Example Boiler Emission Credits

- A hypothetical facility manufactures wigits, operates 1 large heavy liquid fuel boiler rated at 300 MMBtu/hr and 85% efficient (Boiler # 1), and 1 medium size 60 MMBtu/hr boiler burning other gases and generating 50,000 lb/hr steam and 75% efficient (Boiler # 2)
- Boilers are used to provide steam and hot water for manufacturing process
- A major HAP source, the plant operates 24 hr/day, 365 days/yr (8,760 Hrs/Yr)

Baseline Energy Input (EI) for Boiler 1 = (300 MMBtu/hr) (8,760hr/yr) (.85)= 2.23 E+6 MMBtu/yr

(Based on yearly operation of 8,760 hours & running at 85% of rated design capacity)

Baseline Energy Input (EI) for Boiler 2 = (60 MMBtu/hr) (8760hr/yr) (.75)= 3.94 E+5 MMBtu/yr

(Based on yearly operation of 8,760 hours & running at 75% of rated design capacity)

A hypothetical **energy assessment** identifies several cost-effective energy conservation measures and facility implements the following measures:

- Boiler #1: Add insulation to steam system piping (Section 3.3 of DoE Guidance)
- Boiler #1: Replace burners with a flame retention burner (15% savings estimated)
- Boiler #2: Reduce boiler blowdown (Section 3.1 of DoE Guidance)

Energy Input Savings (**EIS**) for each measure implemented:

1. (Insulation) **EIS** = (.02klb/hr) (100ft/20ft) (8760hr/yr) (1003.342Btu/klb) = 879 MMBtu/yr

Based on replacing 100 ft. of 3-inch diameter pipe, carrying steam at 165 psi, with fiberglass insulation of 1.5 inch thickness. See estimates in ConED Steam Use Efficiency and Demand Reduction (at http://www.coned.com/steam/kc_sdrt.asp)

 2. (Burners) EIS = (EI)(.15) = <u>335,070 MMBtu/yr</u> Based on 15% savings in actual energy purchases for installation of a flame retention burner. See estimates in: http://www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=125 40 3. (Blowdown) **EIS** = 3,931 MMBtu/yr

Based on blowdown reduction from 6-8% assuming continuous operation at 150 psig, 60°F make-up water temperature, and 80% boiler efficiency.

Initial feedwater: 50,000 lb/hr / (1 - 0.08) = 54,348 lb/hr Final feedwater: 50,000 lb/hr / (1 - 0.06) = 53,191 lb/hr **Makeup water savings** = 54,348 - 53,191 = 1,156 lb/hr

Enthalpy of boiler water at 150 psig (165 psia) = 338.5 Btu/lb Enthalpy of makeup water at $60^{\circ}F = 28$ Btu /lb

(calculations of thermodynamic properties of saturated steam can be found at http://www.peacesoftware.de/einigewerte/wasser_dampf_e.html and using enthalpy conversion factor of kj/kg = 0.4299 Btu/lb)

Thermal energy savings = 338.5 - 28 = 310.5 Btu/lb

<u>Annual energy savings</u> = $(1,156 \text{ lb/hr x } 8,760 \text{ hr/yr x } 310.5 \text{ Btu/lb}) / (0.80 \text{ x } 10^6 \text{ Btu/MMBtu}) = 3,931 \text{ MMBtu/yr}$

Credit for Boiler 1	= [(#1 EIS) + (#2 EIS)] / {EI for Boiler 1}
	= [(879 MMBtu/yr) + (335,070 MMBtu/yr)]/ 2.23 E+6 MMBtu/yr = 0.15

Credit for Boiler 2 = 3,931 MMBtu/yr / 3.94 E+5 MMBtu/yr = 0.01

Adjusted emission levels = (stack test measurement) x (1 - credit) = see table below

Compliance is met if **adjusted emissions** (lb/MMBtu of steam output) are less than **emission limits** from *Table 2* of the final rule (lb/MMBtu of steam output), per table below.

	Boiler 1	Boiler 1	Boiler 1	Boiler 2	Boiler 2	Boiler 2
Pollutant	Emission	Measured	Adjusted	Emission	Measured	Adjusted
	Limits	Emissions	Emissions	Limit	Emissions	Emissions
PM	0.075	0.0080*	0.0068	0.012	0.020*	0.020
HCl	0.0015	0.00025*	0.00021	0.0029	0.0010*	0.00099
Hg	3.3e-5	9.0e-7*	7.7e-7	1.4e-5	7.8e-6*	7.7e-6

*Measured (hypothetical) emissions from compliance test