NRC Committee on LD Fuel Economy Technologies

MTE Technologies and Costs

2022-2025 GHG Emissions Standards

Briefing to the National Research Council of the National Academies Committee on Fuel Economy of Light-Duty Vehicles

July 31, 2014

Office of Transportation and Air Quality Office of Air and Radiation U.S. Environmental Protection Agency

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

<u>Agenda</u>

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study
- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

Vehicle Simulation Tool for the MTE

Goals for EPA Modeling for 2022-2025 analysis...

- Build off of the HD GEM* framework to build LD ALPHA*
 - GEM had to be developed in-house in 2010 because of its key role in HD Certification
 - Models utilize same code and structure (Matlab/Simulink)
 - Apply EPA's extensive experience and expertise in testing, advanced technology and modeling
- Developing detailed engineering models is a great way for EPA to develop deep expertise in advanced technologies and how they interact with other technologies
- Full transparency models are open and free for the public
- Faster turn around for adopting new information for scenario analyses
- Validate models using data inputs generated from its in-house lab testing and other sources

* GEM – Greenhouse Gas Emissions Model

* ALPHA – Advanced Light-Duty Powertrain and Hybrid Analysis

Tools to Model Future Fleet

Lots of DATA!

Component Data

- ✓ engine
- ✓ transmission
- ✓ electrical components
- ✓ chassis, etc.

Vehicle Data

- ✓ steady-states
- ✓ transient cycles

<u>ALPHA Model</u>

Assesses Combinations of Light-Duty Technologies

- ✓ ALPHA is a full forward looking physics based vehicle simulation model programmed in Matlab/Simulink
- ✓ Quantifies effectiveness of a technology or groups of technologies
- ✓ Helps assess feasibility of light-duty standards

"Optimization Model for reducing Emissions of Greenhouse gases from Automobiles"

REVIEW

OMEGA is used to evaluate a future fleet's potential compliance path with LD GHG standards

- ✓ Feasibility analysis of how a fleet might utilize these technologies to comply with LD standards, not a market prediction
 - Manufacturer's engineering, marketing, or other considerations may lead them to a different path
 - Model assumes that technology availability and cost is equivalent across manufacturers
- ✓ Detailed fleet baseline on relevant technologies for ~1300 current models in the light duty fleet (modeled as ~250 vehicle platforms)
- Future vehicle sales are based on Economic projections from DOE/EIA, and Industry forecasts from JD Powers and CSM (Now IHS)

Assesses Potential Compliance Path with New LD GHG Rules

- Determines cost efficient path(s) of adding technology to vehicles in order to achieve regulatory compliance
- ✓ Quantifies economic and environmental impacts of technology changes/improvements in vehicle fleets
- ✓ Requires many scenarios of future vehicle technologies and their effectiveness (among many other model inputs) on reducing GHG emissions

Modeling Tools: ALPHA, Lumped Parameter Model (LPM) and OMEGA

Transparent processes will generate "technology effectiveness" inputs for the OMEGA model

- Use EPA lab and other data to validate ALPHA model
- Use ALPHA model to verify and supplement 2008 & 2011 Ricardo simulations
- Use ALPHA simulation results (and other data sources) to update LPM as appropriate
- Use LPM to generate vehicle technology packages (used as inputs to OMEGA)

Modeling Tools: ALPHA, Lumped Parameter Model (LPM) and OMEGA

Transparent processes will generate "technology effectiveness" inputs for the OMEGA model

- Use EPA lab and other data to validate ALPHA model
- Use ALPHA model to verify and supplement 2008 & 2011 Ricardo simulations
- Use ALPHA simulation results (and other data sources) to update LPM as appropriate
- Use LPM to generate vehicle technology packages (used as inputs to OMEGA)

Modeling Tools: ALPHA, Lumped Parameter Model (LPM) and OMEGA

Transparent processes will generate "technology effectiveness" inputs for the OMEGA model

- Use EPA lab and other data to validate ALPHA model
- Use ALPHA model to verify and supplement 2008 & 2011 Ricardo simulations
- Use ALPHA simulation results (and other data sources) to update LPM as appropriate
- Use LPM to generate vehicle technology packages (used as inputs to OMEGA)

Completed Vehicle Models

 Updated base code for conventional and hybrid vehicle models in ALPHA to facilitate data entry, traceability, and code readability when we share it with stakeholders (structure, libraries, terms, routines, etc)

Models Completed

- Engines
 - Map-based engine models
 - NA and TC engines
- Transmissions
 - MT, AT, and DCT models
 - Gear shifts based on pre-defined shift schedule and AutoShift code
- Accessories
 - Map-based accessory models (alternator, water pump, A/C)
- Electrical Components
 - Starter, alternator, battery, motor models

ALPHA Development and Validation <u>Plans</u>

- Additional Model Development
 - Conventional Vehicle Model
 - Engine
 - Are considering adding dynamic engine model (to address engine thermal behavior, account for turbo lag, external EGR lag, etc.)
 - Transmission
 - Add CVT model
 - Upgrade DCT model
 - Hybrid Vehicle Model
 - Mild Hybrid
 - Plug-In Hybrid

Model Validation

- Conventional Vehicle Model
 - Vehicles with 8/9/10-speed AT, DCT
 - Vehicles with CVT
 - Pick-Up Trucks
- Hybrid Vehicle Model
 - Mild Hybrid (e.g. Malibu Eco)
 - Plug-In Hybrid (e.g. Prius Plug-In)

ALPHA Validation Activities

SUNTED STATES

• Hybrid Vehicle Models

- <u>Initial validation</u> of "power-split hybrid" model using data from a 2010 Toyota Prius NA engine (SAE paper*)
- <u>Initial validation</u> of "P2 hybrid" model using data from a 2011 Hyundai Sonata Hybrid NA engine w/6-speed AT (SAE paper*)
- Confirm/improve "P2 hybrid" model using data from a 2013 VW Jetta Hybrid: P2 hybrid, TC engine with 7-speed DCT (underway)

• Conventional Vehicle Model

- <u>Initial validation</u> of "conventional vehicle" model using data from a 2013 European Ford Focus turbo-charged engine with 6-speed MT (SAE paper**)
- <u>Full validation</u> of "conventional vehicle" model using a 2013 Malibu NA engine with 6-speed AT (*nearly complete*)
- Improved "conventional vehicle" model using 8-spd AT shifting from a 2013 Chrysler 300 w/NA engine (*nearly complete*)
- Confirm/improve "conventional vehicle" model using data from a 2013 Ford Escape turbo-charged engine with 6-speed AT (*nearly complete*)

*SoDuk Lee, Byungho Lee, Joseph McDonald, L. James Sanchez, Edward Nam, "Modeling and Validation of Power-Split and P2 Parallel Hybrid Electric Vehicles", SAE Technical Paper 2013-01-1470.

** Byungho Lee, SoDuk Lee, Jeff Cherry, Anthony Neam, James Sanchez, Edward Nam, "**Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool**", SAE Technical Paper 2013-01-0808.

Review: NCAT Lab Testing

INITED STATE

Approach to In-Vehicle Benchmarking

Monitoring operating CAN data

VW JETTA H	YBRID SIGNAL LIST
Engine Torque	Transmission Oil Temperature
Engine Speed	Transmission Gear Actual
A/F Ratio	Transmission Gear Commanded
Ambient Pressure	Transmission Output Shaft Speed
Ambient Temperature	Transmission Input Shaft Speed
Throttle Angle	Accelerator Pedal Position
Fuel Flow Rate Commanded	Brake Pedal Position
Fuel Flow Rate Measured	Vehicle Speed
Mass Air Flow	Hybrid Battery State of Charge
Intake Manifold Pressure	Hybrid Battery Voltage
Intake Manifold Temperature	Hybrid Battery Current
Exhaust Manifold Temperature	Emotor Voltage
Coolant Temperature In	Emotor Current
Coolant Temperature Out	Emotor Speed
Engine Oil Temperature	

Testing vehicles using various cycles

- Transient cycles on chassis dyno
- (FTP, HWFET, US06, etc ...) CO₂ and fuel consumption
- Criteria pollutants
- Battery state of charge
- Steady state operation on chassis dyno
 - Generate engine efficiency map
 - · Generate transmission efficiency map
 - Characterize torque converter
- Vehicle speed sweeps on chassis dyno
 - Generate shift/timing maps
 - Torque converter lock-up

Capturing wide range of data signals

- Added torque sensors
- Operating CAN data

NRC Comr

Other added instrumentation

Approach to Advanced Engine Testing

Engine benchmarking/development:

- ✓ GDI engines a key enabling technology are rapidly penetrating the market
 - Turbocharged & downsized engines
 - ii. High compression ratio naturally aspirated engines
- Considering challenges: turbo lag, engine stability, NVH

Technical Approach:

- Test engine tethered to chassis to take advantage of chassis controller
- Develop operational maps and reverse engineer engine control strategy
- Explore limits of engine control (eg: flexibility from multiple injections)
- Explore new technology independently and with supplier partnerships (eg: cooled EGR to reduce throttling losses and eliminate enrichment)

Cell 9 - tethered Ford Focus

Transmission technology is evolving rapidly

- Over 60% of today's new vehicles have 6 or more gears
- Use of CVT's is growing rapidly
- Dual Clutch Transmissions (DCTs) are in the market

Controls (shift logic) are critical to effectiveness

- We are looking at efficiency attainable using advanced engines coupled with advanced transmissions/shift strategies
- Manufacturers are balancing efficiency, launch performance, NVH and customer acceptance

Dual Clutch Transmission Reference: Getrag - http://www.autolatest.ro/news-cars/getrag-is-doing-well-in-2012-turnover-rises-to-3-

Transmissions and Shift Logic

NRC Committee on LD FE Technologies – July 31, 2014

Full Validation of Conventional LD Vehicle Model *

2013 Chevy Malibu 1LS

2.5L I4 GDI *Non-Hybrid* 22 City / 34 Highway / 26 Comb 1- Validate ALPHA with data from ~15 vehicles

Chosen as representative of an average midsize car and we also have the Malibu ECO hybrid to compare and contrast with.

*FYI – a similar full validation program is being run on the code with data from HD trucks

ALPHA Validation

- What are we modeling?
- What inputs are required to run the model?
- What methods are we using to convert raw data into model inputs?
- How are we comparing the modeling results to the measured results?
- Were there any "surprises"?
- What are some of the open issues?
- What are the current results?
- What are the next steps?

• Test

Drive cycle speed and grade

Required Model Inputs

- Vehicle
 - Weight / inertia, road load, driveline type or vehicle class ...

• Component

- Engine fuel consumption map, torque curves ...
- Transmission gear ratios, spin losses, efficiencies, torque converter specs ...
- Accessory loads
- Behavior
 - Shift strategy, torque converter strategy, driver behavior, idle speed management, pedal map ...

Converting Raw Data to Model Inputs

- Cut and Paste
 - Some parameters require no processing and become model inputs immediately
- Manual data processing
 - Transmission gear efficiencies had to be back-calculated from total efficiencies after factoring out spin/pump loss data
 - Engine fuel map data had to be extrapolated slightly
- Observation of vehicle behavior during testing

Engine Mapping Process

16

- Received Malibu 2.5L GDI engine map from FEV
- Torque, speed and fuel rate were used to create a set of mapped points
- Worked on a process for turning points to a table without introducing artifacts
- Mapped points were converted to a 25 x 25 table for use with the model

Comparison of Model Results to Vehicle Test Data

- Drive cycle fuel economy
- Second by second comparison
- Comparative histograms
- XY plots
- Running the model using vehicle data as inputs versus modeling assumptions

18

UNITED STATES

AGENCY

Fuel Consumed (gallons) v. Engine Speed (RPM) plotted on 30-Sep-2013

UNITED STATES

AGENCY

Current Model Results 4000lb road load ("Series4" = ALPHA's MPG)

% difference model v. average test result:

2.75	2.53	-1.08	2.46	2.09	5.14	3.02

INITED STATE

Interesting Observations

- The torque converter rarely locks up fully but instead slips slightly, presumably to avoid "chuggle"
 - Modified torque converter efficiency during lockup
- The engine was mapped on E10 87 Octane pump gas but the vehicle testing was performed with 93 Octane Indolene
 - Had to obtain the fuel properties for both fuels to translate between the engine map and vehicle consumption data
 - Have started vehicle testing using E10 to minimized conversion factors
- The accessory load varies considerably depending on the test
 - Can use an overall average or use measured alternator current directly in the model
- The engine has a temporary "high idle" when approaching a stop after driving
 - Had to modify the idle air control to approximate this, not that it has much effect on FE

Further Improvements Planned or under Consideration

- EPA has setup more instrumentation on the Malibu and plan to run additional tests for this validation.
 - For example, FEV did not provide loaded or unloaded "idle" consumption data, which is a significant operating condition on tests with idle time
 - We also want more repeats of the various cycle tests
- Torque converter model could be modified to model "slippy" lockup
- Our fuel economy on highway cycle is slightly lower than vehicle data
 - Some amount of internal (transmission/brake) drag is incorporated into the target coefficients but we don't know how much (yet) and may be double counting some losses
- The engine torque curve could be adjusted to better reflect actual torque and consumption.
- Since FEV did not provide transmission inertia data, EPA estimated engine/torque converter input inertia with keyoff spindown test and the result seemed reasonable. EPA may want to confirm the estimates with additional testing.

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study
- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

Review: Transmission technologies considered in the FRM*

COMPONENTS

- **Manual 6-speed transmission** offers an additional gear ratio, often with a higher overdrive gear ratio, than a 5-speed manual transmission.
- Six- and seven-speed automatic transmissions the gear ratio spacing and transmission ratio are optimized to enable the engine to operate in a more efficient operating range over a broader range of vehicle operating conditions.
- Eight-speed automatic transmissions the transmission gear ratios are optimized to enable the engine to
 operate in a more efficient operating range over a broader range of vehicle operating conditions. This
 technology is applied <u>after 2016</u>.
- **Dual clutch transmission** (DCT) are similar to a manual transmission, but the vehicle controls shifting and launch functions. A dual-clutch automated shift manual transmission uses separate clutches for even-numbered and odd-numbered gears, so the next expected gear is pre-selected, which allows for faster, smoother shifting.
- **High-efficiency gearbox** (automatic, DCT or manual) continuous improvement in seals, bearings and clutches, super finishing of gearbox parts, and development in the area of lubrication, all aimed at reducing frictional and other parasitic load in the system for an automatic, DCT or manual type transmission.

CONTROLS

- Improved automatic transmission controls optimizes shift schedule to maximize fuel efficiency under wide ranging conditions, and minimizes losses associated with torque converter slip through lock-up or modulation.
- Shift Optimization tries to keep the engine operating near its most efficient point for a given power demand. The shift controller emulates a traditional Continuously Variable Transmission by selecting the best gear ratio for fuel economy at a given required vehicle power level to take full advantage of high BMEP engines.

*Page 3-5 of the Joint Technical Support Document (August 2012 EPA-420-R-12-901).

25

Review: Transmission Controls*

Improved Automatic Transmission Control**

Early torque converter lockup: "Calibrating the transmission shift schedule to upshift earlier and quicker, and to lock-up or partially lock-up the torque converter under a broader range of operating conditions can reduce fuel consumption and CO2 emissions."

Aggressive Shift Logic: "**ASL-level 1** is an <u>early upshift strategy</u> whereby the transmission shifts to the next higher gear "earlier" (or at lower RPM during a gradual acceleration) than would occur in a traditional automatic transmission. This early upshift reduces fuel consumption by <u>allowing the engine to operate at a</u> <u>lower RPM and higher load</u>, which typically moves the engine into a more efficient operating region. "

Additional Improved Transmission Control***

Aggressive Shift Logic: "**ASL-level 2** is a <u>shift optimization strategy</u> whereby the engine and/or transmission controller(s) continuously evaluate all possible gear options that would provide the necessary tractive power (while limiting the adverse effects on driveline NVH) and select the gear that <u>lets the engine run in the most</u> <u>efficient operating zone</u>. "

- ** Both ASL-level1 and Early Torque Converter Lockup control strategies are included in the 2012-2016 and 2017-2025 final rules.
- *** ASL-level2 is only included in the 2017-2025 final rule.

Joint Technical Support Document

^{*} Page 3-102 of the Joint Technical Support Document (August 2012 EPA-420-R-12-901).

Emerging 8-10 Speed Transmissions

In-Production

- 1. Aisin 8F35 (transverse): Lexus RX
- 2. Aisin TR-80SD and TL-80SN (longitudinal): VW Touareg / Porsche Cayenne & Panamera / Lexus IS & GS & LS / Cadillac CTS
- 3. ZF 8HP (longitudinal): Chrysler 300 / Dodge Charger / Ram 1500 / BMW 2-series & 3-series & 4-series & 5-series & X1 & X3 & X5 / Audi A5 & A6 & A7 & A8 & allroad & Q5 & Q7 & SQ5 / Dodge Durango / Jeep Grand Cherokee / BMW 6-series & 7-series & X6 & Z4 / Audi S8 & A8L / Land Rover Range Rover & Range Rover Sport / Jaguar XF & XJ & F-type / Maserati Ghibli & Quattroporte / Bentley Continental & Mulsanne & Flying Spur / Rolls-Royce Phantom & Ghost & Wraith
- 4. ZF 9HP (transverse nine speed): Jeep Cherokee / Land Rover Range Rover Evoque
- 5. Hyundai 8R40/50 (longitudinal): Hyundai Genesis & Equus

Future

- 1. Mercedes 9G-tronic 9-speed (longitudinal): currently in European E-class, will possibly be in US in 2015
- 2. Hyundai 10-speed (longitudinal): possibly in 2015 Equus
- 3. Honda DCT-8 (transverse): planned for future Acuras
- 4. GM 8L90 (longitudinal): planned for 2015 Corvette

Completed Transmission Related Work

- 1. Acquire and analyze shift logic data from a 2013 4-cylinder Malibu base vehicle w/ 6-speed AT (**midsize car**).
- Acquire and analyze shift logic data from a 2013 6-cylinder Chrysler 300 w/ 8-speed AT (large car).
- 3. Compare <u>OEM shift strategies</u> to the <u>Ricardo shifting predictions</u> contained in the TSD for 8-speed transmission.
- 4. Code an advanced shift logic model to use for vehicle simulation in the ALPHA model (named **AutoShift**).

Testing designed to address:

Questions about Controls...

- How has early torque converter lockup been implemented?
- How have early up-shift and shift optimization strategies been implemented?
- Are there any obvious implications on driveability in these production vehicles?

Questions about Efficiency...

- What are transmissions' efficiency and power loss?
- What is the combined engine + transmission efficiency (including shifting strategy)?

Results: # Shifts and FE of "Midsized Car" (Malibu)

4-cylinder 2.5L Malibu with 6-speed transmission

4-cyl Midsized Car

LA4	Malibu 6-speed Actual (128 shifts)	ALPHA AutoShift Malibu 6-speed (132 shifts)
Bag 1 FE	31.0	31.0
Bag 2 FE	27.0	27.0
Total FE	28.8	28.8
# Shifts	128	132

NOTE: These LA4 tests were "warm start" tests. An LA4 drive cycle is equivalent to the 1st two bags of the 3 or 4-bag FTP.

US06	Malibu 6-speed Actual (79 shifts)	ALPHA AutoShift Malibu 6-speed (84 shifts)
Bag 1 FE	17.2	17.3
Bag 2 FE	30.6	30.9
Total FE	26.1	26.3
# Shifts	79	84

Initial calibration of AutoShift

AutoShift Shifting Sensitivity Study: # Shifts versus Minimum Engine RPM

4-cyl Malibu w/6-spd trans

Using AutoShift to show potential # of shifts if the RPM limit is lowered

NRC Committee on LD FE Technologies - July 31, 2014

AutoShift Shifting Sensitivity Study:

Shifts versus Minimum Engine RPM

NOTE: These # shifts are based on driving an LA4 cycle. An LA4 drive cycle is equivalent to the 1st two bags of the 3 or 4-bag FTP.

AutoShift Shifting Sensitivity Study:

Shifts versus Minimum Engine RPM

engine

NOTE: These # shifts are based on driving an LA4 cycle. An LA4 drive cycle is equivalent to the 1st two bags of the 3 or 4-bag FTP.

NRC Committee on LD FE Technologies – July 31, 2014

AutoShift MPG Sensitivity:

Example of MPG versus # Shifts

of Shifts & MPG depend on: Actual **ALPHA AutoShift** Chry 300 8-speed Large Car 8-speed 1) # of gears 189 182 2) Low limit on engine RPM (varies with 26.5 4-cyl and 6-cyl) 188 (skipshift) 3) NVH technologies (dual-mass flywheel, 26 mounts, controls, etc.) 192 (no skipshift) 182 4) Transmission design/durability **Ricardo Prediction** Large Car 8-speed 5) MPG knee 25.5 192 (188 skipshift) 11 1 Large Car 8-speed 11 1 MPG 11 1 26.5 25 11 189 26 Actual Chrysler data is cert data from a Dodge Charge 24.5 н (3% difference) 11 1 25.5 11 1 11 1 24 1 1 MPG 11 1 25 1 1 23.5 П 190 24.5 130 140 150 160 170 180 200 210 #'shifts 24 Developmental data - internal EPA use only 23.5 **NOTE**: These # shifts are based on driving an LA4 cycle. 1250 1200 1150 1100 1050 1000 950 900 850 800 750 An LA4 drive cycle is equivalent to the Lower RPM Limit 1st two bags of the 3 or 4-bag FTP.

6-cyl Large Car w/ 8-spd trans

Lowest engine speed allowed

230

220

4-cyl Malibu 6-speed AT

- It is possible to tune the AutoShift algorithm to behave comparably to the observed Malibu shift points.
- Allowing lower minimum RPM after shifting might require a dual mass flywheel for operation below 1000 RPM which could affect overall cost benefit.

6-cyl Chrysler 300 with 8-speed AT

- We sized a generic 6-cylinder engine map to simulate a large car platform.
- Chrysler 300 fuel economy data could not be estimated precisely using ALPHA since we did not have an engine map for that specific vehicle.
- No transmission data (other than ratios) was available for the Chrysler 300 so assumptions were made and some data was lifted from the Malibu model (TC K-factor curves, spin losses, etc).
- The torque converter K factor was estimated from stall RPM and engine reported torque.
- The torque converter appears to lockup fully, at least in higher gears, compared to Malibu's "slippy" torque converter.

Next Steps: Transmissions

- It is assumed that 6-speed transmissions will not have much fleet penetration in the 2022 to 2025 time period, so we do not plan to devote more resources to trying to determine if 6-speed transmissions can be further optimized.
- However, we do plan to compare "shift behavior" and "fuel economy improvement" of a 5-speed 2014 Dodge Charger versus an 8-speed 2014 Dodge Charger.
- Evaluate 7- 10 speed AT/DCTs and CVTs during other vehicle benchmarking
- Develop and evaluate final version of AutoShift for use in ALPHA
- Develop and calibrate ALPHA model for new transmissions

Question #4a – re: Shift Optimization

- **4a.** Argonne National Laboratory was not able to identify fuel consumption reductions from shift optimization in its simulation work for the 2017-2025 rule (Rule p. 63092). In addition, at our June meeting, NHTSA expressed uncertainly about shift optimization. The Ricardo simulation report attributes 5% to shift optimization on page 41, but there is a concern about what baseline is used, as most vehicles already have some degree of shift optimization that is already aggressive. Does EPA have any new information in support of the claim that shift optimization can indeed provide substantial savings?
- Real-world fuel economy benefits of advanced transmissions depend on the engine and transmission *package*.
- Likewise, Ricardo simulation results on transmission effectiveness are dependent on both engine and transmission.
- Different engines require different transmissions and different operation

 optimized for the engine-transmission pair.

Shift Optimization Background

- Adopting the traditional "table-based" shifting strategy in Ricardo's initial modeling would have required a very tedious manual tuning for ~200,000 vehicle/technology combinations analyzed for the rule.
- The solution was to have Ricardo apply an "appropriatelyoptimized, rule-based" shift logic (an algorithm free of fixed tables), which uses parameters bounded with reasonable values (taking into consideration NVH, time between shifts, drivability, etc.), reflecting industry standard approaches for shift tuning in today's modern transmissions.
- Simply stated, the difference of % improvement between the <u>un-tuned</u>, <u>non-optimized</u> "table-based" shift results and the <u>"appropriately-optimized</u>, <u>rule-based</u>" shift results became known as "ASL2" – shift optimization.

Question #4a – re: Shift Optimization

38

ASL2 is <u>NOT a standalone additive technology</u> that can be layered upon any transmission.

- For the 17-25 rulemaking, EPA separated out ASL2 as a way to account for cost associated with tuning a transmission's shifting strategy for the advanced engine-transmission pair, possibly making it appear to be standalone.
- A transmission with a fully tuned table-based shift schedule already has most of the necessary elements of ALS2.
- Thus, comparing a transmission with an appropriatelyoptimized, rule-based algorithm to one with a fully optimized table-based shift schedule, as done in the ANL report, should show only a minimal improvement.

The total % improvement estimates of advanced transmissions in the rule were not affected by separately identifying the ASL2 portion of a transmission's overall effectiveness.

- Going forward, we are considering removing the "ASL2" (shift optimization) checkbox from the LPM and instead begin using just a total effectiveness number for each advanced transmission, which includes ASL2 when appropriate.
- Based on our preliminary MTE review of transmissions on the road today, the total % improvement estimates for these advanced transmissions appear to still be accurate.
- We currently have test programs underway to confirm the projected transmission efficiency improvement.
- We also have heard from suppliers & some OEMs that there are additional advancements in transmissions still to be gained.

Dodge Charger: 5-speed to 8-speed

(Same drive train as in the Chrysler 300)

- Want an opportunity to compare different transmissions with the same engine.
- Dodge Charger is a good target available with 5- and 8-speed trans.
- We took a peek at certification data, but it was done w/ different road loads.

% CO2 reduction

~ 6.7% (combined)

~ 5.8% (EPA city)

~ 7.8% (EPA hwy)

FYI - The Lumped Parameter Model yields a **5.6%** CO₂ reduction when upgrading a large car from a 5-speed to 8-speed transmission.

- This analysis attempts to factor out CO₂ reductions due to road load changes.
- We currently have test a program underway to confirm these efficiencies.
- Testing can also pinpoint operational and efficiency differences.

New Transmissions from Mercedes-Benz and BMW*

 "THE NEW AUTOMATIC TRANSMISSION 9G-TRONIC from Mercedes-Benz" -Christoph Dörr, Manfred Homm, Guenter Indlekofer (Daimler AG)

"The fuel economy advantage of the 9G-TRONIC [compared to the 7G-TRONIC] is **on average 6.5% in the NEDC**."

- about 4.5% is from reducing parasitics
- about 2% is from different gearing
- "BMW's Flexible Powertrain Family with a New Generation of Transverse Automatic Transmissions" - Markus Nell (BMW Group)

"Compared to the predecessor generation,

a fuel consumption reduction of **over 14% in the NEDC**, due to the use of the new transmission generation, was achieved." Nell also said verbally that the BMW 8-spd has an additional 3-4% FE benefit

- comparing 6-speed new to 6-speed old
- about 8-10% is from reducing parasitics
- about 2% is from down-speeding
- about 1% is from TC lockup
- about 2-3% is from engine decoupling at idle

* Information presented at the 8th International CTI Symposium, May 12-15 2014, Rochester MI

Question #4b – re: Incremental FC benefits

- 4.b. In the FEV teardown studies of the ZF 8spd, FEV broke out the cost of any items not related to the increased number of gears, such as more advanced valves, off axis vane pump, improved solenoids, etc. The costs of those components were not included in the cost to upgrade from a 6AT to a 8AT (\$80 in 2017, per the TSD). However, those components greatly contribute to the ZF 8spd's improved efficiency. Did the EPA separate the incremental FC benefit from increasing from 6 to 8 speeds from the benefits of the higher efficiency technologies?
 - Yes, EPA did separate the benefits due to a higher number of gears from improvements in transmission mechanical efficiency. The lumped parameter model has a separate line item for "high efficiency gearbox" which reflects these mechanical efficiency improvements. For example, in the case of an advanced 2020 8-speed transmission both the 8 speed transmission and the high efficiency gearbox are selected in the LP model.

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study
- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

EcoBoost Engine Program

Agenda TOPICS

- Test Setup
 - Tether
 - SS points
- Test Procedure
 - Process development

Results

- BSFC
- Thermal Efficiency

Next Steps

- Model data
- Basis for futuring hardware

US Ford Escape – 1.6 liter

- a) Chassis dyno testing of Escape
- b) Tethered Benchmarking (fuel and operational maps)
- c) Cycle simulation development on engine dyno
- d) Finalize test packet of the tethered benchmarking

Test Engine

Vehicle	2013 Ford Escape						
Engine	1.6 L EcoBoost						
Rated Power	180 Hp @ 5700 RPM						
Rated Torque	240 Nm @ 1600-5000 RPM						
Fuel Requirement	87 octane AKI						
Engina Easturas	Turbocharged						
Engine realures	Spray-guided direct injection						

Test Setup

- Engine specs, note Tier 2 Bin 4
- Note no load on alternator in dyno setup
- Note stock exhaust
- Note stock intercooler with in-house cooling tower set to temps seen in vehicle

Engine in Engine Dyno Test Cell

"Mapping" Test Procedure

Instrumentation (for BSFC/Efficiency)

Instrument	Measurement Capabilities	Manufacturer
Dynamometer	Engine speed, Torque	Meidensha
CVS dilution tunnel	Dilution, Exhaust flow	EPA
Coriolis fuel meter	Fuel flow rate	Micromotion
Laminar flow element*	Air flow rate	Merriman
Emissions bench*	CO, THC, NOx, CH4, CO2	MEXA

* These instruments were not used to gather data for this dataset.

Engine control and analysis software

Software	Developer	Description	Data Rate	
CAN	Engine OEM	Collects/monitors ECU output	variable	
Test	A &D Technology Inc	Controls dyno	10 hz	
1 lest	A&D Technology, Inc.	Collects test cell data		
CAS	MTS Systems Corporation	Combustion analyzer	720/rev	
		Commands pedal		
RPECS final	Southwest Research Institute	Collects supplemental data	1/cycle	
		Master data logger		

Escape EcoBoost BSFC

Thermal Efficiency

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study
- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

Next Steps – "Futuring" Engine Technology

- Demonstrate effectiveness of select promising engine technologies, such as higher BMEP and cooled EGR
- Confirm effectiveness maps of the "future" engines used to simulate MY 2020-2025 vehicles
- Use engine maps to "validate" ALPHA's simulation models

SkyActiv Engine NA Demo Engine

• Establish OEM Baseline

- Steady state mapping
- Cell 8 upgrade
- Cycle performance

• Tier 3 demonstration

- Open ECU
- Cycle testing/emissions calibration

• BSFC improvement development

- Cooled EGR and 14:1
- Tier 3 fuel
- Recalibration

Mazda presentation at Center for Automotive Research (CAR) Management Briefing Seminars, Aug 6-9, 2012

Mahle Boosted Demonstration Engine

• Re-baseline vs. original Mahle dataset

- Tier 2 certification fuel ≈ European fuel
- Steady state mapping

• Tier 3 demonstration

- Hardware updates (FIE)
- Cycle testing/emissions calibration

BSFC improvement development

- Cooled EGR
- Tier 3 fuel
- Recalibration

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study
- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

- EPA originally created the Lumped Parameter Model (LPM) in support of the 2012-2016 light-duty vehicle rule:
 - To address synergies that develop with application of multiple technologies on a vehicle package
 - To rapidly evaluate the effectiveness of 1000s of technology combinations as part of the rulemaking analysis
 - Validated to the 2008 Ricardo full vehicle simulation study
- The LPM was further developed to support the 2017-2025 light-duty vehicle rule:
 - Additional technologies added
 - Additional vehicle classes added
 - Efficiently evaluates millions of vehicle and technology combinations required for OMEGA
 - Validated to the 2011 Ricardo full vehicle simulation study

LPM Calibration to the 2011 Ricardo Simulation

UNITED STATES	
	NCY
IN NOR	AGE
THUNAL PROTECT	5
The	

				GHG			GHG					
				reduction	Combined		reduction	LP %				
				vs. 2007	LP		LP	Error vs.				
Class	 Engine 	 Trans 	▼ GHG g/r ▼	baselin 💌	estimat💌	GHG g/💌	estimat	Ricard	FTP 💌	HWFE	US06 🚽 (Combin
Small Car (Tovota Yaris)	2010	2010	210	4.3%	44.1	206	6.0%	1.6%	39.8	48.7	30.3	43.4
	baseline	baseline										
Small Car (Toyota Yaris)	STDI	6 spd at	uto 135	38.3%	69.7	130	40.5%	2.2%	65.0	70.0	39.8	67.2
Small Car (Toyota Yaris)	STDI	6 spd D	CT 131	40.1%	72.1	126	42.5%	2.4%	67.2	71.9	42.6	69.2
Small Car (Toyota Yaris)	LBDI	6 spd at	uto 129	41.1%	71.0	128	41.6%	0.5%	68.9	72.4	40.0	70.4
Small Car (Toyota Yaris)	LBDI	6 spd D	CT 126	42.5%	73.8	123	43.8%	1.3%	71.0	73.6	42.8	72.2
Small Car (Toyota Yaris)	EGRB	6 spd au	uto 130	40.7%	72.3	126	42.6%	1.9%	67.6	73.1	41.7	70.0
Small Car (Toyota Yaris)	EGRB	6 spd D	CT 126	42.5%	74.8	121	44.6%	2.0%	70.2	74.9	44.7	72.2
Small Car (Toyota Yaris)	Adv Diesel	6 spd au	uto 132	39.8%	80.4	126	42.7%	2.9%	71.8	83.2	56.1	76.5
Small Car (Toyota Yaris)	Adv Diesel	6 spd D	CT 127	41.9%	83.3	121	44.7%	2.8%	75.2	85.0	57.2	79.3
Standard Car (Toyota Camry)	2010	2010	261	8.1%	34.7	262	7.6%	-0.5%	30.0	43.5	29.1	34.9
	baseline	baseline	450	40.00/		455	45.000	0.00/	52.0	67.6	40.0	50.2
Standard Car (Toyota Camry)	SIDI	8 spd au	Jto 153	46.0%	28.6	100	45.3%	-0.6%	53.9	67.6	40.8	59.3
Standard Car (Toyota Camry)	SIDI	8 spd D	CI 149	47.6%	60.7	150	47.2%	-0.4%	56.3	68.3	42.2	61.2
Standard Car (Toyota Camry)	LBDI	8 spd au	uto 145	48.8%	59.8	152	46.4%	-2.4%	57.3	70.6	42.8	62.6
Standard Car (Toyota Camry)	LBDI	8 spd D	CI 141	50.4%	61.9	147	48.2%	-2.2%	60.0	71.5	44.9	64.6
Standard Car (Toyota Camry)	EGRB	8 spd au	uto 147	48.1%	60.8	149	47.3%	-0.8%	56.2	70.1	42.3	61.7
Standard Car (Toyota Camry)	EGRB	8 spd D	CT 143	49.6%	63.0	144	49.2%	-0.5%	58.6	71.1	43.7	63.6
Full Size Car (Chrysler 300)	2010 baseline	2010 baseline	331	6.9%	27.3	333	6.5%	-0.4%	23.8	33.7	23.6	27.4
Full Size Car (Chrysler 300)	STDI	8 spd au	, uto 184	48.4%	48.7	187	47.5%	-0.9%	46.5	53.8	33.3	49.5
Full Size Car (Chrysler 300)	STDI	8 spd D	CT 178	49.8%	50.4	180	49.3%	-0.5%	48.5	54.2	34.5	50.9
Full Size Car (Chrysler 300)	LBDI	8 spd au	uto 178	50.1%	49.6	183	48.5%	-1.6%	48.4	55.0	35.0	51.2
Full Size Car (Chrysler 300)	LBDI	8 spd D	CT 172	51.5%	51.3	177	50.2%	-1.3%	49.8	56.7	36.7	52.7
Full Size Car (Chrysler 300)	EGRB	8 spd ai	uto 176	50.5%	50.5	180	49.5%	-1.0%	48.5	55.9	34.8	51.6
Full Size Car (Chrysler 300)	EGRB	8 spd D	CT 171	51.8%	52.2	174	51.1%	-0.7%	50.3	56.8	36.1	53.0
Full Size Car (Chrysler 300)	Adv Diesel	8 spd a	ito 191	46.4%	56.5	179	49.7%	3.3%	48.5	59.7	41.9	53.0
Full Size Car (Chrysler 300)	Adv Diesel	8 spd D	CT 181	49.1%	58.4	173	51.4%	2.3%	51.8	61.5	43.8	55.8

10% RR, 20% aero, 20% mass reduction; equivalent performance

Modeling Tools: ALPHA, Lumped Parameter Model (LPM) and OMEGA

Transparent processes will generate "technology effectiveness" inputs for the OMEGA model

- Use EPA lab and other data to validate ALPHA model
- Use ALPHA model to verify and supplement 2008 & 2011 Ricardo simulations
- Use ALPHA simulation results (and other data sources) to update LPM as appropriate
- Use LPM to generate vehicle technology packages (used as inputs to OMEGA)

Question from NAS Committee

1.a. What evidence does EPA have beyond what is presented in the rule documents to support the claim that turbocharged engines with 33% downsizing can achieve the agencies' fuel savings estimates without requiring premium fuel or compromising driveability? These engines to date have shown substantially less fuel savings benefit relative to NA engines than the rule estimates. (See Attachment 1) Does EPA have more recent test data that show savings approaching the rule estimates?

	Automatic Transmission Unless Noted												
		I			EPA Label			0	AFE Unadjuste	d	Comparable Power to Weight Ratio CAFF Unadjusted		
Model			Percent	Comb FE	% FE	% FC	-	Comb FE	% FE	% FC	Adjusted	% FE	% FC
Year	Vehicle	Engine	Downsizing	MPG	Improvement	Reduction		MPG	Improvement	Reduction	MPG	Improvement	Reduction
2014	Cadillac CTS	3.6L Nat. Asp.		22		1	1	28.4		1	29.6		1
		2.0L Turbo	44%	23	4.5%	-4.3%		30.5	7.4%	-6.9%		2.9%	-2.9%
2014	Choy Cruzo	1 9L Not Acc		27				25.1			25.1		
2014	Chev. Cruze	1.4L Turbo	22%	30	11.1%	-10.0%		40.1	14.2%	-12.5%	35.1	14.1%	-12.4%
2014	Chev. Sonic	1.8L Nat. Asp. 1.4L Turbo	22%	28	10.7%	-9.7%		37.8	9.5%	-8.7%	38.2	8.4%	-7.8%
		I.I.E TUIDO	2270	01	10.170	0.170			0.070	0.770		0.470	1.070
2014	Dodge Dart	2.4L Nat. Asp	400/	27	40.5%	45.00/		36.2	40.0%	40.00/	37.1	40.00/	44.00/
	(Prem. Fuel)	1.4L TUIDO	42%	32	16.5%	-15.0%		43.2	19.3%	-10.2%		10.3%	-14.0%
2014	Ford Edge	3.5L Nat. Asp.		22				28.6			29.8		
		2.0L Turbo	36%	24	9.1%	-8.3%		31.8	11.2%	-10.1%		6.7%	-6.2%
2014	Ford Escape	2.5L Nat. Asp.		25				32.9					
		1.6L Turbo	36%	26	4.0%	-3.85%		34.6	5.2%	-4.9%	34.9	6.1%	-5.7%
2014	Ford Explorer	3.51 Nat Asp		20				25.6			26.5		
		2.0L Turbo	43%	23	15.0%	-13.0%		29.8	16.4%	-14.1%		12.4%	-11.0%
2014	Ford E1E0	E OL Not Aco		17				22.1					
2014	10/01/100	3.5L Turbo	30%	18	5.9%	-5.6%		23.8	7.7%	-7.1%	23.9	8.0%	-7.4%
2014	Ford Flesta MI	1.6L Nat. Asp. 1.0L Turbo	38%	34	8.8%	-8.1%		45.5 49.9	9.7%	-8.8%	50.3	10.4%	-9.5%
		I.OL TUIDO	0070	07	0.070	0.170		10.0	0.170	0.070	00.0	10.170	0.070
2014	Ford Fusion	2.5L Nat. Asp.	200/	26	7 70/	7.40/		34.6	E 00/	4.0%	20.5	E 69/	5.00/
		1.5L TUIDO	30%	20	1.170	-7.1%		30.4	5.2%	-4.9%	30.5	5.6%	-5.3%
2014	Ford Taurus	3.5L Nat. Asp.		23				29.5			30.9		
		2.0L Turbo	43%	26	13.0%	-11.5%		33.8	14.6%	-12.7%		9.4%	-8.6%
2014	Hyundai Sonata	2.4L Nat. Asp.		28				36.6					
		2.0L Turbo	17%	25	-10.7%	12.0%		32.2	-12.0%	13.7%	34.8	-4.8%	5.1%
2014	Kia Forte	2.0L Nat. Asp.		28				37.4					
		1.6L Turbo	20%	24	-14.3%	16.7%		31.9	-14.7%	17.2%	33.1	-11.4%	12.8%
2014	VAV Decest	2.51 Nat Aen		25				31.0					
2014	vvv i assat	1.8L Turbo	28%	28	12.0%	-10.7%		36.2	13.5%	-11.9%	36.2	13.5%	-11.9%
				•									
Final		EPA/NHTSA	33%						13.8 - 17.5%	12.1 - 14.9%			
Technical		projections for	(18 bar										
Support		Level 1	BMEP)										
Page 3-91	(Total from base)	EPA/NHTSA	50%						19.6 - 25.2%	16.4 - 20.1%			
		projections for	(24 bar										
		Level 2	BMEP)										

Using LPM to Predict FE for New Vehicle Models

- Detailed vehicle technology content is required
- The new test vehicle database does not always contain the necessary technology details to run the LPM properly – <u>ask key questions</u>
 - Do other technologies exist that could affect the comparison?
 (e.g., engine friction, lubrication, valvetrain, transmission efficiency and shift patterns, torque converter characteristics)
 - Is performance equivalent?
 (power <u>and</u> torque curves, acceleration times... *not* just rated power)
 - Are road loads the same? (including mass)
- Baseline vehicles with higher technology content will show lower effectiveness with newly added technologies
- Current LPM is calibrated to the 2011 Ricardo study based on technology effectiveness expected in 2020.

Turbo + GDI Effectiveness Examples

33% Engine Downsizing + Turbo + GDI Effectiveness

	2008 Large Car	2014 Large Car							
Baseline Vehicle Technologies	 None (PFI, NA, Fixed Valve, 4AT) 	 LUB + EFR1 10% Aero 10% Rolling DCP 8AT + HEG + ASL1 + TORQ EPS + IACC1 + HEA 							
Improved Vehicle Technologies	• +33% TDS + GDI	 LUB + EFR1 10% Aero 10% Rolling DCP 8AT + HEG + ASL1 + TORQ EPS + IACC1 + HEA +33% TDS + GDI 							
LPM GHG reduction due to 33% TDS + GDI	14.9%	10.0%							
4.9% Difference									

- 4.9% difference is result of knowing complete technology list for both vehicles
- GHG reductions vary significantly based on technologies present in baseline veh.
- Only defined combinations of technologies are valid

Turbo + GDI Effectiveness Examples

33% Engine Downsizing + Turbo + GDI Effectiveness

	2008 Small MPV	2014 Small MPV							
Baseline Vehicle Technologies	 None (PFI, NA, Fixed Valve, 4AT) 	 LUB + EFR1 10% Aero 10% Rolling DCP 8AT + HEG + ASL1 + TORQ EPS + IACC1 + HEA 							
Improved Vehicle Technologies	• +33% TDS + GDI	 LLUB + EFR1 10% Aero 10% Rolling DCP 8AT + HEG + ASL1 + TORQ EPS + IACC1 + HEA +33% TDS + GDI 							
LPM GHG reduction due to 33% TDS + GDI	12.1%	8.6%							
	3.5% Difference								

- 3.5% difference is result of knowing complete technology list for both vehicles
- GHG reductions vary significantly based on technologies present in baseline veh.
- Only defined combinations of technologies are valid

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study
- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

Mild Hybrid Tear-down GM eAssist Cost Study

Methodology for teardown and costing of eAssist system

- 2013 Chevrolet Malibu ECO purchased for teardown and analysis of the BAS system
- 2013 base model Chevrolet Malibu rented for systems and parts comparisons, along with OEM parts purchased for teardown
- All system that were effected or part of the BAS system were evaluated, torn down and costed
- All parts were photographed, weighed, tagged, torn down and costed with FEV costing data bases and cost sheets

	Malibu ECO	Malibu Base
•	Ion battery system	Alternator
•	High & Low voltage cables	Belt tensioner
٠	Starter Generator	Trunk trim
٠	Starter Generator Cooling	 Air compressor unit – pulley only
٠	Belt tensioner	Fuse Box
•	Trunk trim	Control module ECU/ECM
٠	Aux Trans cooling	
٠	Air compressor unit – pulley only	
•	Bat. Fan system	
•	Aux brake booster pump	
•	Fuse Box	
•	Control module ECU/ECM	
•	BMS, Converter, Inverter	

Major ION Battery Assemblies

Vehicle ION battery

battery in trunk to starter/generator in engine compartment

Orange 115v volt cable from starter/generator & black 12v volt cable from main battery, connected to ION battery, runs from ION

ION battery fan intake for cabin

65

Battery, Modules, and Cells

Complete battery as removed from vehicle

Complete battery with cover removed

1 of 2 Battery modules

1 of 2 Battery modules cells exposed

1 Battery cell

Smart Electrical Distribution Box Base versus ECO

ECM – Top Base versus ECO

Starter/Generator

Starter/Generator in vehicle

Starter/Generator tagged, weighed, photographed

Starter/Generator outer cover

Starter/Generator stator and rotor

Total Study Cost

				Mass				Cos	Differential				
Part Numbering	Part Name/Description	QTY	Mass (ECO)	Mass (BASE)	Mass	£.	COST (ECO)	COST (BASE)	COST	(DIFE)	Cost/Mass (ECO)	Cost/Mass (BASE)	Cost/Mas: (DIFF)
	Product Structure		Mass	Mass	Mass		USD	USD	US	SD	USD / KG	USD / KG	USD / KG
Component Assembly Sub-Subsystem Subsystem System	10 9 8 8 7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Quantity	Finished Unit Mass "kg"	Finished Unit Mass "kg"	Differential Saved Mass *kg*		Finished Unit Cost "\$"	Finished Unit Cost "\$"	Differential Saved Cost "\$"	Differential Saved Cost "%"	Cost / Mass Ratio *\$/kg* (Base)	Cost / Mass Ratio *\$/kg* (NEW)	Cost / Mass Ratio *\$/kg* (DIFF)
01	BAS vs. Non-BAS system		82.251	16.423	65.82	9	\$1,663.24	\$248.87	1414.37	85.0%	\$20.22	\$15.15	\$21.49
01 01	Accessory Drive Subsystem		4.837	3.397	1,440		\$42.44	\$21.54	20.90	49.2%	\$8.77	\$6.34	\$14.51
01 01 01	Pullevs	1	2 148	2 468	-0.320		513.14	\$12.49	0.66	5.0%	\$6.12	\$5.06	-\$2.06
01 01 02	Tensioners	1	2,563	0.839	1.724		\$26.27	\$7.13	19.14	72.9%	\$10.25	\$8.50	\$11.10
01 01 03	Belts	1	0.126	0.090	0.036		\$3.03	\$1.93	1.10	36.4%	\$24.06	\$21,41	\$30.67
01 03	Cooling & Heating Subsystem	-	3.815	0.000	3.815		\$72.79	\$0.00	72.79	100.0%	\$19.08		\$19.08
01 03 01	Starter/Generator Cooling unit assy	1	2.874	0.000	2.874		\$50.96	\$0.00	50.96	100.0%	\$17.73	÷	\$17.73
01 03 02	Electric heater pump assy	1	0.941	0.000	0.941	· 1	\$21.83	\$0.00	21.83	100.0%	\$23.20	. 2	\$23.20
01 04	Accessory Subsystem (Start Motor, Generator, etc.)	-	17.259	7.148	10.11	1	\$160.93	\$95.61	65.32	40.6%	\$9.32	\$13.38	\$6.46
01 04 01	Starter Motors ((No quote))	1	0.000	0.000	0.000		\$0.00	\$0.00	0.00	-			-
01 04 02	Starter/Generator	1	16.066	6.002	10.064		\$154.04	\$89.31	64.73	42.0%	\$9.59	\$14.88	\$6.43
01 04 03	Air conditioning	1	1.193	1.146	0.047		\$6.89	\$6.31	0.58	8.5%	\$5.77	\$5.50	\$12.41
01 05	Transmission Subsystem	S. 1	2.405	0.000	2.405	5	\$78.17	\$0.00	78.17	100.0%	\$32.51	1	\$32.51
01 05 01	Auxiliary Hydraulic Trans Pump Motor	1	1.569	0.000	1.569		\$32.77	\$0.00	32.77	100.0%	\$20.88	-	\$20.88
01 05 02	Trans fluid pump	1	0.722	0.000	0.722	2	\$40.21	\$0.00	40.21	100.0%	\$55.72		\$55.72
01 05 03	Trans fluid pump Plugs & Pipes	1	0.114	0.000	0.114		\$5.19	\$0.00	5.19	100.0%	\$45.56	1.1-1.1	\$45.56
01 06	Interior Trim and Ornamentation Subsystem		7.251	5.114	2.137		\$22.28	\$16.13	6.15	27.6%	\$3.07	\$3.15	\$2.88
01 06 01	Load Compartment Floor Trim	1	3.472	3.091	0.381		\$7.48	\$9,78	-2.30	-30.8%	\$2.15	\$3.16	-\$6.05
01 06 02	Parcel Shelf / Blinds	1	0.571	0.000	0.571		\$3.77	\$0.00	3.77	100.0%	\$6.61	-	\$6.61
01 06 03	Load Compartment Transverse Trim	1	3.208	2.023	1.185		\$11.03	\$6.35	4.68	42.5%	\$3.44	\$3.14	\$3.95
01 07	Power Brake Subsystem	1 C	1.653	0.000	1.653		\$44.92	\$0.00	44.92	100.0%	\$27.18	-	\$27.18
01 07 01	Pedels ((No diff))	1	0.000	0.000	0.000		\$0.00	\$0.00	0.00	-	The second	+	-
01 07 02	Auxiliary Hydraulic Brake Pump	1	1.653	0.000	1.653	8	\$44.92	\$0.00	44.92	100.0%	\$27.18		\$27.18
01 07 03	Hydraulic Booster ((No Diff))	1	0.000	0.000	0.000		\$0.00	\$0.00	0.00			5	
01 08	EV Hybrid Fuel Cell Power Cabling Subsystem	1	7.785	0.000	7.785		\$74.89	\$0.00	74.89	100.0%	\$9.62	-	\$9.62
01 08 01	ION Battery Wire Hamess	1	1.125	0.000	1.125		\$10.51	\$0.00	10.51	100.0%	\$9.34	7 .2	\$9.34
01 08 02	Power Cabling Items	1	0.958	0.000	0.958		\$10.37	\$0.00	10.37	100.0%	\$10.82	7	\$10.82
01 08 03	115V Power Cabling		4.094	0.000	4.094		\$38,18	\$0.00	38.18	100.0%	\$9.33	54	\$9.33
01 08 04	12v Power Cabling	1	1.467	0.000	1.467		\$12.08	\$0.00	12.08	100.0%	\$8.23	-	\$8.23
01 00 05	EV Hybrid Eval Call Subayatam	iot	27.015	0.000	27.04	-	\$270.36	\$0.00	279 36	100.0%	\$0.07	-	\$0.07
01 09 01	Bet Cooling Ean		27.910	0.000	27.91	°	\$218.30	50.00	278.30	100.0%	59.97	-	\$9.97
01 09 02	Bat Cooling Fan		1.725	0.000	1.725		548.64	50.00	48.64	100.0%	\$28.20	-	\$26.20
01 09 03	Battery Course		0.074	0.000	1.383		\$12.15	50.00	12.15	100.0%	50.79	-	\$0.79
01 09 04	Battery Power Dist Box		1.943	0.000	3.2/4		\$140.12	50.00	20.07	100.0%	\$76.75		\$76.75
01 09 06	Battery Modules and Cells		13 591	0.000	13 601		\$39.58	50.00	39.58	100.0%	\$2.91		\$2.91
01 10	EV Hybrid Fuel Cell Communications and Electronics		9.332	0.764	8,568		\$888.46	\$115.59	772.87	87.0%	\$95.20	\$151.29	\$90.20
01 10 01	Controls Box Assy	1	8 398	0.000	8 392		\$753.28	50.00	753.28	100.0%	589.70		\$89.70
01 10 02	Engine Bay Fuse Box & ECU		0.464	0 319	0 146		545.44	\$30.33	15.11	33.3%	\$97.93	\$95.22	\$103.85
01 10 03	Engine Bay ECU	1	0.471	0.446	0.025	8	\$89.74	\$85.26	4.48	5.0%	\$190.74	\$191.38	\$179.28

<u>New Incremental Cost</u> for Mild-Hybrid: \$1,814.37* (with battery costs) *pre-peer reviewed value Battery cells are not included in cost. 32 cells would add approx. \$400 per FEV to the \$1,663.24 cost for a total cost of \$2,063.24 and a new delta cost of \$1,814.37

NRC Committee on LD FE Technologies – July 31, 2014

FEV Motor Scaling

Background

- Professor Jacovides has raised the issue of directly scaling the "hot dog" style motors used in the power-split architecture to the "pancake" style motors used in the P2 architecture due to the significant differences in speed and torque characteristics.
 - Professor Jacovides is concerned that scaling based on power may be inappropriate when changing motor architecture
- Current Motor Scaling Methodology:
 - For NHTSA's 2011 CAFE Rule and the subsequent GHG rules, hybrid motor power was scaled by curb weight based on a typical motor size for a midsize car.
 - 2012~2017 GHG Rule used the motor size from the Fusion and scaled the motor based on curb weight differences between the specific application and the Fusion curb weight.

- At the time of the Ford Fusion study, no examples of production P2 motors were available for a direct cost or scaling study.
 - FEV conducted a paper study to develop costs for P2 motors by scaling the power-split study results.
- EPA recognizes that there have been significant advancements in all motor designs.
 - P2 production vehicles have emerged since the 2010 study.
 - The recommendation for the MTE will be to perform a cost tear down and analysis of these new technologies.
 - Along with a cost study, we will also reevaluate the appropriate means of scaling motors for P2 applications.
NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study

5. Silverado Mass Reduction Study

- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

NRC Committee on LD Fuel Economy Technologies

Light Duty Truck Mass Reduction Study Results

Office of Transportation and Air Quality Office of Air and Radiation U.S. Environmental Protection Agency

Mass Reduction Information Sources in 2017-2025 FRM

- Cost and feasibility estimates were not based on any single study
- Wide range of sources considered

Table 3-128 Mass Reduction Studies Considered for Estimating Mass Reduction Cost for this FRM studies

		Cost Information from Studies									
	Cost Year	Mass Reduction [lb]	Compounding Factor	Mass Reduction with Compounding [lb]	Baseline Vehicle Weight [Ib]	Mass Reductioning w/Compounding [%]	Cost [5]	RPE	Dollar Multiplier to 2009	2009 Direct Manufacturing Cost [\$]	Unit Cost of Mass Reduction [\$/Ib]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Indi	vidual	Cost Da	ta Point	s					
AISI, 1998 (ULSAB)	1998	103	1	103	2977	3.5%	-\$32	1.0	1.28	-\$41	-\$0.40
AISI, 2000 (ULSAC)	2000	6	1	6	2977	0.2%	\$15	1.0	1.24	\$18	\$2.99
Austin et al, 2008 (Sierra Research) - ULS Unibody	2008	320	1	320	3200	10.0%	\$209	1.61	1.01	\$131	\$0.41
Austin et al, 2008 (Sierra Research) - AL Unibody	2008	573	1	573	3200	17.9%	\$1,805	1.61	1.01	\$1,134	\$1.98
Austin et al, 2008 (Sierra Research) - ULS BoF	2008	176	1	176	4500	3.9%	\$171	1.61	1.01	\$107	\$0.61
Austin et al, 2008 (Sierra Research) - AL BoF	2008	298	1	298	4500	6.6%	\$1,411	1.61	1.01	\$887	\$2.98
Bull et al, 2008 (Alum Assoc.) - AL BIW	2008	279	1	279	3378	8.3%	\$455	1.0	1.01	\$460	\$1.65
Bull et al, 2008 (Alum Assoc.) - AL Closure	2008	70	1	70	3378	2.1%	\$151	1.0	1.01	\$153	\$2.17
Bull et al, 2008 (Alum Assoc.) - Whole Vehicle	2008	573	1	573	3378	17.0%	\$122	1.0	1.03	\$126	\$0.22
Cheah et al, 2007 (MIT) - 20%	2007	712	1	712	3560	20.0%	\$646	1.0	1.03	\$667	\$0.94
Das, 2008 (ORNL) - AL Body & Panel	2008	637	1	637	3363	19.0%	\$180	1.5	1.01	\$121	\$0.19
Das, 2008 (ORNL) - FRPMC	2008	536	1.0	536	3363	15.9%	-\$280	1.5	1.01	-\$189	-\$0.35
Das, 2009 (ORNL) - CF Body & Panel, AL Chassis	2009	933	1	933	3363	27.7%	\$1,490	1.5	1.00	\$993	\$1.06
Das, 2010 (ORNL) - CF Body & Panel, Mg Chassis	2010	1173	1	1173	3363	34.9%	\$373	1.5	1.00	\$248	\$0.21
EEA, 2007 - Midsize Car - Adv Steel	2007	236	1	236	3350	7.0%	\$179	1.0	1.03	\$185	\$0.78
EEA, 2007 - Midsize Car - Plast/Comp	2007	254	1	254	3350	7.6%	\$239	1.0	1.03	\$247	\$0.97
EEA, 2007 - Midsize Car – Al	2007	586	1.35	791	3350	23.6%	\$1,388	1.0	1.03	\$1,434	\$1.81
EEA, 2007 - Midsize Car - Mg	2007	712	1.35	961	3350	28.7%	\$1,508	1.0	1.03	\$1,558	\$1.62
EEA, 2007 - Light Truck - Adv Steel	2007	422	1	422	4750	8.9%	\$291	1.0	1.03	\$301	\$0.71
EEA, 2007 - Light Truck - Plast/Comp	2007	456	1	456	4750	9.6%	\$398	1.0	1.03	\$411	\$0.90
EEA, 2007 - Light Truck - Al	2007	873	1.35	1179	4750	24.8%	\$1,830	1.0	1.03	\$1,891	\$1.60
EEA, 2007 - Light Truck - Mg	2007	1026	1.35	1385	4750	29.2%	\$1,976	1.0	1.03	\$2,042	\$1.47
Geck et al, 2008 (Ford)	2008	1310	1	1310	5250	25.0%	\$500	1.0	1.01	\$506	\$0.39
Lotus, 2010 - LD	2010	660	1	660	3740	17.6%	-\$121	1.0	1.00	-\$120	-\$0.18
Lotus, 2010 - HD	2010	1217	1	1217	3740	32.5%	\$362	1.0	1.00	\$360	\$0.30
Montalbo et al, 2008 (GM/MIT) - Closure - HSS	2008	25	1	25	4000	0.6%	\$10	1.0	1.01	\$10	\$0.41
Montalbo et al, 2008 (GM/MIT) - Closure - AL	2008	120	1	120	4000	3.0%	\$110	1.0	1.01	\$111	\$0.92
Montalbo et al, 2008 (GM/MIT) - Closure - Mg/AL	2008	139	1	139	4000	3.5%	\$110	1.0	1.01	\$111	\$0.80
Plotkin et al, 2009 (Argonne)	2009	683	1	683	3250	21.0%	\$1,300	1.0	1.00	\$1,300	\$1.90

	Cost Information from Studies										
Studies	ost Year	Mass Reduction [lb]	Compounding Factor	compounding [lb]	3aseline Vehicle Weight [lb]	Aass Reductioning v/Compounding [%]	tost [\$]	2PE	Jollar Multiplier to 2009	009 Direct Manufacturing Cost \$]	Jnit Cost of Mass Reduction 5/lbl
			Co	st Cur	/es	6 2		<u>u</u>		N	
	0010					1.00					C 14
	2010	2				2.0%		-			S 1.4.
NAS. 2010	2010					5.0%					\$ 1.4
	2010					10.0%					\$ 1.5
	2010					20.0%					\$ 1.8
	2010					8.0%					\$ 6.0
	2010					9.0%					\$ 7.0
OEM1	2010					9.5%					\$ 8.0
	2010					10.0%					\$ 12.0
	2010					11.0%					\$ 25.0
	2010					0.4%					\$
	2010					0.9%					\$ 0.1
	2010					1.9%					\$ 0.2
	2010					2.3%					\$ 0.3
	2010					2.4%					\$ 0.3
05142	2010					3.1%					\$ 0.6
OEW2	2010					3.6%					\$ 0.7
	2010					4.0%					\$ 0.8
	2010					4.1%					\$ 0.8
	2010					4.5%					\$ 0.9
	2010					4.8%					\$ 1.0
	2010					5.0%					\$ 1.1
	2010					4.0%					\$ 0.5
OEM3	2010					7.5%					\$ 1.0
	2010					10.0%					\$ 1.5
	2011					6.9%					\$ 0.9
OEM4	2011					8.1%					\$ 1.0

Overview of whole vehicle studies

WURONNEN TAL PRO

1. Scoping

Low cost paper study to gain experience of exercise and determine next steps (\$600k)

2010: Phase 1 Midsize CUV study (Energy Foundation) (used in LD GHG Phase 2 rulemaking) - peer reviewed

2. Main studies (include indepth Cost and CAE)

Expand approach from scoping study to include additional analyses, indepth cost and safety (\$2M+)

2012: Phase 2 Midsize CUV Low Development (20%MR) for 2017 (EPA) - peer reviewed

2012: Lightweight Sedan (20%MR) (NHTSA) - peer reviewed

2012: Phase 2 Midsize CUV High Development (30%+MR) for 2025 (ARB) - In-depth Cost and CAE on BIW

3. Additional Main Studies - MTE:

Perform whole vehicle studies for additional vehicles / vehicle types(\$3M to \$20.3M)

2012-2014: Light Duty Truck Light Weighting Study (20%MR) (EPA) (currently under Peer Review) 2014-?: Light Duty Truck Light Weighting Study (and apply to other vehicle types) (NHTSA)

77

Light Duty Truck Mass Reduction Study Results

- Study Approach
- Results
- Application of findings to MTE analysis
- Ongoing mass reduction work for MTE

Why a Truck Mass Reduction Study?

UNITED STATES DOUBLY

Trucks are different from Passenger Cars

- Consumer Requirements
 - Towing and hauling capacity
 - Possible rough terrain operation
- Construction
 - Body-on-frame (versus Unibody and "non-towing" trucks)
 - Many configurations (cabin/bed, engine size, etc.)

... May affect Mass Reduction cost and feasibility

- Less secondary mass reduction?
- Feasibility of materials and technologies?

LD Pickup Truck Mass Reduction Study

Overview

Scope of Study

- Based on a 2011 4x4 Silverado 1500 Crew Cab
- Builds off of previous FEV/EDAG/Munro approach used for EPA's midsize CUV study*, but with significant tailoring for a pickup truck.
- Addition of Dynamic and Durability analyses
 - Dynamic analyses done with instrumenting vehicle and running on test track
 - Includes bed and frame durability under loaded conditions

Boundary Conditions

- No degradation in function, performance (including payload and towing capacities), or safety from the baseline vehicle
- Capable of being mass-produced in the 2020-2025 timeframe (defined as 450,000 units per year)
- 10 percent maximum increase in direct manufacturing costs

Report Timing:

- Peer review underway (sent out July 17th, comments due by August 20th)
- Will be publically released in late 2014/early 2015

Major deliverables for LD MTE

Inform the development of cost curves (\$/kg per %MR)

*Venza Phase II, low development (FEV/EDAG) http://www.epa.gov/otaq/climate/documents/420r12026.pdf

Teardown and CAE Baseline Model Development

- Based on 2007 Silverado donor CAE model
- Teardown 2011 Silverado
 - Component disassembly
 - Photographs, and mass, size, process map recorded
 - Bill of materials created
 - Use of white line scanning, as necessary (where geometry differences existed with 2007)
 - Measured body mount bushing properties
 - Measured static stiffness
- Generated 2011 CAE model
 - Cabin: Updated 2007 CAE model to 2011
 Silverado gauges and weld layout
 - Frame: 2011 Silverado

Idea Generation Resources

Idea Generation

- Idea generation founded on Value Engineering methodology (No idea a bad idea, No idea too small or big to consider)
- Experienced team
- Industry partnerships
- Supporting benchmark data (e.g. FEV, Munro, EDAG, A2Mac1)
- Cross industry knowledge sharing
- Light-Weighting project history
- Open consideration to all technology maturity levels

CAE Loadcases

FMVSS 581—Bumper impact Front end deformation

rear impact

FMVSS 261a—Roof crush

Door operability

Fuel tank damage

Roof strength to weight ratio

Results

Mass Reduction by Vehicle System

Cabin Highlights

Preliminary results (under peer review)

Original Mass 207.2 Kg

Mass Savings **75.4 Kg** 3.2% Vehicle reduction

Steel to Aluminum

Baseline

Frame Highlights

Preliminary results (under peer review)

HELA 420 MPa HELA 420 MPa

Optimized

Use of higher strength steel (+ some Aluminum)

Original Mass 252.3 Kg

Mass Savings 23.7 Kg 1.0% Vehicle reduction

Body System Group – A- Mass Reduction

Preliminary results (under peer review)

_				Net value of Mass Reduction							
System	Subsystem	Sub-Subsystem	Description	Base Mass "kg"	Mass Reduction "kg" ₍₁₎	Cost Impact NIDMC "\$" ₍₂₎	Average Cost/ Kilogram "\$/kg" ₍₂₎	Mass Reduction "%"	Vehicle Mass Reduction "%"		
03	00	00	Body System Group -A-	567.40	206.40	-1195.70	-5.79	36.38%	8.65%		
03	01	00	Body Structure Subsystem	207.20	75.40	-506.61	-6.72	36.39%	3.16%		
03	01	01	Cabin	207.20	75.40	-506.61	-6.72	36.4%	3.16%		
03	02	00	Front End Subsystem	31.00	11.60	-62.92	-5.42	37.42%	0.49%		
03	02	01	Radiator Asm	12.90	5.70	-10.36	-1.82	44.2%	0.24%		
03	02	02	Radiator Support	12.10	5.90	-52.56	-8.91	48.8%	0.25%		
03	02	12	Tow Hooks	2.25	0.00	0.00	0.00	0.0%	0.00%		
03	02	13	Hood Hinges	3.75	0.00	0.00	0.00	0.0%	0.00%		
03	03	00	Body Closure Subsystem	153.70	60.00	-288.90	-4.82	39.04%	2.51%		
03	03	01	Panel Fender Outer LH	14.90	7.50	-19.34	-2.58	50.3%	0.31%		
03	03	01	Panel Fender Outer RH	14.00	7.00	-18.21	-2.60	50.0%	0.29%		
03	03	02	Hood	22.70	11.00	-35.19	-3.20	48.5%	0.46%		
03	03	03	Door Asm, Front LH	29.00	10.20	-58.99	-5.78	35.2%	0.43%		
03	03	03	Door Asm, Front RH	28.90	10.10	-58.73	-5.81	34.9%	0.42%		
03	03	04	Door Asm, Rear LH	22.00	7.00	-49.31	-7.04	31.8%	0.29%		
03	03	04	Door Asm, Rear RH	22.20	7.20	-49.14	-6.83	32.4%	0.30%		
03	19	00	Bumpers Subsystem	48.40	16.40	-69.71	-4.25	33.88%	0.69%		
03	19	01	Bumper Front	28.50	9.90	-23.68	-2.39	34.7%	0.41%		
03	19	02	Bumper Rear	19.90	6.50	-46.03	-7.08	32.7%	0.27%		
03	26	00	Cargo Box Subsystem	127.10	43.00	-267.56	-6.22	33.83%	1.80%		
03	26	01	Cargo Box	108.30	34.40	-241.46	-7.02	31.8%	1.44%		
03	26	02	Tailgate	18.80	8.60	-26.10	-3.03	45.7%	0.36%		
07	00	00	Frame & Mounting System	267.64	23.70	-54.42	-2.30	8.86%	0.99%		
07	01	00	Frame Subsystem	252.27	23.70	-54.42	-2.30	9.39%	0.99%		
07	01	01	Front Cross Member	4.90	1.60	-3.67	-2.30	32.7%	0.07%		
07	01	01	Trans Cross Member	4.90	1.60	-3.67	-2.30	32.7%	0.07%		
07	01	01	Other Components	232.20	20.50	-47.07	-2.30	8.8%	0.86%		
07	01	03	Body Isolators	10.27	0.00	0.00	0.00	0.0%	0.00%		
07	03	00	Engine Transmission Mounting Subsystem	2.14	0.00	0.00	0.00	0.00%	0.00%		
07	03	02	Transmission Mount	2.14	0.00	0.00	0.00	0.0%	0.00%		
07	04	00	Towing and Coupling Attachments Subsystem	13.23	0.00	0.00	0.00	0.00%	0.00%		
07	04	01	Towing Provisions	13.23	0.00	0.00	0.00	0.0%	0.00%		
				835.04	230.10	-1,250.12	-5.43	27.56%	9.64%		
					(Decrease)	(Increase)	(Increase)				

(1) "+" = mass decrease, "-" = mass increase

(2) "+" = cost decrease, "-" = cost increase

Response to NAS Question #5a: Material supply

5) The major studies on mass reductions, such as the Venza and Accord studies, are paper studies. How do you respond to the following concerns expressed by manufacturers that increase costs:
a) Inadequate supply chains for new materials and processing resulting in high risk for shortages and price increases (aluminum supply chain is already a bottleneck today and some studies specify unique and sometimes unavailable material gauge/grades that limit "optimization".)

EPA Response

- Advanced planning by aluminum suppliers and OEM's are resulting in sufficient supply of wrought aluminum through 2025
 - Wrought Aluminum is increasing in volume from current supply demand of 300M lbs to 4B lbs (North American)
 - Additional roll finishing lines are being added as OEM's demand
 - Lead time for adding finishing lines is 2 years. (based on launch of F150)
 - New companies are entering the marketplace
 - Facilities converting from rolling sheet for cans to automotive
 - China wants to provide more can stock (currently 30%)
 - 25%-30% of 2025 demand expected to be up and running by end of 2014
- Light Duty Truck study accounted for availability of material gauge/grades
 - Aluminum is manufactured to order and can come in tenth of a mm increments.
 - Steel gauge limited to commonly available thicknesses (HSS in frame)

Information resources:

- Ducker Worldwide "Executive Summary to the 2015 North American Light Vehicle Aluminum Content Study" - <u>http://www.aluminum.org/resources/industry-statistics</u>

Response to NAS Question #5b: Platform sharing

5. The major studies on mass reductions, such as the Venza and Accord studies, are paper studies. How do you respond to the following concerns expressed by manufacturers that increase costs:
b) Global platforms and sharing of components inhibiting model optimization (over 50% of vehicles are produced on global platforms)

EPA Response

- Range of performance requirements for global platforms continues to narrow
 - Convergence in consumer demand for major vehicle markets
 - Convergence in international safety and emissions requirements
- Shift in design approach by OEMs
 - In the past, a platform would be designed to meet the requirements of the worst load case
 - Today, platforms are designed to meet the requirements of highest volume vehicles, and add material or reinforce structures as necessary for high load variations
 - Examples: Bolt-on reinforcements in 2015 Ford Mustang Convertible,

Bolt-on and weld-in reinforcements in 2014 Chevrolet Spark EV

Engine System Highlights

-1.1 kg

Preliminary results (under peer review)

Original Mass 283.7 Kg **Mass Savings** 37.3 Kg 2009 Vortec 5.3L V-8 (LC9) 1.6% Vehicle reduction CEVINI BOND **Connecting Rods Cylinder Liner** from cast to forged from cast iron to plasma coated

-2.4 kg

Integrated Exhaust Manifolds -5.6 kg

Transmission System Highlights

Preliminary results (under peer review)

Original Mass 145.3 Kg

Mass Savings **34.2 Kg** 1.7% Vehicle reduction

Changing Case Material from AL to Mg -10.7 kg

Internal Clutch and Brake Hubs material to C61 and MMC -2.4 kg

Aluminum Torque Convertor -8.6 kg

Seating System Highlights

Preliminary results (under peer review)

Original Mass 247 Kg

Mass Savings **34 Kg** 1.3% Vehicle reduction

> Changing Seat Frame from Steel Welded to Laminate -5.8 kg

Rear Seat 60/40 from Steel Welded to Die cast Mg -8.4 kg Cross Car Beam from Steel Welded to Die Cast Mg -5.5 kg

Suspension System Highlights

Preliminary results (under peer review)

Original Mass 301.2 Kg

Mass Savings **112.7 Kg** 4.7% Vehicle reduction

Changing Steering Knuckles from steel to AL -**7.9 kg**

Composite Leaf Springs -31.4 kg Changing Lower Control Arm from cast iron to AL -**7.7 kg**

Brake System Highlights

Preliminary results (under peer review)

Original Mass 101 Kg

Mass Savings 49.5 Kg 2.1% Vehicle reduction

Changing Front Rotor 1 piece iron to 2 piece steel + AL, adding cross drilling, etc -12.4 kg

Changing Rear Drum from cast iron to AL, adding cooling fins and cross drilling -14.2 kg Caliper Housing from cast iron to cast Mg -6.4 kg

bremb

Material Makeup

95

Full vehicle cost curve

%	Vehicle	Mass	Reduction	(VMR)	Ì
---	---------	------	-----------	-------	---

Trandling Description	Cost/Kilogram Mass-Reduction	% Vehicle Mass		
	Formula	Reduction Zone		
Without Mass Compounding/Cosondary Mass Sovings	\$/kg = 258.7*(VMR) - 10.629	0% < VMR ≤ 2.9%		
Without Mass Compounding/Secondary Mass Savings	\$/kg = 55.585*(VMR) - 4.807	2.9% < VMR ≤ 14.3%		
With Mass Compounding/Cocondany Mass Sovings	\$/kg = 242.4*(VMR) - 10.629	0% < VMR ≤ 2.9%		
with mass compounding/secondary mass savings	\$/kg = 39.359*(VMR) - 4.8168	2.9% < VMR ≤ 23.3%		

Primary Vehicle Solution CAE Simulation Results Overview

- This spider plot illustrates the relative CAE simulation performance of
 - Baseline (dashed)
 - Target (blue)
 - Primary solution "MDO optimized" (green)
- Results within acceptable tolerance of baseline , and exceed baseline performance for many load cases

Primary Vehicle Solution Cost and Mass Result Details

Preliminary results (under peer review)

- Net incremental direct manufacturing costs (NIDMC) + OEM tooling
- Primary solution: 527kg (22.1%) Mass Reduction at \$3.88/kg increase (+\$2045)

	Mass Reduction Impact by Vehicle System								m		
			(Includes Secondary Mass Savings)								
Item	System ID	Description	Base Mass "kg"	Mass Reduction "kg" ₍₁₎	Cost Impact NIDMC "\$" ₍₂₎	Cost/ Kilogram NIDMC "\$/kg" ₍₂₎	Cost/ Kilogram NIDMC + Tooling "\$/kg" ₍₂₎	System Mass Reduction "%"	Vehicle Mass Reduction "%"		
150	0 Se	ries Chevrolet Silverado Pick-Up Truck									
1	01	Engine System	238.7	37.3	-57.73	-1.55	-1.29	15.6%	1.6%		
2	02	Transmission System	145.3	39.4	-96.57	-2.45	-2.47	27.1%	1.6%		
3	03A	Body System Group -A- (Body Sheetmetal)	574.7	207.1	-1194.79	-5.77	-5.77	36.0%	8.7%		
4	03B	Body System Group -B- (Body Interior)	247.0	34.0	-127.23	-3.74	-3.78	13.8%	1.4%		
5	03C	Body System Group -C- (Body Exterior Trim)	40.5	2.1	2.73	1.28	1.28	5.3%	0.1%		
6	03D	Body System Group -D- (Glazing & Body Mechatronics)	50.9	4.5	2.30	0.51	0.51	8.9%	0.2%		
7	04	Suspension System	301.2	112.7	-26.01	-0.23	-0.24	37.4%	4.7%		
8	05	Driveline System	183.8	20.4	38.01	1.86	1.89	11.1%	0.9%		
9	06	Brake System	101.0	49.5	-140.06	-2.83	-2.93	49.0%	2.1%		
10	07	Frame and Mounting System	267.6	23.7	-54.42	-2.30	-2.30	8.9%	1.0%		
11	09	Exhaust System	38.4	6.9	-13.69	-1.97	-1.97	18.1%	0.3%		
12	10	Fuel System	26.3	7.3	11.92	1.62	1.77	27.9%	0.3%		
13	11	Steering System	32.5	8.5	-147.46	-17.44	-17.45	26.0%	0.4%		
14	12	Climate Control System	20.3	1.9	14.71	7.59	7.59	9.5%	0.1%		
15	13	Information, Gage and Warning Device System	1.6	0.2	0.66	2.66	2.97	15.7%	0.0%		
16	14	Electrical Power Supply System	21.1	12.8	-172.73	-13.49	-13.44	60.6%	0.5%		
17	15	In-Vehicle Entertainment System	2.2	0.0	0.00	0.00	0.00	0.0%	0.0%		
18	17	Lighting System	9.6	0.4	-2.00	-5.18	-5.18	4.0%	0.0%		
19	18	Electrical Distribution and Electronic Control System	33.6	8.5	61.44	7.26	7.27	25.2%	0.4%		
20	00	Fluids and Miscellaneous Coating Materials	49.6	0.0	0.00	0.00	0.00	0.0%	0.0%		
		a. Analysis Totals Without NVH Counter Measures \rightarrow	2386.0	577.3	-1900.90	-3.29	-3.28	n/a	24.2%		
		b. Vehicle NVH Counter Measures (Mass & Cost) $ ightarrow$	0.0	-50.0	-150.00	n/a	n/a	n/a	n/a		
		c. Analysis Totals With NVH Counter Measures \rightarrow	2386.0	527.3	-2050.90	-3.89	-3.88	n/a	22.1%		
				(Decrease)	(Increase)	(Increase)	(Increase)				

(1) Negative value (i.e., -X.XX) represents an increase in mass

(2) Negative value (i.e., -\$X.XX) represents an increase in cost

Response to NAS Question #5d: Performance trade-offs / late changes

- 5. The major studies on mass reductions, such as the Venza and Accord studies, are paper studies. How do you respond to the following concerns expressed by manufacturers that increase costs:
 - d) Performance tradeoffs during real world vehicle development and testing, mass always increases to correct performance degradation issues (vibration, crashworthiness, ride/handling, etc.).

EPA Response

- Countermeasures applied at late stages in development process are often suboptimal for cost and performance (not only mass)
- Pull-ahead of production tooling much earlier in the development process
 - Increased incentive for reducing last minute changes
 - Last minute structural modifications less common than in the past
- Simulation tools are now highly advanced
 - Particularly for body structure and crash simulation
 - Becoming more so for dynamic and nvh simulation
- Silverado study includes additional NVH "buffer"
 - Recognizes limitations of NVH simulation, especially without detailed interior model
 - Added mass and cost for unspecified NVH countermeasures (insulation, etc.)

Application of Findings to MTE Analysis

Applications of Findings to MTE analysis

- OMEGA model estimates mass reduction cost based on % reduction in curb weight
- Now have an additional point of reference for mass reduction cost
- Silverado cost curve reflects unique characteristics of body-on-frame vehicles
- EPA is now evaluating whether to apply a separate cost curve for body-on-frame vehicles

Monitoring Trends in Mass Reduction:

Near term

- Observe OEM trends
 - During the time of this study (2012-2014):
 - Ford announced its aluminum F150
 - A number of Body on Frame SUV's redesigned to unibody
 - Incorporation of light weight materials
 - Vehicle curb weights
- Consider safety features that may add weight
 - IIHS narrow offset test
 - Backup camera, etc.

Longer term

- Developments in material supply and capacity (e.g. aluminum, magnesium)
- Sources for information:
 - Press releases, conferences, stakeholder meetings
 - MY 2018 Silverado 1500 adopting aluminum (?)
 - Contract with new information collection services..
 - A2Mac1
 - Ducker Worldwide
 - DOE funded work and developments

102

Response to NAS Question #5c: Phase-in of lightweight materials

- 5) The major studies on mass reductions, such as the Venza and Accord studies, are paper studies. How do you respond to the following concerns expressed by manufacturers that increase costs:
 - c) Non-standard product and process changes to existing vehicle platforms needed to accommodate new, non-traditional materials require an incremental approach for implementation over at least two new vehicle design cycles (approximately 8 years or longer).

EPA Response

- Incremental approach is already well-underway
 - Market penetration of aluminum hoods now at nearly 50%
 - Nearly every OEM has experience with one or more generations of vehicles with aluminum closures
- Recent examples of lightweight materials in body structures have occurred in one generation
 - Aluminum: 2015 Ford F-150, 2013 Land Rover Range Rover
 - Structural composites: 2014 BMW i3
- Examples of true multi-material body structures likely influenced by performance and cost considerations, and not simply lack of capacity or capability to produce all-aluminum vehicle
 - 2015 Mercedes C-Class
- EPA is reevaluating phase-in cap values to account for limitations in the rate of mass reduction adoption in light of the information that is being gathered for the mid-term evaluation

Ongoing and future whole vehicle studies

1. Scoping

Low cost paper study to gain experience of exercise and determine next steps (\$600k)

2010: Phase 1 Midsize CUV study (Energy Foundation) (used in LD GHG Phase 2 rulemaking) - peer reviewed

2. Main studies (include indepth Cost and CAE)

Expand approach from scoping study to include additional analyses, indepth cost and safety (\$2M+)

2012: Phase 2 Midsize CUV Low Development (20%MR) for 2017 (EPA) – peer reviewed

2012: Lightweight Sedan (20%MR) (NHTSA) - peer reviewed

2012: Phase 2 Midsize CUV High Development (30%+MR) for 2025 (ARB) - In-depth Cost and CAE on BIW

3. Follow-up Sub-Studies: BIW/Closures

Perform in-depth analyses on specific systems

2012: NHTSA: Investigation of Opportunities for Lightweight Vehicles Using Advanced Plastics and Composites (Light Duty Truck)2013: Aluminum Association - Phase 2 Low Development BIW in aluminum (FEV/EDAG BIW design)

4. Additional Main Studies

Perform whole vehicle studies for additional vehicles / vehicle types(\$3M to \$20.3M)

2012-2014: Light Duty Truck Light Weighting Study (20%MR) (EPA) (currently under Peer Review)

2014-?: Light Duty Truck Light Weighting Study (and apply to other vehicle types) (NHTSA) 2015: Multi-Material Lightweight Vehicles project – Mach 1 (25%MR) and Mach 2 (50%MR) -(DOE)

5. Main study Report Updates

Receive feedback and update studies (\$500k+)

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study

6. ICM Study

- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies

Cost analysis markups & indirect costs in MYs 2016-2025

- Background on Indirect Cost Markups
 - ICMs in our rules
- Indirect costs in MYs 2016 thru 2025
 - "Effective markups" (i.e., total/direct costs)
- Questions

• Retail price equivalents (RPE) vs Indirect cost multipliers (ICM)

- RPE is an estimate all indirect costs
 - All direct mfg costs face the same markup, which is an average over everything the company does
- ICM seeks to estimate *only* the indirect costs impacted by a new rule
 - Perhaps not all indirect costs change (e.g., pensions for retired employees)
 - Perhaps some indirect costs are higher than normal during initial implementation (e.g., R&D)

• ICMs in our rules – general thesis

- Indirect Cost Multipliers (ICMs) focus only on those elements that change with regulatory requirements
- ICMs present the more appropriate measure of government imposed costs

RPE vs ICM – calculation approach

- Both approaches consist of a factor applied to direct mfg costs (DMC)
 - RPE, traditionally, has been a straight multiplier
 - Indirect costs (IC) decrease as DMC decreases with learning
 - Indirect costs scale directly with DMC year-over-year
 - ICM, recently, has been more complex in application
 - Non-warranty ICs stay constant year-over-year
 - Warranty ICs decrease as DMC decreases with learning
 - Indirect costs do not scale directly with DMC year-over-year
- The ICM approach provides for different markups for different technologies
 - The agencies have used complexity level determinations for different technologies resulting in different markups
 - RPE would apply the same markup to a basic tech (passive aero) as applied to a complex tech (hybridization)

- Developed by RTI under contract to EPA, EPA-420-R-09-003
 - Peer review report published June 2009, EPA-420-R-09-004
 - Work then published in the International Journal of Production Economics (2009), doi:10.1016/j.ijpe.2009.11.031.
- ICM application in EPA rules
 - First used in the MYs 2012-2016 rule (LD Phase 1)
 - 2010 Technical Assessment Report
 - HD GHG Phase 1
 - MYs 2017-2025 rule (LD Phase 2)
 - LD Highway Tier 3 rule
 - We plan to use in the HD GHG Phase 2 rule

110

So, what is the breakdown of projected GHG-imposed direct & indirect costs over time?

- OMEGA is well suited to determine the answer
 - We know what packages have been applied to what platforms and at what penetration rates.
 - We know the total cost (DMC+IC) basis of those packages in the ref & control cases.
 - We can "easily" determine the direct cost basis of those packages in the ref & control cases.
 - The delta represents the indirect cost basis.
- NOTE: This approach determines the cost of ONLY those technologies actually added to vehicles in our joint baseline fleet.

111

What are the total costs (TC) for both phases of GHG standards in the 2016-2025 timeframe? *

* OMEGA runs exclude A/C costs and use updated trans DMC values among other model updates; however, the results are virtually identical to those from the FRM.

What are the Direct Mfg Costs (DMC) for both phases of GHG stds in the 2016-2025 timeframe? *

* OMEGA runs exclude A/C costs and use updated trans DMC values among other model updates; however, the results are virtually identical to those from the FRM.

Breakdown of projected costs for the GHG stds*

Rule	Cost	MY2016	MY2021	MY2025
Phase1	DMC	\$8.7	\$7.2	\$7.1
Phase1	ТС	\$14.5	\$11.9	\$11.7
Phase1	IC (TC-DMC)	\$5.8	\$4.6	\$4.6
Phase1	TC/DMC	1.67	1.64	1.66
Phase2	DMC	\$0.0	\$8.2	\$22.8
Phase2	ТС	\$0.0	\$11.6	\$31.5
Phase2	IC (TC-DMC)	\$0.0	\$3.4	\$8.8
Phase2	TC/DMC		1.42	1.38
Phase1+2	DMC	\$8.7	\$15.4	\$29.9
Phase1+2	ТС	\$14.5	\$23.5	\$43.2
Phase1+2	IC (TC-DMC)	\$5.8	\$8.1	\$13.4
Phase1+2	TC/DMC	1.67	1.52	1.45

Dollar values in \$billions

* OMEGA runs exclude A/C costs and use updated trans DMC values among other model updates; however, the results are virtually identical to those from the FRM.

- The "effective markups" (TC/DMC) shown are higher than the ICMs would suggest – How?
 - Remember that we always calculate indirect costs using the absolute value of the direct cost
 - Many low complexity techs are already on vehicles in the baseline so do not impact the "effective markup"
- The "effective markup" decreases over time...but RPE doesn't
 - GHG efforts in early years presumably have a higher relative contribution to indirect costs than they do in later years as R&D, etc., resources are moved off GHG and back to other programs
 - Note the high effective markup in earlier years (i.e., >1.5x, or > than the traditional RPE)

Phases 1&2 GHG costs (\$billions)*

Year	DMC	IC	тс	TC/DMC
2016	\$8.7	\$5.8	\$14.5	1.67
2017	\$10.0	\$6.3	\$16.3	1.63
2018	\$11.4	\$6.7	\$18.1	1.59
2019	\$12.7	\$7.2	\$19.9	1.57
2020	\$14.0	\$7.6	\$21.7	1.54
2021	\$15.4	\$8.1	\$23.5	1.52
2022	\$19.0	\$9.4	\$28.4	1.49
2023	\$22.6	\$10.7	\$33.4	1.47
2024	\$26.2	\$12.1	\$38.3	1.46
2025	\$29.9	\$13.4	\$43.2	1.45
Total	\$169.9	\$87.3	\$257.2	1.51

* using results shown on previous slides with interpolations for 2017-2020 & 2022-2024.

10 year markup = 1.51!

- 1.b. For turbocharged, downsized engines, information provided to the committee and our review of the regulatory documents by the agencies indicate there may be a need to account for upgraded turbochargers (e.g. twin scroll, higher exhaust temperature capability) and modifications to preserve driveability (NVH, driveline ratios). (See also Q.2 and Q. 3b for other cost questions relevant to TBDS.) Does EPA have any comments on such cost revisions that are detailed in Attachment 2.
 - <u>EPA response:</u> In the 2017-2025 FRM, we applied scaling factors of 150% and 250% to our 18-bar BMEP turbo costs in estimating costs for 24 & 27-bar BMEP turbocharging. These scaling factors were meant to cover variable geometry turbochargers among other required changes. We intend to do additional cost analysis, either paper study or teardown, of newly available turbo/downsized engines which would allow us to update our current cost estimates.

- 2. By estimating Direct Manufacturing Costs as 20% (0.2) or 15% (0.15) of service part prices, one frequently obtains estimates for components that are greater than the agencies' estimates. (Please see TBDS example, Attached 2.) What methods did the agencies use to estimate costs when teardown results were not available, and why are the results lower than estimates derived from the prices of service parts?
 - <u>EPA Response:</u> The agencies have generally relied on cost estimates presented in other studies when teardown results have not been available. Such studies include prior NAS reports (2002, 2006 (tires), 2010, etc.), the NESCCAF report of 2007 (costs done by Martec), and averaging of individual CBI values provided by industry. We tend not to focus much on service part prices as variability in markups is extremely broad, and we know of no study upon which a markup/markdown factor could be based. With a solid source for such a factor, we would consider using service part prices given the ease of obtaining them.

UNITED STATES

118

3.a. The committee would like a detailed explanation of your analysis showing that the average effect of Indirect Cost Multipliers, as used in the final rule, averages to a markup from Direct Manufacturing Cost to Retail Price Equivalent of 1.5.

• EPA response: See separate presentation slides.

- 3.b. Based on the attached example (Attachment 2), an ICM of 1.39 may be too low for medium complexity SI engine technologies. The example in the attachment shows that a reasonable estimate of product development costs for ICP in an I4 engine would be 18%, rather than the 5% used in the agencies' analysis. This change would increase the ICM for ICP on an I4 to 1.52. A similar analysis for a V6 produces an ICM of 1.46. This indicates an ICM of about 1.50 may be more appropriate than an ICM of 1.39. Do you see problems with this revised estimate or reasons that such a revision would not be appropriate for other SI engine technologies?
- <u>EPA Response:</u> The markups we use (ICMs) have, as their basis, the average industry-wide retail price equivalent (RPE) markup which was derived by looking at the direct and indirect costs contained in financial reports to the Securities and Exchange Commission.
- We do not believe that the revised estimate methodology is appropriate. The approach suggested by the question makes many assumptions which may or may not be accurate for estimating the <u>incremental cost</u> associated with ICP. (ie: annual volume, incremental number of engineers, incremental number of development vehicles, etc...)

<u>EPA Response:</u> As noted in the final joint TSD (at page 3-105), "The agencies estimate the DMC of the high efficiency gearbox at \$200 (2009\$). We have based this on the DMC for engine friction reduction in a V8 engine which, as presented in Table 3-24 is \$197 (2010\$). In the proposal, we rounded this value up to \$200 (2009\$) which becomes \$202 (2010\$) for the final analysis."

NAS/NRC Committee visit to NVFEL

July 31, 2014 11:00 AM - 5:00 PM

- 1. Introductions
- 2. NCAT* Benchmarking Activities
 - a) ALPHA and Vehicle Validation (GM Malibu w/ 2.5 liter EcoTec)
 - b) Shifting Study (6-spd Malibu & 8-spd Chrysler 300)
 - c) Engine Mapping (US Ford Escape w/1.6 liter EcoBoost)
 - d) Study of future engines
- 3. Lumped Parameter Model Application
- 4. Mild Hybrid Tear-down Study
- 5. Silverado Mass Reduction Study
- 6. ICM Study
- 7. Other NAS specific topics not covered above (as required)
- 8. Wrap-up
- 9. NCAT Lab Review

*NCAT –National Center for Advanced Technologies