Introduction to Data Validation

Hilary Hafner

Sonoma Technology, Inc. Petaluma, CA

for

National Ambient Air Monitoring Conference St. Louis, MO

August 8, 2016

VOC and PM Speciation Data

- Differences from one measurement (such as ozone or PM mass)
 - More complex instruments (more to go wrong?)
 - Many species per sample
 - Data overload
- Opportunity for intercomparison

Why You Should Validate Your Data (1)

- It is the monitoring agency's responsibility to prevent, identify, correct, and define the consequences of monitoring difficulties that might affect the precision and accuracy, and/or the validity, of the measurements.
- Serious errors in data analysis and modeling (and subsequent policy development) can be caused by erroneous data values.
- Accurate information helps you respond to community concerns.

Validate data as soon after collection as practical – it reduces effort and minimizes data loss

Why You Should Validate Your Data (2)

- Criteria pollutant data quality issues are important to national air quality management actions, including
 - Attainment/nonattainment designations
 - Clean data determinations
 - Petitions to EPA for reconsideration
- Air quality data are very closely reviewed by stakeholders
 - Do data collection efforts meet all CFR requirements?
 - Have procedures outlined in the QA handbook or project-specific QA plans been followed?
 - Are agency logbooks complete and up-to-date?
- Deviations are subject to potential litigation

From Weinstock L. (2014) Ambient Monitoring Update. Presented at the *National Ambient Air Monitoring Conference, Atlanta, GA, August 11-14*, by the U.S. Environmental Protection Agency Office of Air Quality Planning and Standards. Available at https://www3.epa.gov/ttnamti1/files/2014conference/tueweinstock.pdf.

Data Validation Process Changes

- More data being collected
- New instruments
- Better computing
- Better tools (e.g., visualization)

Provides ability to assemble data and metadata all in one place and allows a more efficient validation and review process.

 Improved data handling and access allow for more frequent review

Data Validation Levels

- Level 0 Routine checks
 - Field and laboratory operations, data processing, reporting conducted in accordance with SOPs
 - Proper data file identification; review of unusual events, field data sheets, and result reports; instrument performance checks
- Level I Internal consistency tests
 - Identify values that appear atypical when compared to values of the entire dataset
- Level II/III External consistency tests
 - Identify values in the data that appear atypical when compared to other datasets
 - Continued evaluation of the data as part of the data interpretation process

Sidebar: Outliers

- Definition: a value that lies outside most of the other values in a set of data.
- Identification: statistically, ideas include
 - >95th percentile (from exceptional event documentation)
 - 3 to 4 standard deviations above the mean
- Treatment: valid/suspect until proven invalid...

"The first assumption upon finding a measurement that is inconsistent with physical expectations is that the unusual value is due to a measurement error. If, upon tracing the path of the measurement, nothing unusual is found, the value can be assumed to be a valid result of an environmental cause." *Judy Chow, Desert Research Institute*

General Approach to Data Validation

- Look at and manipulate your data—sort it, graph it, map it—so that it begins to tell a story.
- Examples
 - Scatter, time-series, and fingerprint plots
 - Summary statistics
 - Box-whisker plots
 - Wind, pollution roses
- Important issues or errors with data may become apparent only after someone begins to use the data for something

Approach/Tips

- Apply screening criteria to help focus validation efforts
- Inspect every species, even to confirm expectation that the species would normally be below the method detection limit
- Apply flags to data
- Document changes

Proceed from the big picture to the details

Considerations in Evaluating Your Data

- Levels of other pollutants
- Time of day/year
- Observations at other sites
- Audits and inter-laboratory comparisons
- Instrument performance history
- Calibration drift
- Site characteristics
- Meteorology
- Exceptional events

Screening Criteria

- Range
- Sticking
- Buddy site
- Temporal consistency
- Rate of change or spike
- Abundant species
- Chemical consistency
- Co-pollutants

Automated checks are helpful to focus efforts on the data that need the most attention.

PAMS Auto-Validation: Screening

Check ^a	Fails If	DART Smarts Action If Check Fails
Abundant Species	Any of Benzene, Propane, N-Butane, Isoprene, N-Hexane, Ethylbenzene are missing or 0	If two or more species missing or =0, flag sample with code "AQ"
TNMOC	-TNMOC is missing or 0; or -Unidentified exceeds 50% of TNMOC; or -Sum of PAMS exceeds TNMOC	-Flag TNMOC and unidentified with code "AN" -Flag Unidentified with code "DA" -Flag TNMOC and Sum of PAMS with code "DA"
Variability	Species concentration exceeds the mean + 4x standard deviation	None
Sticking	Species has same non-zero value for 3 or more consecutive samples	Flag species with code "DA"
Benzene : Toluene	Benzene exceeds 0.2 and exceeds Toluene	Flag Benzene and Toluene with code "DA"
Ethylene : Ethane	Ethylene exceeds 0.5 and exceeds Ethane	Flag Ethylene and Ethane with code "DA"
Propylene : Propane	Propylene exceeds 0.5 and exceeds Propane	Flag Propylene and Propane with code "DA"

^A All checks done in ppbC. AQ = collection error; AN = machine malfunction; DA = aberrant data; TNMOC = total nonmethane organic compounds

Data Review: Human Eyes Needed!

PM_{2.5} concentrations (µg/m³) gradually increased over a period of days, but there were no known local major PM sources or regional build-up expected to affect the site. PM concentrations were not high enough to trigger auto-QC checks. The agency responsible for the monitor noted "a communication error between [the monitor] and the data logger."

Visual Data Review: Time Series

- Look for
 - Jumps, dips
 - Periodicity of peaks
 - Calibration gas, carryover
 - Expected diurnal pattern
 - Expected relationships
 - High concentrations of less abundant species or low concentrations of more abundant species

Visual Data Review: Time Series

Visual Data Review: Scatter Plots

Visual Data Review: Fingerprint Plots

FINGERPRINT PLOT

30

"Typical" and Precision Test VOC Fingerprints

≡

"Typical," Precision Test, and Zero Air VOC Fingerprints

lso pent

lso pre r

lso buta

M-Ethy

N-Bu ta

N-Hext

N-Rent

O-Ethy

MJPXy

0-Xyle

Propan

P-Ethy

Propyle

Sty re ne

Toluen

Trans-

 \equiv

Ethylbe

Eth yle n

Ethane

+

•

30

20

10

0

30

20

10

Values

1,2,4-

1-Bute

2,2,4-

Benze n

Cis-2-

Values

≡

Putting Your Data in Perspective

- National averages
- Trends over time
- Comparison to nearby sites, similar areas
- Detection limits

Using the Validated Data

- Health effects research
- Model validation
- Emissions inventory evaluation
- Trends analysis
- Control strategy development and effectiveness
- Supporting other programs (e.g., air toxics)
- Comparisons to other similar cities/areas

What's Coming Up Next?

- This session
 - UC Davis Data Validation Procedures
 - DART for CSN and PAMS Data Validation
- Wednesday
 - PAMS Session

sonomatech.com

Contact

Hilary Hafner

Manager, Environmental Data Analysis hilary@sonomatech.com 707.665.9900

@sonoma tech

sonomatech.com