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Purpose/Utility of Research

Purpose

* To help meet OLEM’s research priority on groundwater
characterization technologies and methodologies.

e To characterize contaminated groundwater routes of exposure
for aquatic species via surface water bodies which threaten
human health and the environment.

* To use non- and minimally- invasive geophysical methods to
characterize and monitor groundwater-surface water (GW/SW).

* To provide Program Offices, Regions, Stakeholders, and others
qguantifiable modeling and analysis applications for

understanding GW/SW interactions

Utility

 Temperature and electrical gradients between GW/SW enables
rapid large area coverage of these interactions

* Understanding GW/SW interactions:

guides the placement of remediation or capture systems

before surface water bodies are impacted

can guide well placements

monitor temporal variations as fluids move horizontally and
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Electrical methods measure the electrical properties of the earth, which
are a sum of the biogeochemical properties, reactions, and interactions

Highlights

Using geophysics to efficiently characterize GW/SW exchange in zones of contamination

Temperature variance used to guide fate & transport decision making 70,
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* \Vertical component being developed for groundwater flux measurements
* Used to quantify vertical groundwater flux which is a function of heat decay from an active heated probe?

Figure 2
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Small Scale Active Heating Preliminary Results

Figure 1B. HRTS Cylinder #9 heating
event temperature record

Figure 1A. HRTS Cylinder #9
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» analytical software (Flux-LM* and 1DTempPro3) to assess GW/SW interactions from hydrogeophysical data (e.g.,
temperature and electrical resistivity)

and to design of surveys for effective application to GW/SW problems. {see GDSS poster}

» a module for the Geophysical Toolbox Decision Support System (GTDSS) to guide the selection of geophysical methods
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Flux-LM?* workflow:
1.

layer and measured
temperature-depth
(T-z) data

T-z profile is
calculated

Optimal Darcy flux is
found by adjusting
the flux to minimize
the RMSE of the
calculated T-z profile

(a) User supplies field
T-z profile (Table 1 of
Flux-LM)

(b) User supplies layer
properties (Table 2 of
Flux-LM) - see Figure 1
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2. Before optimization

Flux-LM calculates T-z
profile for a given q based
on layer properties and
boundary conditions
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3. After optimization

Flux-LM finds optimal g
using Excel Solver to
minimize RMSE of
calculated T-z profile
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(a) Temperature profiles from field HRTS measurements (black
dashed line) and those calculated with Flux-LM?* (colored

solid lines)

(b) RMSE between measured and calculated temperature
profiles for each Darcy flux value. Lowest RMSE = best flux
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Select Data File

(9/2/2000 3:17 PM, 0.849 m/d)
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Main window of 1DTempPro V23

Parameter input, model estimation

SUSTAINABLE & HEALTHY COMMUNITIES RESEARCH PROGRAM

e Characterization and monitoring of GW/SW interaction zones serves many of the
Program Offices, Regions, Stakeholders, other Agencies (i.e., Fish and Wildlife,
USGS), and other investigator needs

e Any user requiring an understanding of subsurface processes (e.g., fate and
transport and remediation effectiveness) and interactions with surface water

bodies.

* Geophysical methods can efficiently guide data collection, put precise point
measurements into system-scale context, and build process-based
understanding of GW/SW exchange dynamics in zones of contamination.

Electrical methods (e.g., resistivity, EMI)

Intended End users

| essons Learned

Strengths:

» ldentify controlling geologic structure

» Provide a snapshot and time-lapse monitoring
» Fluid mapping

» Monitoring

Limitations:

» Non-unique interpretations due to geology, porosity, fluid dynamics, stream bed
conductivity

» Contaminant of interest may not have an observable electrical signature

» EMI is subject to drift and infrastructure interference

Fiber-optic distributed temperature sensors

Strengths:

» High spatial resolution (~0.5 to 1 m) and high precision (0.01 °C)
» Large scale (10’s of km possible, <5 km common)
» Continuous measurement (in time and space)

» Long-term installation possible

Limitations:

» Fiberis glass — can be damaged
» Deployment can be labor-intensive

» DTS systems are costly ($25-100K)
» Require calibration and field verification
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