Site 3016 -- Bar Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befo | re Excavat | ion on 10/: | 18/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 0.74 U | 0.71 U | 0.85 U | 2.0 U | 0.94 U | 0.78 U | 0.74 U | 0.72 U | 0.67 U | 0.77 U | 0.68 U | 0.64 U | 0.59 U | 2.0 U | 0.58 U | 5 | | 5 | | | Chromium | μg/L | 2.6 U | 2.9 U | 2.1 U | 2.9 U | 2.9 U | 2.9 U | 3.0 U | 2.7 U | 3.4 U | 3.4 U | 3.3 U | 3.4 U | 3.3 U | 3.5 U | 3.4 U | 3.4 U | 3.4 U | 3.0 U | 3.2 U | 100 | | 100 | | | Copper | μg/L | 3.9 U | 3.1 U | 4.3 U | 3.8 U | 3.9 U | 3.5 U | 2.8 U | 2.9 U | 3.6 U | 3.2 U | 3.0 U | 3.0 U | 2.8 U | 3.0 U | 3.1 U | 2.7 U | 2.6 U | 10 U | 2.6 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.4 | 2.1 | 2.2 | 2.4 | 2.3 | 2.6 | 2.5 | 2.2 | 2.4 | 2.0 U | 1.8 U | 1.7 U | 1.6 U | 1.8 U | 1.6 U | 1.6 U | 1.5 U | 1.2 U | 1.5 U | | 15 | 0 | | | Lead (Duplicate) | μg/L | 1.35 | 1.25 | 1.25 | 1.63 | 1.59 | 1.84 | 1.75 | 1.50 | 1.29 | 1.00 | 0.86 | 0.84 | 0.83 | 0.82 | 0.81 | 0.82 | 0.84 | 0.82 | 0.77 | | 15 | 0 | | | Manganese | μg/L | 1.8 J | 1.4 J | 1.7 J | 1.3 J | 1.2 J | 1.2 J | 1.2 J | 1.1 J | 1.8 J | 1.8 J | 1.6 J | 1.6 J | 1.5 J | 1.6 J | 1.5 J | 1.4 J | 1.4 J | 1.0 J | 1.4 J | | | | 50 | | Nickel | μg/L | 2.2 U | 1.7 U | 2.5 U | 1.5 U | 1.4 U | 1.4 U | 1.4 U | 1.3 U | 1.8 U | 1.7 U | 1.6 U | 1.6 U | 1.5 U | 1.6 U | 1.6 U | 1.4 U | 1.4 U | 2.3 U | 1.3 U | | | | | | Zinc | μg/L | 82 | 49 | 61 | 26 | 26 | 22 | 18 J | 18 J | 22 | 18 J | 18 J | 17 J | 16 J | 17 J | 16 J | 16 J | 16 J | 14 J | 13 J | | | | 5000 | | Aluminum | mg/L | 0.088 J- | 0.083 J- | 0.081 J- | 0.090 J- | 0.088 J- | 0.091 J- | 0.091 J- | 0.086 J- | 0.090 J- | 0.095 J- | 0.092 J- | 0.087 J- | 0.087 J- | 0.088 J- | 0.084 J- | 0.089 J- | 0.092 J- | 0.090 J- | 0.090 J- | | | | 0.05 to 0.2 | | Calcium | mg/L | 37 J+ | 36 J+ | 36 J+ | 38 J+ | 37 J+ | 37 J+ | 38 J+ | 37 J+ | 37 J+ | 39 J+ | 38 J+ | 37 J+ | 37 J+ | 37 J+ | 35 J+ | 37 J+ | 37 J+ | 37 J+ | 38 J+ | | | | | | Iron | mg/L | 0.022 U | 0.045 U | 0.025 U | 0.10 U | 0.026 U | 0.10 0.021 U | 0.10 U | | | | 0.3 | | Magnesium | mg/L | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 13 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.7 | 1.7 | 1.6 | 1.6 | 1.6 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 12 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | 12 | 12 | 11 | 11 | 11 | 12 | 12 | | | | | | Tin | mg/L | 0.0023 U | 0.020 U | 0.020 U | 0.020 U | 0.020 U | 0.0017 U | 0.020 | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | oled | | | | | | | | | 110 | | | | | | Chloride | mg/L | | | | | • | • | • | | Not Sam | oled | • | | • | • | • | | • | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.15 J | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 23.9 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3016 -- Bar Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | esults - Aft | er Excavat | ion on 12/ | 1/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | Parameter | Units | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (MCL) | Level (AL) | (MCLG) | IVICE | | | | (123 IIIL) | (123 IIIL) | (1 liter) System | | | (IVICEG) | | | Cadmium | μg/L | 0.2 U 5 | | 5 | | | Chromium | μg/L | 0.52 U | 0.57 U | 0.50 U | 0.47 U | 0.52 U | 0.48 U | 0.51 U | 0.48 U | 0.57 U | 0.52 U | 0.46 U | 0.48 U | 0.48 U | 0.56 U | 0.49 U | 0.53 U | 0.53 U | 0.52 U | 0.56 U | 100 | | 100 | | | Copper | μg/L | 1.1 | 0.9 J | 1.0 | 1.1 | 1.1 | 1.7 | 1.0 | 0.92 J | 1.1 | 0.98 J | 0.90 J | 0.83 J | 0.93 J | 0.89 J | 0.84 J | 1.0 | 0.84 J | 0.86 J | 0.76 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 0.68 J | 0.72 J | 0.85 J | 0.9 J | 0.87 J | 0.97 J | 1.1 | 1.1 | 1.1 | 1.0 | 0.86 J | 0.80 J | 0.81 J | 0.82 J | 0.77 J | 0.79 J | 0.77 J | 0.78 J | 0.70 J | | 15 | 0 | | | Manganese | μg/L | 0.66 U | 0.68 U | 0.80 U | 0.68 U | 0.66 U | 0.63 U | 0.64 U | 0.62 U | 0.66 U | 0.75 U | 0.68 U | 0.72 U | 0.66 U | 0.70 U | 0.65 U | 0.71 U | 0.64 U | 0.67 U | 0.70 U | | | | 50 | | Nickel | μg/L | 0.83 | 0.56 | 0.63 | 0.51 | 0.52 | 0.50 | 0.53 | 0.52 | 0.55 | 0.49 J | 0.55 | 0.54 | 0.62 | 0.50 J | 0.49 J | 0.72 | 0.50 J | 0.56 | 0.53 | | | | | | Tin | μg/L | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | | | | | | Zinc | μg/L | 40.7 | 32.0 | 44.2 | 20.6 | 18.8 | 20.6 | 15.5 | 14.2 | 16.8 | 13.5 | 12.9 | 12.2 | 13.6 | 12.2 | 11.7 | 12.5 | 11.1 | 11.4 | 7.5 | | | | 5000 | | Aluminum | mg/L | 0.0373 | 0.0388 | 0.0382 | 0.0377 | 0.0380 | 0.0388 | 0.0393 | 0.0392 | 0.0394 | 0.0387 | 0.0387 | 0.0383 | 0.0397 | 0.0399 | 0.0382 | 0.0405 | 0.0391 | 0.0389 | 0.0397 | | | | 0.05 to 0.2 | | Calcium | mg/L | 34.5 J | 34.4 J | 35.8 J | 35.5 J | 34.8 J | 34.4 J | 35.4 J | 34.9 J | 35.0 J | 34.4 J | 35.2 J | 34.8 J | 34.5 J | 35.2 J | 34.3 J | 34.7 J | 35.2 J | 35.1 J | 34.2 J | | | | | | Iron | mg/L | 0.0192 J | 0.100 U | 0.042 J | 0.0253 J | 0.0153 J | 0.166 | 0.100 U | 0.100 U | 0.0146 J | 0.0195 J | 0.100 U | 0.0166 J | 0.0178 J | 0.0277 J | 0.0297 J | 0.0243 J | 0.0138 J | 0.0331 J | 0.0204 J | | | | 0.3 | | Magnesium | mg/L | 11.8 | 11.8 | 12.3 | 12.2 | 11.9 | 11.8 | 12.2 | 12.0 | 11.9 | 11.8 | 12.0 | 11.9 | 11.8 | 12.0 | 11.7 | 11.8 | 11.9 | 11.9 | 11.6 | | | | | | Potassium | mg/L | 1.58 | 1.57 | 1.57 | 1.64 | 1.63 | 1.57 | 1.61 | 1.60 | 1.58 | 1.57 | 1.60 | 1.57 | 1.55 | 1.57 | 1.57 | 1.56 | 1.58 | 1.57 | 1.57 | | | | | | Sodium | mg/L | 10.5 J | 10.4 J | 10.9 J | 10.9 J | 10.7 J | 10.6 J | 10.9 J | 10.7 J | 10.8 J | 10.5 J | 10.7 J | 10.6 J | 10.5 J | 10.8 J | 10.5 J | 10.5 J | 10.7 J | 10.7 J | 10.4 J | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | | | | | | | | | | 103 | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 16.6 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 0.111 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 27.0 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.232 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms
per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3066 -- Bathroom Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ır Results - | Before Ex | cavation o | n 10/10/20 | 016 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|--------------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | \$15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 2.6 U | 2.9 U | 2.6 U | 3.1 U | 2.5 U | 2.9 U | 2.7 U | 2.7 U | 2.6 U | 2.6 U | 2.8 U | 2.4 U | 2.6 U | 2.8 U | 2.8 U | 2.8 U | 100 | | 100 | | | Copper | μg/L | 11 | 2.5 J | 5.6 J | 4.2 J | 3.6 J | 3.2 J | 2.8 J | 2.8 J | 2.2 J | 3.7 J | 1.9 J | 3.1 J | 2.6 J | 1.9 J | 3.1 J | 4.4 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 23 | 14 | 26 | 27 | 24 | 22 | 25 | 24 | 20 | 17 | 16 | 9.1 | 5.6 | 5.5 | 5.2 | 3.6 | | 15 | 0 | | | Manganese | μg/L | 3.0 J | 3.4 J | 4.3 | 4.8 | 4.2 | 3.6 J | 3.8 J | 3.4 J | 3.4 J | 3.8 J | 3.9 J | 3.6 J | 3.3 J | 3.4 J | 3.6 J | 3.9 J | | | | 50 | | Nickel | μg/L | 2.2 J | 1.9 J | 4.0 J | 2.6 J | 3.7 J | 1.9 J | 2.1 J | 1.6 J | 1.7 J | 2.1 J | 1.9 J | 2.6 J | 3.8 J | 1.8 J | 2.0 J | 2.2 J | | | | | | Zinc | μg/L | 290 | 110 | 84 | 67 | 28 | 21 | 19 J | 64 | 15 J | 18 J | 13 J | 22 | 13 J | 11 J | 12 J | 16 J | | | | 5000 | | Aluminum | mg/L | 0.078 J- | 0.11 J- | 0.13 J- | 0.14 J- | 0.14 J- | 0.15 J- | 0.14 J- | 0.14 J- | 0.14 J- | 0.13 J- | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 J+ | 35 J+ | 35 J+ | 36 J+ | 36 J+ | 34 J+ | 36 J+ | 36 J+ | 35 J+ | 33 J+ | 36 J+ | 35 J+ | 37 J+ | 35 J+ | 35 J+ | 35 J+ | | | | | | Iron | mg/L | 0.11 | 0.16 | 0.25 | 0.30 | 0.26 | 0.22 | 0.24 | 0.21 | 0.20 | 0.19 | 0.2 | 0.20 | 0.18 | 0.17 | 0.17 | 0.18 | | | | 0.3 | | Magnesium | mg/L | 13 J+ | 12 J+ | 12 J+ | 13 J+ | 13 J+ | 12 J+ | 13 J+ | 13 J+ | 13 J+ | 12 J+ | 13 J+ | 12 J+ | 13 J+ | 13 J+ | 13 J+ | 12 J+ | | | | | | Potassium | mg/L | 1.6 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 11 | 12 | 11 | 12 | 12 | 11 | 11 | 12 | 11 | 12 | 11 | 11 | 11 | | | | | | Tin | mg/L | 0.0025 U | 0.0023 U | 0.020 U | 0.0017 U | 0.020 0.0021 U | 0.020 U | 0.020 U | 0.0017 U | 0.0018 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 5.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.17 J | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 23.9 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3066 -- Bathroom Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | Your Result | ts - After Ex | cavation on | 12/13/201 | .6 | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------|-----------|-----------|-----------|-----------|-------------|---------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1 st samuela | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | 1st sample
(125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 5 | | 5 | | | Chromium | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 100 | | 100 | | | Copper | μg/L | 32.2 | 2.44 | 6.19 | 2.25 | 1.94 | 2.30 | 1.85 | 1.57 | 1.27 | 1.45 | 1.26 | 1.14 | 1.00 U | 1.00 | 1.12 | 1.00 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 41.9 | 17.4 | 25.0 | 21.3 | 17.3 | 17.1 | 17.2 | 17.0 | 15.7 | 13.0 | 9.46 | 4.99 | 2.96 | 2.64 | 2.59 | 2.02 | | 15 | 0 | | | Zinc | μg/L | 1000 | 250 | 66.8 | 47.9 | 24.5 | 17.8 | 14.8 | 17.2 | 12.6 | 11.0 | 10.4 | 10.0 U | 10.3 | 10.0 U | 10.0 U | 10.0 U | | | | 5000 | | Manganese | μg/L | 8 U | 8 U | 9.9 | 9.4 | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | | | | 50 | | Nickel | μg/L | 12 U | | | | | Aluminum | mg/L | 0.200 U | | | 0.05 to 0.2 | | Calcium | mg/L | 35.1 | 35.0 | 34.9 | 34.1 | 34.9 | 33.8 | 34.0 | 34.6 | 35.1 | 34.8 | 36.8 | 34.5 | 35.0 | 35.0 | 34.7 | 35.0 | | | | | | Iron | mg/L | 0.273 | 0.123 | 0.225 | 0.137 | 0.108 | 0.0993 | 0.0979 | 0.104 | 0.132 | 0.110 | 0.119 | 0.100 | 0.0961 | 0.0954 | 0.0942 | 0.0800 U | | | | 0.3 | | Magnesium | mg/L | 12.5 | 11.9 | 12.0 | 11.7 | 12.0 | 11.6 | 11.6 | 11.9 | 12.0 | 11.9 | 12.8 | 11.8 | 12.0 | 12.0 | 11.9 | 12.1 | | | | | | Potassium | mg/L | 1.77 | 1.70 | 1.71 | 1.72 | 1.73 | 1.65 | 1.67 | 1.70 | 1.74 | 1.66 | 1.84 | 1.68 | 1.70 | 1.68 | 1.68 | 1.72 | | | | | | Sodium | mg/L | 11.1 | 10.8 | 10.8 | 10.7 | 10.9 | 10.6 | 10.7 | 10.8 | 10.9 | 10.8 | 11.4 | 10.7 | 10.9 | 10.8 | 10.8 | 10.9 | | | | | | Tin | mg/L | 0.0200 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | No | ot Sampled | | | | | | | | 110 J | | | | | | Chloride | mg/L | | | | | | | No | ot Sampled | | | | | | | | 18.1 | | | | 250 | | Fluoride | mg/L | | | | | | | No | ot Sampled | | | | | | | | 0.09 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | · | | | | | No | ot Sampled | | | | | | | | 29.7 L | | | | 250 | | Total Phosphorus | mg/L | | | | | | | No | ot Sampled | | | | | | | | 0.17 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated K
= Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). L = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3070 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befo | re Excavat | ion on 10/ | 11/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 1.8 U | 2.0 U | 2.0 U | 2.0 U | 0.55 U | 5 | | 5 | | | Chromium | μg/L | 3.6 U | 3.6 U | 3.6 U | 3.6 U | 3.5 U | 3.3 U | 3.5 U | 3.3 U | 3.7 U | 3.6 U | 4.9 | 3.3 U | 3.3 U | 3.5 U | 3.6 U | 100 | | 100 | | | Copper | μg/L | 12 | 2.8 U | 2.4 U | 2.3 U | 2.3 U | 2.2 U | 2.0 U | 2.1 U | 2.2 U | 1.8 U | 1.7 U | 1.6 U | 3.7 U | 1.6 U | 3.4 U | 1.6 U | 1.7 U | 1.6 U | 1.9 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 9.5 | 7.0 | 5.1 | 8.4 | 8.6 | 8.6 | 8.6 | 9.2 | 10 | 11 | 13 | 9.1 | 5.0 | 3.7 | 5.4 | 3.7 | 3.6 | 4.2 | 3.4 | | 15 | 0 | | | Lead (Duplicate) | μg/L | 7.37 | 5.65 | 3.88 | 6.11 | 6.88 | 6.82 | 6.61 | 6.93 | 7.55 | 8.93 | 10.1 | 7.14 | 3.82 | 2.89 | 2.74 | 2.67 | 2.66 | 2.63 | 2.18 | | | | | | Manganese | μg/L | 2.7 J | 2.5 J | 1.7 J | 1.6 J | 2.2 J | 1.8 J | 1.8 J | 1.5 J | 1.6 J | 1.5 J | 2.7 J | 1.6 J | 1.6 J | 1.6 J | 3.3 J | 1.9 J | 1.9 J | 1.8 J | 2.9 J | | | | 50 | | Nickel | μg/L | 4.9 | 2.8 J | 2.0 J | 1.8 J | 1.8 J | 1.7 J | 1.8 J | 1.8 J | 1.9 J | 1.8 J | 1.8 J | 1.8 J | 2.2 J | 1.8 J | 3.4 J | 2.0 J | 1.9 J | 1.9 J | 2.3 J | | | | | | Zinc | μg/L | 270 | 140 | 71 | 32 | 26 | 28 | 32 | 23 | 20 J | 17 J | 16 J | 15 J | 19 J | 14 J | 17 J | 13 J | 15 J | 13 J | 21 | | | | 5000 | | Aluminum | mg/L | 0.068 | 0.072 | 0.081 | 0.087 | 0.084 | 0.085 | 0.086 | 0.087 | 0.087 | 0.081 | 0.084 | 0.084 | 0.084 | 0.081 | 0.098 | 0.097 | 0.096 | 0.097 | 0.085 | | | | 0.05 to 0.2 | | Calcium | mg/L | 37 | 36 | 39 | 39 | 37 | 38 | 38 | 39 | 39 | 37 | 37 | 37 | 37 | 38 | 36 | 37 | 36 | 36 | 38 | | | | | | Iron | mg/L | 0.057 U | 0.063 U | 0.046 U | 0.084 U | 0.066 U | 0.068 U | 0.049 U | 0.052 U | 0.084 U | 0.032 U | 0.031 U | 0.036 U | 0.026 U | 0.026 U | 0.061 U | 0.081 U | 0.061 U | 0.059 U | 0.028 U | | | | 0.3 | | Magnesium | mg/L | 13 | 13 | 14 | 14 | 13 | 14 | 14 | 14 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.8 | 1.7 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.7 | 1.6 | 1.7 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | | | | | | Sodium | mg/L | 12 J+ | 12 J+ | 13 J+ | 13 J+ | 12 J+ | 13 J+ | 13 J+ | 13 J+ | 13 J+ | 12 J+ | 13 J+ | 12 J+ | 12 J+ | 13 J+ | 12 J+ | 12 J+ | 12 J+ | 12 J+ | 13 J+ | | | | | | Tin | mg/L | 0.020 U 0.023 U | 0.020 U | 0.020 U | 0.020 U | 0.020 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | oled | | | | | | | | | 110 | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.15 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 23.9 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.018 J | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3070 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your | Results - Af | fter Excavat | ion on 11/8, | /2016 | | | | | | | | | Compariso | on Standards | | |------------------|--------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | raiametei | Offics | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | 16th
sample
(1 liter) | 17th
sample
(1 liter) | 18th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 0.13 J | 0.06 J | 0.03 J | 0.03 J | 0.02 J | 0.02 J | 0.02 J | 0.20 U | 0.20 U | 0.20 U | 0.20 U | 0.03 J | 0.20 U 5 | | 5 | | | Chromium | μg/L | 0.53 J | 0.52 J | 0.55 J | 0.51 U | 0.58 J | 0.55 J | 0.54 J | 0.61 J | 0.63 J | 0.56 J | 0.54 J | 0.57 J | 0.57 J | 0.58 J | 0.56 J | 0.55 J | 0.59 J | 0.60 J | 0.62 J | 100 | | 100 | | | Copper | μg/L | 27.7 | 3.1 | 1.8 | 1.5 | 1.4 | 1.4 | 1.3 | 1.3 | 1.3 | 1.1 | 1.1 | 1.0 | 1.0 | 1.0 | 0.97 J | 0.94 J | 1 J | 0.97 J | 0.92 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 3.5 | 2.7 | 3.3 | 3.8 | 4.0 | 4.2 | 4.3 | 4.3 | 4.0 | 4.0 | 4.0 | 3.3 | 2.4 | 2.1 | 2.0 | 2.0 | 2.0 | 2.0 | 1.8 | | 15 | 0 | | | Manganese | μg/L | 1.5 | 1.1 | 1.2 | 1.2 | 1.3 | 1.4 | 1.3 | 1.3 | 1.3 | 1.2 | 1.0 | 1.0 | 1.1 | 1.1 | 1.0 | 1.0 | 1.1 | 1.1 | 1.1 | | | | 50 | | Nickel | μg/L | 8.6 | 1.5 | 0.66 U | 0.59 U | 0.60 U | 0.81 | 1.0 | 0.91 | 0.84 | 0.68 U | 0.63 U | 0.62 U | 1.4 | 0.66 U | 0.53 U | 0.54 U | 0.70 U | 0.56 U | 0.69 U | | | | | | Tin | μg/L | 0.19 J | 0.07 J | 1.0 U 0.08 J | 1.0 U | 1.0 U | 1.0 U | 1.0 U | 0.08 J | | | | |
| Zinc | μg/L | 206 J+ | 64.6 J+ | 25.6 J+ | 15.4 J+ | 13.5 J+ | 13.9 J+ | 15.0 J+ | 12.2 J+ | 11.0 J+ | 10.2 J+ | 8.9 J+ | 9.4 J+ | 9.9 J+ | 8.7 J+ | 8.3 J+ | 8.2 J+ | 9.3 J+ | 8.3 J+ | 7.9 J+ | | | | 5000 | | Aluminum | mg/L | 0.0564 | 0.0660 | 0.0769 | 0.0736 | 0.0684 | 0.0743 | 0.0726 | 0.104 | 0.0709 | 0.0695 | 0.0696 | 0.0813 | 0.0798 | 0.0727 | 0.0740 | 0.0712 | 0.0718 | 0.0713 | 0.0735 | | | | 0.05 to 0.2 | | Calcium | mg/L | 33.2 | 32.6 | 33.1 | 33.6 | 33.4 | 32.9 | 33.9 | 32.9 | 33.0 | 33.0 | 33.4 | 33.1 | 32.3 | 32.6 | 32.3 | 33.1 | 32.7 | 32.7 | 33.2 | | | | | | Iron | mg/L | 0.0390 J | 0.0456 J | 0.0512 J | 0.0538 J | 0.0418 J | 0.0564 J | 0.0427 J | 0.0357 J | 0.0509 J | 0.0325 J | 0.0334 J | 0.0416 J | 0.0247 J | 0.0267 J | 0.0273 J | 0.0290 J | 0.0219 J | 0.0220 J | 0.0273 J | | | | 0.3 | | Magnesium | mg/L | 11.8 | 11.6 | 11.8 | 12.0 | 11.9 | 11.7 | 12.1 | 11.7 | 11.7 | 11.7 | 11.8 | 11.8 | 11.6 | 11.7 | 11.6 | 11.8 | 11.7 | 11.7 | 11.9 | | | | | | Potassium | mg/L | 1.80 | 1.69 | 1.67 | 1.68 | 1.70 | 1.65 | 1.70 | 1.67 | 1.68 | 1.64 | 1.68 | 1.65 | 1.56 | 1.60 | 1.59 | 1.61 | 1.67 | 1.62 | 1.62 | | | | | | Sodium | mg/L | 11.4 | 11.1 | 11.1 | 11.3 | 11.3 | 11.0 | 11.3 | 11.2 | 11.0 | 11.0 | 11.2 | 11.0 | 10.8 | 10.9 | 10.8 | 10.9 | 10.9 | 11.0 | 10.9 | | | | | | Total Alkalinity | mg/L | | | | | | | | | Not Sam | npled | | | | | | | | | 104 | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | npled | | • | | | | • | | | 16.8 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | npled | | | | | | | | | 0.149 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | npled | | | | | | | | | 26.4 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | npled | | | | | | | | | 0.121 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3071 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ır Results - | Before Ex | cavation o | n 10/15/20 | 16 | | | | | | | Compariso | n Standards | | |------------------|------------|------------------------|------------------------|-----------|-----------|-----------|-----------|--------------|-----------|------------|------------|-----------|-----------|-----------|-----------|-------------|---------------------|----------------------------|------------|-------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S1 5 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | Action | Contaminant | Secondary | | | | 1-4 | 2 | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Contaminant
Level (MCL) | Level (AL) | Level Goal | MCL | | | | 1st sample
(125 mL) | 2nd sample
(125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 1.8 U | 1.9 U | 2.0 U | 1.9 U | 1.9 U | 1.6 U | 1.9 U | 2.0 U | 2.1 U | 2.1 U | 2.2 U | 2.2 U | 2.1 U | 2.1 U | 2.1 U | 2.1 U | 100 | | 100 | | | Copper | μg/L | 58 | 120 | 20 | 9.2 U | 6.6 U | 6.8 U | 4.2 U | 4.3 U | 3.8 U | 3.9 U | 3.7 U | 3.6 U | 3.6 U | 3.8 U | 3.4 U | 5.0 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 9.9 | 15 | 5.3 | 6.9 | 9.0 | 11 | 12 | 14 | 19 | 19 | 17 | 15 | 11 | 7.8 | 5.5 | 4.8 | | 15 | 0 | | | Manganese | μg/L | 2.4 J | 1.2 J | 2.2 J | 1.4 J | 1.1 J | 1.3 J | 0.82 J | 0.82 J | 0.70 J | 0.71 J | 1.2 J | 0.72 J | 1.0 J | 0.82 J | 0.88 J | 0.96 J | | | | 50 | | Nickel | μg/L | 5.2 | 20 | 2.0 J | 0.94 J | 1.1 J | 1.3 J | 0.73 J | 0.75 J | 0.73 J | 0.76 J | 0.76 J | 0.70 J | 0.71 J | 0.78 J | 0.73 J | 0.89 J | | | | | | Zinc | μg/L | 320 | 370 | 160 | 46 | 38 | 34 | 29 | 25 | 23 | 29 | 22 | 21 | 22 | 21 | 20 | 20 U | | | | 5000 | | Aluminum | mg/L | 0.066 | 0.065 | 0.085 | 0.085 | 0.076 | 0.084 | 0.079 | 0.079 | 0.080 | 0.080 | 0.089 | 0.084 | 0.080 | 0.076 | 0.077 | 0.076 | | | | 0.05 to 0.2 | | Calcium | mg/L | 37 | 35 | 37 | 37 | 36 | 37 | 36 | 37 | 37 | 36 | 38 | 37 | 36 | 36 | 36 | 36 | | | | | | Iron | mg/L | 0.066 J | 0.10 U | 0.021 J | 0.10 U 0.043 J | 0.10 U | | | | 0.3 | | Magnesium | mg/L | 13 J- | 12 J- | 13 J- | 13 J- | 12 J- | 12 J- | 13 J- | 13 J- | 13 J- | 12 J- | 13 J- | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 11 | 11 | 11 | 11 | 11 | | | | | | Tin | mg/L | 0.0016 U | 0.020 0.0020 U | 0.020 U | 0.020 U | 0.020 U | 0.0021 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | · | | · | Not | Sampled | · | · | · | · | · | · | · | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.14 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | · | | | | | Not | Sampled | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. **Secondary MCL** = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their # Site 3071 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | Yo | ur Results | - After Exc | avation on | 11/18/20 | 16 | | | | | | Ī | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|----------------------|-------------------------------------|------------------| | | | S01
Faucet | S02
Under Sink | \$03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Action
Level (AL) | Contaminant
Level Goal
(MCLG) | Secondary
MCL | | Cadmium | μg/L | 0.03 J | 0.08 J | 0.08 J | 0.03 J | 0.20 U | 0.02 J | 0.20 U | 0.02 J | 0.20 U | 0.20 U |
0.20 U | 0.20 U | 5 | | 5 | | | Chromium | μg/L | 0.84 U | 0.88 U | 0.88 U | 0.79 U | 0.78 U | 0.83 U | 0.80 U | 0.79 U | 0.86 U | 0.85 U | 0.87 U | 0.83 U | 0.82 U | 0.94 U | 0.86 U | 0.86 U | 100 | | 100 | | | Copper | μg/L | 31 | 34.5 | 16.3 | 11.7 | 4.4 | 4.2 | 4.2 | 4.5 | 3.8 | 3.4 | 3.5 | 3.4 | 3.8 | 3.6 | 3.3 | 2.7 | | 1300 | 1300 | 1000 | | Lead | μg/L | 7.0 | 6.0 | 6.5 | 10.8 | 7.7 | 7.4 | 8.3 | 10.6 | 16.1 | 17.4 | 17.3 | 15.6 | 12.2 | 8.0 | 6.6 | 4.4 | | 15 | 0 | | | Manganese | μg/L | 3.3 | 1.4 | 2.8 | 2.0 | 1.2 | 0.82 J | 0.83 J | 0.68 J | 0.63 J | 0.67 J | 0.73 J | 0.70 J | 0.74 J | 0.84 J | 0.89 J | 0.64 J | | | | 50 | | Nickel | μg/L | 2.4 | 4.9 | 1.1 | 1.0 | 0.71 | 0.69 | 0.71 | 0.71 | 0.72 | 0.68 | 0.70 | 0.68 | 0.69 | 0.70 | 0.71 | 0.68 | | | | | | Tin | μg/L | 1.0 U | 0.08 U | 1.0 | | | | | Zinc | μg/L | 135 | 235 | 132 | 54.8 | 40.2 | 38.9 | 33.6 | 27.4 | 24.0 | 22.0 | 22.0 | 20.5 | 20.3 | 23.1 | 20.4 | 12.6 | | | | 5000 | | Aluminum | mg/L | 0.0630 | 0.0496 | 0.0706 | 0.0761 | 0.0538 | 0.0522 | 0.0511 | 0.0509 | 0.0500 | 0.0495 | 0.0492 | 0.0483 | 0.0463 | 0.046 | 0.0451 | 0.0407 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35.8 | 36.7 | 37.2 | 36.9 | 38.3 | 37.5 | 38.5 | 37.3 | 37.9 | 37.1 | 38.2 | 37.2 | 37.6 | 37.2 | 37.5 | 37.2 | | | | | | Iron | mg/L | 0.0673 U | 0.0198 U | 0.0352 U | 0.101 | 0.073 U | 0.0284 U | 0.0288 U | 0.0264 U | 0.0211 U | 0.100 U | 0.0202 U | 0.0200 U | 0.0223 U | 0.0214 U | 0.100 U | 0.100 U | | | | 0.3 | | Magnesium | mg/L | 12.3 | 12.1 | 12.4 | 12.2 | 12.4 | 12.1 | 12.4 | 12.1 | 12.4 | 12.1 | 12.4 | 12.1 | 12.3 | 12.1 | 12.2 | 12.2 | | | | | | Potassium | mg/L | 1.59 | 1.65 | 1.70 | 1.65 | 1.65 | 1.66 | 1.70 | 1.61 | 1.72 | 1.63 | 1.66 | 1.65 | 1.74 | 1.64 | 1.66 | 1.67 | | | | | | Sodium | mg/L | 11.1 | 11.4 | 11.4 | 11.3 | 11.5 | 11.4 | 11.6 | 11.3 | 11.6 | 11.3 | 11.6 | 11.3 | 11.4 | 11.3 | 11.6 | 11.5 | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 104 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 17.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.130 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 30.0 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.177 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3074 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befo | re Excavat | ion on 10/1 | 15/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | \$08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 2.0 U | 0.86 U | 2.0 5 | | 5 | | | Chromium | μg/L | 1.9 U | 1.9 U | 2.5 U | 1.9 U | 1.9 U | 1.7 U | 2.0 U | 1.9 U | 1.7 U | 1.5 U | 1.7 U | 1.7 U | 1.8 U | 1.9 U | 2.7 U | 2.0 U | 1.7 U | 1.8 U | 1.9 U | 100 | | 100 | | | Copper | μg/L | 42 | 29 | 7.7 U | 4.7 U | 4.1 U | 3.8 U | 4.0 U | 3.7 U | 3.4 U | 3.2 U | 3.1 U | 3.4 U | 3.1 U | 3.3 U | 3.8 U | 3.1 U | 5.4 U | 2.9 U | 3.9 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.2 J | 1.5 J | 2.5 | 1.5 J | 1.6 J | 1.6 J | 1.6 J | 1.5 J | 1.5 J | 1.6 J | 1.9 J | 4.3 | 5.3 | 5.2 | 1.7 J | 1.6 J | 2.0 | 1.5 J | 1.5 J | | 15 | 0 | | | Lead (Duplicate) | μg/L | 0.99 | 1.30 | 1.49 | 1.44 | 1.46 | 1.44 | 1.40 | 1.34 | 1.38 | 1.51 | 1.92 | 3.90 | 5.52 | 4.75 | 1.88 | 1.51 | 1.43 | 1.38 | 1.33 | | 15 | 0 | | | Manganese | μg/L | 0.93 U | 0.83 U | 1.7 U | 1.0 U | 1.6 U | 1.1 U | 1.0 U | 0.96 U | 1.0 U | 1.8 U | 3.4 U | 4.5 | 5.4 | 7.9 | 0.96 U | 0.76 U | 0.96 U | 0.68 U | 0.71 U | | | | 50 | | Nickel | μg/L | 1.8 U | 0.83 U | 1.4 U | 0.62 U | 0.62 U | 0.59 U | 0.61 U | 0.63 U | 0.60 U | 0.55 U | 0.55 U | 0.63 U | 0.60 U | 0.64 U | 0.64 U | 0.70 U | 1.5 U | 0.61 U | 0.63 U | | | | | | Zinc | μg/L | 280 | 72 | 17 J | 13 J | 8.6 J | 9.6 J | 8.4 J | 8.9 J | 7.0 J | 6.7 J | 6.5 J | 6.1 J | 7.4 J | 5.7 J | 5.9 J | 5.8 J | 8.6 J | 6.1 J | 7.8 J | | | | 5000 | | Aluminum | mg/L | 0.080 J- | 0.090 J- | 0.094 J- | 0.095 J- | 0.093 J- | 0.10 J- | 0.092 J- | 0.10 J- | 0.096 J- | 0.093 J- | 0.097 J- | 0.10 J- | 0.10 J- | 0.12 J- | 0.086 J- | 0.092 J- | 0.086 J- | 0.092 J- | 0.090 J- | | | | 0.05 to 0.2 | | Calcium | mg/L | 38 J | 36 J | 37 J | 37 J | 37 J | 38 J | 37 J | 40 J | 38 J | 36 J | 35 J | 38 J | 37 J | 38 J | 34 J | 35 J | 34 J | 36 J | 36 J | | | | | | Iron | mg/L | 0.021 U | 0.022 U | 0.024 U | 0.021 U | 0.14 | 0.025 U | 0.022 U | 0.024 U | 0.018 U | 0.025 U | 0.055 U | 0.060 U | 0.066 U | 0.11 | 0.021 U | 0.017 U | 0.016 U | 0.016 U | 0.10 U | | | | 0.3 | | Magnesium | mg/L | 13 J+ 14 J+ | 13 J+ | 13 J+ | 12 J+ | 14 J+ | 13 J+ | 13 J+ | 12 J+ | 13 J+ | 12 J+ | 13 J+ | 13 J+ | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.6 | 1.7 | 1.6 | 1.7 | 1.7 | 1.8 | 1.7 | 1.6 | 1.6 | 1.7 | 1.6 | 1.7 | 1.5 | 1.5 | 1.5 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 12 J+ 13 J+ | 12 J+ | 12 J+ | 11 J+ | 12 J+ | 12 J+ | 12 J+ | 11 J+ | 12 J+ | 11 J+ | 12 J+ | 12 J+ | | | | | | Tin | mg/L | 0.0022 U | 0.0019 U | 0.0019 U | 0.020 U | 0.020 U | 0.020 U | 0.0019 U | 0.020 U | 0.0017 U | 0.020 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | oled | | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | • | • | • | | • | Not Samp | oled | • | | • | | | • | • | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.14 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 32.3 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. #### Site 3074 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | You | ır Results - A | After Excavat | ion on 12/2 | 0/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------
-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|---------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | | Action | Contaminant | Secondary | | | | 4 - 1 1 - | 2 - 1 1 - | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | | 2nd sample | System | Level (MCL) | | (MCLG) | | | | | (125 mL) | (125 mL) | (1 liter) | | | | | | Cadmium | μg/L | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 5 | | 5 | | | Chromium | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 100 | | 100 | | | Copper | μg/L | 74.7 | 72.7 | 31.1 | 8.98 | 7.84 | 5.92 | 4.24 | 3.97 | 3.57 | 3.66 | 3.32 | 3.51 | 3.02 | 3.05 | 2.91 | 2.85 | 2.97 | 2.84 | 3.01 | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.56 | 1.87 | 2.58 | 2.07 | 1.68 | 1.57 | 1.35 | 1.77 | 2.63 | 3.15 | 3.85 | 4.66 | 3.70 | 2.00 | 1.19 | 1.00 | 0.95 | 0.95 | 0.87 | | 15 | 0 | | | Zinc | μg/L | 331 | 70.6 | 29.8 | 21.3 | 21.1 | 26.8 | 15.0 | 13.4 | 11.9 | 12.2 | 10.0 U | | | 5000 | | Manganese | μg/L | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | | | | 50 | | Nickel | μg/L | 12 U | | | | | Aluminum | mg/L | 0.200 U | | | 0.05 to 0.2 | | Calcium | mg/L | 35.7 | 35.8 | 36.9 | 37.5 | 37.2 | 35.9 | 35.1 | 35.4 | 35.0 | 35.6 | 35.7 | 35.5 | 35.2 | 35.6 | 35.8 | 35.3 | 34.6 | 35.6 | 35.2 | | | | | | Iron | mg/L | 0.0800 U | | | 0.3 | | Magnesium | mg/L | 12.3 | 12.0 | 12.4 | 12.5 | 12.5 | 12.4 | 12.0 | 12.1 | 11.9 | 12.2 | 12.2 | 12.1 | 12.1 | 12.2 | 12.3 | 12.1 | 11.9 | 12.2 | 12.1 | | | | | | Potassium | mg/L | 1.62 | 1.67 | 1.74 | 1.73 | 1.72 | 1.65 | 1.62 | 1.63 | 1.65 | 1.65 | 1.64 | 1.64 | 1.62 | 1.64 | 1.65 | 1.62 | 1.63 | 1.65 | 1.63 | | | | | | Sodium | mg/L | 10.9 | 10.9 | 11.4 | 11.3 | 11.3 | 11.0 | 10.8 | 10.8 | 10.8 | 11.0 | 10.8 | 10.8 | 10.7 | 10.9 | 11.0 | 10.8 | 10.8 | 11.0 | 10.8 | | | | | | Tin | mg/L | 0.0200 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sa | mpled | | | | | | | | | 110 | | | | | | Chloride | mg/L | | | | | | | | | Not Sa | mpled | | | | | | | | | 17.7 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sa | | | | | | | | | | 0.09 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sa | • | | | | | | | | | 30.7 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sa | mpled | | | | | | | | | 0.15 | | | | | #### Notes mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3075 -- Bathroom Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befo | re Excavati | on on 10/1 | 13/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Maximum | Action | Contaminant | Secondary | | | | | | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | | | sample System | Level (MCL) | | (MCLG) | 4 1 | | | | (125 mL) | (125 mL) | (1 liter) , | | | , , | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.1 U | 3.6 U | 3.8 U | 3.0 U | 3.1 U | 3.6 U | 3.5 U | 2.6 U | 4.2 | 4.2 | 4.3 | 4.4 | 5.0 | 4.7 | 5.1 | 6.3 | 3.8 U | 4.1 | 3.5 U | 100 | | 100 | | | Copper | μg/L | 6.9 U | 2.3 U | 13 | 9.7 U | 5.3 U | 4.1 U | 4.0 U | 3.9 U | 3.8 U | 3.2 U | 3.2 U | 2.7 U | 3.1 U | 2.9 U | 2.8 U | 9.1 U | 2.4 U | 2.1 U | 2.0 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 12 | 12 | 87 | 74 | 36 | 41 | 53 | 48 | 56 | 48 | 45 | 42 | 43 | 32 | 24 | 23 | 18 | 17 | 9.4 | | 15 | 0 | | | Manganese | μg/L | 3.9 J | 2.9 J | 15 | 12 | 4.2 | 3.6 J | 3.4 J | 4.9 | 3.5 J | 3.0 J | 3.1 J | 3.0 J | 3.4 J | 3.2 J | 2.7 J | 4.1 | 2.0 J | 2.0 J | 1.5 J | | | | 50 | | Nickel | μg/L | 7.9 | 3.3 U | 3.5 U | 2.7 U | 2.8 U | 2.3 U | 5.8 | 4.3 | 3.5 U | 4.1 | 33 | 3.0 U | 3.0 U | 2.8 U | 2.8 U | 4.2 | 2.3 U | 2.2 U | 2.0 U | | | | | | Zinc | μg/L | 380 | 210 | 240 | 190 | 69 | 43 | 42 | 40 | 50 | 35 | 120 | 28.0 | 31 | 34 | 28 | 27 | 21 | 20 | 9.1 J | | | | 5000 | | Aluminum | mg/L | 0.069 | 0.080 | 0.20 | 0.17 | 0.12 | 0.11 | 0.11 | 0.11 | 0.12 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12 | 0.11 | 0.10 | 0.10 | 0.10 | 0.15 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 | 35 | 35 | 34 | 35 | 35 | 34 | 35 | 38 | 34 | 35 | 36 | 38 | 37 | 38 | 35 | 35 | 35 | 36 | | | | | | Iron | mg/L | 0.058 J | 0.093 J | 0.80 | 0.59 | 0.30 | 0.12 | 0.12 | 0.14 | 0.20 | 0.12 | 0.10 | 0.11 | 0.098 J | 0.092 J | 0.068 J | 0.064 J | 0.054 J | 0.052 J | 0.065 J | | | | 0.3 | | Magnesium | mg/L | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 12 | 12 | 12 | 13 | 13 | 13 | 12 | 12 | 12 | 12 | | | | | | Potassium | mg/L | 1.6 | 1.5 | 1.5 | 1.5 | 1.5 | 1.6 | 1.5 | 1.6 | 1.7 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.5 | 1.5 | 1.6 | 1.7 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 11 | 11 | 11 | 12 | 12 | 12 | 11 | 11 | 11 | 11 | | | | | | Tin | mg/L | 0.020 U 0.0068 J | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | oled | | | | | | | | | 110 | | | | | | Chloride | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 1.0 J | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.17 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 32.3 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) **(U)** = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3075 -- Bathroom Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your | Results - Af | ter Excavat | on on 12/9 | /2016 | | | | | | | | | Compariso | on Standards | |
------------------|--------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|------------------|--------------|-------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | raidilletei | Offics | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (MCL) | Level (AL) | (MCLG) | IVICE | | | | (123 IIIL) | (123 IIIL) | (1 liter) System | | | (IVICEO) | | | Cadmium | μg/L | 0.09 J | 0.11 J | 0.20 U 5 | | 5 | | | Chromium | μg/L | 0.32 U | 0.29 U | 0.31 U | 0.32 U | 0.31 U | 0.34 U | 0.32 U | 0.33 U | 2.0 U | 0.37 U | 0.34 U | 0.36 U | 0.38 U | 0.33 U | 0.30 U | 100 | | 100 | | | Copper | μg/L | 8.8 | 1.7 | 4.7 | 2.2 | 2.1 | 2.1 | 1.5 | 1.5 | 1.3 | 1.3 | 1.1 | 1.1 | 0.96 U | 7.5 | 0.9 U | 0.88 U | 0.91 U | 0.87 U | 0.81 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 13.4 | 15.3 | 19.8 | 14.4 | 14.4 | 18.7 | 22.2 | 21.7 | 18.6 | 14.5 | 12.3 | 11.1 | 9.4 | 7.3 | 5.5 | 5.2 | 5.2 | 5.0 | 4.5 | | 15 | 0 | | | Manganese | μg/L | 4.7 | 2.4 | 1.1 | 0.53 J | 0.42 J | 0.46 J | 0.48 J | 0.64 J | 0.61 J | 0.66 J | 0.79 J | 0.78 J | 0.88 J | 1.0 J | 1.0 | 1.0 | 1.1 | 0.99 J | 1.0 | | | | 50 | | Nickel | μg/L | 24.9 | 2.0 | 13.0 | 3.2 | 2.2 | 2.0 | 2.2 | 3.3 | 1.2 | 1.1 | 0.93 | 1.1 | 1.0 | 1.1 | 0.89 | 1.0 | 0.84 | 0.78 | 0.68 | | | | | | Tin | μg/L | 1.0 U 0.14 J | 1.0 U | 1.0 U | 1.0 U | 1.0 U | 1.2 | 1.0 U | | | | | | Zinc | μg/L | 633 J+ | 294 J+ | 87.8 J+ | 34.4 J+ | 25.8 J+ | 21.3 J+ | 17.2 J+ | 17.2 J+ | 14.0 J+ | 12.4 J+ | 11.7 J+ | 11.5 J+ | 11.2 J+ | 11.3 J+ | 10.7 J+ | 10.7 J+ | 10.8 J+ | 9.5 J+ | 7.0 J+ | | | | 5000 | | Aluminum | mg/L | 0.0452 | 0.0589 | 0.0708 | 0.0604 | 0.0599 | 0.0547 | 0.0485 | 0.0486 | 0.0419 | 0.0377 | 0.0392 | 0.0390 | 0.0404 | 0.0441 | 0.0490 | 0.0469 | 0.0460 | 0.0476 | 0.0446 | | | | 0.05 to 0.2 | | Calcium | mg/L | 34.8 | 34.3 | 34.7 | 35.4 | 34.8 | 35.6 | 35.1 | 35.6 | 35.7 | 35.3 | 35.5 | 35.1 | 35.3 | 34.7 | 35.3 | 35.1 | 35.5 | 35.3 | 35.6 | | | | | | Iron | mg/L | 0.0354 J | 0.141 | 0.112 | 0.0269 J | 0.0252 J | 0.0142 J | 0.0155 J | 0.0264 J | 0.0317 J | 0.100 U | 0.0217 J | 0.0298 J | 0.0293 J | 0.0220 J | 0.0153 J | 0.0385 J | 0.0458 J | 0.0155 J | 0.0252 J | | | | 0.3 | | Magnesium | mg/L | 12.0 | 11.8 | 11.9 | 12.1 | 12.0 | 12.2 | 12.0 | 12.2 | 12.3 | 12.1 | 12.2 | 12.0 | 12.2 | 12.1 | 12.3 | 12.2 | 12.3 | 12.3 | 12.4 | | | | | | Potassium | mg/L | 1.59 | 1.59 | 1.61 | 1.64 | 1.60 | 1.61 | 1.61 | 1.60 | 1.61 | 1.64 | 1.59 | 1.60 | 1.63 | 1.63 | 1.62 | 1.62 | 1.60 | 1.66 | 1.64 | | | | | | Sodium | mg/L | 11.0 | 10.9 | 11.1 | 11.2 | 11.1 | 11.3 | 11.1 | 11.3 | 11.3 | 11.2 | 11.2 | 11.1 | 11.3 | 11.2 | 11.2 | 11.2 | 11.4 | 11.3 | 11.5 | | | | | | Total Alkalinity | mg/L | | | • | • | | | • | • | Not Sam | pled | • | | • | • | | • | | · | 106 | | | | | | Chloride | mg/L | | · | | | | | | | Not Sam | pled | | | | | | | | | 17.3 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | pled | | | | | | | | | 0.102 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | pled | | | | | | | | | 26.4 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | pled | | | | | | | | , and the second | 0.202 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3088 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befo | re Excavat | ion on 10/ | 17/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 2.3 U | 2.4 U | 2.6 U | 2.6 U | 2.7 U | 3.0 U | 3.2 J | 2.5 U | 2.7 U | 2.9 U | 2.9 U | 2.7 U | 2.8 U | 3.0 U | 3.0 U | 3.1 U | 4.2 U | 3.0 U | 1.7 U | 100 | | 100 | | | Copper | μg/L | 100 | 220 | 270 | 81 | 43 | 22 | 11 | 6.4 U | 6.2 U | 5.7 U | 6.7 U | 7.8 U | 5.4 U | 4.8 U | 4.8 U | 4.5 U | 4.6 U | 4.3 U | 4.3 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.8 | 2.3 | 2.6 | 3.1 | 3.6 | 4.8 | 6.5 | 6.5 | 6.8 | 7.8 | 9.8 | 16 | 26 | 25 | 11 | 5.2 | 4.3 | 3.3 | 2.8 | | 15 | 0 | | | Lead (Duplicate) | μg/L | 2.54 | 2.09 | 2.33 | 2.76 | 3.03 | 4.15 | 5.73 | 6.09 | 6.44 | 6.91 | 8.43 | 15.6 | 24.4 | 24.4 | 10.4 | 4.87 | 3.94 | 2.88 | 2.32 | | 15 | 0 | | | Manganese | μg/L | 1.1 J | 0.92 J | 0.95 J | 0.92 | 1.0 J | 1.1 J | 1.3 J | 1.1 J | 0.98 J | 1.3 J | 1.9 J | 1.3 J | 1.2 J | 1.2 J | 1.2 J | 1.1 J | 1.1 J | 1.1 J | 0.93 J | | | | 50 | | Nickel | μg/L | 4.0 | 1.3 U | 0.98 U | 0.97 U | 1.2 U | 1.0 U | 1.0 U | 0.69 U | 0.73 U | 0.87 U | 0.97 U | 0.95 U | 0.92 U | 0.86 U | 0.81 U | 0.79 U | 0.73 U | 0.72 U | 0.94 U | | | | | | Zinc | μg/L | 150 | 33 | 27 | 27 | 43 | 30 | 53 | 43 | 34 | 44 | 41 | 17 J | 14 J | 12 J | 12 J | 12 J | 11 J | 9.5 J | 8.3 J | | | | 5000 | | Aluminum | mg/L | 0.059 | 0.066 | 0.054 | 0.086 | 0.094 | 0.091 | 0.089 | 0.083 | 0.083 | 0.085 | 0.088 | 0.080 | 0.095 | 0.088 | 0.085 | 0.082 | 0.082 | 0.086 | 0.092 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 | 35 | 35 | 39 | 38 | 37 | 37 | 36 | 36 | 38 | 38 | 35 | 39 | 36 | 35 | 36 | 36 | 36 | 39 | | | | | | Iron | mg/L | 0.10 U | 0.081 J | 0.10 U | 0.032 J | 0.020 J | 0.022 J | 0.029 J | 0.021 J | 0.023 J | 0.031 J | 0.091 J | 0.034 J | 0.025 J | 0.10 U | 0.017 J | | | | 0.3 | | Magnesium | mg/L | 12 | 12 | 13 | 13 | 13 | 12 | 13 | 12 | 12 | 13 | 13 | 12 | 13 | 12 | 12 | 12 | 12 | 12 | 13 | | | | | | Potassium | mg/L | 1.6 | 1.7 | 1.6 | 1.8 | 1.7 | 1.7 | 1.7 | 1.6 | 1.6 | 1.7 | 1.7 | 1.5 | 1.8 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.8 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 12 | 12 | 11 | 12 | 11 | 11 | 12 | 12 | 11 | 12 | 11 | 11 | 11 | 11 | 11 | 12 | | | | | | Tin | mg/L | 0.0023 J | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | oled | | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.15 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 40.5 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level
of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3088 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | esults - Aft | er Excavat | ion on 12/ | 8/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | Maximum | | | Darameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | Parameter | Units | 1 -+ | 2 | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | 1st sample | | sample | Level (MCL) | Level (AL) | (MCLG) | IVICL | | | | (125 mL) | (125 mL) | (1 liter) System | | | (IVICLG) | | | Cadmium | μg/L | 0.2 U 5 | | 5 | | | Chromium | μg/L | 0.46 U | 0.46 U | 0.40 U | 0.36 U | 0.43 U | 0.46 U | 0.37 U | 0.44 U | 0.43 U | 0.42 U | 0.44 U | 0.48 U | 0.38 U | 0.36 U | 0.38 U | 0.42 U | 0.38 U | 0.34 U | 0.38 U | 100 | | 100 | | | Copper | μg/L | 44.4 | 54.8 | 27.9 | 15.5 | 13.9 | 20.8 | 7.1 | 6.0 | 6.6 | 3.9 | 6.1 | 6.3 | 3.7 | 4.2 | 3.4 | 3.6 | 3.3 | 3.0 | 2.6 | | 1300 | 1300 | 1000 | | Lead | μg/L | 3.5 | 2.9 | 2.7 | 3.3 | 3.0 | 3.8 | 3.6 | 3.7 | 4.0 | 5.4 | 8.6 | 18.6 | 24.4 | 18.6 | 6.0 | 2.5 | 2.1 | 1.8 | 1.4 | | 15 | 0 | | | Manganese | μg/L | 0.89 U | 0.24 U | 0.22 U | 0.41 U | 0.41 U | 0.62 U | 0.40 U | 0.43 U | 0.72 U | 0.98 U | 6.1 | 0.60 U | 0.40 U | 0.55 U | 0.93 U | 1.1 | 1.1 | 0.95 U | 0.88 U | | | | 50 | | Nickel | μg/L | 2.5 | 0.78 | 1.1 | 0.78 | 0.68 | 0.74 | 0.56 | 0.58 | 0.58 | 0.57 | 0.58 | 0.58 | 0.60 | 0.65 | 0.65 | 0.7 | 0.64 | 2.0 | 0.53 | | | | | | Zinc | μg/L | 205 J+ | 36.4 J+ | 29.1 J+ | 28.5 J+ | 19.8 J+ | 32.9 J+ | 70.2 J+ | 53.6 J+ | 52.8 J+ | 57.2 J+ | 36.5 J+ | 14.2 J+ | 11.1 J+ | 12.2 J+ | 10.1 J+ | 10.8 J+ | 9.9 J+ | 10.1 J+ | 6.6 J+ | | | | 5000 | | Aluminum | mg/L | 0.0548 | 0.0565 | 0.0648 | 0.0649 | 0.0539 | 0.0549 | 0.0526 | 0.0485 | 0.0466 | 0.0443 | 0.0459 | 0.0468 | 0.0454 | 0.0505 | 0.0495 | 0.0483 | 0.0447 | 0.0450 | 0.0406 | | | | 0.05 to 0.2 | | Calcium | mg/L | 36.2 | 36.5 | 37.2 | 36.9 | 36.2 | 36.2 | 36.4 | 36.2 | 35.6 | 36.2 | 36.6 | 36.3 | 35.7 | 36.4 | 35.8 | 36.9 | 36.9 | 36.9 | 35.5 | | | | | | Iron | mg/L | 0.100 U | 0.121 | 0.100 U 0.0673 J | 0.127 | 0.0398 J | 0.100 U | 0.0383 J | 0.0260 J | 0.0186 J | 0.100 U | 0.100 U | 0.0180 J | | | | 0.3 | | Magnesium | mg/L | 12.4 | 12.4 | 12.5 | 12.5 | 12.4 | 12.4 | 12.6 | 12.6 | 12.3 | 12.5 | 12.6 | 12.5 | 12.3 | 12.5 | 12.4 | 12.7 | 12.7 | 12.7 | 12.2 | | | | | | Potassium | mg/L | 1.73 | 1.78 | 1.83 | 1.80 | 1.76 | 1.73 | 1.75 | 1.74 | 1.72 | 1.72 | 1.76 | 1.74 | 1.73 | 1.75 | 1.74 | 1.79 | 1.80 | 1.78 | 1.72 | | | | | | Sodium | mg/L | 11.8 | 11.8 | 12.0 | 12.1 | 11.9 | 11.8 | 11.9 | 11.8 | 11.7 | 11.8 | 11.9 | 11.8 | 11.6 | 11.8 | 11.7 | 12.0 | 12.0 | 12.0 | 11.5 | | | | | | Tin | mg/L | 0.001 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | oled | | | | | | | | | 104 | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 16.5 | | | | 250 | | Fluoride | mg/L | | - | | | | | | | Not Sam | oled | | • | | | | | • | | 0.118 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | • | • | | | | • | Not Sam | oled | | | • | | • | • | | | 26.0 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.200 | | | | | #### Notes mg/L = milligrams per liter (also called ppm or parts per million) **μg/L** = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (1-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3113 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ır Results - | Before Ex | cavation o | n 10/14/20 |)16 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|--------------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|---------------------|------------------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Bilavina | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Maximum
Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 1111) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 2.0 U | 0.55 U | 2.0 U | 2.0 U | 2.0 U | 2.0 U | 0.69 U | 2.0 5 | | 5 | | | Chromium | μg/L | 1.6 U | 1.8 U | 1.6 U | 2.0 U | 1.8 U | 1.9 U | 1.8 U | 2.2 U | 2.0 U | 1.9 U | 1.8 U | 1.6 U | 1.7 U | 1.9 U | 1.9 U | 1.8 U | 100 | | 100 | | | Copper | μg/L | 7.6 U | 3.5 U | 2.5 U | 2.3 U | 2.2 U | 3.6 U | 2.6 U | 3.0 U | 2.9 U | 2.3 U | 2.4 U | 2.2 U | 3.0 U | 2.0 U | 1.9 U | 1.8 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 3.5 | 4.0 | 1.5 J | 1.5 J | 2.9 | 2.7 | 2.1 | 2.1 | 3.0 | 2.0 | 5.5 | 5.0 | 1.4 J | 1.1 J | 0.98 J | 0.84 J | | 15 | 0 | | | Manganese | μg/L | 2.2 J | 5.7 | 3.2 J | 1.8 J | 2.6 J | 1.9 J | 1.7 J | 2.1 J | 1.9 J | 1.6 J | 1.4 J | 1.1 J | 1.1 J | 1.2 J | 1.1 J | 1.1 J | | | | 50 | | Nickel | μg/L | 1.8 U | 0.86 U | 0.70 U | 0.76 U | 0.71 U | 0.80 U | 0.73 U | 1.1 U | 1.0 U | 0.87 U | 0.83 U | 0.74 U | 22 | 0.77 U | 0.74 U | 0.70 U | | | | | | Zinc | μg/L | 190 | 220 | 150 | 42 | 32 | 28 | 28 | 30 | 29 | 26 | 22 | 20 | 110 | 20 U | 18 J | 14 J | | | | 5000 | | Aluminum | mg/L | 0.10 | 0.083 | 0.098 | 0.13 | 0.15 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | 0.10 | 0.10 | 0.095 | 0.098 | 0.098 | 0.092 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 J- | 36 J- | 38 J- | 36 J- | 37 J- | 36 J- | 37 J- | 39 J- | 37 J- | 35 J- | 35 J- | 38 J- | 36 J- | 36 J- | 38 J- | 35 J- | | | | | | Iron | mg/L | 0.11 | 0.29 | 0.10 | 0.10 | 0.21 | 0.11 | 0.10 | 0.12 | 0.096 U | 0.071 U | 0.065 U | 0.050 U | 0.033 U | 0.034 U | 0.039 U | 0.036 U | | | | 0.3 | | Magnesium | mg/L | 13 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 12 | 13 | 13 | 13 | 13 | 12 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.8 | 1.8 | 1.5 | 1.6 | 1.7 | 1.6 | 1.6 | 1.7 | 1.6 | | | | | | Sodium | mg/L | 11 | 11 | 12 | 11 | 11 | 11 | 12 | 12 | 12 | 11 | 11 | 12 | 11 | 12 | 12 | 11 | | | | | | Tin | mg/L | 0.0022 U | 0.020 0.0018 U | 0.020 U | 0.020 U | 0.020 U | 0.020 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 1.0 J | | | | 250 | | Fluoride | mg/L | | | | • | | | Not | Sampled | • | • | | | • | | • | 0.16 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 32.3 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting
limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3206 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Bef | ore Excava | ion on 10/ | 6/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|----------------------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Mavinoune | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Maximum | Action | Contaminant | Secondary | | | | 1-4 | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant
Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 2.0 U | 0.58 J | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.1 U | 3.2 U | 3.4 U | 3.3 U | 3.3 U | 3.3 U | 3.2 U | 3.1 U | 3.1 U | 3.2 U | 3.2 U | 3.1 U | 3.1 U | 3.1 U | 3.3 U | 3.3 U | 3.3 U | 3.3 U | 2.2 U | 100 | | 100 | | | Copper | μg/L | 40 | 5.8 U | 7.7 U | 8.2 U | 6.6 U | 18 | 7.7 U | 4.3 U | 4.9 U | 4.0 U | 3.8 U | 3.4 U | 3.3 U | 3.4 J | 3.3 U | 3.2 U | 3.1 J | 3.1 U | 1.5 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 7.5 | 1.8 J | 21 | 36 | 29 | 23 | 15 | 15 | 14 | 12 | 17 | 15 | 9.6 | 8.2 | 8.3 | 8.1 | 6.9 | 6.5 | 2.6 | | 15 | 0 | | | Manganese | μg/L | 7.3 | 4.5 | 14 | 26 | 19 | 13 | 8.8 | 10 | 9.5 | 7.6 | 6.6 | 6.7 | 5.9 | 5.3 | 6.8 | 5.2 | 4.5 | 4.1 | 1.6 J | | | | 50 | | Nickel | μg/L | 2.8 U | 2.0 U | 2.0 U | 2.0 U | 1.8 U | 1.8 U | 1.7 U | 1.7 U | 1.8 U | 1.7 U | 1.8 U | 1.7 U | 1.7 U | 1.7 U | 1.8 U | 1.8 U | 1.8 U | 1.7 U | 0.94 U | | | | | | Zinc | μg/L | 550 B | 220 B | 150 B | 120 B | 140 B | 68 B | 46 B | 65 B | 65 B | 36 B | 36 B | 50 B | 42 B | 29 B | 48 B | 72 B | 57 B | 45 B | 11 U | | | | 5000 | | Aluminum | mg/L | 0.11 | 0.087 | 0.18 | 0.19 | 0.17 | 0.14 | 0.12 | 0.14 | 0.15 | 0.12 | 0.12 | 0.12 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.12 | | | | 0.05 to 0.2 | | Calcium | mg/L | 36 J | 36 J | 37 J | 37 J | 36 J | 35 J | 34 J | 37 J | 38 J | 36 J | 38 J | 38 J | 36 J | 37 J | 37 J | 37 J | 37 J | 35 J | 36 J | | | | | | Iron | mg/L | 0.15 J+ | 0.24 J+ | 0.36 J+ | 0.37 J+ | 0.26 J+ | 0.27 J+ | 0.15 J+ | 0.18 J+ | 0.16 J+ | 0.11 J+ | 0.099 U | 0.089 U | 0.083 U | 0.018 U | 0.11 J+ | 0.062 U | 0.057 U | 0.048 U | 0.032 U | | | | 0.3 | | Magnesium | mg/L | 13 J | 12 J | 13 J | 13 J | 12 J | 12 J | 12 J | 13 J | 13 | 12 J | 13 12 J | 12 J | | | | | | Potassium | mg/L | 1.7 | 1.6 | 1.7 | 1.7 | 1.7 | 1.6 | 1.5 | 1.7 | 1.7 | 1.6 | 1.8 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 11 J+ | 11 J+ | 12 J+ | 12 J+ | 11 J+ | 11 J+ | 11 J+ | 12 J | 12 J | 11 J | 12 11 J | 11 J | | | | | | Tin | mg/L | 0.020 U 0.0037 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | oled | | | | | | | | | 110 | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 1.0 J | | | | 250 | | Fluoride | mg/L | | | | | | • | | | Not Sam | oled | • | | • | | | | | | 0.50 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 23.9 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.0077 J | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3206 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your F | Results - Aft | er Excavatio | on on 10/18 | /2016 | | | | | | | | 1 | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | \$10 | S11 | S12 | S13 | S14 | \$15 | S16 | S17 | S18 | DS01, DS02,
DS03 | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | • | • | | | | • | | | • | • | • | | | | | Maximum | Action | Contaminant | Secondary | | | | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | 16th
sample
(1 liter) | 17th
sample
(1 liter) | 18th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 2.5 | 2.0 U | 0.67 U | 2.0 0.60 U | 1.3 U | 2.0 U | 2.0 U | 5 | | 5 | | | Chromium | μg/L | 5.0 | 3.1 U | 3.0 U | 3.0 U | 2.9 U | 3.1 U | 3.3 U | 3.0 U | 2.9 U | 3.3 U | 3.3 U | 2.8 U | 2.8 U | 3.1 U | 3.2 U | 3.5 U | 4.7 | 2.9 U | 3.2 U | 100 | | 100 | | | Copper | μg/L | 33 | 69 | 18 | 5.2 J | 3.7 J | 4.2 J | 4.7 J | 6.9 J | 9.3 J | 5.8 J | 14 | 3.8 J | 3.8 J | 3.3 J | 3.4 J | 4.1 J | 4.7 J | 3.2 J | 35 | | 1300 | 1300 | 1000 | | Lead | μg/L | 4.1 | 1.5 U | 7.2 | 2.9 | 2.1 | 5.1 | 3.1 | 3.7 | 7.8 | 7.5 | 7.9 | 4.8 | 2.1 | 1.5 U | 1.5 U | 2.1 | 2.9 | 1.5 U | 2.3 | | 15 | 0 | | | Manganese | μg/L | 3.4 J | 0.68 U | 1.9 J | 0.82 U | 0.82 U | 1.7 J | 1.4 J | 1.7 J | 2.9 J | 1.6 J | 0.71 U | 0.79 U | 1.0 J | 1.9 J | 0.99 U | 1.9 J | 2.7 J | 1.6 J | 0.98 U | | | | 50 | | Nickel | μg/L | 6.9 | 2.6 U | 2.4 U | 1.8 U | 1.7 U | 1.7 U | 1.9 U | 1.7 U | 1.8 U | 1.8 U | 1.8 U | 1.7 U | 1.7 U | 1.7 U | 1.8 U | 2.3 U | 3.1 U | 1.8 U | 1.9 U | | | | | | Zinc | μg/L | 80 | 31 | 20 U | 17 J | 19 J | 18 J | 17 J | 17 J | 19 J | 18 J | 17 J | 7.2 U | 7.4 U | 6.0 U | 5.9 U | 6.9 U | 8.1 U | 5.9 U | 24 | | | | 5000 | | Aluminum | mg/L | 0.11 |
0.17 | 0.13 | 0.15 | 0.13 | 0.17 | 0.13 | 0.15 | 0.14 | 0.13 | 0.14 | 0.13 | 0.12 | 0.10 | 0.11 | 0.11 | 0.14 | 0.13 | 0.11 | | | | 0.05 to 0.2 | | Calcium | mg/L | 40 | 49 | 35 | 43 | 38 | 47 | 43 | 49 | 46 | 42 | 44 | 44 | 42 | 39 | 41 | 41 | 52 | 44 | 40 | | | | | | Iron | mg/L | 0.037 U | 0.039 U | 0.12 | 0.075 U | 0.039 U | 0.15 | 0.083 U | 0.082 U | 0.17 | 0.10 | 0.039 U | 0.037 U | 0.030 U | 0.028 U | 0.028 U | 0.026 U | 0.036 U | 0.026 U | 0.026 U | | | | 0.3 | | Magnesium | mg/L | 13 | 16 | 11 | 14 | 12 | 15 | 14 | 16 | 16 | 14 | 15 | 15 | 14 | 13 | 14 | 14 | 17 | 15 | 14 | | | | | | Potassium | mg/L | 1.7 | 2.1 | 1.6 | 1.9 | 1.7 | 2.1 | 1.9 | 2.1 | 2.0 | 1.8 | 1.9 | 1.9 | 1.8 | 1.7 | 1.8 | 1.8 | 2.2 | 1.9 | 1.7 | | | | | | Sodium | mg/L | 12 | 15 | 10 | 12 | 11 | 14 | 13 | 15 | 14 | 13 | 13 | 13 | 12 | 11 | 12 | 12 | 15 | 13 | 12 | | | | | | Tin | mg/L | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | pled | | | | | | | | | 130 | | | | | | Chloride | mg/L | | · | | | | | | | Not Sam | pled | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 0.15 J | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | pled | | | | | | | | | 32.3 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | pled | | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) U = Not detected above the listed reporting limit #### J = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3224 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | Your Resul | ts - Before E | xcavation o | on 9/28/201 | 6 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|------------|---------------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | \$15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | • | • | | • | | • | • | • | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 2.5 U | 2.6 U | 2.6 U | 2.6 U | 2.7 U | 2.6 U | 2.6 U | 2.6 U | 2.9 U | 3.1 U | 2.9 U | 2.5 U | 2.5 U | 2.4 U | 2.4 U | 2.4 U | 100 | | 100 | | | Copper | μg/L | 10 | 1.6 J | 4.9 J | 1.6 J | 2.0 J | 2.0 J | 1.8 J | 2.6 J | 1.8 J | 3.4 J | 2.3 J | 1.9 J | 10 U | 10 U | 1.5 J | 10 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 5.4 | 5.7 | 6.6 | 5.8 | 5.6 | 7.3 | 23 | 34 | 27 | 25 | 19 | 17 | 7.8 | 5.3 | 5.0 | 3.7 | | 15 | 0 | | | Lead (Duplicate) | μg/L | 4.25 | 4.62 | 4.87 | 4.56 | 4.32 | 6.11 | 19.6 | 28.6 | 23.0 | 20.2 | 15.9 | 14.5 | 6.31 | 4.28 | 4.07 | 3.02 | | 15 | 0 | | | Manganese | μg/L | 4.5 | 5.3 | 1.4 J | 1.3 J | 0.99 J | 1.7 J | 2.2 J | 0.97 J | 1.6 J | 2.2 J | 1.3 J | 1.1 J | 1.2 J | 1.3 J | 1.3 J | 1.4 J | | | | 50 | | Nickel | μg/L | 5.6 | 1.6 J | 4.8 | 1.8 J | 1.8 J | 2.0 J | 1.7 J | 2.8 J | 2.5 J | 3.5 J | 1.9 J | 2.1 J | 1.7 J | 1.6 J | 1.8 J | 1.6 J | | | | | | Zinc | μg/L | 160 | 120 | 37 | 25 | 27 | 120 | 94 | 29 | 21 | 22 | 18 J | 19 J | 16 J | 17 J | 18 J | 11 J | | | | 5000 | | Aluminum | mg/L | 0.070 | 0.095 | 0.087 | 0.089 | 0.088 | 0.088 | 0.085 | 0.088 | 0.086 | 0.089 | 0.088 | 0.090 | 0.075 | 0.071 | 0.069 | 0.064 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 J | 35 J | 35 J | 36 J | 35 J | 35 J | 35 J | 35 J | 34 J | 35 J | 35 J | 36 J | 34 J | 35 J | 35 J | 35 J | | | | | | Iron | mg/L | 0.24 | 0.26 | 0.053 J | 0.046 J | 0.033 J | 0.041 J | 0.043 J | 0.039 J | 0.029 J | 0.021 J | 0.022 J | 0.022 J | 0.020 J | 0.020 J | 0.025 J | 0.10 U | | | | 0.3 | | Magnesium | mg/L | 14 | 14 | 14 | 14 | 14 | 14 | 13 | 14 | 13 | 14 | 14 | 14 | 13 | 14 | 14 | 14 | | | | | | Potassium | mg/L | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.4 | 1.5 | 1.5 | 1.5 | 1.4 | 1.5 | 1.5 | 1.5 | | | | | | Sodium | mg/L | 12 J+ 11 J+ | 12 J+ | 12 J+ | 12 J+ | 11 J+ | 12 J+ | 12 J+ | 12 J+ | | | | | | Tin | mg/L | 0.0041 J | 0.0023 J | 0.020 U | 0.020 U | 0.0027 J | 0.020 U | 0.0025 J | 0.0018 J | 0.020 U | 0.020 U | 0.020 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | N | ot Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | N | ot Sampled | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | N | ot Sampled | | | | | | | | 0.50 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | N | ot Sampled | | | | | | | | 48.8 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | N | ot Sampled | | | | | | | | 0.050 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) U = Not detected above the listed reporting limit #### J = Estimated (1+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3224 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ır Results - A | After Excava | tion on 10/ | 10/2016 | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|----------------|--------------|-------------|-----------|-----------|-------------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th sample | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample (1 liter) | sample | sample | sample | System | Level (IVICE) | | (MCLG) | | | | | , , | , , | (1 liter) ` ′ | (1 liter) | (1 liter) | (1 liter) | | | | | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 4.1 U | 3.2 U | 7.7 U | 3.5 U | 4.2 U | 3.1 U | 4.7 U | 3.6 U | 3.6 U | 5.3 U | 3.9 U | 3.5 U | 3.4 U | 3.6 U | 4.9 U | 3.7 U | 100 | | 100 | | | Copper | μg/L | 2.0 J | 10 U | 4.3 J | 3.1 J | 2.4 J | 2.4 J | 1.8 J | 1.5 J | 10 U | 1.9 J | 10 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 3.9 | 4.0 | 25 | 35 | 27 | 25 | 32 | 39 | 31 | 22 | 19 | 12 | 5.3 | 4.4 | 4.0 | 3.3 | | 15 | 0 | | | Manganese | μg/L | 5.7 | 2.3 J | 4.1 | 4.4 | 3.5 J | 2.7 J | 2.1 J | 1.7 J | 1.5 J | 1.5 J | 1.9 J | 1.2 J | 1.1 | 1.2 J | 2.0 J | 1.2 J | | | | 50 | | Nickel | μg/L | 2.2 U | 1.7 U | 3.4 U | 2.0 U | 2.2
U | 1.8 U | 2.7 U | 2.1 U | 2.0 U | 2.7 U | 2.3 U | 2.0 U | 2.0 U | 2.1 U | 2.6 U | 2.4 U | | | | | | Zinc | μg/L | 140 J+ | 67 J+ | 110 J+ | 130 J+ | 90 J+ | 140 J+ | 100 J+ | 42 J+ | 34 J+ | 33 J+ | 23 J+ | 21 J+ | 21 J+ | 19 U | 27 J+ | 14 U | | | | 5000 | | Aluminum | mg/L | 0.078 J | 0.079 J- | 0.11 J- | 0.13 J- | 0.11 J- | 0.11 J- | 0.094 J- | 0.098 J- | 0.10 J- | 0.092 J- | 0.095 J- | 0.092 J- | 0.092 J- | 0.092 J- | 0.092 J- | 0.091 J | | | | 0.05 to 0.2 | | Calcium | mg/L | 34 J | 34 J | 35 J | 35 J | 35 J | 36 | 33 J | 36 J | 35 J | 34 J | 36 J | 34 J | 36 J | 35 J | 34 J | 33 J | | | | | | Iron | mg/L | 0.68 J- | 0.13 J | 0.38 J | 0.50 J- | 0.38 J- | 0.30 J | 0.14 J- | 0.13 J- | 0.094 U | 0.055 U | 0.12 J- | 0.036 U | 0.026 U | 0.026 U | 0.085 U | 0.029 J | | | | 0.3 | | Magnesium | mg/L | 12 J | 13 J | 12 J | 13 J | 12 J | 12 J | 12 J | | | | | | Potassium | mg/L | 1.6 | 1.5 | 1.6 | 1.6 | 1.6 | 1.7 | 1.5 | 1.60 | 1.6 | 1.8 | 1.7 | 1.6 | 1.6 | 1.6 | 1.5 | 1.5 | | | | | | Sodium | mg/L | 11 J+ | 11 J+ | 12 J+ | 11 J+ | 11 J+ | 12 J+ | 11 J+ | 12 J+ | 12 J+ | 11 J+ | 12 J+ | 11 J+ | 12 J+ | 11 J+ | 11 J+ | 11 J+ | | | | | | Tin | mg/L | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | mpled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | | mpled | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not Sa | - | | | | | | | | 0.17 J | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | ımpled | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not Sa | ımpled | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) **U** = Not detected above the listed reporting limit J = Estimated J+ = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). J- = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3226 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ur Results - | Before Ex | cavation o | n 10/17/20 | 16 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|--------------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | \$13 | S14 | \$15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | LCVCI (IVICL) | | (MCLG) | | | | | , - , | , | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.2 U | 3.1 U | 2.9 U | 3.0 U | 3.2 U | 3.1 U | 3.2 U | 3.3 U | 3.2 U | 3.2 U | 3.1 U | 3.1 U | 100 | | 100 | | | Copper | μg/L | 13 J | 1.8 J | 1.7 J | 1.5 J | 1.9 J | 1.5 J | 10 U 1.9 J | 10 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 6.7 J+ | 4.2 J+ | 3.8 J+ | 4.5 J+ | 4.3 J+ | 5.3 J+ | 5.7 J+ | 5.6 J+ | 5.3 J+ | 5.1 J+ | 5.3 J+ | 5.6 J+ | 4.4 J+ | 4.6 J+ | 3.7 J+ | 2.6 J+ | | 15 | 0 | | | Lead (Duplicate) | μg/L | 5.68 | 3.80 | 3.42 | 4.02 | 4.11 | 4.83 | 5.22 | 5.03 | 4.84 | 4.83 | 4.81 | 4.88 | 4.51 | 3.99 | 3.47 | 2.37 | | 15 | 0 | | | Manganese | μg/L | 5.2 J | 5.4 J | 1.6 J | 1.1 J | 1.0 J | 0.75 J | 0.63 J | 0.68 J | 0.58 J | 4.0 U | 0.56 J | 0.85 J | 0.57 J | 1.2 J | 0.62 J | 0.75 J | | | | 50 | | Nickel | μg/L | 6.0 J | 1.9 U | 2.3 U | 1.8 U | 1.8 U | 1.8 U | 1.7 U | 1.7 U | 1.7 U | 1.6 U | 1.7 U | 2.0 U | 1.7 U | 2.1 U | 1.7 U | 1.7 U | | | | | | Zinc | μg/L | 110 J | 62 J | 37 J | 25 J | 46 J | 76 J | 48 J | 28 J | 19 J | 17 J | 16 J | 17 J | 15 J | 18 J | 15 J | 12 J | | | | 5000 | | Aluminum | mg/L | 0.088 J | 0.082 J | 0.078 J | 0.12 J | 0.074 J | 0.080 J | 0.076 J | 0.077 J | 0.079 J | 0.091 J | 0.092 J | 0.095 J | 0.088 J | 0.093 J | 0.090 | 0.089 J | | | | 0.05 to 0.2 | | Calcium | mg/L | 38 | 35 | 36 | 36 | 34 | 36 | 36 | 37 | 36 | 37 | 37 | 38 | 34 | 37 | 36 | 37 | | | | | | Iron | mg/L | 0.31 J- | 0.41 J- | 0.044 J- | 0.080 J- | 0.082 J- | 0.10 U | 0.10 U | 0.10 U | 0.10 U | 0.025 J- | 0.020 J- | 0.019 J- | 0.017 J- | 0.017 J- | 0.017 J- | 0.058 J- | | | | 0.3 | | Magnesium | mg/L | 13 J- | 12 J- | 13 J- | 13 J- | 12 J- | 12 J- | 13 J- | 12 J- | 13 J- | 12 J- | 13 J- | | | | | | Potassium | mg/L | 1.7 J- | 1.6 J- | 1.6 J- | 1.6 J- | 1.5 J- | 1.6 J- | 1.6 J- | 1.6 J- | 1.6 J- | 1.7 J- | 1.7 J- | 1.7 J- | 1.5 J- | 1.6 J- | 1.6 J- | 1.6 J- | | | | | | Sodium | mg/L | 12 | 11 | 11 | 11 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 11 | 11 | 11 | 12 | | | | | | Tin | mg/L | 0.0022 J+ | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | | Sampled | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | Sampled | | | | | | | | 0.15 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | Sampled | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data ## Site 3226 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | Your Resul | ts - After Ex | cavation on | 12/17/2016 | 5 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|------------|---------------|-------------|------------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 4-4 | 2 | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | 1st sample | 2nd sample | System | Level (IVICL) | | (MCLG) | | | | | (125 mL) | (125 mL) | (1 liter) | | | | | | Cadmium | μg/L | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 5 | | 5 | | | Chromium | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 100 | | 100 | | | Copper | μg/L | 29.2 | 10.7 | 5.25 | 1.04 | 1.00 U
 1300 | 1300 | 1000 | | Lead | μg/L | 4.33 | 3.23 | 2.12 | 1.42 | 1.43 | 1.68 | 1.56 | 1.72 | 1.77 | 1.70 | 1.79 | 1.60 | 1.64 | 1.57 | 1.44 | 1.10 | | 15 | 0 | | | Zinc | μg/L | 246 | 83.8 | 37.4 | 15.1 | 14.2 | 18.9 | 21.9 | 15.1 | 12.1 | 11.5 | 11.0 | 10.0 U | 10.0 U | 11.1 | 10.0 U | 10.0 U | | | | 5000 | | Manganese | μg/L | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | | | | 50 | | Nickel | μg/L | 42.1 | 14.6 | 12 U | | | | | Aluminum | mg/L | 0.200 U | | | 0.05 to 0.2 | | Calcium | mg/L | 33.4 | 35.0 | 35.1 | 34.2 | 34.1 | 33.9 | 33.6 | 33.2 | 34.4 | 33.9 | 34.5 | 34.0 | 33.9 | 33.6 | 33.7 | 34.2 | | | | | | Iron | mg/L | 0.0831 K | 0.105 K | 0.0800 U | | | 0.3 | | Magnesium | mg/L | 12.3 | 11.9 | 12.1 | 11.8 | 11.8 | 11.7 | 11.6 | 11.5 | 12.1 | 11.8 | 11.9 | 11.8 | 11.7 | 11.6 | 11.7 | 11.9 | | | | | | Potassium | mg/L | 1.69 | 1.59 | 1.61 | 1.58 | 1.58 | 1.56 | 1.55 | 1.51 | 1.63 | 1.57 | 1.59 | 1.55 | 1.56 | 1.54 | 1.52 | 1.57 | | | | | | Sodium | mg/L | 10.4 | 10.3 | 10.5 | 10.3 | 10.2 | 10.2 | 10.1 | 9.95 | 10.4 | 10.2 | 10.4 | 10.1 | 10.2 | 10.2 | 10.1 | 10.1 | | | | | | Tin | mg/L | 0.0200 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | No | ot Sampled | | | | | | | | 110 | | | | | | Chloride | mg/L | | | | | | | No | ot Sampled | | | | | | | | 16.5 | | | | 250 | | Fluoride | mg/L | | | | | | | No | ot Sampled | | | | | | | | 0.09 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | No | ot Sampled | | | | | | | | 24.4 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | No | ot Sampled | | | | | | - | | 0.34 | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3282 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ur Results - | Before Ex | cavation or | n 10/15/20 | 16 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|--------------|-----------|-------------|------------|-----------|-----------|-----------|-----------|-----------|---------------------|------------------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Barring | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Maximum
Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 2.5 U | 2.2 U | 2.3 U | 2.5 U | 2.4 U | 2.4 U | 2.5 U | 2.4 U | 2.4 U | 2.3 U | 2.3 U | 2.4 U | 2.3 U | 2.4 U | 2.4 U | 2.4 U | 100 | | 100 | | | Copper | μg/L | 32 | 3.7 J- | 9.7 J- | 4.0 J- | 2.2 J- | 3.8 J- | 3.5 J- | 3.2 J- | 6.9 J- | 6.7 J- | 2.2 J- | 1.5 J- | 1.6 J- | 10 U | 10 U | 10 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 3.0 | 1.9 J | 10 | 9.4 | 5.3 | 5.8 | 9.2 | 8.5 | 8.6 | 6.7 | 4.2 | 2.6 | 2.0 J | 1.8 J | 1.7 J | 1.4 J | | 15 | 0 | | | Lead (Duplicate) | μg/L | 2.41 | 1.53 | 9.10 | 7.61 | 5.66 | 4.93 | 7.86 | 9.11 | 7.57 | 6.17 | 3.89 | 2.21 | 1.74 | 1.63 | 1.60 | 1.24 | | 15 | 0 | | | Manganese | μg/L | 0.63 U | 4.0 U | 8.0 | 7.6 | 3.8 J | 3.7 J | 6.9 | 6.5 | 6.0 | 4.3 | 2.4 J | 1.3 J | 1.2 J | 1.1 J | 1.1 J | 0.97 U | | | | 50 | | Nickel | μg/L | 12 | 0.78 J | 4.6 | 1.1 J | 0.73 J | 0.76 J | 0.83 J | 0.80 J | 1.2 J | 0.84 J | 0.72 J | 0.83 J | 0.89 J | 0.74 J | 0.75 J | 0.70 J | | | | | | Zinc | μg/L | 590 | 300 | 130 | 37 | 20 | 30 | 34 | 88 | 36 | 170 | 41 | 6.8 J | 7.2 J | 7.2 J | 6.1 J | 20 U | | | | 5000 | | Aluminum | mg/L | 0.081 J- | 0.083 J- | 0.14 J- | 0.12 J- | 0.097 J- | 0.11 J- | 0.12 J- | 0.11 J- | 0.12 J- | 0.11 J- | 0.096 J- | 0.093 J- | 0.096 J- | 0.093 J- | 0.090 J- | 0.090 J- | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 J- | 36 J- | 36 J- | 37 J- | 34 J- | 37 J- | 37 J- | 35 J- | 36 J- | 36 J- | 35 J- | 36 J- | 37 J- | 36 J- | 35 J- | 35 J- | | | | | | Iron | mg/L | 0.10 U | 0.10 U | 0.060 J- | 0.048 J- | 0.027 J- | 0.028 J- | 0.041 J- | 0.039 J- | 0.043 J- | 0.032 J- | 0.018 J- | 0.017 J- | 0.10 U | 0.10 U | 0.10 U | 0.10 U | | | | 0.3 | | Magnesium | mg/L | 12 J- | 12 J- | 12 J- | 13 J- | 12 J- | 13 J- | 13 J- | 12 J- | 13 J- | 12 J- | 12 J- | 12 J- | 13 J- | 12 J- | 12 J- | 12 J- | | | | | | Potassium | mg/L | 1.6 J- | 1.6 J- | 1.6 J- | 1.6 J- | 1.5 J- | 1.6 J- | 1.6 J- | 1.5 J- | 1.6 J- | 1.5 J- | 1.6 J- | | | | | | Sodium | mg/L | 11 J- | 12 J- | 12 J- | 11 J- | 12 J- | 11 J- | 11 J- | 11 J- | 12 J- | 11 J- | 11 J- | 11 J- | | | | | | Tin | mg/L | 0.0021 J | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.17 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3282 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | Yo | ur Results | - After Exc | avation on | 11/29/20 | 16 | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|----------------------|-------------------------------------|------------------| | | | S01
Faucet | S02
Under Sink | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) |
Distribution
System | Contaminant
Level (MCL) | Action
Level (AL) | Contaminant
Level Goal
(MCLG) | Secondary
MCL | | Cadmium | μg/L | 0.2 U 5 | | 5 | | | Chromium | μg/L | 0.43 J | 0.39 J | 0.39 J | 0.38 J | 0.36 J | 0.39 J | 0.39 J | 0.41 J | 0.37 J | 0.39 J | 0.38 J | 0.43 J | 0.38 J | 0.39 J | 0.42 J | 0.38 J | 100 | | 100 | | | Copper | μg/L | 12.9 | 2.8 | 2.0 | 1.7 | 1.4 | 1.5 | 1.5 | 1.2 | 1.2 | 1.1 | 1.1 | 1.0 | 1.1 | 1.0 | 0.97 J | 0.88 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.3 | 2.4 | 2.6 | 2.7 | 2.7 | 3.6 | 3.5 | 3.4 | 3.4 | 3.2 | 2.6 | 1.9 | 1.3 | 1.2 | 1.1 | 0.90 J | | 15 | 0 | | | Manganese | μg/L | 0.82 U | 0.60 U | 0.66 U | 0.37 U | 0.54 U | 0.68 U | 0.47 U | 0.49 U | 0.63 U | 0.81 U | 0.90 U | 1.3 | 0.93 J | 2.2 | 0.78 U | 0.67 U | | | | 50 | | Nickel | μg/L | 1.2 | 0.58 | 0.51 | 0.69 | 0.50 J | 0.50 J | 0.50 J | 0.48 J | 0.51 | 0.52 | 0.49 J | 0.54 | 0.51 | 0.51 | 0.49 J | 0.49 J | | | | | | Tin | μg/L | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 0.52 J | | | | | | Zinc | μg/L | 243 | 334 | 29.1 | 13.9 | 13.1 | 10.6 | 8.7 | 8.1 | 7.9 | 7.4 | 7.0 | 7.3 | 6.6 | 6.5 | 6.1 | 5.2 | | | | 5000 | | Aluminum | mg/L | 0.0460 | 0.0509 | 0.0581 | 0.0566 | 0.0561 | 0.0530 | 0.0475 | 0.0458 | 0.0469 | 0.0451 | 0.0443 | 0.0434 | 0.0409 | 0.0408 | 0.0412 | 0.0392 | | | | 0.05 to 0.2 | | Calcium | mg/L | 33.3 | 33.6 | 33.3 | 33.7 | 33.3 | 31.8 | 33.8 | 33.3 | 32.9 | 33.3 | 33.0 | 33.1 | 33.3 | 32.8 | 33.7 | 33.3 | | | | | | Iron | mg/L | 0.1 U | | | 0.3 | | Magnesium | mg/L | 11.9 | 11.8 | 11.8 | 11.9 | 11.8 | 11.3 | 12.0 | 11.9 | 11.7 | 11.9 | 11.8 | 11.8 | 11.9 | 11.7 | 12.0 | 11.9 | | | | | | Potassium | mg/L | 1.57 | 1.54 | 1.55 | 1.56 | 1.53 | 1.48 | 1.43 | 1.54 | 1.47 | 1.55 | 1.52 | 1.53 | 1.53 | 1.56 | 1.49 | 1.54 | | | | | | Sodium | mg/L | 11.3 | 11.2 | 11.0 | 11.0 | 10.9 | 10.6 | 10.4 | 10.9 | 10.8 | 11.0 | 10.8 | 10.9 | 10.9 | 10.8 | 11.1 | 11.0 | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 104 | | | | | | Chloride | mg/L | | <u> </u> | | | | | Not | Sampled | | | | | | | | 16.4 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.098 J | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 26.9 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.247 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3300 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | r Results - | Before Exc | avation or | 10/8/201 | 6 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|------------------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | \$13 | S14 | S15 | DS01, DS02,
DS03 | Danimouno | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Maximum
Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 0.66 U | 2.0 5 | | 5 | | | Chromium | μg/L | 3.2 U | 3.2 U | 3.3 U | 3.3 U | 3.3 U | 3.2 U | 3.8 U | 3.3 U | 3.5 U | 4.3 | 3.1 U | 3.3 U | 3.3 U | 3.3 U | 3.3 U | 3.4 U | 100 | | 100 | | | Copper | μg/L | 2.0 J | 10 U | 10 U | 9.4 J | 10 U | 10 U | 10 U | 1.7 J | 1.8 J | 2.4 J | 10 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.0 U | 0.99 J | 0.99 J | 1.3 J | 0.88 J | 2.0 U | 2.0 U | 0.84 J | 1.1 J | 0.71 J | 0.71 J | 3.4 | 3.0 | 0.77 J | 1.1 J | 0.83 J | | 15 | 0 | | | Manganese | μg/L | 0.76 J | 1.1 J | 0.92 J | 0.87 J | 0.81 J | 0.71 J | 0.65 J | 0.78 J | 1.1 J | 11 | 0.66 J | 0.90 J | 0.74 J | 0.76 J | 0.78 J | 1.1 J | | | | 50 | | Nickel | μg/L | 1.9 U | 1.7 U | 1.8 U | 1.8 U | 1.8 U | 1.7 U | 1.8 U | 1.6 U | 2.0 U | 2.6 U | 1.6 U | 1.9 U | 1.6 U | 1.6 U | 1.7 U | 2.0 U | | | | | | Zinc | μg/L | 59 | 100 | 55 | 62 | 18 J | 17 J | 13 J | 9.5 U | 11 J | 15 J | 12 J | 11 J | 8.7 U | 8.6 U | 9.9 U | 6.4 U | | | | 5000 | | Aluminum | mg/L | 0.095 | 0.092 | 0.092 | 0.094 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.14 | | | | 0.05 to 0.2 | | Calcium | mg/L | 36 | 37 | 36 | 37 | 36 | 36 | 38 | 36 | 37 | 37 | 36 | 37 | 36 | 36 | 36 | 36 | | | | | | Iron | mg/L | 0.024 J | 0.028 J | 0.024 J | 0.066 J | 0.12 | 0.023 J | 0.025 J | 0.038 J | 0.030 J | 0.77 | 0.025 J | 0.039 J | 0.023 J | 0.021 J | 0.028 J | 0.059 J | | | | 0.3 | | Magnesium | mg/L | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | | | | | | Tin | mg/L | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not S | ampled | | | | | | | | 100 | | | | | | Chloride | mg/L | | • | | • | | | Not S | ampled | • | • | | • | • | • | | 3.0 | | | | 250 | | Fluoride | mg/L | | • | | • | | | Not S | ampled | • | • | | • | • | • | | 0.15 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not S | ampled | | | | | | | | 23.9 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not S | ampled | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3300 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | Yo | ur Results | - After Exc | avation on | 10/22/20 | 16 | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|----------------------|-------------------------------------|------------------| | | | S01
Faucet | S02
Under Sink | S03 | S04 | \$05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) |
9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Action
Level (AL) | Contaminant
Level Goal
(MCLG) | Secondary
MCL | | Cadmium | μg/L | 0.60 U | 0.99 U | 0.70 U | 0.56 U | 0.59 U | 2.0 U | 0.54 U | 2.0 5 | | 5 | | | Chromium | μg/L | 2.5 U | 2.9 U | 3.1 U | 3.6 U | 7.9 | 3.5 U | 3.6 U | 3.5 U | 3.0 U | 2.6 U | 2.9 U | 3.4 U | 3.1 U | 3.0 U | 2.9 U | 3.1 U | 100 | | 100 | | | Copper | μg/L | 2.9 U | 2.1 U | 2.0 U | 2.2 U | 2.4 U | 2.2 U | 2.5 U | 3.1 U | 2.5 U | 1.7 U | 1.6 U | 2.1 U | 1.7 U | 1.5 U | 10 U | 10 U1.5 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 0.91 J | 1.3 J | 1.2 J | 1.4 J | 1.2 J | 1.0 J | 1.1 J | 0.87 J | 0.97 J | 0.70 J | 0.89 J | 3.9 | 2.3 | 0.82 J | 2.0 U | 2.0 U | | 15 | 0 | | | Manganese | μg/L | 0.84 J | 1.1 J | 0.97 J | 1.1 J | 1.3 J | 0.82 J | 1.2 J | 0.92 J | 0.90 J | 0.56 J | 0.75 J | 0.83 J | 0.65 J | 0.80 J | 0.62 J | 0.73 J | | | | 50 | | Nickel | μg/L | 1.4 J | 1.1 J | 1.3 J | 1.3 J | 3.2 J | 1.2 J | 1.3 J | 0.92 J | 0.91 J | 0.72 J | 0.76 J | 1.1 J | 0.97 J | 0.76 J | 0.73 J | 0.84 J | | | | | | Zinc | μg/L | 56 | 100 | 53 | 21 | 22 | 16 J | 14 J | 12 J | 14 J | 13 J | 12 J | 11 J | 9.5 J | 9.3 J | 8.7 J | 7.8 J | | | | 5000 | | Aluminum | mg/L | 0.086 | 0.088 | 0.096 | 0.10 | 0.12 | 0.089 | 0.093 | 0.089 | 0.091 | 0.087 | 0.089 | 0.091 | 0.087 | 0.083 | 0.084 | 0.090 | | | | 0.05 to 0.2 | | Calcium | mg/L | 38 | 38 | 39 | 40 | 43 | 36 | 38 | 38 | 39 | 37 | 38 | 37 | 37 | 36 | 36 | 36 | | | | | | Iron | mg/L | 0.10 U | 0.10 U | 0.10 U | 0.027 U | 0.025 U | 0.10 U | 0.10 U | 0.10 U | 0.024 U | 0.10 | | | 0.3 | | Magnesium | mg/L | 13 | 13 | 13 | 13 | 14 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 12 | 12 | | | | | | Potassium | mg/L | 1.7 | 1.8 | 1.9 | 1.9 | 2.1 | 1.7 | 1.8 | 1.8 | 1.8 | 1.7 | 1.8 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | | | | | Sodium | mg/L | 12 | 12 | 13 | 13 | 14 | 12 | 12 | 12 | 13 | 12 | 12 | 12 | 12 | 12 | 12 | 11 | | | | | | Tin | mg/L | 0.0025 U | 0.0022 U | 0.020 0.0022 U | 0.0026 U | 0.020 U | 0.020 U | 0.020 U | 0.020 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.14 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3301 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befo | re Excavat | ion on 10/2 | 19/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 0.61 U | 2.0 5 | | 5 | | | Chromium | μg/L | 2.7 U | 2.4 U | 2.3 U | 3.0 U | 2.9 U | 3.1 U | 3.1 U | 2.7 U | 2.9 U | 3.1 U | 2.9 U | 2.4 U | 3.1 U | 3.6 U | 3.3 U | 4.0 U | 3.3 U | 3.5 U | 2.6 U | 100 | | 100 | | | Copper | μg/L | 72 | 3.9 U | 3.3 U | 3.8 U | 4.2 U | 5.7 U | 2.9 U | 2.1 U | 2.4 U | 2.5 U | 2.1 U | 1.9 U | 2.2 U | 2.2 U | 1.8 U | 2.3 U | 1.7 U | 1.8 U | 2.2 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.4 | 2.0 J | 2.2 | 2.5 | 2.7 | 3.1 | 2.8 | 3.4 | 3.5 | 4.8 | 8.0 | 9.3 | 5.3 | 2.7 | 1.9 J | 2.5 | 1.8 J | 2.1 | 2.1 | | 15 | 0 | | | Lead (Duplicate) | μg/L | 1.63 | 1.62 | 2.12 | 2.14 | 2.27 | 2.50 | 2.70 | 3.01 | 3.09 | 4.04 | 6.95 | 7.67 | 3.83 | 1.75 | 1.50 | 1.47 | 1.46 | 1.63 | 1.58 | | 15 | 0 | | | Manganese | μg/L | 5.1 | 3.1 U | 1.2 U | 1.1 U | 1.1 U | 1.1 U | 0.82 U | 0.89 U | 0.90 U | 0.86 U | 0.75 U | 0.72 U | 0.99 U | 1.2 U | 0.96 U | 1.2 U | 0.92 U | 1.1 U | 1.0 U | | | | 50 | | Nickel | μg/L | 2.5 U | 0.61 U | 0.63 U | 0.58 U | 0.57 U | 0.67 U | 0.52 U | 0.60 U | 0.61 U | 0.69 U | 0.57 U | 0.57 U | 1.1 U | 0.95 U | 0.68 U | 0.91 U | 0.66 U | 0.72 U | 0.97 U | | | | | | Zinc | μg/L | 140 | 110 | 45 | 30 | 30 | 26 | 17 J | 16 J | 16 J | 17 J | 13 J | 11 J | 12 J | 13 J | 10 J | 13 J | 9.7 J | 9.8 J | 7.3 J | | | | 5000 | | Aluminum | mg/L | 0.078 | 0.089 | 0.098 | 0.090 | 0.096 | 0.097 | 0.084 | 0.093 | 0.098 | 0.090 | 0.083 | 0.098 | 0.088 | 0.082 | 0.083 | 0.081 | 0.080 | 0.087 | 0.077 | | | | 0.05 to 0.2 | | Calcium | mg/L | 38 | 36 | 36 | 33 | 36 | 36 | 32 | 36 | 37 | 35 | 33 | 37 | 36 | 36 | 37 | 36 | 35 | 38 | 36 | | | | | | Iron | mg/L | 0.032 U | 0.019 U | 0.030 U | 0.10 U | 0.020 U | 0.019 U | 0.10 U | 0.10 U | 0.061 U | 0.10 U | 0.017 U | 0.018 U | 0.10 U | 0.023 U | 0.021 U | 0.10 U | 0.017 U | 0.070 U | 0.10 U | | | | 0.3 | | Magnesium | mg/L | 13 | 12 | 12 | 11 | 12 | 12 | 11 | 12 | 13 | 12 | 11 | 13 | 12 | 13 | 13 | 12 | 12 | 13 | 12 | | | | | | Potassium | mg/L | 1.6 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.4 | 1.5 | 1.6 | 1.5 | 1.4 | 1.6 | 1.5 | 1.5 | 1.6 | 1.5 | 1.5 | 1.6 | 1.5 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 10 | 11 | 11 | 9.8 | 11 | 11 | 11 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | | | | | Tin | mg/L | 0.0017 U | 0.020 | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | oled | | | | | | | | | 130 J- | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 1.0 J | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.14 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 40.6 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3301 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Afte | er Excavati |
on on 11/1 | 15/2016 | | | | | | | | 1 | Compariso | on Standards | | |------------------|------------|---|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|------------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | B. d. a | | | Darameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Maximum
Contaminant | Secondary | | Parameter | Units | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (MCL) | Level (AL) | (MCLG) | IVICE | | | | (123 IIIL) | (123 IIIL) | (1 liter) System | | | (IVICEO) | | | Cadmium | μg/L | 0.27 | 0.61 | 0.31 | 0.11 J | 0.12 J | 0.08 J | 0.07 J | 0.06 J | 0.06 J | 0.05 J | 0.04 J | 0.05 J | 0.04 J | 0.04 J | 0.03 J | 0.04 J | 0.03 J | 0.03 J | 0.03 J | 5 | | 5 | | | Chromium | μg/L | 0.46 U | 0.51 U | 0.62 U | 0.55 U | 0.55 U | 0.57 U | 0.56 U | 0.58 U | 0.62 U | 0.58 U | 0.59 U | 0.58 U | 0.56 U | 0.58 U | 0.58 U | 0.58 U | 0.59 U | 0.57 U | 0.62 U | 100 | | 100 | | | Copper | μg/L | 61.5 | 3.9 | 3.8 | 3.0 | 5.1 | 18.3 | 6.5 | 3.0 | 3.2 | 2.7 | 2.4 | 2.3 | 2.1 | 2.1 | 1.9 | 2.0 | 1.8 | 1.8 | 1.5 | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.4 2.1 7.3 2.1 2.8 3.7 2.7 1.7 1.5 2.3 4.7 4.7 2.2 1.3 1.2 1.2 1.1 1.1 1.0 | | | | | | | | | | | | 15 | 0 | | | | | | | | | | | Manganese | μg/L | 2.1 | 1.4 | 2.1 | 0.55 J | 0.79 J | 0.73 J | 0.47 J | 0.39 J | 0.51 J | 0.66 J | 0.41 J | 0.45 J | 0.47 J | 0.53 J | 0.56 J | 0.48 J | 0.49 J | 0.43 J | 0.61 J | | | | 50 | | Nickel | μg/L | 4.3 | 0.78 | 0.72 | 0.66 | 0.70 | 0.84 | 0.68 | 0.62 | 0.65 | 0.68 | 0.61 | 0.73 | 0.60 | 0.96 | 0.66 | 0.85 | 0.62 | 0.60 | 0.62 | | | | | | Zinc | μg/L | 127 | 137 | 150 | 25.8 | 25.6 | 23.4 | 16.6 | 13.3 | 15.1 | 13.8 | 10.8 | 9.3 | 8.9 | 8.9 | 8.8 | 8.5 | 8.0 | 8.0 | 6.9 | | | | 5000 | | Aluminum | mg/L | 0.0424 | 0.0578 | 0.121 | 0.0619 | 0.0584 | 0.0617 | 0.0582 | 0.0543 | 0.0551 | 0.0551 | 0.0528 | 0.0500 | 0.0478 | 0.0455 | 0.0454 | 0.0446 | 0.0425 | 0.0425 | 0.0431 | | | | 0.05 to 0.2 | | Calcium | mg/L | 33.7 | 33.7 | 34.0 | 33.5 | 33.5 | 33.7 | 33.7 | 34.3 | 34.2 | 34.7 | 33.3 | 33.7 | 33.9 | 33.3 | 33.8 | 33.9 | 33.6 | 33.3 | 33.1 | | | | | | Iron | mg/L | 0.0245 J | 0.0250 J | 0.103 | 0.0242 J | 0.0348 J | 0.0138 J | 0.0220 J | 0.0274 J | 0.0145 J | 0.0213 J | 0.0213 J | 0.100 U | 0.100 U | 0.0142 J | 0.100 U | 0.100 U | 0.0196 J | 0.0156 J | 0.100 U | | | | 0.3 | | Magnesium | mg/L | 12.0 | 12.0 | 12.0 | 11.9 | 11.9 | 12.0 | 12.0 | 12.2 | 12.2 | 12.4 | 11.9 | 11.9 | 12.1 | 11.9 | 12.1 | 12.1 | 12.1 | 11.9 | 11.9 | | | | | | Potassium | mg/L | 1.50 | 1.55 | 1.50 | 1.47 | 1.49 | 1.55 | 1.53 | 1.52 | 1.59 | 1.55 | 1.52 | 1.48 | 1.54 | 1.51 | 1.58 | 1.55 | 1.51 | 1.52 | 1.51 | | | | | | Sodium | mg/L | 10.5 | 10.5 | 10.5 | 10.3 | 10.3 | 10.5 | 10.5 | 10.5 | 10.5 | 10.8 | 10.3 | 10.4 | 10.6 | 10.4 | 10.6 | 10.5 | 10.5 | 10.4 | 10.4 | | | | | | Tin | mg/L | 0.0010 U | 0.0010 U | 0.0010 U | 0.0010 U | 0.00009 J | 0.00018 J | 0.00008 J | 0.00008 J | 0.0010 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | | | | | | | | | | 102 | | | | | | Chloride | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 16.8 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 0.117 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 28.5 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.187 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3319 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Bef | ore Excavat | ion on 10/ | 7/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|----------------------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | \$13 | S14 | \$15 | S16 | S17 | S18 | DS01, DS02,
DS03 | B.d. a i aa | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Maximum | Action | Contaminant | Secondary | | | | 1 -4 - | 2 | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant
Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | 2nd sample
(125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U 1.1 U | 1.4 U | 2.0 5 | | 5 | | | Chromium | μg/L | 3.4 U | 3.6 U | 3.3 U | 4.3 U | 3.9 U | 4.3 U | 4.5 U | 4.1 U | 4.4 U | 5.1 U | 5.2 U | 5.7 U | 4.8 U | 4.2 U | 4.2 U | 4.7 U | 5.0 U | 4.3 U | 4.3 U | 100 | | 100 | | | Copper | μg/L | 3.2 U | 2.0 U | 1.6 U | 2.5 U | 5.1 U | 6.1 U | 3.1 U | 2.1 U | 2.3 U | 2.6 U | 4.1 U | 4.5 U | 2.4 U | 1.8 U | 1.9 U | 1.8 U | 3.1 U | 1.6 U | 1.7 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.0 J | 1.9 J | 2.1 | 3.1 | 4.4 | 4.5 | 6.0 | 5.7 | 7.1 | 9.1 | 6.2 | 8.0 | 8.1 | 6.1 | 3.6 | 2.0 | 1.9 J | 1.5 J | 1.3 J | | 15 | 0 | | | Manganese | μg/L | 2.4 U | 2.6 U | 2.5 U | 1.8 U | 2.3 U | 3.0 U | 3.9 U | 4.1 | 4.5 | 5.9 | 4.0 | 3.3 U | 1.4 U | 1.2 U | 1.5 U | 1.9 U | 1.7 U | 1.4 U | 1.4 U | | | | 50 | | Nickel | μg/L | 1.7 U | 1.6 U | 1.1 U | 1.7 U | 1.5 U | 1.8 U | 2.0 U | 1.6 U | 1.9 U | 2.3 U | 3.3 U | 4.0 U | 2.0 U | 1.3 U | 1.5 U | 1.7 U | 2.1 U | 1.4 U | 1.5 U | | | | | | Zinc | μg/L | 140 | 46 | 26 | 22 | 18 J | 20 | 32 | 30 | 29 | 31 | 20 | 19 J | 12 J | 11 J | 10 J | 11 J | 11 J | 9.4 U | 8.0 U | | | | 5000 | | Aluminum | mg/L | 0.097 | 0.098 | 0.086 | 0.094 | 0.11 | 0.097 | 0.099 | 0.10 | 0.11 | 0.11 | 0.12 | 0.12 | 0.11 | 0.12 | 0.10 | 0.12 | 0.12 | 0.11 | 0.11 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 | 36 | 34 | 37 | 44 | 39 | 39 | 39 | 43 | 40 | 46 | 45 | 40 | 43 | 36 | 40 | 40 | 37 | 38 | | | | | | Iron | mg/L | 0.085 J | 0.24 | 0.093 J | 0.042 J | 0.083 J | 0.075 J | 0.13 | 0.16 | 0.18 | 0.19 | 0.096 J | 0.047 U | 0.10 U | 0.10 U | 0.10 U | 0.020 U | 0.017 U | 0.10 U | 0.10 U | | | | 0.3 | | Magnesium | mg/L | 12 | 12 | 12 | 13 | 15 | 14 | 14 | 14 | 15 | 14 | 16 | 16 | 14 | 15 | 12 | 14 | 14 | 13 | 13 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.5 | 1.6 | 1.9 | 1.7 | 1.7 | 1.7 | 1.9 | 1.7 | 2.0 | 2.0 | 1.7 | 1.9 | 1.5 | 1.7 | 1.7 | 1.6 | 1.7 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 12 | 14 | 13 | 13 | 13 | 14 | 13 | 15 | 15 | 13 | 14 | 11 | 12 | 13 | 12 | 12 | | | | | | Tin | mg/L | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | oled | | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | · | | | | | | | Not Sam | oled | | | | | | | | | 0.16 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit **Maximum Contaminant Level (MCL)** = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility
of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3319 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your | Results - Aft | ter Excavati | on on 10/20 | /2016 | | | | | | | | | Compariso | on Standards | | |------------------|--------|------------------------|------------------------|---|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | raiametei | Offics | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | 16th
sample
(1 liter) | 17th
sample
(1 liter) | 18th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 2.0 U | 2.2 | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.4 U | 3.8 U | 3.3 U | 3.9 U | 3.8 U | 3.8 U | 5.8 U | 3.7 U | 3.2 U | 3.6 U | 3.7 U | 3.7 U | 3.7 U | 3.7 U | 3.9 U | 3.7 U | 3.9 U | 4.0 U | 3.8 U | 100 | | 100 | | | Copper | μg/L | 3.1 J | 2.0 J | 2.1 J | 2.7 J | 7.6 J | 6.3 J | 4.3 J | 1.9 J | 1.9 J | 1.9 J | 2.5 J | 1.9 J | 1.9 J | 2.2 J | 1.9 J | 2.1 J | 1.8 J | 1.7 J | 1.9 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.2 | 3.5 | 4.4 4.2 5.1 4.8 9.2 6.9 9.5 7.4 7.1 8.2 8.9 6.1 3.5 2.6 4.0 2.1 2.2 | | | | | | | | | | | | 15 | 0 | | | | | | | | | Manganese | μg/L | 2.2 J | 2.7 J | 1.8 J | 1.7 J | 2.1 J | 2.4 J | 6.3 | 3.6 J | 4.5 | 3.3 J | 2.1 J | 1.1 J | 0.91 J | 1.2 J | 1.5 J | 2.1 J | 1.7 J | 1.7 J | 1.9 J | | | | 50 | | Nickel | μg/L | 2.1 U | 4.0 U | 1.9 U | 1.9 U | 2.0 U | 2.0 U | 4.0 | 2.0 U | 1.8 U | 1.9 U | 1.9 U | 1.9 U | 1.9 U | 2.2 U | 2.1 U | 2.3 U | 2.1 U | 2.1 U | 2.2 U | | | | | | Zinc | μg/L | 160 | 58 | 27 | 18 J | 16 J | 21 | 34 | 30 | 26 | 21 | 18 J | 11 J | 13 J | 9.2 J | 9.0 J | 13 J | 8.6 J | 26 | 8.7 J | | | | 5000 | | Aluminum | mg/L | 0.081 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | 0.094 | 0.095 | 0.091 | 0.094 | | | | 0.05 to 0.2 | | Calcium | mg/L | 37 | 36 | 37 | 38 | 36 | 38 | 36 | 38 | 38 | 38 | 37 | 37 | 38 | 38 | 38 | 37 | 39 | 37 | 38 | | | | | | Iron | mg/L | 0.075 U | 0.12 | 0.12 | 0.076 U | 0.091 U | 0.10 | 0.26 | 0.17 | 0.23 | 0.13 | 0.068 U | 0.033 U | 0.028 U | 0.025 U | 0.028 U | 0.035 U | 0.029 U | 0.037 U | 0.073 U | | | | 0.3 | | Magnesium | mg/L | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 14 | 13 | 13 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 11 | 11 | 12 | 11 | 12 | 12 | 12 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 11 | 11 | | | | | | Tin | mg/L | 0.0022 U | 0.0025 U | 0.020 0.0023 U | 0.020 U | 0.0016 U | 0.020 U | | | | | | Total Alkalinity | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 120 J+ | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | • | | | | | | | | | 0.14 J | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | • | | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | npled | | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3332 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befor | e Excavation | n on 10/10, | /2016 | | | | | | | | | Compariso | n Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | • | • | • | • | | • | | ' | | | • | • | • | • | • | | Maximum | Action | Contaminant | Secondary | | | | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | 16th
sample
(1 liter) | 17th
sample
(1 liter) | 18th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 2.0 U | 0.82 U | 2.0 0.57 U | 1.5 U | 5 | | 5 | | | Chromium | μg/L | 3.7 U | 3.3 U | 4.3 U | 3.7 U | 3.3 U | 3.3 U | 2.8 U | 3.2 U | 3.5 U | 3.2 U | 3.3 U | 4.0 U | 3.3 U | 4.6 U | 3.5 U | 6.1 U | 3.5 U | 5.5 U | 5.1 U | 100 | | 100 | | | Copper | μg/L | 9.1 J | 1.5 J | 10 | 4.5 J | 2.5 J | 2.8 J | 2.6 J | 1.7 J | 2.0 J | 1.6 J | 1.7 J | 1.6 J | 1.4 J | 6.3 J | 4.7 J | 5.7 J | 3.1 J | 3.7 J | 2.6 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 15 | 8.6 | 62 | 81 | 30 | 26 | 21 | 15 | 17 | 13 J- | 13 J- | 11 J- | 9.2 J | 8.1 J- | 7.8 J- | 7.9 J- | 7.2 J- | 7.2 J- | 4.8 | | 15 | 0 | | | Manganese | μg/L | 3.3 J | 2.5 J | 18 | 26 | 8.5 | 7.7 | 6.9 | 4.4 | 4.8 | 4.0 | 3.7 J | 3.5 J | 3.3 J | 3.2 J | 3.0 J | 3.4 J | 5.2 | 3.2 J | 3.7 J | | | | 50 | | Nickel | μg/L | 4.1 | 1.8 U | 2.6 U | 2.1 U | 1.9 U | 2.0 U | 1.9 U | 1.8 U | 2.0 U | 2.0 U | 1.9 U | 2.2 U | 1.9 U | 3.7 U | 2.8 U | 4.8 | 2.6 U | 3.3 U | 3.5 U | | | | | | Zinc | μg/L | 530 J+ | 330 J+ | 350 J+ | 190 J+ | 84 J+ | 160 J+ | 64 J+ | 61 J+ | 93 J+ | 45 J+ | 47 J+ | 46 J+ | 47 J+ | 48 J+ | 42 J+ | 44 J+ | 34 J+ | 47 J+ | 39 J+ | | | | 5000 | | Aluminum | mg/L | 0.085 J- | 0.082 J- | 0.23 J- | 0.19 J- | 0.12 J- | 0.13 J- | 0.10 J- | 0.10 J- | 0.11 J- | 0.099 J- | 0.10 J- | 0.10 J- | 0.10 J- | 0.10 J- | 0.094 J- | 0.095 J- | 0.096 J- | 0.094 J- | 0.094 J- | | | | 0.05 to 0.2 | | Calcium |
mg/L | 37 J | 38 J- | 37 J | 37 J | 35 J | 35 J | 34 J | 34 J | 35 J | 35 J | 36 J | 36 J | 37 J | 37 J | 35 J | 35 J | 35 J | 35 J | 36 J | | | | | | Iron | mg/L | 0.13 J- | 0.038 U | 0.31 J- | 0.33 J- | 0.11 J- | 0.13 J | 0.080 U | 0.069 U | 0.081 U | 0.061 U | 0.061 U | 0.058 U | 0.050 U | 0.050 U | 0.040 U | 0.056 U | 0.48 J | 0.045 U | 0.044 U | | | | 0.3 | | Magnesium | mg/L | 13 J | 13 J | 13 J | 13 J | 12 J | 13 J | 13 J | 13 J | 13 J | 12 J | 12 J | 12 J | 12 J | 13 J | | | | | | Potassium | mg/L | 1.8 | 1.8 | 1.7 | 1.7 | 1.6 | 1.6 | 1.5 | 1.5 | 1.6 | 1.6 | 1.7 | 1.70 | 1.7 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 12 J+ | 12 J+ | 12 J | 12 J+ | 11 J+ | 12 J+ | 12 J+ | 12 J+ | 12 J+ | 11 J+ | 12 J+ | 11 J+ | 11 J+ | 12 J+ | | | | | | Tin | mg/L | 0.0025 U | 0.020 U | 0.0023 U | 0.020 | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | | | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 0.16 J | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 23.9 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Samp | led | | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) U = Not detected above the listed reporting limit J = Estimated J+ = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). J- = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ### Site 3332 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | You | r Results - A | fter Excavati | on on 12/13 | /2016 | | | | | | | | | Compariso | n Standards | | |------------------|------------|------------------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|---------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|-------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1ct cample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | 1st sample
(125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 2 U | 5 | | 5 | | | Chromium | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 100 | | 100 | | | Copper | μg/L | 7.58 | 1.00 U | 3.82 | 1.90 | 1.15 | 1.09 | 1.00 U | 1.91 | 2.19 | 1.26 | 1.00 U | 1300 | 1300 | 1000 | | Lead | μg/L | 3.56 | 5.45 | 5.28 | 4.08 | 3.53 | 3.32 | 3.20 | 3.30 | 3.28 | 3.17 | 3.47 | 3.00 | 2.48 | 1.84 | 1.72 | 1.65 | 1.65 | 1.86 | 1.35 | | 15 | 0 | | | Zinc | μg/L | 359 | 381 | 147 | 39.8 | 39.3 | 28.3 | 23.9 | 28.1 | 27.8 | 22.6 | 21.3 | 18.8 | 18.8 | 18.5 | 18.0 | 17.3 | 17.8 | 29.7 | 11.8 | | | | 5000 | | Manganese | μg/L | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | 8 U | | | | 50 | | Nickel | μg/L | 12 U | | | | | Aluminum | mg/L | 0.200 U | | | 0.05 to 0.2 | | Calcium | mg/L | 35.7 | 36.0 | 36.6 | 36.4 | 36.5 | 35.8 | 36.3 | 37.2 | 36.9 | 36.5 | 36.2 | 36.3 | 36.5 | 35.5 | 35.4 | 34.4 | 34.9 | 34.9 | 36.0 | | | | | | Iron | mg/L | 0.0800 U | | | 0.3 | | Magnesium | mg/L | 13.1 | 12.7 | 12.6 | 12.5 | 12.5 | 12.3 | 12.4 | 12.8 | 12.7 | 12.5 | 12.5 | 12.5 | 12.5 | 12.2 | 12.2 | 11.9 | 12.0 | 12.0 | 12.4 | | | | | | Potassium | mg/L | 2.01 | 1.85 | 1.83 | 1.78 | 1.77 | 1.76 | 1.72 | 1.78 | 1.76 | 1.75 | 1.76 | 1.77 | 1.76 | 1.72 | 1.72 | 1.66 | 1.70 | 1.68 | 1.75 | | | | | | Sodium | mg/L | 11.5 | 11.6 | 11.4 | 11.2 | 11.2 | 11.1 | 11.1 | 11.4 | 11.3 | 11.2 | 11.1 | 11.2 | 11.2 | 10.9 | 10.9 | 10.6 | 10.8 | 10.7 | 11.1 | | | | | | Tin | mg/L | 0.0200 U | 0.0200 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sa | | | | | | | | | | 110 J | | | | | | Chloride | mg/L | | | | | | | | | Not Sa | • | | | | | | | | | 17.5 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sa | • | | | | | | | | | 0.09 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sa | • | | | | | | | | | 29.2 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sa | mpled | | | | | | | | | 0.17 | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3343 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ır Results - | - Before Ex | cavation o | n 10/13/20 | 016 | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|--------------|-------------|------------|------------|-----------|-----------|-----------|-----------|------------|---------------------|------------------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Banine | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Maximum
Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 2.0 U | 0.81 U | 1.1 J | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.5 U | 3.4 U | 3.4 U | 3.4 U | 3.5 U | 3.5 U | 3.4 U | 3.2 U | 3.4 U | 3.2 U | 3.5 U | 3.6 U | 3.5 U | 3.5 U | 3.5 U | 3.4 U | 100 | | 100 | | | Copper | μg/L | 41 | 19 | 11 | 12 | 12 | 10 | 9.6 J | 10 | 10 | 11 | 11 | 11 | 10 J | 9.6 J | 9.2 J | 8.1 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.8 J | 2.2 | 2.7 | 4.7 | 6.2 | 6.3 | 6.2 | 6.5 | 6.5 | 6.8 | 6.9 | 5.9 | 4.7 | 4.2 | 3.9 | 2.9 | | 15 | 0 | | | Manganese | μg/L | 1.0 J | 1.1 J | 2.3 J | 2.5 J | 2.7 J | 2.6 J | 2.4 J | 2.4 J | 2.3 J | 2.5 J | 2.3 J | 2.4 J | 2.3 J | 2.2 J | 2.1 J | 1.8 J | | | | 50 | | Nickel | μg/L | 2.1 J | 1.7 J | 1.9 J | 1.7 J | 1.8 J | 1.8 J | 1.7 J | 1.7 J | 1.8 J | 1.8 J | 1.8 J | 1.7 J | 1.8 J | 1.7 J | 1.7 J | 1.7 J | | | | | | Zinc | μg/L | 85 | 61 | 110 | 120 | 75 | 62 | 51 | 48 | 47 | 49 | 43 | 40 | 38 | 36 | 34 | 23 | | | | 5000 | | Aluminum | mg/L | 0.077 | 0.087 | 0.095 | 0.10 | 0.13 | 0.12 | 0.12 | 0.11 | 0.12 |
0.14 | 0.13 | 0.12 | 0.12 | 0.11 | 0.19 | 0.12 | | | | 0.05 to 0.2 | | Calcium | mg/L | 36 | 35 | 36 | 37 | 37 | 37 | 37 | 35 | 36 | 38 | 39 | 37 | 37 | 37 | 36 | 38 | | | | | | Iron | mg/L | 0.029 U | 0.052 U | 0.096 U | 0.16 | 0.41 | 0.30 | 0.17 | 0.16 | 0.16 | 0.19 | 0.18 | 0.15 | 0.16 | 0.13 | 0.14 | 0.13 | | | | 0.3 | | Magnesium | mg/L | 13 J- | 12 J- | 13 J- | 12 J- | 13 | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.5 | 1.6 | 1.7 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 11 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 11 | 11 | 11 | 11 | 12 | | | | | | Tin | mg/L | 0.0019 J+ | 0.020 U 0.0018 J+ | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.18 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | • | Not | Sampled | • | | • | • | | | • | 32.3 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3343 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | Y | our Results | s - After Ex | cavation o | n 12/1/20 1 | .6 | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|----------------------|-------------------------------------|------------------| | | | S01
Faucet | S02
Under Sink | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Action
Level (AL) | Contaminant
Level Goal
(MCLG) | Secondary
MCL | | Cadmium | μg/L | 0.21 | 0.35 | 0.76 | 0.87 | 0.24 | 0.23 | 0.19 J | 0.20 | 0.16 J | 0.14 J | 0.14 J | 0.14 J | 0.13 J | 0.11 J | 0.11 J | 0.08 J | 5 | | 5 | | | Chromium | μg/L | 0.76 U | 0.63 U | 0.56 U | 0.53 U | 0.5 U | 0.56 U | 0.57 U | 0.61 U | 0.59 U | 0.54 U | 0.53 U | 0.55 U | 0.59 U | 0.58 U | 0.52 U | 0.52 U | 100 | | 100 | | | Copper | μg/L | 42.1 | 17.4 | 7.0 | 4.7 | 5.2 | 5.3 | 4.7 | 4.4 | 4.5 | 4.3 | 4.3 | 4.4 | 4.5 | 4.6 | 4.6 | 3.9 | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.1 | 1.5 | 1.2 | 1.0 | 1.1 | 1.2 | 1.4 | 1.6 | 1.6 | 1.5 | 1.5 | 1.3 | 0.80 J | 0.64 J | 0.62 J | 0.58 J | | 15 | 0 | | | Manganese | μg/L | 0.50 U | 0.68 U | 0.99 U | 0.78 U | 0.56 U | 0.60 U | 0.63 U | 0.66 U | 0.66 U | 0.66 U | 0.64 U | 0.68 U | 0.67 U | 0.73 U | 0.66 U | 0.65 U | | | | 50 | | Nickel | μg/L | 0.88 | 0.52 | 0.84 | 0.60 | 0.59 | 0.56 | 0.52 | 0.56 | 0.59 | 0.54 | 0.55 | 0.59 | 0.52 | 0.54 | 0.54 | 0.53 | | | | | | Zinc | μg/L | 95.5 | 59.6 | 109 | 91.0 | 31.4 | 28.7 | 26.2 | 25.4 | 23.7 | 20.9 | 19.2 | 18.2 | 17.2 | 16.9 | 16.4 | 11.9 | | | | 5000 | | Aluminum | mg/L | 0.0372 | 0.0531 | 0.110 | 0.0576 | 0.0507 | 0.0535 | 0.0477 | 0.0452 | 0.0443 | 0.0436 | 0.0438 | 0.0428 | 0.0422 | 0.0438 | 0.0460 | 0.0478 | | | | 0.05 to 0.2 | | Calcium | mg/L | 34.3 | 35.6 | 34.2 | 34.9 | 34.7 | 34.7 | 34.7 | 34.8 | 33.9 | 35.0 | 34.2 | 34.5 | 33.8 | 34.3 | 34.3 | 33.8 | | | | | | Iron | mg/L | 0.0218 J | 0.0407 J | 0.0519 J | 0.0283 J | 1.96 | 0.0269 J | 0.0274 J | 0.0174 J | 0.0303 J | 0.0218 J | 0.0376 J | 0.0279 J | 0.0261 J | 0.0727 J | 0.0206 J | 0.100 U | | | | 0.3 | | Magnesium | mg/L | 12.0 | 12.3 | 11.7 | 11.8 | 11.9 | 12.0 | 12.0 | 12.0 | 11.8 | 12.1 | 11.8 | 11.9 | 11.7 | 11.8 | 11.9 | 11.7 | | | | | | Potassium | mg/L | 1.59 | 1.41 | 1.60 | 1.52 | 1.56 | 1.60 | 1.59 | 1.55 | 1.49 | 1.58 | 1.55 | 1.56 | 1.52 | 1.55 | 1.56 | 1.55 | | | | | | Sodium | mg/L | 10.5 | 9.49 | 10.5 | 10.6 | 10.6 | 10.7 | 10.7 | 10.6 | 10.5 | 10.7 | 10.5 | 10.7 | 10.5 | 10.6 | 10.5 | 10.6 | | | | | | Tin | mg/L | 0.001 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 104 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 16.9 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.110 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 27.8 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.216 | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3383 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Vou | r Rosults - F | Before Excav | ation on 10 | /17/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | \$11 | S12 | S13 | S14 | \$15 | S16 | S17 | S18 | DS01, DS02,
DS03 | 0.0 | Companis | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | l l | | L | L | | | | L | | | | L | l. | | Maximum | Action | Contaminant | Secondary | | | | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) |
13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | 16th
sample
(1 liter) | 17th
sample
(1 liter) | 18th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 2.0 U | 2.0 U | 2.5 | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.1 U | 8.2 | 6.0 | 2.9 U | 3.8 U | 3.8 U | 3.3 U | 3.6 U | 3.3 U | 3.6 U | 4.1 | 3.3 U | 3.6 U | 3.4 U | 3.5 U | 3.3 U | 3.5 U | 3.6 U | 3.7 U | 100 | | 100 | | | Copper | μg/L | 1.6 U | 2.0 U | 5.0 U | 2.2 U | 1.8 U | 2.0 U | 2.2 U | 2.0 U | 1.8 U | 1.9 U | 2.4 U | 1.6 U | 10 U | 1.7 U | 10 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.6 | 2.9 | 8.9 | 6.7 | 6.5 | 6.9 | 7.3 | 7.3 | 7.2 | 7.5 | 8.9 | 10 | 9.7 | 6.7 | 4.3 | 3.5 | 4.8 | 3.4 | 3.2 | | 15 | 0 | | | Manganese | μg/L | 4.3 | 6.2 | 5.3 | 2.5 J | 2.7 J | 2.0 J | 1.7 J | 1.9 J | 1.5 J | 1.2 J | 1.4 J | 0.74 U | 0.80 U | 0.76 U | 1.0 J | 0.97 U | 1.2 J | 1.1 J | 0.98 U | | | | 50 | | Nickel | μg/L | 2.4 U | 4.7 | 4.6 | 2.2 U | 2.1 U | 2.1 U | 1.9 U | 2.0 U | 1.9 U | 1.9 U | 2.4 U | 1.9 U | 1.9 U | 1.8 U | 1.9 U | 1.9 U | 1.9 U | 2.1 U | 2.0 U | | | | | | Zinc | μg/L | 200 | 85 | 69 | 58 | 54 | 35 | 30 | 33 | 30 | 26 | 22 | 18 J | 17 J | 16 J | 16 J | 15 J | 16 J | 16 J | 12 J | | | | 5000 | | Aluminum | mg/L | 0.088 | 0.10 | 0.11 | 0.10 | 0.11 | 0.11 | 0.11 | 0.10 | 0.11 | 0.10 | 0.11 | 0.10 | 0.10 | 0.10 | 0.097 | 0.095 | 0.099 | 0.10 | 0.093 | | | | 0.05 to 0.2 | | Calcium | mg/L | 36 | 36 | 37 | 37 | 37.0 | 36 | 37 | 37 | 37 | 38 | 37 | 36 | 37 | 37 | 37 | 36 | 38 | 38 | 37 | | | | | | Iron | mg/L | 0.13 | 0.48 | 0.14 | 0.11 | 0.21 | 0.096 U | 0.083 U | 0.12 | 0.068 U | 0.061 U | 0.052 U | 0.038 U | 0.036 U | 0.034 U | 0.034 U | 0.035 U | 0.032 U | 0.035 U | 0.032 U | | | | 0.3 | | Magnesium | mg/L | 12 | 12 | 13 | 12 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | | | | | Potassium | mg/L | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.7 | 1.6 | 1.7 | 1.6 | 1.7 | 1.7 | 1.6 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 11 | 12 | 11 | 11 | 11 | 12 | 12 | 11 | | | | | | Tin | mg/L | 0.0018 U | 0.020 U | 0.0016 U | 0.020 0.0019 U | 0.020 U | 0.0018 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sa | | | | | | | | | | 110 | | | | | | Chloride | mg/L | | | | | | | | | Not Sa | | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sa | | | | | | | | | | 0.15 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sa | • | | | | | | | | | 23.9 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sa | mpled | | | | | | | | | 0.029 J | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) U = Not detected above the listed reporting limit J = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3383 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | esults - Aft | er Excavat | ion on 12/ | 6/2016 | | | | | | | | 1 | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | Parameter | Units | 1st sample | 2nd comple | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | 1st sample
(125 mL) | 2nd sample
(125 mL) | sample System | Level (MCL) | Level (AL) | (MCLG) | IVICE | | | | (125 IIIL) | (125 IIIL) | (1 liter) System | | | (IVICEG) | | | Cadmium | μg/L | 0.20 | 0.09 J | 0.20 U 5 | | 5 | | | Chromium | μg/L | 0.42 J | 0.38 J | 0.40 J | 0.40 J | 0.42 J | 0.38 J | 0.39 J | 0.41 J | 0.45 J | 0.49 J | 0.49 J | 0.46 J | 0.46 J | 0.43 J | 0.43 J | 0.46 J | 0.45 J | 0.74 J | 0.43 J | 100 | | 100 | | | Copper | μg/L | 14.7 | 2.1 | 1.7 | 1.1 | 1.1 | 1.0 | 1.2 | 1.0 | 1.1 | 1.0 J | 1.2 | 1.0 | 0.88 U | 0.87 U | 0.95 J | 0.86 U | 0.81 U | 0.85 U | 0.75 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 3.3 | 2.8 | 2.2 | 2.0 | 2.2 | 2.3 | 2.5 | 2.7 | 2.8 | 2.7 | 2.8 | 3.2 | 3.3 | 2.8 | 2.4 | 2.1 | 1.9 | 1.7 | 1.5 | | 15 | 0 | | | Manganese | μg/L | 2.9 | 4.8 | 1.0 | 0.72 J | 0.74 J | 0.86 J | 0.67 J | 0.66 J | 0.69 J | 0.64 J | 1.2 | 0.74 J | 0.83 J | 1.1 | 2.0 | 1.6 | 0.98 J | 0.78 J | 0.51 J | | | | 50 | | Nickel | μg/L | 36.9 | 2.5 | 2.2 | 1.1 | 1.2 | 0.69 | 0.86 | 0.65 | 0.92 | 0.66 | 0.66 | 0.82 | 0.63 | 0.72 | 0.60 | 0.62 | 0.73 | 0.81 | 0.56 | | | | | | Tin | μg/L | 1.0 U | 0.18 J | 1.0 U | 1.0 U | 1.0 U | 1.0 U | 0.55 J | 1.0 U | 1.0 U | 1.0 U | 0.22 J | 1.0 U | 1.0 U | 0.17 J | 1.0 U | | | | | | Zinc | μg/L | 232 | 66.3 | 32.3 | 25.5 | 23.8 | 20.0 | 18.8 | 16.9 | 16.7 | 15.5 | 14.7 | 13.2 | 12.7 | 11.6 | 11.9 | 14.5 | 11.5 | 13.2 | 8.5 | | | | 5000 | | Aluminum | mg/L | 0.0758 | 0.0860 | 0.0480 | 0.0448 | 0.0442 | 0.0448 | 0.0467 | 0.0433 | 0.0469 | 0.0460 | 0.0455 | 0.0447 | 0.0453 | 0.0449 | 0.0463 | 0.0467 | 0.0442 | 0.0460 | 0.0438 | | | | 0.05 to 0.2 | | Calcium | mg/L | 34.7 | 35.3 | 36.5 | 36.0 | 36.8 | 36.1 | 35.7 | 35.4 | 35.4 | 36.1 | 36.4 | 35.4 | 35.9 | 35.4 | 35.6 | 35.4 | 35.9 | 35.7 | 35.6 | | | | | | Iron | mg/L | 0.0926 J | 0.374 | 0.0326 U | 0.0236 U | 0.100 U | 0.0302 U | 0.0260 U | 0.100 U | 0.0320 U | 0.0212 U | 0.100 U | 0.0407 J | 0.0290 U | 0.0151 U | 0.0152 U | 0.0457 J | 0.0135 U | 0.0148 U | 0.100 U | | | | 0.3 | | Magnesium | mg/L | 11.9 | 12.0 | 12.5 | 12.3 | 12.6 | 12.3 | 12.2 | 12.1 | 12.1 | 12.4 | 12.5 | 12.1 | 12.3 | 12.2 | 12.2 | 12.2 | 12.4 | 12.3 | 12.3 | | | | | | Potassium | mg/L | 1.70 | 1.74 | 1.76 | 1.69 | 1.79 | 1.73 | 1.71 | 1.68 | 1.70 | 1.73 | 1.74 | 1.71 | 1.70 | 1.70 | 1.70 | 1.69 | 1.72 | 1.72 | 1.73 | | | | | | Sodium | mg/L | 11.4 | 11.5 | 11.8 | 11.6 | 11.8 | 11.7 | 11.6 | 11.6 | 11.6 | 11.8 | 11.8 | 11.5 | 11.7 | 11.6 | 11.6 | 11.5 | 11.7 | 11.7 | 11.7 | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | | | | | | | | | | 107 | | | | | | Chloride | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 16.7 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 0.116 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 26.8 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.235 | | | | | #### Notes mg/L = milligrams per liter (also called ppm or parts per million) **μg/L** = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit J = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3406 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | esults - Bef | ore Excavat | tion on 10/ | 7/2016 | | | | | | | | | Compariso | on Standards | | |------------------
------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|---------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | \$15 | S16 | S17 | S18 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (125 IIIL) | (125 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 0.61 U | 2.0 3.4 U | 0.67 U | 2.0 5 | | 5 | | | Chromium | μg/L | 3.8 U | 3.8 U | 4.3 U | 3.8 U | 4.1 U | 4.2 U | 4.4 U | 4.1 U | 4.1 U | 7.4 U | 4.9 U | 4.8 U | 5.9 U | 4.6 U | 4.7 U | 2.9 U | 6.6 U | 3.3 U | 3.4 U | 100 | | 100 | | | Copper | μg/L | 59 | 78 | 32 | 13 | 15 | 10 | 7.5 U | 8.4 U | 6.9 U | 14 | 8.1 U | 7.2 U | 8.6 U | 6.4 U | 6.6 U | 5.7 U | 5.0 U | 5.1 U | 5.5 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 4.5 | 2.3 | 3.0 | 3.1 | 3.7 | 4.5 | 5.4 | 6.8 | 7.3 | 13 | 13 | 13 | 15 | 6.5 | 4.1 | 3.2 | 2.9 | 3.0 | 3.2 | | 15 | 0 | | | Manganese | μg/L | 4.2 | 1.1 J | 1.1 J | 1.2 J | 0.99 J | 1.1 J | 1.2 J | 1.5 J | 1.7 J | 5.7 | 3.4 J | 3.4 J | 4.9 | 3.9 J | 3.6 J | 3.5 J | 2.7 J | 3.5 J | 3.5 J | | | | 50 | | Nickel | μg/L | 3.2 U | 1.8 U | 1.7 U | 1.8 U | 1.5 U | 1.8 U | 1.6 U | 1.8 U | 1.6 U | 8.2 | 2.8 U | 2.1 U | 2.8 U | 2.0 U | 2.1 U | 1.9 U | 1.9 U | 1.5 U | 2.1 U | | | | | | Zinc | μg/L | 28 | 9.1 J | 16 J | 14 J | 13 J | 17 J | 15 J | 16 J | 14 J | 22 | 12 J | 8.8 J | 11 J | 7.7 J | 9.0 J | 6.5 J | 6.2 J | 7.8 J | 8.3 J | | | | 5000 | | Aluminum | mg/L | 0.087 | 0.093 | 0.097 | 0.094 | 0.095 | 0.091 | 0.094 | 0.092 | 0.098 | 0.11 | 0.10 | 0.10 | 0.10 | 0.11 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | | | | 0.05 to 0.2 | | Calcium | mg/L | 36 | 36 | 37 | 35 | 37 | 35 | 36 | 35 | 36 | 40 | 36 | 35 | 35 | 38 | 35 | 36 | 36 | 38 | 39 | | | | | | Iron | mg/L | 0.036 U | 0.026 U | 0.035 U | 0.031 U | 0.026 U | 0.026 U | 0.028 U | 0.032 U | 0.040 U | 0.054 U | 0.069 U | 0.081 U | 0.079 U | 0.080 U | 0.062 U | 0.12 | 0.081 U | 0.070 U | 0.062 U | | | | 0.3 | | Magnesium | mg/L | 12 | 12 | 13 | 12 | 13 | 12 | 12 | 12 | 12 | 14 | 12 | 12 | 12 | 13 | 12 | 12 | 12 | 13 | 14 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.6 | 1.5 | 1.6 | 1.6 | 1.6 | 1.5 | 1.6 | 1.7 | 1.6 | 1.5 | 1.6 | 1.6 | 1.5 | 1.6 | 1.6 | 1.6 | 1.7 | | | | | | Sodium | mg/L | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 13 | 11 | 11 | 11 | 12 | 11 | 11 | 11 | 12 | 12 | | | | | | Tin | mg/L | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | oled | | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 1.0 J | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Samp | | | | | | | | | | 0.16 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Samp | oled | | | | | | | | | 0.018 J | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3406 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | Υ | our Result: | s - After Ex | cavation o | n 12/2/20 1 | .6 | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | , | • | | • | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | , arameter | Omes | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 0.2 U 5 | | 5 | | | Chromium | μg/L | 0.52 U | 0.53 U | 0.53 U | 0.42 U | 0.52 U | 0.55 U | 0.51 U | 0.53 U | 0.55 U | 0.48 U | 0.51 U | 0.53 U | 0.58 U | 0.54 U | 0.53 U | 0.58 U | 100 | | 100 | | | Copper | μg/L | 20.2 J+ | 23.3 J+ | 13.3 J+ | 6.3 J+ | 6.2 J+ | 5.8 J+ | 3.5 J+ | 3.2 J+ | 3.8 J+ | 3 J+ | 3.1 J+ | 3.1 J+ | 2.9 J+ | 2.7 J+ | 2.8 J+ | 2.8 J+ | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.6 | 1.4 | 1.4 | 1.4 | 1.6 | 1.4 | 1.4 | 1.4 | 1.4 | 1.3 | 1.9 | 2.6 | 2.6 | 2.1 | 1.3 | 0.74 J | | 15 | 0 | | | Manganese | μg/L | 0.99 J | 0.91 J | 1.1 | 0.93 J | 0.92 J | 1.2 | 0.96 J | 0.91 J | 1 J | 0.97 J | 0.99 J | 0.98 J | 0.97 J | 1.0 | 1.1 | 1.3 | | | | 50 | | Nickel | μg/L | 1.3 | 0.60 | 0.60 | 0.58 | 0.92 | 0.75 | 0.54 | 0.55 | 0.80 | 0.54 | 0.54 | 0.58 | 0.54 | 0.57 | 0.53 | 0.55 | | | | | | Tin | μg/L | 0.19 J | 0.22 J | 1.0 U | | | | | Zinc | μg/L | 12.5 | 4.3 | 5.6 | 6.2 | 6.9 | 7.5 | 11.5 | 5.3 | 23.9 | 6.2 | 5.3 | 3.2 | 3.1 | 4.2 | 2.5 U | 2.8 U | | | | 5000 | | Aluminum | mg/L | 0.0420 | 0.0447 | 0.0455 | 0.0458 | 0.0463 | 0.0463 | 0.0466 | 0.0453 | 0.0455 | 0.0453 | 0.0462 | 0.0445 | 0.0438 | 0.0442 | 0.0452 | 0.0431 | | | | 0.05 to 0.2 | | Calcium | mg/L | 34.2 | 34.0 | 34.2 | 34.5 | 34.4 | 35.0 | 34.8 | 34.4 | 34.6 | 35.1 | 34.4 | 34.2 | 34.8 | 34.7 | 34.1 | 34.6 | | | | | | Iron | mg/L | 0.0248 U | 0.0145 U | 0.0156 U | 0.100 U | 0.0181 U | 0.100 U | 0.0141 U | 0.0154 U | 0.0278 U | 0.0166 U | 0.0199 U | 0.0372 U | 0.100 U | 0.100 U | 0.100 U | 0.0231 U | | | | 0.3 | | Magnesium | mg/L | 11.7 | 11.5 | 11.6 | 11.8 | 11.7 | 11.9 | 11.9 | 11.8 | 11.8 | 11.9 | 11.7 | 11.6 | 11.8 | 11.8 | 11.6 | 11.8 | | | | | | Potassium | mg/L | 1.54 | 1.53 | 1.56 | 1.60 | 1.55 | 1.58 | 1.59 | 1.54 | 1.62 | 1.54 | 1.58 | 1.53 | 1.56 | 1.53 | 1.48 | 1.54 | | | | | | Sodium | mg/L | 10.8 | 10.7 | 10.6 | 10.9 | 10.8 | 10.8 | 10.9 | 10.8 | 10.9 | 11.0 | 10.8 | 10.7 | 10.8 | 10.8 | 10.6 | 10.7 | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 106 | | | | | | Chloride | mg/L | | • | | | | | Not | Sampled | | • | | • | • | • | • | 17.1 | | | | 250 | | Fluoride | mg/L | | | ' | | | | | | | | | | | 0.126 | 4 | | 4 | 2 | | | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | · | | · | · | · | · | 26.3 | | | | 250 | | Total Phosphorus | mg/L | - | | | | | | Not | Sampled | | | | | | | | 0.22 | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water
below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3434 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Bef | ore Excavat | ion on 10/ | 6/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|------------------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | \$13 | S14 | \$15 | S16 | S17 | \$18 | DS01, DS02,
DS03 | B.d.o.vicessee | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Maximum
Contaminant | Action | Contaminant | Secondary | | | | 1st sample | 2nd sample | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Level (MCL) | Level (AL) | Level Goal | MCL | | | | (125 mL) | (125 mL) | sample System | Level (IVICL) | | (MCLG) | | | | | (123 IIIL) | (123 IIIL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 2.4 | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.3 U | 3.9 U | 3.4 U | 3.5 U | 19 | 5.9 | 4.9 | 3.5 U | 3.8 U | 3.6 U | 3.4 U | 3.2 U | 5.2 | 4.0 U | 3.5 U | 3.1 U | 11 | 3.2 U | 3.4 U | 100 | | 100 | | | Copper | μg/L | 31 | 76 | 16 | 4.0 U | 4.1 U | 6.2 U | 4.1 U | 5.8 J | 5.2 U | 3.7 U | 6.0 U | 3.3 U | 3.1 U | 3.9 U | 3.1 U | 3.0 U | 3.1 U | 4.1 U | 2.5 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.7 J | 1.6 J | 1.4 J | 1.6 J | 1.8 J | 4.2 | 2.1 J | 1.8 J | 3.3 J | 4.2 | 2.9 J | 1.8 J | 1.8 J | 1.5 J | 1.4 J | 1.4 J | 1.3 J | 1.6 J | 1.2 J- | | 15 | 0 | | | Manganese | μg/L | 1.0 J | 0.95 J | 0.97 J | 1.1 J | 3.0 J | 3.5 J | 1.6 J | 1.5 J | 1.3 J | 1.1 J | 1.4 J | 1.1 J | 2.0 J | 1.2 J | 1.5 J | 1.2 J | 2.9 J | 1.2 J | 1.0 J | | | | 50 | | Nickel | μg/L | 4.8 | 2.9 U | 2.0 U | 2.0 U | 10 | 4.4 | 2.9 U | 2.1 U | 2.3 U | 2.0 U | 1.9 U | 2.0 U | 3.1 U | 2.4 U | 1.8 U | 1.8 U | 6.0 | 2.4 U | 1.7 U | | | | | | Zinc | μg/L | 85 | 46 | 11 J | 17 U | 18 U | 17 U | 17 U | 17 U | 14 U | 13 U | 9.6 U | 8.3 U | 13 U | 9.8 U | 8.3 U | 9.6 U | 9.7 U | 15 U | 6.0 U | | | | 5000 | | Aluminum | mg/L | 0.084 | 0.086 | 0.10 | 0.11 | 0.11 | 0.10 | 0.11 | 0.098 | 0.10 | 0.11 | 0.12 | 0.11 | 0.12 | 0.11 | 0.12 | 0.11 | 0.11 | 0.10 | 0.11 J+ | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 J | 36 J | 38 J | 37 J | 39 J | 35 J | 39 J | 34 J | 36 J | 38 J | 38 J | 37 J | 38 J | 36 J | 37 J | 35 J | 36 J | 33 J | 35 J | | | | | | Iron | mg/L | 0.10 U | 0.10 U | 0.054 U | 0.034 U | 0.086 U | 0.024 U | 0.029 U | 0.048 U | 0.026 U | 0.019 U | 0.022 U | 0.11 J+ | 0.019 U | 0.031 U | 0.028 U | 0.023 U | 0.026 U | 0.037 U | 0.11 J+ | | | | 0.3 | | Magnesium | mg/L | 13 J | 12 J | 13 J | 12 J | 12 J | 13 J | 12 J | 13 J | 12 J | 12 J | | | | | | Potassium | mg/L | 1.5 | 1.6 | 2.2 | 1.9 | 1.9 | 1.7 | 1.8 | 1.6 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.7 | 1.7 | 1.6 | 1.7 | 1.4 | 1.6 | | | | | | Sodium | mg/L | 11 J | 11 J | 11 J | 11 J | 12 J | 11 J | 12 J | 11 J | 11 J | 12 J | 11 J | 12 J | 11 J | 11 J+ | | | | | | Tin | mg/L | 0.0018 U | 0.020 U | 0.020 U | 0.020 U | 0.020 U | 0.0068 U | 0.020 U | 0.0027 U | 0.020 U | 0.020 U | 0.020 U | 0.0020 U | 0.020 | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | oled | | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | - | | | - | Not Sam | pled | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | · | | | | | | | Not Sam | oled | | | | | | | | | 0.50 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 15.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | pled | | | | | | | | | 0.050 U | | | | | ## Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3434 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Afte | r Excavatio | on 10/18/ | 2016 | | | | | | | | | Compariso | n Standards | | |------------------|------------|-----------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-------------|------------|-------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | 8.6 | • | Maximum | | | Parameter | Units | Faucet | Under Sink | | • | • | • | • | • | | • | | | | • | • | • | • | • | | Maximum | Action | Contaminant | Secondary | | | | 4 | | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | 1st sample | 2nd sample | System | Level (MCL) | | (MCLG) | | | | | (125 mL) | (125 mL) | (1 liter) | | | | | | Cadmium | μg/L | 2.0 U | 2.0 U 5 | | 5 | | | Chromium | μg/L | 3.0 U | 3.3 U | 2.7 U | 3.1 U | 3.3 U | 3.6 U | 3.7 U | 5.5 U | 3.7 U | 3.7 U | 3.7 U | 3.3 U | 3.0 U | 3.5 U | 3.7 U | 3.8 U | 3.7 U | 3.8 U | 3.7 U | 100 | | 100 | | | Copper | μg/L | 39 | 8.3 J | 5.2 J | 7.3 J | 6.4 J | 5.9 J | 3.5 J | 4.9 J | 2.7 J | 2.6 J | 2.4 J | 2.2 J | 2.2 J | 2.4 J | 2.0 J | 2.0 J | 2.1 J | 2.0 J | 1.9 J | | 1300 | 1300 | 1000 | | Lead | μg/L | 4.1 | 3.2 | 3.7 | 3.5 | 3.8 | 3.6 | 3.4 | 5.4 | 3.6 | 3.4 | 4.5 | 5.7 | 3.8 | 3.5 | 2.3 | 2.4 | 2.4 | 2.2 | 1.9 J | | 15 | 0 | | | Manganese | μg/L | 2.9 J | 5.9 | 2.2 J | 1.9 J | 1.8 J | 2.0 J | 1.7 J | 3.7 J | 1.5 J | 1.4 J | 1.8 J | 2.8 J | 2.4 J | 1.5 J | 1.3 J | 1.3 J | 1.3 J | 1.4 J | 1.2 J | | | | 50 | | Nickel | μg/L | 3.1 U | 2.5 U | 2.1 U | 2.1 U | 2.1 U | 2.2 U | 2.1 U | 3.8 U | 2.0 U | 2.1 U | 2.1 U | 2.0 U | 1.9 U | 2.0 U | 2.0 U | 2.1 U | 2.1 U | 2.1 U | 2.1 U | | | | | | Zinc | μg/L | 470 | 250 | 94 | 29 | 37 | 26 | 16 J | 19 J | 24 | 13 J | 16 J | 13 J | 12 J | 57 | 12 J | 12 J | 17 J | 11 J | 7.6 U | | | | 5000 | | Aluminum | mg/L | 0.098 J+ | 0.11 J+ | 0.12 J+ | 0.11 J+ | 0.12 J+ | 0.11 J+ | 0.10 J+ | 0.11 J+ | 0.11 J+ | 0.12 J+ | 0.098 J+ | 0.099 J+ | 0.095 J+ | 0.095 J+ | 0.096 J+ | | | | 0.05 to 0.2 | | Calcium | mg/L | 38 | 39 | 38 | 37 | 39 | 39 | 38 | 38 | 37 | 38 | 37 | 38 | 38 | 39 | 38 | 38 | 37 | 37 | 38 | | | | | | Iron | mg/L | 0.067 U | 0.26 | 0.069 U | 0.042 U | 0.043 U | 0.047 U | 0.036 U | 0.038 U | 0.032 U | 0.032 U | 0.063 U | 0.089 U | 0.065 U | 0.035 U | 0.027 U | 0.026 U | 0.024 U | 0.023 U | 0.049 U | | | | 0.3 | | Magnesium | mg/L | 13 | 13 | 12 | 13 | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | | | | | Potassium | mg/L | 1.7 | 1.7 | 1.7 | 1.6 | 1.7 | 1.7 | 1.7 | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 12 | 12 | 11 | 11 | 11 | 12 | 11 | 12 | 11 | 12 | 12 | 11 | 12 | 12 | 11 | 11 | 12 | 12 | 5.9 | | | | | | Tin | mg/L | 0.020 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Samp | led | | | | | | | | | 120 | | | | | | Chloride | mg/L | | • | | | • | • | | | Not Samp | led | | | • | • | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | · | | | | | | | Not Samp |
led | | | | | | | | | 0.15 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | , in the second | | | | | | | | Not Samp | led | | | | | | | | | 48.8 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Samp | led | | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) U = Not detected above the listed reporting limit #### J = Estimated (1+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3437 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | You | ır Results - | Before Ex | cavation o | n 10/14/20 | 016 | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|-------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02,
DS03 | Maximum | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | Contaminant | Action | Contaminant | Secondary | | | | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | Distribution
System | Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 2.0 U 5 | | 5 | | | Chromium | μg/L | 1.5 U | 1.8 U | 1.5 U | 1.9 U | 1.9 U | 1.7 U | 1.6 U | 1.6 U | 1.9 U | 1.5 U | 1.5 U | 1.6 U | 1.6 U | 1.4 U | 1.4 U | 1.3 U | 100 | | 100 | | | Copper | μg/L | 47 | 76 | 53 | 31 | 28 | 11 | 11 | 9.6 U | 11 | 6.6 U | 6.3 U | 6.6 U | 6.7 U | 5.3 U | 5.2 U | 4.3 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 1.6 U | 2.6 | 3.4 | 1.8 U | 2.0 U | 1.3 U | 1.1 U | 1.2 U | 3.4 | 5.4 | 1.6 U | 1.1 U | 1.3 U | 1.1 U | 0.99 U | 0.85 U | | 15 | 0 | | | Manganese | μg/L | 0.85 U | 0.65 U | 0.74 U | 1.2 U | 1.4 U | 0.89 U | 4.0 U | 0.56 U | 1.4 U | 0.60 U | 0.71 U | 0.91 U | 0.82 U | 0.78 U | 0.69 U | 0.76 U | | | | 50 | | Nickel | μg/L | 1.5 U | 0.86 U | 0.76 U | 0.76 U | 0.68 U | 1.1 U | 0.57 U | 0.61 U | 0.72 U | 0.54 U | 0.55 U | 0.59 U | 0.62 U | 0.50 U | 0.50 U | 0.55 U | | | | | | Zinc | μg/L | 220 | 32 | 11 J | 6.6 J | 7.5 J | 8.7 J | 6.6 J | 6.2 J | 5.4 J | 20 U | | | 5000 | | Aluminum | mg/L | 0.090 | 0.099 | 0.11 | 0.099 | 0.11 | 0.16 | 0.11 | 0.11 | 0.10 | 0.099 | 0.092 | 0.085 | 0.095 | 0.090 | 0.089 | 0.091 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35 | 36 | 36 | 32 | 36 | 34 | 37 | 37 | 35 | 35 | 34 | 32 | 36 | 34 | 35 | 35 | | | | | | Iron | mg/L | 0.036 U | 0.043 U | 0.042 U | 0.12 | 0.076 U | 0.056 U | 0.034 U | 0.034 U | 0.033 U | 0.031 U | 0.032 U | 0.032 U | 0.034 U | 0.037 U | 0.031 U | 0.034 U | | | | 0.3 | | Magnesium | mg/L | 12 | 13 | 13 | 11 | 12 | 12 | 13 | 13 | 12 | 12 | 12 | 11 | 13 | 12 | 12 | 12 | | | | | | Potassium | mg/L | 1.6 | 1.6 | 1.6 | 1.4 | 1.5 | 1.5 | 1.7 | 1.7 | 1.6 | 1.6 | 1.5 | 1.4 | 1.6 | 1.5 | 1.5 | 1.5 | | | | | | Sodium | mg/L | 11 J+ | 11 J+ | 11 J+ | 10 J+ | 11 J+ | 11 J+ | 11 J+ | 12 J+ | 11 J+ | 11 J+ | 11 J+ | 10 J+ | 11 J+ | 11 J+ | 11 J+ | 11 J+ | | | | | | Tin | mg/L | 0.0019 U | 0.020 U | 0.020 U | 0.0018 U | 0.020 0.0024 U | 0.020 U | 0.020 U | 0.020 U | 0.020 U | | | | | | Total Alkalinity | mg CaCO3/L | | | · | · | · | | Not | Sampled | · | | • | | | • | • | 120 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.17 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | • | • | • | | Not | Sampled | • | | • | | | • | • | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.050 U | | | | | #### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. # Site 3437 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | Ye | our Results | - After Ex | cavation o | n 11/3/201 | 6 | | | | | | | Compariso | on Standards | | |------------------|------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | rarameter | Offics | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) | 5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 5 | | 5 | | | Chromium | μg/L | 0.59 U | 0.49 U | 0.41 U | 0.43 U | 0.45 U | 0.44 U | 2.0 U | 0.44 U | 0.51 U | 0.43 U | 0.46 U | 0.36 U | 0.36 U | 0.44 U | 0.44 U | 0.42 U | 100 | | 100 | | | Copper | μg/L | 81.5 | 54.8 | 16.0 | 10.7 | 10.2 | 6.2 | 5.2 | 5.6 | 6.0 | 5.0 | 5.0 J | 4.7 | 4.7 J | 4.6 J | 4.5 J | 3.8 | | 1300 | 1300 | 1000 | | Lead | μg/L | 2.3 | 3.0 | 2.7 | 0.97 J | 0.93 J | 0.88 J | 0.83 J | 0.93 J | 2.3 | 1.6 | 0.88 J | 0.80 J | 0.79 J | 0.77 J | 0.75 J | 0.64 J | | 15 | 0 | | | Manganese | μg/L | 1.9 | 0.47 J | 0.52 J | 0.56 J | 0.54 J | 0.53 J | 0.46 J | 0.55 J | 0.60
J | 0.56 J | 0.76 J | 0.58 J | 0.64 J | 0.64 J | 0.58 J | 0.63 J | | | | 50 | | Nickel | μg/L | 9.6 | 1.8 | 0.75 | 1.2 | 0.79 | 0.64 | 0.61 | 0.69 | 0.65 | 0.64 | 0.64 | 0.57 | 0.65 | 0.59 | 0.57 | 0.70 | | | | | | Zinc | μg/L | 287 J | 25.7 J | 11.0 J | 6.8 J | 6.7 J | 7.0 J | 5.1 J | 5.3 J | 4.8 J | 4.1 J | 4.5 J | 4.7 J | 5.0 J | 3.5 U | 3.5 U | 2.7 U | | | | 5000 | | Aluminum | mg/L | 0.0714 | 0.0749 | 0.0686 | 0.0698 | 0.0662 | 0.0698 | 0.0697 | 0.0694 | 0.0703 | 0.0685 | 0.0669 | 0.0661 | 0.0675 | 0.0714 | 0.0687 | 0.0667 | | | | 0.05 to 0.2 | | Calcium | mg/L | 35.9 | 35.5 | 36.6 | 35.4 | 34.6 | 34.6 | 34.8 | 34.5 | 34.4 | 34.5 | 34.9 | 34.5 | 34.1 | 34.8 | 34.5 | 34.7 | | | | | | Iron | mg/L | 0.100 U 0.053 J | 0.0155 J | 0.0161 J | 0.100 U | 0.0193 J | | | | 0.3 | | Magnesium | mg/L | 12.2 | 12.0 | 12.4 | 12.0 | 11.7 | 11.7 | 11.8 | 11.7 | 11.7 | 11.7 | 11.8 | 11.6 | 11.5 | 11.7 | 11.6 | 11.7 | | | | | | Potassium | mg/L | 1.80 | 1.75 | 1.74 | 1.81 | 1.76 | 1.74 | 1.74 | 1.73 | 1.78 | 1.75 | 1.78 | 1.79 | 1.73 | 1.70 | 1.79 | 1.82 | | | | | | Sodium | mg/L | 12.0 | 11.6 | 11.7 | 12.0 | 11.8 | 11.6 | 11.8 | 11.7 | 11.8 | 11.7 | 11.9 | 11.8 | 11.6 | 11.8 | 11.8 | 11.9 | | | | | | Tin | μg/L | 0.00027 J | 0.00071 J | 0.0010 U | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | Not | Sampled | | | | | | | | 105 | | | | | | Chloride | mg/L | | | | | | | Not | Sampled | | | | | | | | 17.2 | | | | 250 | | Fluoride | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.132 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | Not | Sampled | | | | | | | | 27.3 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | Not | Sampled | | | | | | | | 0.151 | | | | | ## Notes: mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3443 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your Re | sults - Befo | re Excavat | ion on 10/1 | 15/2016 | | | | | | | | | Compariso | on Standards | | |------------------|------------|----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-------------|------------|--------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02,
DS03 | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | | Maximum | Action | Contaminant | Secondary | | | | | | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | 10th | 11th | 12th | 13th | 14th | 15th | 16th | 17th | 18th | Distribution | Contaminant | Level (AL) | Level Goal | MCL | | | | | | sample System | Level (MCL) | | (MCLG) | | | | | (125 mL) | (125 mL) | (1 liter) | | | | | | Cadmium | μg/L | 1.5 J | 1.1 J | 1.4 J | 2.0 U 0.69 U | 2.0 U | 2.0 U | 2.0 U | 5 | | 5 | | | Chromium | μg/L | 2.9 U | 2.5 U | 1.7 U | 2.1 U | 2.0 U | 2.0 U | 2.2 U | 1.8 U | 2.1 U | 2.0 U | 2.0 U | 1.9 U | 2.8 U | 1.9 U | 1.8 U | 1.2 U | 1.5 U | 1.7 U | 2.2 U | 100 | | 100 | | | Copper | μg/L | 76 | 52 | 130 | 7.0 U | 9.7 U | 6.6 U | 5.3 U | 4.5 U | 4.9 U | 4.2 U | 4.1 U | 4.1 U | 4.3 U | 3.9 U | 3.9 U | 4.2 U | 4.1 U | 4.0 U | 3.9 U | | 1300 | 1300 | 1000 | | Lead | μg/L | 9.4 | 7.2 | 130 | 25 | 11 | 15 | 17 | 14 | 14 | 13 | 14 | 9.1 | 6.7 | 6.7 | 6.7 | 7.1 | 6.2 | 6.1 | 6.5 | | 15 | 0 | | | Manganese | μg/L | 2.3 J | 1.8 J | 29 | 4.1 | 0.82 U | 0.97 U | 1.1 J | 0.78 U | 2.2 J | 0.75 U | 0.82 U | 0.91 U | 2.2 J | 0.91 U | 0.89 U | 1.4 J | 0.68 U | 0.69 U | 1.1 J | | | | 50 | | Nickel | μg/L | 5.3 | 1.2 U | 1.6 U | 0.95 U | 0.74 U | 0.86 U | 0.99 U | 0.73 U | 0.96 U | 0.77 U | 1.0 U | 0.81 U | 1.1 U | 0.81 U | 0.85 U | 1.3 U | 0.72 U | 0.74 U | 0.86 U | | | | | | Zinc | μg/L | 300 | 46 | 320 | 29 | 14 J | 9.6 J | 11 J | 8.8 J | 12 J | 7.2 J | 10 J | 8.9 J | 6.2 J | 6.5 J | 6.0 J | 7.1 J | 6.4 J | 5.2 J | 8.8 J | | | | 5000 | | Aluminum | mg/L | 0.094 J- | 0.088 J- | 0.30 J- | 0.11 J- | 0.099 J- | 0.10 J- | 0.10 J- | 0.093 J- | 0.10 J- | 0.096 J- | 0.10 J- | 0.10 J- | 0.095 J- | 0.098 J- | 0.097 J- | 0.11 J- | 0.094 J- | 0.089 J- | 0.095 J- | | | | 0.05 to 0.2 | | Calcium | mg/L | 36 | 34 | 34 | 35 | 35 | 35 | 35 | 34 | 39 | 36 | 38 | 37 | 36 | 37 | 37 | 43 | 37 | 35 | 36 | | | | | | Iron | mg/L | 0.032 U | 0.064 U | 1.8 | 0.096 U | 0.035 U | 0.042 U | 0.029 U | 0.039 U | 0.037 U | 0.032 U | 0.026 U | 0.049 U | 2.1 | 0.028 U | 0.028 U | 0.037 U | 0.020 U | 0.020 U | 0.026 U | | | | 0.3 | | Magnesium | mg/L | 14 | 12 | 13 | 13 | 13 | 13 | 14 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 15 | 13 | 12 | 13 | | | | | | Potassium | mg/L | 1.8 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.8 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.6 | 1.6 | 1.9 | 1.6 | 1.6 | 1.6 | | | | | | Sodium | mg/L | 13 | 11 | 11 | 12 | 12 | 12 | 13 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 12 | 11 | 12 | | | | | | Tin | mg/L | 0.0026 U | 0.020 U | 0.0050 U | 0.020 U | 0.0018 U | 0.020 0.0017 U | | | | | | Total Alkalinity | mg CaCO3/L | | | | | | | | | Not Sam | oled | | | | | | | | | 120 | | | | | | Chloride | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 3.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 0.16 U | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not Sam | | | | | | | | | | 40.5 J | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not Sam | oled | | | | | | | | | 0.050 U | | | | | ### Notes: mg/L = milligrams per liter (also called ppm or parts per million) μg/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated (J+) = Potential high bias (based on laboratory quality checks, the actual value may be slightly lower than what is reported here). (J-) = Potential low bias (based on laboratory quality checks, the actual value may be slightly higher than what is reported here). Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data. ## Site 3443 -- Kitchen Sink Faucet Sequential Sampling by U.S. EPA Final Analytical Results | | | | | | | | | | Your | Results - Af | ter Excavati | on on 11/19 | /2016 | | | | | | | | | Comparis | on Standards | | |------------------|-------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------|----------------------------|------------|----------------------|-------------| | | | S01 | S02 | S03 | S04 | S05 | S06 | S07 | S08 | S09 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | DS01, DS02, | | | Maximum | | | Parameter | Units | Faucet | Under Sink | | | | | | | | | | | | | | | | | DS03 | Maximum | Action | Contaminant | Secondary | | | | 1st sample
(125 mL) | 2nd sample
(125 mL) | 3rd
sample
(1 liter) | 4th
sample
(1 liter) |
5th
sample
(1 liter) | 6th
sample
(1 liter) | 7th
sample
(1 liter) | 8th
sample
(1 liter) | 9th
sample
(1 liter) | 10th
sample
(1 liter) | 11th
sample
(1 liter) | 12th
sample
(1 liter) | 13th
sample
(1 liter) | 14th
sample
(1 liter) | 15th
sample
(1 liter) | 16th
sample
(1 liter) | 17th
sample
(1 liter) | 18th
sample
(1 liter) | Distribution
System | Contaminant
Level (MCL) | Level (AL) | Level Goal
(MCLG) | MCL | | Cadmium | μg/L | 0.20 J | 0.42 | 1.2 | 0.31 | 0.20 | 0.08 J | 0.07 J | 0.08 J | 0.07 J | 0.07 J | 0.07 J | 0.06 J | 0.06 J | 0.07 J | 0.06 J | 0.05 J | 0.05 J | 0.05 J | 0.04 J | 5 | | 5 | | | Chromium | μg/L | 0.90 U | 0.98 U | 1.0 U | 0.98 U | 0.86 U | 0.94 U | 0.88 U | 0.92 U | 0.95 U | 0.95 U | 0.99 U | 0.91 U | 0.84 U | 0.89 U | 0.93 U | 0.92 U | 0.93 U | 0.95 U | 0.95 U | 100 | | 100 | | | Copper | μg/L | 68.6 | 51.9 | 36.1 | 5.7 | 17.8 | 8.7 | 4.1 | 4.2 | 4.4 | 3.6 | 3.4 | 3.4 | 3.3 | 3.2 | 3.1 | 3.0 | 3.0 | 3.1 | 2.4 | | 1300 | 1300 | 1000 | | Lead | μg/L | 4.8 | 4.9 | 81.2 | 12.9 | 14.2 | 22.3 | 21.8 | 21.0 | 17.7 | 20.0 | 20.3 | 10.8 | 6.6 | 6.2 | 6.0 | 5.6 | 5.6 | 6.0 | 4.7 | | 15 | 0 | | | Manganese | μg/L | 0.26 J | 0.98 J | 21.1 | 1.5 | 1.4 | 0.85 J | 0.60 J | 0.58 J | 0.54 J | 0.58 J | 0.49 J | 0.58 J | 0.70 J | 0.72 J | 0.75 J | 0.83 J | 0.72 J | 0.80 J | 0.69 J | | | | 50 | | Nickel | μg/L | 1.3 | 12.3 | 1.1 | 0.75 | 1.1 | 1.2 | 0.71 | 0.76 | 0.70 | 0.72 | 0.71 | 0.70 | 0.70 | 0.80 | 0.87 | 0.80 | 0.70 | 0.68 | 0.66 | | | | | | Tin | μg/L | 0.10 U | 1.0 U | 3.4 | 0.12 U | 0.09 U | 1.0 U | 0.10 U | 0.07 U | 0.33 U | 1.0 | | | | | Zinc | μg/L | 194 | 63.5 | 164 | 31.2 | 28.4 | 12.0 | 10.2 | 11.1 | 11.8 | 9.4 | 8.2 | 7.5 | 8.0 | 7.8 | 7.6 | 8.9 | 6.8 | 7.9 | 4.9 U | | | | 5000 | | Aluminum | mg/L | 0.0416 | 0.0550 | 0.168 | 0.0659 | 0.0604 | 0.0537 | 0.0496 | 0.0512 | 0.0486 | 0.0538 | 0.0516 | 0.0523 | 0.0476 | 0.0530 | 0.0484 | 0.0473 | 0.0459 | 0.0465 | 0.0458 | | | | 0.05 to 0.2 | | Calcium | mg/L | 33.6 | 34.1 | 34.2 | 34.7 | 34.0 | 33.1 | 34.3 | 34.5 | 34.2 | 34.0 | 34.1 | 34.4 | 33.7 | 34.5 | 33.7 | 34.0 | 33.7 | 34.3 | 34.2 | | | | | | Iron | mg/L | 0.100 U | 0.0458 J | 0.700 | 0.0418 J | 0.0640 J | 0.0313 J | 0.0264 J | 0.0644 J | 0.100 U | 0.0144 J | 0.0140 J | 0.100 U | 0.0153 J | 0.0147 J | 0.0219 J | 0.0278 J | 0.100 U | 0.0476 J | 0.100 U | | | | 0.3 | | Magnesium | mg/L | 11.8 | 12.1 | 12.0 | 12.0 | 11.9 | 11.7 | 12.1 | 12.3 | 12.2 | 12.0 | 12.0 | 12.2 | 12.0 | 12.2 | 11.9 | 12.1 | 12.0 | 12.1 | 12.1 | | | | | | Potassium | mg/L | 1.55 | 1.54 | 1.62 | 1.63 | 1.61 | 1.54 | 1.57 | 1.61 | 1.61 | 1.61 | 1.56 | 1.60 | 1.56 | 1.58 | 1.56 | 1.62 | 1.60 | 1.58 | 1.60 | | | | | | Sodium | mg/L | 11.0 | 11.2 | 11.1 | 11.3 | 11.0 | 10.8 | 11.1 | 11.3 | 11.2 | 11.1 | 11.1 | 11.2 | 11.1 | 11.2 | 11.0 | 11.1 | 11.0 | 11.2 | 11.2 | | | | | | Total Alkalinity | mg/L | | | | | | | | | Not San | npled | | | | | | | | | 105 | | | | | | Chloride | mg/L | | | | | | | | | Not San | npled | | | | | | | | | 17.0 | | | | 250 | | Fluoride | mg/L | | | | | | | | | Not San | npled | | | | | | | | | 0.124 | 4 | | 4 | 2 | | Sulfate as SO4 | mg/L | | | | | | | | | Not San | npled | | | | | | | | | 28.1 | | | | 250 | | Total Phosphorus | mg/L | | | | | | | | | Not San | npled | | | | | | | | | 0.256 | | | | | #### Notes mg/L = milligrams per liter (also called ppm or parts per million) μ g/L = micrograms per liter (also called ppb or parts per billion) (U) = Not detected above the listed reporting limit (J) = Estimated Maximum Contaminant Level (MCL) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards. Maximum Contaminant Level Goal (MCLG) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety and are non-enforceable public health goals. Action Level (AL) = The Action level of 15 ppb (for the 90th percentile of compliance samples) is based on technical feasibility of reducing lead in drinking water through optimizing corrosion control. It is not a health based level. Secondary MCL = non-mandatory water quality standards established only as guidelines to assist public water for aesthetic considerations, such as taste, color, and odor. These contaminants are not considered to present a risk to human health at the SMCL. Method Detection Limit (MDL) indicates the level at which the laboratory has high confidence that the analyte is PRESENT in the sample but low confidence in the numerical result. MDLs are routinely reassessed by each laboratory to ensure the accurate presentation of their data.