Assessing Regional Emissions Reductions from Travel Efficiency: Applying the Travel Efficiency Assessment Method

2016 TRB Summer Conference on Transportation Planning and Air Quality

Laura Berry, U.S. EPA

August 4, 2016

U.S. GHGs by Economic Sector

After electricity generation, transportation is the next largest source of U.S. GHG emissions

Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014 (April 2016)

U.S. Transportation GHG Emission Sources

Light duty passenger vehicles contribute the largest share of GHG emissions from transportation

Reducing GHGs and Criteria Pollutants

- Vehicles Fuels Activity
- How much can travel efficiency reduce
 - VMT
 - Greenhouse gases
 - Criteria pollutant reductions
- EPA developed the Travel Efficiency Assessment Method
- TEAM uses a transportation sketch model and EPA's MOVES onroad emissions model to estimate reductions from travel efficiency strategies

TEAM can be an easier, less resource-intensive way for areas to analyze TE benefits

What kind of travel efficiency strategies can be

analyzed with TEAM?

- Travel demand management
 - Telecommuting
 - Transit Subsidies
 - Carpool and Vanpool Programs
- Changes to public transit
 - Reduced Fares
 - Increased Frequency, Range
- Travel pricing
 - Road Pricing, Parking Pricing
- Changes to land use
 - TOD, Mixed Use, Jobs/Housing Balance

Earlier TEAM Studies

- National scale, 2011: What if all urban areas in the U.S. adopted TE strategies?
 - All metropolitan statistical areas included (451 areas)
 - All urban areas grouped based on population and transit share, and we assumed a set of TE strategies would be adopted:
 - Regionwide TDM
 - Regionwide TDM + Land use changes
 - Regionwide TDM + Land use changes + Transit fare change
 - ...
 - Regionwide TDM + Land use changes + Transit fare change + Transit service improvements + Mileage Fees + Parking Fees

Earlier TEAM Studies - National Scale Results

Average and Range % LD VMT Reduction Across All Surrogate Regions (2050)

8

Earlier TEAM Studies

- 2014 Case Studies: EPA partnered with state/local agency to apply TEAM to locally chosen TE scenarios in:
 - Tucson (Pima County Association of Governments)
 - Kansas City (Mid America Regional Council)
 - Boston (MassDOT)
- Our goals were to better understand:
 - Strategies that areas could be interested in,
 - Data that would be available, and
 - Issues a local area would need to resolve in applying TEAM
- Strategies reduced CO₂ by a range similar to EPA's national study, up to 12% by 2040 for the most aggressive scenarios compared to the "business as usual" case

Case Study Areas

Case Study Areas

2014

- Tucson
- Kansas City
- Boston

2016

- St. Louis
- Atlanta
- Orlando

2016 Case Studies

In partnership with:

- Atlanta Regional Commission (Atlanta)
- East-West Gateway (St. Louis)
- Metroplan Orlando (Orlando)

As in 2014 case studies:

- Established "business as usual" case and four alternative future scenarios based on area's interests
- Prepared local data for use with TRIMMS and MOVES
- Modeled, analyzed and compared results to BAU
- Validated against previous TEAM case studies and the literature

What's new in 2016 case studies:

- Two alternative approaches for estimating effects of land use strategies in Atlanta and St. Louis
- New method used to estimate impact of bicycle and pedestrian strategies in St. Louis
- VMT and emissions from transit improvements included

Overview of Scenarios

Area	Scenarios	Applied to	Total 2040 Reductions
Atlanta	 Expand telework and guaranteed ride home Improve transit access times Parking pricing Increase density and mixed use land use 	Employees in 5 county core area of 20+ counties 5 county area 5 county area 5 county area	 12 million VMT/day 2.8 million kg/day GHG 124 kg/day PM_{2.5} 535 kg/day NOx 414 kg/day VOC
St. Louis	 TOD near existing light rail stations Increase residential density and mixed development Complete bicycle and pedestrian network Complete light rail system 	3 county core area Entire 5 county area Entire 5 county area Entire 5 county area	 1.9 million VMT/ day 440,000 kg/day GHG 16 kg/day PM_{2.5} 103 kg/day NOx 80 kg/day VOC
Orlando	 Expand employer programs including transit pass Improve transit access and travel times VMT pricing for entire region Unlimited transit pass for with tuition and university employment 	Sub-population of 3 county area Sub-population of 3 county area 3 county VMT Sub-population of 3 county area	 4.6 million VMT per day 1.1 million kg/day GHG 39 kg/day PM_{2.5} 201 kg/day NOx 117 kg/day VOC

13

New Land Use Approaches

Neighborhood Approach

- Uses the existing relationships among neighborhood types and VMT per capita
- 5 6 neighborhood types identified on the basis of land use (urban core, suburban, employment/retail center, etc.)
- Shifting population to lower VMT neighborhood types results in changes in regional VMT

Multivariate Approach

- Uses elasticities (Ewing, Cervero 2010) among land use variables and VMT
 - Density (household/population)
 - Distance to transit
 - Job access by auto
 - Job access by transit
- Percent change in variable multiplied by elasticity, results in percent change in VMT

Land Use Approach Comparison

Percent VMT and CO₂ Changes Relative to 2045 BAU

Area & Strategy	2014 Approach: TRIMMS	2016 Neighborhood Approach	2016 Multivariate Approach
Atlanta: Smart Growth (increased density and mixed land use)	-0.50%	-5.97%	-6.43%
St. Louis: TOD near existing transit stations	-0.08%	-0.16%	-0.54%
St. Louis: Work/Housing Balance	-0.16%	-1.97%	-1.12 %

15

Case Study Results: Atlanta

Scenario	Light- Duty VMT	GHGs (CO ₂ equivalent)	PM _{2.5}	NOx	VOC
Scenario 1: Expanded TDM	-0.69%	-0.68%	-0.68%	-0.67%	-0.66%
Scenario 2: Scenario 1 + Transit Frequency Improvement	-0.86%	-0.86%	-0.86%	-0.85%	-0.83%
Scenario 3: Scenario 2 + Parking Pricing	-2.85%	-2.85%	-2.85%	-2.82%	-2.81%
Scenario 4: Scenario 3 + Land Use					
Neighborhood Approach Multivariate Approach	-8.82% -9.28%	-8.81% -9.27%	-8.81% -9.27%	-8.79% -9.25%	-8.78% -9.24%

Case Study Results: St. Louis

Scenario	Light- Duty VMT	GHGs (CO ₂ equivalent)	PM _{2.5}	NOx	VOC
Scenario 1: Regional TOD					
Neighborhood	-0.16%	-0.16%	-0.16%	-0.16%	-0.16%
Multivariate	-0.54%	-0.54%	-0.54%	-0.54%	-0.54%
Scenario 2: Scenario 1 + Workforce – Housing Balance					
Neighborhood	-2.13%	-2.13%	-2.13%	-2.13%	-2.13%
Multivariate	-1.66%	-1.66%	-1.66%	-1.66%	-1.66%
Scenario 3: Scenario 2 + Expanded Bike/Ped Network					
Neighborhood	-2.21%	-2.22%	-2.24%	-2.37%	-2.56%
Multivariate	-1.73%	-1.75%	-1.76%	-1.89%	-2.08%
Scenario 4: Scenario 3 + Transit Expansion					
Neighborhood	-2.54%	-2.56%	-2.57%	-2.70%	-2.90%
Multivariate	-2.07%	-2.11%	-2.13%	-2.39%	-2.79%

Bicycle and Pedestrian Strategies

- New approach applied in St. Louis, to see impact of full build-out of bicycle and pedestrian network in local and regional plans:
 - Increase sidewalk coverage on local and arterial roads from 56% to 71%, and
 - Expand miles of bicycle facilities by 150%
- Mode shift to biking and walking is based on increases in infrastructure miles
- Elasticity is based on data and assumptions developed by SANDAG (San Diego, CA) and MTC (San Francisco, CA)*

^{*}May not be transferable to other areas

Case Study Results: Orlando

Scenario	Light-Duty VMT	GHGs (CO ₂ equivalent)	PM _{2.5}	NOx	VOC
Scenario 1: Expanded TDM	-0.65%	-0.65%	-0.65%	-0.65%	-0.65%
Scenario 2: Scenario 1 + Enhanced Transit	-0.92%	-0.92%	-0.92%	-0.92%	-0.92%
Scenario 3: Scenario 2 + Road Pricing	-4.75%	-4.75%	-4.75%	-4.74%	-4.73%
Scenario 4: Scenario 3 + University Transit Pass	-6.08%	-6.08%	-6.07%	-6.06%	-6.05%

Transit VMT and Emissions

Area	Total GHG Reduction from Strategies, without Transit Increase	Transit Strategy	Increase in Transit VMT and GHG (CO ₂ equivalent kg/day)	Resulting Overall GHG Reduced by Strategies
Atlanta	2.8 million kg/day	Transit Frequency Improvement	22% 260,000	2.54 million kg/day
St. Louis	440,000 kg/day	Light Rail Expansion	66% 515,000	-75,000 kg/day (GHG increases)
Orlando	1.1 million kg/day	Transit Improvement	70% 161,000	939,000 kg/day

2016 Case Study Findings

- ❖ TE strategies can contribute significant reductions for both GHG and criteria pollutant emissions
- Where comparable, the range of reductions for these strategies and regions are similar to previous EPA studies and other peer-reviewed studies and research
- ❖ Both new land use approaches produced similar results, and reductions consistent with other major studies in the literature
- Transit strategy effectiveness is highly dependent on sufficient supportive land use; transit doesn't work well everywhere
- Where local data is not readily available, default inputs are sufficient to compare and contrast different scenarios for non-regulatory purposes

What's next?

- EPA intends to offer technical support for additional TEAM case studies and/or GHG planning
 - Let us know if you are interested!
- Sketch model comparison
- Update TEAM User's Guide with new approaches

For More Information:

- EPA's webpage "Estimating On-Road Greenhouse Gas Emissions"
- www.epa.gov/otaq/stateresources/ghgtravel.htm