2 	= e 2 	= 1.06 
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The conservative upper confidence limit is as follows: 

u
conS 	Fe Y*1.6684 

= 1.06e -410*(1.645)(0.350) = 0.0285 Bscf  

The conservative uncertainty based on this upper confidence limit is: 

Conservative To1(y) = t cms-y = 0.0285-0.0160 = 0.0125 Bscf 

This is readily converted to a percentage value: 

Conservative Togy) (%) - (100%)Conservative Togy) 

y 

_ (100)(0.0125)  - 77.8% 
0.0160 

A.8.4 Industry Annual Emission Calculations 

The data set used for the industry annual emission calculations is included in 
Appendix C. While this data set is not ideal for illustrative purposes in view of its size, it 
was felt that illustration of the industry emissions calculations using the actual data in the 
summary table would be beneficial. These calculations do not involve category-to-category 
special cases, as do calculations of annual emissions and uncertainties for individual 
categories. The role of correlated errors is illustrated through both a hypothetical example 
and calculations with real data. 

The first step is to calculate the industry annual emissions, ERT. This value is simply 
the sum of the emissions for the 86 categories. Using values from the summary table in 
Appendix C, ERT  is computed as follows: 

86 

ERT  = E ER1  
i =I 

= 0.3352+0.0013+ . . . +2.0631 = 314 Bscf 

where ER, denotes the annual emissions for the source category. The emissions for the 
first two categories and the last category listed in the table in Appendix C are shown 
explicitly here. 

As is discussed in Section 6.1, uncertainties were computed on the basis of several 
assumptions to illustrate the effect of certain factors and to arrive at a final measure of 
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uncertainty. In the baseline case, the error in the industry annual emissions is assumed to be 
normally distributed, and the errors for different source categories are assumed to be 
uncorrelated. In this case, the uncertainty of the industry annual emissions is the square root 
of the sum of squares of the uncertainties of the emissions for the categories: 

Tol(ERT) = 
86 

E To1(ER)2  
1=1 

= ‘/0.274920.33522 +2.176420.00132+ . . +19.244122.06312  

= 89.6 Bscf 

where the uncertainty for a given category is the precision, expressed as a fraction, times the 
annual emissions in Bscf. Again, the values shown are from Appendix C. It is felt that the 
conversion from an absolute uncertainty to an imrPrtainty in percent is basic and has been 
sufficiently illustrated. The absolute uncertainty above is equivalent to an uncertainty of 
28.5% of annual emissions. This uncertainty is better than the target precision of 0.5% of 
production (see Section 6.1). 

The uncertainty given above can be converted to a conservative uncertainty. This 
calculation is analogous to the conversion to a conservative uncertainty for category annual 
emissions, which is illustrated in Section A.8.3. As shown in the data summary table in 
Appendix C, the conservative uncertainty of the industry annual emissions is 32.7% of 
emissions. This uncertainty is also better than the target precision. 

The calculation of the uncertainty based on the assumption of correlated errors is the 
same as the uncertainty calculation in the baseline case, except that additional terms are 
involved. The following is the simplest expression for the additional terms: 

2roTol(Elt.i)Tol(ER) 

where ri, is the correlation coefficient between the errors in the annual emissions in the and 
?I' categories. Further intuitive discussion of correlated errors is given in Section 4.4. Plots 
illustrating different levels of correlation are presented in Section 6.1. The exact role of 
these other terms is discussed in Section 4.4. The number of terms, including the 86 squared 
tolerances and the terms accounting for correlated errors, is large. 

The errors in the emissions for two categories may be uncorrelated or may be 
correlated because of a common influence on their activity factors or a common influence on 
their emission factors. The correlation coefficients considered are given in Appendix C, as 
are categories postulated to have correlated errors. 
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The calculations associated with correlated errors will be illustrated in two steps. 
First, a simple hypothetical numerical example involving two sources will be used to 
illustrate the manner in which the term used to account for the correlation is combined with 
the uncertainties of the annual emissions for the categories. Second, the actual calculation of 
the term used to account for the correlated errors using data from the summary table in 
Appendix C is illustrated. 

The following hypothetical numerical example involving two sources is more 
manageable for illustrative purposes than is the actual case involving 86 source categories. 
Consider two sources with emissions E1  = 3.00 Bscf and E2  = 4.00 Bscf Suppose the 
uncertainties are Tol(E1) = 1.00 Bscf and Tol(E2) = 2.00 Bscf. The total emissions are as 
follows: 

ET  = 	= 7.00 Bscf 

If the errors were uncorrelated, the uncertainty of the total emissions would be: 

To/(ET) = ilToi(Ei)2+Toi(E2)2  = 2.24 Bscf 

Now, suppose the errors in the emissions for the two categories have a correlation 
coefficient, r, of 0.5. A plot illustrating the strength of the relationship that exists when the 
correlation coefficient is 0.5 is given in Figure 6-3. Then the uncertainty of the total 
emissions would be as follows: 

Tol(ET) = sfrol(E)2+Tol(E2)2  +2rTol(E)Tol(E2) = 2.65 Bscf 

Thus, the correlation term increased the uncertainty of the total emissions by 
0.041 Bscf, from 2.24 Bscf to 2.65 Bscf, in this hypothetical example. 

Now the actual calculation of the uncertainty term using data in the summary table in 
Appendix C will be illustrated. The two sources are the first and third source categories 
listed on the rust page of the table; this page pertains to the production segment. The first 
category (category i) includes gas wells (Eastern on shore). The other category considered 
here (category j) includes separators, listed under field separation equipment (Eastern on 
shore). 

Emission factors are given in Scfd/well in the table. These are converted to annual 
Bscf/well for use in the calculations. The uncertainties are given in percentages. These are 
converted to absolute uncertainties for use in the calculations. The values needed are as 
follows: 

EF, = 7.11 Scfd/well = 2.60 x 10-6  Bscf/well 

Tol(EF,) = 27% = 7.01 x 104  Bscf/well 
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AF = 129,157 Wells 

Tol(AF) = 5% = 6,460 Wells 

EF = 0.900 Scfd/Separator = 3.29 x 10-7  Bscf/Separator 

Tol(EF;) = 27% = 8.87 x 10 8  Bscf/Separator 

AF = 91,670 Separators 

Tol(AFJ) = 23% = 21,100 Separators 

The numerical value at the right of each equation above was used in the calculations. 

In this case, both activity factors are involved in intercategory correlations but are not 
correlated with each other. The errors in the two emission factors have a weak correlation 
coefficient of 0.2. Thus, 

rEii= 0.2 
and 

rAu  = 0 

where 

rEii 
	 = correlation between the errors in the emission factors for the ?I' and jth  

categories, and 

rAij 
	= correlation between the errors in the activity factors for the same two 

categories. 

From Section 4.4, the expression actually used to quantify the contribution of the 
correlated errors appears after the equals sign in the following equation: 

2ruTo1(ER)Tol(ER) 

2 [AF,AF fraf rol(EFi)Tol(EFj)+EFiEFirAuTol(AF)Tol(AFJ)+ 

rEuTol(EF)Tol(EF))rAuTol(AFi)Tol(AF)} 

Direct substitution of the data values given above into the expression for the 
correlation term produces the value 0.000294. This term, and other correlation terms, are 
added to the sum of squares of the uncertainties of the category annual emissions. The 
square root of the resulting sum is the uncertainty of the industry annual emissions in Bscf 
(see equation 14 in Section 4.4 and the two-category example given earlier in this 
subsection). 
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The uncertainty of the industry emissions based on correlated errors is converted to a 
conservative uncertainty in exactly the same way that the category annual emissions are so 
converted; this conversion is illustrated numerically in Section A.8.3. 

The results of the calculations of the uncertainty for the industry annual emissions for 
all sets of assumptions considered are presented in Section 6.1. The uncertainties are given 
in Bscf and as percentages of national production. 
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APPENDIX B 

FURTHER DETAILS REGARDING OUTLIER TEST 

MEMORANDUM 

TO: 	 Bob Lott, GRI 
David Kirchgessner, EPA 

FROM: 	David Epperson and Lisa Campbell, Radian 

COPY: 	Mike Cowgill, Radian 
Hugh Williamson, Radian 
Mike Campbell, Radian 
Matt Harrison, Radian 

DATE: 	November 10, 1994 

SUBJECT: 	Results of Statistical Outlier Tests for Plastic Main Leakage Data 

Attached is a brief document that diwncses the results of the statistical tests performed to 
determine whether the large plastic main data point is an outlier. As you know, the issue of 
omitting the very large leak test data point for plastic mains was brought up in the August 
industry review meeting in Austin. The industry reviewers were concerned that a large 
overall leak rate for plastic mains would be misinterpreted, even though the contribution 
from plastic mains to the overall leakage from mains and services in the U.S. is very small. 

On the basis of the results of the outlier tests performed, there is no statistical justification 
for omitting the large data point from the plastic leak measurements. Furthermore, PG&E's 
statistician who worked on the UAF study confirms that there is no technical or statistical 
justification for omitting that data point. Consequently, we recommend that the data point 
remain part of the distribution leak measurement database. 

Results of Outlier Tests for Plastic Pipe Leakage Data 

Overview  

The GRI gas data for plastic pipes were screened for potential outliers. The Grubbs 

test,' the Dixon test,' the Fourth-Spread test,' and a conservative approach,' were used to 
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identify potential outliers in the plastic pipe data. The Grubbs and Dixon tests require that 

the data being screened are normally distributed. The Fourth-Spread test does not strictly 

require normality, but it could produce spurious results if the data distribution were 

markedly asymmetric. The conservative approach addresses cases of normality and 

non-normality. 

The largest value and the smallest value in the plastic pipe dataset were tested 

separately. Table 1 lists the results of the four outlier tests for both the largest and smallest 

plastic pipe data values. The smallest value is identified as a potential outlier only in the 

Fourth-Spread test; all other tests indicate no outliers. However, the test criteria from both 

the Grubbs and Dixon tests suggest that the smallest value is closer to being a potential 

outlier than the largest value. 

Data 

The plastic pipe flow rate data and the natural logarithms of these data, as well as 

the means and standard deviations, are shown in Table 2. The data in Table 2 are arranged 

so that the smallest value appears in the first row and the largest value appears in the last 

row of the table. Only six data points comprise the plastic pipe data and these six points 

span five orders of magnitude, ranging from 0.008 SCF/leak-hour to 61.000 SCF/leak-hour. 

The Shapiro-Wilk W statistic, generated by the SAS UNIVARIATE4  procedure, was 

used to determine whether the nontransformed and natural log-transformed plastic pipe data 

were normally distributed. For the nontransformed data, the W-statistic was 0.6068 and the 

associated p-value was 0.0001, indicating that the nontransformed data were not normally 

distributed. However, for the natural log-transformed data, the W-statistic was 0.9396 and 

the associated p-value was 0.6747, indicating that the natural log-transformed data were 

normally distributed, within random variability. Because of the small sample size 

(consisting of 6 data points), however, this test is not highly sensitive. Small or moderate 

deviations from normality might not be detected on the basis of a hypothesis test with this 

sample size. Figure 1 shows the frequency histogram for the nontransformed data and 

Figure 2 shows the frequency histogram for the natural log-transformed data to illustrate the 
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TABLE 1. RESULTS OF THE OUTLIER TESTS 

Outlier Test Data Value Tested 
(natural logarithm) 

Criteriaa Result 

Grubbs 

Minimum: 
—4.8283 (ID 2014) 1.71 <1.82 not an outlier 

Maximum: 
4.1109 (ID 2002) 

1 .26 < 1 .82 not an outlier 

Dixon 

Minimum: 
—4.8283 (ID 2014) 0.50<0.56 not an outlier 

Maximum: 
4.1109 (ID 2002) 

0.20<0.56 not an outlier 

F-Spread 

Minimum: 
—4.8283 (ID 2014) 

outside bounds: 
—4.3850 to 6.3571 OUTLIER 

Maximum: 
4.1109 (ID 2002) 

inside bounds: 
—4.3850 to 6.3571 not an outlier  

Conservative 
Approach 

Minimum: 
—4.8283 (ID 2014) 

inside bounds: 
—8.7334 to 9.3532 not an outlier 

Maximum: 
4.1109 (ID 2002) 

inside bounds: 
—8.7334 to 9.3532 not an outlier 

a The criteria are based on the 5% significance level for the Grubbs and Dixon tests 
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TABLE 2. PLASTIC PIPE FLOW RATE DATA AND NATURAL 
LOGARITHMS OF THE FLOW RATES 

Test ID Number Standard Flow Rate 
(SCE/leak-hour) 

Natural Log of Standard 
Flow Rate 

2014 0.008 —4.8283 

3020 0.700 —0.3567 

3019 1.130 0.1222 

3039 1.620 0.4824 

11002 10.266 2.3288 

2002 61.000 4.1109 

Mean 12.454 0.309894 

Standard Deviation 24.084 3.014434 
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results suggested by the W-statistics. The nontransformed data are obviously skewed and 

not normally distributed, while the natural log-transformed data are much more symmetric 

and appear to be closer to the normal distribution. 

On the basis of the results of the normal distribution tests, the natural logarithms of 

the plastic pipe flow rates were tested for outliers using the Grubbs, Dixon, and 

Fourth-Spread tests. Following is a discussion of outlier screening in general, followed by 

specific details pertaining to each of the outlier tests used in this analysis. 

Outlier Screening 

Outliers have been defined as observations that do "not conform to the pattern 

established by other observations,' or as observations that appear "to deviate markedly 

from other members of the sample in which" they occur.' Outliers may be caused by 

transcription, keypunch, or data-coding errors, instrument breakdowns, calibration problems, 

and power failures, or they may be manifestations of a greater amount of inherent spatial or 

temporal variability than expected.' 

Many different tests exist to screen for outliers, some of which have certain 

limitations that prevent them from being applied to all datasets. Some tests require that the 

data be distributed normally because statistical parameters are used in the outlier test, while 

other tests rely on other types of information from the data to perform the outlier test. 

Because of the variety and number of different outlier tests, it is therefore important that no 

datum be discarded solely on the basis of a single statistical test. There should always be 

some plausible explanation other than the test result that warrants the exclusion or the 

replacement of an outlier.' If possible, several different types of tests should be applied to 

validate the results of the outlier screening process. 

The four different tests applied to the GRI plastic pipe data represent some of the 

different types of outlier tests. The Grubbs test relies on statistical parameters (mean and 
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Figure 1. Frequency Histogram for Plastic Pipe Flow Rate Data 
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Figure 2. Frequency Histogram for the Natural Logarithms of the 
Plastic Pipe Flow Rate Data 
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standard deviation), the Dixon test relies on ratios of values in the tails, the Fourth-Spread 

test relies on the spread of the central half of the data, and the conservative approach is 

capable of handling any data distribution. Following are specific details regarding how 

each of these tests were applied to the plastic pipe data. 

Grubbs Test' 

The hypothesis tested in the Grubbs test is that all observations in the sample come 

from the same normal population. Thus, the transformation of skewed data, such as taking 

the natural logarithms, may be necessary. The data are ordered from smallest to largest for 

the Grubbs test, such that: 

{X, 5X2  5 X3  .c 	X„,} 	 (1) 

The Grubbs test is then applied to a single suspect value—either the largest value (X,) or the 

smallest value (X,). For the largest value (3C,3, the test statistic (Ta) is calculated as 

follows: 

Tr, —  	 (2) 

where: 

X„ = the largest data value, 

X = 	the arithmetic average of all I? values, and 

s = the sample standard deviation, with n—I degrees of freedom. 

For the smallest value (X1 ), the test statistic (T1) is calculated as follows: 

 

T1  — 

 

(3) 

where: 
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X, = the smallest data value, and 

Tc and s = the same as for Equation (2). 

The test statistic (T1  or Tr) is compared with the appropriate critical value for the statistic. 

When the test statistic is larger than the critical value, then the suspect data point is deemed 

a potential outlier. 

Using the mean and standard deviation shown in Table 2 for the plastic pipe data, 

T1 =1.71 and T,,=1.26 for the natural logarithms of the flow rates. The critical value for a 

one-sided test using the 5% significance level for a sample size of six is 1.82, and the 

critical value using the recommended I% significance level is 1.94.' Therefore, neither the 

largest nor the smallest of the natural logarithms of the plastic pipe flow rates were 

considered outliers by the Grubbs test. 

Dixon Test'  

The Dixon test is an alternative system that does not rely on the calculation of 

statistical parameters (e.g., the mean or standard deviation), and is based entirely on ratios 

of differences between some of the observations. As with the Grubbs test, the Dixon test 

requires a normal data distribution because the ratios of differences are calculated from both 

tails. One drawback to the Dixon test is that not all of the data are utilized—only data from 

the tails are used. Similarly to the Grubbs test, the data are ordered from smallest to largest 

for the Dixon test, as shown in Equation (I). The Dixon test is then applied to a single 

suspect value, either the largest or smallest of all of the data values. A test statistic (r,o) 

that depends on sample size is calculated. The formula for the largest value (X,) from a 

sample size of 6 (the plastic pipe data sample size) is: 

r,0  —  

	

	 (4) 
X„—X, 

where: 

the largest data value, 

= the second largest data value, and 
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= the smallest data value. 

The corresponding formula for the smallest value (X1 ) from a sample size of 6 data points 

(the plastic pipe data sample size) is. 

X2  Xi 
rlo  

 

(5) 

 

X„, —X, 
where: 

X2  = the second smallest data value, 

X, = the smallest data value, and 

X„ = the largest data value. 

The test statistic (r10) is compared to the appropriate critical value for the statistic. When 

the test statistic is larger than the critical value, the suspect data point is deemed a potential 

outlier. 

Using the data shown in Table 2 for the plaStic pipe data, rw=0.20 for the largest 

value and rio=0.50 for the smallest value of the natural logarithms of the flow rates. The 

critical value for a one-sided test using the 5% significance level for a sample size of six is 

0.560, and the critical value using the recommended 1% significance level is 0.698.1  

Therefore, neither the largest nor the smallest of the natural logarithms of the plastic pipe 

flow rates were considered outliers by the Dixon test. 

Fourth-Spread Test2  

The Fourth-Spread (F-Spread) test does not rely on the calculation of the mean or 

standard deviation, rather it relies on information from the center half of the data mass to 

define the distance, beyond which, data points should be considered potential outliers. The 

center half of the distribution is relatively insensitive to outliers and, therefore, provides a 

reasonable basis for characterizing the distribution under the hypothesis that no outliers are 

present. As with the Grubbs and Dixon tests, the data must be arranged from smallest to 
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largest, as shown in Equation (1). The data need not be normally distributed, but the 

distribution should be symmetric. First, the lower and upper fourths (also called the 25th 

and 75th percentiles, respectively) for the data distribution are calculated. The 

F-Spread (dr) is then calculated by subtracting the lower-fourth (Fr) from the upper-fourth 

TO. Any data points larger than Fu-F(1.5xdr) and any data points smaller than 

FL  —(1.5xdr) are then considered potential outliers. Figure 3 shows the relationship between 

the fourths and cutoffs used to define outliers with the F-Spread method. 

(1 5xdp) xdp) 
25th 	75th 

percentiles 

Figure 3. Depiction of the fourths (FL  and Fe), fourth-spread (dr), and 
boundaries (F -1.5xde; Fe+1.Sxdp) for the F-Spread outlier detection method. 

The F-Spread for the plastic pipe flow rate data was 2.6855 (Fu  2.3288 and 

FL=-0.3567). Thus, data values smaller than —4.3850 or larger than 6.3571 should be 

considered potential outliers. One of the six plastic pipe data points, the smallest (ID=2014, 

value=0.008 SCE/leak-hour, In value=-4.8283), was therefore considered a potential 

outlier. 
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Conservative Aoproach3  

This approach is conservative because it screens for only the most blatant outliers. 

Thus, data points that may be considered outliers in other methods, may not be considered 

outliers by this approach, unless they are separated by a rather large distance from the main 

data mass. The histogram for the nontransforrned data and the histogram from the natural 

log-transform of the data are used as visual aids in this method. Some measure of the 

normality (e.g., the Shapiro-Wilk W-statistic) for the data distributions shown in the two 

histograms is also used in this method. The following four steps are applied in sequence 

until the conditions are met and the criteria are defined for identifying outliers: 

(1) The untransformed data distribution is normal. Values more than 3 standard 
deviations from the mean (mean+ixstandard deviation) are considered potential 
outliers. 

(2) The natural log-transformed data distribution is normal. Values more than 3 
standard deviations from the mean of the natural logarithms (meat3xstandard 
deviation) are considered potential outliers. 

(3) The untransformed data distribution is visually symmetric, but not normal. Values 
more than 3 standard deviations from the mean (mear+lxstandard deviation) are 
considered potential outliers. 

(4) The untransformed data distribution is not normal and not visually symmetric. 
Values more than 6 standard deviations from the mean (mean±6xstandard deviation) 
are considered potential outliers. For the plastic pipe data, this method produced the 
following results for the first two steps (at which point the conditions were met and 
outlier criteria were established): 

(1) The untransformed data distribution is not normal. Go to step 2. 

(2) The natural log-transformed data distribution is normal. Therefore, values 
more than 3 standard deviations from the mean are considered potential 
outliers. Thus, using the mean and standard deviation shown in Table 2 for 
the natural logarithms of the flow rates, values more than 9.3532 or less than 
—8.7334 should be considered potential outliers. None of the data points 
met these criteria and therefore there were no outliers. 
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APPENDIX C 

SUMMARY DATA TABLE 

Appendix C presents the data summary table referenced in various places in the 
body of this report. This table summarizes the final results of the study, including the 
estimate of the industry annual emissions and the uncertainty thereof 

The primary focus of this report is to discuss the statistical methods used in the 
study, not to present final results. For this reason, a detailed discussion of results for 
different source categories will not be presented here; Appendix C is presented here for 
completeness. The results are discussed in other project reports, such as Volume 1, 
executive summary,' and Volume 2, technical report.' 

The column titled "Precision of Annual Emissions" is calculated as described in 
some detail in earlier parts of the report. This precision measure is based on the 
assumption that the error is normally distributed. A second uncertainty measure, in the 
column titled "Conservative Precision of Annual Emissions," was also calculated. This 
measure is based on the assumption that the error is lognormally distributed. The purpose 
of reporting this second precision value is to provide an approximate assessment of the 
uncertainties of the different emission rates if the normal assumption is not satisfied. The 
conservative precision value is larger than the normal precision estimate. 

It is possible that the different emissions (the emissions by category and the industry 
annual emissions) have errors with different distributions. Thus, both types of precision 
measures are provided for each emission value given in the data summary table. 

The conservative precision measure is briefly described as follows. 

In computing the conservative precision, the same standard error was used as in the 
precision based on the normal assumption. The standard error is the estimated standard 
deviation of the error in the emission value. However, an approximate 90% asymmetric 
confidence interval was computed on the assumption that the error was lognormally 
distributed. The conservative precision is based on the upper confidence limit of this 
interval, i.e., 

Page,, the = 100% x (ERucans 	- FRYER 

where 

Pconservanve 
	 conservative precision (%), 

ERusa,„„,„, 	 upper confidence limit based on the lognormal 
assumption, and 
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ER 
	

estimated emission value. 

Because of the asymmetry of the lognormal distribution (see Figure 4-2 and the 
accompanying discussion), the conservative precision value is larger than the precision 
based on the normal assumption. A lognormal precision based on the upper confidence 
limit was provided as a conservative (large) upper bound for the emissions. The analogous 
precision based on the lognormal lower confidence interval would be smaller than the 
precision based on the normal distribution. The issues related to the calculation of the 
conservative precision value are discussed in Section A.4. Figures A-I and A-2 depict 
confidence intervals based on the normal and lognormal assumptions. 

The data summary table also provides information concerning source 
categories with activity factors or emission factors that have possibly correlated errors. 
First, consider the activity factor groupings. All source categories with group 1, for 
example, are postulated to have activity factors with weakly correlated errors. However, a 
source category with group 1 and a category with group 2 are postulated to have activity 
factors with uncorrelated errors. If no group number is listed for a source category, its 
activity factor is assumed to be uncorrelated with that of any other category. A similar 
scheme was used for identifying groups of sources with emission factors whose errors may 
be correlated. The groups of categories shown were identified through engineering 
judgement and discussions between Radian and GRI staff. 

These correlated groups were used to assess the impact of correlated errors 
among source categories on the uncertainty of the industry annual emissions. The results of 
this analysis are discussed in Section 6.1. 

The groups for the activity factors are numbered from I to 16; i.e., 16 groups 
of categories were identified such that all members of a group had activity factors with 
possibly correlated errors. The groups for emission factors are numbered from 20 through 
30. The group numbers have no quantitative meaning whatsoever. The fact that there are 
no groups numbered 17 through 19 has no importance. 

The data summary table lists weak, medium, strong, and perfect correlations. 
The numerical values used are as follows: 

weak 0.2 
medium 0.5 
strong 0.8 
perfect 1.0 
weak-medium 0.3 
medium-strong 0.6 

These correlations are postulated values, not accurate quantitative estimates, 
which are not available. Nevertheless, the postulated correlations provide a basis for 
assessing the sensitivity of the results to correlated errors. 
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PROCESS SEGMENT 
Emission Type 

Source 

PRODUCTION 
Noonalcugitives 

Gas Wells (Eastern on shore) 
Field Separation Equipment 
(Eastern on shore) 

Heaters 
Separatais 
Gathering Compressors 

Small Racip Compr.  
MeterstPiPng 
DIMYthatOr• 

Gas Wens (Rest of US on shore) 
Gulf of Mexico (offshore plifrms) 
Rest of US (offshore platforms) 
Plaid Separation Equipment 
(Rest of US on shore) 

Heaters 
Separators 
Gathering Compressors 

Small Reels. Comm. 
Lame Recip Caw 
Large Redo Stations 

Metw1Piping 
Dehydrators 

Pipeline leaks 
Vented and Combusted 

Drilling and Well Completion 
Completion Flaring 

Normal °moons 
Pneumatic Devrce Vents 
Chemical Inj Pumps 
Kimray Pumps 
Dehydrator Vents 
Compressor Exhaust Vented 

GasEng:nee 
12012110O Maintenance 

Welt Workovers 
Gas Wells 

Well Clean Ups (LP Gas W ells) 
Slowdowns 

Vessel BO 
Pipeline 8D 
Compressor BD 

Compressor Starts 
Upsets 

Pressure Relief Valves 
ESD 

p mins) 

n 

Precision 
el Arms al  

Emisarem  

1077 82 

42313%50000 
42.74%  

53.45% 150000 
16902% 124802 
4983% 1500.00 
27415% 453 08 
3324% 52901 
4488% 150300 

17155% 803.84 
342 20 

13708% 
22742% 
31982% 
16902% 
3784% 

187.72% 

48529 
85490 

150000 
258 70 
564 28 
242 89 

382.35% 150.00 

87 10% 
38803% 
17190% 
35936% 

111 37 
503 41 
188.47 
337 57 

04% 	243 07 

2748 84% 
83458% 282 34 

571.1 
	

50003 
03 

4% 	03 
00 

1500.00 
1185.95 

606 80% 
38235% 
78888% 

METHANE EMISSION AND ACCURACY ESTIMATES 

0 0030 	0.0013 
0IXI6I 00301 

0 CCCO 0 0008 
0 0048 0 2508 
000302 00083 
00385 
	

18039 
00223 
	

11815 
o 0012 00095 

00208 
	

1 0688 
013639 
	

3 3252 

00318 
	

1 8534 
00102 0 5328 
0007 00381 
0 1118 
	

5 8153 
00235 
	

1.2229 
0.1269 
	

860.00 

0000. 

06037 31.3948 
00295 
	

15355 
0.2108 1091318 
00857 
	

3 4171 

01287 
	

05904 

00034 00230 
01088 
	

56579 

00:04 00200 
00020 
	

01051 
00312 00648 
00328 
	

01445 

00.003 	00180 
00355 02864 
00044 	0 2275 

Percent Percent Emiearo Precision 
at Tolal of Total Peer Actrviry  Upper Emission of Annual 
m

1%) 
 pzoduction 

14. 
Value Units Bound 

(b) 
Factor 

Correlated 
Value Units Bound 

(14 
Fader 

Correlated 
Emissions 

jail Grp 

0 0 032 129.157 wells 5% 1 	weak 27% 20 	weak 27 49% 

000 0000 260 heaters 193% 2 medium 14 21 scfdiheater 43% 20 	weak 217 /34% 
001 0000 91,870 separators 23% 2 medium 0.90 scId/sep 27% 20 	weak 3801% 

000 0030 129 compressors 33% 2 medium 121 scld/cOmP 27% 20 	weak 43.56% 
008 0031 78,282 mein 100% 1 	weak 901 SCIdimeler 30% 20 	weak 10883% 
000 0000 1,047 dehydrators 10% 2 medium 21.75 SCdldehy 35% 20 	weak 4091% 
000 0003 142 771 Wells 5% weak 38.40 ScIdAvell 24% 20 	weak 24.54% 
037 1,092 platforms 10% 3 	weak 2914 Sd &plat 27% 28.92% 
000 0000 22 platforms 10% 3 	weak 1178 Sold/plat 38% 3754% 

034 0035 50.740 heaters 95% 2 media 57 7 Sold/heeler 40% 21 	weak 109.80% 
106 001 74,874 separators 57% 2 mediu 122.0 sc1d/sep 33% 21 	weak 

053 0 007 18,915 cornpressoes 52% 2 medium red/comp 138% 21 	weak 9262{ 
017 
001 

0002 
0028 

96 comPreSsors 
12 	stations 

100% 
WO% 

4 medium 
4 medium 

52050 
8247 0 

sold/comp 
scfclistafron 

85% 
102% 

22 weak.med 
21 	weak 

135.83% 
17552% 

1.85 0028 301,100 meters 103% 1 	weak 529 sold/meters 30% 21 	weak 10883% 
0.39 0000 38,777 dehydrators 20% 2 medium 91.1 sold/deny 25% 21 	weak 3240% 
210 0030 340,203 mites 10% 5 pedect Sad/mite 107% 23 mad -strong 1000% 

844 CompkYr 10% 735 seficernpit 200% 201.25% 

999 0.142 249.111 controllers 4.5% 2 medium 345 Scfdldevwe 40% 29 	weak 64 
049 0037 15971 active pumps 143% 2 medium 241305 ScId/pumP 83% 
3.49 0050 1.105E+07 MMeclfyr 82% 13 medium 992.03 scf/MMscf 77% 110.03%

20353% 

109 0.015 1.240E037 MMsoftw 6294 13 medium 275 57 sol/MMscf 154% 

2.10 0030 27,400 MMHPhr 200% 0 240 sc1/18Phr 5% 27 	perfect 20331% 

001 0030 9392 w 0 /r 258% 2.454 Scty/w o 459% 129900% 
180 0028 114.139 LP gas wells 45% 2 medi 49570 scly/LP well 344% 24 mad strong 379 93% 

O 01 0000 255,998 vessels 26% 2 mein= 78 SctyMl 288% 24 med.-gong 27007% 
003 0000 340,003 milesigath) 10% 5 perfect 309 Sclykrele 32% 24 med -strong 3388% 
002 0000 17.112 compressors 52% 2 medium 3774 Scly/comp 147% 24 met/.strong 173 86% 

0031 17.112 compressors 52% 2 medium 8443 Scly/comp 157% 24 med %rang 184 44% 

001 0003 629440 PRV 53% 2 medium 34 Scly/PRV 252% 4 MedistsonO 29003% 
009 0.001 1.115 platforms 10% 3 	weak 258888 Scfyiplat 200% 20125% 
007 0031 340,003 matt 10% 5 perfect 889 sd/mile/yr 1925% 25 medium 1934 63% 

mplian 

(a) Based on total gross national production of 22132 8sd for 1992 
(b) Precision based on a GO% confidence i %Nal 
(c) Target Precision = 10010 24/SORRER) where ER =emission lh Bsc Overall TP rc el. 11083 Bscf 

Maximum Relative Category TP rs H.1500% Minirnun Relative Calegory TP 	75% where TP = target precis/on. 
(d) Conservative precision based on upper limit oil a 91)% confidence intern! This confidence Interval is based on a lynx oral a 
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METHANE EMISSION AN ACCURACY SUMAS 

PROCESS SEGMENT 
Emission Type 

Source 

1092 
Emissions 

091 

1992 
Emissions 

(Owl) 

Percent 
of Total 

Emission 
(%) 

Percent 
of Total 

Production 
% 

JO_ 

AgMty Emission Precision 
of Annual 

Emissions 

•nsemtim 
Precision 
of Annual 
Ermssions 

d 

Target 
Precision 

(%) 
(c) 

Value Units 
Upper 
Bound 

(D) 

Admry 
FactorValue 

Correlated 
Groups 

Units 
Upper  
Bound 
I 

Emission 
Factor 

Correlated 
Grou a 

Gas 	recessing Plants 

P
 	

E  8
1d

;.1
 	

:d
e
is

t  
0
  0

0
0
0

0
,4

 	
—

0
0
  Normal Fugitives 

Plants 00403 20950 0000 710 plants 2% 8 perfect 7908 este/plant 45% 30 	weak 48.05% 6011% 431.12 
Romp. Compressors 03218 187251 0 076 4102 compressors 48% 11198 sctdicornp 74% 22 weak-med 95.00% 14187% 152 58 
Centrifugal Compressors 0.1082 513257 0025 726 compressors 77% 21230 sold/comp 39% 22 weak.rned 01.39% 134.71% 263.09 

Verged and Combusted 
Normal Operations 

Compressor Exhaust 
Gas Engines 0.1281 8.6824 0 030 27.780 MMHPhe 133% 9 medium 0.240 sol/HPhr 5% 27 	perfect 133.26% 22171% 241.75 
Gas Turbines 00036 0.1878 0.001 32.910 MMHPhr 121% 9 medium 0.0057 scf/FIPhr 30% 28 	perfect 129.84% 214 17% 1440.74 

AGR Vents 00158 0 8237 0 004 371 AGR units 20% 6083 $CtWAGR 105% 108.85% 109.46% 68754 
Kfmray Purer) 00033 0.1703 0001 957930 MAIscliyr 192% 14 medium 177 75 ui/MMscl 57% 228.00% 44912% 1500.00 
Dehydrator Vents 0.0202 10490 0.005 8030,090 MMscItyr 22% 14 medium 121.55 scf/MMscf 202% 208.20% 399.56% 60920 
Pneumatic Devices 0.0023 0.1198 0081 726 gas plants 2% 8 perfect 164721 sclyiptant 133% 29 	weak /3304% 221.23% 1500.03 

Routine Maintenance 
BlowdownsN 	I • 00597 2.8475 0013 728 gas Plants 6 perfect 4000 Mx-Nip/en( 282% 28 	stron 26216% 66% 36348 

a Based an a Loralgross nationel production of 2213285c}lor 1082. 
(b.) Precision based on a 00% confidence I larval 
(0) Target RecIslon 10018 24/50IRT(ER). where ER s emIsslons In %sof. Overall TP Is +I- 110.66 Sect. 

Maximum Relatise Category TP Is U. 1503% Mlnlmun Relative Category TP Is *A 75% where TP P target precision 
50 Conservative precision based on upper Mill of a 90% confidence Interval, This confidence Intermit Is based one lognonneI assumption 
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ANE EMISSION AND ACCURACY S➢MATE 
Percent 
of Total 

Emissions 

TRANSMISSIONISTOMCI 
Fuglwes 

Pipeline Leaks 	 00331 	0.1603 	005 
Compressor Stations (TRANS) 

Stefan 	 01047 5440) 1.73 
Recip. Compressor 	 0.7258 37.7333 	12.01 
CentraugalCompresson 	0.1449 	7 5328 	2.40 

Compressor Stations (STOR) 
Station 	 0.0717 	3 7288 	119 
Reap. Compressor 	 02089 10 7594 	342 
Centrifuge Compressor 	00292 	1 5178 	048 

Wells (STOR) 	 0.0145 	0 7522 	0.24 
MAR (Trans Co Interconnect) 	0.0708 	98834 	1.17 
MIR (Farm Taps • Direct Sees 	00158 	0.8271 	0.26 

Vented and Combated 
Norms Operations 

Dehydrator Vents (TRANS) 	00320 	0.1018 	003 
Dehydrator Vents (STOP) 	 0 0045 	0 2344 	007 
Compressor Eases, 

Engine. (TRANS) 	 01804 	98912 	3.08 
Turbines (TRANS) 	 00311 	0.0549 	002 
Engines (STOP) 	 00227 	1 1813 	038 
Turbines (STOR) 	 0.0002 	O.0009 	OW 
Generators (Engines) 	0.0391 	0.4748 	015 
Generaton (Turbines) 	OWLV 	a000 I 	ono 

Pneumatic Devices 	 0 2720 14 1440 	4.50 
Routine Maintenance/Upsets 

Pipeline Venting 	 0.1732 	90344 	287 
Station Venting 	 0.1823 	0480 	302 

(a) One/ on a total gross national production of 22132 8scl for 1992. 
( b)PreCielan based on. 90% confidence i Nivel. 

Percent 
of Total 

Production 

1 

ActMty 'woo 
Upper 
Sound 

Emission 
Factor 

Correlated 
Groups 

P 	cision 
of Annual 
Emissions 

ConServalive 
Precision 
al Annual 

Emissions 
(d) 

Target 
Precision 

(%) 
(c) 

Value Unite 
Upper 
Sound 

(b) 

Achurty 
Facto) 

Correlated 
Groups 

Value Units 

001 284,500 mites 7 parted 1 541 sold/mile /39% 23 rnednstrong 89 4 150303 

0025 1,009 slaws 10% 8778 selergabort 702% 30 	weak 03 C014 157.55%287.37 
0.170 cuss carp. 17% 15205 add/comp 85% 22 weak coed.  0809% 92.35%101 58 
a034 881 28% 30305 scidocomp 34% 22 weak med 4371%  5387%227.38 

0017 475 stations 21507 aced/station 100% 30 	weak 10025%15205% 323 15 
0049 1,390 comp 21118 acid/comp 48% 22 weak.med 80 27%11385% 190.24 
0007 138 oarnP 30573 add/camp 34% 22 wealumed 13021% 21497% 50.53 
0033 17,999 wells 114 5 schPwell 78% 7828% 10884% 71947 
0017 2,533 stations 3984 sold/Mahon 80% 998.98% 219740% 32514 
0004 72,030 stations 780% 31.2 sold/station 80% 032 .09% 2707.28% H9.13 

0.000 1,0880.0 AIMsd/yr 144% 93.72 sclIAMsd 208% 39115% 80425% 150300 
00M 2,00,729 14Mscf/ye 25% 117.18 schrtAhlsef 160% 16858% 29824% 128898 

0044 40380 MMHPhr 17% 10 medium 0.240 sol/LIPta 5% 27 perfect 17.74% 1935% 45 
00.0 9203$ MMHPhr 33% 10 medium 00357 sclHPhr 30% 28 perfect 45138% 
0005 4,922 MMHPhr 27% 11 medium 0.240 sc1/11P4 5% 27 perfect 2749% 31 574.13 
0000 1729 MMHPhr 828% 11 medium 00257 sc014Pht 30% 28 perfect 854.25% 1485.73% 150.03 
002 1,978 MMLIPhr 45% 12 medium 0240 solIMPtu 5% 27 perfect 4525% 55.94% 90580 
OCOO 23.3 MMHP.19 1114% 12 medium 0W57 tc144Phr 30% 28 	perfect 1/83.33% 2510.01% 15.00.03 
0084 87,200 devices 182197 scfuldence 44% 29 	weak 00.4896 7005% 18592 

0041 284500 miles 7 perfect 31.85 Msefuirelle 235% 230.25% 40992% 207.95 
0043 2 170 err) 'Mons 8% 4358 Msdy/Slatf on 282% 28 	'trona 282.85% 538.93% 202.67 

PROCESS SECMENT 
Emission Type 

Source 

1832 

ag) 

(lineups) Precleon = 10018 24/SORT(ER) , when ER s emissions in Bed Overall TP is H. 110.00 Sect 
Maximum Reafive category7P Is 4-1500%. Mlnimun Retatire Category TPla LA 75% *tete IP. target precision. 

NO Conservative precision based on upper nut of • 93% confidence interval This confidence interval le based on a lognormal assumption 
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METHANE EMISSION AND AC 

PROCESS SEGMENT 
Emission Type 

Source 

1992 
Emissions 

ITO) 

1992 
Emissions 

(Rscl) 

Percent 
of Total 

Emissions 
I%) 

Percent 
of Total 

ProduMOn 
% 

__AA) 

Apinly_ Ems 
Upper 
Bound 

(b) 

  .. _ 
Emission 

Factor 

Correlated 
5. 

Precision 
ol Annual 
Emissions 

Consemtive 
Precision 
c( Annual 
Emissions 

Target 
Precision 

I%) 
(c) 

Value 	limb 
Upper 
Bound 

(b) 

Activity 
Factor 

Correlated 
OcSe 

Value Units 

DISTRIBUTION 
Normal Fugitives 

Pipeline Leaks 

00 

Mains - Cast Iron 0 2538 13.1892 4 20 0.060 51288 	miles 5% 238.1 Mscl/mrle,yr 84% 6397% 85.39% 171 713 
Mains - Unprotected Steel 0.1740 90478 288 0041 174857 equiv. leaks 58% 15 weak 518 Msci/leak-r 93% 122 42% 19805% 207.45 
Mains • Protected Steel (tom 1.3848 0.44 0 009 88.308 	equiv. leaks 82% 15 weak 203 Msctlleak.yr 85% 11803% 18859% 53030 

40238 putt,. leaks Maine-Plastic 00945 49150 1`58 0022 118% 15 weak 99.8 Mscfneakir 188% 282.18% 586.88% 281 47 
Services • unprotected Steel 0.1761 9.2830 295 0.042 458.478 mph.. leaks 109% 15 weak 202 445ctileak-Y4 105% 189 27% 352.92% 20503 
Services- Protected Steel 00891 3 5922 1.14 0018 300,828 equiv. leaks 135% 15 weak 9.20 MscIlleak.” 81% 10890% 303.79% 929.24 
Services -Plastic 0.033.2 01844 005 0031 88033 	equiv. Masks 97% 15 weak 239 Mscilleak.yr 143% 221.59% 43302% 150003 
Services .Copper 00011 0.0593 002 0O03 1,730 equiv. leaks 110% 15 weak 768 MseMeak,yr 72% 154.25% 289.35% 1503.00 

Meter/Regulator (City Oates) 
M & R• 300 0.1048 54510 1.73 0.025 3400 	stations 71% 16 weak 1798 solhistation 8548% 12347% 287.27 
M8 R 100303 0.2149 11.1731 158 0 050 13,335 	stations. 108% 18 weak 958 sothistation 194.97% 306.89% 188.88 
M8RP 103 0.0052 0.2893 009 0.001 7,127 	stations 118% 18 weak 4.31 sclRkrtlldn 22 37094% 81208% 1202.35 
Rea' 303 01090 5 0655 180 0.028 3,965 	stations 68% 18 weak 181.9 sot/station 97.37% 14835% 262.16 
R.Vauft > 300 00005 00268 001 00]1 2,340 	stations 88% 16 weak 131 min station 182% 23144% 455.26% 150100 
Reg 199303 0.0837 4 3520 1.39 0020 12,273 	stations 81%18 weak 405 8.db/station 98.47% 148.508 20.12 
R-Vault 1130-303 0.0002 00087 0.00 0.000 5,514 	stations 61% 18 weak 0 180 selturstalion 94% 126.14% 206.04% 1500.03 
Reg 40-100 0204 0.3317 011 0.021 38328 	stations 04% 18 weak 1.04 sorb/station 74 10909% 189.06% 1083.42 
R,vau1140-100 00035. 00244 001 0003 32,215 	stations 84% 18 weak 0.0685 scfhtstation 84% 9897% 149.51% 150000 
Reg . 40 00.003 00179 001 0000 15,377 	stations 65% 18 weak 0 133 soltdstation 135% 173.87% 315 87% 150000 

Customer Meters 
Residential 01061 5 5488 118 0025 40,049303 ouldr meters 10% 138 5 say/meter 1980% 21.80% 284 95 
Commerclaondustly 0.0042 02207 0.07 0.001 4,808030 meters 5% 479 say/meter 35.40% 41.91% 1328.20 

Vented 
Routine Maintenance 

Resew. Relief Valve Releases 00038 00418 001 0.0.00 638760 	mile main 5% 0050 Mad/mile 3914% 3918.09% 610919% 150003 
Pipeline Slowdown 00025 01324 004 0031 1,297,582 	miles 5% 8 perlec1 0.102 Msclytmile 2521% 2524.15% 4579.78% 1500.00 

Upsets 
MIshapL. (0 0.0397 20831 086 0009 1291'.09 	miles 5% 8 parted 158 MsoYmile  1922% 25 ed 192441% 3751.65% 434.43 

INDUSTRY TOTAL EMISSIONS 8.0437 314 2714 100.0000 I4203 28.51% 3211% 35 21 
UNCERTAINTY pt.) 0 01/2 99809 

_ _ 	.. _ 
I n 	 or 

(4) Precision based on a 00% <credence terval 
(o) Target Precision v 10316.24/SORRERI , where ER = emissions In Bed Overall TP Is +7. 11088 Bsd. 

Maximum Relative Category TP is a/.150111. Millman Relative Category TP is •/, 75%, where TP= target precision. 
RCConservative precision based on upper mil of a 90% confidence interval This confidence intervene based On a binaural assumption 
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