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Issue: Black carbon in sno

Why does BC in show matter?

BC in snow lowers snow albedo (reflectivity) so more sunlight is
absorbed by the snowpack - snowpack warms - snow grain size
increases - albedo lowered further - snow warms further - melts
sooner - concentrations of BC in surface snow increase further -

more albedo reduction - accelerated snow melt

Net effects:

« forcing (direct albedo reduction) & feedbacks (see above)
lower surface albedo - warms climate

e earlier snowmelt = impacts for agriculture, runoff timing
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Focus has mostly been on BC in snow in the Arctic, BUT:
The highest concentrations of BC in snow are at lower latitudes

The open plains regions of the northern mid-latitudes are where the
snowpack is not masked by vegetation

Warming due to BC in snow at lower latitudes may contribute
significantly to Arctic warming (increased heat advection into Arctic)




Motivation

Regional model study of
Western U.S. (Qian et al.,
2009):

e decreases in snow
accumulation rate

increased runoff in
February; decreased
runoff March onward

affects on mountain
snowpack & snowpack in
agricultural regions a) BC-Snow Mixing Ratio
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Activities

Measure BC and other insoluble light-absorbing particles in s
across the U.S. Great Plains

Process samples from:

- N. China survey (w/ colleagues from Lanzhou Univ.)
- north-central Utah (w/ colleagues from PNNL)
- Dye-2 Greenland: study effects of melt on surface BC

Determine sources of light-absorbing particles in snow
- U.S. Great Plains & China data sets

Test method of measuring BC vs. other light-absorbing particles
- against another method of measuring BC (SP2)
- by serial extraction of organics & iron analysis

Study processes driving variations in surface snow mixing ratios

Measurement/model comparisons
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N. American survey 2013 : 6
+ 3 process study sites in 2014
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MODIS Snow Cover (%
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~95% capture efficiency

0.4pm pore size
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re-freeze snow water for

melt/filter every ~3 days
chemical analysis
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ISSW analysis of filters
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ISSW analysis of filters

—— All Constituents
Assume: —— estimated BC
A..=1.1for BC

A, site-specific for non-BC

Partition absorption to get
estimated BC via
calibration curves
(absorption - mass)
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ISSW analysis of filters
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ISSW analysis of filters

absorption of sunlight by
non-BC constituents
(organic carbon,
soil, mineral dust)
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Derived Parameters:

est

BC (ng/g) = estimated BC concentration

L
(ng/g) = amount of BC needed to account for all light

absorption 300-750nm (solar spectrum weighted)

(%) = fraction of 300-750nm solar absorption
due to non-BC components

[450:600nm] effectively the color
(A= 1Dblack 2-4 brown >~6 reddish)

abs™




Surface-most snow samples :
BC mixing ratio




Surface-most snow samples :
Absorption Angstrom expone




Surface-most snow : non-BC light-absorbing

expressed as an equivalent BC mixing ratio

equiv est
C BC 1:nonBC




Sample snow Depth (cm)5
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Vertical variability in
the mixing ratio of BC in snow
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Surface-most snow samples

surface snow BC 200
mixing ratios: - BC 150
important for (ng/qg) 100

radiative forcing,
albedo reduction




Snow column average : BC mixing ratio

snowpack average

BC mixing ratio *:
important for
constraining

seasonal deposition
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PMF* Source “fingerprints”  ract
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PMF Analysis : Factor contributions to
650-700nm absorption - Surface snow samp
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PMF Analysis : Factor contributions to

650-700nm absorption - sub-surface snow
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Re: the relative roles of
soil vs. BC in US Great Plains
snow albedo

e Great Plains soil contribution is higher in sub-surface
samples - likely because this corresponds to when
snowpack was shallower, so more exposed soil

Snow cover in 2013 was not anomalous - but there are
years with more extensive & persistent snow cover. In
these years, the relative role of BC (vs. soil) in lowering
snow albedo will likely be higher

i.e., BC likely only dominates snow albedo reduction in
years with higher snowpack - when retention of the
snow is less critical for water resources




Why so much soil in S¢™ Great Plains ¢

e Almost the entire area is

(‘%Hﬁﬁwil = disturbed soil

o It’s windy (!!!) in the winter
* Snow is often thin / patchy

* Snow cover is intermittent,
especially to the S and W

—> Dirt mixes in with snow as it’s
falling, right near the surface.
Regional/global models will not
capture this.




Why so much soil in S¢™ Great Plains ¢

e Almost the entire area is

(‘?Hﬁﬁuﬁl = disturbed soil

o It’s windy (!!!) in the winter
* Snow is often thin / patchy
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—> Dirt mixes in with snow as it’s
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Farming practices may affect the color of
snow at least as much as BC emissions in
much of the southern Great Plains

field tilled in the fall




Increased soil disturbance  Bgkken Oil

o clearing for oil platforms
 much more driving on

dirt / farm roads
« areas cleared for housing

Increased BC emissions

o diesel trucks

« oil flaring (significant?)

* wood stoves in temporary housing?

T




N. China survey 2010 : 46 site

Lanzhou Univ. & Univ. of Washington collaboration (Wang et al.,
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Figure: Cheng, D.et al.,

J. Geophys. Res., (in
preparation).

N. China data:

Wang et al., 2013

Arctic data:

Doherty et al., 2010

N. Amer. data:

Doherty et al., 2014 & 2014




2014 process study: 3 Idaho mountain valley sites

: A
equiv d | -
Cac (- i
| | . . -
! o
> - Y ¢ | o
f:: : * ° + o

AR
I !
1L
E 8 B

Day of year Day of year Day of year




Overall findings

e Dust & soil play a very strong role (sometimes dominat

incidences of high snow particulate light absorption at:
US Great Plains sites
2 ldaho mountain valley sites
SE of Vernal, Utah
central China sites

—> for the US GP & Idaho sites probably locally transported
soil, so will not be captured by regional/global models

- radiative forcing by BC in snow will be over-estimated if
these non-BC components are not accounted for

® Post-wet-depositional processes are important!
= Most of the variability in snow particulate light absorption
is driven by what’s happening between new snowfall events

- dry deposition, sublimation, melting




Overall findings

e Melt amplification:
= generally confined to the top few cm of the snow
= increases concentrations of BC/absorbing particles

= Scavenging fractions with melt-water: 10-30%

¢ |daho & Utah: dry deposition and in-snow processes increase
the mixing ratio of :

= BC by up to an order of magnitude
= all light-absorbing particulates by up to 2 orders of magnitude

e Spatial variability at a range of scales is considerably smaller
than the temporal variations at a given site

= implications for the representativeness of field samples used in
observation/model comparisons.




Zhang et al., 2015, ACP Qian et al., 2014, Env. Res. Lett. Data
model source study using study of BC-in-snow radiative forcing

tagged emissions — are being
. used to

test/adjust
models
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