Black carbon & other lightabsorbing particles in snow in Central North America & N. China

Sarah Doherty JISAO, Univ. of Washington Seattle, WA USA

Stephen Warren, Dean Hegg & Cheng Dang Dept. of Atmos. Science, Univ. of Washington, Seattle, WA USA

Issue: Black carbon in snow

Why does BC in snow matter?

BC in snow lowers snow albedo (reflectivity) so more sunlight is absorbed by the snowpack → snowpack warms → snow grain size increases → albedo lowered further → snow warms further → melts sooner → concentrations of BC in surface snow increase further → more albedo reduction → accelerated snow melt

Net effects:

- forcing (direct albedo reduction) & feedbacks (see above) lower surface albedo → warms climate
- earlier snowmelt → impacts for agriculture, runoff timing

- Focus has mostly been on BC in snow in the Arctic, BUT:
- The highest concentrations of BC in snow are at lower latitudes
- The open plains regions of the northern mid-latitudes are where the snowpack is not masked by vegetation
- Warming due to BC in snow at lower latitudes may contribute significantly to Arctic warming (increased heat advection into Arctic)

Motivation

Qian et al., 2009

Regional model study of Western U.S. (Qian et al., 2009):

- decreases in snow accumulation rate
- increased runoff in February; decreased runoff March onward
- affects on mountain snowpack & snowpack in agricultural regions

Activities

- Measure BC and other insoluble light-absorbing particles in snow across the U.S. Great Plains
- Process samples from:
 - N. China survey (w/ colleagues from Lanzhou Univ.)
 - north-central Utah (w/ colleagues from PNNL)
 - Dye-2 Greenland: study effects of melt on surface BC
- Determine sources of light-absorbing particles in snow
 - U.S. Great Plains & China data sets
- Test method of measuring BC vs. other light-absorbing particles
 - against another method of measuring BC (SP2)
 - by serial extraction of organics & iron analysis
- Study processes driving variations in surface snow mixing ratios
- Measurement/model comparisons

Activities

- Measure BC and other insoluble light-absorbing particles in snow across the U.S. Great Plains
- Process samples from:
 - N. China survey (w/ colleagues from Lanzhou Univ.)
 - north-central Utah (w/ colleagues from PNNL)
 - Dye-2 Greenland: study effects of melt on surface BC
- Determine sources of light-absorbing particles in snow
 - U.S. Great Plains & China data sets
- Test method of measuring BC vs. other light-absorbing particles
 - against another method of measuring BC (SP2)
 - by serial extraction of organics & iron analysis
- Study processes driving variations in surface snow mixing ratios
- Measurement/model comparisons

N. American survey 2013: 67 sites

+ 3 process study sites in 2014

2013

Site 1: 10 Jan

Sites 2-67: 28 Jan – 21 Mar

>500 snow samples

2014

Sites 68-70: 27 Jan - 24 Mar

>360 snow samples

(J. Johnson & T. Quinn)

MODIS Snow Cover (%) Feb 2013

FIELD SAMPLING

- ~2-5cm vertical resolution
- 3 parallel profiles
- collect soil at each site
- melt/filter every ~3 days
- re-freeze snow water for chemical analysis
- nuclepore filters
 0.4µm pore size
 ~95% capture efficiency

Derived Parameters:

```
C_{BC}^{est} (ng/g) = estimated BC concentration

C_{BC}^{equiv} (ng/g) = amount of BC needed to account for all light absorption 300-750nm (solar spectrum weighted)

f_{nonBC}^{est} (%) = fraction of 300-750nm solar absorption due to non-BC components

\mathring{A}_{tot} [450:600nm] effectively the color (\mathring{A}_{abs}= 1 black 2-4 brown >~6 reddish)
```


Surface-most snow samples: Absorption Ångström exponent

Surface-most snow: non-BC light-absorbing particles expressed as an equivalent BC mixing ratio

Vertical variability in the mixing ratio of BC in snow

Surface-most snow samples: BC mixing ratio

Snow column average: BC mixing ratio

for organics

PMF Analysis: Factor contributions to 650-700nm absorption - Surface snow samples

PMF Analysis: Factor contributions to 650-700nm absorption - sub-surface snow samples

Combining N. American survey & earlier Arctic survey data

2009 Canadian Arctic survey

2007 Canadian sub-Arctic traverse

2013 N. Amer. Great Plains survey

Re: the relative roles of soil vs. BC in US Great Plains snow albedo

- Great Plains soil contribution is higher in sub-surface samples → likely because this corresponds to when snowpack was shallower, so more exposed soil
- Snow cover in 2013 was not anomalous but there are years with more extensive & persistent snow cover. In these years, the <u>relative</u> role of BC (vs. soil) in lowering snow albedo will likely be higher
- i.e., BC likely only dominates snow albedo reduction in years with higher snowpack when retention of the snow is less critical for water resources

Why so much soil in Sern Great Plains snow?

- Almost the entire area is

 cagricultural = disturbed soil
- It's windy (!!!) in the winter
- Snow is often thin / patchy
- Snow cover is intermittent, especially to the S and W
- → Dirt mixes in with snow as it's falling, right near the surface. Regional/global models will not capture this.

Why so much soil in Sern Great Plains snow?

- Almost the entire area is

 cagricultural = disturbed soil
- It's windy (!!!) in the winter
- Snow is often thin / patchy
- Snow cover is intermittent, especially to the S and W
- → Dirt mixes in with snow as it's falling, right near the surface. Regional/global models will not capture this.

Farming practices may affect the color of snow at least as much as BC emissions in much of the southern Great Plains

Increased soil disturbance

- clearing for oil platforms
- much more driving on dirt / farm roads
- areas cleared for housing

Increased BC emissions

- diesel trucks
- oil flaring (significant?)
- wood stoves in temporary housing?

Bakken Oil fields

N. China survey 2010: 46 sites

Lanzhou Univ. & Univ. of Washington collaboration (Wang et al., 2013)

2014 process study: 3 Idaho mountain valley sites

Overall findings

 Dust & soil play a very strong role (sometimes dominate) incidences of high snow particulate light absorption at:

US Great Plains sites
2 Idaho mountain valley sites
SE of Vernal, Utah
central China sites

- → for the US GP & Idaho sites probably locally transported soil, so will not be captured by regional/global models
- → radiative forcing by BC in snow will be over-estimated if these non-BC components are not accounted for
- Post-wet-depositional processes are important!
 - Most of the variability in snow particulate light absorption is driven by what's happening between new snowfall events
 - dry deposition, sublimation, melting

Overall findings

- Melt amplification:
 - generally confined to the top few cm of the snow
 - increases concentrations of BC/absorbing particles

- by up to a factor of about five Scavenging fractions with melt-water: 10-30%
- Idaho & Utah: dry deposition and in-snow processes increase the mixing ratio of:
 - BC by up to an order of magnitude
 - all light-absorbing particulates by <u>up to 2 orders of magnitude</u>
- Spatial variability at a range of scales is considerably smaller than the temporal variations at a given site
 - implications for the representativeness of field samples used in observation/model comparisons.

Zhang et al., 2015, ACP model source study using tagged emissions

Qian et al., 2014, Env. Res. Lett. study of BC-in-snow radiative forcing

Data are being used to test/adjust models

Radiative forcing by BC in snow

Publications:

Wang, X., S. J. Doherty and J. Huang, Black carbon and other light-absorbing impurities in snow across Northern China, *J. Geophys. Res. Atmos.*, 118 (3), 1471-1492, doi: 10.1029/2012JD018291, 2013.

Doherty. S. J., C. Dang, D. A. Hegg, R. Zhang and S. G. Warren, Black carbon and other light-absorbing particles in snow of central North America, *J. Geophys. Res. Atmos.*, 119, doi:10.1002/2014JD022350, 2014.

Dang, C. and D. A. Hegg, Quantifying light absorption by organic carbon in Western North American snow by serial chemical extractions, *J. Geophys. Res. Atmos.*, 119, 10,247-10,261, doi:10.1002/2014JD022156.

Zhang, R., H. Wang, D. A. Hegg, Y. Qian, S. J. Doherty, C. Dang, P.-L. Ma, P. J. Rasch, and Q. Fu, Quantifying sources of black carbon in Western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model, *Atmos. Chem. Phys.*, 15, 12805-12822, doi:10.5194/acp-15-12805-2015, 2015.

Doherty, S. J., D. A. Hegg, P. K. Quinn, J. E. Johnson, J. P. Schwarz, C. Dang and S. G. Warren, Causes of variability in light absorption by particles in snow at sites in Idaho and Utah, *J. Geophys. Res. Atmos.*, 121, doi:10.1002/2015JD024375, 2016.

+ other studies that used our data (e.g. Qian et al., 2014, Environ. Res. Lett.)