

Monthly Water Research Webinar Series SAFE AND SUSTAINABLE WATER RESOURCES RESEARCH PROGRAM

October 26, 2016 TODAY'S TOPIC: Toolkit of Available EPA Green Infrastructure Modeling Software

Watch as you wait Watch the Toolkit video: https://www.epa.gov/water-research/greeninfrastructure-modeling-toolkit

Webinar Support Phone Number: 1-800-263-6317Audio Controls: Your audio is muted by the organizerTo Ask a Question: Type in the "Questions" box in the lower section of your screen

Webinar series schedule: epa.gov/water-research/water-research-webinars

Our water research: epa.gov/water-research

Get feature articles about our research: <u>epa.gov/sciencematters/</u>

Follow us on Twitter: <u>@EPAresearch</u>

Read our blogs: blog.epa.gov/science

Webinar Summary

Need for Water Runoff Control: Stormwater discharges continue to cause impairment of our Nation's waterbodies. Conventional stormwater infrastructure, or gray infrastructure, is largely designed to move stormwater away from urban areas through pipes and conduit. Runoff from these surfaces can overwhelm sewer systems and end up contaminating local waterways. When stormwater runs off impervious streets, parking lots, sidewalks, and rooftops, it carries pollutants, such as motor oil, lawn chemicals, sediments, and pet waste to streams, rivers, and lakes. Runoff flows can also cause erosion and flooding that can damage property, infrastructure, and wildlife habitat. In addition to runoff problems, impervious surfaces also prevent water from penetrating the soil and recharging groundwater supplies.

Green Infrastructure: Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies untreated. It provides many environmental, social, and economic benefits that promote urban livability, such as improved surface water quality, water conservation, and improved aesthetics and property values. Green infrastructure is also incorporated into municipal separate storm sewer system (MS4) and National Pollutant Discharge Elimination System (NPDES) stormwater permits for retention requirements for various states across the Nation.

Green Infrastructure Modeling Toolkit: Researchers in EPA's Office of Research and Development (ORD) have been studying green infrastructure practices and developing models and tools to help communities manage their stormwater runoff and address nutrient impairment. This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material, that can be used as a teaching tool and as a quick reference resource for use by planners and developers when making green infrastructure implementation decisions, and can also be used for low impact development design competitions. The models and tools included in the toolkit will be presented during this webinar.

The toolkit is available on EPA's website: epa.gov/water-research/green-infrastructure-modeling-toolkit

Disclaimer

The views expressed in this presentation are those of the author and do not necessarily reflect the views of the U.S. Environmental Protection Agency. Any mention of trade names or commercial products does not constitute Agency endorsement or recommendation for use.

Presentation 1

GIWiz Green Infrastructure Wizard

Green Infrastructure Wizard (GIWiz): GIWiz is an interactive web application that provides users with customized reports containing the EPA tools and resources they select, direct links, and overview information about each.

Dr. Marilyn ten Brink

Dr. Marilyn ten Brink is a Special Assistant to the Director of the Atlantic Ecology Division (AED) of EPA's National Health and Environmental Effects Research Laboratory (NHEERL) in Narragansett, Rhode Island. She received her Ph.D. in Environmental Geochemistry from Columbia University, New York, and has over 35 years of research experience on pollutant distribution, impacts, and management for aquatic systems. Marilyn is currently leading an interdisciplinary group of scientists to develop tools, including GiWIZ, that enable communities to better utilize Green Infrastructure approaches and improve sustainability.

Contact: tenbrink.marilyn@epa.gov

⇔EPA

What is GIWiz?

- A database of EPA's Green Infrastructure Tools and Resources
- An interactive web application that connects communities with these Tools and Resources
- A wizard that provides customized links and exploration, based you your objectives and specifications
- A decision support tool for green infrastructure implementation
- A simple means to generate a report about tools and resources of interest

https://cfpub.epa.gov/giwiz/

https://www.epa.gov/sustainability/green-infrastructure-wizard

Why GIWiz?

Problem formulation

NEEDS:

What do communities, practitioners, and stakeholders need to make good decisions and improve compliance and sustainability outcomes?

> LEARNING FROM COMMUNITIES

GI? Connecting

the Dots Between

Supply and Demand of Information

Tools & Resources:

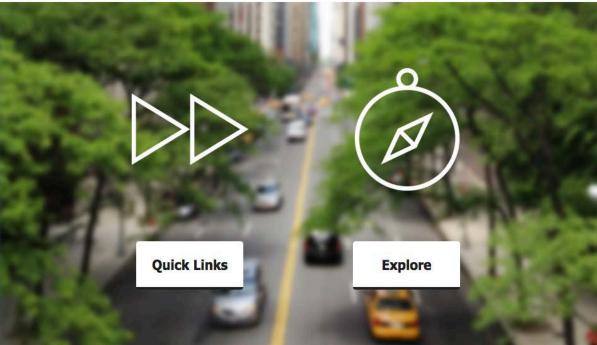
- What is already available to meet community and stakeholder needs?

- Where are the gaps in research, tools, and information?

DEVELOPING DECISION CASES

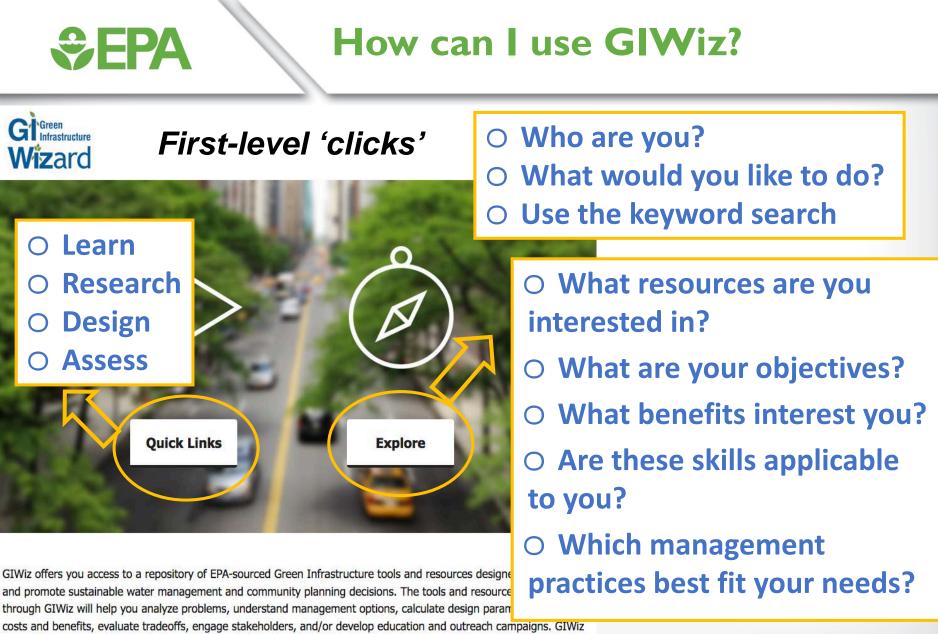
EPA has a vast array of Green Infrastructure tools, information resources, and case studies; however, this information can be difficult for users to navigate.

Attributes tagged for each Tool/Resource entry


User objectives associated with a suite of attributes Practitioners often don't General Info know where to start or how Function/Output Objective to find what they need. Intended Users/Role Cost Tools **Skills Required** Software Required Applicable Location Management Practices **Applicable Scale** Citizen Engagement/Outreach Materials Database **Benefits** Datasets or GIS Files Design Guides or Manuals Education Guides, Manuals, Fact Sheets or Informational Website Funding Sources Indicator Projects of Lists of Indicators List of Case Study or Project Profile Examples **Different types of users have** List of Funding Sources Resources differing needs specific to List of Publications List or Portal of Datasets or Databases Mapping Tools or Dataset Preview their context, objectives, and Publications: Academic/Shcolarly Publications Publications: Articles in Popular Media constraints. **Publications: Case Studies** Publications: Grey Literature Videos or Webcasts/Webinars

What does GIWiz provide?

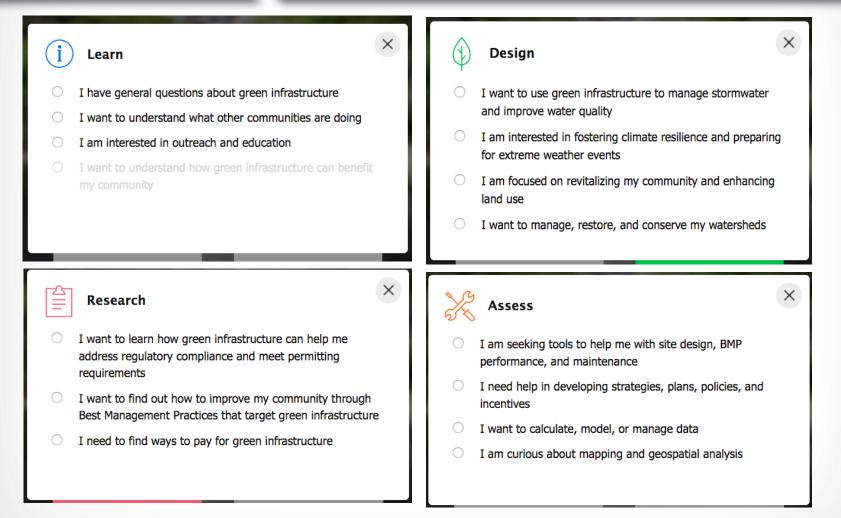
Feedback


GIWiz offers you access to a repository of EPA-sourced Green Infrastructure tools and resources designed to support and promote sustainable water management and community planning decisions. The tools and resources available through GIWiz will help you analyze problems, understand management options, calculate design parameters, analyze costs and benefits, evaluate tradeoffs, engage stakeholders, and/or develop education and outreach campaigns. GIWiz is made possible through a cross-agency collaboration involving EPA's Office of Research and Development, Office of Policy, Office of Water, and Regional staff. Quick, direct access to EPA's Green Infrastructure tools and resources

Sepa Faster, Easier Access to Information

Searching for: [EPA, Green Infrastructure, Regulator, Compliance] can yield an overwhelming array of results:

More than 7,000 users have visited GIWiz since the October 2015 launch.


costs and benefits, evaluate tradeoffs, engage stakeholders, and/or develop education and outreach campaigns. GIW is made possible through a cross-agency collaboration involving EPA's Office of Research and Development, Office of Policy, Office of Water, and Regional staff.

Use the Quick Links feature to access green infrastructure tools and resources, customized to a specific objective. Click the button that best matches your needs, and select the corresponding objective to view a tailored list of tools and resources.

QUICK LINKS to Tools and Resources

SEPA

Find the 'who, when, where, why and how' of Green Infrastructure Implementation

⇔EPA

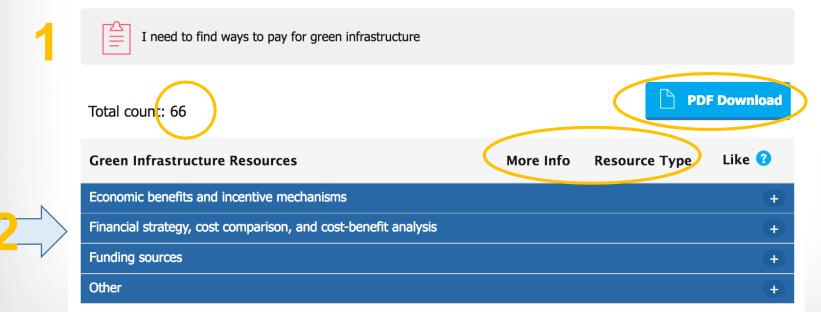
Using QUICK LINKS

Use the Quick Links feature to access green infrastructure tools and resources, customized to a specific objective. Click the button that best matches your needs, and select the corresponding objective to view a tailored list of tools and resources.

Use to access a pre-selected list of GI tools and resources grouped by specific objectives and sorted by topic Selection(s) delivers list of pertinent tools and resources

T		PD	F Download
Total count: 21			
Green Infrastructure Resources	More Info	Resource Type	Like 🕜
Different Shades of Green: Green Infrastructure Research at EPA Brochure	0	•	ø
EPA Green Infrastructure	0		ø
Green Infrastructure Collaborative	0	•	0
Green Infrastructure For Climate Resiliency	0	142	ø
Green Infrastructure Policy Guides	6	100	Ø
Green Infrastructure Research	6	•	ø
Green Infrastructure Webcast Series	0		0
Green Infrastructure Webcast Series: The Many Benefits of Green Infrastructure and Philadelphia Municipal Case Study	0		ø

with links to more information and to resource websites


URL Purpose Intended User	thttps://www.eea.cov/emofilata/emodef.home Engagement/Outreach, Sustainability Impact Analysis CommunityEnvironmental Group Representative, Engagement/Deviloper, Natural Resource Manager/Temmer, Restruk/Jacademic
Purpose Intended User	Engagement/Outreach, Sustainability Impact Analysis Community/Environmental Group Representative, Engineer/Developer, Natural Resource Manager/Planner, Regulatory Official, Scientist/Academic
Intended User	Community/Environmental Group Representative, Engineer/Developer, Natural Resource Manager/Planner, Regulatory Official, Scientist/Academic
User	Manager/Planner, Regulatory Official, Scientist/Academic
Objective	
	Project Monitoring/Evaluation
Benefits	Resource Protection/Improvement
Cost	Free
Skills	
Resource Type	Mapping Tools

SEPA

GIWiz Reports

- Quick Link Organized by categories
- Include number of returns
- 'More info' and 'Resource Type'
- Downloadable
- Have links to each tool/ resource
- "Feedback" function

Example (Quick Links: Research)

⇔EPA

GIWiz Navigation for Your Needs

I need to find ways to pay for green infrastructure			
Total count: 66		PD	F Download
Green Infrastructure Resources	More Info	Resource Type	Like 😗
Economic benefits and incentive mechanisms			(+
Financial strategy, cost comparison, and cost-benefit analysis			0
Financing Alternatives Comparison Tool (FACT)	1		Ø [
Fundamentals of Asset Management Step 10. Build Asset Management Plan A Hands-On Approach	0	Ø	ø
Fundamentals of Asset Management Step 8. Optimize Capital Investment: A Hands-On Approach	0	7 0	ø
Fundamentals of Asset Management Step 9. Determine Funding Strategy A Hands-On Approach	0	0	ø
Green Infrastructure Approaches to Managing Wet Weather with Clean Water State Revolving Funds	0	142	Ø

 More info

 Image: Provide the state of the st

Eended Community/Environmental Group Representative, Engineer/Developer, Natural Resource Manager/Planner, Regulatory Official Address Zoning/Codes, Find Financing Options, Leverage Transportation Funding, Use Readway Beautification Dollar: Free Issues Code: Sevings, Regulatory Free Issues Dates and Arabelic Tools: Elevenial Engine Surgert	Intended Community/Environmental Group Representative, Engineer/Developer, Natural Resource Manager/Rannee, Regulatory Official Objective Adverse ZoningCrockes, Find Financing Options, Leverage Transportation Funding. Use Roadw Beautification Dollars
eer Manager/Planner, Regulatory Official Address Zoning/Codes, Find Filmending Options, Leverage Transportation Funding, Use Roadway Beaufication Datas mellis Cast Savings, Regulatory Free alls Datas and Asabelic Tools: Elizantial and Europian Surgert	Jeer Manager/Planner, Regulatory Official Address Zoning/Codes, Find Financing Options, Leverage Transportation Funding, Use Roadv Beautification Dollars
Interference Deputification Dollars metilis Coult Savings, Regulatory SR Free Ista Ista Ista Ista Ista Ista Ista Ista	Beautification Dollars
58. Free alia BOUICP Data and Anabelic Tools: Financial and Fundion Surgert	Benefits Cost Savings, Regulatory
alis 500/00 Data and Analytic Tools Enancial and Fundion Support	
SSOURCE Data and Analytic Tools Financial and Function Support	Cost Free
	Skills
ler.	Resource Data and Analytic Tools, Financial and Funding Support

Viewing the Resources

Linked url

Setta US Environmental Protection Agency					
Learn the Issues	Science & Technology	Laws & Regulations	About EPA	Search EPA.gov	٩
Related Topics:	Clean Water State R	evolving Fund		Contact Us	Share

Financing Alternatives Comparison Tool

The Financing Alternatives Comparison Tool (FACT) is a financial analysis tool that helps municipalities, utilities, and environmental organizations identify the most cost-effective method to fund a wastewater or drinking water management project. FACT produces a comprehensive analysis that compares financing options for these projects by incorporating financing, regulatory, and other important costs.

FACT creates several reports showing the results of the analysis. A summary report compares various financing options using key financial figures. Graphical presentations compare annual and total costs of financing options over time.

FACT version 3.1 includes a streamlined analysis option called FACT-Lite. FACT-Lite reduces the amount of information users must enter to compare financing options.

FACT User Guide

A comprehensive user guide is automatically available as part the installation of FACT. Once FACT is installed, the user guide is accessed by selecting the Help and Definitions button in the top right corner of the homepage.

Alternatively, you can download the user guide separately, FACT User Guide.

Downloading FACT

You can install FACT v.3.1 onto your computer by downloading the compressed (.zip) file below. See EPA's page on Free Viewers and Readers to Read and Print EPA Information to learn more about compressed files.

You will need Microsoft Access 2000 or higher to install and use FACT v.3.1.

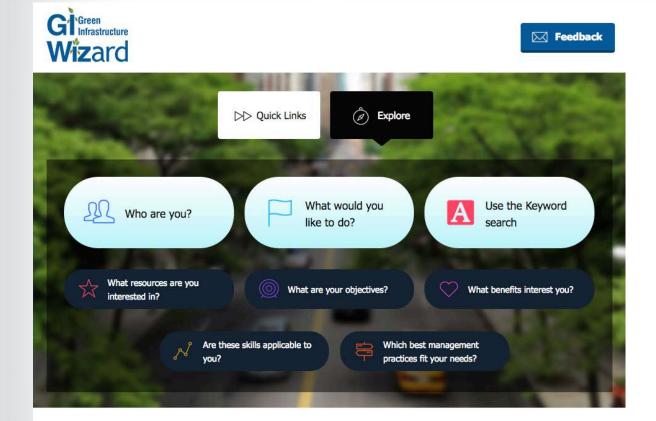
If you have Microsoft Access 2000 or higher on your computer:

- 1. Install FACT by clicking on FACT v.3.1 (1 pg, 10 MB) (ZIP)
- 2. Choose to run the file to install FACT v.3.1 on your computer.

If you do not have Microsoft Access 2000 or higher on your computer:

- 1. Install Access Runtime by clicking on AccessRuntime (1 pg, 36 MB) (EXE)
- 2. Install FACT by clicking on FACT v.3.1 (1 pg, 10 MB) (ZIP)
- 3. Choose to run the file to install FACT v.3.1 on your computer.

After installing FACT, an icon named FACT will appear on your desktop that you can click to run the program.


Contact Us to ask a question, provide feedback, or report a problem.

EPA Home | Privacy and Security Notice | Accessibility

EXPLORE Function

SEPA

Use the Explore feature to access green infrastructure tools and resources, customized to your specifications. Answer any or all of the questions above by selecting one or more of the corresponding topics that interest you. At any point, click the "Show Results" button to view your customized list of results. Select as many, or as few, questions and corresponding topics as you would like. Click the "Clear Results" button to remove all previous selections and start over. Access GI tools and resources. Get a highly targeted report customized to your specifications....

For example:

"I am a city planner in a medium sized-city trying to do a green streets program. I want to find design manuals for various tree planting scenarios and for stormwater management within a business district.

Set EPA

Using EXPLORE

Answer any or all of the questions and click 'show results' to view your customized list of tools and resources

'Clear Results' to start a new search

A Who are you?	
What would you like to do?	
A Use the Keyword search	
What resources are you interested in?	D
What are your objectives?	
What benefits interest you?	• L
\swarrow Are these skills applicable to you?	M
Which best management practices fit your needs?	

Select as many or few as you wish

ddress Zoning/Codes

- Carbon Sequestration
- Create a Model
- Develop a GI or LID Manual
- Examine Performance Rates
- Find Financing Options
- Leverage Transportation Funding
- Manage Extreme Rain Events
- Maximize Groundwater Quality
- Nutrient Removal

- Outreach/Education
- Project Monitoring/Evaluation
- Sediment Capture/Removal
- Select Trees/Plantings
- Use Roadway Beautification Dollars

Show results | Clear results

Or SEARCH the database using keyword

SEPA

User-Selected Criteria

Wizard matches Tools and Resources to all user-selected criteria

What benefits interest you?

	Aesthetics/Liv	ability
--	----------------	---------

- Civic/Community Involvement
- Cost Savings
- Economic Development
- Ecosystem Health
- Grey Infrastructure Footprint
- Hydrological Improvements
- Pollution/Climate Change Mitigation
- Property Value Increases
- Public Health/Safety

Are these skills applicable to you?

- Concept Mapping
- Content Management
- Cost Estimation
- Data and Analysis
- Engineering

- Environmental / Program Management
 - Geospatial Analysis
 - Scientific Knowledge
- Statistics
 - Teaching

What would you like to do?

Compliance

- Data and Modeling
 - Decision-Making and Planning
 - Drafting Standards and Codes
- Economic Analysis/Assessment
- Engagement/Outreach
- Environmental Footprint Analysis
- Mapping and Visualization
- Other Environmental Analysis

Performance Analysis

Other Environmental Assessment

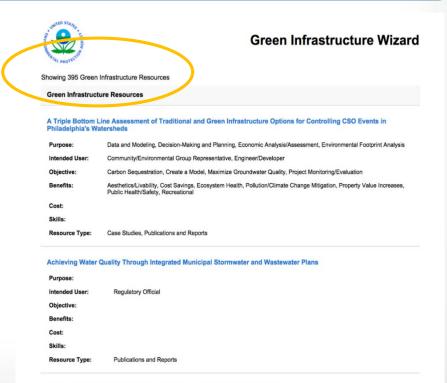
- Project Management and Reporting
- Sustainability Impact Analysis

Which best management practices fit your needs?

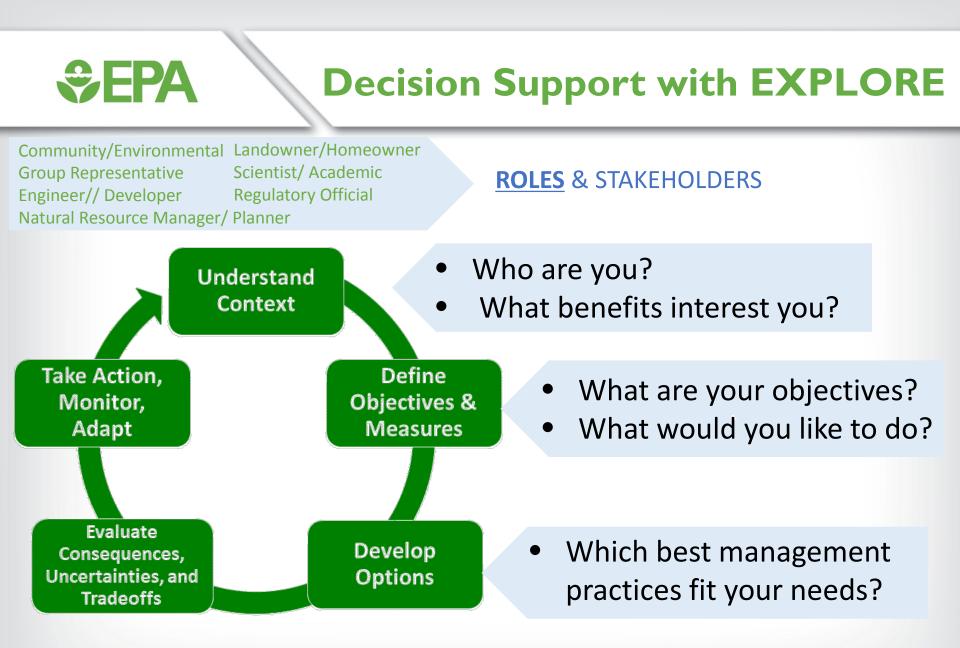
- Conservation/Restoration
- Construction
- Education and Outreach
- Environmental Management
- Municipal Management
- Stormwater/Flood Management
- Transportation
- Wastewater Management

- Recreational Regulatory
- Resource Protection/Improvement
- Right-of-Way Enhancements
- Runoff Nutrient Loading

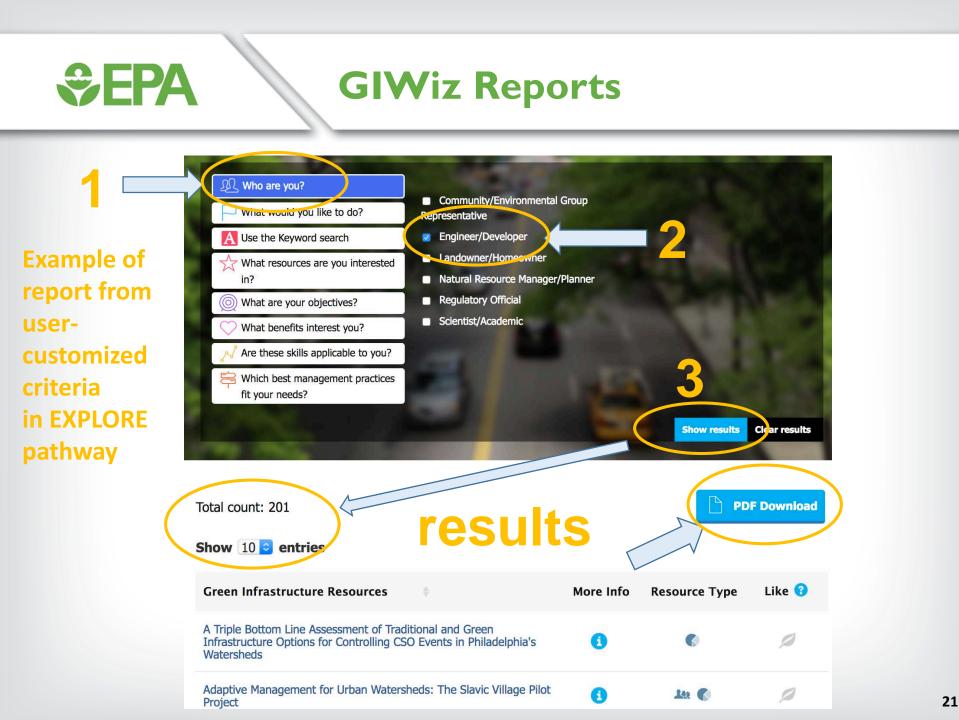
GIWiz Database


Connecting the dots between Supply and demand for GI information

- Case Studies
- Data and Analytic Tools
- Fact Sheets
- Financial and Funding Support
- Informational Websites
- Mapping Tools
- Outreach Materials and How-Tos
- Popular Press/Media
- Publications and Reports
 - Videos, Webcasts, and Webinars


Database content is expanding

- V1 Sept 2015: 270 Tools and Resources
- V2 Sept 2016: 395 Tools and Resources



Adaptive Management for Urban Watersheds: The Slavic Village Pilot Project

To create a report of the full GIWiz content, Select all in 'EXPLORE/ What Resources are you interested in?'

Green Infrastructure Implementation in DASEES Decision Analysis Framework

Knowledge Base through Collaboration

This is a collaborative project aimed at bridging the gap between the expert knowledge contained within our Green Infrastructure Tools and Resources, and the institutional and user knowledge about where they are located and what they are for.

GIWiz

€PA

- Helps people considering
 Green Infrastructure
- to find the tools and resources they need
- to make sound decisions and advance Green Infrastructure implementation

www.epa.gov/giwiz

Knowledge Base through Collaboration

This is a collaborative project aimed at bridging the gap between the expert knowledge contained within our Green Infrastructure Tools and Resources, and the institutional and user knowledge about where they are located and what they are for.

GIWIZ

EPA

- Helps people considering
 Green Infrastructure
- to find the tools and resources they need
- to make sound decisions and advance Green Infrastructure implementation

www.epa.gov/giwiz

EPA Office of Research and Development (ORD) Safe and Sustainable Waters Research (SSWR) and Sustainable and Healthy Communities Research (SHC), Office of Policy, Office of Water, Office of Environmental Information, Regions 1, 2 and 3 and Community partners.

Marilyn Buchholtz ten Brink, Ph.D. (ORD/NHEERL) RI Michael Nye, Ph.D. (ORD/NERL) CO Robert Sachs (AA/Office of Policy) DC Ingrid Heilke, MCP (ORISE Fellow) RI

Presentation 2

Watershed Management Optimization Support Tool (WMOST): WMOST is a

software application designed to facilitate integrated water resources management across wet and dry climate regions. It allows water resources managers and planners to screen a wide range of practices across their watershed or jurisdiction for cost-effectiveness and environmental and economic sustainability. WMOST allows users to select up to fifteen stormwater management practices, including traditional grey infrastructure, green infrastructure, and other low impact development practices.

Dr. Naomi Detenbeck

Dr. Naomi Detenbeck is an ecologist in NHEERL AED in Narragansett, RI, with an adjunct faculty appointment in Natural Resources Science at the University of Rhode Island. Her current research is focused on the watershed-scale effects of natural and constructed green infrastructure, development of decision-support tools for integrated water resources management, such as WMOST, and development of EPA's Estuary Data Mapper. Naomi's past research has included work on biogeochemistry, wetlands, landscape ecology, nutrient criteria development, and watershed classification. She earned her M.S. and Ph.D. in Ecology from the University of Minnesota.

Contact: detenbeck.naomi@epa.gov

♦ EPA


What is WMOST?

Decision-support tool for integrated water management at the small watershed/community scale

- Optimizes cost (given targets for base flows, peak flows, water storage, water quality*)
- Evaluates management options in multiple programs

• Stormwater, including green infrastructure (GI)

- o Wastewater
- o Drinking water
- o Land conservation

* Water quality module available for beta testing in fall 2016

Who and What is WMOST Designed For?

- Community decision-makers:
 - o Municipal, regional, or watershed planners
 - o Utility managers

EPA

- o Community consultants
- Planning level assessments within the following:
 - Watershed Implementation Plans
 - Applications for Grants, State Revolving Fund loans, FEMA Community Rating System credits,...
 - Long-range strategies (utility 20-year horizons, smart growth, climate resilience)
 - Integrated management plans (e.g. wastewater + stormwater)

Example Applications

• Ipswich River, MA

EPA

What is the most cost-effective suite of management actions to meet target baseflows in the Ipswich River?

Monponsett Ponds watershed, Halifax, MA

What are the tradeoffs among flood control, recreational use, downstream aquatic life use, and sustainable water supply?

Subwatersheds of Taunton River, MA (multiple communities)

What is the value of natural and constructed green infrastructure in reducing flooding and water quality impairments under different development and climate change scenarios?

Subwatersheds of Montgomery County, MD

What are the most cost effective management practices and tradeoffs involved in meeting both local sediment TMDLs and N/P/SS targets for the Chesapeake Bay TMDL?

Subwatersheds of Middle Kansas River, KS

What are the most cost-effective management practices to both reduce water quality impairments and manage for resilience in the face of climate change?

€PA

Compatibility

Accepts inputs from commonly used hydrology models, e.g.,

• HSPF, SWAT (HAWQS*), SWMM, GWLF, PRMS

• National USGS Monthly Water Balance Model (Bock et al. 2016)

- Allows automated import of time series from existing calibrated models or addition of user-supplied datasets
- Links with EPA SUSTAIN/SWMM to automate calculation of gray and green infrastructure BMP runoff (v1-2) and load reductions (v3)**
- Accepts flood-cost curves derived using FEMA HAZUS tool with publically available data from Flood Insurance Studies

**Beta version available for testing Fall 2016

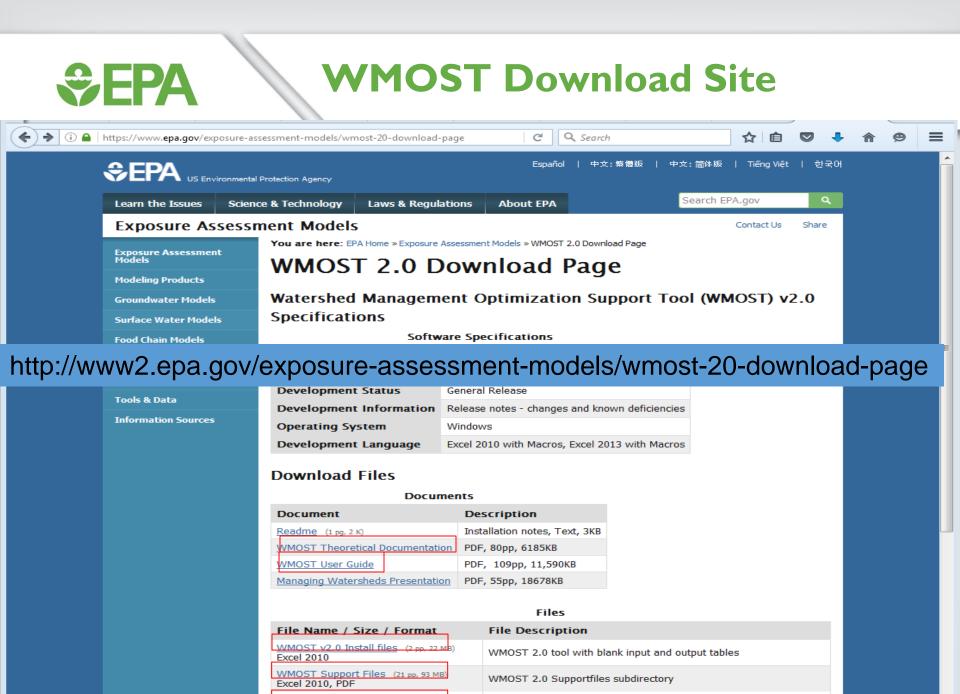
^{• *}beta version tests underway

SEPA MS-Excel interface		
Image: System 2 WMOSTv2_042415_LWD.xlsm - Excel	~ (7) ? 🖬	- ¤/×
FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW	Detenbeck, N	laomi 🝷 🔍
$\begin{bmatrix} A & A & A \\ Paste & & \\ Pa$	Delete Format	
Clipboard Ta Font Ta Alignment Ta Number Ta Styles	Cells Editing	ct*
E22 \bullet : X \checkmark f_x Summary table of management decisions and costs		~
A B C D E F G H I J K L M N O	P Q R S	T
² Watershed Management Optimization Support Too		
4 Compatible with Microsoft Excel 2010 © Please refer to the documentation before using the model to u		ns.
5 Original model was created in 2007 (Zoltay et al. 2010). WMOST development is sponsored by EPA. Contact for questions: Viktoria Zoltay, Abt Associates, Inc. 617-520-2 6 Please report software errors to Naomi Detenbeck, detenbeck.naomi@epa.gov, with the subject "WMOST bug". To register for notices of updates and new releases, ema		ST register".
7		
8 9		
10 ENTER INPUT DATA 11 Instantian of the second se		
12 Proceed to The input data tab summarizes all input data necessary.		
Specific input tables and fields are accessed from this sheet.		
14 15 RUN OP DN		
This button initiates the optimization program		
and processes the output for viewing.		
19		
20 EVALUTATE RESULTS 21		
22 Results Table Summary table of management decisions and costs		
 for meeting user-specified goals (e.g., demand, in-stream flow targets) 		
25 Compare to Measured Flow Graph comparing modeled streamflow to measured streamflow		
26		
Compare to 28 Target Flow Graph comparing modeled streamflow to target streamflow		
29 30		
Intro Input Runoff Recharge Surface Water Results Results_Raw Flow Chart Tables (+)	: •	▼ ►
READY		-+ 100%

SEPA Management options in WMOST

- Land conservation
- Water conservation
- Changes in drinking water infrastructure
- Changes in wastewater infrastructure
- Water reuse facility and aquifer storage/recharge
- Interbasin transfer
- Best Management Practices (BMPs), including green infrastructure (GI)

€PA


BMPs in WMOST

- Existing
 - Detention (dry) ponds (gray infrastructure)
 - Bioretention (GI)
 - Infiltration trench (GI)
- In progress
 - Forested riparian buffers
 - Biofiltration with internal storage reservoir (denitrification)
 - Grass swale
 - Gravel wetland
 - Infiltration basin
 - Infiltration chambers
 - Porous pavement
 - Sand filter
 - Wet pond

Ongoing WMOST Activities

- Water quality module beta version available for testing Fall 2016
- Reduced Sewer Overflows module (Winter 2016)
- More input time series
 - New England loading time series (Fall 2016)
 - New England HSPF models: climate change scenarios
 - EPA 20 watershed study sites (historic and future climate change scenarios)
 - HAWQS (nationwide SWAT; undergoing testing now)
 - USGS Monthly water balance model (nationwide)
- Climate change/robust decision making modules (Fall 2016 2017)
- Co-benefit estimation (2017-2018)
 - Ecosystem benefits
 - Human health
 - Energy savings
- Training/tech transfer (workshops, support for 4 ongoing case studies)
- Optimize results across multiple objectives (2018)
- Strategies for scaling up and linking watersheds (2018)

MB) Excel 2010

WMOST 2.0 Casestudy 100215 (1 pg, 25	Casestudy 100215 Halifax, MA setting up a validation run
way Excel 2010	Casestudy 100215 Halliax, MA Setting up a validation ful

33

Presentation 3

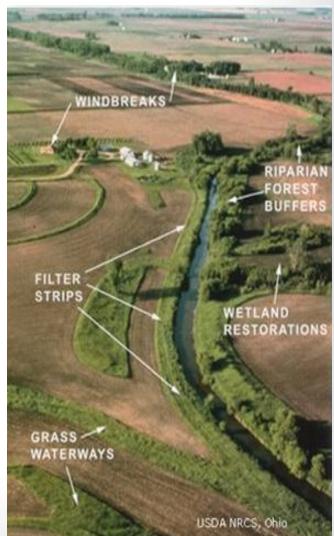
Visualizing Ecosystems for Land Management Assessment (VELMA) Model:

VELMA is a computer software model that regional planners and land managers can use to quantify the effectiveness of natural and engineered green infrastructure management practices for reducing nonpoint sources of nutrients and contaminants in streams, estuaries, and groundwater. These practices include riparian buffers, cover crops, and constructed wetlands.

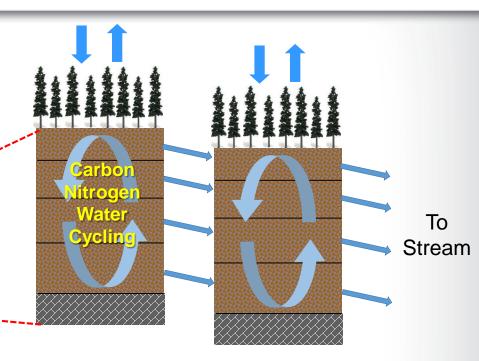
Dr. Bob McKane

Dr. Bob McKane is a Research Ecologist with NHEERL's Western Ecology Division in Corvallis, Oregon. He received his Ph.D. in Soil Science from the University of Minnesota, and has over 25 years of experience in the use of simulation models for analyzing effects of climate, soils, and land use on biogeochemical and hydrological processes. Bob is currently leading an interdisciplinary group of scientists to develop and apply the VELMA ecohydrology model, which is currently being used by EPA's ORD and Regions 7 and 10, tribes, and community groups to evaluate the effectiveness of alternative green infrastructure scenarios for improving water quality and ecosystem service co-benefits.

Contact: mckane.bob@epa.gov

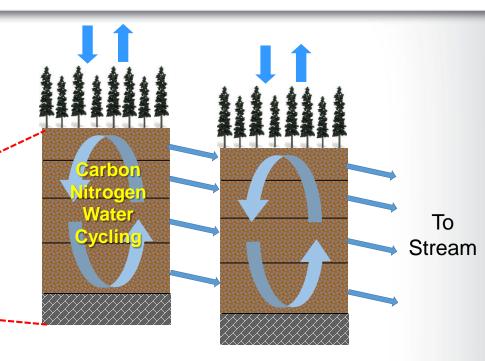


Purpose: Identify green infrastructure (GI) best management practices for enhancing water quality & ecosystem service co-benefits.


Results: Modeled effects of riparian buffers and other GI on water quality and quantity are well validated for ag, forest & rangeland systems

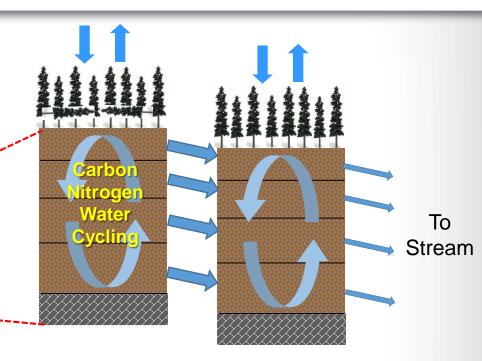
Applications: Users include communities, tribes, land managers, and EPA regions and scientists in Pacific Northwest, Central Plains, Midwest and East Coast

Fate & Transport of Water & Nutrients plots \rightarrow watersheds, days \rightarrow centuries


EPA

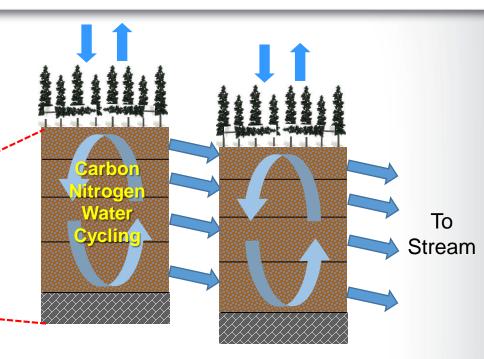
Simulated Climate & Land Use Effects

- *Hydrology:* streamflow, vertical & lateral flow, evapotranspiration, available soil moisture...
- **Plants & Soils:** uptake, transformation and transport of carbon, nutrients and toxics from terrestrial to aquatic systems


EPA

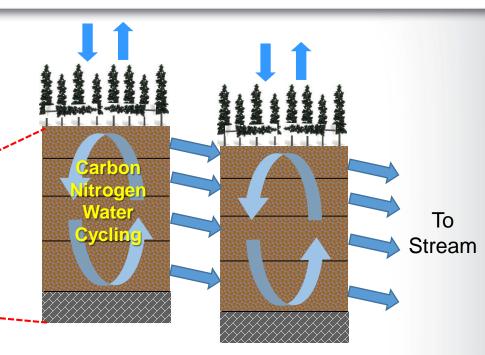
Simulated Climate & Land Use Effects

- *Hydrology:* streamflow, vertical & lateral flow, evapotranspiration, available soil moisture...
- **Plants & Soils:** uptake, transformation and transport of carbon, nutrients and toxics from terrestrial to aquatic systems


EPA

Simulated Climate & Land Use Effects

- *Hydrology:* streamflow, vertical & lateral flow, evapotranspiration, available soil moisture...
- **Plants & Soils:** uptake, transformation and transport of carbon, nutrients and toxics from terrestrial to aquatic systems


EPA

Climate & Land Use Simulated Effects

- *Hydrology:* streamflow, vertical & lateral flow, evapotranspiration, available soil moisture...
- **Plants & Soils:** uptake, transformation and transport of carbon, nutrients and toxics from terrestrial to aquatic systems

SEPA

Simulated Ecosystem Services

- Water quality & quantity
- Food & fiber production
- Carbon sequestration
- Greenhouse gas reduction (CO₂, N₂O, NO_x)
- Fish & wildlife habitat (links to population models)

Broad Applicability

Salmon Recovery Planning Puget Sound, WA

Estuarine Water Quality Tillamook Bay Estuary, OR

Urban GI Effectiveness Seattle, Duluth, Mobile Bay

Smoke Management Planning Central Plains Rangelands, KS

Constructed Wetland Effectiveness Agricultural Watershed, OH

Forest Buffer Effectiveness Chesapeake Bay Agriculture, MD

Broad Applicability

Estuarine Water Quality Tillamook Bay Estuary, OR

Smoke Management Planning Central Plains Rangelands, KS

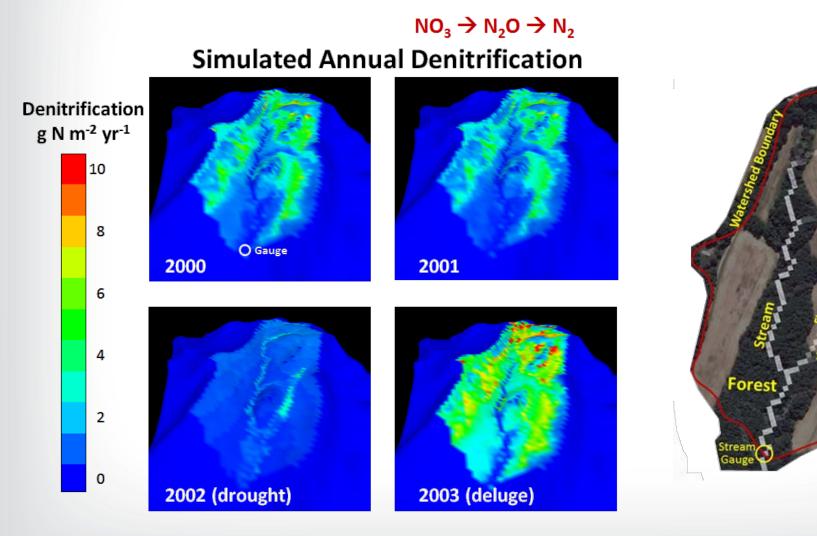
Constructed Wetland Effectiveness

Forest Buffer Effectiveness Chesapeake Bay Agriculture, MD

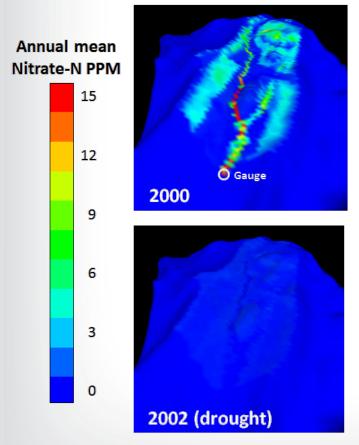
Product: Validated VELMA model for informing green infrastructure planning for Chesapeake ag systems

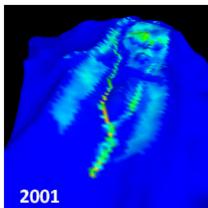
Goal: Transfer VELMA to Smithsonian Environmental Research Center and EPA Region 3

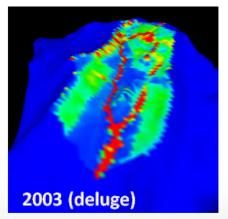
Product: Validated VELMA model for informing green infrastructure planning for Chesapeake ag systems


Goal: Transfer VELMA to Smithsonian Environmental Research Center and EPA Region 3

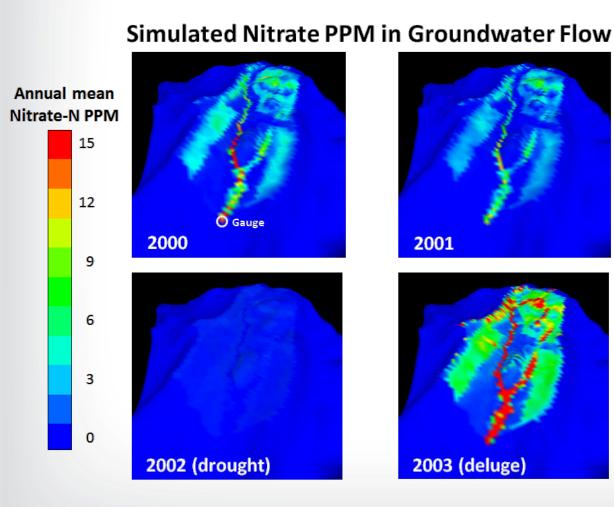
To what extent can riparian buffers and other GI reduce non-point sources of nitrogen to Chesapeake Bay?


Rhode River Watershed #109


€EPA


orr

Simulated Nitrate PPM in Groundwater Flow

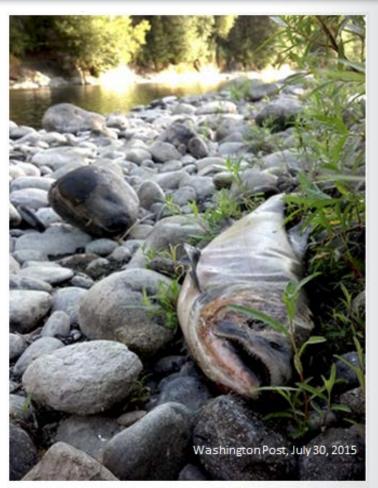

€PA



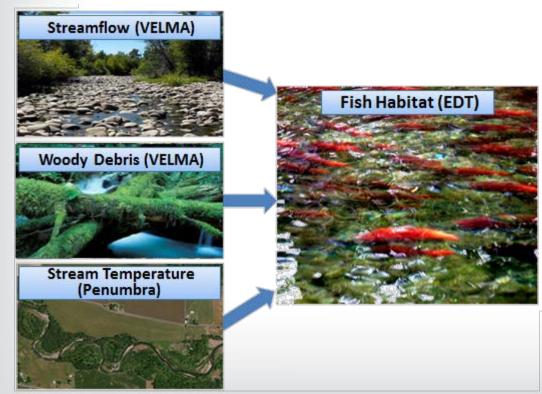
Summary

- Riparian forest buffers 20-30 meters wide can decrease ag nitrate stream loads by >90%
- 10m buffers = +50% load
- Buffers can be overwhelmed by extreme climatic events, such as a very dry year (2002) followed by a very wet year (2003)
- Model results are consistent with the observed sharp decrease in Chesapeake Bay water quality in 2003

Source: James Acker earthobservatory.nasa.gov/Features/ChesapeakeBay/chesapeake_bay3.php


EPA

Summary


- Riparian forest buffers 20-30 meters wide can decrease ag nitrate stream loads by >90%
- 10m buffers = +50% load
- Buffers can be overwhelmed by extreme climatic events, such as a very dry year (2002) followed by a very wet year (2003)
- Model results are consistent with the observed sharp decrease in Chesapeake Bay water quality in 2003,
 about 2x 2002 chlorophyll

€PA

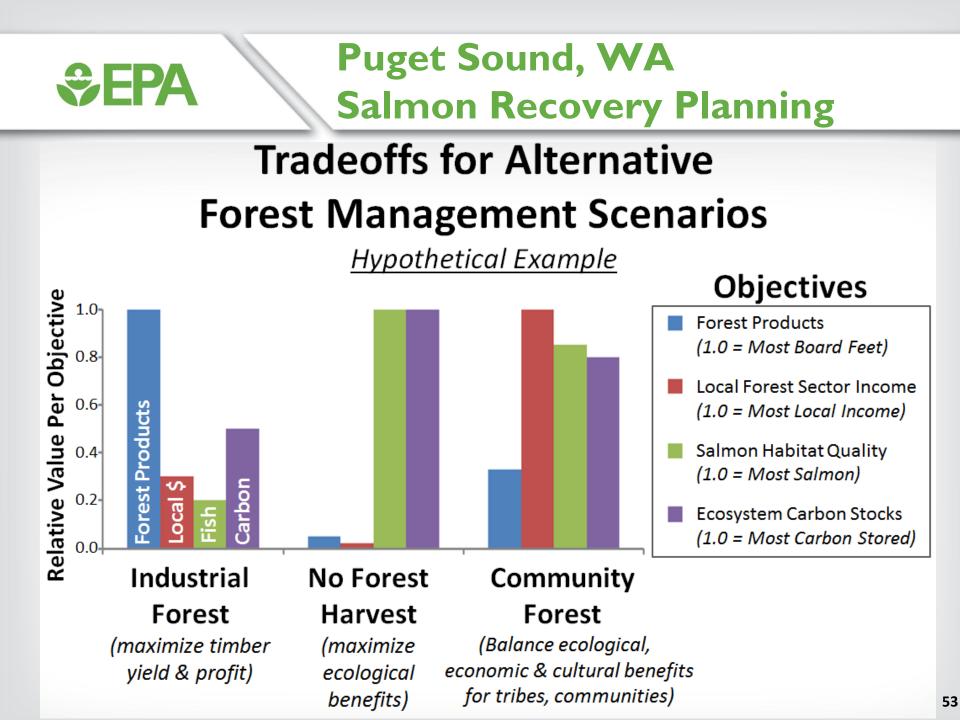
Puget Sound salmon populations have decreased by about 90% during the last 30 years. Tribes, communities and others have mobilized to develop salmon recovery plans. 49

Product: Integrated modeling framework
for informing community-based salmon
recovery planning in Puget Sound
Goal: Transfer VELMA-Penumbra-EDT to tribes,
communities, state agencies and EPA Region 10

Puget Sound salmon populations have decreased by about 90% during the last 30 years. Tribes, communities and others have mobilized to develop salmon recovery plans. 50

Product: Integrated modeling framework
for informing community-based salmon
recovery planning in Puget Sound
Goal: Transfer VELMA-Penumbra-EDT to tribes,
communities, state agencies and EPA Region 10

Product: Integrated modeling framework
for informing community-based salmon
recovery planning in Puget Sound
Goal: Transfer VELMA-Penumbra-EDT to tribes,
communities, state agencies and EPA Region 10



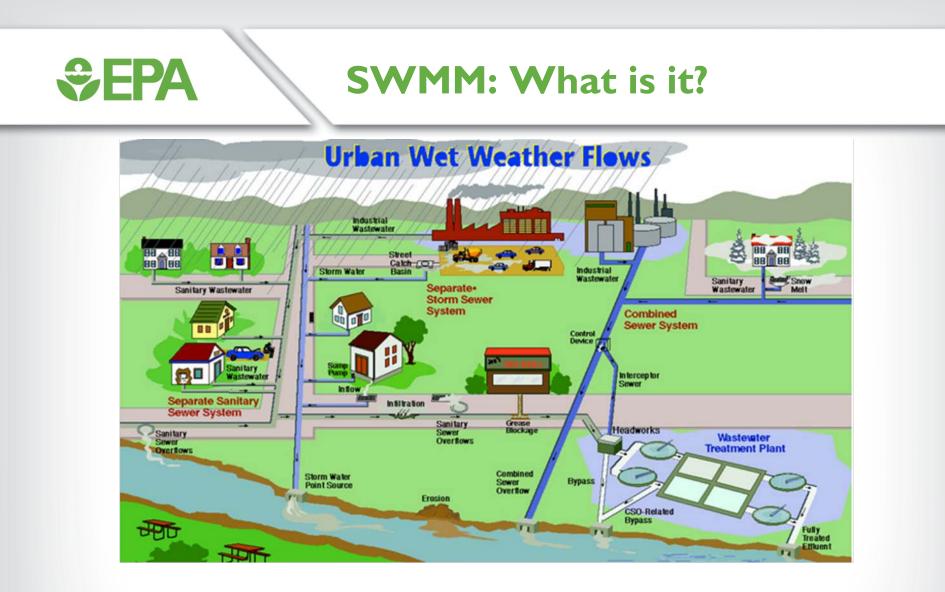
Results:

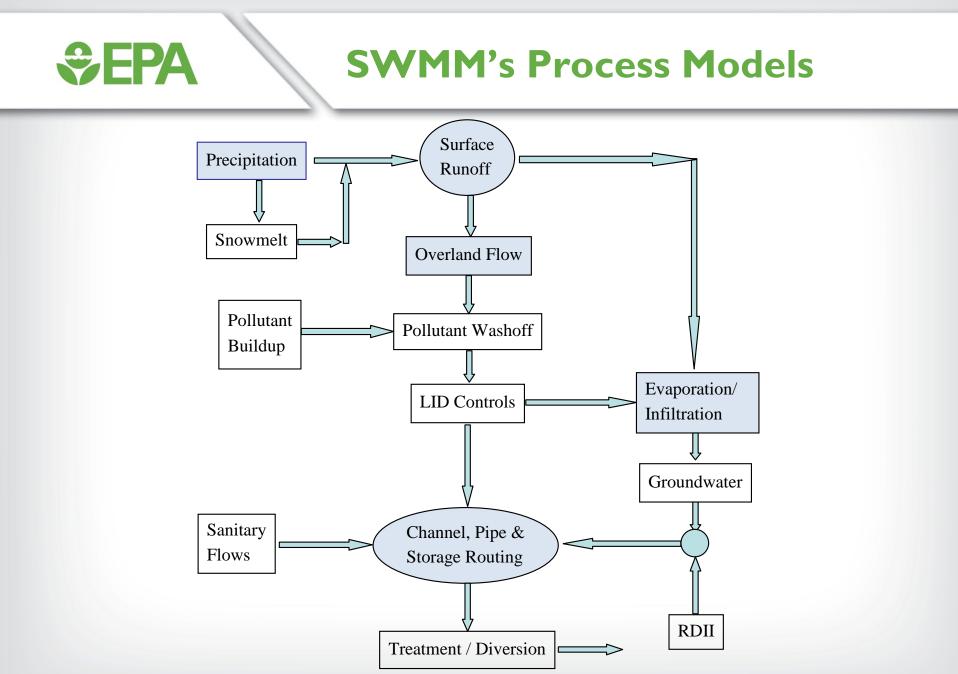
- ✓ VELMA is now being used by <u>Nisqually</u> <u>Community Forest</u> managers for land acquisition & salmon recovery planning in 80 mi² Mashel River Watershed.
- VELMA predicts that increasing current forest harvest intervals from 40-50 yr to >80 yr would double streamflow during the summer dry season, a critical time for salmon migration & spawning.

VELMA-EDT Training Workshop for Nisqually Community Forest manager and collaborating EPA & ICF scientists

Bob McKane (<u>mckane.bob@epa.gov</u>) Allen Brookes, Kevin Djang, Brad Barnhart Jonathan Halama, Paul Pettus, Don Phillips Marc Stieglitz, Feifei Pan, Alex Abdelnour

Presentation 4


Storm Water Management Model (SWMM): SWMM is a software application that is used widely throughout the world for large-scale planning, analysis, and design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban areas – although there are many applications for drainage systems in non-urban areas as well. It allows users to represent combinations of green infrastructure practices to determine their effectiveness in managing runoff. SWMM was developed to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention.


Dr. Michael Tryby

Dr. Michael Tryby joined the Water Supply and Water Resources Division in EPA's National Risk Management Research Laboratory located in Cincinnati, Ohio in September 2011. He holds a B.S. in Civil Engineering and an M.S. in Environmental Engineering from the University of Cincinnati, where he worked on drinking water treatment for disinfection byproduct control and systems analysis of water distribution system disinfection practices. Michael received his Ph.D. in Civil Engineering from North Carolina State University while working in commercial software development as a water distribution modeling domain expert. His immediate responsibilities include work on modeling green infrastructure and low impact development best management practices using EPA's SWMM 5.0.

Contact: tryby.michael@epa.gov

SWMM is a public domain, distributed, dynamic hydrologic - hydraulic water quality model used for continuous simulation of runoff quantity and quality from primarily urban areas.

SWMM's History

 SWMM II
 SWMM 3.3

 SWMM I
 SWMM 3

 SWMM I
 SWMM 3

 SWMM 1
 SWMM 3

 SWMM 3
 SWMM 4

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

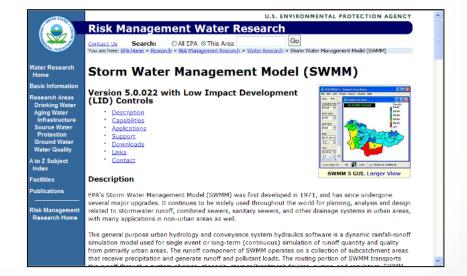
 J
 J

 J
 J

 J
 J

 J
 J

 J
 J


 J
 J

 J
 J

 J

SEPA

SWMM Redevelopment Project

SWMM: Who uses it?

- SWMM is a professional tool used by Civil / Environmental Engineers
- SWMM is used at the municipal level to design and manage stormwater and sanitary sewer infrastructure
- Many large cities across the US and around the world rely on SWMM

Set EPA

SWMM: What is it used for?

Design and sizing of drainage system components including detention facilities.

Control of combined and sanitary sewer overflows.

Modeling I&I in sanitary sewer systems.

Generating non-point source pollutant loadings for waste load allocation studies.

Evaluating BMPs and LIDs for sustainability goals.

Flood plain mapping of natural channel systems.

*⇒***EPA**

Source Control BMPs

Disconnection

Cistern

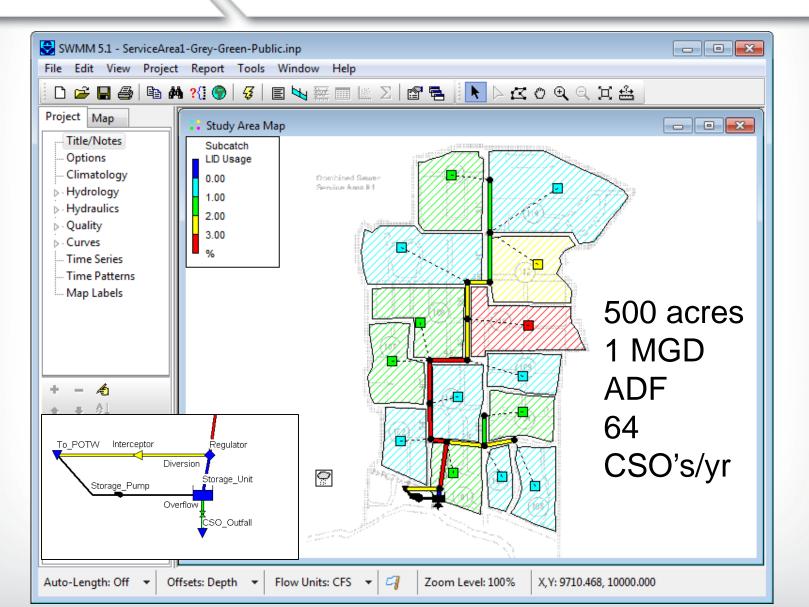
Permeable Pavement

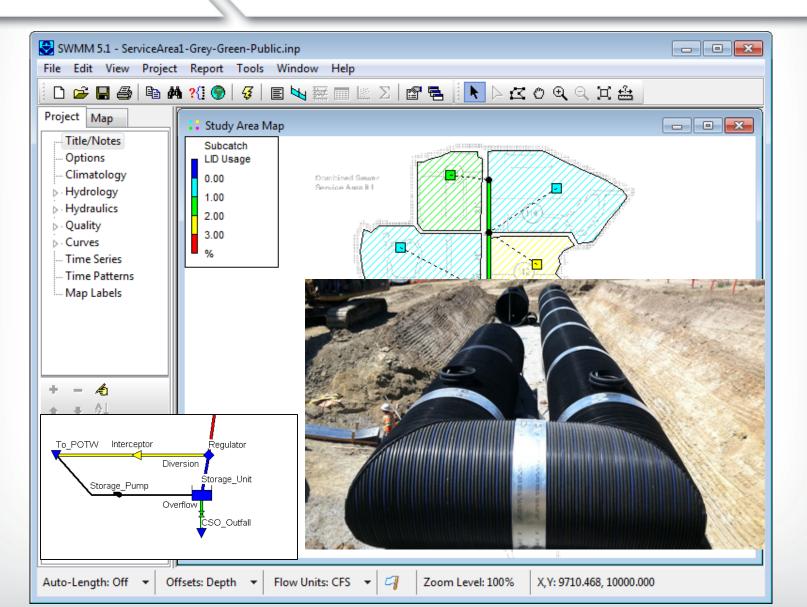
Infiltration Basin

Infiltration Trench

Vegetative Swale

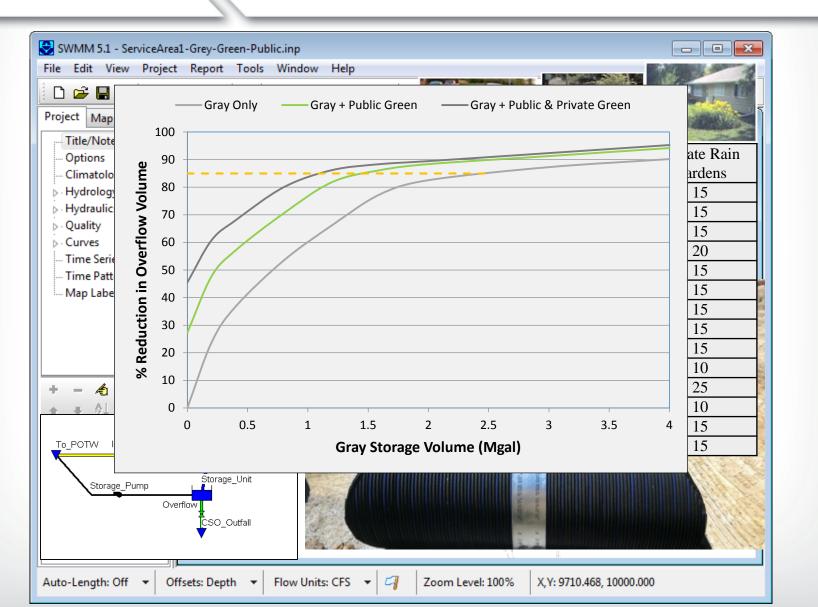
Rain Garden


Green Roof


Street Planter

SWMM CSO Example

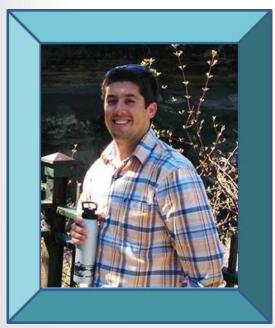
€PA


€PA

\$EPA

		Window Help			
Project Map	🚦 Study Area N	Иар		1	all some s
Options			Public Porous	Public Street	Private Rain
Climatology Hydrology Hydraulics Quality Curves Time Series	Sub-Area	Percent Impervious	Pavement	Planters	Gardens
	101	55	10	10	15
	102	35	10	5	15
	103	28	10	5	15
	104	55	10	10	20
Time Patterns	105	22	10	5	15
Map Labels	106	31	10	5	15
	107	46	10	10	15
	108	38	10	5	15
	109	35	10	5	15
+ - ▲ • + ♠	110	75	20	20	10
	111	17	0	5	25
	112	59	15	10	10
	113	39	10	5	15
To_POTW Interceptor	114	29	10	5	15
Storage_Pump	ersion Storage_Unit erflow CSO_Outfall		uc e adamentamente		

€PA


- SWMM is widely used to evaluate gray infrastructure stormwater control strategies
- SWMM now offers a useful complement of LID stormwater controls
- SWMM is a useful tool for creating cost effective green / gray hybrid stormwater control solutions

Presentation 5

National Stormwater Calculator (SWC): SWC is a desktop application that estimates the annual amount of stormwater runoff from a specific location in the United States (including Puerto Rico), based on local soil conditions, land cover, and historic rainfall records. It is used to inform site developers on how well they can meet a desired stormwater retention target with and without the use of green infrastructure. It also allows users to consider how runoff may vary based both on historical weather and potential future climate. SWC was mentioned in President Obama's Climate Action Plan and is now a resource for LEED Project Credit 16 (Rainwater Management) certification by the U.S. Green Building Council for projects that are designed to reduce runoff volume and improve water quality of a site.

Jason Berner

Jason Berner is trained as a landscape architect and has been with EPA for over nine years. He has worked in EPA's Region 2 and Office of Water, and is currently working as a biologist in ORD. His research focuses on the application of green infrastructure planning tools, urban planning and design, community capacity building with municipalities and utilities, and supporting innovative water technologies. Jason has a Master of Landscape Architecture and a B.S. in Environmental Sciences from the University of Illinois at Urbana-Champaign.

Contact: <u>berner.jason@epa.gov</u>

*⇒***EPA**

Outline

U.S. EPA National Stormwater Calculator

- What, Why, and Who?
- Stormwater Calculator & Stormwater Management Model (SWMM)

o Green Infrastructure/Low Impact Development (LID) practices

- Using the Calculator
- **Potential Applications:** Post Construction Stormwater Standards, LEED, Sustainable Sites, Stormwater Concept Designs, LID Design Competitions
- Example Applications:
 - Redevelopment Plan for Spartanburg, SC: Green Street Design (EPA Green Infrastructure 2013 Technical Assistance Project)
 - U.S. Climate Resilience Toolkit
- Development of Cost Estimation Module and Mobile Web App

What Have We Created and Why?

Stormwater Management (Green Infrastructure/Low Impact Development) Design and Planning Tool

- Model pre- and post-construction stormwater runoff discharges
- Allow for screening-level analysis of various green infrastructure practices (green roofs, rain gardens, cisterns, etc.) throughout the U.S.
- Allow non-modelers to conduct screening level stormwater runoff analyses for small to medium sized (less than 1 acre to 1 dozen of acres) urban development sites

Who We Created the Calculator for...

- Urban & municipal planners
- Land developers
- Landscape architects
- Homeowners, etc.

...to meet stormwater design goals or requirements.

- ✓ What kind of user are you?
- How do you perform conceptual planning or design for stormwater management?

EPA	V	Vebsite			
					_
	ed States Environmental Protection A		Español	中文:繁體版 中文:简体版 Tiến	g Việt 한국I
Learn the Issues	Science & Technology	Laws & Regulations	About EPA	Search EPA.gov	٩
Water Researc				Cont	act Us Share
Nationa	al Stormwat	er Calcula	tor		
land cover, and	historic rainfall records. be used by anyone intere		5	imates are based on local soil coi iding	nditions,
 urban planner homeowners. 					
chosen site. The	user supplies information	n about the site's land c	over and selects the t	all, and evaporation information f ypes of low impact development wing seven green infrastructure p	(LID)
 Disconnection Rain harvesti Rain gardens 	ng				
 Green roofs Street plante Infiltration ba Porous paver 	asins				
http://www2.	epa.gov/wa	ter-researc	h/nationa	I-stormwater-c	alcula

72

⇔EPA

Spañol 中文: 繁體版 中文: 简体版 Tiếng Việt 한= United States Environmental Protection Agency									
Learn the Issues	Science & Technology	Laws & Regulations	About EPA		Search EPA.go	DV	٩		
Water Research	1					Contact Us	Share		
Storm Water Management Model (SWMM)									
Controls • Description • Capabilities • Applications • Support • Downloads • Helpful Resource • Contact Description EPA's Storm Wate	006 with Low Imp ces er Management Model (SV and design related to sto	VMM) is used througho	ut the world for	Subcatch View Runoff V Node View Ink View Node View O3-31-201 V View Time 19:45:00 V		Suites Runofi 200.0 400.0 800.0 800.0 CFS			

- Calculator is based on SWMM: dynamic rainfall-runoff simulation model for long-term simulation of runoff quantity
- SWMM runs in background of Stormwater Calculator

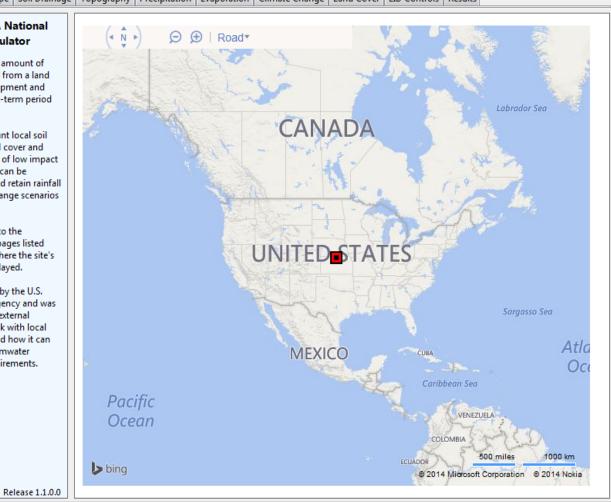
Desktop Application

👶 National Stormwater Calculator

€PA

- - -

Overview Location Soil Type Soil Drainage Topography Precipitation Evaporation Climate Change Land Cover LID Controls Results


Welcome to the EPA National Stormwater Calculator

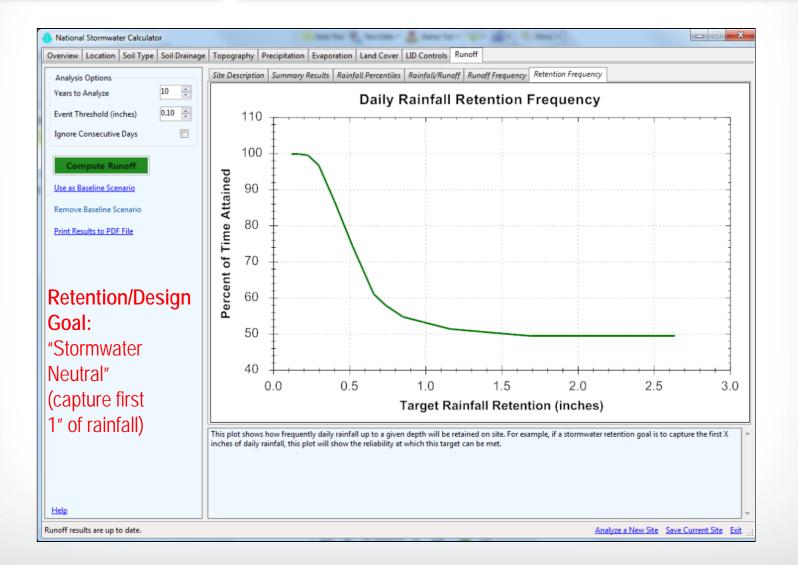
This calculator estimates the amount of stormwater runoff generated from a land parcel under different development and control scenarios over a long-term period of historical rainfall.

The analysis takes into account local soil conditions, topography, land cover and meteorology. Different types of low impact development (LID) practices can be employed to help capture and retain rainfall on-site. Localized climate change scenarios can also be analyzed.

Site information is provided to the calculator using the tabbed pages listed above. The Results page is where the site's runoff is computed and displayed.

This program was produced by the U.S. Environmental Protection Agency and was subject to both internal and external technical review. Please check with local authorities about whether and how it can be used to support local stormwater management goals and requirements.

Select the Location tab to begin analyzing a new site.

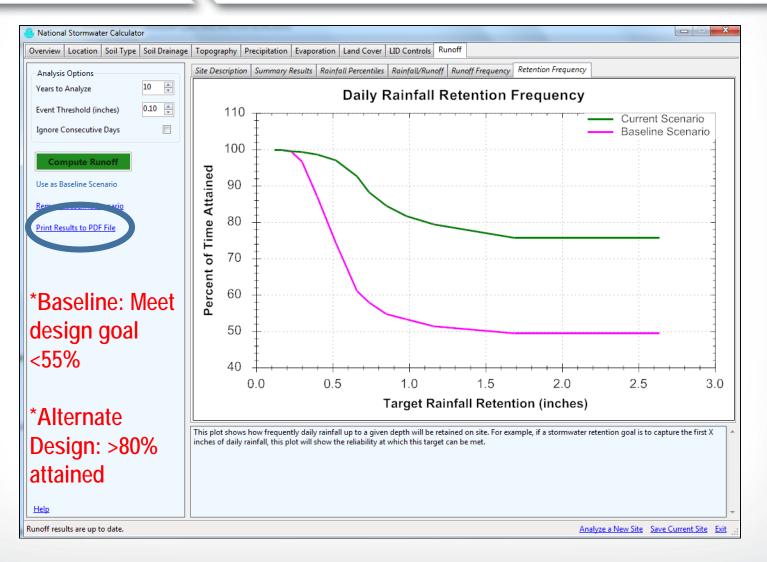

SEPA Stormwater Runoff Analysis National Stormwater Calculator Topography Precipitation Evaporation Climate Change Land Cover LID Controls Results Overview Location Soil Type Soil Drainage Site Name (Optional) ⊕ | Bird's eye* **Typical Singe Family Home** Search for an address or zip code: Q mount rainer, md Site Location (Latitude, Longitude) 38.94282161053263, -76.9632926223497 Site Area (acres - Optional) 0.2 * Open a previously saved site Bring your site into view on the map and then mark its exact location by clicking the mouse pointer over it. 10 m soft Corporation Pictometry Bird's Eye © 2016 Pictometry International Corp

Locate the site on the map.

Analyze a New Site Save Current Site Exit

Meeting Stormwater Runoff Design Goals

EPA



EPA Sizing LID Controls National Stormwater Calculator - O X Overview Location Soil Type Soil Drainage Topography Precipitation Evaporation Climate Change Land Cover LID Controls Results What % of your site's impervious area will be treated by the following LID practices? LID Design ж * 45 Disconnection * 10 Rain Harvesting Rain Garden * Rain Gardens are shallow depressions filled with an 25 Rain Gardens engineered soil mix that supports vegetative growth. * 0 They are usually used on individual home lots to Green Roofs capture roof runoff. * Street Planters 0 Typical soil depths range from 6 to 18 inches. * 0 Infiltration Basins * The Capture Ratio is the ratio of the rain garden's 0 Permeable Pavement area to the impervious area that drains onto it. * Design Storm for Sizing 0.00 (inches) (see Help) Click a practice to customize its design. * 6 Ponding Height (inches) * 12 Soil Media Thickness (inches) **Design Changes:** * 10.00 Soil Media Conductivity (in/hr) *Downspout * 5 % Capture Ratio disconnection Learn more ... *Rain barrels Size for Design Storm Restore Defaults Accept Cancel *Rain gardens ation Pictometry Bird's Eye © 2016 Pictometry International Corp Help

Assign LID practices to capture runoff from impervious areas.

Analyze a New Site Save Current Site Exit

Comparing Design Scenarios: Meeting Runoff Reduction Goals

Sepa

♦ EPA

Potential Applications

- State or MS4 (Municipal Separate Storm Sewer System) Post Construction Stormwater Design Standards
- Voluntary Stormwater Retrofits for private property owners
- Voluntary Programs: LEED (US Green Building Council) and Sustainable Sites Initiative stormwater credits, Rockefeller Foundation's 100 Resilient Cities
- Climate Resiliency Planning
- LID/Green Infrastructure Design Competitions: Campus RainWorks Challenge, DC Water Green Infrastructure Challenge, etc.

SEPA

Applications and Outreach

PUBLIC RELEASE: 22-APR-2016

Design competitions

 Tools demonstration workshops

UTA student team wins EPA Campus RainWorks Challenge for plan to reduce stormwater runoff

UNIVERSITY OF TEXAS AT ARLINGTON

A University of Texas at Arlington student team's design to reduce stormwater runoff that could result from future campus construction projects has won a national Environmental Protection Agency's Office of Water award as part of the agency's 2015 Campus RainWorks Challenge.

The College of Architecture, Planning and Public Affairs team included landscape architecture graduate students Baishaki Biswas, Sherry Fabricant, Jacob Schwarz and Ahoura Zandiatashbar, a doctoral student in urban planning and public policy. Their winning entry in the Master Plan category was called "Eco-Flow: A Water-Sensitive Placemaking Response to Climate Change" and centered on water runoff rates at sites of potential UTA student living, dining, recreation and parking facilities.

PRINT E-MAIL

IMAGE: BAISHAKHI BISWAS, A UTA COLLEGE OF ARCHITECTURE, PLANNING AND PUBLIC AFFAIRS STUDENT, SHOWS STORMWATER-REDUCTION PLANS TO JOEL BEAUVAIS, EPA'S DEPUTY ASSISTANT ADMINISTRATOR IN THE OFFICE OF WATER. view more >

CREDIT: UT ARLINGTON

AAAS (American Association for the Advancement of Science): http://www.eurekalert.org/pub_releases/2016-04/uotaust042216.php

€PA

Climate Resiliency Planning Application

U.S. Climate Resilience Toolkit

Steps to Resilience Case Studies Tools Topics Expertise

Search

Improving Water Quality by Dealing with the First Inch of Rain

The suburban city of Mount Rainier, Maryland, is doing its part to improve the water quality of a polluted river in its region: residents and organizations are using green infrastructure to reduce stormwater runoff.

Taking Action > Improving Water Quality by Dealing with the First Inch of Rain >

Just outside the northeastern boundary of Washington, D.C., the suburban city of Mount Rainier, Maryland, features affordably priced homes, pedestrian-friendly sidewalks, and a handful of historic buildings. The city—named after the better-known mountain in the Pacific Northwest—expanded in the early 1900s after a streetcar line began offering service in and out of the capital. Since the 1970s, officials in Mount Rainier have made substantial efforts to improve air and water quality for the town's residents, and to become a sustainable "green" community.

Mount Rainier lies within the watershed of the Anacostia River, which flows into the Potomac River. In turn, the Potomac River flows into the ecologically productive Chesapeake Bay. Unfortunately, the Anacostia—sometimes referred to as Washington's "forgotten river"—is severely polluted with toxic sediments, agricultural nutrients, and trash. As climate

Steps to Resilience:

Topic:

Ruilt Environment - Water and

http://toolkit.climate.gov/case-studies/improving-water-quality-dealing-first-inch-rain

Conceptual Design of Green Streets: Spartanburg, SC

EPA Green Infrastructure Technical Assistance

€PA

https://www.epa.gov/green-infrastructure/northside-neighborhood-greeninfrastructure-master-plan-spartanburg-sc

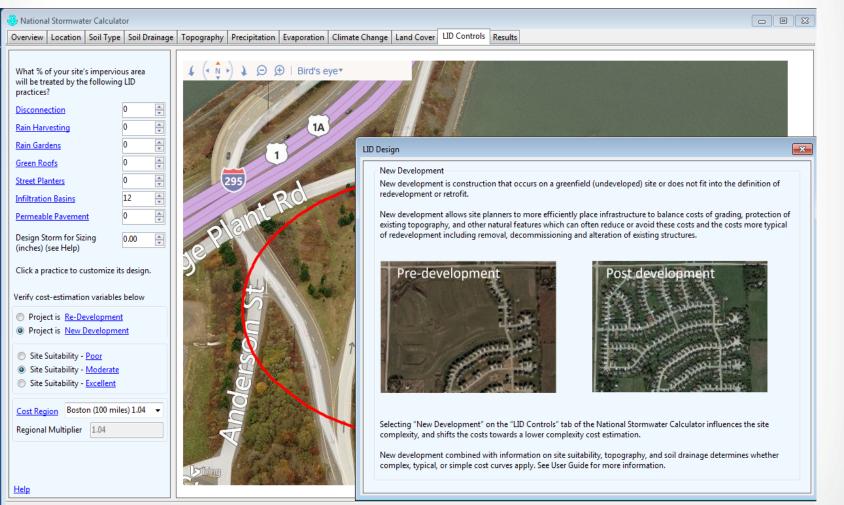
Spartanburg, SC Green Street Design

Stormwater runoff results from EPA Stormwater Calculator

SEPA

Scenario	Runoff	Infiltration	Evapo- transpiration		
Baseline	84%	5%	11%		
Scenario 1 (Street Planters)	18%	67%	15%		
Scenario 2 (Pervious Pavement)	17%	75%	8%		

https://www.epa.gov/green-infrastructure/northside-neighborhood-green-infrastructuremaster-plan-spartanburg-sc

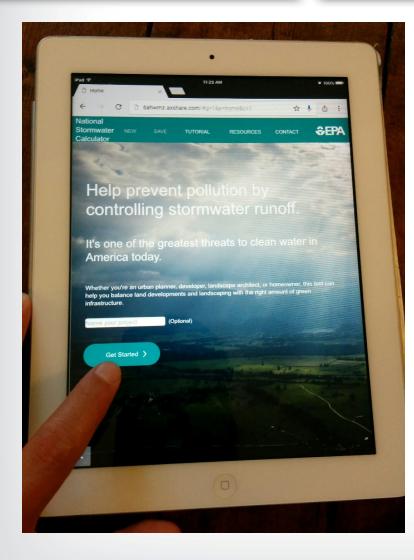

Sepa Development of Cost Estimation Module

- Intended Uses:
 - Planning level capital and operations & maintenance cost estimates (magnitude of costs between planning scenarios)
 - Regionalized and national cost estimates

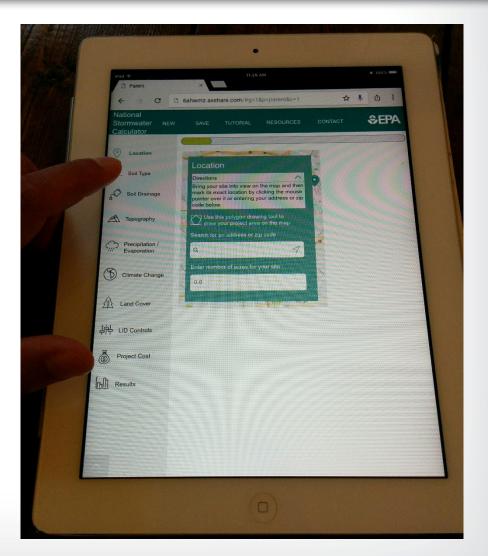
LID Controls: Cost Estimation Enhancements

Assign LID practices to capture runoff from impervious areas.

SEPA


Analyze a New Site Save Current Site Exit

Capital and Maintenance Cost Estimates


erview Location Soil Type Soil Drainag		oration Climate Cha		LID Controls						
Options Years to Analyze Event Threshold (inches)		Estima			Costs (estim ts Graphical View		5 US.\$)			
Ignore Consecutive Days		Drainage Area	Has Pre-trt?	Area Treated 11.00 ac		Baseline Scenario (B) Area Treated 11.00 ac		Difference (C - B) Area Treated 0.00 ac		
Actions		%								
Refresh Results	Cost By LID Control Type	Current / Baseline	Current / Baseline	Low	High	Low	High	Low	High	
Use as Baseline Scenario	Disconnection	NA / NA	No / No	\$0	\$0	\$0	\$0	\$0	\$0	
Remove Baseline Scenario	Rainwater Harvesting	NA / NA	No / No	\$0	\$0	\$0	\$0	\$0	\$0	
Nemove baseline Scenario	Rain Gardens	60 / NA	No / No	\$4,289	\$15,386	\$0	\$0	\$4,289	\$15,386	
Print Results to PDF File	Green Roofs	NA / NA	No / No	\$0	\$0	\$0	\$0	\$0	\$0	
Reports	Street Planters	NA / NA	No / No	\$0	\$0	\$0	\$0	\$0	\$0	
	Infiltration Basins	12/12	No / No	\$4,325	\$5,340	\$4,325	\$5,340	\$0	\$0	
Site Description	Permeable Pavement	25 / NA	No / No	\$285,567	\$428,932	\$0	\$0	\$285,567	\$428,932	
Summary Results	Note: site complexity variables that affect cost shown below:									
Rainfall / Runoff Frequency	Current Scenario				Baseline Scenario					
Rainfall Retention Frequency		Dev. Type New Development				New Development				
Runoff By Rainfall Percentile	Site	Site Suitability Moderate				Moderate				
Extreme Event Rainfall / Runoff	T,	Topography Steep (> 15% Slope)				Steep (> 15% Slope)				
Cost Summary		Soil Type A			A					
© cox summary	C	Cost Region Boston (100 miles) 1.04				Boston (100 miles) 1.04				
Help									Н	

€PA

Mobile Web App Development

SEPA

SEPA Contact Information

- Jason T. Berner (Office of Research and Development (ORD), National Risk Management Research Laboratory): <u>berner.jason@epa.gov</u>, 202-566-1671
- Michael Tryby (ORD, National Risk Management Research Laboratory): <u>tryby.michael@epa.gov</u>
- **Michelle Simon** (ORD, National Risk Management Research Laboratory): <u>simon.michelle@epa.gov</u>

National Stormwater Calculator Website: <u>epa.gov/water-research/national-stormwater-calculator</u>

SAFE AND SUSTAINABLE WATER RESOURCES RESEARCH PROGRAM

Questions and Answers Session