DUPHAR B.V. WEESP Analytical Development Dept. The Netherlands 17-MAY-91

LABORATORY INSTRUCTIONS RES 051 (03/MAY/1991)

6 PAGES- PAGE 1

GAS CHROMATOGRAPHIC DETERMINATION OF DICHLOBENIL AND 2,6-DICHLOROBENZAMIDE IN SOIL

1. PRINCIPE

Soil is extracted with a mixture of acetone/petroleum ether (1:1). The extract is filtered and after addition of water, dichlobenil is extracted with petroleum ether, subsequently 2.6-dichlorobenzamide is extracted with ethyl acetate. An aliquot of both extracts is purified on alumina cartridges and determined by capillary gas chromatography and electron capture detection.

2. REQUISITES

Reagents

- acetone (Baker 8002
- water for injections
- ethanol, pharmaceutical quality
- sodiumchloride-solution, saturated (Brocacef NA734)
- petroleum ether (b.p. 40-65°C), spectrograde
- acetone/petroleum ether (b.p. 40-65°C) (1+9)
- acetone/petroleum ether (b.p. 40-65°C) (2+98)
- ethanol/petroleum ether (b.p. 40-65°C) (15+85)
- ethyl acetate (Baker 9260-3)
- methanol, spectograde
- NH₄Cl (Baker 0018)
- Na₂SO₄, anhydrous (Baker 1775)
- alumina cartridge, neutral, 1000 mg (Baker 7214-07)
- helium, pure (carrier gas)
- nitrogen, pure (make-up gas)
- 2,6-dichlorobenzamide ARS
- dichlobenil ARS

LABORATORY INSTRUCTIONS RES 051 (03/MAY/1991)

6 PAGES- PAGE 2

GAS CHROMATOGRAPHIC DETERMINATION OF DICHLOBENIL AND 2,6-DICHLOROBENZAMIDE IN SOIL

Equipment

- Ultra Turrax (e.g. IKA T50 with G45G)
- grinding beakers
- ultrasonic bath (e.g. Branson)
- rotavapor
- gas chromatograph for capillary gas chromatography, equipped with an ⁶³Ni electron capture detector and suitable for cold-on-column injection.
- column for capillary gas chromatography, fused silica (length 30 m, i.d. 0.32 mm) coated with 0.25 μm DB-17 and coupled with an uncoated deactivated retention gap (length 30 cm, i.d. 0.53 mm) for dichlobenil and coupled with an retention gap coated with 0.05μm of OV-225 (CP Sil 43 CB, length 30 cm, i.d. 0.53 mm) for 2,6-dichlorobenzamide.
- syringe, suitable for on-column injection on capillary columns, 3 μ l.

3. PROCEDURE

Gaschromatography

3.1 Dichlobenil

Adjust the pressure of the carrier gas to 100 kPa and adjust the flow of the make-up gas to 25 ml/min. Set the temperature of the column oven at 75°C, and the detector temperature at 280°C. Install an oven temperature programme with a 30°C/min rate till 180°C, starting at injection. Keep at 180°C for 3 min., program the temperature to increase by 30°C/min up to 225°C. Set the secundaire cooling at 10 seconds after injection.

3.2 2,6-Dichlorobenzamide

Adjust the pressure of the carrier gas to 125 kPa and adjust the flow of the make-up gas to 25 ml/min. Set the temperature of the column oven at 70°C and the detector at 280°C. Install an oven temperature programme with a 30°C/min rate till 180°C, starting 1 min. after injection. Set the secundaire cooling at 10 seconds after injection.

LABORATORY INSTRUCTIONS RES 051 (03/MAY/1991)

6 PAGES- PAGE 3

GAS CHROMATOGRAPHIC LETERMINATION OF DICHLOBENIL AND 2,6-DICHLOROBENZAMIDE IN SOIL

Calibration line

- 3.3 Prepare solutions containing about 10 mg of dichlobenil and 2,6-dichlorobenzamide (accurately weighed) per 100.00 ml of methanol (=solution A). Dilute these solutions ten times with acetone (=solution B). Dilute these solutions again ten times with acetone (=solution C). Prepare by further dilution with petroleum ether (for dichlobenil) and ethyl acetate (for 2,6-dichlorobenzamide), seven solutions containing respectively 0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.2 μg per ml of dichlobenil (petroleum ether solutions) and 2,6-dichlorobenzamide (ethyl acetate solutions).
- 3.4 Inject 1.0 μ l of each solution and chromatograph under conditions mentioned in sections 3.1 (for dichlobenil) and 3.2. (for 2,6-dichlorobenzamide).
- 3.5 Determine the height of each dichlobenil and 2,6-dichlorobenzamide peak.
- 3.6 Plot the peak heights found against the corresponding concentrations in the injected solutions in μ g/ml. Draw a line through the points. This is the calibration curve.

Extraction

- 3.7 Homogenise the soil sample and weigh about 50 g of soil.
- 3.8 Transfer the analytical sample of 50 g into the grinding beaker, add 150 ml of acetone/petroleum ether (1:1) and 17 ml 0,2%-NH₄CL-solution and grind for 5 minutes with an Ultra Turrax.
- 3.9 Filter through a Büchner funnel into a suction flask and wash with 30 ml of acetone/petroleum ether (1:1).
- 3.10 Transfer the extract into a separating funnel, add 300 ml water. 10 ml saturated NaCl-solution and shake for 1 minute. Allow the layers to separate and collect the petroleum ether-layer through a fluted filter, containing anhydrous Na₂SO₄, into a round bottom flask.

LABORATORY INSTRUCTIONS RES 051 (03/MAY/1991)

6 PAGES- PAGE 4

GAS CHROMATOGRAPHIC DETERMINATION OF DICHLOBENIL AND 2,6-DICHLOROBENZAMIDE IN SOIL

- 3.11 Add 100 ml of petroleum ether to the water layer and shake for 1 minute. Allow the layers to separate and collect the petroleum ether through the same fluted filter containing anhydrous Na₂SO₄.
- 3.12 Repeat 3.11 two more times and combine the petroleum ether extracts. Keep the water layer.
- 3.13 Evaporate at ambient temperature till a volume of 30 ml remains and transfer this solution into a 50 ml volumetric flask and make-up to volume with petroleum ether.

 This is the dichlobenil extract.
- 3.14 Add 100 ml of ethyl acetate to the water layer of section 3.12 and shake for 1 minute. Allow the layers to separate and collect the ethyl acetate through a fluted filter containing anhydrous Na₂SO₄, into another round bottom flask.
- 3.15 Repeat 3.14 two more times and combine the ethyl acetate layers extracts.
- 3.16 Evaporate to dryness and dissolve the residue in 10.00 ml acetone/petroleum ethei (1:1).

This is the 2,6-dichlorobenzamide extract.

Clean-up

Dichlobenil

- 3.17 Condition, with the aid of vacuum, an alumina cartridge with 5 ml of petroleum ether.
- 3.18 Bring 5.0 ml of the dichlobenil extract onto the cartridge.
- 3.19 Wash with 1 ml of petroleum ether.
- 3.20 Elute with 8 ml of 2% acetone/petroleum ether solution into a 10 ml volumetric flask and make-up to volume with 2% acetone in petroleum ether. This is the dichlobenil sample solution.

LABORATORY INSTRUCTIONS RES 051 (03/MAY/1991)

6 PAGES- PAGE 5

GAS CHROMATOGRAPHIC DETERMINATION OF DICHLOBENIL AND 2,6-DICHLOROBENZAMIDE IN SOIL

2,6-dichlorobenzamide

- 3.21 Condition, with the aid of vacuum, an alumina cartridge with 5 ml of petroleum ether.
- 3.22 Bring 5.0 ml of the 2,6-dichlorobenzamide extract onto the cartridge.
- 3.23 Wash two times with 5 ml portions of acetone/petroleum ether (1-1-9).
- 3.24 Elute with 5 ml of ethanol/petroleum ether (15+85).
- 3.25 Evaporate the solvents (40°C) and dissolve the residue in 5.0 ml of ethyl acetate.

 This is the 2,6-dichlorobenzamide sample solution.

Sample chromatography

- 3.26 Inject 1.0 μ l of the final dichlobenil sample solutions (3.20) under conditions mentioned in section 3.1.
- 3.27 Determine the height of the dichlobenil peaks. Read off from the calibration curve the concentration of dichlobenil wich corresponds to the peak heights.
- 3.28 Repeat sections 3.26 and 3.27 for 2,6-dichlorobenzamide, using sample solution of section 3.25 (GC conditions in section 3.2)

4. CALCULATION

The dichlobenil and 2,6-dichlorobenzamide content is:

 $p = concentration read off from the calibration line in <math>\mu g/ml$

v = final volume of the sample in ml (for dichlobenil 100, for 2,6-dichlorobenzamide 10)

w = weight of the sample in g = 50.

LABORATORY INSTRUCTIONS RES 051 (03/MAY/1991)

6 PAGES- PAGE 6

GAS CHROMATOGRAPHIC DETERMINATION OF DICHLOBENIL AND 2,6-DICHLOROBENZAMIDE IN SOIL

5. REMARKS

- 5.1 The retention time of dichlobenil is approx. 5 minutes. For 2,6-dichlorobenzamide the retention time is approx. 11 minutes.
- 5.2 Since dichlobenil and 2,6-dichlorobenzamide are compounds of quite different polarity, different solvents and different GC conditions were used.
- 5.3 Retention gaps, as used for both determinations, could get effected by involatile sample constituents after a series of sample injections. This is indicated by a decreasing peak-shape (more tailing). Replacing the retention gap will restore the initial chromatographic performance.
- 5.4 Calibration curves will, in general, be best fitted by a quadratic logarithmic expression.