Detection Limit/Quantitation Limit Summary Table						
	DETECTION LIMIT	QUANTITATION LIMIT	COMMENTS	UNCERTAINTY	REFERENCES	
PROGRAM	(e.g., MDL, PLD, DL, LOD)	(e.g., ML, PLQ, MRL, LLOQ)				
OST - Office of Water (Wastewater)	MDL(40 CFR Part 136)	ML (40 CFR Part 136)	As of 06-21-2010, OST is reevaluating Detection and Quantitation in CWA programs.		40 CFR Part 136	
OGWDW - Office of Water (Drinking Water)	MDL (40 CFR Part 136)	MRL LCMRL values from individual laboratories are used to generate the MRL.	Note: Ongoing effort to reduce the use of DL.	MQOs as targets for method development and approval. Organic methods bias (recovery) should be \pm 30% for levels > MRL and \pm 50% for levels ≤ MRL. The method precision should be ≤ 20% RSD. For inorganic analyses bias targets of \pm 20% are used.	40 CFR Part 136	

OLEM – Solid	The LLOQ is the lowest	Remove suggested MDLs and MDL	The verification of LLOQs using	
Waste (SW-846	concentration at which the	determination from SW-846	spiked clean control material	
Methods)	laboratory has demonstrated	methods, and use only LLOQ.	represents a best-case scenario	
	target analytes can be reliably		because it does not evaluate the	
	measured and reported with a		potential matrix effects of real-world	
	certain degree of confidence.		samples. For the application of	
	-		LLOQs on a project-specific bases,	
	The LLOQ muse be greater		with established DQOs, a	
	than or equal to the lowest		representative matrix-specific LLOQ	
	point in the calibration curve.		verification many provide a more	
	The laboratory shall establish		reliable estimate of the lower	
	the LLOQ at concentrations		quantitation limit capabilities.	
	where both quantitative and			
	qualitative requirements can		The LLOQ verification, when	
	consistently be met. The		performed, should be analyzed after	
	laboratory shall verify the LLOC	2	the ICAL. The LLOQ check is carried	
	at least annually, and whenever		through the same preparation and	
	significant changes are made		analytical procedures as	
	to the preparation and/or		environmental samples and other QC	
	analytical procedure, to		samples. It is recommended to	
	demonstrate quantitation		analyze the LLOQ verification on	
	capability at lower analyte		every instrument where data is	
	concentration levels. The		reported; however, at a minimum, the	
	verification is performed by the		lab should rotate the verification	
	extraction and/or analysis of an		among similar analytical instruments	
	LCS (or matrix spike) at 0.5 – 2		such that all are included within three	
	times the established LLOQ.		years.	
			Pocovery of target applytes in the	
	may be useful on a project-		LLOO verification should be within	
	specific basis if a matrix is		established in-house limits or within	
	expected to contain significant		project-specific acceptance limits to	
	interferences at the LLOO. The		demonstrate accentable method	
	verification may be		performance at the LLOQ	
	accomplished with either clean			
	control material (e.g., reagent			
	water, solvent blank, Ottawa			
	sand, diatomaceous earth) or a			
	representative sample matrix,			
	free of target compounds.			
	Optimally, the LLOQ should be			
	less than the desired decision			
	level or regulatory action level			
	based on the stated DQOs.			

OLEM - CLP	MDL(40 CFR Part 136)	CRQL : Minimum level of quantitation acceptable under the contract Statement of Work (SOW)	For inorganic SOW ILM05.4, ISM01.2, and organic SOM01.2		40 CFR Part 146; USEPA CLP SOW for Inorganic Analysis Multi-Media, Multi-Concentration, and Inorganic Superfund Methods, and Organics Analysis Multi-Media, Multi-Concentration
OLEM - Office of Emergency Management, Env. Response Laboratory Network (ERLN)	MDL (40 CFR Part 136)	LOQ - Based on Lowest Calibration Standard.			
ORD - Water Methods	DL - Determination of a detection limit is optional and only required if results below the lowest concentration calibration standard are used. Laboratory fortified blanks (LFBs) are prepared at a concentration to give a S/N of 2/5. The samples are prepared and analyzed. The DL is the Student t value for the 99% confidence level at n-1 degrees of freedom, times the standard deviation of the replicate measurements.	MRL - is a concentration that is no lower than the lowest level calibration standard and is determined from analysis of seven replicate LFBs. The MRL is confirmed if the upper and lower limits of the half range of the prediction interval, calculated as the standard deviation of the replicate LFBs times 3.963, are within 50% of the mean result for the seven replicates.	For Methods 332.0, 521, and 535, the MDL or DL can be calculated from the minimum reporting level (MRL) confirmation data set. The MRL conc.is determined from the analysis of 7 replicate LFB's and is not lower than the lowest level calibration standard. For Method 528, 529, 556.1, the procedure described for the determination mirrors that given in Method 332.0 and Method 521, except that use of the MRL confirmation data set is not offered as an alternative to the preparation and analysis of seven LFBs over three days.		40 CFR Part 136
ORD - NERL	LOD - The LOD is calculated by multiplying the standard deviation of results from 10 injections of low concentration samples by 3.	LOQ - The LOQ is determined using water samples spiked at a low concentration to give a coefficient of variation of less than 15%. The quality control limit used for the coefficient of variation is 20%.		LOQ - The LOQ is determined using water samples spiked at a low concentration to give a coefficient of variation of less than 15%. The quality control limit used for the coefficient of variation is 20%.	

ORD - NHEERL Analytical Chemistry Core	MDL - DQFAC Single Laboratory DL-QL Procedure (ver. 2.4)(FACDQ10-13): 3 x std dev of 7 low concentration replicates analyzed over 3 days.	LOQ (LRL) - 10 x std dev obtained in MDL study		± 25% to ± 15% with 95% confidence	NHEERL Analytical Chemistry Core Operating Procedures
ORD - Marine Methods	MDL (40 CFR Part 136)		Performed during initial demonstration of proficiency using 40 CFR 136 Appendix B with replicates distributed throughout a group of typical samples.		ORD Marine Methods
OCSPP - Office of Pesticide Programs BEAD/Analytical Chemistry Branch (ACB)	LOD - Samples fortified with analytes at "low" concentrations are prepared and analyzed. S/N is calculated and LOD is 3 x S/N	LOQ -Samples fortified with analytes at "low" concentrations are prepared and analyzed. S/N is calculated and LOQ is 10 x S/N	Alternative LOD: The concentration of the lowest calibration standard is treated as the LOQ and the LOD is often assumed to be 1/3 of the LOQ. The lowest possible LOD and LOQ values are not critical in these cases. The rationale of this approach is that the expected analyte concentrations in the samples are high and above the lowest calibration concentration and knowledge of the actual LOD/LOQ is not necessary.		

OCSPP - Office	LOD - 10% below the				
of Pesticide	smallest concentration				
Programs	within the standard curve				
BEAD/ACB					
USDA IR-4					
Proiect					
OCSPP – Office of Pesticide Programs BEAD/ACB Pesticide Multiresidue method in water samples	MDLs (40 CFR Part 136)	MDLs (40 CFR part 136)			
OAR - Stationary Source	LOD – 3x the standard deviation [S₀] at the blank level	An estimate of the limit of quantitation [3x LOD] is considered when setting emission standards			Method 301 (40 CFR 63, Appendix A)
OECA - Office of Criminal Enforcement, Forensics, and Training/ National Enforcement Investigations Center	LOD/MDL - A variety of methods are employed to calculate the LOD/MDL, depending on the technique, matrix, and data quality objectives. These may be applied for a technique, or for a set of analysis. Methods include, but are not limited to a.) Calculating the MDL by determined the standard deviation and multiplying this value by the Student-t value for a 95% confidence interval for n-1 samples. b) Using 40 CFR Part 136, Appendix B as guidance, but determine the MDL as applicable to procedure.	LOQ - Similar to the LOD/MDL, a variety of methods are employed for the determination of the quantitation limit, based on technique and sample matrix. Methods include, but are not limited to a) setting the LOQ to the calibration standard with the lowest concentration; b) LOQ may be determined by basing the level of 10x the standard deviation of method blanks to compensate for the matrix effects.	LOD and LOQ are estimates for lowest concentration detected and reported for the analyses, however it is necessary to assess and interpret of the uncertainty at these limits to predict the quality of the value of these limits.	Uncertainty is based on an assessment of the contributions of all the sources of uncertainty for an analysis and presented as a data quality statement. Uncertainty based on control charting or statistical analysis of laboratory control samples are examples of the components of the overall uncertainty statement, however each component is weighed for each set of analysis to determine the overall uncertainty of the analysis.	40 CFR Part 136