The Condition of U.S. Lakes and Streams: Findings from the National Aquatic Resource Surveys

Webcast sponsored by EPA’s Watershed Academy

Thursday, March 23, 2017 - 1:00pm – 3:00pm Eastern

Instructors:
- Dr. Amina Pollard, Ecologist, Monitoring Branch, U.S. EPA’s Office of Water, Washington, DC
- Dr. John Stoddard, Research Scientist, U.S. EPA’s Office of Research and Development, Corvallis, OR

Webcast Logistics

- **To Ask a Question** – Type your question in the “Questions” tool box on the right side of your screen and click “Send.”

- **To Report any Technical Issues** (such as audio problems) – Type your issue in the “Questions” tool box on the right side of your screen and click “Send” and we will respond by posting an answer in the “Questions” box.
Speakers

- **Dr. Amina Pollard**, Ecologist, Monitoring Branch, U.S. EPA’s Office of Water, Washington, DC
- **Dr. John Stoddard**, Research Scientist, U.S. EPA’s Office of Research and Development, Corvallis, OR

Overview of Today’s Webcast

- Overview of the National Aquatic Resource Survey (NARS)
- Key findings of the National Lakes Assessment (NLA) 2012
- Key findings of the National Rivers and Streams Assessment (NRSA) 2008/09
- Findings from a supplemental analysis that found widespread increases in the amount of phosphorus in oligotrophic lakes and streams in the U.S.
The National Aquatic Resource Surveys – An Overview

Presentation Outline

- Background
- NARS Approach
- Accomplishments
- Status
What is NARS?

- Series of surveys implemented by EPA and our state and tribal partners addressing 4 waterbody types
- Program to assess all surface waters within the 48 conterminous states
- A cost effective, nationally consistent, regionally relevant means of tracking status and trends
- Program that builds from almost 20 years of research and pilots

Purpose of the National Aquatic Resource Surveys

- Assess biological and recreational condition and change over time
- Document associations between indicators of condition and indicators of stress
- Build/enhance state monitoring and assessment capacity
Why is NARS important?

Provides national assessments
- Address gaps in information about the condition of the nation's waters with statistical confidence.
- Reports used as water quality outcome measures of progress tracking protection and restoration nationally.

Supports national priorities
- Reports and ancillary analyses support nutrient pollution and habitat protection efforts
- Supplemental analyses show increases in phosphorus in our least impacted rivers/streams and lakes
- Critical data set for identifying and responding to concerns about algal toxins

Complements state and local monitoring
- Reports extent of degradation and risk key stressors pose to water quality at national and regional scales.
- State and local monitoring are key to informing local priorities for site specific restoration actions and watershed protection.

National Consistency: NARS Approach

- Randomized design to report on condition of each resource nationally and regionally
 - 1,000 sites in lower 48
- Standard field and lab protocols
- National QA and data management
- Nationally consistent and regionally relevant data interpretation and peer-reviewed reports
Types of Survey Indicators and Measures

Biological indicators such as:
- Benthic macroinvertebrates
- Plants
- Fish community

Public health indicators such as
- Fish tissue
- Pathogens (e.g., enterococci)
- Microcystins and other algal toxins

Occurrence and extent of key **stressors** such as:
- High levels of nutrients
- Excess sediment
- Physical habitat characteristics (e.g. riparian cover)

May include pertinent **research indicators** such as:
- Sediment enzymes
- Contaminants of emerging concern

Accomplishments

- First ever, nationally consistent assessments of coastal waters, lakes and reservoirs, rivers and streams, and wetlands including information on changes.
- Assessments address ecological and human-health indicators; stressors; and changes over time
- Expanded/strengthened state, tribal and interagency partnerships
Comprehensive, consistent, and statistically-valid assessments

Results:
- Coastal: >35,000 square miles a 40% increase from 2004
- Lakes: >110,000 lakes which substantially increases the assessed acres since 2004
- Rivers/streams: >1.2 million miles more than doubling the assessed miles since 2004
- Wetlands: >60,000,000 acres resulting in a 30 fold increase since 2004

Status

Analysis/Reporting
- NCCA 2015 – Data Analysis getting started

Data Collection/Laboratory Efforts
- NWCA 2016 – Finished field season, samples being processed by labs
- NLA 2017 – Field training is starting in preparation for summer sampling
- NRSA 2018-2019 – Planning and preparations have already begun. Design completed and indicators selected
Acknowledgements

• State and Tribal partners
• Federal partners
 – Fish and Wildlife Service
 – NRCS Soil Survey
 – U.S. Geological Survey
 – National Park Service
 – U.S. Forest Service, Army Corps of Engineers, NOAA
• Academic Institutions
• EPA Office of Research and Development and EPA Regions
Presentation Outline

1. Introduction to the National Lakes Assessment 2012 (NLA)
 - Objectives and design
2. Findings for key indicators
 - Phosphorus, benthic macroinvertebrates, riparian vegetation, microcystin
3. Data and dashboard
National Lakes Assessment 2012

Objectives of the NLA:

– What is the current biological, chemical, physical, and recreational condition of U.S. lakes?

– How is the condition changing over time?

NLA 2012 Assessment Design

• Using a statistically representative process, selects 1,000 lakes, ponds and reservoirs across the conterminous U.S. from the national map of waterbodies (NHDPlusv2)
 ✓ Size: greater than or equal to one hectare
 ✓ Depth: greater than or equal to one meter

• Represents 111,800 lakes across the nation

• Excludes Great Lakes; coastal lakes; treatment, disposal or stock ponds; ephemeral lakes
NLA 2012 Assessment Indicators

- **Water chemistry**
 - Phosphorus, nitrogen, dissolved oxygen, acidification, trophic state

- **Biological assemblages**
 - Benthic macroinvertebrates and zooplankton

- **Physical habitat**
 - Riparian vegetation cover, shallow water habitat, lakeshore disturbance, lake habitat complexity, lake drawdown exposure

- **Recreation**
 - Algal toxins (e.g., microcystin risk and detected), atrazine pesticide screen, chlorophyll a (risk), mercury (methyl and total)
Assessment Benchmarks

Two types of benchmarks were used to determine condition:

1. Nationally-consistent, literature-defined
 Screening benchmarks (WHO for algal toxins)

2. Regionally-relevant, NLA-defined
 Minimally-disturbed condition
 Fixed percentiles define condition designation
 Applied to biological, habitat, and nutrient indicators

Phosphorus (Total)
2012 National Estimates and Change from 2007
Percentage of lakes in each condition category

<table>
<thead>
<tr>
<th>Condition Category</th>
<th>2012 Percentage of Lakes</th>
<th>2007-2012 Change in % Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Disturbed</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Moderately Disturbed</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Least Disturbed</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Not Assessed</td>
<td>No Observed Lakes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- 40% of the population shows signs of phosphorus pollution; no change in the proportion in most disturbed condition
Benthic Invertebrates

2012 National Estimates and Change from 2007

Percentage of lakes in each condition category

<table>
<thead>
<tr>
<th>Condition Category</th>
<th>2012 Percentage of Lakes</th>
<th>2007-2012</th>
<th>Change in % Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Disturbed</td>
<td>31%</td>
<td></td>
<td>-40%</td>
</tr>
<tr>
<td>Moderately Disturbed</td>
<td>26%</td>
<td></td>
<td>-20%</td>
</tr>
<tr>
<td>Least Disturbed</td>
<td>33%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Not Assessed</td>
<td>11%</td>
<td></td>
<td>20%</td>
</tr>
</tbody>
</table>

- 31% of the population is in degraded biological condition; no change in the proportion in most disturbed condition
- Lakes with phosphorus pollution are 2.2 times as likely to have degraded benthic invertebrate communities

Riparian Vegetation Cover

2012 National Estimates and Change from 2007

Percentage of lakes in each condition category

<table>
<thead>
<tr>
<th>Condition Category</th>
<th>2012 Percentage of Lakes</th>
<th>2007-2012</th>
<th>Change in % Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Disturbed</td>
<td>28%</td>
<td></td>
<td>-40%</td>
</tr>
<tr>
<td>Moderately Disturbed</td>
<td>23%</td>
<td></td>
<td>-20%</td>
</tr>
<tr>
<td>Least Disturbed</td>
<td>48%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Not Assessed*</td>
<td>0%</td>
<td></td>
<td>20%</td>
</tr>
</tbody>
</table>

- 28% of the population is in most disturbed condition; no change in the proportion of the population in most disturbed condition
Microcystin (Detected)
2012 National Estimates and Change from 2007
Percentage of lakes in each condition category

<table>
<thead>
<tr>
<th>Condition Category</th>
<th>2012 Percentage of Lakes</th>
<th>2007-2012 Change in % Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Disturbed*</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>Least Disturbed*</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Not Assessed</td>
<td>1%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

• 39% of the population had detections; statistically-significant increase (+9.5%) in detections
• Although detections are common, concentrations reach WHO risk to recreation levels in 0.7% of the population, which is similar to NLA 2007 findings

Phosphorus (Total)
2012 Estimates and Change from 2007
Percentage of lakes in most disturbed condition – NLA Ecoregions

• Conditions vary across the country
Read, Explore and Analyze

- The NLA report
- Data – including a new file with the “top 50” NLA data elements
- New interactive dashboard for exploring results

For more information on the NLA 2012

National Lakes Assessment:
- https://www.epa.gov/national-aquatic-resource-surveys/nla

Ecoregional Results:

NLA Data Dashboard
- https://nationallakesassessment.epa.gov/
National Rivers and Streams Assessment: 2008/2009 Final Results

Dr. Richard Mitchell
Biologist, Monitoring Branch, U.S. EPA Office of Water
Presentation Outline

• Overview of NRSA 2008/09

• Summary of key findings
 – National and ecoregional results: benthic macroinvertebrates, total nitrogen, total phosphorus
 – Change analysis
 – Relative/Attributable risk

NRSA 2008/2009 Results

• Indicators
 – Biological
 • Benthic macroinvertebrates
 • Fish
 – Chemical
 • Nutrients (total nitrogen and phosphorus)
 • Acidification
 • Salinity
 – Physical Habitat
 • Excess streambed sediments
 • In-stream fish habitat
 • Riparian vegetation cover
 • Riparian disturbance
 – Enterococci
 – Mercury in fish tissue
Sites Sampled for the NRSA 2008/09

Benthic Macroinvertebrates MMI

- 46% of river/stream miles are rated poor for biology
- Similar results in the Eastern Highlands and Plains
- Only 27% of river/stream miles are rated poor for biology in the West
Nationally, 41% of river/stream miles are rated poor for total nitrogen

- Similar results in the Eastern Highlands and Plains
- Only 20% of river/stream miles are rated poor for total nitrogen in the West
• Nationally, 46% of river/stream miles are rated poor for total phosphorus
• Eastern Highlands had the highest percentage (58%) of miles in poor condition, and the West had the lowest percentage (33%)
Ecoregion Total Phosphorus

Comparing Ecoregions by Concentrations (Nitrogen and Phosphorus)

- Total Phosphorus Concentration Distribution (µg/L)
 - Coastal Plains
 - Northern Appalachians
 - Southern Appalachians
 - Northern Plains
 - Southern Plains
 - Temperate Plains
 - Upper Midwest
 - Western Mountains
 - Xeric

- Total Nitrogen Concentration Distribution (µg/L)
 - Coastal Plains
 - Northern Appalachians
 - Southern Appalachians
 - Northern Plains
 - Southern Plains
 - Temperate Plains
 - Upper Midwest
 - Western Mountains
 - Xeric
- Biology showed significant decreases in stream miles rated as good between 2004 and 2008/2009.
- Total phosphorus showed a significant decrease in stream miles rated as good between 2004 and 2008/2009.
- Total nitrogen showed no significant change between 2004 and 2008/2009, either nationally or regionally.

Statistically significant
What You Need to Know about Phosphorus

- Phosphorus is a required nutrient for life
- It is generally considered THE limiting nutrient in freshwaters
- Common element in soils and bedrocks, particularly those derived from marine sediments
- It tends to stay put, unless mined (source of most P for fertilizers and industrial use) or eroded
- Movement of phosphorus through the environment is mostly as particulates
- Common anthropogenic sources of phosphorus to freshwaters:
 - Agricultural runoff
 - Stormwater runoff
 - Wastewater runoff

Why do we care? Phosphorus limits algal growth in most freshwaters
Why do we care? Phosphorus limits algal growth in most freshwaters

Lake 226, Experimental Lakes Area – Whole Lake Phosphorus Addition

Lake Erie, 2011
Total Phosphorus in NARS Stream Surveys

2004 median = 26 µg/L

Total Phosphorus (µg/L)

Cumulative Proportion of Stream Length

2000-2004

Total Phosphorus in NARS Stream Surveys

2009 median = 48 µg/L

2004 median = 26 µg/L

Total Phosphorus (µg/L)

Cumulative Proportion of Stream Length

2000-2004

2008-2009
Total Phosphorus in NARS Stream Surveys

- 2004 median = 26 µg/L
- 2009 median = 48 µg/L
- 2014 median = 56 µg/L

Total Phosphorus in NARS Lake Surveys

- 2007 median = 20 µg/L
Total Phosphorus in NARS Lake Surveys

- 2007 median = 20 µg/L
- 2012 median = 37 µg/L

Oligotrophic Systems – Population Estimates
Creation of Reference Site Dataset

Least-Disturbed catchments from each survey:
• < 5% agricultural land use
• < 1.5% urban land use
• < 2 km km⁻² road density
• riparian disturbance index values < 1.25

Focused analysis on re-surveyed (overlap) sites located in catchments that pass all of these criteria

Reference Site Comparisons

Median change = +2.2 µg L⁻¹ yr⁻¹
Reference Site Comparisons

(c) Streams (2008/09 - 2013/14)

Median change = +2.9 µg L⁻¹ yr⁻¹

(b) Lakes (2007 - 2012)

Median change = +1.6 µg L⁻¹ yr⁻¹
Oligotrophic Systems – Detectable Phosphorus

<table>
<thead>
<tr>
<th>Years</th>
<th>Method Detection Limit (MDL) (µg L⁻¹)</th>
<th>% of population<MDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-2004</td>
<td>3.1</td>
<td>10.8%</td>
</tr>
<tr>
<td>2008-2009</td>
<td>5.5</td>
<td>0.4%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>4.0</td>
<td>0.3%</td>
</tr>
<tr>
<td>Lakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>3.9</td>
<td>7.1%</td>
</tr>
<tr>
<td>2012</td>
<td>2.9</td>
<td>0%</td>
</tr>
</tbody>
</table>

Potential Mechanisms

Possible reasons for phosphorus changes:

- Data Quality
 - One lab analyzed all samples
 - No methods changes in lab or field
 - Quality assurance is extensive and thorough
Potential Mechanisms

Results of Blind Audit Analyses, 2000-2014

Possible reasons for phosphorus changes:

- **Data Quality**
 - One lab analyzed all samples
 - No methods changes in lab or field
 - Quality assurance is extensive and thorough

- **Increases from agricultural/wastewater/stormflow runoff (the classics)**
 - Not consistent with notable increases in reference sites
 - Should increase both N and P (but doesn’t)
Potential Mechanisms

N and P usually very correlated with one another:
Potential Mechanisms

Possible reasons for phosphorus changes:

- **Data Quality**
 - One lab analyzed all samples
 - No methods changes
 - Quality assurance is extensive and thorough

- Increases from agricultural/wastewater/stormflow runoff (the classics)
 - Not consistent with notable increases in reference sites
 - Should increase both N and P (but doesn’t)

- Changes in hydrology
 - Because Total P is associated with particulates, increased flow might explain differences between N and P
 - But . . .
• Quarterly runoff for each HUC8
 Modeled by USGS
• Years, Seasons matched to sampling dates for each overlap sample
• No significant changes in streams
• Small, but significant increase in lakes

Potential Mechanisms

Possible reasons for phosphorus changes:

• Data Quality
 • One lab analyzed all samples
 • No methods changes
 • Quality assurance is extensive and thorough
• Increases from agricultural/wastewater/stormflow runoff (the classics)
 • Not consistent with notable increases in reference sites
 • Should increase both N and P (but doesn’t)
• Changes in hydrology
 • Because Total P is associated with particulates, increased flow might explain differences between N and P
• Forest Dieback, Migratory Birds, Recovery from Acidification
 • All operate at small scales (if at all), not continentally
• Atmospheric Deposition
 • Wet Deposition data very problematic
 • Dry Deposition more likely source of Phosphorus
 • Dust??
Atmospheric deposition of Phosphorus

- Roughly 200 NADP sites collect long-term data on phosphorus in rain
- NADP does not measure Total Phosphorus
- 95% of the 100,000 observations are below detection

Atmospheric deposition of Phosphorus

KS32 (strongest trend)
Atmospheric deposition of Phosphorus

98% of sites had upward slopes
67% of sites had trends with p<0.10 (all positive)
Mean trend = +5.8 µg/L/yr
Median trend = +3.1 µg/L/yr
Translates to ca. 15-30 µg/L over 5 years
Phosphorus deposition in dust?

- Ca2+ deposition increasing in the West
- A surrogate for dust deposition?

(from Brahney et al. 2013, Aeolian Research)
• Trends in “low visibility events” in the West
• A surrogate for dust storms?

Conclusions

• Strong evidence that Total P is increasing nationally in both lentic and lotic systems
• Especially evident in reference sites
• Streams with TP < 10µg/L:
 • 25% in 2004
 • 10% in 2009
 • 2% in 2014
• Lakes with TP < 10µg/L:
 • 25% in 2007
 • 7% in 2012
• Likely cause needs to be:
 • Very large in scale (continental)
 • Operating in remote, undeveloped areas (as well as everywhere else)
• Potential mechanisms driven by climate change?:
 • Extreme hydrologic events
 • Atmospheric Deposition (dust?)
Questions?

Speaker Contact Information

Sarah Lehmann, Team Leader for NARS, Monitoring Branch, U.S.EPA's Office of Water, Washington, DC
Lehmann.Sarah@epa.gov

Dr. Amina Pollard, Ecologist, Monitoring Branch, U.S.EPA's Office of Water, Washington, DC
Pollard.Amina@epa.gov

Mitchell.Richard@epa.gov

Dr. John Stoddard, Research Scientist, U.S. EPA's Office of Research and Development, Corvallis, OR
Stoddard.john@epa.gov

www.epa.gov/national-aquatic-resource-surveys
Next Watershed Academy Webcast: Please Visit Our Website

More Details to Come!

www.epa.gov/watershedacademy

Participation Certificate

If you would like to obtain participation certificates type the link below into your web browser:

• https://www.epa.gov/sites/production/files/2017-03/documents/watershed_acad_webcast_certificate_0323178.pdf

You can type each of the attendees names into the PDF and print the certificates.
Questions?