\$EPA

Water

Development Final

Document for

Effluent Limitations

Guidelines and Standards

for the Nonferrous Metals

Forming and Metal Powders

Point Source Category
Volume II

DEVELOPMENT DOCUMENT

for

EFFLUENT LIMITATIONS GUIDELINES AND STANDARDS

for the

NONFERROUS METALS FORMING AND METAL POWDERS

POINT SOURCE CATEGORY

VOLUME II

Lee M. Thomas Administrator

Lawrence J. Jensen
Assistant Administrator for Water

William A. Whittington
Director
Office of Water Regulations and Standards

Devereaux Barnes, Acting Director Industrial Technology Division

Ernst P. Hall, P.E., Chief Metals Industries Branch

Janet K. Goodwin Technical Project Officer

September 1986

U.S. Environmental Protection Agency
Office of Water
Office of Water Regulations and Standards
Industrial Technology Division
Washington, D.C. 20460

This document is divided into three volumes. Volume I contains Sections I through IV. Volume II contains Sections V and VI. Volume III contains Sections VII through XVI.

SECTION I SUMMARY AND CONCLUSIONS

SECTION II RECOMMENDATIONS

SECTION III INTRODUCTION

SECTION IV INDUSTRY SUBCATEGORIZATION

SECTION V WATER USE AND WASTEWATER CHARACTERISTICS

SECTION VI SELECTION OF POLLUTANT PARAMETERS

SECTION VII CONTROL AND TREATMENT TECHNOLOGY

SECTION VIII COST OF WASTEWATER TREATMENT AND CONTROL

SECTION IX BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

SECTION X BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

SECTION XI NEW SOURCE PERFORMANCE STANDARDS

SECTION XII PRETREATMENT STANDARDS

SECTION XIII BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY

SECTION XIV ACKNOWLEDGMENTS

SECTION XV GLOSSARY

SECTION XVI REFERENCES

CONTENTS

Sect	ion		Page
I .	•	SUMMARY AND CONCLUSIONS	1
		Methodology	
'		Technology Basis for Limitations	
		and Standards	
II		RECOMMENDATIONS	7
	i	BPT and BAT Mass Limitations	,
		New Source Performance Standards	
	, t	Pretreatment Standards for Existing	
	!	and New Sources	:
	2	and New Bodices	
III		INTRODUCTION	319
	1	Legal Authority	0-5
		Data Collection and Utilization	
	* * * * * * * * * * * * * * * * * * *	Description of the Nonferrous	
		Metals Forming Category	
		Description of Nonferrous Metals	
	r	Forming Processes	
IV		INDUSTRY SUBCATEGORIZATION	385
		Evaluation and Selection of	
		Subcategorization Factors	
		Production Normalizing Parameter	
		Selection	
		Description of Subcategories	
V		WATER USE AND WASTEWATER CHARACTERISTICS	413
		Data Sources	
	;	Water Use and Wastewater Characteristic	:s
VI		SELECTION OF POLLUTANT PARAMETERS	1119
~		Rationale for Selection of Pollutant	
		Parameters	
		Description of Pollutant Parameters	
	:	Pollutant Selection by Subcategory	
	1		
VII		CONTROL AND TREATMENT TECHNOLOGY	1311
	1	End-of-Pipe Treatment Technologies	
	1	Major Technologies	
	* · · · · ·	Major Technology Effectiveness	
		Minor Technologies	
		In-Process Pollution Control Techniques	

CONTENTS (Continued)

Section		<u>Page</u>
VIII .	COST OF WASTEWATER TREATMENT AND CONTROL Summary of Cost Estimates Cost Estimation Methodology Cost Estimates for Individual Treatment Technologies	1461
	Compliance Cost Estimation Nonwater Quality Aspects	
IX	BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE Technical Approach to BPT	1553
	Lead-Tin-Bismuth Forming Subcategory Magnesium Forming Subcategory Nickel-Cobalt Forming Subcategory	: :
•	Precious Metals Forming Subcategory Refractory Metals Forming Subcategory Titanium Forming Subcategory	
	Uranium Forming Subcategory Zinc Forming Subcategory Zirconium Hafnium Forming Subcategory	•
	Metal Powders Subcategory Application of Regulation in Permits	
x	BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE Technical Approach to BAT BAT Option Selection	1757
	Regulated Pollutant Parameters Lead-Tin-Bismuth Forming Subcategory Magnesium Forming Subcategory	
	Nickel-Cobalt Forming Subcategory Precious Metals Forming Subcategory	
	Refractory Metals Forming Subcategory Titanium Forming Subcategory Uranium Forming Subcategory	
	Zinc Forming Subcategory Zirconium-Hafnium Forming Subcategory Metals Powders Subcategory	
XI	NEW SOURCE PERFORMANCE STANDARDS Technical Approach to NSPS NSPS Option Selection	1915
	Regulated Pollutant Parameter New Source Performance Standards	

CONTENTS (Continued)

Section			Page
XII	•	PRETREATMENT STANDARDS Introduction of Nonferrous Metals Forming Wastewater into POTW Technical Approach to Pretreatment PSES and PSNS Option Selection Regulated Pollutant Parameters Pretreatment Standards	2013
XIII		BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY	2187
XIV	: 	ACKNOWLEDGEMENTS	2189
ΧV	-	GLOSSARY	2191
XVI,	1	REFERENCES	2211

LIST OF TABLES

Table	<u>Title</u>	Page
III-1	Metal Types Not Formed on a Commercial Scale, or for which	356
	Forming Operations Generate No Wastewater	, ·
III-2	Metal Types Covered Under the Nonferrous Metals Forming Category	357
III-3	Years Since Nonferrous Forming Operations Began at Plant	358
III-4	Nonferrous Metal Production by Product Formed in 1981	359
IV-1	Number of Plants Discharging Nonferrous Metals Forming Wastewater, By Subcategory	411
V-1	Number of Samples Per Waste Stream, By Subcategory	478
V-2	Sample Analysis Laboratories	483
V-3	Nonpriority Pollutants Analyzed for During Sampling Effort Supporting This Regulation	484
V-4	Results of Chemical Analyses of Sampled Lead and Nickel Extrusion Press and Solution Heat Treatment Contact Cooling Water	486
V-5	Results of Chemical Analyses of Sampled Lead, Nickel, and Precious Metals Rolling Spent Emulsions	487
V-6	Lead-Tin-Bismuth Rolling Spent Emulsions	488
V-7	Lead-Tin-Bismuth Rolling Spent Emulsions Raw Wastewater Sampling Data	489
V-8	Lead-Tin-Bismuth Rolling Spent Soap Solutions	492

<u>Table</u>	<u>Title</u>	Page
V-9	Lead-Tin-Bismuth Rolling Spent Neat Oils	493
V-10	Lead-Tin-Bismuth Drawing Spent Emulsions	494
v-11	Lead-Tin-Bismuth Drawing Spent Soap Solutions	495
V-12	Lead-Tin-Bismuth Drawing Spent Soap Solutions Raw Wastewater Characteristics	496
V-13	Lead-Tin-Bismuth Extrusion Press or Solution Heat Treatment Contact Cooling Water	497
V-14	Lead-Tin-Bismuth Extrusion Press Solution Heat Treatment Contact Cooling Water Raw Wastewater Characteristics	498
V-15	Lead-Tin-Bismuth Extrusion Press Hydraulic Fluid Leakage	501
V-16	Lead-Tin-Bismuth Swaging Spent Emulsions	502
V-17	Lead-Tin-Bismuth Continuous Strip Casting Contact Cooling Water	503
V-18	Lead-Tin-Bismuth Continuous Strip Casting Contact Cooling Water Raw Wastewater Characteristics	504
V-19	Lead-Tin-Bismuth Semi-Continuous Ingot Casting Contact Cooling Water	506
V-20	Lead-Tin-Bismuth Semi-Continuous Ingot Casting Contact Cooling Water Raw Wastewater Characteristi	507 cs
V-21	Lead-Tin-Bismuth Shot Casting Con- tact Cooling Water	510

<u>Table</u>		•	<u>Title</u>	Page
V-22	· :		Lead-Tin-Bismuth Shot Casting Contact Cooling Water Raw Wastewater	511
V-23			Lead-Tin-Bismuth Shot Forming Wet Air Pollution Control Blowdown	514
V-24			Lead-Tin-Bismuth Alkaline Cleaning Spent Baths	515
V-25	· ·		Lead-Tin-Bismuth Alkaline Cleaning Spent Baths Raw Wastewater Sampling Data	516
V-26	;		Lead-Tin-Bismuth Alkaline Cleaning Rinse	519
V-27			Lead-Tin-Bismuth Alkaline Cleaning Rinse Raw Wastewater Sampling Data	520
V-28			Magnesium Rolling Spent Emulsions	524
V-29			Magnesium Forging Spent Lubricants	525
V-30		·	Magnesium Forging Contact Cooling Water	526
V-31			Magnesium Forging Equipment Cleaning Wastewater	527
V-32			Magnesium Direct Chill Casting Contact Cooling Water	528
V-33			Magnesium Surface Treatment Spent Baths	529
V-34			Magnesium Surface Treatment Spent Baths Raw Wastewater Sampling Data	530
V-35			Magnesium Surface Treatment Rinse	535
V-36			Magnesium Surface Treatment Rinse Raw Wastewater Sampling Data	536

<u>Table</u>	<u>Title</u>	Page
V-37	Magnesium Sawing or Grinding Spent Emulsions	548
V-38	Magnesium Wet Air Pollution Control Blowdown	549
V-39	Magnesium Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	550
V-40	Nickel-Cobalt Rolling Spent Neat Oils	552
V-41 .	Nickel-Cobalt Rolling Spent Emulsions	553
V-42	Nickel-Cobalt Rolling Spent Emulsions Raw Wastewater Sampling Data	554
V-43	Nickel-Cobalt Rolling Contact Cooling Water	558
V-44	Nickel-Cobalt Rolling Contact Cooling Water Raw Wastewater Sampling Data	559
V-45	Nickel-Cobalt Tube Reducing Spent Lubricants	566
V-46	Nickel-Cobalt Tube Reducing Spent Lubricants Raw Wastewater Sampling Data	567
V-47	Nickel-Cobalt Drawing Spent Neat Oils	570
V-48	Nickel-Cobalt Drawing Spent Emulsions	571
V-49	Nickel-Cobalt Drawing Spent Emulsions Raw Wastewater Sampling Data	572
V-50	Nickel-Cobalt Extrusion Spent Lubricants	574
V-51	Nickel-Cobalt Extrusion Press and Solution Heat Treatment Contact Cooling Water	575

Table		<u>Title</u>	<u>Page</u>
V-52		Nickel-Cobalt Extrusion Press and Solution Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	576
V-53		Nickel-Cobalt Extrusion Press Hydraulic Fluid Leakage	579
V-54		Nickel-Cobalt Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	580
V-55	:	Nickel-Cobalt Forging Spent Lubricants	584
V-56		Nickel-Cobalt Forging Contact Cooling Water	585
V-57		Nickel-Cobalt Forging Contact Cooling Water Raw Wastewater Sampling Data	586
V-58		Nickel-Cobalt Forging Equipment Cleaning Wastewater	590
V-59		Nickel-Cobalt Forging Press Hydraulic Fluid Leakage	591
V-60		Nickel-Cobalt Forging Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	592
V-61		Nickel-Cobalt Metal Powder Production Atomization Wastewater	595
V-62		Nickel-Cobalt Metal Powder Production Atomization Wastewater Raw Wastewater Sampling Data	596
V-63		Nickel-Cobalt Stationary Casting Contact Cooling Water	601
V-64		Nickel-Cobalt Vacuum Melting Steam Condensate	602

Table	<u>Title</u>	Page
V-65	Nickel-Cobalt Vacuum Melting Steam Condensate Raw Wastewater Sampling Data	603
V-66	Nickel-Cobalt Annealing and Solution Heat Treatment Contact Cooling Water	606
V-67	Nickel-Cobalt Annealing and Solution Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	607
V-68	Nickel-Cobalt Surface Treatment Spent Baths	611
V-69	Nickel-Cobalt Surface Treatment Spent Baths Raw Wastewater Sampling Data	612
V-70	Nickel-Cobalt Surface Treatment Rinse	620
V-71	Nickel-Cobalt Surface Treatment Rinse Raw Wastewater Sampling Data	621
V-72	Nickel-Cobalt Ammonia Rinse	635
V-73	Nickel-Cobalt Ammonia Rinse Raw Wastewater Sampling Data	636
V-74	Nickel-Cobalt Alkaline Cleaning Spent Baths	639
V-75	Nickel-Cobalt Alkaline Cleaning Spent Baths Raw Wastewater Sampling Data	640
V-76	Nickel-Cobalt Alkaline Cleaning Rinse	646
V-77	Nickel-Cobalt Alkaline Cleaning Rinse Raw Wastewater Sampling Data	647
V-78	Nickel-Cobalt Molten Salt Rinse	654
V-79	Nickel-Cobalt Molten Salt Rinse	655

<u>Table</u>	•	<u>Title</u>	Page
V-80	**************************************	Nickel-Cobalt Sawing or Grinding Spent Emulsions	661
V-81.		Nickel-Cobalt Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	662
V-82		Nickel-Cobalt Sawing or Grinding Rinse	685
V-83	1	Nickel-Cobalt Steam Cleaning Condensate	686
V-84		Nickel-Cobalt Hydrostatic Tube Testing and Ultrasonic Testing Wastewater	687
V-85		Nickel-Cobalt Dye Penetrant Testing Wastewater	688
V-86		Nickel-Cobalt Dye Penetrant Testing Wastewater Raw Wastewater Sampling Data	689
V-87		Nickel-Cobalt Wet Air Pollution Control Blowdown	691
V-88		Nickel-Cobalt Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	692
V-89		Nickel-Cobalt Electrocoating Rinse	697
V-90		Precious Metals Rolling Spent Neat Oils	698
V-91		Precious Metals Rolling Spent Emulsions	699
V-92		Precious Metals Rolling Spent Emulsions Raw Wastewater Sampling Data	700
V-93		Precious Metals Drawing Spent Neat Oils	705
V-94		Precious Metals Drawing Spent	706

<u>Table</u>	<u>Title</u>	Page
V-95	Precious Metals Drawing Spent Emulsions Raw Wastewater Sampling Data	707
V-96	Precious Metals Drawing Spent Soap Solutions	710
V-97	Precious Metals Metal Powder Production Atomization Wastewater	711
V-98	Precious Metals Direct Chill Casting Contact Cooling	712
V-99	Precious Metals Shot Casting Contact Cooling Water	713
V-100	Precious Metals Shot Casting Contact Cooling Water Raw Wastewater Sampling Data	714
V-101	Precious Metals Stationary Casting Contact Cooling Water	717
V-102	Precious Metals Semi-Continuous and Continuous Casting Contact Cooling Water	718
V-103	Precious Metals Semi-Continuous and Continuous Casting Contact Cooling Water Raw Wastewater Sampling Data	
V-104	Precious Metals Heat Treatment Con- tact Cooling Water	723
V-105	Precious Metals Surface Treatment Spent Baths	724
V-106	Precious Metals Surface Treatment Rinse	725
V-107	Precious Metals Surface Treatment Rinse Raw Wastewater Sampling Data	726
V-108	Precious Metals Alkaline Cleaning Spent Baths	732

<u>Table</u>	<u>Title</u>	Page
V-109	Precious Metals Alkaline Cleaning Rinse	733
V-110	Precious Metals Alkaline Cleaning Prebonding Wastewater	734
V-111	Precious Metals Alkaline Cleaning Prebonding Wastewater Raw Wastewater Sampling Data	735
V-112	Precious Metals Tumbling or Burnishing Wastewater	740
V-113	Precious Metals Tumbling or Burnishing Wastewater Raw Wastewater Sampling Data	741
V-114	Precious Metals Sawing or Grinding Spent Neat Oils	745
V-115	Precious Metals Sawing or Grinding Spent Emulsions	746
V-116	Precious Metals Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	747
V-117	Precious Metals Pressure Bonding Contact Cooling Water	750
V-118	Precious Metals Pressure Bonding Contact Cooling Water Raw Wastewater Sampling Data	751
V-119	Precious Metals Wet Air Pollution Control Blowdown	754
V-120	Refractory Metals Rolling Spent Neat Oils and Graphite-Based Lubricants	755
V-121	Refractory Metals Rolling Spent Emulsions	756
V-122	Refractory Metals Drawing Spent Lubricants	757
V-123	Refractory Metals Extrusion Spent Lubricants	758

<u>Table</u>	<u>Title</u>	Page
V-124	Refractory Metals Extrusion Press Hydraulic Fluid Leakage	759
V-125	Refractory Metals Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	760
V-126	Refractory Metals Forging Spent Lubricants	762
V-127	Refractory Metals Forging Contact Cooling Water	763
V-128	Refractory Metals Metal Powder Production Wastewater	764
V-129	Refractory Metals Metal Powder Production Floor Wash Wastewater	765
V-130	Refractory Metals Metal Powder Pressing Spent Lubricants	766
V-131	Refractory Metals Surface Treatment Spent Baths	767
V-132	Refractory Metals Surface Treatment Spent Baths Raw Wastewater Sampling Data	768
V-133	Refractory Metals Surface Treatment Rinse	771
V-134	Refractory Metals Surface Treatment Rinse Raw Wastewater Sampling Data	772
V-135	Refractory Metals Alkaline Cleaning Spent Baths	778
V-136	Refractory Metals Alkaline Cleaning Spent Baths Raw Wastewater Sampline Data	779 g
V-137	Refractory Metals Alkaline Cleaning Rinse	781
V-138	Refractory Metals Molten Salt Rinse	782
V-139	Refractory Metals Molten Salt Rinse	783

<u>Table</u>	<u>Title</u>	Page
V-140	Refractory Metals Tumbling or Burnishing Wastewater	789
V-141	Refractory Metals Tumbling or Burnishing Wastewater Raw Wastewater Sampling Data	. 790
V-142	Refractory Metals Sawing or Grinding Spent Neat Oils	796
V-143	Refractory Metals Sawing or Grinding Spent Emulsions	797
V-144	Refractory Metals Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	798
V-145	Refractory Metals Sawing or Grinding Contact Cooling Water	800
V-146	Refractory Metals Sawing or Grinding Contact Cooling Water Raw Wastewater Sampling Data	801
V-147	Refractory Metals Sawing or Grinding Rinse	805
V-148	Refractory Metals Dye Penetrant Testing Wastewater	806
V-149	Refractory Metals Dye Penetrant Testing Wastewater Raw Wastewater Sampling Data	807
V-150	Refractory Metals Equipment Cleaning Wastewater	810
V-151	Refractory Metals Equipment Cleaning Wastewater Raw Wastewater Sampling Data	811
V-152	Refractory Metals Miscellaneous Wastewater Sources	813
V-153	Refractory Metals Wet Air Pollution Control Blowdown	814

Table		<u>Title</u>	Page
V-154		Refractory Metals Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	815
V-155		Titanium Rolling Spent Neat Oils	819
V-156		Titanium Rolling Contact Cooling Water	820
V-157		Titanium Drawing Spent Neat Oils	821
V-158		Titanium Extrusion Spent Neat Oils	822
V-159		Titanium Extrusion Spent Emulsions	823
V-160		Titanium Extrusion Press Hydraulic Fluid Leakage	824
V-161		Titanium Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	825
V-162		Titanium Forging Spent Lubricants	826
V-163	·	Titanium Forging Contact Cooling Water	827
V-164		Titanium Forging Equipment Cleaning Wastewater	828
V-165		Titanium Forging Press Hydraulic Fluid Leakage	829
V-166		Titanium Tube Reducing Spent Lubricants	830
V-167		Titanium Tube Reducing Spent Lubricants Raw Wastewater Sampling Data	831
V-168		Titanium Heat Treatment Contact Cooling Water	832
V-169		Titanium Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	833
V-1 70		Titanium Surface Treatment Spent	836

Table		•	<u>Title</u>	Page
	. 3			
V-171	. , . :		Titanium Surface Treatment Spent Baths Raw Wastewater Sampling	837
	;		Data	
V-172	:		Titanium Surface Treatment Rinse	841
V-173		ar Santa	Titanium Surface Treatment Rinse Raw Wastewater Sampling Data	842
V-174			Titanium Alkaline Cleaning Spent Baths	847
V-175	v		Titanium Alkaline Cleaning Spent Baths Raw Wastewater Sampling Data	848
V-176		•	Titanium Alkaline Cleaning Rinse	850
V-177		: 1.	Titanium Alkaline Cleaning Rinse Raw Wastewater Sampling Data	851
V-178			Titanium Molten Salt Rinse	853
V-179			Titanium Tumbling Wastewater	854
V-180			Titanium Tumbling Wastewater Raw Wastewater Sampling Data	855
V-181			Titanium Sawing or Grinding Spent Neat Oils	858
V-182		1	Titanium Sawing or Grinding Spent Emulsions	859
V-183			Titanium Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	860
V-184			Titanium Sawing or Grinding Contact Cooling Water	865
V-185			Titanium Sawing or Grinding Contact Cooling Water Raw Wastewater Sampling Data	866
V-186			Titanium Dye Penetrant Testing Wastewater	867

Table	<u>Title</u>	Page
V-187	Titanium Hydrotesting Wastewater	868
V-188	Titanium Wet Air Pollution Control Blowdown	8 69
V-189	Titanium Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	870
V-190	Uranium Extrusion Spent Lubricants	873
V-191	Uranium Extrusion Tool Contact Cooling Water	874
V-192	Uranium Forging Spent Lubricants	875
V-193	Uranium Heat Treatment Contact Cooling Water	8 76
V-194	Uranium Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	877
V-195	Uranium Surface Treatment Spent Baths	884
V-196	Uranium Surface Treatment Spent Baths Raw Wastewater Sampling Data	885
V-197	Uranium Surface Treatment Rinse	888
V-198	Uranium Surface Treatment Rinse Raw Wastewater Sampling Data	889
V-199	Uranium Sawing or Grinding Spent Emulsions	894
V-200	Uranium Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	8 95
V-201	Uranium Sawing or Grinding Contact Cooling Water	898
V-202	Uranium Sawing or Grinding Rinse	8 99
V-203	Uranium Area Cleaning Washwater	900

<u>Table</u>		•	Title	Page
V-204			Uranium Area Cleaning Washwater Raw Wastewater Sampling Data	901
V-205			Uranium Wet Air Pollution Control Blowdown	908
V-206			Uranium Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	909
V-207	,	!	Uranium Drum Washwater	911
V-208			Uranium Drum Washwater Raw Wastewater Sampling Data	913
V-209		*	Uranium Laundry Washwater	917
V-210			Uranium Laundry Washwater Raw Wastewater Sampling Data	918
V-211			Zinc Rolling Spent Neat Oils	921
V-212			Zinc Rolling Spent Emulsions	922
V-213		§	Zinc Rolling Contact Cooling Water	923
V-214			Zinc Drawing Spent Emulsions	924
V-215)	Zinc Direct Chill Casting Contact Cooling Water	925
V-216	•		Zinc Stationary Casting Contact Cooling Water	926
V-217		· · · · · · · · · · · · · · · · · · ·	Zinc Heat Treatment Contact Cooling Water	927
V-218			Zinc Surface Treatment Spent Baths	928
V-219			Zinc Surface Treatment Rinse	929
V-220			Zinc Surface Treatment Rinse Raw Wastewater Sampling Data	930

<u>Table</u>	<u>Title</u>	Page
V-221	Zinc Alkaline Cleaning Spent Baths	935
V-222	Zinc Alkaline Cleaning Rinse	936
V-223	Zinc Alkaline Cleaning Rinse Raw Wastewater Sampling Data	937
V-224	Zinc Sawing or Grinding Spent Emulsions	942
V-225	Zinc Electrocoating Rinse	943
V-226	Zirconium-Hafnium Rolling Spent Neat Oils	944
V-227	Zirconium-Hafnium Drawing Spent Lubricants	945
V-228	Zirconium-Hafnium Extrusion Spent Lubricants	946
V-229	Zirconium-Hafnium Extrusion Press Hydraulic Fluid Leakage	947
V-230	Zirconium-Hafnium Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	948
V-231	Zirconium-Hafnium Swaging Spent Neat Oils	949
V-232	Zirconium-Hafnium Tube Reducing Spent Lubricants	950
V-233	Zirconium-Hafnium Heat Treatment Contact Cooling Water	951
V-234	Zirconium-Hafnium Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	952 ;
V-235	Zirconium-Hafnium Surface Treatment Spent Baths	955
V-236	Zirconium-Hafnium Surface Treatment Spent Baths Raw Wastewater Sampling Data	956

Table	1	<u>Title</u>	Page
V-237		Zirconium-Hafnium Surface Treatment Rinse	962
V-238		Zirconium-Hafnium Alkaline Cleaning Spent Baths	963
V-239		Zirconium-Hafnium Alkaline Cleaning Rinse	964
V-240		Zirconium-Hafnium Molten Salt Rinse	965
V-241		Zirconium-Hafnium Sawing or Grinding Spent Neat Oils	966
V-242		Zirconium-Hafnium Sawing or Grinding Spent Emulsions	967
V-243		Zirconium-Hafnium Sawing or Grinding Contact Cooling Water	968
V-244		Zirconium-Hafnium Sawing or Grinding Rinse	969
V-245		Zirconium-Hafnium Inspection and Testing Wastewater	970
V-246		Zirconium-Hafnium Inspection and Testing Wastewater Raw Wastewater Sampling Data	971
V-247		Zirconium-Hafnium Degreasing Spent Solvents	974
V-248		Zirconium-Hafnium Degreasing Rinse	975
V-249		Zirconium-Hafnium Wet Air Pollution Control Blowdown	976
V-250		Metal Powders Metal Powder Production Atomization Wastewater	n 977
V-251		Metal Powders Metal Powder Production Atomization Wastewater Raw Wastewater Sampling Data	n 978
V-252		Metal Powders Tumbling, Burnishing of Cleaning Wastewater	r .980

<u>Table</u>	Title	Page
V-253	Metal Powders Tumbling, Burnishing or Cleaning Wastewater Raw Wastewater Sampling Data	982
V-254	Metal Powders Sawing or Grinding Spent Neat Oils	987
V-255	Metal Powders Sawing or Grinding Spent Emulsions	988
V-256	Metal Powders Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	989
V-257	Metal Powders Sawing or Grinding Contact Cooling Water	993
V−258	Metal Powders Sawing or Grinding Contact Cooling Water Raw Wastewater Sampling Data	994
V-259	Metal Powders Sizing Spent Neat Oils	995
V-260	Metal Powders Sizing Spent Emulsions	996
V-261	Metal Powders Steam Treatment Wet Air Pollution Control Blowdown	997
V-262	Metal Powders Steam Treatment Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	998
V-263	Metal Powders Oil-Resin Impregnation Spent Neat Oils	1001
V-264	Metal Powders Hot Pressing Contact Cooling Water	1002
V-265	Metal Powders Hot Pressing Contact Cooling Water Raw Wastewater Sampling Data	1003
V-266	Metal Powders Mixing Wet Air Pollution Control Blowdown	1004

<u>Table</u>		Title	Page
V-267	: :	Metal Powders Mixing Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	1005
V-268	• • • • • • • • • • • • • • • • • • •	Wastewater Treatment Performance Data - Plant A	1006
V-269		Wastewater Treatment Performance Data - Plant B	1009
V-270	;	Wastewater Treatment Performance Data - Plant D	1013
V-271		Wastewater Treatment Performance Data - Plant E	1017
V-272	1	Wastewater Treatment Performance Data - Plant F	1025
V-273	1 2* 4 3 3 4	Wastewater Treatment Performance Data - Plant I	1032
V-274		Wastewater Treatment Performance Data - Plant J	1038
V-275		Wastewater Treatment Performance Data - Plant M	1041
V-276		Wastewater Treatment Performance Data - Plant Q	1051
V-277		Wastewater Treatment Performance Data - Plant R	1060
V-278		Wastewater Treatment Performance Data - Plant S	1062
V-279		Wastewater Treatment Performance Data - Plant T	1064
V-280	; ;	Wastewater Treatment Performance Data - Plant U	1065
V-281		Wastewater Treatment Performance Data - Plant V	1072
V-282		Wastewater Treatment Performance Data - Plant W	1080

<u>Table</u>	<u>Title</u>	Page
V-283	Wastewater Treatment Performance Data - Plant X	10,84
V-284	Wastewater Treatment Performance Data - Plant Y	1089
V-285	Wastewater Treatment Performance Data - Plant Z	1094
VI-1	List of 129 Priority Pollutants	1245
VI-2	Analytical Quantification and Treatment Effectiveness Values	1251
VI-3	Priority Pollutant Disposition Lead-Tin-Bismuth Forming Subcategory	1255
VI-4	Priority Pollutant Disposition Magnesium Forming Subcategory	1259
VI-5	Priority Pollutant Disposition Nickel-Cobalt Forming Subcategory	1263
VI-6	Priority Pollutant Disposition Precious Metals Forming Subcategory	1273
VI-7	Priority Pollutant Disposition Refractory Metals Forming Subcategory	1280
VI-8	Priority Pollutant Disposition Titanium Forming Subcategory	1287
VI-9	Priority Pollutant Disposition Uranium Forming Subcategory	1294
VI-10	Priority Pollutant Disposition Zinc Forming Subcategory	1298
VI-11	Priority Pollutant Disposition Zirconium-Hafnium Forming Subcategory	1302
VI-12	Priority Pollutant Disposition Metal Powders Subcategory	1306

Table	<u>Title</u>	Page
VII-1	pH Control Effect on Metals Removal	1400
VII-2	Effectiveness of Sodium Hydroxide for Metals Removal	1400
VII-3	Effectiveness of Lime and Sodium Hydroxide for Metals Removal	1401
VII-4	Theoretical Solubilities of Hydroxides and Sulfide of Selected Metals in Pure Water	1401
VII-5	Sampling Data From Sulfide Precipitation-Sedimentation Systems	1402
VIII-6	Sulfide Precipitation-Sedimentation Performance	1403
VII-7	Ferrite Co-Precipitation Performance	1404
VII-8	Concentration of Total Cyanide	1404
VII-9	Multimedia Filter Performance	1405
VII-10	Performance of Selected Settling Systems	1405
VII-11	Skimming Performance	1406
VII-12	Selected Partition Coefficients	1407
VII-13	Trace Organic Removal by Skimming	1408
VII-14	Combined Metals Data Effluent Values	1408
VII-15	L & S Performance Additional Pollutants	1409
VII-16	Combined Metals Data Set - Untreated Wastewater	1409
VII-17	Maximum Pollutant Level in Untreated Wastewater Additional Pollutants	1410

<u>Table</u>	<u>Title</u>	Page
VII-18	Precipitation-Settling-Filtration (LS&F) Performance Plant A	1411
VII-19	Precipitation-Settling-Filtration (LS&F) Performance Plant B	1412
VII-20	Precipitation-Settling-Filtration (LS&F) Performance Plant C	1413
VII-21	Summary of Treatment Effectiveness	1414
VII-22	Summary of Treatment Effectiveness for Selected Nonconventional Pollutants	1415
VII-23	Treatability Rating of Priority Pollutants	1416
VII-24	Classes of Organic Compounds Adsorbed on Carbon	1417
VII-25	Activated Carbon Performance (Mercury)	1418
VII-26	Ion Exchange Performance	1418
VII-27	Membrane Filtration System Effluent	1.419
VII-28	Peat Adsorption Performance	1419
VII-29	Ultrafiltration Performance	1420
VII-30	Chemical Emulsion Breaking Efficiencies	1421
VIII-1	BPT Costs of Compliance for the Nonferrous Metals Forming Category	1508
VIII-2	BAT Costs of Compliance for the Nonferrous Metals Forming Category	1509
VIII-3	PSES Costs of Compliance for the Nonferrous Metals Forming Category	1510

Table	,	<u>Title</u>	Page
VIII-4		Nonferrous Metals Forming Category Cost Equations for Recommended Treatment and Control Technologies	1511
VIII-5		Components of Total Capital Investment	1518
VIII-6		Components of Total Annualized Investment	1519
VIII-7		Wastewater Sampling Frequency	1520
VIII-8		Pollutant Parameter Important to Treatment System Design	1521
VIII-9		Sludge to Influent Flow Ratios	1522
VIII-10		Key to Cost Curves and Equations	1523
VIII-11		Cost Equations Used in Cost Curve Method	1524
VIII-12	•	Number of Plants for Which Costs Were Scaled From Similar Plants	1525
VIII-13		Flow Reduction Recycle Ratio and Association Cost Assumptions	1526
VIII-14		Segregation Cost Basis	1528
VIII-15		Nonferrous Metals Forming Solid Waste Generation	1529
VIII-16	· · · · · · · · · · · · · · · · · · ·	Nonferrous Metals Forming Energy Consumption	1530
IX-1		Potential Preliminary Treatment Requirements Lead-Tin-Bismuth Forming Subcategory	1626
IX-2		Potential Preliminary Treatment Requirements Magnesium Forming Subcategory	1627

<u>Table</u>	<u>Title</u>	Page
IX-3	Potential Preliminary Treatment Requirements Nickel-Cobalt Forming Subcategory	1628
IX-4	Potential Preliminary Treatment Requirements Precious Metals Forming Subcategory	1630
IX-5	Potential Preliminary Treatment Requirements Refractory Metals Forming Subcategory	1631
IX-6	Potential Preliminary Treatment Requirements Titanium Forming Subcategory	1633
IX-7	Potential Preliminary Treatment Requirements Uranium Forming Subcategory	1635
IX-8	Potential Preliminary Treatment Requirements Zinc Forming Subcategory	1636
IX-9	Potential Preliminary Treatment Requirements Zirconium-Hafnium Forming Subcategory	1637
IX-10	Potential Preliminary Treatment Requirements Metal Powders Subcategory	1638
IX-11	BPT Regulatory Flows for Production Operations - Lead-Tin-Bismuth Forming Subcategory	1639
IX-12	Lead-Tin-Bismuth Forming Subcategory BPT Effluent Limitations	1641
IX-13	BPT Regulatory Flows for Production Operations - Magnesium Forming Subcategory	1648
IX-14	Magnesium Forming Subcategory BPT Effluent Limitations	1649

<u>Table</u>	<u>Title</u>	Page
IX-15	BPT Regulatory Flows for Production Operations - Nickel-Cobalt Forming Subcategory	1653
IX-16	Nickel-Cobalt Forming Subcategory BPT Effluent Limitations	1656
IX-17	BPT Regulatory Flows for Production Operations - Precious Metals Forming Subcategory	1670
IX-18	Precious Metals Forming Subcategory BPT Effluent Limitations	1672
IX-19	BPT Regulatory Flows for Production Operations - Refractory Metals Forming Subcategory	1682
IX-20	Refractory Metals Forming Subcate- gory BPT Effluent Limitations	1684
IX-21	BPT Regulatory Flows for Production Operations - Titanium Forming Subcategory	1701
IX-22	Titanium Forming Subcategory BPT Effluent Limitations	1703
IX-23	BPT Regulatory Flows for Production Operations - Uranium Forming	1715
IX-24	Uranium Forming Subcategory BPT Effluent Limitations	1717
IX-25	BPT Regulatory Flows for Production Operations - Zinc Forming Subcategory	1724
IX-26	Zinc Forming Subcategory BPT Effluent Limitations	1725
IX-27	BPT Regulatory Flows for Production Operations - Zirconium-Hafnium Forming Subcategory	1731
IX-28	Zirconium-Hafnium Forming Subcate- gory BPT Effluent Limitations	1733

<u>Table</u>	<u>Title</u>	Page
IX-29	BPT Regulatory Flows for Production Operations - Metal Powders Subcategory	1741
IX-30	Metal Powders Subcategory BPT Effluent Limitations	1742
IX-31	Allowable Discharge Calculations for Refractory Metals Forming Plant X in Example 1 (Nickel)	1748
IX-32	Allowable Discharge Calculations for Lead-Tin-Bismuth Forming Plant Y in Example 2 (Total Suspended Solids)	1749
IX-33	Allowable Discharge Calculations for Nickel-Cobalt and Titanium Forming Plant Z in Example 3 (Nickel)	1751
IX-34	Allowable Discharge Calculations for Nickel-Cobalt and Titanium Forming Plant Z in Example 3 (Cyanide)	1753
x-1	Capital and Annual Cost Estimates for BAT (PSES) Total Subcategory	1794
X-2	Capital and Annual Cost Estimates for BAT Direct Dischargers	1795
х-3	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Lead- Tin-Bismuth Forming Subcategory Total Subcategory	1796
X-4	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Magnesium Forming Subcategory Total Subcategory	1797
X-5	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Nickel-Cobalt Forming Subcategory Total Subcategory	1798

<u>Table</u>	Title			Page
X-6	Reducti	on Benefit E Forming Subc	ming Pollutant stimates Preci ategory Total	1799 ous
x-7 :	Reducti Refract	s Metals For on Benefit E ory Metals F gory Total S	orming	1800
X-8	Reducti	on Benefit E m Forming Su	ming Pollutant stimates bcategory Tota	
x-9	Reducti	on Benefit E Forming Sub	ming Pollutant stimates category Total	1802
x-10	Reducti	on Benefit E Subcategory	ming Pollutant stimates Zinc Total	1803
x -11	Reducti Zirconi	s Metals For on Benefit E um-Hafnium F gory Total S	orming	1804
X-12	Reducti	on Benefit E Subcategory	ming Pollutant stimates Metal Total	18,05
X-13	Reducti Tin-Bis	on Benefit E	ming Pollutant stimates Lead- Subcategory	1806
X-14	Reducti Magnesi	s Metals For on Benefit E um Forming S Dischargers		1807

Table	<u>Title</u>	Page
X-15	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Nickel- Cobalt Forming Subcategory Direct Dischargers	1808
X-16	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Precious Metals Forming Subcategory Direct Dischargers	1809 Y
x-17	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Refractory Metals Forming Subcategory Direct Dischargers	1810
x-18 .	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Titanium Forming Subcategory Direct Dischargers	1811
x-19	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Uranium Forming Subcategory Direct Dischargers	1812 m
X-20	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Zinc Forming Subcategory	1813
X-21	Nonferrous Metals Forming Pollutant Reduction Estimates Zirconium- Hafnium Forming Direct Dischargers	1814
X-22	Nonferrous Metals Forming Pollutant Reduction Estimates Metal Powders Subcategory Direct Dischargers	1815
X-23	Options Selected as the Technology Basis for BAT	1816
X-24	BAT Regulatory Flows for the Production Operations - Lead-Tin-Bismuth Forming Subcategory	1817

<u>Table</u>	<u>Title</u>	Page
x-25	Lead-Tin-Bismuth Forming Subcategory BAT Effluent Limitations	1819
X-26	BAT Regulatory Flows for the Production Operations - Magnesium Forming Subcategory	
x-27	Magnesium Forming Subcategory BAT Effluent Limitations	1825
X-28	BAT Regulatory Flows for the Production Operations - Nickel-Cobalt Forming Subcategory	1829
X-29	Nickel-Cobalt Forming Subcategory EAT Effluent Limitations	1832
x-30	BAT Regulatory Flows for the Production Operations - Precious Metal Forming Subcategory	1845
X-31	Precious Metals Forming Subcategory BAT Effluent Limitations	1847
X-32	BAT Regulatory Flows for the Production Operations - Refractory Metals Forming Subcategory	1856
X-33	Refractory Metals Forming Subcate- gory BAT Effluent Limitations	1858
x-34	BAT Regulatory Flows for the Froduction Operations - Titanium Forming Subcategory	1869
X-35	Titanium Forming Subcategory BAT Effluent Limitations	1871
X-36	BAT Regulatory Flows for the Production Operations - Uranium Forming Subcategory	1882

<u>Table</u>	<u>Title</u>	Page
x-37	Uranium Forming Subcategory BAT Effluent Limitations	1884
x-38	BAT Regulatory Flows for the Production Operations - Zinc Forming Subcategory	1889
x-39	Zinc Forming Subcategory BAT Effluent Limitations	1890
x-40	BAT Regulatory Flows for the Production Operations - Zirconium-Hafnium Forming Subcategory	1896
X-41	Zirconium-Hafnium Forming Subcategory BAT Effluent Limitations	1898
X-42	BAT Regulatory Flows for the Production Operations - Metal Powders Subcategory	1906
x-43	Metal Powders Subcategory BAT Effluent Limitations	1907
XI-1	Options Selected as the Bases for NSPS	1919
XI-2	Lead-Tin-Bismuth Forming Subcategory New Source Performance Standards	1920
XI-3	Magnesium Forming Subcategory New Source Performance Standards	1927
XI-4	Nickel-Cobalt Forming Subcategory New Source Performance Standards	1931
XI-5	Precious Metals Forming Subcategory New Source Performance Standards	1946
XI-6	Refractory Metals Forming Subcate- gory New Source Performance Standar	1956 ds
XI-7	Titanium Forming Subcategory New Source Performance Standards	1973

Table		<u>Title</u>	<u>Page</u>
XI-8		Uranium Forming Subcategory New Source Performance Standards	1986
XI-9		Zinc Forming Subcategory New Source Performance Standards	1993
XI-10		Zirconium-Hafnium Forming Subcate- gory New Source Performance Standa	1999 rds
XI-11	· · · · · · · · · · · · · · · · · · ·	Metal Powders Subcategory New Source Performance Standards	2006
XII-1		POTW Removals of the Toxic Pollu- tants Found in Nonferrous Metals Forming Wastewater	2019
XII-2		Pollutant Removal Percentages for BAT or PSES Model Technology By Subcategory	2021
XII-3		Option Selected as the Model Technology Basis for PSES and PSNS	2022
XII-4		Capital and Annual Cost Estimates for PSES Options Indirect Dischargers	2023
XII-5		Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Lead- Tin-Bismuth Forming Subcategory Indirect Dischargers	2025
XII-6		Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Magnes Forming Subcategory Indirect Dischargers	2026 ium
XII-7		Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Nickel Cobalt Forming Subcategory Indirec Dischargers	

<u>Table</u>	<u>Title</u>	Page
XII-8	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Precio Metals Forming Subcategory Indirect Dischargers	us
XII-9	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Refrac Metals Forming Subcategory Indirec Dischargers	
XII-10	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Titani Forming Subcategory Indirect Dischargers	
XII-11	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Zirconium-Hafnium Forming Subcateg Indirect Dischargers	•
XII-12	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Metal Powders Subcategory Indirect Dischargers	2032
XII-13	Lead-Tin-Bismuth Forming Subcategory Pretreatment Standards for Existing Sources	2033
XII-14	Magnesium Forming Subcategory Pretreatment Standards for Existing Sources	2038
XII-15	Nickel-Cobalt Forming Subcategory Pretreatment Standards for Existing Sources	2042
XII-16	Precious Metals Forming Subcategory Pretreatment Standards for Existing Sources	2055
XII-17	Refractory Metals Forming Subcate- gory Pretreatment Standards for Existing Sources	2064

xxxvi

Table	•	<u>Title</u> <u>P</u>	age
4			
XII-18		Titanium Forming Subcategory 2 Pretreatment Standards for Existing Sources	2075
XII-19		Uranium Forming Subcategory 2 Pretreatment Standards for Existing Sources	2085
XII-20		Zinc Forming Subcategory Pretreat- 2 ment Standards for Existing Sources	2091
XII-21		Zirconium-Hafnium Forming Subcate- 2 gory Pretreatment Standards for Existing Sources	2097
XII-22		Metal Powders Subcategory Pretreat- 2 ment Standards for Existing Sources	2105
XII-23		Lead-Tin-Bismuth Forming Subcategory 2 Pretreatment Standards for New Sources	2110
XII-24		Magnesium Forming Subcategory 2 Pretreatment Standards for New Sources	2115
XII-25		Nickel-Cobalt Forming Subcategory 2 Pretreatment Standards for New Sources	2119
XII-26		Precious Metals Forming Subcategory 2 Pretreatment Standards for New Sources	2132
XII-27		Refractory Metals Forming Subcate- 2 gory Pretreatment Standards for New Sources	2141
XII-28		Titanium Forming Subcategory 2 Pretreatment Standards for New Sources	2152

<u>Table</u>	<u>Title</u>	Page
XII-29	Uranium Forming Subcategory Pretreatment Standards for New Sources	2162
XII-30	Zinc Forming Subcategory Pretreat- ment Standards for New Sources	2168
XII-31	Zirconium-Hafnium Forming Subcate- gory Pretreatment Standards for Ne Sources	2174 w
XII-32	Metal Powders Subcategory Pretreat- ment Standards for New Sources	2182

LIST OF FIGURES

Figure	<u>Title</u>	Page
III-1	Geographical Distribution of Nonferrous Forming Plants	360
III-2	Sequence of Nonferrous Metals Forming Operations	361
III-3	Common Rolling Mill Configurations	362
III-4	Reversing Hot Strip Mill	363
III-5	4-High Cold Rolling Mill	364
III-6	Tube Drawing	365
III-7	Hydraulic Draw Bench	366
III-8	Direct Extrusion	367
III-9	Extrusion Press	368
III-10	Extrusion Tooling and Setup	369
III-11	Forging	370
III-12	Ring Rolling	371
III-13	Impacting	372
III-14	Some Clad Configurations	373
III-15	Atomization	374
III-16	Powder Metallurgy Die Compaction	375
III-17	Direct Chill Casting	376
III-18	Direct Chill (D.C.) Casting Unit	377
III-19	Continuous Sheet Casting	378
111-20	Continuous Strip Casting	379
III-21	Shot Casting	380
III-22	Roller Hearth Annealing Furnace	381
111-23	Bulk Pickling Tank	382
III-24	Continuous Pickling Line	383

Figure	<u>Title</u>	Page
III-25	Vapor Degreaser	384
V-1	Wastewater Sources at Plant A	1098
V-2	Wastewater Sources at Plant B	1099
V-3	Wastewater Sources at Plant C	1100
V-4	Wastewater Sources at Plant D	1101
V-5	Wastewater Sources at Plant E	1102
V-6	Wastewater Sources at Plant F	1103
V-7	Wastewater Sources at Plant G	1104
V-8	Wastewater Sources at Plant I	1105
V-9	Wastewater Sources at Plant J	1106
V-10	Wastewater Sources at Plant K	1107
V-11	Wastewater Sources at Plant L	1108
V-12	Wastewater Sources at Plant M	1109
V-13	Wastewater Sources at Plant N	1110
V-14	Wastewater Sources at Plant O	1111
V-15	Wastewater Sources at Plant P	1112
V-16	Wastewater Sources at Plant Q	1113
V-17	Wastewater Sources at Plant R	1114
V-18	Wastewater Sources at Plant S	1115
V-19	Wastewater Sources at Plant T	1116
V-20	Wastewater Sources at Plant V	1117
V-21	Wastewater Sources at Plant Z	1118

Figure	<u>Title</u>	Page
VII-1	Comparative Solubilities of Metal Hydroxides and Sulfide as a Function of pH	1422
VII-2	Lead Solubility in Three Alkalies	1423
VII-3	Effluent Zinc Concentrations vs. Minimum Effluent pH	1424
VII-4	Hydroxide Precipitation Sedimentation Effectiveness - Cadmium	1425
VII-5	Hydroxide Precipitation Sedimentation Effectiveness - Chromium	1426
VII-6	Hydroxide Precipitation Sedimentation Effectiveness - Copper	1427
VII-7	Hydroxide Precipitation Sedimentation Effectiveness - Lead	1428
VII-8	Hydroxide Precipitation Sedimentation Effectiveness - Nickel and Aluminum	1429
VII-9	Hydroxide Precipitation Sedimentation Effectiveness - Zinc	1430
VII-10	Hydroxide Precipitation Sedimentation Effectiveness - Iron	1431
VII-11	Hydroxide Precipitation Sedimentation Effectiveness - Manganese	1432
VII-12	Hydroxide Precipitation Sedimentation Effectiveness - TSS	1433
VII-13	Hexavalent Chromium Reduction with Sulfur Dioxide	1434
VII-14	Granular Bed Filtration	1435
VII-15	Pressure Filtration	1436
VII-16	Representative Types of Sedimentation	1437
VII-17	Activated Carbon Adsorption Column	1438
VII-18	Centrifugation	1439

Figure	<u>Title</u>	Page
VII-19	Treatment of Cyanide Waste by Alkaline Chlorination	1440
VII-20	Typical Ozone Plant for Waste Treatment	1441
VII-21	UV/Ozonation	1442
VII-22	Types of Evaporation Equipment	1443
VII-23	Dissolved Air Flotation	1444
VII-24	Gravity Thickening	1445
VII-25	Ion Exchange with Regeneration	1446
VII-26	Simplified Reverse Osmosis Schematic	1447
VII-27	Reverse Osmosis Membrane Configurations	1448
VII-28	Sludge Drying Bed	1449
VII-29	Simplified Ultrafiltration Flow Schematic	1450
VII-30	Vacuum Filtration	1451
VII-31	Flow Diagram for Emulsion Breaking with Chemicals	1452
VII-32	Filter Configurations	1453
VII-33	Gravity Oil/Water Separator	1454
VII-34	Flow Diagram for a Batch Treatment Ultrafiltration System	1455
VII-35	Flow Diagram of Activated Carbon Adsorption with Regeneration	1456
VII-36	Flow Diagram for Recycling with a Coolint Tower	1457
VII-37	Countercurrent Rinsing (Tanks)	1458
VII-38	Effect of Added Rinse Stages on Water Use	1459

	· · · · · · · · · · · · · · · · · · ·	
Figure	<u>Title</u>	<u>Page</u>
VIII-1	General Logic Diagram of Computer Cost Model	1531
VIII-2	Logic Diagram of Module Design Procedure	1532
VIII-3	Logic Diagram of the Cost Estimation Routine	1533
VIII-4	Capital Cost of a Spray Rinsing System	1534
VIII-5	Capital and Annual Costs of Aerated Rectangular Fiberglass Tanks	1535
VIII-6	Capital and Annual Costs of Centri- fugal Pumps	1536
VIII-7	Capital and Annual Costs of Cooling Towers and Holding Tank	1537
VIII-8	Capital and Annual Costs of Holding Tanks and Recycle Piping	1538
VIII-9	Capital and Annual Costs of Equalization	1539
VIII-10	Capital and Annual Costs of Cyanide Precipitation	1540
VIII-11	Capital and Annual Costs of Chromium Reduction	1541
VIII-12	Capital Costs of Iron Coprecipitation	n 1542
VIII-13	Annual Costs of Iron Coprecipitation	1543
VIII-14	Capital and Annual Costs of Chemical Emulsion Breaking	1544
VIII-15	Capital and Annual Costs of Ammonia Steam Stripping	1545
VIII-16	Capital and Annual Costs of Chemical Precipitation	1546
VIII-17	Capital Costs for Carbon Steel Vacua	ım 1547

Figure	Title	Page
VIII-18	Capital Costs for Stainless Steel Vacuum Filters	1548
VIII-19	Annual Costs for Vacuum Filters	1549
VIII-20	Capital and Annual Costs for Multi- media and Cartridge Filtration	1550
VIII-21	Annual Costs for Contract Hauling	1551
XI-1	BPT Treatment Train for the Non- ferrous Metals Forming Category	1755
X-1	BAT Option 1 and 2 Treatment Train for the Nonferrous Metals Forming Category	1912
X-2	BAT Option 3 Treatment Train for the Nonferrous Metals Forming Category	1913

SECTION V

WATER USE AND WASTEWATER CHARACTERISTICS

This section presents a summary of the analytical data that characterize the raw wastewater in the category. Flow data that serve as the basis for developing regulatory flow allowances in the nonferrous metals forming category are also summarized in this section. The analytical and flow data were obtained from four sources: information obtained during a telephone survey; data collection portfolios (dcps); sampling and analysis programs; and long-term or historical data. Confidential information was handled in accordance with 40 CFR Part 2.

DATA SOURCES

Telephone Survey

As described in Section III of this document, a comprehensive telephone survey was undertaken in order to determine which companies should be included on the dcp mailing list, i.e., whether or not operations within the scope of this category were performed by the companies contacted. In the telephone survey, the contact at the company was asked what metals were formed, the type of forming operations (rolling, drawing, extruding, forging, casting, cladding, powder metallurgy), what surface treatment, cleaning, washing, and rinsing operations were used, the water use associated with all operations, how wastewater was disposed of, and if there was any treatment in place. In addition to the telephone contacts made during the comprehensive survey, many plants were contacted by telephone to clarify dcp responses.

Data Collection Portfolios

Data collection portfolios (dcps) are questionnaires which were developed by the Agency to obtain extensive data from plants in the nonferrous metals forming category. The dcps, sent to all companies known or believed to be engaged in nonferrous metals forming, requested information under the authority of Section 308 of the Clean Water Act. The information requested included plant age, production, number of employees, water usage, manufacturing processes, raw material and process chemical usage, wastewater treatment technologies, and the presence (known or believed) of toxic pollutants in the plant's raw and treated process wastewaters.

Complete dcp responses supplied the following information for each operation present at the responding plant: the total production in 1981, the average production rate (lb/hr), production rate at full capacity, and the quantity and rate of wastewater discharge. As discussed in Section IV, a mass-based regulation must relate water use and raw waste characteristics to some production normalizing parameter. The average production rate is considered to be the parameter most applicable to opera-

tions in this category, and has been used to normalize the water and wastewater flows discussed in this section.

Two production normalized flows (PNF's) were calculated for each operation reported in the dcps. The first PNF is water use, defined as the volume of water or other fluid (e.g., emulsions, lubricants) required per mass of metal processed through the Water use is based on the sum of recycle and make-up The second PNF calculated for flows to a given process. operation is production normalized water discharge, defined as the volume of wastewater discharged from a given process to further treatment, disposal, or discharge per mass of nonferrous metal processed. Differences between the water use and wastewater flows associated with a given stream result from recycle, evaporation, and carryover (or drag-out) on the product. production values in this calculation correspond to the production normalizing parameter, PNP, assigned to each stream, outlined in Section IV.

The wastewater flows reported in the dcps were production normalized and grouped by waste stream. The production normalized flow information for each waste stream is presented in this section. An analysis of factors affecting the wastewater flows is presented in Sections IX and X where representative BPT, BAT, NSPS, and pretreatment discharge flow allowances are selected for use in calculating the effluent limitations and standards.

Sampling and Analysis Program

The sampling and analysis program was undertaken primarily to identify pollutants of concern in the industry, with emphasis on priority pollutants. Wastewater samples were collected at 23 nonferrous metals forming facilities.

This section summarizes the activities undertaken during the sampling trips and identifies the types of sites sampled and the parameters analyzed. It also presents an overview of sample collection, preservation, and transportation techniques. Finally, it describes the pollutant parameters quantified, the methods of analyses and laboratories used, the detectable concentration of each pollutant, and the general approach used to ensure the reliability of the analytical data produced.

Site Selection. Twenty-five sampling episodes were conducted to obtain data to support the development of these regulations. Four of these plants were sampled in data gathering efforts supporting the development of guidelines for other industrial categories (nonferrous metals manufacturing and battery manufacturing). Information on nonferrous metals forming operations was collected incidentally to the major sampling effort at these plants. Twenty-one episodes were carried out specifically to gather data to support limitations and standards for this category. These plants were selected to be representative of the industry, based on information obtained during the telephone

survey. Considerations included how well each facility represented the subcategory as indicated by available data, potential problems in meeting technology-based standards, differences in production processes used, and wastewater treatment-in-place. At least one plant in every subcategory was sampled. Two plants provided data for more than one subcategory.

As indicated in Table V-1, the plants selected for sampling were typically plants with multiple forming operations and associated surface and heat treatment operations. Based on information from the telephone survey and the dcps, the flow rates and pollutant concentrations in the wastewaters discharged from the manufacturing operations at these plants are believed to be representative of the flow rates and pollutant concentrations which would be found in wastewaters generated by similar operations at any plant in the nonferrous metals forming category. The sampled plants have a variety of treatment systems in place, ranging from plants with no treatment to plants using the technologies considered as the basis for regulation.

Field Sampling. After selection of the plants to be sampled, personnel at each plant were contacted by telephone, and notified by letter when a visit would be expected as authorized by Section 308 of the Clean Water Act. In most cases, a preliminary visit was made to the plant to select the sources of wastewater to be sampled. The sample points included, but were not limited to, untreated and treated discharges, process wastewater, partially treated wastewater, and intake water. The actual sampling visit was also scheduled during the preliminary visit.

Sample Collection, Preservation, and Transportation. Collection, preservation, and transportation of samples were accomplished in accordance with procedures outlined in Appendix III of "Sampling and Analysis Procedures for Screening of Industrial Effluents for Priority Pollutants" (published by the Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, March 1977, revised, April 1977), "Sampling Screening Procedure for the Measurement of Priority Pollutants" (published by the EPA Effluent Guidelines Division, Washington, D.C., October 1976), and in the proposed 304(h) methods (44 FR 69464, December 3, 1979). The procedures are summarized in the paragraphs that follow.

Whenever practical, samples were taken from midchannel at middepth in a turbulent, well-mixed portion of the waste stream. Periodically, the temperature and pH of each waste stream sampled were measured on-site.

Each large composite (Type 1) sample was collected in a 9-liter, wide-mouth pickle jar that had been washed with detergent and water, rinsed with tap water, rinsed with distilled water, and air dried at room temperature.

Before collection of Type 1 samples, new Tygon tubing was cut to minimum lengths and installed on the inlet and outlet (suction and discharge) fittings of the automatic sampler. Two liters

(2.1 quarts) of blank water, known to be free of organic compounds and brought to the sampling site from the analytical laboratory, were pumped through the sampler and its attached tubing; the water was then discarded.

A blank (control sample) was produced by pumping an additional 2 liters of blank water through the sampler and into the original blank water bottle. The blank sample was sealed in a Teflon - lined cap, labeled, and packed in ice in a plastic foam-insulated chest. This sample was subsequently analyzed to determine any contamination contributed by the automatic sampler.

During collection of each Type I sample, the pickle jar was packed in ice in a plastic foam-insulated container to cool the sample. After the complete composite sample had been collected, it was mixed and a 1-liter aliquot to be used for metals analysis was dispensed into a plastic bottle. The aliquot was preserved on-site by the addition of nitric acid to pH less than 2. Metals samples were stored at room temperature until the end of the sampling trip at which time they were shipped to the appropriate laboratory for analysis.

After removal of the 1-liter metals aliquot, the balance of the composite sample was divided into aliquots to be used for analysis of nonvolatile organics, conventional parameters, and nonconventional parameters. If a portion of the composite sample was requested by a representative of the sampled plant for independent analysis, an aliquot was placed in a sample container supplied by the representative.

Water samples to be analyzed for cyanide, total phenol, oil and grease, and volatile organics were not obtained from the composite sample. Water samples for these analyses were taken as one-time grab samples during the time that the composite sample was collected.

The cyanide, total phenol, and oil and grease samples were stored in new bottles which had been iced and labeled, 1-liter (33.8 ounce) plastic bottles for the cyanide sample, 0.95-liter (1 quart) amber glass bottles for the total phenol sample, and 0.95-liter (1 quart) wide-mouth glass bottles with a Teflon lid liner for the oil and grease sample. The samples were preserved as described below.

Sodium hydroxide was added to each sample to be analyzed for cyanide, until the pH was elevated to 12 or more (as measured using pH paper). Where the presence of chlorine was suspected, the sample was tested for chlorine (which would decompose most of the cyanide) by using potassium iodide/starch paper. If the paper tuned blue (indicating chlorine was present), ascorbic acid crystals were slowly added and dissolved until a drop of the sample produced no change in the color of the test paper. An additional 0.6 gram (0.021 ounce) of ascorbic acid was added, and the sample bottle was sealed (by a Teflon -lined cap), labeled, iced, and shipped for analysis.

Sulfuric acid was added to each sample to be analyzed for total phenol, until the pH was reduced to 2 or less (as measured using pH paper). The sample bottle was sealed, labeled, iced, and shipped for analysis.

Sulfuric acid was added to each sample to be analyzed for oil and grease, until the pH was reduced to 2 or less (as measured using pH test paper). The sample bottle was sealed (by a Teflon lid liner), labeled, iced, and shipped for analysis.

Each sample to be analyzed for volatile organic pollutants was stored in a new 125-ml (4.2-ounce) glass bottle that had been rinsed with tap water and distilled water, heated to 150C (221F) for one hour, and cooled. This method was also used to prepare the septum and lid for each bottle. When used, each bottle was filled to overflowing, sealed with a Teflon -faced silicone septum (Teflon side down), capped, labeled, and iced. Hermetic sealing was verified by inverting and tapping the sealed container to confirm the absence of air bubbles. (If bubbles were found, the bottle was opened, a few additional drops of sample were added, and a new seal was installed.) Samples were maintained hermetically sealed and iced until analyzed.

Samples were sent by air to one of the labora-Sample Analysis. tories listed in Table V-2. The samples were analyzed for metals, including seven of the priority metal pollutants (beryllium, cadmium, chromium, copper, nickel, lead, and zinc) using inductively-coupled argon plasma emission spectroscopy (ICAP) as proposed in 44 FR 69464, December 3, 1979. The remaining six priority metal pollutants, with the exception of mercury, were analyzed by atomic absorption spectroscopy (AA) as described in 40 CFR Part 136. Mercury analysis was performed by automated cold vapor atomic absorption. Analysis for the seven priority metals analyzed by ICAP was also performed by AA on 10 percent of the samples to determine test comparability. Because the results showed no significant differences in detection or quantification levels, ICAP data were used for the seven priority metals. nonconventional metal pollutants (columbium, tantalum, tungsten) were analyzed by X-ray fluorescence and uranium was analyzed by fluorometry.

Metals Analyzed by ICAP

Calcium Iron Magnesium Manganese Sodium Molybdenum Aluminum *Nickel Boron *Lead Barium Tin *Beryllium Titanium *Cadmium Vanadium Cobalt Yttrium *Zinc *Chromium *Copper Zirconium Gold.

Metals Analyzed by AA

*Antimony *Arsenic *Selenium *Thallium *Mercury *Silver

Metals Analyzed by X-Ray Fluorescence

Columbium Tantalum Tungsten

Metals Analyzed by Fluorometry

Uranium

*Priority metals

Analyses for the organic toxic pollutants were performed by Arthur D. Little, ERCO, IT, Radian Sacramento, S-Cubed, and West Coast Technical Service. Analyses for the toxic metal pollutants were performed by CENTEC, Coors, EPA (Region III), EPA-ESD (Region IV), Radian Austin, Versar, and NUS. Analyses for cyanide, and conventional and nonconventional pollutants were performed by ARO, Edison, EPA (Region III), EPA-ESD (Region IV), NUS, and Radian Austin.

EPA did not expect to find any asbestos in nonferrous metals forming wastewaters because this category only includes metals that have already been refined from ores that might contain asbestos. Therefore, analysis for asbestos fibers was not performed.

Pesticide priority pollutants were also not expected to be significant in the nonferrous metals forming industry. Samples from one facility were analyzed for pesticide priority pollutants

by electron capture-gas chromatography by the method specified in 44 FR 69464, December 3, 1979. Pesticides were not detected in these samples, so no other samples were analyzed for these pollutants.

Analyses for the remaining organic priority pollutants (volatile fraction, base/neutral, and acid compounds) were conducted using an isotope dilution method which is a modification of the analytical techniques specified in 44 FR 69464, December 3, 1979. The isotope dilution method has been recently developed to improve the accuracy and reliability of the analysis. A copy of the method is in the record of rulemaking for this final regulation. However, no standard was used in the analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, pollutant 129). Instead, screening for this compound was performed by comparing analytical results to EPA's gas chromatography/mass spectroscopy (GC/MS) computer file.

Analysis for cyanide used methods specified in 40 CFR Part 136 and described in "Methods for Chemical Analysis for Water and Wastes," EPA-600/4-79-020 (March 1979).

Past studies by EPA and others have identified many nonpriority pollutant parameters useful in characterizing industrial wastewaters and in evaluating treatment process removal efficiencies. Some of these pollutants may also be selected as reliable indicators of the presence of specific priority pollutants. For these reasons, a number of nonpriority pollutants were studied in the course of developing this regulation. These pollutants may be divided into two general groups as shown in Table V-3. Analyses for these pollutants were performed by the methods specified in 40 CFR Part 136 and described in EPA-600/4-79-020.

The analytical quantification levels used in evaluation of the sampling data reflect the accuracy of the analytical methods employed. Below these concentrations, the identification of the individual compounds is possible, but quantification is difficult. Pesticides and PCB's can be analytically quantified at concentrations above 0.005 mg/l, and other organic toxic levels above 0.010 mg/l. Levels associated with toxic metals are as follows: 0.010 mg/l for antimony; 0.010 mg/l for arsenic; 0.005 mg/l for beryllium; 0.020 mg/l for cadmium; 0.020 mg/l for chromium; 0.050 mg/l for copper; 0.02 mg/l for cyanide; 0.050 mg/l for lead; 0.0002 mg/l for mercury; 0.050 mg/l for nickel; 0.010 mg/l for selenium; 0.010 mg/l for silver; 0.010 mg/l for thallium; and 0.020 mg/l for zinc.

The detection limits used were reported with the analytical data and hence are the appropriate limits to apply to the data, rather than the method analytical quantification level. Detection limit variation can occur as a result of a number of laboratory-specific, equipment-specific, daily operator-specific, and pollutant-specific factors. These factors can include day-to-day differences in machine calibration and variation in stock solutions, operators, and pollutant sample matrices (i.e., presence

of some chemicals will alter the detection of particular pollutants).

Quality Control. Quality control measures used in performing all analyses conducted for this program complied with the guidelines given in "Handbook for Analytical Quality Control in Water and Wastewater Laboratories" (published by EPA Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, 1976). As part of the daily quality control program, blanks (including sealed samples of blank water carried to each sampling site and returned unopened, as well as samples of blank water used in the field), standards, and spiked samples were routinely analyzed with actual samples. As part of the overall program, all analytical instruments (such as balances, spectrophotometers, and recorders) were routinely maintained and calibrated.

Historical Data

A useful source of long-term or historical data available for nonferrous metals forming plants are the Discharge Monitoring Reports (DMR's) filed to comply with National Pollutant Discharge Elimination System (NPDES) or State Pollutant Discharge Elimination System (SPDES) requirements. DMR's were obtained through the EPA Regional offices and state regulatory agencies for the The years 1981 through the most recent date available. present a summary of the analytical results from a series of samples taken during a given month for the pollutants designated in the plant's permit. In general, minimum, maximum, and average values, in mg/l or lbs/day, are presented for such pollutants as total suspended solids, oil and grease, pH, chromium, and zinc. The samples were collected from the plant outfall(s), represents the discharge(s) from the plant. For facilities with wastewater treatment, the DMR's provide a measure of the performance of the treatment system. In theory, these data could serve as a basis for characterizing treated wastewater from nonferrous metals forming plants. However, there is no information on concentration of pollutants in wastewater prior to treatment and too little information on the performance of the plant at the time the samples were collected to use these data in evaluating the performance of various levels of treatment. reported in DMR's were used to compare the treatment performance of actual plants to the treatment effectiveness concentrations presented in Section VII. The statistical analysis is presented in the Administrative Record for this rulemaking.

WATER USE AND WASTEWATER CHARACTERISTICS

In the following discussion, water use, wastewater discharge, current .recycle practices, and analytical sampling data are presented for each waste stream by subcategory. These data were collected from the dcps and during field sampling. Appropriate tubing or background blank and source water concentrations are presented with the summaries of the sampling data. The method by which each sample was collected is indicated by number, as follows, unless otherwise indicated:

- 1 one-time grab
- 2 manual composite during intermittent process operation
- 3 8-hour manual composite
- 4 8-hour automatic composite
- 5 24-hour manual composite
- 6 24-hour automatic composite

To simplify the presentation of the sampling data, the actual analytical data are presented only for those pollutants detected in any sample of that wastewater stream. No analyses were performed on priority pollutants 89-113, unless otherwise indicated.

Figures V-1 through V-25 show the location of wastewater sampling sites at each facility.

As shown in Table V-1, not every waste stream generated by nonferrous metals forming operations was sampled during the screen and verification sampling programs. In order to evaluate the applicability of the various treatment technologies to non-sampled waste streams, the physical and chemical characteristics of these streams were extrapolated from similar sampled streams. This extrapolation was also necessary to estimate the costs of the various treatment technologies, as discussed in Section VIII. Extrapolation of sampling data from sampled to non-sampled waste streams was not used to select pollutants for regulation in this category (see Section VI).

In order to verify the assumption that physical and chemical characteristics for one process wastewater would be similar to another, the Agency asked 49 plants to submit analytical data on specific raw waste streams which had not been sampled during the screening and verification program. Twenty-four plants provided these data directly and 18 plants provided samples to be analyzed. Four plants responded that they were no longer forming the metal for which information was requested, or that their production schedule did not include the metal specified within the time frame of that request. Three plants reported that they did not actually generate the waste stream for which information was requested.

In all the Agency received analytical data for 41 waste streams for which we had not previously had any wastewater characteristics data. Most of these wastewater streams were relatively small volume streams, such as forming lubricants. These data were not used to select pollutants for regulation in this category (see Section VI) or to estimate the pollutant loading currently generated by the category. However, they were used to verify assumptions of wastewater characteristics. All data obtained through the plant self-sampling program may be found in the record supporting this rulemaking.

Waste streams generated by similar physical processes using similar process chemicals will have very similar physical and chemical characteristics. For example, water used to cool extrusions will have low concentrations of all pollutants. This is demonstrated by the results of the chemical analyses of lead and nickel extrusion press and solution heat treatment contact cooling water (Table V-4). The major difference between these two waste streams is that the concentration of lead is higher in the lead cooling water (0.13 mg/l vs. not detected) and the concentration of nickel is higher in the nickel cooling water (0.14 mg/l vs. 0.007 mg/l). This pattern will be repeated whenever water, without additives, is used to cool hot metal.

In contrast, spent rolling emulsions have high concentrations of several pollutants. The results of chemical analyses of lead, nickel, and precious metals rolling spent emulsions are presented in Table V-5. All three waste streams have high concentrations of oil and grease, total suspended and dissolved solids, and several metals. The lead rolling spent emulsion has a high concentration of lead (29.0 mg/l), the nickel rolling spent emulsion has high concentrations of nickel and chrome (8.95 mg/l and 1.27 mg/l, respectively), and the precious metals rolling spent emulsion has high concentrations of copper, silver, and zinc (25.0 mg/l, 0.13 mg/l, and 6.00 mg/l, respectively). It is not surprising to find chromium in nickel rolling spent emulsions and copper and zinc in precious metals rolling spent emulsions because chromium is a common alloy of nickel and copper and zinc are common alloys of precious metals. Thus, the major difference between the three waste streams is the presence of the metals formed in the operation generating the waste stream.

From the discussion above, it follows that lead-tin-bismuth, nickel-cobalt, and zinc drawing spent emulsions will have chemical characteristics similar to precious metals drawing spent emulsions. The major difference between the waste streams will be the concentration of the metal drawn. Similarly, magnesium, zinc, and refractory metals rolling spent emulsions will have chemical characteristics similar to lead, nickel, and precious metals rolling spent emulsions, except for the concentration of the metal rolled.

Arguments analogous to those presented above were used to estimate the physical and chemical characteristics of all non-sampled waste streams. These estimations, and summaries of analytical data, water use, wastewater discharge, and current recycle practices, are presented below.

Lead-Tin-Bismuth Forming Subcategory

Lead-Tin-Bismuth Rolling Spent Emulsions. As discussed in Section III, oil-in-water emulsions are used as coolants and lubricants. Rolling emulsions are typically recycled using inline filtration and periodically batch discharged when spent. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-6.

Table V-7 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of rolling spent emulsions was collected at one plant. Elevated concentrations of lead (29 mg/l), zinc (1.4 mg/l), oil and grease (270 mg/l), and TSS (480 mg/l) were detected in the sample.

Lead-Tin-Bismuth Rolling Spent Soap Solutions. As discussed in Section III, soap solutions can be used as lubricants and coolants in rolling. Of the plants surveyed, only one plant reported the use of soap solutions in rolling. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-8.

To estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. Spent soap solutions and spent emulsions are both used as lubricants and coolants in rolling. Therefore, the pollutants present and the mass loadings of pollutants present in rolling spent soap solutions and rolling spent emulsions were expected to be similar. However, spent soap solutions were expected to have an oil and grease mass loading similar to alkaline cleaning rinsewater. Spent soap solutions contain the same process chemicals as alkaline cleaning baths and so were expected to have oil and grease loadings similar to the loadings carried out in alkaline cleaning rinsewater.

Lead-Tin-Bismuth Drawing Spent Neat Oils. As discussed in Section III, oil-based lubricants may be used in drawing operations to ensure uniform drawing temperatures and avoid excessive wear on dies and mandrels. Drawing oils are usually recycled until their lubricant properties are exhausted and are then contract hauled. Water use, wastewater discharge, and current recycle operations corresponding to this waste stream are summarized in Table V-9.

Since none of the plants surveyed reported discharging the spent neat oils, no samples were collected.

Lead-Tin-Bismuth Drawing Spent Emulsions. As discussed in Section III, oil-water emulsions can be used as drawing lubricants. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-10.

No samples of drawing spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. These two waste streams are generated from similar physical processes which use similar process chemicals.

Therefore, the pollutants present in each waste stream and the mass loading (mg/kkg product) at which they are present should be similar.

Lead-Tin-Bismuth Drawing Spent Soap Solutions. As discussed in Section III, soap solutions can be used as drawing lubricants. The drawing soap solutions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-11.

Table V-12 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of drawing spent soap solutions was collected at one plant. Elevated concentrations of antimony (21 mg/l), lead (3,100 mg/l), zinc (230 mg/l), tin 1,600 mg/l), oil and grease (353,000 mg/l) and TSS (294,000 mg/l) were detected in the sample.

Lead-Tin-Bismuth Extrusion Press and Solution Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment of lead-tin-bismuth products frequently involves the use of a water quench in order to achieve desired metallic properties. Fourteen plants reported 17 extrusion press and solution heat treatment processes that involve water quenching either by spraying water on the metal as it emerges from the die or press or by direct quenching into a contact water bath. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-13.

Table V-14 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of extrusion press and solution heat treatment contact cooling water was collected at one plant. An elevated concentration of chromium (4.6 mg/l) was detected in the sample.

<u>Lead-Tin-Bismuth</u> <u>Extrusion</u> <u>Press Hydraulic</u> <u>Fluid</u> <u>Leakage</u>. As discussed in Section III, due to the large force applied by a hydraulic extrusion press, hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-15.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to press hydraulic fluid leakage in the nickel-cobalt subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Lead-Tin-Bismuth Swaging Spent Emulsions. As discussed in Section III, oil-water emulsions can be used as swaging lubricants. The swaging emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summa-

rized in Table V-16.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Lead-Tin-Bismuth Continuous Strip Casting Contact Cooling Water. As discussed in Section III, in continuous casting, no restrictions are placed on the length of the casting and it is not necessary to interrupt production to remove the cast product. Although the use of continuous casting techniques has been found to significantly reduce or eliminate the use of contact cooling water and oil lubricants, five plants reported the use of continuous strip contact cooling water. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-17.

Table V-18 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of continuous strip casting contact cooling water was collected at one plant. Elevated concentrations of lead (1.2 mg/l) and zinc (3.1 mg/l) were detected in the sample.

Lead-Tin-Bismuth Semi-Continuous Ingot Casting Contact Cooling Water. As discussed in Section III, semi-continuous ingot casting may require the use of contact cooling water in order to achieve the desired physical properties of the metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-19.

Table V-20 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of semi-continuous ingot casting contact cooling water were collected from one stream at one plant. Elevated concentrations of lead (1.10 mg/l) and TSS (80 mg/l) were detected in the samples.

Lead-Tin-Bismuth Shot Casting Contact Cooling Water. As discussed in Section III, contact cooling water is required to cool the cast lead shot so that it will not reconsolidate as well as to achieve the desired metallic properties. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-21.

Table V-22 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of shot casting contact cooling water were collected from one stream at one plant. Elevated concentrations of lead (52.2 mg/l), antimony (3.30 mg/l), tin (10.5 mg/l), oil and grease (22 mg/l), and TSS (420 mg/l) were detected in the samples.

Lead-Tin-Bismuth Shot Forming Wet Air Pollution Control Blowdown. As discussed in Section III, shot forming may require wet air

pollution control in order to meet air quality standards. Of the plants surveyed, only one reported the use of wet air pollution control on a shot forming operation. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-23.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to shot casting contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Lead-Tin-Bismuth Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaning is commonly used to clean lead, tin, and bismuth surfaces. Products can be cleaned with an alkaline solution either by immersion or spray. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-24.

Table V-25 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of an alkaline cleaning spent bath was collected at one plant. Elevated concentrations of lead (183 mg/l), antimony (7.30 mg/l), oil and grease (600 mg/l), and TSS (560 mg/l) were detected in the sample.

Lead-Tin-Bismuth Alkaline Cleaning Rinse. As discussed in Section III, rinsing, usually with warm water, generally follows the alkaline cleaning process to prevent the solution from drying on the product. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-26.

Table V-27 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of alkaline cleaning rinsewater were collected from two streams at one plant. Elevated concentrations of lead (40.8 mg/l), antimony (1.10 mg/l), and TSS (260 mg/l) were detected in the samples.

Lead-Tin-Bismuth Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Lead-Tin-Bismuth Operations Which Do Not Use Process Water. The Agency has established no discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater either because they are dry or because they use noncontact cooling water only:

Continuous Wheel Casting Continuous Sheet Casting Stationary Casting Shot Pressing Forging Stamping Pointing Punching Shot Blasting Slug Forming Powder Metallurgy Operations (Pressing, Sintering, Sizing) Powder Tumbling Melting Solder Cream Making Annealing Tumble Cleaning Slitting Sawing Coiling, Spooling Trimming.

Magnesium Forming Subcategory

Magnesium Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using in-line filtration treatment. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-28.

Since none of the plants surveyed reported discharging the rolling spent emulsions, no samples of this waste stream were collected.

Magnesium Forging Spent Lubricants. As discussed in Section III, either water, oil, or granulated carbon can be applied to forging dies for proper lubrication. Water use, wastewater characteristics, and current recycle practices corresponding to this waste stream are summarized in Table V-29.

Since none of the plants surveyed reported discharging the forging spent lubricants, no samples of this waste stream were collected.

Magnesium Forging Contact Cooling Water. As discussed in Section III, forging dies and ring roller parts and tooling may require

cooling to maintain the proper die temperature between forgings or rolling, or to cool the forging dies prior to removal from the forge hammer. The contact cooling water may also be used as a heat treatment to improve mechanical properties of the metal being forged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-30.

No samples of forging contact cooling water were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to extrusion press and solution heat treatment contact cooling water in the lead-tin-bismuth These two waste streams are generated by using subcategory. water, without additives, to cool hot metal. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of magnesium in magnesium forming solution heat treatment contact cooling water should be similar to the mass loading of lead in lead-tin-bismuth extrusion press and solution heat treatment contact cooling water, and vice versa. Also, there should be no significant mass loading of antimony in magnesium forming solution heat treatment contact cooling water because magnesium is not commonly alloyed The other pollutants in each waste stream, and antimonv. the mass loading at which they are present, should be similar.

Magnesium Forging Equipment Cleaning Wastewater. As discussed in Section III, forging equipment may be periodically cleaned in order to prevent the excessive buildup of oil, grease, and cakedon solid lubricants on the forging die. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-31.

samples of forging equipment cleaning wastewater were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in the lead-tin-bismuth subcategory. waste streams are generated by cleaning operations which similar process chemicals. Since granulated coal and graphite suspensions are frequently used to lubricate magnesium forging operations, magnesium forging equipment cleaning wastewater may contain higher mass loadings of total suspended solids. addition, the metals present in the two waste streams should The mass loading (mg/kkg) of magnesium in magnesium differ. forging equipment cleaning wastewater should be similar to the loading of lead in lead-tin-bismuth alkaline cleaning rinsewater, and vice versa. Also, there should be no significant concentration of antimony in magnesium forging equipment cleaning wastewater because magnesium is not commonly alloyed with anti-The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Magnesium Direct Chill Casting Contact Cooling Water. As discussed in Section III, contact cooling water is a necessary part

of direct chill casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-32.

The one nonferrous metals forming plant reporting the use of direct chill casting contact cooling water discharges no water, therefore, no samples of this waste stream were collected.

Magnesium Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of magnesium products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-33.

Table V-34 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment spent baths were collected from three streams at one plant. Elevated concentrations of magnesium (9,150 mg/l), chromium (28,000 mg/l), zinc (89.0 mg/l), aluminum (64 mg/l), ammonia (97 mg/l), oil and grease (47,000 mg/l), and TSS (160 mg/l) were detected in the samples.

Table V-36 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Twelve samples of surface treatment rinsewater were collected from eight streams at one plant. Elevated concentrations of magnesium (148 mg/l), zinc (2.1 mg/l), chromium (516 mg/l), ammonia (81 mg/l), oil and grease (16 mg/l), and TSS (97 mg/l) were detected in the samples.

Magnesium Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require lubrication with an oil-water emulsion in order to minimize friction and to dissipate excess heat from the metal and cutting tool. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-37.

Since none of the plants surveyed reported discharging the sawing or grinding spent emulsions, no samples of this waste stream were collected.

Magnesium Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during

mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Magnesium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to control air pollution from some operations. For instance, scrubbers are frequently necessary over sanding and repairing operations where particulates are a problem or scrubbers may be necessary when particulates and smoke are generated from the partial combustion of oil-based lubricants as they contact the hot forging dies. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-38.

Table V-39 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid was collected at one plant. Elevated concentrations of lead $(0.877 \, \text{mg/l})$, aluminum $(1.1 \, \text{mg/l})$, and magnesium $(7.51 \, \text{mg/l})$ were detected in the sample.

Magnesium Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Extrusion
Shot Blasting
Powder Atomization
Screening
Turning.

Nickel-Cobalt Forming Subcategory

Nickel-Cobalt Rolling Spent Neat Oils. As described in Section III, cold rolling of nickel-cobalt products may require the use of mineral oil lubricants. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Because discharge of this stream is not practiced, limited flow data were available for analysis. Water use, wastewater discharge, and current recycle practices

corresponding to this waste stream are summarized in Table V-40.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples of this waste stream were collected.

Nickel-Cobalt Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using in-line filtration with periodic batch discharge of the spent emulsion. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-41.

Table V-42 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of rolling spent emulsions were collected from two streams at two plants. Elevated concentrations of nickel (34.2 mg/l), zinc (6.70 mg/l), oil and grease (7,600 mg/l), and TSS (6,800 mg/l) were detected in the samples.

Nickel-Cobalt Rolling Contact Cooling Water. As discussed in Section III, it is necessary to use contact cooling water during rolling to prevent excessive wear on the rolls, to prevent adhesion of metal to the rolls, and to maintain a suitable and uniform rolling temperature. Water is one type of lubricant-coolant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-43.

Table V-44 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Eight samples of rolling contact cooling water were collected from four streams at two plants. Elevated concentrations of nickel (9.4 mg/l), copper (0.78 mg/l), oil and grease (300 mg/l), and TSS (350 mg/l) were detected in the samples.

Nickel-Cobalt Tube Reducing Spent Lubricants. As discussed in Section III, tube reducing, much like rolling, may require a lubricating compound in order to prevent excessive wear of the tube reducing rolls, prevent adhesion of metal to the rolls, and to maintain a suitable and uniform tube reducing temperature. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-45.

Table V-46 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of tube reducing spent lubricants was collected from one stream at one plant. Elevated concentrations of nickel (58.0 mg/l), copper (43.5 mg/l), lead (47.6 mg/l), zinc (63.1 mg/l), and oil and grease (200,000 mg/l) were detected in the sample. In addition, the sample had elevated concentrations of the toxic organics 1,1,1-trichloroethane (33 mg/l) and N-nitrosodiphenyl-amine (28.2 mg/l).

Nickel-Cobalt Drawing Spent Neat Oils. As discussed in Section III, oil-based lubricants may be required in draws which have a high reduction in diameter. Drawing oils are usually recycled, with in-line filtration, until their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-47.

Since none of the plants surveyed reported currently discharging the drawing spent neat oils, no samples were collected.

Nickel-Cobalt Drawing Spent Emulsions. As discussed in Section III, oil-water emulsions are often used as coolants and lubricants in drawing. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricant properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-48.

Table V-49 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of drawing spent emulsions was collected at one plant. Elevated concentrations of copper (50 mg/l), nickel (3.0 mg/l), zinc (2.6 mg/l), iron (17.0 mg/l), oil and grease (2,490 mg/l) and TSS (1,300 mg/l) were detected in this sample.

Nickel-Cobalt Extrusion Spent Lubricants. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-50.

Since none of the plants surveyed reported wastewater discharging extrusion spent lubricants, no samples of this waste stream were collected.

Nickel-Cobalt Extrusion Press and Solution Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment is frequently used after extrusion to attain the desired mechanical properties in the extruded metal. Contact cooling of the extrusion, sometimes called press heat treatment, can be accomplished with a water spray near the die or by immersion in a water tank adjacent to the runout table. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-51.

Table V-52 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of extrusion press heat treatment contact cooling water was collected at one plant. An elevated concentration of chromium (0.130 mg/l) was detected in the sample.

Nickel-Cobalt Extrusion Press Hydraulic Fluid Leakage. As

discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-53.

Table V-54 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of extrusion press hydraulic fluid leakage were collected at one plant. Elevated concentrations of copper (0.75 mg/l), nickel (1.30 mg/l), oil and grease (420 mg/l), and TSS (250 mg/l) were detected in the samples.

Nickel-Cobalt Forging Spent Lubricants. As discussed in Section III, either water, oil, or granulated carbon can be applied to forging dies for proper lubrication. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-55.

Since none of the plants surveyed reported discharging the forging spent lubricants, no samples of this waste stream were collected.

Nickel-Cobalt Forging Contact Cooling Water. As discussed in Section III, forging dies may require cooling to maintain the proper die temperature between forgings, or to cool the dies prior to removal from the forge hammer. The contact cooling water may also be used as a heat treatment to improve mechanical properties of the metal being forged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-56.

Table V-57 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of forging contact cooling water were collected at two plants. Elevated concentrations of copper (3.4 mg/l), nickel (16 mg/l), and TSS (1,800 mg/l) were detected in the samples.

Nickel-Cobalt Forging Equipment Cleaning Wastewater. Forging equipment may be periodically cleaned in order to prevent the excessive buildup of oil and grease on the forging die. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-58.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in this subcategory. These two waste stream are generated from similar physical processes (flushing a forging or forging die with water), so the pollutants present are expected to be similar. However, the water is used for different purposes, in one case to cool a hot forging or forging die, in the other, to remove built-up contaminants. Therefore, the mass loadings of oil and grease are expected to be higher in forging equipment cleaning wastewater than in forging contact cooling water. After proposal, these assumptions were confirmed by plant self-sampling data.

Nickel-Cobalt Forging Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-59.

Table V-60 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of forging press hydraulic fluid leakage was collected at one plant. Elevated concentrations of nickel (0.64~mg/l), oil and grease (17 mg/l), and TSS (500 mg/l) were detected in the sample.

Nickel-Cobalt Metal Powder Production Atomization Wastewater. As discussed in Section III, metal powder is commonly produced through wet atomization of a molten metal. Of the plants surveyed, three reported the use of water in the atomization of molten nickel. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-61.

Table V-62 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Seven samples of metal powder production wet atomization wastewater were collected at three plants. Elevated concentrations of chromium (54.9 mg/l), copper (45.0 mg/l), nickel (210.0 mg/l), iron (10.3 mg/l), and TSS (317 mg/l) were detected in the samples.

Nickel-Cobalt Stationary Casting Contact Cooling Water. As discussed in Section III, contact cooling water is sometimes used in stationary casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process and by the cast metal itself. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-63.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Nickel-Cobalt Vacuum Melting Steam Condensate. As discussed in Section III, nickel-cobalt may be melted by an operation known as vacuum melting. The high pressure steam used to create the vacuum condenses to an extent as it produces the vacuum. Although this water does not come in contact with the metal product, it may potentially be contaminated with metal fines or components of lubricant compounds volatilized in the furnace if scrap is being melted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-64.

Table V-65 summarizes the analytical sampling data for priority

and selected conventional and nonconventional pollutants. One sample of vacuum melting steam condensate was collected at one plant. No pollutants were detected in the sample at above treatable concentrations.

Nickel-Cobalt Annealing and Solution Heat Treatment Contact Cooling Water. As discussed in Section III, solution heat treatment is implemented after annealing operations to improve mechanical properties by maximizing the concentration of hardening contaminants in the solid metal solution. Solution heat treatment typically involves significant quantities of contact cooling water. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-66.

Table V-67 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of solution heat treatment contact cooling water were collected from two streams at two plants. Elevated concentrations of nickel (6.80 mg/l), copper (2.92 mg/l), oil and grease (40 mg/l), and TSS (78 mg/l) were detected in the samples.

Nickel-Cobalt Surface Treatment Spent Baths. As discussed in Section III, a number of chemical surface treatments may be applied after the forming of nickel-cobalt products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-68.

Table V-69 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Samples of four spent surface treatment baths were collected at two plants. Very high concentrations of nickel (193,000 mg/l), copper (4,800 mg/l), cobalt (4,000 mg/l), chromium (3,600 mg/l), fluoride (94,000 mg/l), and TSS (5,800 mg/l) were detected in the samples.

Nickel-Cobalt Surface Treatment Rinsewater. As discussed in Section III, rinsing follows the surface treatment process to prevent the surface treatment solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-70.

Table V-71 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Twenty-five samples of surface treatment rinsewater were collected from nine streams at four plants. Elevated concentrations of nickel (364 mg/l), copper (87.4 mg/l), chromium (18.8 mg/l), cobalt (4.0 mg/l), zinc (2.36 mg/l), fluoride (250 mg/l), titanium (48.0 mg/l), oil and grease (130 mg/l), and TSS (760 mg/l) were detected in the samples.

Nickel-Cobalt Ammonia Rinse. As discussed in Section III, an

ammonia rinse may be used after acid pickling of nickel-cobalt products to neutralize the acid prior to further rinsing. The ammonia rinse is periodically batch discharged when spent. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-72.

Table V-73 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of ammonia rinse wastewater was collected at one plant. Elevated concentrations of nickel (456 mg/l), copper (54.0 mg/l), chromium (108 mg/l), zinc (32.0 mg/l), and TSS (9,000 mg/l) were detected in the sample.

Nickel-Cobalt Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-74.

Table V-75 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of alkaline cleaning spent baths were collected from four streams at two plants. Elevated concentrations of nickel (122 mg/l), copper (39.2 mg/l), zinc (3.90 mg/l), chromium (38.0 mg/l), oil and grease (170 mg/l), and TSS (4,000 mg/l) were detected in the samples.

<u>Nickel-Cobalt</u> <u>Alkaline</u> <u>Cleaning</u> <u>Rinse</u>. As discussed in Section III, metal parts are usually rinsed following alkaline cleaning to remove the cleaning solution and any solubilized contaminants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-76.

Table V-77 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Five samples of alkaline cleaning rinsewater were collected from four streams at two plants. Elevated concentrations of nickel (5.58 mg/l), oil and grease (26 mg/l), and TSS (190 mg/l) were detected in the samples.

Nickel-Cobalt Molten Salt Rinse. As discussed in Section III, when molten salt baths are used to descale nickel and cobalt alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-78.

Table V-79 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Eight samples of molten salt rinsewater were collected from four streams at four plants. Elevated concentrations of nickel (54.0 mg/l), copper (8.05 mg/l), cobalt (2.8 mg/l), chromium (1,100 mg/l), and TSS (4,200 mg/l) were detected in the samples.

Nickel-Cobalt Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require lubrication with an oil-water emulsion in order to minimize friction and to dissipate excess heat from the metal and cutting tool. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-80.

Table V-81 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Twelve samples of sawing or grinding spent lubricants were collected from 12 streams at three plants. Elevated concentrations of nickel (116 mg/l), copper (16.5 mg/l), cobalt (3.4 mg/l), chromium (24.0 mg/l), oil and grease (16,000 mg/l), and TSS (2,440 mg/l) were detected in the samples.

Nickel-Cobalt Sawing or Grinding Rinse. As discussed in Section III, a rinsing step may be used following sawing or grinding to remove lubricants dragged out on the product and to wash away sawing or grinding swarf. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-82.

No samples of sawing or grinding rinsewater were collected during the sampling program. However, to estimate pollutant loads for this program, the Agency assumed that this stream would have similar to sawing or characteristics wastewater rinsewater in the zirconium-hafnium subcategory. Because sawing or grinding rinsing operations are similar among subcategories, the pollutants present and the mass loadings of pollutants present are expected to be similar with respect to the major metal formed. That is, the mass loading of nickel and zirconium in nickel sawing or grinding rinsewater is expected to be similar to the mass loading of zirconium and nickel, respectively, zirconium sawing or grinding rinsewater. Since no process chemicals are added to the rinsewater, mass loadings of all other pollutants are expected to be similar.

Nickel-Cobalt Steam Cleaning Condensate. As discussed in Section III, steam cleaning may be used to remove oil and grease from the surface of metal. Steam is condensed to water as it contacts the surface of the relatively cooler metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-83.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Nickel-Cobalt Hydrostatic Tube Testing and Ultrasonic Testing Wastewater. As discussed in Section III, hydrostatic tube testing and ultrasonic testing operations are used to determine the integrity of tubes and to check metal parts for subsurface imperfections. Water use, wastewater discharge, and current

recycle practices corresponding to this waste stream are summarized in Table V-84.

No samples of hydrostatic tube testing and ultrasonic testing wastewater were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to rolling contact cooling water in this subcategory. These two waste streams are generated in processes in which water, without any added process chemicals, contacts metal. Therefore, the pollutants present in each waste stream and the mass loading (mg/kkg) at which they are present should be similar.

Nickel-Cobalt Dye Penetrant Testing Wastewater. As discussed in Section III, testing operations are used to check nonferrous metals parts for discontinuities that are open to the surface in the part being tested. Dye penetrant testing operations are sources of wastewater because the parts must be rinsed following penetration of the dye so that, upon inspection, dye will only remain in the discontinuities. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-85.

Table V-86 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Two samples of dye penetrant testing wastewater were collected at two plants.

Nickel-Cobalt Miscellaneous Wastewater Sources. Several low volume sources of wastewater were reported on the dcp and observed during the site and sampling visits. These sources include maintenance and cleanup. The Agency has determined that none of the plants reporting these specific water uses discharge these wastewaters to surface water (directly or indirectly). However, because the Agency believes that this type of low volume periodic discharge occurs at most plants, the Agency is including an allowance for the miscellaneous wastewater sources.

Nickel-Cobalt Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, l,l,l-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging the spent

degreasing solvents, no samples were collected.

Nickel-Cobalt Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are required to control air pollution from some operations. Scrubbers are frequently necessary over surface treatment operations to control fumes and over shot blasting operations to control particulates. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-87.

Table V-88 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of wet air pollution control blowdown were collected. Blowdown from a scrubber on a surface treatment operation was sampled at two plants and on a shot blasting operation at another plant. Elevated concentrations of nickel, copper (2.85 mg/l), chromium and TSS (190 mg/l) were detected in the samples.

Nickel-Cobalt Electrocoating Rinse. As discussed in Section III, products are usually rinsed following electrocoating before they are subsequently formed. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-89.

No samples of electrocoating rinsewater were collected during the sampling program. However, one commenter provided sufficient information to calculate the mass loadings for three pollutants. Elevated concentrations of nickel (53.2 mg/l), chromium (1.22 mg/l), and copper (34.2 mg/l) were reported. The calculated mass loadings are 179,000 mg/kkg of nickel, 4,110 mg/kkg of chromium, and 115,000 mg/kkg of copper. The loadings of other pollutants are expected to be similar to the loadings for alkaline cleaning rinsewater.

Nickel-Cobalt Operations Which Do Not Use Process Water. The Agency has established no discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, either because they are dry or because they use noncontact cooling water only:

Powder Metallurgy Operations (Compacting, Sintering, Sizing)
Powder Blending
Powder Ball Milling
Powder Attrition
Powder Extrusion
Hot Isostatic Pressing
Grit, Sand and Shot Blasting
Welding
Plasma Torch Cutting
Gas Cleaning
Coil Buildup, Coiling
Straightening
Electroflux Remelting.

Precious Metals Forming Subcategory

Precious Metals Rolling Spent Neat Oils. As discussed in Section III, the rolling of precious metals products may require the use of mineral oil lubricants. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-90.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples of this waste stream were collected.

Precious Metals Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using in-line filtration with periodic batch discharge of the recycled emulsion as it loses its lubricating properties. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-91.

Table V-92 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of rolling spent emulsion were collected from three streams at two plants. Elevated concentrations of copper (25.0 mg/l), zinc (6.00 mg/l), silver (0.130 mg/l), oil and grease (1,500 mg/l), and TSS (500 mg/l) were detected in the samples.

<u>Precious Metals</u> <u>Drawing Spent Neat Oils</u>. As discussed in Section III, oil-based lubricants may be required in draws which have a high reduction in diameter. Drawing oils are usually recycled until their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-93.

Since none of the plants surveyed reported discharging the drawing spent neat oils, no samples were collected.

Precious Metals Drawing Spent Emulsions. As discussed in Section III, oil-water emulsions may be used as coolants and lubricants in drawing. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-94.

Table V-95 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of drawing spent emulsions was collected at one plant. Elevated concentrations of copper (46.4 mg/l), zinc (5.18 mg/l), lead (1.05 mg/l), and oil and grease (33,000 mg/l) were detected in the sample.

Precious Metals Drawing Spent Soap Solutions. As discussed in Section III, soap solutions can be used as drawing lubricants.

The drawing soap solutions may be recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-96.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Precious Metals Metal Powder Production Atomization Wastewater. As discussed in Section III, metal powder is commonly produced through wet atomization of a molten metal. Water is removed after the atomization step, commonly by settling, then discharged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-97.

No samples of metal powder production atomization wastewater were collected during the sampling program. However, the Agency believes that this stream will have wastewater characteristics similar to shot casting contact cooling water in this subcategory. These two waste streams are generated by using water to cool molten metal. Therefore, the pollutants present in each waste stream and the mass loading (mg/kkg) at which they are present should be similar.

Precious Metals Direct Chill Casting Contact Cooling Water. As discussed in Section III, contact cooling water is a necessary part of direct chill casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-98.

<u>Precious Metals Shot Casting Contact Cooling Water.</u> As discussed in Section III, during shot casting, a tank of contact cooling water, either stagnant or circulating, is necessary for quick quenching of cast shot. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-99.

Table V-100 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of shot casting contact cooling water were collected from one stream at one plant. Elevated concentrations of cadmium (9.88 mg/l), copper (0.600 mg/l), zinc (5.66 mg/l), and oil and grease (54 mg/l) were detected in the samples.

Precious Metals Stationary Casting Contact Cooling Water. As discussed in Section III, stationary casting of metal ingots is practiced at many nonferrous metals forming plants. Lubricants and cooling water are usually not required, however, two of the plants surveyed reported the use and discharge of stationary casting contact cooling water. Water use, wastewater discharge,

and current recycle practices corresponding to this waste stream are summarized in Table V-101.

No samples of stationary casting contact cooling water were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to semi-continuous and continuous casting contact cooling water in this subcategory. These two waste streams are generated by using water, without additives, to cool hot metal. Therefore, the pollutants present in each waste stream and the mass loading at which they are present should be similar.

Precious Metals Semi-Continuous and Continuous Casting Contact Cooling Water. As discussed in Section III, a number of different continuous casting processes are currently being used in the precious metals industry. The use of continuous casting techniques has been found to significantly reduce or eliminate the use of contact cooling water and oil lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-102.

Table V-103 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of semi-continuous and continuous casting contact cooling water were collected from two streams at two plants. Elevated concentrations of copper, cyanide (0.50 mg/l), oil and grease and TSS were detected in the samples.

Precious Metals Heat Treatment Contact Cooling Water. As discussed in Section III, contact cooling water is used to obtain a controlled cooling rate following solution heat treatment and annealing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-104.

Precious Metals Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of precious metals products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-105.

Precious Metals Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-106.

Table V-107 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Seven samples of surface treatment rinsewater were collected from four streams at three plants. Elevated concentrations of cadmium (11.1 mg/l), copper (60.6 mg/l), silver (6.70 mg/l), zinc and TSS

(3,000 mg/l) were detected in the samples.

Precious Metals Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-108.

Precious Metals Alkaline Cleaning Rinse. As discussed in Section III, following alkaline treating, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-109.

samples of alkaline cleaning rinsewater were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in the nickel-cobalt subcategory. These two waste streams are generated by identical physical processes which use similar process chemicals. The only difference should be the metals present. The mass loading of precious metals in precious metals alkaline cleaning rinsewater should be similar to the mass loading of nickel in nickel alkaline cleaning rinsewater, Also, chromium should not be present in significant vice versa. The other pollutants present in each waste stream, and amounts. the mass loading at which they are present, should be similar.

Precious Metals Alkaline Cleaning Prebonding Wastewater. discussed in Section III, prior to bonding (cladding), metal surfaces must be cleaned in order to obtain a good bond. main source of process water in metal cladding operations is in cleaning the metal surfaces prior to bonding. Acid, caustic, or detergent cleaning can be performed depending on the metal type. small batch operations, the cleaning steps can involve dipping the metal into small cleaning bath tanks and hand rinsing the metal in a sink. For larger continuous operations, the metal may be cleaned in a power scrubline. In a typical scrubline, the strip passes through a detergent bath, spray rinse, acid bath, spray rinse, rotating abrasive scrub brushes, and a final rinse. The metal may then pass through a heated drying chamber or may Water use, wastewater discharge, and current recycle air dry. practices corresponding to this waste stream are summarized in Table V-110.

Table V-111 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Eight samples of prebonding cleaning wastewater were collected from three streams at two plants. Elevated concentrations of silver (0.100 mg/l), zinc (2.32 mg/l), copper (5.95 mg/l), cyanide (0.28 mg/l), nickel (3.60 mg/l), oil and grease (16 mg/l), and TSS (400 mg/l) were detected in the samples.

<u>Precious Metals Tumbling or Burnishing Wastewater.</u> As discussed

in Section III, tumbling is a controlled method of processing parts to remove burrs, scale, flash, and oxides as well as to improve surface finish of formed metal parts. Burnishing is the process of finish sizing or smooth finishing a workpiece (previously machined or ground) by displacement rather than removal, of minute surface irregularities. Water is used to facilitate tumbling and burnishing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-112.

Table V-113 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of tumbling wastewater were collected from two streams at two plants. Elevated concentrations of silver (0.220 mg/l), lead (1.85 mg/l), zinc (3.16 mg/l), iron (7,850 mg/l), copper (142 mg/l), nickel (3.25 mg/l), chromium (3.18 mg/l), oil and grease (40 mg/l), and TSS (110 mg/l) were detected in the samples.

Precious Metals Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-114.

Since none of the plants surveyed reported discharging the sawing or grinding spent neat oils, no samples were collected.

Precious Metals Sawing or Grinding Spent Emulsions. As discussed in Section III, the rolls used in rolling operations obtain surface abrasions after repeated use. The rolls must be surface ground in order to obtain a smooth rolling surface. The rolled product will not be formed properly if the rolls are not adequately smooth. Roll grinding and other sawing and grinding operations generally require a lubricant to minimize friction and act as a coolant. Oil-water emulsions are commonly used for this purpose. The emulsions are typically recycled using in-line filtration and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-115.

Table V-116 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. A sample of roll grinding spent emulsions was collected at one plant. Elevated concentrations of zinc (0.920 mg/l), chromium (0.240 mg/l), and oil and grease (500 mg/l) were detected in the sample.

Precious Metals Pressure Bonding Contact Cooling Water. As discussed in Section III, metals can be bonded together through the use of pressure applied onto the desired forms. Cooling water may be applied after the bonding operation to facilitate handling of the bonded product. Water use, wastewater discharge,

and current recycle practices corresponding to this waste stream are summarized in Table V-117.

Table V-118 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of pressure bonding contact cooling water was collected at one plant. Elevated concentrations of zinc (3.42 mg/l) and copper (7.85 mg/l) were detected in the sample.

Precious Metals Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Precious Metals Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to control air pollution from some operations. For instance, scrubbers may be required over casting operations. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-119.

No samples of wet air pollution control blowdown were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to shot casting contact cooling water in this subcategory. The pollutants in each of these waste streams derive from the contact of the water with particles of metal, so the pollutants present are expected to be similar. However, because the air pollution control device is designed to capture small particles and gases (dust and fumes) generated during the casting process, the mass loadings of total suspended solids and total dissolved solids are expected to be higher in wet air pollution control blowdown than in shot casting contact cooling water.

Precious Metals Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, either because they use only noncontact cooling water or because they use no water at all:

Forging, Swaging
Punching, Stamping
Welding
Soldering
Melting
Screening
Sawing
Slitting
Metal Powder Production.

Refractory Metals Forming Subcategory

Refractory Metals Rolling Spent Neat Oils and Graphite-Based Lubricants. As discussed in Section III, the rolling of refractory metal products typically requires the use of mineral oil or graphite-based lubricants. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Because discharge of this stream is not practiced, flow data were not available for analysis. Only one plant surveyed reported using neat oil rolling lubricants, but this plant did not report the quantity of lubricant used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-120.

Since none of the plants surveyed reported discharging the rolling spent neat oils or graphite-based lubricants, no samples were collected.

Refractory Metals Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled with in-line filtration and batch discharged periodically when the lubricating properties of the emulsions are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-121.

No samples of rolling spent emulsions were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to nickel-cobalt rolling spent emulsions. These two waste streams are generated by identical physical processes which use similar process chemicals. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of refractory metals rolling spent emulsions should be similar to the mass loading of nickel in nickel rolling spent emulsions, and vice versa. In addition, the mass loading of chromium in refractory metals rolling spent emulsions should insignificant because refractory metals are seldom alloyed The other pollutants in each waste stream, with chromium. the mass loading at which they are present, should be similar.

Refractory Metals Drawing Spent Lubricants. As discussed in Section III, a wide variety of drawing lubricants are used in

order to ensure uniform drawing temperatures and avoid excessive wear on the dies and mandrels. Drawing lubricants are usually recycled until no longer effective. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-122.

Since none of the plants surveyed reported discharging the drawing spent lubricants, no samples were collected.

Refractory Metals Extrusion Spent Lubricants. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-123.

Since none of the plants surveyed reported discharging the extrusion spent lubricants, no samples were collected.

Refractory Metals Extrusion Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-124.

Table V-125 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid leakage was collected during the sampling program. Elevated concentrations of copper (21 mg/l), molybdenum (20 mg/l), oil and grease (44,000 mg/l), and total suspended solids (19,000 mg/l) were detected in the sample.

Refractory Metals Forging Spent Lubricants. As discussed in Section III, proper lubrication of the dies is essential in forging refractory metals. Of the plants surveyed reporting the use of forging lubricants, all reported total consumption due to evaporation and drag-out. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-126.

Since none of the plants surveyed reported discharging the forging spent lubricants, no samples were collected.

Refractory Metals Forging Contact Cooling Water. As discussed in Section III, heat treatment is frequently used after forging to attain the desired mechanical properties in the forged metal. Contact cooling water may be used to cool the forged metal at a controlled rate after heat treatment. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-127.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to nickel-cobalt extrusion

press and solution heat treatment contact cooling water. two waste streams are generated by using water, without addi-The only difference between tives, to cool hot metal. wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of refractory metals in refractory metals forging contact cooling water should be similar to the mass loading of nickel in nickel extrusion press and solution heat treatment contact cooling water, and vice Also, the mass loading of chromium should be insignifiversa. cant because refractory metals are seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

Refractory Metals Metal Powder Production Wastewater. As discussed in Section III, refractory metal powders are frequently produced by mechanical reduction. The most common pieces of mechanical reduction equipment are ball mills, vortex mills, hammer mills, disc mills, and roll mills. Water or other liquids may be used to aid in the milling operation or to facilitate handling after powder is produced. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-128.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to tumbling or burnishing wastewater in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Refractory Metals Metal Powder Production Floor Wash Wastewater. As discussed in Section III, floor washing may be necessary in metal powder production areas to keep to a minimum airborne particles and to keep powder dust off the floor so that it does not become slippery and a safety hazard. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-129.

No samples of metal powder production floor wash water were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to area cleaning wastewater in the uranium forming subcategory. These two waste streams are generated by plant cleanups. The only difference should be the metals present. The mass loading (mg/kkg) of refractory metals in refractory metals metal powder production floor wash water should be similar to the mass loading of uranium in uranium area cleaning wastewater, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar.

Refractory Metals Metal Powder Pressing Spent Lubricants. As discussed in Section III, a forming medium may be used to lubricate the pressing of green shapes, which are subsequently sintered. Lubricants may be recycled and lost through drag-out. Water use, wastewater discharge, and current recycle practices

corresponding to this waste stream are summarized in Table V-130.

Since none of the plants surveyed reported discharging the metal powder pressing spent lubricants, no samples were collected.

Refractory Metals Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of refractory metal products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-131.

Table V-132 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment spent baths was collected. Elevated concentrations of nickel (12.4 mg/l), copper (6.3 mg/l), silver (6.1 mg/l), and TSS (140 mg/l) were detected in the sample.

Refractory Metals Surface Treatment Rinse. As discussed in Section III, rinsing following the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-133.

Table V-134 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Five samples of surface treatment rinsewater were collected from five streams at five plants. Elevated concentrations of nickel (10.2 mg/l), columbium, tantalum, tungsten and TSS (140 mg/l) were detected in the samples.

Refractory Metals Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-135.

Table V-136 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of alkaline cleaning spent baths was collected at one plant. Elevated concentrations of lead (9.9 $\,\mathrm{mg/l}$), columbium (865 $\,\mathrm{mg/l}$), and tantalum (585 $\,\mathrm{mg/l}$) were detected in the sample.

Refractory Metals Alkaline Cleaning Rinse. As discussed in Section III, following alkaline treating, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-137.

No samples of alkaline cleaning rinsewater were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in the nickel-cobalt subcategory. These two waste streams are generated by using water to remove alkaline cleaning solutions from cleaned metal. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of refractory metals in refractory metals alkaline cleaning rinsewater should be similar to the mass loading of nickel in nickel alkaline cleaning rinsewater, and vice versa. Also, the mass loading of chromium should be insignificant because refractory metals are seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Refractory Metals Molten Salt Rinsewater. As discussed in Section III, when molten salt baths are used to descale refractory metal alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-138.

Table V-139 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Six samples of molten salt rinsewater were collected from four streams at three plants. Elevated concentrations of tantalum (2.5 mg/l), columbium (2.3 mg/l), chromium (0.400 mg/l), and TSS (540 mg/l) were detected in the samples.

Refractory Metals Tumbling or Burnishing Wastewater. As discussed in Section III, tumbling is a controlled method of processing parts to remove burrs, scale, flash, and oxides as well as to improve surface finish. Burnishing is the process of finish sizing or smooth finishing a workpiece (previously machined or ground) by displacement, rather than removal, of minute surface irregularities. Water is used to facilitate tumbling and burnishing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-140.

Table V-141 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Six samples of tumbling, burnishing wastewater were collected from four streams at two plants. Elevated concentrations of copper lead, nickel (103 mg/l), tungsten and TSS (2,700 mg/l) were detected in the samples.

Refractory Metals Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-142.

Since none of the plants surveyed reported discharging spent sawing or grinding neat oils, no samples were collected.

Refractory Metals Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-water emulsions are frequently used to lubricate sawing and grinding operations. The emulsions are usually recycled with in-line filtration to remove swarf and batch discharged periodically as their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-143.

Table V-144 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Six samples of sawing or grinding spent emulsions were collected at five plants.

Refractory Metals Sawing or Grinding Contact Cooling Water. As discussed in Section III, a liquid which functions as lubricant and coolant is frequently needed during sawing and grinding. Water is one type of liquid which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-145.

Table V-146 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of sawing or grinding contact cooling water were collected from two streams at two plants. Elevated concentrations of molybdenum (5,470~mg/l), iron (13.0~mg/l), and TSS (310~mg/l) were detected in the samples.

Refractory Metals Sawing or Grinding Rinse. As discussed in Section III, the formed metals may be rinsed following sawing or grinding to remove the lubricants and saw chips for reprocessing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-147.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Refractory Metals Dye Penetrant Testing Wastewater. As described in Section III, testing operations are used to check nonferrous metals parts for discontinuities that are open to the surface in the part being tested. Dye penetrant testing operations are sources of wastewater because the parts must be rinsed following penetration of the dye so that, upon inspection, dye will only remain in the discontinuities. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-148.

Table V-149 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of dye penetrant testing wastewater was collected during

the sampling program. Elevated concentrations of nickel (1.6 mg/l), oil and grease (72 mg/l), and TSS (22 mg/l) were detected in the sample.

Refractory Metals Equipment Cleaning Wastewater. As discussed in Section III, extrusion and forging equipment may be periodically cleaned in order to prevent the excessive build-up of oil and grease on the dies. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-150.

Table V-151 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Three samples of equipment cleaning wastewater were collected at two plants.

Refractory Metals Miscellaneous Wastewater Sources. As discussed in Section III, several low volume sources of wastewater were reported on the dcps and observed during the site and sampling visits. These sources include wastewater from a post-oil dip coating rinse, a quench of extrusion tools, and spent roll grinding emulsions. Because they generally represent low volume periodic discharges applicable to most plants, the Agency is including an allowance for all of these streams under the miscellaneous wastewater sources waste stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-152.

No samples of miscellaneous wastewater sources were collected during the sampling program. However, the Agency believes that this stream will have wastewater characteristics similar forging contact cooling water in the nickel-cobalt subcategory. However, the mass loading (mg/kkg) of oil and grease is expected to be higher, while the mass loading of TSS is expected to be lower in miscellaneous wastewater sources than in forging contact In addition, the metals present in the two waste cooling water. streams are expected to differ. The mass loading (mg/kkg) of refractory metals in refractory metals miscellaneous wastewater sources should be similar to the mass loading of nickel in nickel forging contact cooling water, and vice versa. Also, loading of chromium should be insignificant because refractory metals are seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are preswith the exception of TSS and oil and grease, should be ent, similar.

Refractory Metals Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are

trichloroethylene, l,l,l-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Refractory Metals Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to accompany some operations in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-153.

Table V-154 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of wet air pollution control blowdown were collected from two streams at two plants. Elevated concentrations of lead $(0.16 \, \text{mg/l})$ and TSS $(150 \, \text{mg/l})$ were detected in the samples.

Refractory Metals Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Powder Metallurgy Operations (Pressing, Sintering)
Annealing
Soldering
Welding
Screening
Blending
Straightening
Blasting.

Titanium Forming Subcategory

Titanium Rolling Spent Neat Oils. As discussed in Section III, the rolling of titanium products typically requires the use of mineral oil lubricants. The oils are usually recycled with inline filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Because discharge of this stream is not practiced, limited flow data were available for analysis. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-155.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples of this waste stream were collected.

Titanium Rolling Contact Cooling Water. As discussed in Section III, a liquid which functions as a lubricant and coolant is

necessary during rolling to prevent excessive wear on the rolls, to prevent adhesion of metal to the rolls, and to maintain a suitable and uniform rolling temperature. Water is one type of liquid which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-156.

Titanium Drawing Spent Neat Oils. As discussed in Section III, oil-based lubricants may be required in draws which have a high reduction in diameter. Drawing oils are usually recycled until their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-157.

Since none of the plants surveyed reported discharging the drawing spent neat oils, no samples were collected.

Titanium Extrusion Spent Neat Oils. As discussed in Section III, oil-based lubricants may be required in extrusions which have a high reduction in diameter. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-158.

Since none of the plants surveyed reported discharging spent extrusion neat oils, no samples were collected.

Titanium Extrusion Spent Emulsions. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-159.

No samples of extrusion spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that discharged titanium extrusion would have wastewater characteristics similar to rolling spent emulsions in the nickel-cobalt subcategory. two waste streams are generated from operations which use similar process chemicals for similar purposes (lubrication). difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of titanium in titanium extrusion spent emulsions should be similar to the mass loading of nickel in nickel rolling spent emulsions, and vice versa. However, the mass loading of chromium should be insignificant because titanium is seldom alloyed with The other pollutants in each waste stream, and the chromium. mass loading at which they are present, should be similar.

Titanium Extrusion Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-160.

Table V-161 summarizes the analytical data for priority metal

pollutants and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid was collected at one plant. No pollutants were detected in the sample above treatable concentrations.

Titanium Forging Spent Lubricants. As discussed in Section III, either a water or oil medium can be sprayed onto forging dies for proper lubrication. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-162.

Since none of the plants surveyed reported wastewater discharge values for forging spent lubricants, no samples were collected.

Titanium Forging Contact Cooling Water. As discussed in Section III, forging dies may require cooling to maintain the proper die temperature between forgings. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-163.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. These two waste streams generated by using water, without additives, forgings and forging dies. The only difference between wastewater characteristics of the two streams should be The mass loading (mg/kkg) of titanium in titametals present. nium forging die contact cooling water should be similar to the mass loading of nickel in nickel forging die contact cooling water, and vice versa. However, the mass loading of chromium should be insignificant because titanium is seldom alloyed with However, the mass loading of chromium The other pollutants in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

<u>Titanium Forging Equipment Cleaning Wastewater</u>. Forging equipment may be periodically cleaned in order to prevent the excessive build-up of oil and grease on the forging die. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-164.

To estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. These assumptions were confirmed by plant self-sampling data.

Titanium Forging Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-165.

One sample of forging press hydraulic fluid leakage was collected at one plant. An elevated concentration of oil and grease

(370,000 mg/l) was detected in this sample.

Titanium Tube Reducing Spent Lubricants. As discussed in Section III, tube reducing, much like rolling, may require a lubricating compound in order to prevent excessive wear of the tube reducing rolls, and to maintain a suitable and uniform tube reducing temperature. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-166.

Table V-167 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Three samples of tube reducing lubricant were sampled at three plants.

Titanium Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment is used by plants in the nonferrous metals forming category to give the metal the desired mechanical properties. After heat treatment, the metals must be cooled at a controlled rate. Contact cooling water may be used for this purpose. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-168.

Table V-169 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Five samples of heat treatment contact cooling water were sampled at five plants. Elevated concentrations of copper (11.0 mg/l), zinc (6.7 mg/l), aluminum (24.0 mg/l), iron (440 mg/l), titanium (2.0 mg/l) and TSS (390 mg/l) were detected in these samples.

Titanium Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of titanium products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-170.

Table V-171 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment spent baths were collected from three streams at two plants. Elevated concentrations of chromium, titanium (60,300 mg/l), lead (214 mg/l), nickel, zinc (166 mg/l), and TSS (3,360 mg/l) were detected in the samples.

Titanium Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-172.

Table V-173 summarizes the analytical sampling data for priority

and selected conventional and nonconventional pollutants. Nine samples of surface treatment rinsewater were collected from four streams at two plants. Elevated concentrations of chromium, lead (5.9 mg/l), nickel, titanium (186 mg/l), and TSS (66 mg/l) were detected in the samples.

Titanium Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaning is commonly used to clean formed metal parts. Products can be cleaned with an alkaline solution either by immersion or spray. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-174.

Table V-175 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Five samples of alkaline cleaning baths were collected at four plants. Elevated concentrations of copper (6.3 mg/l), iron (5.4 mg/l), titanium (6.5 mg/l), oil and grease (930 mg/l) and TSS (400 mg/l) were detected in these samples.

Titanium Alkaline Cleaning Rinse. As discussed in Section III, rinsing follows the alkaline cleaning process to prevent the solution from drying on the product. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-176.

Table V-177 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Four samples of alkaline cleaning rinsewater were collected at four plants. Elevated concentrations of copper (6.3 mg/l), and iron (1.9 mg/l) were detected in these samples.

Titanium Molten Salt Rinse. As discussed in Section III, when molten salt baths are used to descale titanium alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-178.

Titanium Tumbling Wastewater. As described in Section III, tumbling is an operation in which forgings are rotated in a barrel with ceramic or metal slugs or abrasives to remove scale, fins, oxides, or burrs. It may be done dry, with water, or an aqueous solution containing cleaning compounds, rust inhibitors, or other additives. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-179.

Table V-180 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of tumbling wastewater was collected. Elevated concentrations of titanium (156 mg/l), iron (111 mg/l), aluminum (182 mg/l), boron (116 mg/l), fluoride (110 mg/l), ammonia (34 mg/l), cyanide (4.1 mg/l), oil and grease (17 mg/l), and TSS (6,800 mg/l) were detected in the sample.

Titanium Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-181.

Since none of the plants surveyed reported discharging the sawing or grinding spent neat oils, no samples were collected.

Titanium Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-182.

Table V-183 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of sawing or grinding emulsions and synthetic coolants were collected from three streams at two plants.

Titanium Sawing or Grinding Contact Cooling Water. As discussed in Section III, a substance which functions as a lubricant and coolant is frequently needed during sawing or grinding. Water is one substance which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-184.

Table V-185 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of sawing or grinding contact cooling water was collected at one plant. Elevated concentrations of magnesium (13.5 mg/l) and titanium (7.06 mg/l) were detected in this sample.

Titanium Dye Penetrant Testing Wastewater. As discussed in Section III, testing operations are used to check nonferrous metals parts for discontinuities that are open to the surface in the part being tested. Dye penetrant testing operations are sources of wastewater because the parts must be rinsed following penetration of the dye so that, upon inspection, dye will only remain in the discontinuities. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-186.

Titanium Hydrotesting Wastewater. As discussed in Section III, titanium tubes can be filled with pressurized water for leak-testing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-187.

No samples of hydrotesting wastewater were taken, but the Agency does not believe that using water, without additives, in contact

with clean metal will contaminate the water with treatable concentrations of pollutants.

Titanium Miscellaneous Wastewater Streams. As discussed in Section III, low volume sources of wastewater were reported on the dcps. These sources are saw spillage and tool cleaning wastewater. Because they generally represent low volume periodic discharges applicable to most plants, the Agency is including an allowance for all of these streams under the miscellaneous wastewater sources waste stream.

No samples of miscellaneous wastewater sources were collected during the sampling program. However, the Agency believes that this stream will have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of titanium in titanium miscellaneous wastewater sources should be similar to the mass loading of nickel in nickel forging contact cooling water, and vice versa. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Titanium Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, sprayvapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Titanium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to accompany some operations in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-188.

Table V-189 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of surface treatment wet air pollution control blowdown were collected from two streams at two plants. Elevated concentrations of chromium, nickel, titanium and TSS (40 mg/l) were detected in the samples.

Titanium Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Casting
Shot Blasting
Grit Blasting
Machining
Torching
Deoxidizing
Straightening
Trimming
Piercing
Shearing.

Uranium Forming Subcategory

<u>Uranium Extrusion Spent Lubricants</u>. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-190.

Since none of the plants surveyed reported wastewater discharge values for extrusion spent lubricants, no samples were collected.

<u>Uranium</u> <u>Extrusion</u> <u>Tool</u> <u>Contact</u> <u>Cooling</u> <u>Water</u>. As discussed in Section III, following an extrusion, the dummy block drops from the press and is cooled before being used again. Water is sometimes used to quench the extrusion tools. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-191.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. These two waste streams are generated by using water, without added process chemicals, to cool metal forming equipment. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of uranium in uranium extrusion tool contact cooling water should be similar to the mass loading of nickel in nickel forging contact cooling water, and vice versa. However, there should be no significant mass loading of chromium in uranium extrusion tool contact cooling water because uranium is not commonly alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

<u>Uranium</u> <u>Forging Spent Lubricants</u>. As discussed in Section III, proper lubrication of the dies is essential in forging nonferrous metals. A colloidal graphite lubricant is commonly sprayed onto the dies for this purpose. Water use, wastewater discharge, and

current recycle practices corresponding to this waste stream are summarized in Table V-192.

Since none of the plants surveyed reported wastewater discharge values for forging spent lubricants, no samples were collected.

<u>Uranium</u> <u>Heat Treatment Contact Cooling Water</u>. As discussed in Section III, heat treatment is used by plants in the nonferrous metals forming category to give the metal the desired mechanical properties. After heat treatment, the metals must be cooled at a controlled rate. Contact cooling water may be used for this purpose. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-193.

Table V-194 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of heat treatment contact cooling water were collected from three streams at one plant. Elevated concentrations of lead $(14.0 \, \text{mg/l})$, nickel $(2.3 \, \text{mg/l})$, uranium $(51.5 \, \text{mg/l})$, oil and grease $(84 \, \text{mg/l})$, and TSS $(100 \, \text{mg/l})$ were detected in the samples.

<u>Uranium Surface Treatment Spent Baths.</u> As discussed in Section III, a number of chemical treatments may be applied after forming uranium products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-195.

Table V-196 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment spent bath was collected at one plant. Elevated concentrations of copper (16.0 mg/l), lead (860.0 mg/l), and aluminum (430.0 mg/l) were detected in the sample. This sample was not analyzed for uranium but plant personnel reported that its concentration was about 280 g/l.

<u>Uranium</u> <u>Surface Treatment Rinse</u>. As discussed in Section III, rinsing generally follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-197.

Table V-198 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment rinse were collected from two streams at one plant. Elevated concentrations of copper (12.0 mg/l), lead (ll0.0 mg/l), nickel (3.4 mg/l), uranium (2,700 mg/l), and TSS (430 mg/l) were detected in the samples.

<u>Uranium</u> <u>Sawing or Grinding Spent Emulsions</u>. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant.

The emulsions are typically recirculated, with in-line filtration to remove swarf, and periodically batch discharged as the lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-199.

Table V-200 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of sawing or grinding spent emulsions was collected at one plant. Elevated concentrations of phenanthrene (32.607 mg/l), lead (7.3 mg/l), zinc (7.5 mg/l), uranium (37.5 mg/l), oil and grease (7,500 mg/l), and TSS (510 mg/l) were detected in the sample.

<u>Uranium Sawing or Grinding Contact Cooling Water</u>. As discussed in Section III, a substance which functions as a lubricant and coolant is frequently needed during sawing and grinding. Water is one type of substance which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-201.

No samples of sawing or grinding contact cooling water were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding contact cooling water in the refractory metals subcategory. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of uranium in uranium sawing or grinding contact cooling water should be similar to the mass loading of refractory metals in refractory metals sawing or grinding contact cooling water, and vice versa. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

<u>Uranium Sawing or Grinding Rinse</u>. As discussed in Section III, following the sawing or grinding operations, the lubricant and sawing and grinding fines occasionally need to be rinsed off the formed metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-202.

No samples of sawing or grinding rinse were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding contact cooling water in the refractory metals subcategory. These waste streams are both derived from sawing or grinding operations, so the only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of uranium in uranium sawing or grinding rinse should be similar to the mass loading of refractory metals in refractory metals sawing or grinding contact cooling water, and vice versa. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

<u>Uranium Area Cleaning Washwater</u>. As discussed in Section III, OSHA requirements dictate area cleaning or floor washing at uranium forming facilities. Area cleaning helps to minimize airborne uranium particles and hence helps control radiation exposure. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-203.

Table V-204 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of area cleaning wastewater were collected from three streams at one plant. Elevated concentrations of p-chloro-m-cresol (15.031 mg/l), bis(2-ethylhexyl) phthalate (4.879 mg/l), lead (4.1 mg/l), copper (2.3 mg/l), zinc (11.0 mg/l), uranium (130 mg/l), oil and grease (6,000 mg/l), and TSS (1,600 mg/l) were detected in the samples.

<u>Uranium Degreasing Spent Solvents</u>. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, sprayvapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Uranium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to control air emissions from some operations in order to meet air quality standards. Scrubbers are frequently needed to control acid fumes from surface treatment operations. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-205.

Table V-206 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment wet air pollution control blowdown was collected at one plant. Elevated concentrations of zinc (1.1 mg/l), uranium (1,000 mg/l), and TSS (650 mg/l) were detected in the sample.

<u>Uranium</u> <u>Drum</u> <u>Washwater</u>. As discussed in Section III, solid waste from uranium forming operations is stored in drums and shipped to a low-level radioactive waste landfill. The drums are required

to be free from external radioactive contamination prior to shipment. Drums are washed with soapy water which may be recycled using in-line filtration prior to discharge. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-207.

Table V-208 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of drum wash water was collected at one plant. Elevated concentrations of uranium (5.7 mg/l), magnesium (28.6 mg/l), and TSS (23 mg/l) were detected in the sample.

<u>Uranium</u> <u>Laundry Washwater</u>. As discussed in Section III, OSHA requirements dictate employees' clothing must remain on-site. Therefore, laundry service is provided by the plant. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-209.

Table V-210 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of laundry wash water was collected at one plant. Elevated concentrations of oil and grease (42 mg/l) and TSS (11 mg/l) were detected in the sample.

<u>Uranium Operations Which Do Not Use Process Water.</u> The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Stationary Casting
Direct Chill Casting
Salt Solution Heat Treatment.

Zinc Forming Subcategory

Zinc Rolling Spent Neat Oils. As described in Section III, mineral oil or kerosene-based lubricants can be used in the rolling of zinc products. The oils are usually recycled with inline filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-211.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples were collected.

Zinc Rolling Spent Emulsions. As discussed in Section III, oilwater emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using inline filtration treatment, with periodic batch discharge of the recycled emulsion. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-212.

No samples of rolling spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in the lead-tin-bismuth subcategory. These two waste streams are generated by identical physical processes which use similar process chemicals. The only difference should be the identity of metals present. The mass loading (mg/kkg) of zinc in zinc rolling spent emulsions should be similar to the mass loading of lead in lead rolling spent emulsions, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar.

Zinc Rolling Contact Cooling Water. As discussed in Section III, it is necessary to use a lubricant-coolant during rolling to prevent excessive wear on the rolls, to prevent adhesion of metal to the rolls, and to maintain a suitable and uniform rolling temperature. Water is one type of lubricant-coolant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-213.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to shot casting contact cooling water in the lead-tin-bismuth subcategory. These two waste streams are generated by using water, without additives, to cool hot metal. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of zinc in zinc rolling contact cooling water should be similar to the mass loading of lead in lead shot casting contact cooling water, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

Zinc Drawing Spent Emulsions. As discussed in Section III, oilwater emulsions are used for many drawing applications in order to ensure uniform drawing temperatures and avoid excessive wear on the dies and mandrels used. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-214.

No samples of drawing spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in the lead-tin-bismuth subcategory. These waste streams are generated from operations using similar process chemicals (oil-in-water emulsions) for similar purposes (lubrication). The only difference should be the metals present. The mass loading (mg/kkg) of zinc in zinc drawing spent emulsions should be similar to the mass loading of lead in lead rolling spent emulsions, and vice versa. The other pollutants present in each

waste stream, and the mass loading at which they are present, should be similar.

Zinc Direct Chill Casting Contact Cooling Water. As discussed in Section III, contact cooling water is a necessary part of direct chill casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process. The cooling water may be recycled. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-215.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to semi-continuous ingot casting contact cooling water in the lead-tin-bismuth subcategory. After proposal, these assumptions were confirmed by plant self-sampling data. These two waste streams are generated by using water, without additives, to cool cast metal. Since lubricants may be applied to the casting molds in both processes, both streams may be contaminated by these lubricants. The only difference between the waste streams should be the metals present. The mass loading (mg/kkg) of zinc in zinc direct chill casting contact cooling water should be similar to the mass loading of lead in lead semi-continuous ingot casting contact cooling water, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar.

Zinc Stationary Casting Contact Cooling Water. As discussed in Section III, lubricants and cooling water are usually not required in stationary casting. Since molten metal is poured into the molds, if contact cooling water is used, it is frequently lost due to evaporation. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-216.

Since none of the plants surveyed reported discharging the stationary casting contact cooling water, no samples were collected.

Zinc Heat Treatment Contact Cooling Water. As discussed in Section III, contact cooling water may be used for controlled-rate cooling of heat-treated metals. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-217.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to continuous strip casting contact cooling water in the lead-tin-bismuth subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Zinc Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of zinc products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water

use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-218.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to surface treatment spent baths in the magnesium subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Zinc Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-219.

Table V-220 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment rinse was collected at one plant. Elevated concentrations of zinc (42.3 mg/l), chromium (0.160 mg/l), nickel (8.10 mg/l), and TSS (20 mg/l) were detected in the sample.

Zinc Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-221.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Zinc Alkaline Cleaning Rinse. As discussed in Section III, following alkaline treating, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-222.

Table V-223 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of alkaline cleaning rinse was collected at one plant. Elevated concentrations of zinc (1.12 mg/l), cyanide (1.3 mg/l), oil and grease (23 mg/l), and TSS (90 mg/l) were detected in the sample.

Zinc Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-water emulsions are frequently used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-224.

At proposal, the Agency assumed that this stream would have

wastewater characteristics similar to sawing or grinding spent emulsions in the nickel-cobalt subcategory. These two waste streams are generated by identical physical processes which use similar process chemicals. The only difference should be the metals present. The mass loading (mg/kkg) of zinc in zinc sawing or grinding spent emulsions should be similar to the mass loading of nickel in nickel sawing or grinding spent emulsions, and vice versa. The mass loading of chromium in zinc sawing or grinding spent emulsions should be insignificant, since chromium is often alloyed with nickel but not with zinc. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

Zinc Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, sprayvapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, l,l,l-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

 $\overline{\text{Zinc}}$ Electrocoating Rinse. As discussed in Section III, products are usually rinsed following electrocoating before they are subsequently formed. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-225.

No samples of electrocoating rinse were collected during the sampling program. However, the characteristics of the rinse are expected to include the pollutants present in the electrocoating bath solution. Electrocoating of copper onto zinc generates wastewater with significant concentrations of copper and cyanide.

Zinc Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, either because they are dry operations or because they use only noncontact cooling water:

Continuous Casting Melting Slitting

Stamping
Sawing
Homogenizing
Printing
Coating
Drying
Metal Powder Production.

Zirconium-Hafnium Forming Subcategory

Zirconium-Hafnium Rolling Spent Neat Oils. As discussed in Section III, mineral oil or kerosene-based lubricants can be used in the rolling of zirconium-hafnium products. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-226.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples were collected.

Zirconium-Hafnium Drawing Spent Lubricants. As discussed in Section III, a suitable lubricant is required to ensure uniform drawing temperatures and avoid excessive wear on the dies and mandrels used. A wide variety of lubricants can be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-227.

Since none of the plants surveyed reported discharging the drawing spent lubricants, no samples were collected.

Zirconium-Hafnium Extrusion Spent Lubricants. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-228.

Since none of the plants surveyed reported discharging the extrusion spent lubricants, no samples were collected.

Zirconium-Hafnium Extrusion Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-229.

Table V-230 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid leakage was collected at one plant. No pollutants were found in this sample at treatable concentrations.

Zirconium-Hafnium Swaging Spent Neat Oils. As discussed in Section III, mineral oil can be used in the swaging of zirconium-

hafnium products. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-231.

Since none of the plants surveyed reported discharging the swaging spent neat oils, no samples were collected.

Zirconium-Hafnium Tube Reducing Spent Lubricants. As discussed in Section III, tube reducing, much like rolling, may require a lubricating compound in order to prevent excessive wear of the tube reducing equipment, prevent adhesion of metal to the tube reducing equipment, and maintain a suitable and uniform tube reducing temperature. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-232.

Zirconium-Hafnium Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment is used by plants in the nonferrous metals forming category to give the metal the desired mechanical properties. After heat treatment, the metals must be cooled at a controlled rate. Contact cooling water may be used for this purpose. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-233.

Table V-234 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Five samples of heat treatment contact cooling water were collected from three plants. Elevated concentrations of aluminum (3.0 mg/l), iron (12 mg/l), magnesium (30 mg/l) and molybdenum (370 mg/l) were detected in this sample.

Zirconium-Hafnium Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of zirconium-hafnium products including pickling and coating. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-235.

Table V-236 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment spent baths were collected from three streams at two plants. Elevated concentrations of antimony (6 mg/l), zinc (7.5 mg/l), chromium (24 mg/l), nickel (3.6 mg/l), zirconium (3,100 mg/l), and oil and grease (83.9 mg/l) were detected in the samples.

Zirconium-Hafnium Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are

summarized in Table V-237.

Zirconium-Hafnium Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-238.

Zirconium-Hafnium Alkaline Cleaning Rinse. As discussed in Section III, following alkaline cleaning, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-239.

Zirconium-Hafnium Molten Salt Rinse. As discussed in Section III, when molten salt baths are used to descale zirconium-hafnium alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-240.

samples of molten salt rinse were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to molten salt rinse in the nickel-cobalt These two waste streams are generated from using water to remove salt solutions from descaled metal. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) zirconium-hafnium in zirconium-hafnium molten salt rinse should be similar to the mass loading of nickel in nickel molten salt rinse, and vice versa. salt rinse, and vice versa. However, the mass loading of chromium should be insignificant because zirconium-hafnium is seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Zirconium-Hafnium Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-241.

Since none of the plants surveyed reported discharging the sawing spent neat oils, no samples were collected.

Zirconium-Hafnium Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-water emulsions are often used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-242.

Zirconium-Hafnium Sawing or Grinding Contact Cooling Water. As discussed in Section III, a lubricant is frequently needed during sawing or grinding. Water, without additives, is one type of lubricant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-243.

No samples of sawing or grinding contact cooling water were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding spent emulsions in this subcategory. These two waste streams are generated from using a lubricant to saw or grind zirconium-hafnium. Therefore, the pollutants present and the mass loadings of pollutants present in these two waste streams are expected to be similar.

Zirconium-Hafnium Sawing or Grinding Rinse. As discussed in Section III, following the sawing and grinding operations, the lubricant and fines from sawing and grinding may need to be rinsed off the formed metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-244.

Zirconium-Hafnium Inspection and Testing Wastewater. As discussed in Section III, testing operations are used to check zirconium-hafnium parts for surface defects or subsurface imperfections as well as overall product integrity. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-245.

Table V-246 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Four samples of inspection and testing wastewater were collected at three plants. No pollutants were found in this sample at treatable concentrations.

Zirconium-Hafnium Degreasing Spent Solvents. As discussed in Section III, immersion-vapor degreasing is used to clean metal parts coated with large quantities of oil, grease, or hard-to-remove soil. Solvents used may be the same as those used in straight vapor degreasing. Solutions of organic solvent in water are also used for degreasing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-247.

Zirconium-Hafnium Degreasing Rinse. As discussed in Section III, it is sometimes necessary to rinse degreased parts with water to meet certain product specifications. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-248.

Zirconium-Hafnium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are

needed to accompany some operations in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-249.

samples of wet air pollution control blowdown were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to wet air pollution control blowdown in the titanium subcategory. The two waste streams derive from air pollution control devices used to collect concentrate airborne particulates. The only difference between the wastewater characteristics of the two streams should The mass loading (mg/kkg) of be the metals present. zirconiumhafnium in zirconium-hafnium wet air pollution control blowdown should be similar to the mass loading of titanium in titanium wet air pollution control blowdown, and vice versa. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Zirconium-Hafnium Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Rolling
Casting
Annealing
Shot Blasting
Grit Blasting
Bead Blasting
Polishing
Straightening
Cutting, Trimming
Deburring, Sanding.

Metal Powders Subcategory

Metal Powder Production Atomization Wastewater. As discussed in Section III, wet atomization is a method of producing metal powder in which a stream of water impinges upon a molten metal stream, breaking it into droplets which solidify as powder particles. Water atomization is used to produce irregularly shaped particles required for powder metallurgy applications in which a powder is cold pressed into a compact. Because cooling times play an important role in determining particle configuration, the atomized metal droplets are sometimes rapidly cooled by falling into a water bath. Atomization and quench water are separated from the metal powder by gravity settling or filtration and discharged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-250.

Table V-251 summarizes the analytical sampling data for priority

and selected conventional and nonconventional pollutants. Nine samples of metal powder production wet atomization wastewater were collected at five plants. Elevated concentrations of chromium (15.0 mg/l), copper (295.0 mg/l), nickel (81.0 mg/l), aluminum (5.3 mg/l), iron (13.3 mg/l) and TSS (2,127 mg/l) were detected in the samples.

Metal Powders Tumbling, Burnishing, or Cleaning Wastewater. As alscussed in Section III, tumbling is an operation in which sintered parts pressed from metal powder are rotated in a barrel with ceramic or metal slugs or abrasives to remove scale, fins, or burrs. It may be done dry or with an aqueous solution. Burnishing is a surface finishing process in which minute surface irregularities are displaced rather than removed. It also can be done dry or in an aqueous solution. Pressed parts can be cleaned in hot soapy water to remove excess oil from oil quenching operations. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-252.

Table V-253 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Nine samples of tumbling, burnishing, and cleaning wastewater were collected from three streams at one plant. Elevated concentrations of copper (253 mg/l), lead (45.1 mg/l), zinc (9.56 mg/l), iron (211 mg/l), oil and grease (2,100 mg/l), and TSS (3,000 mg/l) were detected in the samples.

Metal Powders Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, saw oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-254.

Since none of the plants surveyed reported discharging the sawing spent neat oils, no samples were collected.

Metal Powders Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-in-water emulsions are commonly used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-255.

Table V-256 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of sawing or grinding emulsions were collected from two streams at one plant. Elevated concentrations of iron (176 mg/l), copper (1.55 mg/l), aluminum (7.00 mg/l), zinc (3.26 mg/l), boron (166 mg/l), cyanide (2.5 mg/l), oil and grease (720 mg/l), and TSS (120 mg/l) were detected in the samples.

Metal Powders Sawing or Grinding Contact Cooling Water. As

discussed in Section III, a lubricant is frequently needed during sawing and grinding. Water, without additives, is one type of lubricant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-257.

Table V-258 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of sawing or grinding contact cooling water was collected at one plant. Elevated concentrations of copper (230 mg/l), aluminum (40 mg/l) and magnesium (11 mg/l) were detected in this sample.

Metal Powders Sizing Spent Neat Oils. As discussed in Section III, sizing operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, sizing oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-259.

Since none of the plants surveyed reported discharging the sizing spent neat oils, no samples were collected.

Metal Powders Sizing Spent Emulsions. As discussed in Section III, sizing operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-in-water emulsions are commonly used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-260.

Since none of the plants surveyed reported discharging the sizing spent emulsions, no samples were collected.

Metal Powders Steam Treatment Wet Air Pollution Control Blowdown. As discussed in Section III, steam treatment operations may require the use of wet air pollution control devices in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-261.

Table V-262 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of steam treatment wet air pollution control blowdown were collected from one stream at one plant. Elevated concentrations of oil and grease (42 mg/l) and TSS (200 mg/l) were detected in the samples.

Metal Powders Oil-Resin Impregnation Spent Neat Oils. As discussed in Section III, porous parts pressed from metal powders may be impregnated with oils or resins. Normally, the oils or resins are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-263.

Since none of the plants surveyed reported discharging the oils or resins, no samples were collected.

Metal Powders Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Metal Powders Hot Pressing Contact Cooling Water. As discussed in Section III, contact cooling water may be used to cool hot pressed parts in order to facilitate handling. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-264.

Table V-265 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of hot pressing contact cooling water was collected from one plant. Elevated concentrations of copper (2.2 mg/l), iron (6.3 mg/l), and magnesium (3.5 mg/l) were detected in this sample.

Metal Powders Mixing Wet Air Pollution Control Blowdown. As discussed in Section III, during the mixing of metal powders, particulates may become airborne. The use of wet air pollution control may be necessary in order to meet particulate air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-266.

Table V-267 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of mixing wet air pollution control blowdown was collected from one plant. Elevated concentrations of copper (1.2 mg/l) and magnesium (4.5 mg/l) were detected in this sample.

Metal Powders Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Powder Metallurgy Operations (Compacting, Sintering)
Sanding
Rolling
Machining
Screening
Blending
Briquetting
Crushing, Pulverizing.

Treated Wastewater Samples. Tables V-268 through V-282 present the field sampling data for the treated wastewater from 18 of the 25 sampling episodes. Treated wastewater data for some of these plants were incorpo- rated into the larger data base which was used to determine the treatment effectiveness for different control systems. The treatability limits selected for the nonferrous metals forming control options are presented in Section VII (Control and Treatment Technology, Table VII-21 and VII-22, pp. 1474 and 1475).

Table V-1

NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY

Waste Stream	. 1 I] II	111 1	v I v	VI V	II VIII	IX X	XI
Rolling Spent Neat Oils			* *		*	*	*	. 0
Rolling Spent Neat Oils and Graphite-Based Lubricants				*				0
Rolling Spent Emulsions	1	*	4 3	*		*		8
Rolling Contact Cooling Water			8		1	2		11
Rolling Spent Soap Solutions	*							D
Drawing Spent Neat Oils	*		* *		*			0
Drawing Spent Emulsions	*		1 1			*		2
Drawing Spent Lubricants				*			*	0
Drawing Spent Soap Solutions	1		1					2
Extrusion Spent Neat Oils					*			0
Extrusion Spent Emulsions					*			0
Extrusion Spent Lubricants			*	*		*	*	0
Extrusions Press and Solution Heat Treatment Contact Cooling Water	1		1					2
Extrusion Press Hydraulic Fluid Leakage	1		3	1	1		1	7
Extrusion Tool Contact Cooling Water						1		1
Swaging Spent Neat Oils							*	٥
Swaging Spent Emulsions	1							1
Forging Spent Lubricants		*	*	*	*	*		0

 $\label{table V-1} \textbf{Table V-1 (Continued)}$ $\label{table V-1} \textbf{NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY}$

. Waste Stream	1	II j	111	IV V	VI VI	i viii i	x x	XI	
Forging Contact Cooling Water		*	2	1	1	•		4	
Forging Equipment Cleaning Wastewater		*	2		1			2	
Forging Press Hydraulic Fluid Leakage			1		1			2	
Tube Reducing Spent Lubricants			1		3		2	6	
Metal Powder Production Wet Atomization Wastewate	er		7	* 3			9	19	
Metal Powder Production Wastewater				*				0	
Metal Powder Production Wet Air Pollution Control	Blowdown	٠					*	0	
Metal Powder Production Floor Wash Wastewater		•	-	*			•	0	
Continuous Strip Casting Contact Cooling Water	÷. 1							1	
Semi-Continuous Ingot Casting Contact Cooling Wat	er 2							2	-
Direct Chill Casting Contact Cooling Water		* .		1		1		2 .	
Shot Casting Contact Cooling Water	3			2				5	
Stationary Casting Contact Cooling Water	•		1	*		*		1	
Semi-Continuous and Continuous Casting Contact Co Water	ooling		:	2			:	2	
Vacuum Melting Steam Condensate			1	-				1	
Annealing and Solution Heat Treatment Contact Coo	oling		2		-	*		2	
Heat Treatment Contact Cooling Water				3	5 .	3	5	16	
Surface Treatment Spent Baths		3	4	2 1	3	1 1	3	18	
Surface Treatment Rinsewater		12	25	7 5	9	3 1	3	61	
Ammonia Rinsewater			1					1	
	•								

Table V-1 (Continued)

NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY

Waste Stream		111	IV	v	VI	VII	VIII	IX	{ x	XI
Alkaline Cleaning Spent Baths	1	4	2	1	5		2	3		18
Alkaline Cleaning Rinsewater	4	5	*	*	4		1	1		15
Alkaline Cleaning Prebonding Wastewater			8			in .				8
Molten Salt Rinsewater		8		6	1			*		14
Tumbling Wastewater					1					1
Tumbling, Burnishing Wastewater			4	6	,					10.
Tumbling, Burnishing, and Cleaning Wastewater									9	9
Sawing, Grinding Spent Neat Oils			*	*	*			*	*	0
Sawing, Grinding Spent Emulsions	* 12	1	6		1	1		1	2	22
Sawing, Grinding Spent Emulsions and Synthetic Coolants					3					3
Sawing, Grinding Contact Cooling Water			2	1	*			*	1	4
Sawing, Grinding Rinsewater		*		2		*		1		3
Hydrostatic Tube Testing and Ultrasonic Testing Wastewater		*								. 0
Dye Penetrant Testing Wastewater		3		1	1					5
Inspection, Testing Wastewater								4		4
Equipment Cleaning Wastewater				3						3
Shot-Forming Wet Air Pollution Control Blowdown	1									1
Steam Cleaning Condensate		1								1
Area Cleaning Wastewater						3				3

Table V-1 (Continued)

NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY

Waste Stream	1 1	II	1111	IV	V	VI	i vii	VII	xI II	x	ΙXΙ	i
Pressure Bonding Contact Cooling Water				. 1						/ W	1	
Sizing Spent Neat Oils										*	o	
Sizing Spent Emulsions										*	. 0	
Steam Treatment Wet Air Pollution Control Blowdown										3	3	
Oil-Resin Impregnation Spent Neat Oils										*	0	
Miscellaneous Wastewater Sources					*	- +	=				0	
Degreasing Spent Solvents	*	*	*	*	*	*	*	*	1	*	1	
Wet Air Pollution Control Blowdown		í	3.	*	2	2	1		*		8	
Degreasing Rinsewater								. 1	4		5	
Drum Wash Water						-	1.	r			1.	-
Laundry Wash Water							1				1	
Hot Pressing Contact Cooling Water						٠				1	1	
Mixing Wet Air Pollution Control Blowdown					•					1	1	

^{*}This waste stream was reported in dcp responses for plants in this subcategory, but no raw wastewater samples were analyzed.

^{**}The number of samples by subcategory does not always add to the total number of samples because some sampled streams derive from operations in more than one subcategory.

The Roman numerials used to identify the columns refer to be following

I = Lead-Tin-Bismuth Forming

II = Magnesium Forming

III = Nickel-Cobalt Forming

IV = Precious Metals Forming

V = Refractory Metals Forming

VI = Titanium Forming

VII = Uranium Forming

VIII = 2inc Forming

IX = Zirconium Hafnium Forming

x = Metal Powders

XI = Total

	Pollutants Analyzed								
Laboratory	Organics	Metals.	Conventional	Nonconvention					
ARO, Inc.; Tullahoma, TN			×	X					
Arthur D. Little; Cambridge, MA	X		a						
CENTEC; Salem, VA		×							
Coors Spectro-Chemical; Golden, CO		X							
Edison Laboratory; Edison, NJ			X	X					
-EPA, Region III; Wheeling, WV	•	X	х	X ·					
EPA-ESD, Region IV; Athens, GA	· san ·	X	. X :	X					
NUS Corp.; Pittsburgh, PA		×	×	×					
Radian Corp.; Austin, TX		· X	×	×					
Radian Corp.; Sacramento, CA	х		•						
S-Cubed; San Diego, CA	X								
Versar, Inc.; Springfield, VA		X	•						
West Coast Technical Service, Inc.; Cerritos, CA	Χ.								

483

NONPRIORITY POLLUTANTS ANALYZED FOR DURING SAMPLING EFFORT SUPPORTING THIS REGULATION

Conventional

total suspended solids (TSS) oil and grease pH

Nonconventional

acidity alkalinity aluminum ammonia nitrogen barium biological oxygen demand (BOD) boron calcium chemical oxygen demand (COD) chloride cobalt columbium fluoride gold iron magnesium manganese molybdenum nitrate phenolics phosphate phosphorus sodium sulfate tantalum tin titanium total dissolved solids (TDS) total organic carbon (TOC) total solids (TS) tungsten uranium vanadium yttrium zirconium

Table V-3 (Continued)

NONPRIORITY POLLUTANTS ANALYZED FOR DURING SAMPLING EFFORT SUPPORTING THIS REGULATION

Nonconventional (Cont.)

radium-226 gross alpha gross beta

Table V-4

RESULTS OF CHEMICAL ANALYSES OF SAMPLED LEAD AND NICKEL EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER

Parameter	Lead (mg/l)	Nickel (mg/l)	Treatment Effectiveness LS&F Technology (mg/1)*
Oil and Grease	3	7	10
TSS	5	3	2.6
pН	7.6	7.4	:
Antimony	**	***	0.47
Arsenic			0.34
Beryllium	0.001	matrix remains	0.20
Cadmium	0.005		0.049
Chromium			0.07
Copper	0.024	0.05	0.39
Lead	0.13		0.08
Nickel	0.007	0.14	0.22
Silver			0.07
Zinc		0.07	0.23
Cyanide .	0.08		0.047
Acidity			
Alkalinity	170	55	
Aluminum			1.49
Ammonia	0.08	0.13	32.2
Fluoride	0.22	0.83	9.67
Iron	0.023		0.28
Magnesium			
Sulfate			•
Titanium	0.084	00	
Total Dissolved Solids			

^{*}From Table VII-21.

^{**}Not found above analytical quantification level or level detected in source water.

Table V-5

RESULTS OF CHEMICAL ANALYSES OF SAMPLED
LEAD, NICKEL, AND PRECIOUS METALS ROLLING SPENT EMULSIONS

Parameter	Lead (mg/1)	Nickel (mg/l)	Precious Metals (mg/l)	Effective- ness LS&F Technology (mg/l)*
Oil and Grease TSS pH Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Silver Zinc Cyanide Acidity Alkalinity Aluminum Ammonia fluoride Iron Magnesium Sulfate Total Dissolved Solids Chemical Oxygen Demand Total Organic Carbon	270 480 7.92 ** 0.25 29 0.003 1.4 310 0.35 0.12 0.82 7.3 59 1,020 15,000 1,700	3,055 4,870 5.96 0.003 0.013 0.02 3.23 2.93 3.13 21.9 0.006 5.55 280 1.28 2.15 4.55 59.6 370 5,400 52,300 12,300	587 242 5.48 0.049 0.011 0.06 0.03 8.72 0.49 0.36 0.07 2.16 3.3 1,170 0.15 0.16 0.96 9.73 3,140 16,000 367 7,730	10 2.6 0.47 0.34 0.20 0.049 0.07 0.39 0.08 0.22 0.07 0.23 0.047

^{*}From Table VII-21. ...

^{**}Not found above analytical quantification level or level detected in source water.

Table V-6

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent ' Recycle	Wastewater L/kkg	Discharge gal/ton
1	1,001	240.0	P	0.37	0.09
2	10,170	2,440	P	27.94	6.70
3	10,170	2,440	P	27.94	6.70
4	10,170	2,440	P	27.94	6.70
5	10,170	2,440	P	27.94	6.70
6	10,170	2,440	P	27.94	6.70
7	NR	NR .	NR	NR	NR
Average	8,642	2,073		23.35	5.60

P - Periodic discharge NR - Data not reported

Table V-7

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS

RAW WASTEWATER SAMPLING DATA

		*	•			•	
		Stream	Sample		entration	ns (mg/l)	
	<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxio	Pollutants .						
6.	carbon tetrachloride	A-3	1	To proceed the control of	0.006		
11.	1,1,1-trichloroethane	A-3	1		0.007		
15.	1,1,2,2-tetrachloroethane	A-3	1 .		0.019		
23.	chloroform	A-3	1		0.006		
38.	ethylbenzene	A-3	1		0.012		
114.	antimony	A-3	1	<0.003	<0.003		
115.	arsenic	A-3	1	<0.003	<0.003		
117.	beryllium	A-3	1	<0.005	<0.005		
118.	cadmium	A-3	1 :	<0.002	<0.002		ı
119.	chromium (total)	- A-3	1	<0.001	<0:001	-	
120.	copper	A-3	1	<0.001	0.25		
122.	lead	A-3	1	<0.084	29		
123.	mercury	A-3	1		<0.0002		
124.	nickel	A-3	1	<0.003	0.003		
125.	selenium	A-3	- 1		<0.003		*
126.	silver	A-3	. 1		<0.005		
127.	thallium	A-3	1		<0.002		
128.	zinc	A-3	1	0.72	1.4		* * " .
Nonco	nventional Pollutants						
Acidi	ty	A-3	1	,	<1		
Alkal	inity	A-3	1		310		

Table V-7 (Continued)

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

·	Stream	Sample	Concentrations (mg/l)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3		
Nonconventional Pollutants (Continued	1)							
Aluminum	A~3	1	<0.050	0.35				
Ammonia Nitrogen	A~3	1		0.12				
Barium	A-3 ·	1	0.15	0.009				
Boron	A-3	1	<0.009	<0.009				
Calcium	A-3	1	69	67				
Chemical Oxygen Demand (COD)	A-3	1	15,	,000				
Chloride	A-3	1		50				
Cobalt	A-3	1	<0.006	<0.006				
fluoride	A~3	1		0.82				
Iron	A-3	1	<0.08	7.3				
Magnesium .	A~3	1	27 .	16				
Manganese	A-3	1	<0.001	0.053				
Molybdenum .	A~3	· 1	<0.002	<0.002				
Phosphate	A-3	1		59				
Sodium	A-3	. 1	10	88				
Sulfate	A-3	1		59				
Tin	A-3	1 .	<0.12	<0.12				
Titanium	A-3	1	<0.005	<0.005				
Total Dissolved Solids (TDS)	A-3	1	. 1,	,020				
Total Organic Carbon (TOC)	A-3	1	1	,700				
Total Solids (TS)	- A-3	• 1	3.	,800				
Vanadium .	A-3	1	<0.003	<0.003				

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Source	Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)				-	*
Yttrium	A-3	1	<0.002	<0.002		
Conventional Pollutants						
Oil and Grease	A-3	1	<1	270		
Total Suspended Solids (TSS)	A-3	1	23	480	• • •	
pH (standard units)	A-3	. 1 .		7.92		

- 1. The following toxic pollutants were not detected in this waste stream: 1-5, 7-10 12-14, 16-22, 24-37, and 39-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, 121, and 129.

Table V-8

LEAD-TIN-BISMUTH ROLLING SPENT SOAP SOLUTIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	43.0	10.3	0.0	43.0	10.3
Average	43.0	10.3		43.0	10.3

Table V-9
LEAD-TIN-BISMUTH DRAWING SPENT NEAT OILS

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	P	NR	NR
Average	NR	NR		0.00	0.00

P - Periodic discharge NR - Data not reported

Table V-10

LEAD-TIN-BISMUTH DRAWING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
3 3	181.8 487.9	43.60 117.0	100	0.00	0.00
4	24,520	5,880	100	0.00	0.00
5	NR	NR	100	0.00	0.00
6	26.27	6.30	P	26.27	6.30
1	NR	NR	P	NR	NR
1	NR	NR	P	NR	NR
2	NR	NR	P	NR	NR
Average	6,304	1,512		26.27	6.30

P - Periodic discharge NR - Data not reported

Table V-11
LEAD-TIN-BISMUTH DRAWING SPENT SOAP SOLUTIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2	NR 7.46	NR 1.79	100 P	0.00 7.46	0.00 1.79
Average	7.46	1.79	, ·	7.46	1.79

P - Periodic discharge NR - Data not reported

Table V-12

LEAD-TIN-BISMUTH DRAWING SPENT SOAP SOLUTIONS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entration		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
114. antimony	AZ-1		-	21.0		
117. beryllium	AZ-1		-	1.0		
118. cadmium	AZ- 1		-	1.0		
119. chromium (total)	AZ-1			1.0		
120. copper	AZ-1		-	11.0		
12 2 . lead	AZ-1		- 3,	,100.0		
124. nickel	AZ-1		_	1.0		
126. silver	AZ-1		-	1.0		
128. zinc	AZ-1		-	230.0		
Nonconventional Pollutants					•	
Tin	AZ-1		- 1	,600.0		-
Conventional Pollutants				•		
Oil and Grease	AZ-1		- 353	,000.0		
Total Suspended Solids (TSS)	AZ-1		- 294	,000.0		
ρН .	AZ-1		•••	9.2		

^{1.} No analyses were performed on the following toxic pollutants: 1 through 113, 115, 116, 121, 123, 125 and 127.

LEAD-TIN-BISMUTH
EXTRUSION PRESS OR SOLUTION HEAT TREATMENT CONTACT
COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 1 2 3 4 5 6 7 8 9 8 10 11 4 12 13 14	92.56 60.05 3.34 78.65 102.5 117.6 200.2 325.3 NR 1,024 NR 1,405 1,784 2,340 7,064 NR 2,085	22.20 14.40 0.80 18.86 24.58 28.19 48.00 78.00 NR 245.6 NR 337.0 427.9 561.1 1,694 NR	100 100 100 0.0 0.0 0.0 0.0 NR 0.0 NR 0.0 0.0	0.00 0.00 78.65 102.5 117.6 200.2 325.3 740.6 1,024 1,111 1,405 1,784 2,340 7,064 NR	0.00 0.00 18.86 24.58 28.19 48.00 78.00 177.6 245.6 266.4 337.0 427.9 561.1 694 NR
Average	1,192	285.8		1,358	325.6

P - Periodic discharge NR - Data not reported

Table V-14

LEAD-TIN-BISMUTH EXTRUSIONS PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic	: Pollutants						
4.	benzene	C-2	1	0.002	0.004		
23.	chloroform	C-2	1	0.073	0.051		
44.	methylene chloride	C-2	1	0.011	ND		
114.	antimony	C-2	1	<0.003	<0.003		•
115.	arsenic	C-2	1	<0.003	<0.003		
117.	beryllium	C-2	1	<0.005	0.001		
118.	cadmium	C-2	1	0.006	0.005		
119.	chromium (total)	C-2	1	4.0	4.6		
120.	copper	C-2	. 1	<0.001	0.024		
121.	cyanide (total)	C-2	1	0.071	0.08		
122.	lead	C-2	1	<0.084	0.13		
123.	mercury	C-2	1	<0.0002	<0.0002		
124.	nickel	C-2	1	<0.003	0.007		
125.	selenium	C-2	1	<0.003	<0.003		
126.	silver	C-2	1	<0.001	<0.001		
127.	thallium	C-2	1	<0.002	<0.002		
128.	zinc	C-2	1	<0.003	<0.003	•	
Nonce	onventional Pollutants						
Acid	ity	C-2	1	<1	<1		
Alka	linity	C-2	1	169	170		
Alum	inum	C-2	. 1	<0.050	<0.050	-	

Table V-14 (Continued)

LEAD-TIN-BISMUTH EXTRUSIONS PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample -Type	Con Source	centration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Ammonia Nitrogen	C-2	1	0.11	0.08		
Barium	. C-2	1	0.13	0.13		
Boron	C-2	1 ·	0.34	0.60		
Calcium	C-2	1	110	110		
Chemical Oxygen Demand (COD)	C-2	1	<5	<5		-
Chloride	C-2	1 .	120	660	-	-
Cobalt	C-2	1	<0.006	0.007		
Fluoride	C-2	1	0.17	022.		
Iron	C-2	` 1	0.025	0.023		•
Magnesium	C-2	1	24	24		
Manganese	C-2	1	0.51	0.22		
Molybdenum	C-2	1	<0.002	0.012		
Phenolics	C-2	1	0.69	<0.005		
Phosphate	C-2	1	<4	10		
Sodium	C-2	1	66	67		
Sulfate	C− <u>.</u> 2	. 1	290	290		
Tin	C-2	· 1	<0.12	<0.12		
Titanium	C-2	1;	<0.005	0.084		•
Total Dissolved Solids (TDS)	C-2	. 1	800	770		
Total Organic Carbon (TOC)	C-2	1	2	<1		
Total Solids (TS)	C-2	1	810	800		
Vanadium	C-2	. 1	0.025	0.093		

Table V-14 (Continued)

LEAD-TIN-BISMUTH EXTRUSIONS PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	entration: Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))					
Yttrium	C-2	1 .	<0.002	0.007		
Conventional Pollutants						
Oil	C-2	1	4	3		
Total Suspended Solids (TSS)	C-2	1	9	5		
pH (standard units)	C-2	1	7.30	7.60		

^{1.} The following toxic pollutants were not detected in this waste stream: 1-3, 5-22, 24-43, and 45-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-15

LEAD-TIN-BISMUTH EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	NR	NR	100	0.00	0.00
	NR	NR	NR	55.02	13.19
Average	NR	NR		55.02	13.19

NR - Data not reported

Table V-16

LEAD-TIN-BISMUTH SWAGING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2 3 3	NR NR 2.93 1.77	NR NR 0.70 0.42	100 100 100 P	0.00 0.00 0.00 1.77	0.00 0.00 0.00 0.42
Average	2.35	0.56		1.77	0.42

P - Periodic discharge NR - Data not reported

LEAD-TIN-BISMUTH CONTINUOUS STRIP CASTING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	5,080	1,218	P	1.00	0.24
2	5,080	1,218	P ·	1.00	0.24
3	5,080	1,218	P	1.00	0.24
4	5,080	1,218	P	1.00	0.24
5	5,080	1,218	P	1.00	0.24
Average	5,080	1,218		1.00	0.24

P - Periodic discharge

Table V-18

LEAD-TIN-BISMUTH CONTINUOUS STRIP CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3	
Toxic Pollutants				
117. beryllium	A-2	1	<0.005 <0.005	
118. cadmium	A-2	1	<0.002 0.012	
119. chromium (total)	A-2	1	<0.001 0.009	
120. copper	A-2	1	<0.001 0.41	
122. lead	A-2	1	<0.084 1.2	
124. nickel	A-2	1	<0.003 0.13	
128. zinc	A-2	1	0.72 3.1	
Negropostions) Dellutants				
Nonconventional Pollutants Aluminum	A-2	1	<0.050 0.54	
Barium	A-2	1	0.15 0.001	
Boron	A-2	1	<0.009 0.056	
Calcium	A-2	1	69 4.6	
Cobalt	A-2	1	<0.006 0.018	
Iron	A-2	1	<0.008 3.5	
Magnesium	A-2	1 .	27 0.91	
Manganese-	A-2	1	<0.001 0.055	
Molybdenum	A-2	1	<0.002 0.006	
Sodium	A-2	1 .	10 160	
Tin	A-2	1	<0.12 <0.12	
litanium	A-2	1	<0.005 0.010	
Vanadium	A-2	1	<0.003 0.011	

Table V-18 (Continued)

LEAD-TIN-BISMUTH CONTINUOUS STRIP CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Cont	inued)					
Yttrium	A-2	. 1	<0.002	0.002		
Conventional Pollutants						
Oil and Grease	· · · · · · · · · · · · · · · · · · ·		<1	6		
Total Suspended Solids (TSS)	A-2	1	23	8		
pH (standard units)	A-2	1 .		8		

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 121, and 129.

LEAD-TIN-BISMUTH
SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	29.36	7.04	0.0	29.36	7.04
2	NR	NR	0.0	NR	NR
3	NR	NR	NR	NR	NR
Average	29.36	7.04		29.36	7.04

NR - Data not reported

Table V-20

LEAD-TIN-BISMUTH SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3
Toxic Pollutants					** *** *** *** *** *** *** *** *** ***	
11. 1,1,1-trichloroethane	B-3	1	0.003	ND	ND	
28. 3,3'-dichlorobenzidine	B-3	2	0.039	ND	ND	
72. benzo(a)anthracene	B-3	2	0.061	ND	ND	
114. antimony	B-3	2	<0.010	0.290	0.180	
115. arsenic	B-3	2	<0.010	0.030	0.020	
117. beryllium	B-3	2	<0.005	<0.005	<0.005	
118. cadmium	B-3	2	<0.020	<0.020	<0.020	
119. chromium (total)	B-3	2	<0.020	<0.020	<0.020	· · · · ·
120. copper	в-3	2	<0.0050	<0.050	<0.050	
121. cyanide (total)	B-3	1	<0.02	<0.02	<0.02	
122. lead	B-3	2	<0.050	1.10	0.85 0	
123. mercury	B-3	2	<0.0002	<0.0002	<0.0002	-
124. nickel	B-3	2	<0.050	<0.050	<0.05 0	
125. selenium	в-3	2	<0.010	<0.010	<0.010	
126. silver	В-3	2	<0.010	<0.010	<0.010	
127. thallium	B-3	2	<0.010	<0.010	<0.010	
128. zinc	B-3	. 2	<0.020	0.060	0.060	
Nonconventional Pollutants						
Acidity	B-3	2	<1	< 1	<1	
Alkalinity	B-3	2	240	220	210	
Aluminum	B-3	2	<0.100	<0.100	<0.100	

Table V-20 (Continued)

LEAD-TIN-BISMUTH SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)					
Ammonia Nitrogen	B-3	2	<1	<1	<1	
Barium	B- -3	2	<0.050	0.100	0.100	
Boron	B~3	2	<0.100	<0,100	<0.100	
Calcium	B-3	2	62.0	54.8	55.7	
Chemical Oxygen Demand (COD)	B-3	2	< 5	6.5	< 5	
Chloride	B-3	2	6	23	23	
Cobalt	B-3	2	<0.050	<0.050	<0.050	
Fluoride	B-3	2	1.2	0.26	0.27	
Iron	B-3	2	1.00	0.800	0.550	85
Magnesium	B-3	2	19.7	17.1	17.4	
Manganese	B-3	2	0.100	<0.050	<0.050	
Molybdenum	B-3	2	<0.050	<0.050	<0.050	
Phenolics	B-3	1	0.010	0.007	<0.005	
Phosphate	B-3	2	56	<4	<4	
Sodium	B-3	2	6.80	21.7	21.0	
Sulfate	B-3	2	7.8	5.1	.11	
Tin	B-3	2	<0.050	<0.050	<0.050	
Titanium	B -3	2	<0.050	<0.050	<0.050	
Total Dissolved Solids (TDS)	B-3	2	390	224	370	
Total Organic Carbon (TOC)	B~3	2	12	<1	9	*
Total Solids (TS)	B-3	2	490	230	470	
Vänadium	B-3	2	<0.050	<0.050	<0.050	

Table V-20 (Continued)

LEAD-TIN-BISMUTH SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source Source	entration Day 1	Day 2	Day 3
Nonconventional Pollutants (Contin	ued)					
Yttrium	B-3	2	<0.050	<0.050	<0.050	
Conventional Pollutants						
Oil and Grease	B-3	1 -	15	4	_ <1 ·	
Total Suspended Solids (TSS)	В-3	. 2	110	<1	80	
pH (standard units)	B-3	2	7.43	8.20	7.82	*.

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-27, 29-71, and 73-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-21

LEAD-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	NR	0.00	0.00
2	NR	NR	P	33.82	8.11
3	40.84	9.79	P	40.84	9.79
Average	40.84	9.79		37.33	8.95

P - Periodic discharge NR - Data not reported

Table V-22

LEAD-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Conc	entration	s (ma/1)	
	Poll <u>utant</u>	_Code	Type	Source	Day 1	Day 2	Day 3
				0.15			- · · · · · · · · · · · · · · · · · · ·
Toxic	Pollutants						
28.	3,3′-dichlorobenzidine	B-2	1	0.039	ND	ND	ND
65.	phenol	B-2	1	ND	ND	0.026	0.069
114.	antimony	B-2	1	<0.010	2.80	2.80	3.30
-115.	arsenic	B-2 1	··1	<0.010	0.160	0.060	0.080
117.	beryllium	B-2	1	<0.005	<0.005	<0.005	<0.005
118.	cadmium	B-2	1	<0.020	<0.020	<0.020	<0.020
119.	chromium (total)	B-2	1	<0.020	<0.020	<0.020	<0.020
120.	copper	B-2	1	<0.050	<0.050	<0.050	<0.050
121.	cyanide (total)	B-2	1	<0.02	<0.02	<0.02	<0.02
122.	lead	8-2	1	<0.050	52.2	17.0	15.6
123.	mercury	8-2	1	<0.0002	0.0060	0.0062	0.0093
124.	nickel	B-2 ·	· 1	<0.050	<0.050	<0.050	<n.050< td=""></n.050<>
125.	selenium	B-2	1	<0.010	<0.010	<0.010	<0.010
126.	silver	B-2	1	<0.010	<0.010	<0.010	<0.010
127.	thallium	B-2	1	<0.010	<0.010	<0.010	<0.010
128.	zinc	В−2	. 1	<0.020	0.120	0.120	<0.010
Nonco	onventional Pollutants						
Acid:	ity	B-2.	1	<1	<1	<1	<1
Alka	linity	8-2	1	240	400	300	370
A] um	inum	B-2	1	<0.100	<0.100	<0.100	<0.100

Table V-22 (Continued)

LEAU-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day l Day 2 Day 3
Nonconventional Pollutants (Continued)		
Ammonia Nitrogen	B-2	1	<1 <1 <1 0.36
Barium	B-2	1	<0.050 0.200 0.150 0.150
Boron	B- 2	1	<0.100 0.100 0.100 0.100
Calcium	B-2	1	62.0 88.6 73.0 82.5
Chemical Oxygen Demand (COD)	B-2	1	< 5 2,7 00 1,560 2,840
Chloride	B−2	1	6 64 47 75
Cobalt	B-2	1	<0.050 <0.050 <0.050 <0.050
Fluoride	B-2	1	1.2 0.40 0.33 0.88
Iron	B-2	1	1.00 2.10 2.50 1.20
Magnesium	B-2	1	19.7 52.2 21.9 24.0
Manganese	B-2	1	0.100 0.050 <0.050 <0.050
Molybdenum	B-2	1	<0.050 <0.050 <0.050 <0.050
Phenolics	B-2	1	0.010 0.115 0.10 0.090
Phosphate	B-2	1	56 <4 <4 <4
Sodium	B-2	1	6.8 133 90.5 127
Sulfate	B-2	1	7.80 200 180 270
Fin -	B-2	1 -	<0.050 10.5 6.20 10.4
Titanium	B-2	1	<0.050 <0.050 <0.050 <0.050
Total Dissolved Solids (TDS)	B-2	1	390 1,500 920 910
Total Organic Carbon (TOC)	B-2	1	12 530 340 560
Total Solids (TS)	B-2	1	490 . 1,730 1,490 2,100
Vanadium	B-2	1	<0.050 <0.050 <0.050 <0.050

Table V-22 (Continued)

LEAD-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)						
Yttrium .	B-2	1	<0.050	<0.050	<0.050	<0.050
Conventional Pollutants						
Oil and Grease	B-2	1 .	15	14	9	22
Total Suspended Solids (TSS)	B-2	1	-110	210	420	230
pH (standard units)	B-2	1	7.43	9.20	8.82	8.93

- 1. No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected in this waste stream: 1, 5, 8, 9, 12, 18, 20, 21, 22, 24, 25-27, 31, 34-37, 39-43, 52-64, and 66-84.

Table V-23

LEAD-TIN-BISMUTH SHOT-FORMING WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	588	141	0.0	588	141
Average	588	141		588	141

Table V-24

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS

Plant	Water L/kkg	Discharge gal/ton
1 2 3 3 4 4	17.95 40.55 48.18 120.1 196.0 294.0	4.30 9.72 11.55 28.81 47.00 70.50
Average	119.5	28.65

Table V-25

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA

		Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	entration: Day 1	s (mg/1) Day 2	Day 3	
	Toxic	Pollutants							
	22.	p-chloro-m-cresol	B-4	1	ND	0.040			
	28.	3,3'-dichlorobenzidine	B-4	1	0.039	ND			
	66.	bis(2-ethylhexyl) phthalate	B-4	1	ND	0.077			
	72.	benzo(a)anthracene	B-4	1	0.061	ND			
	81.	phenanthrene	B-4	1	ND	0.046			
	114.	antimony	B-4	1	<0.010	7.30			
	115.	arsenic	B-4	1	<0.010	0.150			
ļ	117.	beryllium	B-4	1	<0.005	<0.005			
	118.	cadmium	B-4	1	<0.020	<0.020			
	119.	chromium (total)	B-4	1	<0.020	<0.020			
	120.	copper	B-4	1	<0.050	0.150			
	121.	cyanide (total)	B-4	1	<0.02	<0.02			
	122.	lead	B-4	. 1	<0.050	183			
	123.	mercury	B-4	1	<0.0002	<0.0002			
	124.	nickel	B-4	1	<0.050	<0.050			
	125.	selenium	B-4	1	<0.010	<0.020			
	126.	silver	B-4	1	<0.010	<0.010			
	127.	thallium	B-4	1	<0.010	<0.010			
	128.	zinc	B-4	1	<0.020	0.160			

516

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

8.11	Stream	Sample	Concentrations (mg/1)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants			,	÷			
Acidity	в-4	1	<1	<1			
Alkalinity	B-4	1	240	850			
Aluminum	B-4	1	<0.100	0.200			
Ammonia Nitrogen	B-4	1	<1	<1			
Barium	B-4	1	<0.050	<0.150		•	
Boron	B-4	1	<0.100	0.200		Water State of State	
Calcium	B-4	1	62.0	64.1			
Chemical Oxygen Demand (COD)	B-4	1	<5	71			
Chloride	B-4	1	6	39			
Cobalt	B-4	- · · 1	<0.050	<0.050			
Fluoride	B-4	1	1.2	0.34			
Iron	B-4	1	1.00	1.15			
Magnesium	B-4	1	19.7	24.8			
Manganese	B4	1	0.100	0.100			
Molybdenum	B-4	1	<0.050	<0.050			
Phenolics	B-4	1	0.010	0.030			
Phosphate	B-4	1	56	580			
Sodium	B-4	. 1	6.80	906			
Sulfate	B-4	1	7.8	60			
Tin	B-4	1	<0.050	<0.050			
Titanium	B-4	1	<0.050	<0.050			
Total Dissolved Solids (TDS)	B-4	1	390 3	,500			

517

518

Table V-25 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)			
Total Organic Carbon (TOC)	B-4	1	12 46 .
Total Solids (TS)	B-4	1	490 4,000
Vanadium	B-4	1	<0.050 <0.050
Yttrium	B-4	1	<0.050 <0.050
Conventional Pollutants	,		
Oil and Grease	B-4	1 -	15 600
Total Suspended Solids (TSS)	B-4	1	110 560
pH (standard units)	B-4	1	7.43 8.31

- 1. No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected in this waste stream: 1, 5, 8, 9, 12, 18, 20, 21, 24-27, 31, 34-37, 39-43, 52-65, 67-71, 73-80, and 82-84.

Table V-26
LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE

Plant	Water	Use	Percent	Wastewate	er Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	48.4	11.6	0.0	48.4	11.6
2	371	89.0	0.0	371	89.0
3	4,300	1,030	0.0	4,300	1,030
1	4,710	1,130	0.0	4,710	1,130
Average	2,357	565		2,357	565

Table V-27

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Conce	Concentrations (mg/l)			
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	
Toxic	Pollutants							
102110								
28.	3,3'-dichlorobenzidine	B-5	2	0.039	ND	ND	ND	
		B-6	1	0.039			ND	
72.	benzo(a)anthracene	B-5	2	0.061	ND	ND	ND	
		B-6	1	0.061			ND	
114.	antimony	B-5	2	<0.010	0.440	0.650	0.650	
•		B -6	1	<0.010			1.10	
115.	arsenic	B-5	2	<0.010	<0.010	0.010	0.010	
		B-6	1	<0.010			0.020	
117.	beryllium	B-5	2	<0.005	<0.005	<0.005	<0.005	
		B-6	1	<0.005			<0.005	
118.	cadmium	B-5	2	<0.020	<0.020	<0.020	<0.020	
		B-6	1	<0.020			<0.020	
119.	chromium (total)	8-5	2	<0.020	<0.020	<0.020	<0.020	
		B-6	1	<0.02 0			<0.020	
120.	copper	B-5	2	<0.050	<0.050	<0.050	<0.050	
120.		B- 6	1	<0.050			0.300	
121.	cyanide (total)	B-5	1	<0.02	<0.02	<0.02	<0.02	
	3,4	B-6	1	<0.02			<0.02	
122.	lead .	8-5	2	<0.050	9.55	8.85	15.8	
		B-6	1	<0.050			40.8	
123.	mercury	8-5	2	<0.0002	<0.0002	0.005	<0.0002	
120.	mer eer y	B-6	1	<0.0002			0.0007	
124.	nickel	B-5	2	<0.050	<0.050 .	<0.050	<0.050	
		8-6	1	<0.050			<0.050	
125.	selenium	B-5	2	<0.010	<0.010	<0.010	<0.010	
123.	55.5	B-6	. 1	<0.010			<0.010	
126.	silver	В-5	2	<0.010	<0.010	<0.010	<0.010	
120.	311761	B-6	1	<0.010			<0.010	

Table V-27 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA.

	•			•		
	Stream	Sample		centratio		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)		-				
	B-5	2	<0.010	<0.010	<0.010	<0.010
127. thallium	B-6	1	<0.010	\0.010	10.010	<0.010
	-					
128. zinc	B-5	2	<0.020	<0.020	<0.020	<0.020
	B-6	1	<0.020		-	0.160
Nonconventional Pollutants						
Acidity	B-5	2	< 1	< 1	<1	<1
The second secon	B-6	1	<1			<1
			0.40		200	630
Alkalinity	B−5 B−6	2 1	240 240	290	300	600
	D. G	•	240			
Aluminum	B-5	2	<0.100	<0.100	<0.100	<0.100
	B-6	1.	<0.100			0.100
Ammonia Nitrogen	B-5	2	< 1	<1	<1	0.44
Antinotita itterogen	B-6	<u> </u>	<1			0.84
	5.5	•	40 0E0	0 100	0.100	0.050
Barium	B−5 B−6	2 1	<0.050 <0.050	0.100	0.100	0.000
·	B., 0°	•				
Boron	B-5	2	<0.100	<0.100	<0.100	<0.100
	В∹6	1	<0.100			<0.100
Calcium	B-5	2	62.0	45.9	37.5	27.7
our or am	B-6	. 1.	62.0			32.1
(000)	p. 5	,	<5	48	<5	78
Chemical Oxygen Demand (COD)	B-5 B-6	2 1	<5	40	\3	42
	5 0	·				
Chloride	B-5	2	6	48	21	18
•	B-6	1 .	6			31
Cobalt	B-5	2	<0.050	<0.050	<0.050	<0.050
CODATE	B-6	1	<0.050			<0.050
	D. T		1 2	0.20	0.20	0.57
Fluoride	B−5 B−6	2 1	1.2	0.28	0.28	0.57
	טט	•		•		
Iron	B-5	2	1.00	u.600	0.350	0.400
	B-6	1	1.00			0.650

Table V-27 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued))					
Magnesium	B-5	2	19.7	14.1	12.1	10.4
	B-6	1	19.7			11.5
Manganese	B-5	2	0.100 0.100	<0.050	<0.050	<0.050 <0.050
	B-6	1	0.100			
Molybdenum	B-5 B-6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
Phenolics	8-5 8-6	1	0.010 0.010	<0.005	<0.005	<0.005 <0.005
		•			10	
Phosphate	B−5 B−6	2 1	56 56	8.6	13	130 <4
			6.80	70.0	95.3	253
Sodium	B-5 B-6	2 1	6.80	70.0	93.3	221
Sulfate	8-5	2	7.8	5.7	14	<0.5
Sullate	B-6	1	7.8	0,,	. ,	<0.5
Tin	B-5	2	<0.050	<0.050	<0.050	<0.050
• • • • • • • • • • • • • • • • • • • •	B-6	1	<0.050			<0.050
Titanium	B-5	2	<0.050	<0.050	<0.050	<0.050
	B-6	1	<0.050			<0.050
Total Dissolved Solids (TDS)	B-5	2	390	370	520	730
	B-6	1	390			730
Total Organic Carbon (TOC)	B-5	2	12	21	22	25
	B-6	1	12			125
Total Solids (TS)	B-5	2	490	386		,060
	B-6	1	490			,140
Vanadium	B-5	2	<0.050	<0.050	<0.050	<0.050 <0.050
•	B-6	1	<0.050			
Yttrium	B−5 B−6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
	0-0	ı	\U.U5U			-0.030

Table V-27 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conce	entratio	ns (mg/1)	
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
				_ :		
Conventional Pollutants		•				
Oil and Grease	B-5 B-6	1 1	15 15	5	. 9	13 12
Total Suspended Solids (TSS)	B-5 B-6	2 1	110 110	<1	160	260 200
pH (standard units)	B-5 B-6	2 1	7.43 7.43	9.50	9.21	9.82 10.0

- 1. No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected in this waste stream: 1, 5, 8, 9, 12, 18, 20-22, 24-27, 31, 34-37, 39-43, 52-71, and 73-84.

Table V-28 MAGNESIUM ROLLING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	40,000	9,600	(P)	NR (CH)	NR (CH)
	107,000	25,600	(P)	NR (CH)	NR (CH)

CH - Contract hauled P - Periodic discharge NR - Data not reported

Table V-29
MAGNESIUM FORGING SPENT LUBRICANTS

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
I.	2.11	0.505	O, (+)	0	0
2	6.80	1.63	0 (+)	0	0
3	105	25.1	0 (+)	0	0
4 .	NR	NR	0 (+)	0	0

 $^{+\,-\,}$ Loss due to evaporation, consumption, and drag-out NR $-\,$ Data not reported

Table V-30 MAGNESIUM FORGING CONTACT COOLING WATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	100 (+)	0	. 0
2	318	76.2	0	318	76.2
3	6,550	1,570	0 (+)	5,460	1,310

NR - Data not reported + - Loss due to evaporation

Table V-31
MAGNESIUM FORGING EQUIPMENT CLEANING WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	13.7	3.28	0	13.7	3.28
	66.1	15.9	0	66.1	15.9

Table V-32

MAGNESIUM DIRECT CHILL CASTING CONTACT COOLING WATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	8,340	2,000	100	0	0
2	3,950	947	0	3,950	947

Table V-33

MAGNESIUM SURFACE TREATMENT SPENT BATHS

•		wastewater				
Plant		l/kkg	gal/ton			
1,	1 -	NR	NR			
: .		NR	NR			
· ·	• •	NR	NR			
	1	NR	NR			
2	* 4 - 	NR (CH)	NR (CH)			
		NR (CH)	NR (CH)			
3		122	29.3			
1 -		380	91.1			
	•	897	215			

CH - Contract hauled NR - Data not reported

Table V-34°
MAGNESIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA

٠		Stream	Sample	Concentrations (mg/l)				
		Pollutant '	Code	Type	Source	Day 1	Day 2	Day 3
	Toxic	: Pollutants	•					
*	114.	antimony	Q-2	1	<0.010			<0.100
		•	Q-5	1	<0.010	H.		0.050
			Q-18	1	<0.010			<0.020
**	115.	arsenic	Q-5	1	<0.010			<0.010
			Q-18	1	<0.010			<0.040
	117.	beryllium	Q-2	_1	<0.005			0.010
			Q-5	1	<0.005			0.300
			Q-18	1	<0.005			<0.500
	118.	cadmium	Q-2	1	<0.020			<0.050
			Q-5	1	<0.020			<0.200
			Q-18	1	<0.020			<0.020
	119.	chromium (total)	Q-2	1	<0.020 -			0.350
			Q-5	1	<0.020	*		1.80
			Q-18	1	<0.020		83,	600
	120.	copper	Q-2	1	<0.050	÷		<0.100
			Q-5	1.	<0.050			<0.500
	•		Q-18	1	<0.050			<50.0
	121.	cyanide (total)	Q-2	1	<0.02			0. 0 6
			Q-5	1	<0.02			0.24
			Q-18	1	<0.02	•		0.03
	122.	lead	Q-2	1	<0.050			<0.100
		•	Q-5	1	<0.050			0.500
			Q-18 ·	1 -	<0.050			<50.0
	123.	mercury	Q-2	1	<0.0002			0.0002
		-	Q-5	1	<0.0002			<0.0002
			Q-18	1	<0.0002			<0.004
	124.	nickel	Q-2	1	<0.050			<0.200
		,	Q-5	1	<0.050			<0.500
			Q-18	1	<0.050			<50.0
	125.	selenium	Q-2	. 1	<0.010			<0.050
			Q-5	1	<0.010	-	•	<0.010
			Q-18	1	<0.010			<0.050

Table V-34 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2 Day 3
Toxic Pollutants (Continued)	er e e e e e e e e e e e e e e e e e e				•
126. silver	Q-2 Q-5 Q-18	1 1 1	<0.010 <0.010 <0.010	were war and	<0.010 <0.010 0.020
127. thallium	Q-2 Q-5 Q-18	1 1 1	<0.010 <0.010 <0.010		<0.040 <0.020 <0.010
128. zinc	Q-2 Q-5 Q-18	1 1 1	<0.040 <0.040 <0.040		8.00 138
	ų, 16 ·		10:0-10		en e
Nonconventional Pollutants				* * · ·	•
Acidity	Q-2 Q-5 Q-18	1 1 1	<1 <1 <1		<1 180 15,000
Alkalinity	Q-2 Q-5 Q-18	1 1 1	160 160 160	•• ••	27,000 <1 <1
Aluminum	Q-2 Q-5 Q-18	1 1 1	<0.100 <0.100 <0.100		6.00 86.0 100
Ammonia Nitrogen	Q-2 Q-5 Q-18	1 1 1	0.4 0.4 0.4		0.3 58 97
Barium	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0
Boron	Q-2 Q-5 Q-18	1 1 1	0.300 0.300 0.300	•	16.0 1.00 <100
Calcium	Q-2 Q-5 Q-18	1 1 1	3.70 3.70 3.70	•	<1.00 27.0 300

Table V-34 (Continued)

	Stream	Sample	Conc	centrations (mg/l)
Pollutant	Code	Туре	Source	Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued	d)			
Chemical Oxygen Demand (COD)	Q~2	1	500	2,500
r	Q-5	1	500	>250,000
	Q-18	1	500	<10
Chloride	Q-2	1	7	7
	Q-5	1	7 7	400
	Q-18	1	7	<1
Cobalt	Q-2	1	<0.050	· <0.500
	Q-5	1	<0.050	<0.500
	Q-18	1	<0.050	<50.0
Fluoride	Q-2	1	0.3	1.8
	0-5	1	0.3	1.6
•	Q-18	1	0.3	.126
Iron	Q-2	. 1	<0.050	<0.500
	Q-5	1	<0.050	3.50
	Q-18	· 1	<0.050	<50.0
Magnesium	Q-2	1	0.900	<1.00
	Q-5	1	0.900	12,700
	Q~18	. 1	0.900	5,600
Manganese	Q-2	1	<0.050	<0.500
	Q-5	1	<0.050	6.00
4	Q-18	1	<0.050	<50.0

Table V-34 (Continued)

·	Stream	Sample		entrations (m	
<u>Pollutant</u>	Code	Туре	Source	Day 1 Day	y 2 Day 3
Nonconventional Pollutants (Contin	ued)				
Molybdenum	Q-2 Q-5 Q-18	1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0
Phenolics	Q-2 Q-5 Q-18	1 1 1	<0.005 <0.005 <0.005		<0.005 <0.01 <0.01
Phosphate	Q-2 Q-5 Q-18	1 1 1 1 1 1 1 1	<0.5 <0.5 <0.5	· · · · · · · · · · · · · · · · · · ·	2,100 16 410
Sodium	Q-2 Q-5 Q-18	1 1	74.6 74.6 74.6		35,700 11,600 10,800
Sulfate	Q-2 Q-5 Q-18	1 1 1	480 480 480		12,000 210 9,800
Tin	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<50.0 <50.0 <5.00
Titanium	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <30.0
Total Dissolved Solids (TDS)	Q-2 Q-5 Q-18	1 1 1	260 260 260		110,000 150,000 95,000
Vanadium	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0
Yttrium .	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0

Table V-34 (Continued)

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2 Day 3
Conventional Pollutants					
Oil and Grease	Q-2 Q-5 Q-18	1 1 1	<1 <1 <1		39 >100,000 <1
Total Suspended Solids (TSS)	Q-2 Q-5 Q-18	1 1 1	31 31 31		140 270 70
pH (standard units)	Q-2 Q-5 Q-18	1 1 1	7.90 7.90 7.90		12.60 3.80 0.80

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-35
MAGNESIUM SURFACE TREATMENT RINSE

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
ı	3,340	800	0	3,340	800
•	3,340	800	0	3,340	800
2	NR	NR	P	1,510	363
	14,700	3,530	*	12,600+	3,030+
3	30,700	7,360	0	30,700	7,360
	30,900	7,420	0	30,900	7,420
	49,600	11,900	*	49,600	11,900

P - Periodic discharge

^{* -} This water use represents the sum of flows from non-cascaded sequential rinsing stages

NR - Data not reported

^{+ -} Loss due to evaporation and drag-out

Table V-36

MAGNESIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream _Code_	Sample <u>Type</u>	Con Source	centratio		
	· · · · · · · · · · · · · · · · · · ·			3001 CE	Day 1	Day 2	Day 3
Toxic	Pollutants						
11.	1,1,1-trichloroethane	Q-6		0.040			
	, , , , , , , , , , , , , , , , , , ,	Q-7	1	0.018		0.004	
		Q-11	i	0.018		0.006	
		Q" I I	'	0.018	ND		0.008
22.	p-chloro-m-cresol	. Q-6	2	0.011		ND	
		Q-7	4	0.011		ND	
		Q-11	3	0.011	ND		ND
44.	methylene chloride	Q-6	1	0.002		0 00-	
	•	Q-7	i	0.002		0.007	
	•	Q-11	i	0.002	0.004	0.007	
		4 11.		0.002	0.004		0.013
57.	2-nitrophenol	Q-6	2	ND		0.001	
		Q-7	4	. ND		ND	
		Q-11	3	ND	ND	NB	ND
65.	phenol	Q-6		ND			
	p	Q-7	2	ND		ND	
		Q-11	4 3	ND		ND	
		Q-11	3	ND	0.001		ND
114.	antimony	Q-3	2	<0.010		<0.010	<0.010
•		Q-4	4	<0.010		<0.010	
		Q-6	2	<0.010		<0.010	<0.010
		Q-7	4	<0.010		<0.010	10.010
		Q-8	2	<0.010		<0.010	<0.010
		Q-9	4	<0.010		<0.010	.0.010
		Q-10	1	<0.010		<0.010	
		Q-11	3	<0.010	<0.010	0.0.0	<0.010
115.	arsenic	Q-3	2	<0.010		10.015	
		Q-4	4			<0.010	<0.010
		Q-6		<0.010	~	<0.010	
		Q-5 Q-7	2	<0.010		<0.010	<0.010
		Q-8	4 2	<0.010		<0.010	
		Q-9		<0.010		<0.010	<0.010
		Q-10	4	<0.010	_	<0.010	
		Q-10 Q-11	1 3	<0.010		<0.010	*
		Q-11	3	<0.010	<0.010		<0.010

Table V-36 (Continued)

		Stream	Sample	Cond	centratio	ns (mg/l)	•
Pollutant		_Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued	1)				•		
117. beryllium		Q-3	2	<0.005		<0.005	<0.005
•		Q-4	4	<0.005		<0.005	
·		Q-6	2	<0.005		0.005	0.015
		Q-7	- 4	<0.005		<0.005	
		Q-8	2	<0.005		<0.050	<0.050
		Q-9	4	<0.005		<0.005	
		Q-10	1	<0.005	40 005	<0.005	40 005
		Q-11	3	<0.005	<0.005		<0.005
		. AC-2		<0.001	0.001		· ·
118. cadmium		Q-3	2	<0.020		<0.020	<0.020
		Q-4	4	<0.020		<0.020	
		Q-6	. 2	<0.020		<0.020	<0.020
		Q-7	4	<0.020		<0.020	
		Q-8	2	<0.020		<0.200	<0.200
	*	Q-9	4	<0.020		<0.020	
	* * * * * *	Q-10	1	<0.020		<0.020	
•		Q-11	3	<0.020	<0.020		<0.020
		AC-2		<0.005	<0.005		
			•				a a
119. chromium (total)		Q-3	. 2	<0.020		<0.020	<0.020
		Q-4	4	<0.020		0.040	
·		Q-6	2	<0.020		0.040	0.060
		Q-7	4	<0.020		<0.020	
	•	Q-8 .	2	<0.020		516	496 .
		Q-9	; 4	<0.020		1.14	
•	* •	Q-10	1	<0.020		2.24	
*		Q-11	3	<0.020	0.020		0.020
		AC-2		0.005	29.900		
120. copper		0-3	2	<0.050		<0.050	<0.050
		Q-4	4	<0.050		<0.050	
•		Q-6	2	<0.050		<0.050	<0.050
en e		Q-7	4	<0.050		<0.050	
		Q-8	2	<0.050		<0.500	<0.500
		Q-9	4	<0.050		<0.050	
		Q-10	1	<0.050		<0.050	
		Q-11	3	<0.050	<0.050		<0.050
		AC-2		0.0055	0.040		

Table V-36 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic Pollutants (Continued)						
121. cyanide	Q-3 Q-4 Q-6 Q-7 Q-8 Q-9	1 1 1 1	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02		\U.UZ	<0.02 <0.02 <0.02
	Q-10 Q-11	1 1	<0.02 <0.02		<0.02	<0.02
122. lead	Q-3 Q-4	2	<0.050 <0.050		<0.050 <0.050	<0.050
	Q-6 Q-7	2 4	<0.050 <0.050		<0.050 <0.050	<0.050
	Q-8 Q-9 Q-10	2 4 1 3	<0.050 <0.050 <0.050	40 0E0	<0.500 <0.050 <0.050	<0.500
	Q-11 AC-2		<0.050 <0.050	<0.050 <0.050		<0.050
123. mercury	Q-3 Q-4	2 4	<0.0002 <0.0002		0.0003 <0.0002	<0.0002
	Q-6 Q-7	2 4	<0.0002 <0.0002		<0.0002 <0.0002 <0.0002	<0.0002
	Q-8 Q-9 Q-10	2 4 1	<0.0002 <0.0002 <0.0002		<0.0002 <0.0002 <0.0002	<0.0002
·	Q-11	3.	<0.0002	<0.0002	10.0002	<0.0002
124. nickel	Q-3 Q-4	2 4	<0.050 <0.050		<0.050 <0.050	<0.050
	Q-6 Q-7	2 4	<0.050 <0.050		<0.050 <0.050	<0.050
	Q-8 Q-9	2	<0.050 <0.050		<0.500 <0.050	<0.500
	Q-10 Q-11 AC-2	1 3	<0.050 <0.050 <0.012	<0.050 0.056	<0.050	<0.050

Table V-36 (Continued)

		Stream	Sample	ple Concentrations (mg/l)				
	<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3	
-	Toxic Pollutants (Continued)							
	TOXIC TOTAL CONTRACT	_	_	40.010		<0.010	<0.010	
	125. selenium	Q-3	2	<0.010		<0.010	10.0.0	
		Q-4	4	<0.010		<0.010	<0.010	
		Q-6	2	<0.010		<0.010	10.010	
		Q-7	4	<0.010		<0.010	<0.010	
		Q-8	2	<0.010		<0.010	10.010	
		Q-9	4	<0.010				
		Q-10	1	<0.010		<0.010	<0.010	
		Q-11	3	<0.010	<0.010		VO.010	
			2	<0.010		<0.010	<0.010	
	126. silver	Q-3	4	<0.010		<0.010		
		Q-4·	2	<0.010		<0.010	<0.010	
	•	Q-6	4	<0.010		<0.010		
	•	Q-7		<0.010		<0.010	<0.010	
·	•	Q-8	2 . 4	<0.010		<0.010		
G		Q-9	and the second second	<0.010		4 <0.010		
ω O		Q-10	1		<0.010	10.010	<0.010	
•		. Q-11	3	<0.010	\U.010	,	10.0.0	
		Q-3	2	<0.010		<0.010	<0.020	
	127. thallium	Q-4	4	<0.010		<0.010		
		Q-6	2	<0.010		<0.010	<0.010	
		Q-7	2 4	<0.010		<0.010		
		Q-, Q-,	2	<0.010		<0.010	<0.010	
	· ·	Q-9	4	<0.010		<0.010		
		Q 5 Q-10	1	<0.010		<0.020		
		Q-10 Q-11	3	<0.010	<0.010		<0.010	
		Q-11				ı		
		Q-3	2	0.040		0.040	0.080	
	128. zinc	Q-4	4	0.040		0.020		
	v v	Q-6	ż	0.040		3.24	8.42	
	*	Q-7	2 4	0.040		0.120		
		0-8	2	0.040		1.00	1.00	
		Q-9	4	0.040		0.080		
	•	Q-10	1	0.040	• -	0.020	-	
			3	0.040	0.320		0.420	
	•	Q-11	3	0.123	1.860	-	*	
		AC-2		0.120	.,			

Table V-36 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	<u>Source</u>	Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants						
Acidity	Q-3	2	<1			
·	Q-4	4	<1		<1	<1
	Q-6	2	<1		<1	,
	Q-7	4	<1		<1	< 1
	Q-8	2	<1		<1	
	Q-9	4	<1		<1	≺1
	Q-10	1	<1		<1 <1	
	Q-11	3	<1	<1	\ 1	
		Ū	`'	~1		<1
Alkalinity	Q-3	2	160		230	340
	Q-4	4	160		170	340
	Q-6	ż	160	1		,800
	Q-7	4	160	•	210	,000
	Q-8	2	160		3.0	21
	Q-9	4	160		160	21
	Q-10	1	160		210	
	Q-11	3	160	240	210	330
	7	_		2-10		330
Aluminum	Q-3	2	<0.100		<0.100	<0.100
	Q-4	4	<0.100		<0.100	٧٥.،٥٥
	Q-6	2	<0.100		3.90	10.9
	Q-7	4	<0.100		0.100	.0.5
	Q-8	2	<0.100		<1.00	<1.00
	Q-9	4	<0.100		<0.100	*1.00
	Q-10	1	<0.100		<0.100	
	Q-11	3	<0.100	0.400		0.700
•	AC-2		0.129	2.160		0.700
Ammonia Nitrogen	Q-3	2	0.4		0.3	0.2
A Committee of the Comm	Q-4	4	0.4		0.5	
	Q-6	2	0.4		26	81
	Q-7	4	0.4		0.7	- •
	Q-8	2	0.4		1.5	1.8
	Q-9	4	0.4	•	0.1	
	Q-10	1	0.4		0.1	
	Q-11	3	0.4	1.2	- • •	0.8
						0.0

Table V-36 (Continued)

<u>Pollutant</u>		Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3			
<u>rorrature</u>				<u> </u>	<u> </u>	==/_=	<u> </u>
Nonconventional Pollutants		er er war a				V · .	
	'						
No. of the second secon		Q-3	2	<0.050		<0.050	<0.050
Barium		Q-3 Q-4	2 4	<0.050		<0.050	VU.050
		Q-4 Q-6	2	<0.050		<0.050	<0.050
	1	Q-7	4	<0.050		<0.050	10.000
		Q-8	2	<0.050		<0.500	<0.500
•		Q~9	4	<0.050		<0.050	10.500
		Q~10	i	<0.050	-	<0.050	
,		Q-11	3	<0.050	<0.050		<0.050
• •		AC-2	·	0.020	0.024		
Boron		Q-3	2	0.300		0.200	0.200
		Q~4	4	0.300		0.100	
		Q~6	2 4	0.300		0.200	0.200
		Q-7	4	0.300		0.200	
		Q-8	2 .	0.300		<1.00	<1.00
		Q-9	4	0.300		0.200	
		Q-10	1	0.300		0.200	
•	*	Q-11	3	0.300	0.100		0.100
		AC-2		<0.010	0.023		
Calcium		Q-3	2	3.70		4.70	4.60
		Q-4	4	3.70		5.30	
		Q-6	2 4	3.70		5.70	6.00
		Q-7	4	3.70		5.00	
		Q-8	2	3.70		6.00	6.00
		Q-9	4	3.70		4.80	
		Q-10	1	3.20		1.30	
		Q-11	3	3.70	5.00		5.00
•		AC-2		28.20	30.70		
Chemical Oxygen Demand (COD)		Q-3	2	500		9.3	10
• • • • • • • • • • • • • • • • • • •		Q-4	4	500		32	
		Q-6	2	500	8		,000
		Q-7	4	500		48	
		Q-8	2	500		<10	<10
		Q-9	4	500		9.3	
		Q-10	1	500		53	
		Q-11	3	500	180		780

140

Table V-36 (Continued)

<u>Pollutant</u>	Stream Code	Sample	Concentrations (mg/1)			
	_code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)						
Chloride	0.0	_				
	Q-3 Q-4	2	7		<1	7
	Q-4 Q-6	4	7		<1	
	Q-5 Q-7	2	7		<1	<1
	Q-8	4	7		<1	
	Q-9	2	7	•	<1	<1
_	Q-10	4	7		<1	
•	Q-11	1 3	7		<1	
	Q II	3	7	<1 _.		<1
Cobalt	Q-3	2 .	<0.050		10.0=0	
	Q-4	4	<0.050		<0.050	<0.050
	Q-6	2	<0.050		<0.050	
	Q-7	4	<0.050		<0.050	<0.050
	Q-8	2	<0.050		<0.050	
	Q-9	4	<0.050		<0.500	<0.500
	Q-10	1	<0.050		<0.050	
	Q-11	3	<0.050	<0.050	<0.050	40 050
	AC-2		<0.004	0.005		<0.050
Fluoride					•	
100	Q-3	2 4 .	0.3		0.67	0.66
	Q-4		0.3		0.27	4.00
	Q-6	2	0.3		0.64	0.56
	Q-7	4	0.3		0.73	
•	9-8	2	0.3		2.1	0.92
•	Q-9	4	0,3		0.72	
	Q-10	1	0.3		1.0	
	Q-11	3	0.3	0.500		1.9
	AC-2		0.99	0.900		
Iron	Q-3	. 2	<0.050		_	•
the second secon	Q-4	. 4	<0.050		0.050	0.050
•	Q-6	2	<0.050 <0.050		<0.050	
	Q-7	4			0.200	0.300
•	Q-8	2	<0.050 <0.050		0.050	
	Q-9	4	<0.050		<0.500	<0.500
	Q-10	1	<0.050		0.050	
•	Q-11	3	<0.050	0.500	<0.050	
•	AC-2	•	0.302	5.770		0.100
			0.002	3.770		

Table V-36 (Continued)

	Stream	Sample	Concentrations (mg/l)					
<u>Pollutant</u>		Code	Type	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants (Cor	itinued)							
							0 40	
Magnesium	•	Q-3	2	0.900		4.00	2.40	
		Q-4	- 4	0.900		5.30	150	
		Q-6	2	0.900 0.900		431 1, 10.5	150	
		Q-7 Q-8	4 2	0.900		57.0	56.0	
		Q-8 Q-9	4	0.900		1.80	30.0	
		Q-10	1	0.900		3.00		
		Q-11	3	0.900	16.0		42.4	
en e		AC-2		6.880	49.8			
		2						
· Manganese		0-3	2	<0.050		<0.050	<0.050	
Manganese		Q-4	4	<0.050		<0.050		
		Q−6	2 ·	<0.050		0.150	0.350	
er e	:	Q-7	4	<0.050		<0.050	•	
		Q-8	2	<0.050		<0.500	<0.500	
	•	Q-9	4	<0.050		<0.050		
		Q-10	1	<0.050		<0.050		
•		Q-11	3	<0.050	<0.050		<0.050	
**		AC-2		0.007	0.093			
Molybdenum		Q-3	2	<0.050		<0.050	<0.050	
• • • • • • • • • • • • • • • • • • • •		Q-4	4	<0.050		<0.050		
		Q-6	· 2	<0.050		<0.050	<0.050	
		Q-7	4	<0.050		<0.050		
		Q-8	2	<0.050		<0.500	<0.500	-9
	•	Q-9	4	<0.050		<0.050		1
	· ·	Q-10	1	<0.050	-0.050	<0.050	<0.050	
•		Q-11	3	<0.050 <0.020	<0.050 <0.020		<0.050	
.		AC-2 Q-3	1 '	<0.020	\0.020	0.29	<0.01	
Phenolics		Q-3 Q-4	i	<0.005		<0.005	10.01	
		Q-4 Q-6	4	<0.005		<0.005	<0.01	
		Q-7	· 1	<0.005		<0.005		
		Q-8	i	<0.005		<0.005	0.010	
		Q-9	1	<0.005		<0.005	•	
•		Q-10	i	<0.005		<0.005	4.5	
		Q-11	1	<0.005			<0.01	

Table V-36 (Continued)

	Stream	Sample Type	Concentrations (mg/l)			
<u>Pollutant</u>	Code		Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continu	ed)					
Phosphate	0-3	2	<0.5		<0.5	5
	Q-4	4	~0.5		<0.5	
*	Q-6 Q-7	2 4	<0.5 <0.5		4.8	4.5
	Q-8	2	<0.5		<0.5 8.0	10
	Q-9	4	<0.5		<0.5	,
	Q-10	1	<0.5		<0.5	
	Q-11	3	<0.5	<0.5		<0.5
Sodium	Q-3	2	74.6		95.0	145
	Q-4	4	74.6		62.9	
	Q-6	2	74.6		143	284
	Q-7	4	74.6		79.8	
	Q-8	2	74.6		119	119
	Q-9	4	74.6		67.8	
	Q-10 Q-11	1 3	74.6	70. 7	101	01.7
•	AC-2	3	74.6 9.65	79.7 22.9		81.7
	A0 2		9.05	22.5		
Sulfate	Q-3	2	480	4	,500	1,300
	Q-4	4	480	2	,800	•
	Q-6	2	480			7,500
	0-7	4	480		,000	
	Q-8	2	480			3,000
	Q-9	4	480		,700	
	Q-10	1	480	1	,500	
	Q-11	3	480 - 1,	,900		1,800
Tin	Q-3	2	<0.050		<0.050	<0.050
	Q-4	4	<0.050		<0.050	
	Q-6	2	<0.050		<0.050	
	Q-7	4	<0.050		<0.050	
	Q-8	2	<0.050	•	<0.500	
	Q-9	4	<0.050		<0.050	
	Q-10	_ 1	<0.050		<0.050	
	Q-11	3	<0.050	<0.050		<0.050
	AC-2		0.013	<0.013		

Table V-36 (Continued)

Pollutant	Stream Code	Sample Type	Con Source	centrations (mg Day 1 Day	g/1) / 2
Nonconventional Pollutants (Continued)			÷		•
Titanium	Q-3	2	<0.050	<0.0	
	Q-4 Q-6	4 2	<0.050 <0.050	<0.0 <0.0	
	Q-7	4	<0.050	<0.0	
•	0-8	2	<0.050	<0.8	
en less en la vivilla de la companya	Q-9 ·	4	<0.050	<0.0	
The manufacture of the control of th	Q-10	·i	<0.050	-<0.0	
	Q-11	3	<0.050	<0.050	<0.050
· · · ·	AC-2		0.017	0.022	
		÷ ÷		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	÷
Total Dissolved Solids (TDS)	Q-3	2	260	290	610
*	Q-4	4	260	230	
	Q-6	2	260	3,100	8,000
	Q-7	4	260	3.30	
	Q-8	2	260	1,700	710
•	Q-9	4	260	270	
	Q-10	1.	260	5	
	Q-11	3	260	380	580
Total Organic Carbon (TOC)	Q-3	2 .	4.2	<1	<1
	Q-4	4	4.2	<1	
	Q−ë	2	4.2	850	2,500
•	Q-7	4	4.2	18	
	Q-8	2	4.2	2	8
	Q-9	4	4.2	<1	
•	Q-10	1	4.2	<1	60
	Q-11 .	3	4.2	4.2	69
Total Solids (TS)	Q-3	2	200	240	650
10(a) 30(105 (13)	Q-4	4	200	110	050
	Q-6.	2	200	3.100	8,700
	Q-7	4	200	240	0,700
	Q-8	2	200	1,600	1,900
	o−9	4	200	10,000	,
•	Q-10	1	200	460	
-	Q-11	3	200	. 330	760

545

Table V-36 (Continued)

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Coni Source	Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Vanadium	Q-3 Q-4 Q-6 Q-7	2 4 2 4	<0.050 <0.050 <0.050 <0.050		<0.050 <0.050 <0.050 <0.050	<0.050 <0.050
	Q-8 Q-9 Q-10 Q-11 AC-2	2 4 1 . 3	<0.050 <0.050 <0.050 <0.050 <0.002	<0.050 <0.002	<0.500 <0.050 <0.050	<0.500 <0.050
Yttrium .	Q-3 Q-4 .Q-6 .Q-7	2 4 2 4	<0.050 <0.050 <0.050 <0.050		<0.050 <0.050 <0.050 <0.050	<0.050 <0.050
	Q-8 Q-9 Q-10 Q-11 AC-2	2 4 1 3	<0.050 <0.050 <0.050 <0.050 <0.010	<0.050 <2.010	<0.500 <0.050 <0.050	<0.500 <0.050
Conventional Pollutants						
Oil and Grease	Q-3 Q-4 Q-6 Q-7	1 1 1	<1 <1 <1 <1		12 14 <1 <1	7 3
·	Q-8 Q-9 Q-10 Q-11	1 1 1 1	<1 <1 <1 <1		26 14 8	15 5
Total Suspended Solids (TSS)	Q-3 Q-4 Q-6 Q-7 Q-8	2 4 2 4 2	31 31 31 31 31		31 27 56 31	5 12 130
	Q-9 Q-10 Q-11	4 1 3	31 31 31	50	10 210	12

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	-Sample Type	- Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
Conventional Pollutants (Continued)						
pH (standard units)	Q-3 Q-4	2 4	7.90 7.90	-	9.60 8.80	10.50
	Q-6 Q-7	2 4	7.90 7.90		7.80 7.70	6.00
	Q-8 Q-9	2 4	7.90 7.90		4.60 7.60	5.00
	Q-10 Q-11	3	7.90 7.90	6.80	9.20	7.30

1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-21, 23-43, 45-56, 58-64, and 66-88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-37 MAGNESIUM SAWING OR GRINDING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	169	40.5	100 (+)	0	0
2	NR	NR	P	19.5 (CH)	4.68 (CH)

NR - Data not reported + - Loss due to evaporation and drag-out CH - Contract hauled P - Periodic discharge

Table V-38

MAGNESIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	>90	235	56.4
	NR	NR	>90	621	149
2	10,000	2,400	0	10,000	2,400
	NR	NR	90	NR	NR

NR - Data not reported

Table V-39

Pollutant	Stream Code	Sample Type	Conc Source	entration: Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants						
117. beryllium	AC-1		<0.001	0.008		
118. cadmium	AC-1		<0.005	0.022		
119. chromium (total)	AC-1		0.005	0.114	Noward war	
120. copper	AC-1	•	0.0055	0.093		
122. lead	AC-1	•	<0.050	0.877	ŗ,	
124. nickel	AC-1		<0.012	0.081		
128. zinc	AC-1		0.123	0.099		
Nonconventional Pollutants			-			
Aluminum	AC-1	,	0.129	1.110		
Ammonia	AC-1		0.020	3.800		
Barium	AC-1		0.020	0.047		
Boron	AC-1		<0.010	0.124	*	
Calcium	AC-1		28.200	30.500		
Cobalt	AC-1		<0.004	0.086		
Floride	AC-1		0.99	3.400		
Iron	AC-1		0.302	0.350		
Magnesium	AC-1		6.880	7.510		
Manganese	AC-1		0.0067	0.019		
Molybdenum	AC-1		<0.020	0.088		
Tin .	AC-1		0.013	0.150		•

Table V-39 (Continued)

MAGNESIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

. The second of	Stream	Sample	Concen	trations	(mg/l)	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)						
Titanium	ÀC-1	-	0.017	0.091		s.
Vanadium	AC-1		<0.002	0.088		•
Yttmium Tallian amailia ta alaa ahaa ah	AC-1	Tambara da Cara da Car	_<0.010	0.036		

No analyses were performed on the following toxic pollutants: 1-116, 121, 123 and 125-127.

Table V-40
NICKEL-COBALT ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	92.2	22.1	100	0.00	0.00
2	NR	NR	100	0.00	0.00
. 4	85.1	20.4	100	0.00	0.00
4	NR	NR	100	0.00	0.00
3	NR	NR	P	NR	NR
5	NR	NR	NR	NR	NR
Average	88.7	21.3		0.00	0.00

P - Periodic discharge NR - Data not reported

Table V-41
NICKEL-COBALT ROLLING SPENT EMULSIONS

***	Wate	r Use	Percent	Wastewater	
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
2	23.17	5.56	0.0	23.17	5.56
3	59,730	14,320	P	62.52	14.99
3	100,100	24,000	P	4255.	102.0
1	NR	NR	P	NR	NR
1 .	NR	NR	P	NR	NR
4 .	NR	NR	NR	NR	NR
5	NR	NR	NR	NR	NR
Average	53,280	12,780	,	170.4	40.85

P - Periodic discharge NR - Data not reported

Table V-42
NICKEL-COBALT ROLLING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Con	centratio	ns (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxi	<u>c_Pollutants</u>						
11.	1,1,1-trichloroethane	D-4	1	2 222			
	, , , , , and a section of the secti	F-5	i	0.009 0.014	2.860 ND	ND	ND
23.	chloroform				,,,,	110	ND
23.	CHIOLOLOLW	D-4 F-5	1	0.144	ND		
		1 3	1	ND	ND	ND	ND
44.	methylene chloride	D-4	1	0.002	ND		
		F-5	1 .	. 0.002	1.510	1.670	0.810
55.	naphthalene	D-4	1	ND	ND		•
		F-5	3	0.001	ND	0.977	0.649
64.	pentachlorophenol	D-4	_				0.0.0
• • •	portraction optients	D−4 F−5	1 3	ND ND	ND 2.470	2.570	1 500
0=		, •	Ü	ND	2.470	2.570	1.530
65.	pheno l	D-4	1	ND	0.607		
		F-5	3	ND	0.468	0.351	0.339
66.	bis(2-ethylhexyl) phthalate	D-4	1	0.009	ND	-	
		F-5	3	ND	ND	ND	ND
81.	phenanthrene	D-4	1				
	· ·	F-5	3	ND ND	ND 0.885	ND	ND
114			•	115	0.005	ND	טא
114.	antimony	D-4 F-5	1	<0.003	<0.003		
		פדח	3	<0.002	0.008	0.003	<0.002
115.	arsenic	D-4	1	<0.003	<0.003		
		F-5	3	<0.005	0.027	. 0.007	0.017
117.	beryllium	D-4	1	<0.0005	<0.005		
		F-5.	з̀	<0.010	<0.005	<0.010 -	<0.010
118.	cadmium	. .				0.010	-0.010
110.	Cadin I dill	D-4 F-5	1 3	<0.002	0.079		
	-	, 3	3	<0.050	<0.050	<0.050	<0.050
119.	chromium (total)	D-4	1	0.042	1.1		
		F-5	3	<0.100	3.80	2.81	5.20
120.	copper	D- 4	1	0.068	1.7		
		F-5	3	0.170	3.11	2.70	4.20
121.	cyanide (total)	E-F	•	-0			
	,	F-5	1	<0.02	<0.02	<0.02	<0.02
	and the second s						

Table V-42 (Continued)

NICKEL-COBALT ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

•					•		
		Stream	Sample	Cond	entration	ns (mg/1)	
Pollutan <u>t</u>		Code	Туре	Source	Day 1	Day 2	Day 3
- : 0 11 1 (0+					•		
Toxic Pollutants (Continued)						•	
ere en	- :			10.004	0.75	•	
122. lead		D-4 F-5	3	<0.084 <0.100	0.75 3.44	3.05	5.28
		. 0		1			-
123. mercury		D-4 F-5	1 3	<0.0002 <0.0020	<0.0002 <0.0020	<0.0020	<0.0020
f		, F-5			10.0020	10.0025	10.0020
124. nickei [']		D-4	1	<0.003	4.7	20.6	34.2
	-	F-5	3	0.200	28.0	20.0	34.2
125. selenium		D-4	1	<0.003	<0.003		.0.010
The contract of the contract o		F-5-	3	<0.010	<0.0,10,	<0.010	<0.010
126. silver		D-4	1 -	<0.001	<0.001	•	
and the state of t		_ F~5	3	<0.002	<0.002	0.011	0.014
127. thallium	•	D-4	1	<0.003	<0.003		
		F-5	. 3	<0.005	<0.005	<0.005	<0.005
128. zinc		D-4	1 .	0.038	5.1		
120. 21110		F-5	3	<0.050	5.58	4.82	6.70
N						•	
Nonconventional Pollutants		*	•				
Acidity		D-4 F-5	1 3	<1 <1	<1 <1	<1	<1
		r-5	3	\ 1	\ 1	71	~1
Alkalinity		D-4	1	180	420	050	100
		F-5	3	61	260	250	190
Aluminum-		D-4	1	<0.050	0.51		
		F~5	. 3	0.910	1.13	1:12	2.34
Ammonia Nitrogen		D-4	1 ,	<1	<1		
-	: .	F-5	3	0.04	6.0	2.6	<0.1
Barium		D-4	1	0.12	0.24		
		F-5	3	0.080	0.110	0.150	0.260
Boron		D-4	1	<0.009	0.28		
,		F-5	3	<0.100	<0.100	0.230	0.750
Caloium		D-4	1	63	38		
Calcium		F-5	3	46.2	11.3	10.9	18.5

ŭ

NICKEL-COBALT ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Con Source	centratio Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continue	d)					
Chemical Oxygen Demand (COD)	D-4	1	<5 21	,100		`
	F~5	3	<1 86	,000 76	,000 26	,000
Chloride	D-4	1	34	340		
	F-5	3	12	35	34	38
Cobalt	D-4	1	<0.006	0.41		
333271	F-5	з	<0.100	<0.100	<0.100	<0.100
Fluoride	D-4	1	0.45	10.2		
r rubr rue	F-5	3	0.43	3.9	2.2	1.9
_						
Iron	D-4 F - 5	1 3	0.066 1.37	18 74.4	58.0	88.0
	1 3	Ü	1.07		30.0	00.0
Magnesium	D-4	1	24	66		
	F-5	3 .	12.7	5.33	5.05	9.52
Manganese	D-4	1	0.012	3.1		
•	F~5	3	0.080	0.580	0.490	0.720
Molybdenum [°]	D-4	1	0.030	1.1		
	F-5	3	<0.200	<0.200	0.400	1.07
Phenolics	F-5	1	<0.005	0.99	1.13	0.12
Phosphate	D-4	1	<4	30		
·	F-5	3	<4	150	250	230
Sodium	D-4	1 .	9.5	28		
	F-5	3	154	14.5	12.0	20.2
Sulfate	D −4	1	53	380		
Sufface	F-5	3	130	550	220	330
Tin	D-4 F-5	1 3	<0.12 <0.200	<0.12 <0.200	<0.200	<0.200
					\U.200	.0.200
Titanium	D-4	1	<0.005	0.85	0 000	0 -70
	F-5	3	<0.020	0.150	0.080	0.170
	*					:
and the second s						- 1

556

Table V-42 (Continued)

NICKEL-COBALT ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)		
Total Dissolved Solids (TDS)	D-4 F-5	· 1 · 3	393 6,000 320 4,400 5,300 5,900
Total Organic Carbon (TOC)	D-4 F-5	1 3	8 10,300 2 15,000 11,000 13,000
Total Solids (TS)	D-4	1	395 22,000
	F-5	3·	330 30,000 60,000 30,000
Vanadium	D-4	1	0.016 0.038
	F-5	3	<0.010 <0.010 <0.010 <0.010
Yttrium	D-4	1	<0.002 <0.002
	F-5	3	<0.020 <0.020 <0.020 <0.020
Conventional Pollutants			
Oil and Grease	D-4	1	<1 800
	F-5	1 ·	<1 1,220 2,600 7,600
Total Suspended Solids (TSS)	D-4	1	<1 960
	F-5	3	22 6,800 5,500 6,220
pH (standard units)	D-4	1	7.14 6.17
	F-5	3	6.64 5.63 6.08 6.25

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, 45-54, 56-63, 67-80, and 82-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-43
NICKEL-COBALT ROLLING CONTACT COOLING WATER

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge
Fianc	11/ KKg	gai/ con	Recycle	D/ KKG	gai/ con
1.	NR	NR	100	0.00	0.00
1	NR	NR	100	0.00	0.00
2	72.76	17.45	0.0	72.76	17.45
3	434.6	104.2	0.0	434.6	104.2
4	43,370	10,400	98.8	536.8	128.7
5	3,470	832.2	0.0	3,470	832.2
2	4,074	976.9	0.0	4,074	976.9
4	4,583	1,099	0.0	4,583	.,099
6	NR	NR	P	NR	NR
Average	9,334	2,238		2,195	526.4

P - Periodic discharge NR - Data not reported

Table V-44

NICKEL-COBALT ROLLING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream Sample		ple Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants	- ~	e i mer me	•	*		
11. 1,1,1-trichloroethane	D-2	1	0.009	0.016	0.008	
	D-3 F-3	1	0.014	0.135	0.246	0.087
	F-4	1	0.014	0.015	ND ·	ND
13. l,l-dichloroethane	D-2 D-3	1	ND ND	ΝĎ	ND	
	D−3 F−3	. 1	ND	0.006	0.023	ИD
	F-4		ND .	ND .	, ND	ИD
22. p-chloro-m-cresol	D-2	1	ND		ND .	
22, 6	D-3	1 .	ND ND	ND ND	0.046	ND
· · · · · · · · · · · · · · · · · · ·	F-3 F-4	3 3	ND ND	ND	ND	ND
	F 4	Ü				
23. chloroform	D-2	1	0.144	ND	ND	
	D-3	1	0.144	ND ND	ND · ·	ND
· ·	F-3 F-4	1	ND ND	ND	ND	ND
	F-4	•	, 110			
29. 1.1-dichloroethylene	D-2	1	ND		ND	•
29. 1,1 0.00.00000,	D-3	1 .	ND	ND	0.012	ND
	F-3	1	ND.	0.005 ND	0.013 ND	ND
•	F-4	1	ND	ND	ND	ND
34. 2,4-dimethylphenol	D-2	1 .	ND		ND	•
34. 2,4 dimetry prendi	D-3	1	ND	ND		ND :
	F-3	3	ND	ND	0.038 ND	ND ND
	F-4	3	ND	ND	NU	ND
44. methylene chloride	D-2	1	0.002	_	ND	
44. Mothy folio officers	D-3	1 .	0.002	0.002	0.000	0.017
c	F-3	1	0.002	0.005	0.002 0.171	0.017
•	F-4	. 1.	0.002	0.003	0.171	0.013
55. naphthalene	D-2	1	ND	ND	ND	
	D-3	1	ND	ND ND	ND	ND
	F-3	3 3	0.001 0.001	ИD	0,123	0.007
,	F-4	3	0.001	ND		****
65. phenol	D-2	1	ND	ND	ND	
•	D-3	1 3	ND ND	ИD 0.039	ND	0.012
	F-3 F-4	3	ND	0.220	0.379	0.054
	1 -	~				

		Stream	Sample	imple <u>Concentrat</u>			
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
66.	bis(2-ethylhexyl) phthalate	D-2 D-3	1	0.009 0.009	0.016	ND	
		F-3	3	ND	ND	ND	0.002
	•	F-4 .	3	ND	ИD	ND	0.003
67.	butyl benzyl phthalate	D-2	1	ND		ND	
		D-3	1	ИD	ND		
		F −3	3	ND	ND	ND	ND
	•	F-4	3	ND	ИD	ND	0.002
68.	di-n-butyl phthalate	D-2	1	ND		ND	
		D-3	1	ND	ND		
		F-3	3	ND	ND	ND	0.001
		F-4	3	ND	ND	ND	ND
114.	antimony	D-2	1	<0.003		<0.003	
		D-3	1	<0.003	<0.003		*
		F-3	3	<0.002	0.002	<0.002	<0.002
•		F-4	3	<0.002	<0.002	<0.002	<0.002
115.	arsenic ·	D → 2	1	<0.003		<0.003	
	•	D-3	1	<0.003	<0.003		
		F-3	3	<0.005	<0.005	<0.005	<0.005
		F-4	3	<0.005	0.018	<0.005	<0.005
117.	beryllium ,	D-2	1	<0.0005		<0.005	•
		D-3	1	<0.0005	0.001		
		F-3	3	<0.010	<0.010	<0.010	<0.010
		F-4	3	<0.010	<0.010	<0.010	<0.010
118.	cadmium	D~2	1	<0.002		0.084	
		D-3	1	<0.002	0.13		
	•	F-3	3	<0.050	<0.050	<0.050	<0.050
-		F=4	- 3	<0.050	<0.050	<0.050	<0.050
119.	chromium (total)	D-2 -	1	0.042		1.8	
	•	D-3	1	0.042	0.52		-
	•	F-3	3	<0.100	<0.100	<0.100	<0.100 ·
		F-4	3	<0.100	<0.100	<0.100	<0.100
120.	copper	D-2	1	0.068		0.083	
		D-3	1	0.068	0.78		
		F-3	3	0.170	0.350	0.260	0.140
		F-4	3	0.170	0.240	0.320	0.160

Table V~44 (Continued)

	Pollutant-	* * * * * * *	Stream Code	Sample Type	Conce Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic	Pollutants (Continued)			•	•			
121.	cyanide (total)		F-3 F-4	1	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
122.	lead	•	D-2 D-3 F-3	1 1 3	<0.084 <0.084 <0.100	0.15 <0.100	<0.084	<0.100
			F=4	3 =	<0.100	<0.100	<0.100	<0.100
123.	mercury	-	D-2 D-3 F-3 F-4	1 1 3 3	<0.0002 <0.0002 <0.0020 <0.0020	<0.0002 <0.0020 <0.0020	<0.0002 <0.0020 <0.0020	<0.0020 <0.0020
124.	nickel		D-2 D-3 F-3 F-4	1 1 3 3	<0.003 <0.003 0.200 0.200	9.4 0.560 1.42	6.5 0.600 0.600	0.180 0.580
125.	selenium		D-2 D-3 F-3 F-4	1 1 3 3	<0.003 <0.003 <0.010 <0.010	<0.003 <0.010 <0.010	<0.003 <0.010 <0.010	<0.010 <0.010
126.	silver		D-2 D-3 F-3 F-4	1 1 3 3	<0.001 <0.001 <0.002 <0.002	<0.001 <0.002 <0.002	<0.001 <0.002 <0.002	<0.002 <0.002
127.	thallium		D-2 D-3	1 1	<0.003 <0.003	<0.003	<0.003	
		re	F-3 F-4	3 3	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
128.	zinc		D-2 D-3	1 1 3	0.038 0,038 <0.050	0.51 0.060	0.28 0.050	0.050
			F-3 F-4	3 3	<0.050	0.070	0.110	0.030

561

Table V-44 (Continued)

<u>Pollutant</u>	Stream	Sample	Co	ncentratio	ons (mg/l))
FOTTUCATE	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants						
Acidity	D-2	1	<1		<1	
	D-3	i	<i< td=""><td><1</td><td>` '</td><td></td></i<>	<1	` '	
	F~3	3	<1	<1	<1	<1
	F-4	3	<1	<1	<1	<1
Alkalinity	D-2·	1	180		110	•
•	D-3	· 1	180	110		
	F-3	3	61	62	63	46
•	F-4	3	61	42	48	46
Aluminum	D-2					
	D-3	1	<0.050		0.45	
	F-3	1 · 3	<0.050	1.1		
•	F-4	· 3	0.910	0.290	0.720	0.390
	1 -7	3	0.910	0.100	0.420	0.220
Ammonia Nitrogen	D-2	1	<1		0.17	
•	D-3	1	<1	<1	0.17	
·	F-3	3	0.04	0.30	0.34	<0.01
	F-4	3	0.04	0.23	0.18	0.09
Barium						0.00
Sai Tain	D-2	1	0.12		0.15	
	D-3	1	0.12	0.0035		
	F-3	3	0.080	0.060	0.080	0.050
•	F-4	3	0.080	0.040	0.060	0.040
Boron.	D-2	1	<0.009		0.059	
	D-3	1	<0.009	0.24	0.059	
•	F-3	3	<0.100	<0.100	0.390	0 100
	F-4	3	<0.100	<0.100	0.390	0.130 0.230
Calcium	D 0					0.200
	D-2 D-3	1	63	•	110	
·	-	1	63	47		
•	F-3	3	46.2	32.5	36.7	30.2
	F-4	3	46.2	30.8	33.0	29.7
Chemical Oxygen Demand (COD)	D-2	1	<5		61	
	D-3	ì	<5	540	J 1	• .
	F-3	3	<1	310	190	22.
	F-4	3	<1	210	350·	33 [.]
		-	- •	-10	550	220

Table V-44 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)						
Chloride	D-2 ·D-3 F-3 F-4	1 1 3 3	34 34 12 12	81 27 28	64 28 34 1,	31 210
Cobalt	D-2 D-3 F-3 F-4	1 1 3 3	<0.006 <0.006 <0.100 <0.100	0.29 <0.100 <0.100	0.68 <0.100 <0.100	<0.100 <0.100
Fluoride	D-2 D-3 F-3 F-4	1 1 3 3	0.45 0.45 0.43 0.43	1.4 1.1 1.1	2.1 4.4 1.7	1.2
Iron	D-2 D-3 F-3 F-4	1 1 3 3	0.066 0.066 1.37 1.37	3.8 0.990 0.580	3.1 0.820 0.610	1.43 0.290
Magnesium	D-2 D-3 F-3 F-4	1 :	24 24 12.7 12.7	32 10.8 10.6	35 11.8 10.8	10.2 10.1
Manganese	D-2 D-3 F-3 F-4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.012 0.012 0.080 0.080	0.31 0.080 0.120	0.10 0.160 0.070	0.050 0.070
Molybdenum	D-2 D-3 F-3 F-4	1 1 3 3	0.030 0.030 <0.200 <0.200	18 <0.200 <0.200	1.8 <0.200 <0.200	<0.200 0.380
Phenolics	F-3 F-4	1 1	<0.005 <0.005	0.095 0.29	0.36 <0.005	0.017 6.0
Phosphate	D-2 D-3 F-3 F-4	1 1 3 3	<4 <4 <4	100 13 12	<4 <4 <4	<4 <4

. 563

Table V-44 (Continued)

Pollutant	Stream Code	Sample Type	Con Source	centratio Day 1	ns (mg/1) Day 2	Day 3		
Nonconventional Pollutants (Continued)								
Sodium	D-2 D-3 F-3 F-4	1 1 3 3	9.5 9.5 154 154	23 26.8 26.8	26 13.9 27.8	13.4 27.4		
Sulfate	D-2 D-3 F-3 F-4	1 1 3 3	53 53 130 130	93 160 150	240 100 98	97 110		
Tin .	D-2 D-3 F-3 F-4	1 1 3 3	<0.12 <0.12 <0.200 <0.200	1.1 <0.200 <0.200	<0.12 <0.200 <0.200	<0.200 <0.200		
Titanium	D-2 D-3 F-3 F-4	1 1 3 3	<0.005 <0.005 <0.020 <0.020	0.15 <0.020 <0.020	1.1 0.020 <0.020	<0.020 <0.020		
Total Dissolved Solids (TDS)	D-2 D-3 F-3 F-4	1 1 5 3	393 393 320 320	580 260 280	560 380 290	270 270		
Total Organic Carbon (TOC)	D-2 D-3 F-3 F-4	1 1 3 3	8 8 2 2	200 45 .31	79 38 120	4 60		
Total Solids (TS)	D-2 D-3 F-3 F-4	1 1 3 3	395 395 1 330 330	,070 360 370	620 400 380	360 360		
Vanadium	D-2 D-3 F-3 F-4	1 1 3 3	0.016 0.016 <0.010 <0.010	0.057 <0.010 <0.010	0.050 <0.010 <0.010	<0.010 <0.010		
Yttrium	D-2 D-3 F-3 F-4	1 1 3 3	<0.002 <0.002 <0.020 <0.020	<0.002 <0.020 <0.020	<0.002 <0.020 <0.020	<0.020 <0.020		

Table V-44 (Continued)

	Pollutant_	Stream Code	Sample Type	Con Source	centration Day 1	Day 2	Day 3
	Conventional Pollutants						
	Oil and Grease	D-2 D-3	1 1	<1 <1 <1	300 115	38	37
	Calida (TSS)	F-4	1	<1 <1	190	84 74	60
y u	Total Suspended Solids (TSS)	D-3 F-3 F-4	1 3 3	<1 22 22	350 35 50	25 90	30 42
••	pH (standard units)	D-2 D-3 F-3 F-4	1 1 3 3	7.14 7.14 6.64 6.64	6.22 7.73 6.29	6.41 6.14 5.84	6.37 6.14

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-21, 24-28, 30-33, 35-43, 45-54, 56-64, and 69-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-45
NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS

Plant	Water	Use**	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1*	16.04	3.85	P	16.04	3.85
2	292.0	70.00	P	292.0	70.00
3	NR	NR	NR	NR	NR
Average	154.0	36.93		154.0	36.93

P - Periodic discharge NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

^{**}Waste lubricant per mass of nickel tube reduced.

Table V-46

NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS
RAW WASTEWATER SAMPLING DATA

•	Stream	Sample	Conce	ntration	s (mg/l)	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants	`.		*			
11. 1,1,1-trichloroethane	F-18	1	0.014			33
44. methylene chloride	F-18	. 1	0.002			4.75
55. naphthalene	F-18	1	0.001	•		ND
62. N-nitrosodiphenylamine	F-18	1	ND			28.2
114. antimony	F-18	1	<0.002			<0.002
115. arsenic	F-18	1	<0.005			0.017
117. beryllium	F-18		- <0.010	o in any and other and		<0.010
118. cadmium	F-18	1	<0.050			<0.050
119. chromium (total)	F-18	1	<0.100			0.680
120. copper	.F-18	1	0.170	a at the	· :	43.5
121. cyanide (total)	F-18	1 -	<0.2			<0.2
122. lead	F-18	1	<0.100		-	47.6
123. mercury	F-18	1	<0.0020			<0.0020
124. nickel	F-18	1	0.200	-		58.0
125. selenium	F-18	1	<0.010			<0.010
126. silver	F-18	1	<0.002			0.002
127. thallium	F-18	1	<0.005	:	-	<0.005
128 zinc	F-18	1	<0.050			63.1
Nonconventional Pollutants	. 					
Aluminum	F-18	₇ 1	0.910			23.4
Ammonia Nitrogen	F-18	1	0.04			<0.01
Barium	F-18	1	0.080	•		1.98

Table V-46 (Continued)

NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations Day 1	s (mg/l) Day 2 Day 3
Nonconventional Pollutants (Continued)					
Boron	F-18	1	<0.100		17.2
Calcium	F-18	1	46.2		7,010
Cobalt	F-18	1	<0.100		<0.100
Iron	F-18	1	1.37		21,4
Magnesium	F-18	1	12.7		379 .
Manganese	F-18	1	0.080		4.01
Molybdenum	F-18	1	<0.200		0.620
Phenolics	F-18	1	<0.005		<0.005
Phosphate	F-18	1 .	<4		<4
Sodium	F-18	1	154		. 1,260
Sulfate	F-18	1	130		340
Tin	F-18	1,	<0.200		<0.200
Titanium	F-18	1	<0.020		<0.020
Total Dissolved Solids (TDS)	F-18	1	320		360,000
Total Solids (TS) .	F-18	1	330		370,000
Vanadium	F-18	1	<0.010		<0.010
Yttrium	F-18	1	<0.020		<0.020
Conventional Pollutants					-
Oil and Grease	F-18	1	<1 .		200,000
Total Suspended Solids (TSS)	F-18	1	22		<1
pH (standard units)	F-18	1	6.64		6.10

Table V-46 (Continued)

NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS RAW WASTEWATER SAMPLING DATA

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-61, and 63-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-47
NICKEL-COBALT DRAWING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 4 5* 5* 5* 2 3 6 7	NR 36.0 158 1.16 2.32 2.32 NR 20.6 NR NR	NR 8.64 38.0 0.28 0.56 0.56 NR 4.95 NR NR	100 100 100 0.0 0.0 0.0 P P NR NR NR	0.00 0.00 0.00 1.16 2.32 2.32 NR NR NR NR	0.00 0.00 0.28 0.56 0.56 NR NR NR NR
Average	36.73	8.83		1.93	0.46

P - Periodic discharge NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

Table V-48
NICKEL-COBALT DRAWING SPENT EMULSIONS

Plant	Water L/kkg	Use* gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2 3 4 5 6 7 7 8	NR NR NR NR NR 135 135	NR NR NR NR NR 32.3 32.3	P P P P P P P	NR NR NR NR NR 135 135	NR NR NR NR NR NR 32.3 4.05
Average	95.4	22.9		95.4	22.9

P - Periodic discharge NR - Data not reported

^{*}Waste emulsion per mass of nickel drawn.

Table V-49 NICKEL-COBALT DRAWING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant Toxic Pollutants	Stream <u>Code</u>	Sample Type	Source	ncentration Day 1	s (mg/1) Day 2	Day 3
117. beryllium	AS-1	1	_	<0.02		
118. cadmium	AS-1	1	· _	<0.05		
119. chromium (total)	AS-1	1	_	<0.05		
120. copper	AS-1	1	<u>-</u>	50.0		
122. lead	AS-1	1	_	<0.05		
124. nickel	AS-1	. 1		3.0		
128. zinc	AS-1	1	-	2.6		
Nonconventional Pollutants						
Cobalt	AS-1	1	_	<0.05		
Fluoride	AS-1	1	- -	<6.	÷	
Iron	AS-1	1	_	17.0		

Table V-49 (Continued)

NICKEL-COBALT DRAWING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations Source Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)				
Molybdenum	AS-1	1	- <0.03		
Titanium	AS-1	1 .	- <0.06		
Conventional Pollutants				•	
Oil and Grease	AS-1	1	- 2,490.0		
Total Suspended Solids (TSS)	AS-1		- 1,300.0		

1. No analyses were performed on the following toxic pollutants: 1-116, 121, 123 and 125-127.

Table V-50
NICKEL-COBALT EXTRUSION SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	100	0.00	0.00
4	127	30.5	100	0.00	0.00
Average	127	30.5		0.00	0.00

NR - Data not reported

Table V-51

NICKEL-COBALT EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER

Plant	Water	Use*	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	46.3	11.1	0.0	46.3	11.1
	120	28.9	P	120	28.9
Average	83.2	20.0	*	83.2	20.0

P - Periodic discharge

^{*}Wastewater generated per mass of nickel-cobalt.

Table V-52

NICKEL-COBALT EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u> .	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2 Day 3
Toxio	Pollutants				
5.	benzidine	E-3	1	0.762	**
11.	1,1,1-trichloroethane	E-3	1	0.005	ND
23.	chloroform	E-3	1	0.015	ИО
28.	3,3′-dichlorobenzidine	E-3	1	0.001	ND
36.	2,6-dinitrotoluene	E-3	1	0.002	0.002
37.	1,2-diphenylhydrazine	E-3	1	0.001	ND
43.	bis(2-choroethoxy)methane	E-3	1	0.001	ND
55.	naphthalene	E-3	1	0.001	ND .
61.	N-nitrosodimethylamine	E-3	1	0.001	**
63.	N-nitrosodi-n-propylamine	E-3	1	0.024	0.022
66.	bis(2-ethylnexyl) phthalate	E-3	1	0.001	0.001
67.	butyl benzyl phthalate	E-3	1	0.001	ND
6 9.	di-n-octyl phthalate	E-3	1 .	ND	0.004
70.	diethyl phthalate	E-3	1 -	. **	ND
114.	antimony	E-3	1	<0.005	<0.005
115.	arsenic	E-3 .	1	<0.005	<0.005
11,7,	beryllium	E-3	1	<0.010	<0.010
118.	cadmium	E-3	1	<0.050	<0.050
119.	chromium (total)	E-3	1	<0.100	0.130
120.	copper	E-3	1	0.080	0.050
121.	cyanide (total)	E-3	1	<0.02	· <0.02
122.	lead	E-3	1	<0.100	<0.100

Table V-52 (Continued)

NICKEL-COBALT EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	RAW W	ASTEWATER	SAMPLING	DAIN		
<u>Pollutant</u>		Stream Code	Sample Type	Conce Source	ntrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)						
123. mercury		E-3	1	<0.0010	<0.0010	
124. nickel		E-3	1	<0.100	0.140	
125. șelenium		E-3	1	<0.010	<0.010	
126. silver		E-3	1	<0.002	<0.002	
127. thallium	,	E-3	1	<0.002	<0.002	
128. zinc		E-3	1 .	<0.050	0.070	
Nonconventional Pollutants	and a state of the	eric or and employers	man de de la colonia de la col	THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY ADDRESS OF THE PROPERTY ADDRESS OF		No. of Assertance Control and Assertance
Acidity	• •	E-3	1	<1	<1	
Alkalinity		E-3	. 1	83	55	
		E-3		0.300	0.080	
Aluminum		E-3 .	1	0.22	0.13	
Ammonia Nitrogen		E-3	1 .	0.060	0.050	
Barium		E-3	1	0.170	0.600	•
Boron		E-3	1 . 1	33.0	24.4	
Calcium				34	33	*
Chemical Oxygen Demand		E-3		26	15	•
Chloride		E-3	1		<0.100	
Cobalt		E-3	1	<0.100	0.83	
Fluoride		E-3	1	0.44	4 (1)	
Iron		E-3	1	1.0	0.4	
Magnesium		E-3	1	15.8	10.2	
Manganese		E-3	1	0.140	0.014	
Molybdenum .		E-3	1	<0.200	<0.200	•

Table V-52 (Continued)

NICKEL-COBALT EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc. Source	entrations (mg/1) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)	•				
Phenolics	E-3	1	0.014	0.021	
Phosphate	E-3	1	16	12	
Sodium	E-3	1	33.0	26.6	
Sulfate	E-3	1	170	150	
Tin	E-3	1	<0.200	<0.200	
Titanium	E-3	1	<0.020	<0.020	
Total Dissolved Solids (TDS)	E-3	1	330	170	
Total Organic Carbon (TOC)	E-3	1	<1	<1	
Total Solids (TS)	E-3	1	380	230	
Vanadium	E-3	1	<0.010	<0.010	
Yttrium	E-3	1	<0.020	<0.020	•
Conventional Pollutants		٠.			
Oil and Grease	E-3	1	<1	7	
Total Suspended Solids (TSS)	E-3	1	29	3.0	
pH (standard units)	E-3	1	6.71	7.39	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 12-22, 24-27, 29-35, 38-42, 44-54, 56-60, 62, 64, 65, 68, and 71-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-53
NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	NR	231.9	55.60
Average	NR	NR.	•	231.9	55.60

NR - Data not reported

Table V-54

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA

	Pollut <u>ant</u>	Stream Code	Sample Type	Conce Source	entration Day 1	s (mg/1) Day 2	Day 3
Touto		Code	_type_	3001.08	Day 1	Day Z	bay 5
	Pollutants						
5.	benzidine	E-6	3	0.762	0.010	1.159	0.576
11.	1,1,1-trichloroethane	E-6	1	0.005	0.540	0.720	0.820
12.	hexachloroethane	E-6	3	ПD	ND	0.006	ND
13.	1,1-dichloroethane	E-6	1	ND	ND	ND	0.005
2 2 .	p-chloro-m-cresol	E-6	3	ND	0.680	ND	**
23.	chlorotorm	E-6	1	0.015	ND	ND	ND
28.	3,3'-dichlorobenzidine .	E-6	3	0.001	0.810	0.010	0.019
34.	2,4-dimethylphenol	E-6	3	ND	**	**	ND
36.	2,6-dinitrotoluene	E-6	3	0.002	0.001	0.001	0.086
37.	1,2-diphenylhydrazine	E-6	3	0.001	0.001	0.001	0.001
39.	fluoranthene	E-6	3	ND	0.001	0.001	0.001
43.	bis(2-choroethoxy)methane	E-6	3	0.001	ND	0.001	0.002
44.	methylene chloride	E-6	1	ND	0.160	ND	ND
55.	naphthalene	E-6	3	0.001	0.002	0.001	0.002
61.	N-nitrosodimethylamine	E-6	3	0.001	0.001	0.001	0.001
63.	N-nitrosodi-n-propylamine	E-6	3 .	0.024	0.018	0.021	0.016
65.	phenol .	E-6	3	ND	**	**	**
66.	bis(2-ethylhexyl) phthalate	E-6	3	0.001	. **	0.003	**
67.	butyl benzyl phthalate	E-6	3	0.001	0.003	0.002	0.005
70.	diethyl phthalate	E-6	3 -	**	. ND	0.001	NĐ
71.	dimethyl phthalate	E-6	3	ND	ND	0.004	ND
72.	benzo(a)anthracene	E-6	3	ND	NO	ИĎ	本本

Table V-54 (Continued)

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Cana	entration	s (mg/l)	
	Pollutant	Code	Type	Source	Day 1	- Day 2	Day 3
Toxic	Pollutants (Continued)						
	•			•	•		
73.	benzo(a)pyrene	E-6	-3	ND	17.40	ND	ND
75.	benzo(k)fluoranthane	E-6	3	ND	**	ND	ND
76.	chrysene	E-6	3	ND	ND	ND	**
78.	anthracene	E-6	33	ND	-0-002	- ND	
81.	phenanthrene .	E-6	3	ND	- ND	0.001	ND
83	indeno(1,2,3-c,d)pyrene	E-6	3	ND	ND .	ND	0.001
84.	pyrene	E-6	3	ND	0.001	0.001	0.001
114.	antimony	E6		<0.005	<0.005	<0.005	<0.005
115.	arsenic	E-6	3	<0.005	<0.005	<0.005	<0.005
117.	beryllium	E-6	7 · · ·	<0.010	. <0.010	<0.010	<0.010
118.	cadmium	E-6	, " , "3	<0.050	<0.050	<0.050	<0.050
.119.	chromium (total)	E-6	3	<0.100	<0.100	<0.100	<0.100
120.	copper	E-6	3	0.080	0.620	0.180	0.750
121.	cyanide (total)	E-6	. ±1	<0.02	<0.02	<0.02	<0.02
122.	lead	E-6	3	<0.100	0.240	0.220	0.190
123.	mercury	E-6	. :3	<0.0010	<0.0010	<0.0010	<0.0010
124.	nickel	E-6	,3	<0.100	0.510	<0.100	1.30
125.	selenium	E-6	3	<0.010	<0.010	<0.010	<0.010
126.	silver	E-6	3	<0.002	<0.002	<0.002	<0.002
127.	thallium	E6	3	<0.002	<0.002	<0.002	<0.002

8

Table V-54 (Continued)

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

	Stream	s (mg/l)	ng/1)			
Pollutant	Code	Sample Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued) 128. zinc	E-6	3	<0.050	0.310	0.100	0.240
Nonconventional Pollutants				<1	<1	<1
Acidity	E-6.	3	<1	-		
Alkalinity	E-6	3	83	120	150	150
	E−6	3	0.300	0.800	0.200	0.500
Aluminum	E-6	. з	0.22	0.19	0.19	0.37
Ammonia Nitrogen		. 3	0.060	0.120	0.080	0.070
Barium	E-6		0.170	0.400	0.140	0.460
Boron	E-6	. З			32.8	30.4
Calcium	E <u>.</u> 6	3	33.0	34.2		
Chemical Oxygen Demand	E-6	3	34	330	18	890
•	E-6	3	26	24	24	21 .
Cnloride	E-6	3	<0.100	<0.100	<0.100	<0.100
Cobalt	E-6	3	0.44	0.39	0.69	0.64
Fluoride	E-6	3	1.0	3.5	1.6	2.4
Iron ·	E-6	3	15.8	14.4	15.0	13.3
Magnesium			0.140	0.100	0.080	0.110
Manganese	E-6	. 3				
Molybdenum	E-6	3	<0.200	<0.200		
Phenolics	E-6	1	0.014	8.5	2.421	9.52
	E-6	3	16	21	18	30
Phosphate	E-6	3	. 33	71	75	80
Sodium					-	

Table V-54 (Continued)

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Cor Source	ncentratio Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))	•	in the second se			
Sulfate	-E-6	3	170	170	190	190
Tin	E- _. 6	3	<0.200	<0.200	<0.200	<0.200
Titanium	E6	3	<0.020	<0.020	<0.020	<0.020
Total Dissolved Solids (TDS)	E-6	3	330	470	360	580
Total Organic Carbon (TOC)	E-6	3 _	<1	68	89 -	110
Total Solids (TS)	E-6	3	380	5.90 .	470	800
Vanadium	E−6 <u>.</u>	3	<0.010	<0.010	<0.010	<0.010
Yttrium	E-6	3 ·	<0.020	<0.020	<0.020	<0.020
Conventional Pollutants	,				•	
Oil and Grease	E-6	1	<1	350	340	420
Total Suspended Solids (TSS)	E-6	3	29 .	220	33.0	250
pH (standard units)	E-6	3	6.71	6.12	6.56	6.91

**Present, but not quantifiable.

- 1. Toxic pollutants 89-113 were analyzed in this waste stream.
- 2. The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 14-21, 24-27, 29-33, 35, 38, 40-42, 45-54, 56-60, 62, 64, 68, 69, 74, 77, 79, 80, 82, and 85-113.
- 3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-55
NICKEL-COBALT FORGING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	2.10	0.50	100	0.00	0.00
1	6.80	1.63	100	0.00	0.00
5	NR	NR	100	0.00	0.00
3	NR	NR	NR	0.00	0.00
2*	NR	NR	P	2.55	0.61
4	NR	NR	NR	NR	NR
Average	4.45	1.07		2.55	0.61

P - Periodic discharge NR - Data not reported

^{*}This plant no longer forms nickel.

Table V-56
NICKEL-COBALT FORGING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	1,197	287.0	95.5	53.52	12.83
2 ′ · ·	208.2	49.94	0.0	208.2	49.94
3	225.3	54.02	0.0	225.3	54.02
4	417.0	100.0	0.0	417.0	100.0
5 🔎	323.4	77.56	0.0	323.4	77.56
6	NR	NR .	NR	NR	NR
Average	474.1	113.7	•	245.5	58.9

NR - Data not reported

Table V-57

NICKEL-COBALT FORGING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream Code	Sample Type		rations (mg/l) lay 1 Day 2 Day 3
Toxic	Pollutants				
11.	1,1,1-trich1oroethane	D-6	1	0.009	0.030
13.	l,l-dichloroethane	D-6	1	ND	0.012 .
23.	chloroform	D-6	1	0.144	0.022
44.	methylene chloride	D-6	1	ND	0.071
66.	bis(2-ethylhexyl) phthalate	D-6	1	0.009	0.002
86.	toluene	D-6	1	ИD	0.005
114.	antimony	D-6	1	<0.003	<0.003
115.	arsenic	D-6	1	<0.003	<0.003
117.	beryllium	D-6	1	<0.0005	0.077
118.	cadmium	D-6	1	<0.002	0.26
119.	chromium (total)	D-6	1	0.042	0.69
120.	copper	D-6	1	0.068	3.4
122.	lead	D-6	1	<0.084	<0.084
123.	mercury	D-6	- 1	<0.0002	<0.002
124.	nickel .	D-6	1 -	<0.003	16
125.	selenium	D-6	1	<0.003	<0.003

Table V-57 (Continued)

NICKEL-COBALT FORGING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source	entratio Day 1	ns (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)				· 201		
126. silver	D-6	1	<0.001		<0.001	
127. thallium	D-6	1	<0.003		<0.003	
128. zinc	D-6	1	0.038		0.054	
Nonconventional Pollutants					·	•
Acidity	D-6	1	<1		<1	
Alkalinity	D-6.	1	180	Managana arang	250	matematical of the second
Aluminum	D-6	1	<0.050		0.93	==
Ammonia Nitrogen	D-6	1	< 1		0.30	
Barium	D-6	1	0.12		0.066	$x_{i}(x) = \frac{1}{\lambda} \left(\frac{1}{\lambda} \right) \right) \right) \right) \right)}{1 \right)} \right) \right) } \right) } \right) } \right) } \right) } \right) } \right$
Boron	Ď~6	1	<0.009		0.91	
Calcium	D-6	<u>_1</u>	63		. 66	
Chemical Oxygen Demand	D-6	· 1	<5		<5	
Chloride	D-6	1 .	34		37	
Cobalt	D-6	1	<0.006		0.61	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fluoride	D-6	1	0.45		0.81	
Iron	D~6	1 .	0.066		4.0	
η.		**				

Table V-57 (Continued)

NICKEL-COBALT FORGING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2 [Day 3
Nonconventional Pollutants (Continued	1)				
Magnesium	D-6	1	24	24	
Manganese	D-6	1	0.012	0.24	
Molybdenum	D-6	1	0.030	4.9	
Phosphate	D-6	1	<4	<4	
Sodium	D-6	1	9.5	9.4	
Sulfate	D-6	1	53	37	
Tin	.D6	1	<0.12	_< 0.12	
Titanium .	D-6	1	<0.005	0.62	
Total Dissolved Solids (TDS)	D-6	1	393	310	
Total Organic Carbon (TOC)	D-6	1	8	30	
Total Solids (TS)	D-6	1	395	2,300	
Vanadium	D-6	1	0.016	0.33	
Yttrium	D-6	1	<0.002	0.002	

NICKEL-COBALT FORGING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	centrations (mg/l) Day 1 Day 2	Day 3
Conventional Pollutants					
Oil and Grease	D-6	1	<1	<1	
Total Suspended Solids (TSS)	D-6	1	<1	1,800	
pH (standard units)	D-6	1	7.14	7.63	

1. The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-22, 24-43, 45-65, 67-85, 87, and 88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-58

NICKEL-COBALT FORGING EQUIPMENT CLEANING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	13.9 66.1	3.33 15.8	0.0	13.9 66.1	3.33 15.8
Average	40.0	9.57	-	40.0	9.57

Table V-59
NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	NR	187.0	44.84
Average	NR	NR		187.0	44.84

NR - Data not reported

Table V-60
•NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream <u>Code</u>	Sample Type	Concentrat Source Day	
Toxic	<u>Pollutants</u>				0.050
11.	1,1,1-trichloroethane	D-7	1	-0.009	2.050
13.	1,1-dichloroethane	D-7	1	ND	0.374
23.	chloroform	. D-7	1	0.144	ND
44.	methylene chloride	D-7	1	0.002	0.012
6 6.	bis(2-ethylhexyl) phthalate	D-7	1	0.009	0.175
81.	phenanthrene	D−7	1	ND	0.087
114.	antimony "	D-7	1	<0.003	<0.003
	·	D-7	1	<0.003	<0.003
115.	arsenic	D-7	1	<0.0005	<0.0005
117.	beryllium	D-7	1	0.002	0.012
118.	cadmium	D-7	1	0.042	0.19
119.	chromium (total)			0.068	1.0
120.	copper	D7	1	<0.084	0.40
122.	lead	D-7	1 .		<0.0002
123.	mercury	D-7	. 1 .	<0.0002	
124.	nickel	D-7	. 1	<0.003	0.64
125.	selenium	·D~7	1	<0.003	<0.003
126.	silver	D-7	1	<0.001	<0.001
127.	thallium	D-7	1	<0.003	<0.003

Table V-60 (Continued)

NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations (mg/ Source Day 1 Day			
Toxic Pollutants (Continued)	ŧ	•		•		
128. zinc	D-7	. 1	0.038	0.26_	* * *	
Nonconventional Pollutants						
Acidity	D-7	1	<1	<1		
Alkalinity	D-7	1	180	220		
Aluminum	D-7	1	<0.050	<0.050	·	
Ammonia Nitrogen	D-7	. 1	<1	0.25		
Barium	D-7	. 1	0.12	0.23		
Boron	D-7	, 1	<0.009	0.12		
Calcium	D-7	1	63	75	# T	
Chemical Oxygen Demand	D-7	***1	· · · <5	4,110	ili ang	
Chloride	D-7	. 1	34	47	: - · ·	
Cobalt	D-7	1	<0.006	0.099	· · · · · · · · · · · · · · · · · · ·	
Fluoride	D-7	1 1	0.45	0.97		
Iron	D-7	, 1	0.066	2.1		
Magnesium	D-7	1 1	24	26		
Manganese	D-7	1	0.012	0.083	1 4 -	
Molybdenum	D-7	1	0.030	0.24		
Phosphate	D-7	1.1	<4	· <4	• *.	
Sodium	D-7	1	9.5	27		
Sulfate	D-7	1	53	110	- *	

Table V-60 (Continued)

NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

5.33 44	Stream Code	Sample Type	Conce Source	entrations (mg/l) Day 1 Day 2 Day 3	
<u>Pollutant</u>					
Nonconventional Pollutants (Continued)	١		1		
Tin	D~7	1	<0.12	<0.12	
Titanium	D-7	1	<0.005	0.11	
Total Dissolved Solids (TDS)	D-7	1	393	1,480.	
Total Organic Carbon (TOC)	D-7	1	8	470	
Total Solids (TS)	_. D−7	1	395	2,000	
Vanadium	D-7	. 1	0.016	<0.002	
Yttrium	D-7	1 .	<0.002	0.26	
Conventional Pullutants					
Oil and Grease	D-7	1	<1	17	
Total Suspended Solids (TSS)	D- 7	1	<1	500	
pH (standard units)	D-7	1	7.14	6.81	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-22, 24-43, 45-65, 67-80, and 82-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, 121, and 129.

Table V-61

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER

Plant	Water L/kkg	Use gal/tor	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	2,594	622.0	0.0	1,277	306.3
2	2,020	484.0	0.0	2,020	484.4
3	NR	NR	NR	2,429	582.5
4	2,623	628.9	0.0	2,623	628.9
1	8,840	2,120	0.0	5,291 1	,269
5	16,960	4,066	0.0	16,960 4	,066
6	75,270	18,050	0.0	75,270 18	,050
Average	18,050	4,329	•	15,120 3	,627

NR - Data not reported

Table V-62

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream _Code	Sample _Type	Conc Source	entration Day 1		Day 2
			1755	3001 CE	Day 1	Day 2	Day 3
Toxio	: Pollutants						
114.	antimony	D-19	1	<0.003	<0.003		
115.	arsenic	D-19 S-3	1 2	<0.003 <0.01	<0.003 <0.01		
117.	beryllium	D-19 BJ-1	1 2	<0.0005	<0.0005 <0.05		
118.	cadmium	D-19 S-3 BJ-1	1 ° 2 2	<0.002 <0.05	0.008 <0.05 0.004		
119.	chromium (total)	D-19 S-3 T-1 BJ-1	1 2 6 2	0.042 <0.05 <0.01	1.0 54.9 8.3 0.38	0.22	0.026
120.	copper	D-19 S-3 T-1 BJ-1	1 2 6 2	0.068 <0.05 0.048	<0.031 2.080 45.000 3.200	5.400	0.0044
121.	cyanide (total)	S-3 T-1	1 1	<0.01 <0.01	<0.01	<0.01	<0.01
122.	l ead	D-19 S-3 T-1 BJ-1	1 2 6 2	<0.084 <0.1 <0.005	<0.084 <0.1 <0.005 0.240	<0.005	<0.0054
123.	mercury	D-19 S-3	1 2	<0.0002 <0.0002	<0.0002 <0.0002		
124.	nickel	D-19 S-3 T-1 BJ-1	1 2 6 2	0.075	0.42 180.0 81.0 210.0	1.600	1.100

Table V-62 (Continued)

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Toxic Pollutants (Continued) 125. selenium D-19 1 <0.003 <0.003	<u>y 2</u> <u>Day 3</u>
125. selenium D-19 1 <0.003 <0.003	
125. Setentum	
126. silver D-19 1 <0.001 0.006	
127. thallium D-19 1 <0.003 0.006	
128. zinc D-19 1 0.038 0.22 S-3. 2 <0.05 0.231	-
ву-1 2 0.330	
Nonconventional Pollutants	
Acidity $ \begin{array}{ccccccccccccccccccccccccccccccccccc$.0.
Alkalinity 1 180 4.1	• • •
Aluminum D-19 1 <0.050 <0.050 S-3 2 <0.2 0.292 T-1 6 0.14 0.630 0.	.110 0.041

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Con Source	Day 1	mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))					
Ammonia Nitrogen	D-19	1	<1	<1		
Barium	D-19	1	0.12	<0.001		
Boron	D-19	1	<0.009	0.15		
Calcium .	D-19	1	63	1.4		
Chemical Oxygen Demand	D-19	1	<5	<5		
Chloride	D-19	1	34	<0.01		
Cobalt	D-19 S-3 T-1 BJ-1	1 2 6 2	<0.006 <0.1 <0.01	5.2 0.270 11.000 .0.100	0.250	0.240
Fluoride	D-19 S-3 T-1 BJ-1	1 2 6 2	0.45 <0.1 1.01	11 <0.1 <0.1	0.89	0.95
Iron	D-19 S-3 T-1 BJ-1	1 2 6 2	0.066 0.122 0.27	0.29 142.0 40.0 10.3	0.46	0.280
Magnesium	D-19	1	24 .	0.51		
Manganese	D-19	1	0.012	0.22		
Molybdenum ·	D-19 BJ-1	1 2	0.030	3.1		.•
Phosphate	. D-19	1	<4	<4		
Sodium .	D-19	1	9.5	1.3		
Sulfate	D-19	1 .	53	8.7		

Table V-62 (Continued)

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)			ŕ		
Tin	D-19	1	<0.12	<0.12		-
Titanium	D-19 BJ-1	1 2	<0.005	0.031 0.210		
Total-Dissolved-Solids-(TDS)	D=1-9		_393 9	,000	e consequence de cons	The state of the s
Total Organic Carbon (TOC)	D-19	1	8	2		
Total Solids (TS)	D-19	1	395 10	,000	****	
Vanadium	D-19	. 1 .	0.016	0.017	•	
·Yttrium	D-19	1	<0.002	0.002		

Table V-62 (Continued)

NIGKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Conventional Pollutants			-
Oil and Grease	D-19 S-3 T-1	1 1 1	<1 <1 <1 <1 <1 <0.1;0.4 0.1;1.1 0.1;6.1 0.3;5.1
Total Suspended Solids (TSS)	D-19 S-3 T-1	1 2 6	<1 <1 <1 <0.1 317 1.0 10.0 12.0
pH (standard units)	D-19 S-1 T-1	1 2 6	7.14 5.54 7.2-8.3 7.7 7.76

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- 2. Note that stream code T-1 also appears on the metal powders metal powder production wet atomization wastewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-63
NICKEL-COBALT STATIONARY CASTING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	7,193	1,725	100	0.00	0.00
2	17,030	4,084		16,755 4	,018
Average	12,112	2,904	•	16,755 4	,018

Table V-64
NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE

Plant	.Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	NR	0.00	0.00
2	6,955	1,665	98.0	139.0	33.33
Average	6,955	1,665	•	139.0	33.33

NR - Data not reported

Table V-65
NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE
RAW WASTEWATER SAMPLING DATA

	Pollutant_	Stream Code	Sample Type	Conce Source	ntration Day 1	s (mg/l) Day 2	Day 3
Toxic	Pollutants					*	40 at 1
5.	benzidine	E-4	• 1	0.762		**	
11.	1,1,1-trichloroethane	E-4	1	0.005		0.001	
12.	hexachloroethane	E-4	1	ND	*• •	0.004	
23.	chloroform	E-4	1	0,015		ND	
28.	-3,3'-dichlorobenzidine	E-4	1	0.001	•	ND	· · ·
36.	2,6-dinitrotoluene	E-4	1 .	ND	-	0.002	1
37:	1,2-diphenylhydrazine	E-4	; 1	0.001		ND	
43.	bis(2-choroethoxy)methane	E-4	1	0.001		ND	
55.	naphthalene	E-4	· 1	0.001	* ****	0.001	
61.	N-nitrosodimethylamine	E-4	1	0.001		ND	1 1
63.	N-nitrosodi-n-propylamine	E-4	. 1	0.024		0.018	****
66.	bis(2-ethylhexyl) phthalate	E-4	. 1	0.001	**	0.001	- 14
67.	butyl benzyl phthalate	E-4	1	0.001		ND	
70°.	diethyl phthalate	E-4	1.	- **		**	1
114.	antimony	E-4	1	<0.005		<0.005	+ 1
115.	'arsenic	E-4	1	<0.005	5	<0.005	
117.	beryllium	E-4	. 1	<0.010		<0.010	•
118.	cadmium	E-4	1	<0.050	- :	<0.050	\$ 1
119.	chromium (total)	E-4	: , , 1	<0.100	1	<0.100	
	copper	E-4	1	0.080		0.060	
120.	cyanide (total)	E-4	, 1	<0.02		<0.02	
122.	lead	E-4	1	<0.100	_	<0.100	•.
144.	,				•	•	

Table V-65 (Continued)

NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conce Source	ntrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					
123. mercury	E-4	1	<0.0010	<0.0010	
124. nickel	E-4	1	<0.100	<0.100	
125. selenium	E-4	1	<0.010	<0.010	
126. silver	E-4	1	<0.002	<0.002	
127. thallium	E-4	1	<0.002	<0.002	
128. zinc	E-4	1	<0.050	0.050	
Nonconventional Pollutants					
Acidity	E-4	1	<1	<1	
Alkalinity	E-4	1	83.	16	
Aluminum	E-4	1	0.300	0.140	
Ammonia Nitrogen	E-4	1	0.22	0.23	
Barium	E-4	1	0.060	<0.020	
Boron	E-4	1	0.170	<0.100	
Calcium	E-4	1	33. 0 '	10.3	
Chemical Oxygen Demand	E~4	1	34	<0.02	
Chloride	E-4	1	26	6.3	
Cobalt	E-4	1	<0.100	<0.100	
Fluoride	E-4	1	0.44	1.7	-
Iron	E-4	1	1.00	0.05	
Magnesium	E-4	1	15.8	3.4	

Table V-65 (Continued)

NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)		
Pollutant	<u>Code</u>	Туре	Source	Day 1 Day 2	Day 3
•					
Nonconventional Pollutants (Continue	ed)		w.		
Manganese	E-4	1	0.140	0.280	
Molybdenum	E-4	1	<0.200	<0.200	
Phenolics	. E-4	1	0.014	0.006	
Phosphate	E-4	1	16	. 11	
Sodium	E-4	1	33.0	10.2	
Sulfate	E-4	1	1.70		
Tin	E-4	1	<0.200	<0.200	
Titanium :	E-4	· j ···	<0.020	<0.020	
Total Dissolved Solids (TDS)	E-4	1	330	32	•
Total Organic Carbon (TOC)	E-4	1	<1	<1	
Total Solids (TS)	E-4	1	380	46	*
Vanadium	E-4	1	<0.010	<0.010	
Yttrium	E-4	, 1	<0.020	<0.020	
Conventional Pollutants					
Oil and Grease	E-4	1	<1	6	
Total Suspended Solids (TSS)	E-4	1	29	4.3	*
pH (standard units) -	E-4	1	6.71	6.20	er en garon (

^{1.} The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 13-22, 24-27, 29-35, 38-42, 44-54, 56-60, 62, 64, 65, 68, 69, and 71-88.

^{2.} No analyses were performed on the following toxic'pollutants: 89-113, 116, and 129.

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER

Table V-66

	Wate	r Use	Percent	Wastewat	er Discharge
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100	0.00	0.00
12	NR	NR	100	0.00	0.00
2	133.4	32.00	0.0	0.00	0.00
1	7,028	1,685	100	0.00	0.00
3	19,060	4,571	<100	0.00	0.00
1	2,002	480.1	100	0.00	0.00
1	0.27	0.06	0.0	0.27	0.06
1.	NR	NR	NR	2.82	0.68
2 1 3 1 1 3 4 5 6 7 8 9	111,000	26,560	99.99	13.56	3.25
4	NR	NR	NR	45.00	10.79
5	444.6	106.6	0.0	222.3	53.31
6	697.6	167.3	0.0	697.6	167.3
7	NR	NR	P	760.6	182.4
8	1,334	319.9	0.0	1,334	319.9
	3,236	776.1	0.0	3,236	776.1
10	3,470	832.2	0.0	3 , 470	832.2
11	171,500	41,120	95.6	7,621	1,828
13	178,900	42,910	0.0	178,900	42,910
14	NR	NR	NR	NR	NR
15	NR	NR	0.0	NR	NR
16	NR	NR	NR	NR	NR
17	NR	NR	NR	NR	NR
Average	38,370	9,197	:	16,360	3,924

P - Periodic discharge NR - Data not reported

Table V-67

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant Pollutant	Stream Code	Sample Type	Conce Source	entration Day 1	ns (mg/l) Day 2	Day 3
Toxic Pollutants						
11. 1,1,1-trichloroethane	F-17	1	0.014		ND	
44. methylene chloride	F-17	1	0.002		0.267	-
55. naphthalene	F-17	1	0.001	*.	ND	
66. bis(2-ethylhexyl) phthalate	F-17	1	ND		0.005	
114. antimony	D-8 F-17	1 1	<0.003 <0.002		<0.003 <0.002	
115. arsenic	D-8 F-17	. 1	<0.003 <0.005		<0.003 <0.005	The state of the s
117. beryllium	D-8 F-17	1 :	<0.0005 <0.010	·	<0.0005 <0.010	
118. cadmium	D-8 F-17	1 : · 1	<0.002 <0.050		<0.002 <0.050	٠
119. chromium (total)	D-8 F-17	1 1	0.042 <0.100		0.10 <0.100	
120. copper	D-8 F-17	1 1	0.068 0.170		0.028	
121. cyanide	F-1.7	1.	<0.02		<0.02	
122. lead	D-8 F-17	1 1	<0.084 <0.100		<0.084 <0.100	
123. mercury	D-8 F-17	1	<0.0002 <0.0020		<0.0002 <0.0020	
124. nickel	D-8 F-17	· - 1	<0.003 0.200		0.49 6.80	
125: selenium	D-8	1	<0.003 <0.010		<0.003 <0.010	

Table V~67 (Continued)

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		antrations (mg/l)	
Pollutant	Code	Type	Source	Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					
126. silver	D-8 F-17	1 1	<0.001 <0.002	<0.001 0.003	
127. thallium	D-8 F-17	1 1	<0.003 <0.005	<0.003 0.006	
128. zinc	D-8 F-17	1	<0.038 <0.050	0.018 0.760	
Nonconventional Pollutants	•				
Acidity	D-8 F-17	1	<1 <1	<1 <1	
Alkalinity	D-8 . F-17	1	180 61	170 98	
Aluminum	D-8 F-17	1 1	<0.050 0.910	<0.050 0.840	
Ammonia Nitrogen	D-8 F-17	1 1	<1 0.04	0.14 0.04	•
Barium	D-8 F-17	1 1	0.12 0.080	0.14 0.020	
Boron	D-8. F-17	1 1	<0.009 <0.100	<0.009 4.11	* -
Calcium	D-8 F-17	1	63 46.2	60 413	
Chemical Oxygen Demand	D-8 F-17	1 1	<5 <1	<5 4,000	
Chloride	D-8 F-17	1 1	34 12	45 23	
Cobalt	D-8 F-17	1.	<0.006 <0.100	0.046 <0.100	

Table V-67 (Continued)

NIGKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream Code	Sample Type		Concentrations (mg/l) Source Day 1 Day 2			
Pollutant		Type	3001 CE	<u>Day 1</u> <u>Day 2</u>	Day 3		
Nonconventional Pollutants (Continued	d)				* :		
Fluoride	D-8 F-17	1 1	0.45 0.43	1.8 9.6			
Iron	D-8 F-17	1 1.	0.066 1.37	0.17 19.2			
Magnesium	D-8 F-17	1 1	24 12.7	26 9.30			
Manganese	D=8 F-17	.1	0.012 0.080	0.050 5.50	error gyr - grid madman hann smanden. • 1 is the green		
Molybdenum	D-8 F-17	. 1 1	0.030 <0.200	1.5 2.00	•		
Phenolics	F-17	. 1	<0.005	<0.005	,		
Phosphate	D-8 F - 17	1 1	<4 <4	<4 29,000			
Sodium	D-8 F-17	1	9.5 154	12 26.8	-		
Sulfate	D-8 F-17	1 1	53 130	60 81			
Tin	D-8 F-17	1 1	<0.12 <0.200	<0.12 <0.200			
Titanium :,	D-8 F-17	1 1	<0.005 <0.020	<0.005 0.040	-		
Total Dissolved Solids (TDS);	D-8 F-17	1 • 1	393 320	510 430			
Total Organic Carbon (TOC)	D-8 F-17	1	8 2	13 1,340	•		
Total Solids (TS)	D-8 F-17	1 1	395 330	570 3,500	•		
Vanadium .	D-8 F-17	1 - 1	0.016 <0.010	<0.003 <0.010			

Table V-67 (Continued)

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentration Source Day 1	ns (mg/l) Day 2 Day 3
Nonconventional Pollutants (Continued)				
Yttrium	D-8 F-17	1 1	<0.002 <0.020	<0.002 <0.020
Conventional Pollutants				
Oil and Grease	D-8 F-1 7	1 1	<1 <1	40 7
Total Suspended Solids (TSS)	D-8 F-17	1 1 ·	<1 22	33 7 8
pH (standard units)	D-8 F-17	1 1	7.14 6.64	7.00 7.37

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-65, and 67-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-68
NICKEL-COBALT SURFACE TREATMENT SPENT BATHS

	. ,	* * * * * * * * * * * * * * * * * * *
Plant	Wastewater L/kkg	Discharge** gal/ton
1 2 3 4 5 6 7 8 9 10 11 10 10 10 10 15 16 10 17 18 19 20 21 22 23 24 8 25 26 22 27 28 29 30	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.22 2.64 4.89 6.71 8.16 14.41 15.98 25.72 24.30 63.74 91.80 100.1 128.3 229.0 819.0 881.9 934.1 1,186 4,612 5,560 7,832 NR NR NR NR NR NR NR	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.63 1.17 1.61 1.96 3.46 3.83 6.17 6.41 10.62 15.29 22.01 24.00 30.77 55.57 62.17 70.10 196.0 211.5 224.0 284.4 1,106 1,333 1,878 NR NR NR NR NR NR
Average	934.9	224.2

NR - Data not reported **Volume of spent bath per mass of nickel surface treated.

Table V-69

NICKEL-COBALT SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA

		Stream	Sample		Concentratio	ons (mg/l)
	Pollutant	Code	Type	Source	Day 1	Day 2 Day 3
Toxio	: Pollutants					
114.	antimony	D-13	1	<0.003	<0.003	
		F-28	1	<0.003		0.480
		F-29	1	<0.002		0.040
		F-30	1	<0.002		0.066
115.	arsenic	D-13	1	<0.003	<0.003	
		F-28	3	<0.005		1.40
		F-29	1	<0.005		0.070
		F-30	1	0.005		0.280
117.	beryllium	D-13	1	<0.0005	0.45	
117.	bet y t t talli	F-28	i	<0.010	0.40	<0.010
	•	F-29	i	<0.010		<0.010
		F-30	i	<0.010		<0.010
		1 00	•			3.3.3
118.	cadmium	D-13	1	<0.002	60 0	
		F-28	1	<0.050		<0.050 ⁻
		F-29	1	<0.050		<0.050
		F-30	1	<0.050		0.970
119.	chromium (total)	D-13	1	0.042	3,600	
	Citi Citi (Co Ca .)	F-28	i	<0.100	-,	23.8
		F-29	1	<0.100		312
		F-30	i	<0.100		940
					100	
120.	copper	D-13	1	0.068	130	. 20 4
		F-28	1	0.170		20.4
	•	F-29	1	0.170		
		F-30	1	0.170		4,800
121.	cyanide	F-28	1	<0.02		<0.02
		F-29	1	<0.02	•	<0.02
		F-30	1	<0.02		<0.02
122.	lead	D-13	1	<0.084	17	
	1040	F-28	i	<0.100		0.360
	*	F-29	i	<0.100	•	0.360
		F-30	1	<0.100		<0.100
123.	massusy	D-13	1	<0.0002	0.0014	
123.	mercury	F-28	1	<0.0002	0.0014	<0.0020
		F-29	1	<0.0020		<0.0020
		F-30	1	<0.0020		<0.0020
		F-30	ı	\U.UUZU		₹0.0020

Table V-69 (Continued)

Pollutant	Stream <u>Code</u>	Sample Type	Source	Concentrati . Day 1	ions (mg/l) Day 2 Day 3
Toxic Pollutants (Continued)		٠.		· · · · · · · · · · · · · · · · · · ·	
a war are			•		The second secon
124. nickel	D-13	'n	<0.003	39.000	
*.	F-28	1	0.200		124
	F-29	1	0.200		272
•	F-30	1	0.200		193,000
125. selenium	D-13	1	<0.003	<0.003	
	F-28	1	<0.010	0.000	<0.010
	F-29	1 .	<0.010		0.080
	F-30	1	<0.010	. a -	<0.010

Table V-69 (Continued)

	Stream	Sample		Concentratio	Concentrations (mg/l)		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	
Toxic Pollutants (Continued)							
126. silver	D-13 F-28 F-29	1 1 1	<0.001 <0.002 <0.002	0.016		0.008 0.002	
	F-30	i.	<0.002			0.096	
127. thallium	D-13 F-28 F-29 F-30	1 1 1	<0.005 <0.005 <0.005 <0.005	0.088		<0.005 <0.005 0.050	
128. zinc	D-13 F-28 F-29 F-30	1 1 1	0.038 <0.050 <0.050 <0.050	. 3 9	•	1.86 0.240 83.2	
Nonconventional Pollutants		· · · · · · · · · · · · · · · · · · ·			***		
Acidity	D-13 F-28	1	<1 <1	185		<1	
	F-29 F-30	1 1	<1 <1	-		,500 ,000	
Alkalinity	D-13 F-28 F-29 F-30	1 1 1	180 61 61 61	<1	>8	,000 <1 <1	
Aluminum	D-13 F-28 F-29 F-30	1 1 1	<0.050 0.910 0.910 0.910	190		73.5 312 2.31	
Ammonia Nitrogen	D-13 F-28 F-29 F-30	1 1 1	<1 0.04 0.04 0.04	<1 * *		0.03 8.5 0.48	
Barium	D-13 F-28 F-29 F-30	1 1 1	0.12 0.080 0.080 0.080	2.7		0.510 0.680 0.270	

Table V-69 (Continued)

Pollutant	Stream Code	Sample Type	Source	Concentration	ons (mg/l) Day 2 Day 3
Nonconventional Pollutants	(Continued)				
Boron	D-13 F-28 F-29 F-30	1 1 1 1	<0.009 <0.100 <0.100 <0.100	1,700	5,100 3,890 53.3
Calcium	D-13 F-28 F-29 F-30	1 1 1 1	63 46.2 46.2 46.2	54	359 42.8 412
Chemical Oxygen Demand	D-13 F-28 F-29 F-30	1 1	<5 <1 <1 <1	<5	620 15,000 390

Table V-69 (Continued)

	Stream	Sample		Concentration	ons (mg/l)
Pollutant	Code	Type	Source	Day 1	Day 2 Day 3
	+ 1 0 0 0 0 1				
Nonconventional Pollutants (Con	ic indea)				
Chloride	D-13	1	34	260	330
	F-28	1	12		6.5
•	F-29	1	12 12		10,000
	F-30	1	12		10,000
Cobalt	D-13	1	<0.006	4,000	
CODATE	F-28	1	<0.100		<0.100
	F-29	1	<0.100		0.180
	F-30	1	<0.100		. 4.00
ma	D-13	1	0.45	94,000	
F]uoride	F-28	1	0.43		14
	F- 2 9	1	0.43		33
	F-30	1	0.43		3,400
_	D-13	1	0.066	4,000	
Iron	F-28	i	1.37	,	180
	F-29	1	1.37		300
	F-30	1	1.37		2,500
	D-13	1	24	6.8	
Magnesium	F-28	1	12.7	0.0	192
	F-29	i	12.7		164
	F-30	i	12.7		178
	1 50	•			
Manganese	D-13	1	0.012	240	2.50
Marigariood	F-28	1	0.080		6.50
	F-29	1	0.080		6.62
	F-30	1	0.080		174
Molybdenum	D-13	1	0.030	910	
Wo I you errain	F-28	1	<0.200		0.810
	F-29	1	<0,200		9.25
	F-30	1	<0.200		130
Oberalina	F-28	1	<0.005		<0.005
Phenolics	F-29	i	<0.005		<0.005
	F-30	1	<0.005	·	<0.005
	D-13	1	<4	<4	4
Phosphate	5-73 F-28	1	<4		. 40
	F-29	. 1	<4		150
	F-30	1	<4		<4
	, 00	•			

9.19

Table V-69 (Continued)

	Stream	Sample		Concentratio	ons (mg/l)
<u>Pollutant</u>	<u>Code</u>	Туре	Source	Day 1	Day 2 Day 3
Nonconventional Pollutants	(Continued)			w	**
	•				
Sodium	D-13	1	9.5	1,600	
	F-28	1 -	154	•	5,800
	F-29	1 .	154		5,500
	F-30	1	154		7,700
*					
Sulfate	D-13	1	53	<0.5	,
	F-28	, 1	130		3,100
	F-29	1	130		4,700
	F-30		130		46,000

Table V-69 (Continued)

	Stream	Sample		Concentration	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2 Day 3
Nonconventional Pollutants (Cor	ntinued)				
Tin	D-13	1	<0.12	<0.12	
1 144	F-28	1	<0.200		<0.200
	F-29	1	<0.200		<0.200
	F-30	1	<0.200		<0.200
Titanium	D-13	1	<0.005	3,300	
1 (Carrian	F-28	1	<0.020		2.06
	F-29	1	<0.020		36.5
	F-30	1	<0.020	*	104
Total Dissolved Solids (TDS)	D-13	1	393	200,000	
Total Bissolved Series (120)	F-28	1	320	•	36,000
	F-29	. 1	320		59,000
•	F-30	1	320		180,000
Total Organic Carbon (TOC)	D-13	1	8	130	
ibea: Organio dai son (110)	F-28	1	2	-	27
	F-29	1	2		24,000
	F-30	1	2		89
Total Solids (TS)	D-13	1	395	350,000	
10121 301103 (13)	F-28	1	330		38,000
•	F-29	1	330		75,000
	F-30	1	330		190,000
Vanadium	D-13	1	<0.005	260	•
variadirdiii	F-28	1	<0.010		0.110
	F-29	1	<0.010		0.540
•	F-30	1	<0.010		0.031
Yttrium	D-13	1	<0.005	0.35	• .
Teer rom	F-28	1	<0.020	•	<0.020
	F-29	1	<0.020		<0.020
•	F-30	, 1	<0.020	•	<0.020
Conventional Pollutants		•			
Oil and Grease	D-13	1	<1	<1	
Oll and drease	F-28	i	<1		120
	F-29	i	<1		66
	F-30	i	<1		<1
	1, 00	•	• •		

Table V-69 (Continued)

Day 3
•
0
7.87 1.21 0.89
)

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-70
NICKEL-COBALT SURFACE TREATMENT RINSE

Plant	Wate: L/kkg	Use gal/ton	Percent Recycle	Wastewat L/kkg	er Discharge gal/ton
1 9 10 * 11 12 13 145 13 167 188 190 212 183 245 26 28 3 4				1/kkg 0.00 11.06 28.82 67.83 100.1 186.3 459.9 513.2 806.5 835 1,030 1,051 1,390 2,503 3,260 4,141 4,689 19,540 27,730 34,010	
5 6 7 8 27	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR
Average	23,560	5,650	ME	24,550	5 , 889

NR - Data not reported.

^{*}Nickel forming no longer performed by this plant.

Table V-71
NICKEL-COBALT SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample _Type	Conc Source	entrations	s (mg/l) Day 2	Dov. 2
Toxic Pollutants				<u> </u>	Day 2	Day 3
5. benzidine	E-8	. 1	0.762	(A)		0.965
11. 1,1,1-trichloroethane	E-8	1	0.005			0.020
12. hexachloroethane	· E-8	1	ND			0.020
23. chloroform	E-8	1	0.015	-		ND
28. 3,3'-dichlorobenzidine	E-8	1	0.001			ND
36. 2,6-dinit-rotoluene	E-8		0.002			
37. 1,2-diphenylhydrazine	E-8	1				0.002
43. bis(2-chloroethoxy)methane			0.001	2 2 4	-	ND
•	E-8	. 1	0.001			**
The state of the s	E-8	1 .	0.001			0.001
61. N-nitrosodimethylamine	E-8	1	0.001			0.001
62. N-nitrosodiphenylamine	E-8	, 1	ND			0.196
63. N-nitrosodi-n-propylamine	E-8	1	0.024	* -		
66. bis(2-ethylhexyl) phthalate	E-8	. 1	0.001			0.023
67. butyl benzyl phthalate	E-8	•				0.002
70. diethyl phthalate	_	,1	0.001		÷	0.001
	E-8	1	**			**
71. dimethyl phthalate	E-8	1	ND .	1		0.003
81. phenanthrene		1				0.001
				1		0.001

Table V-71 (Continued)

	Stream	Sample	Conc	entration		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
114. antimony	D-10 E-2 E-8 F-7 F-8 F-9 F~10	6 2 1 4 4 3 3	<0.003 <0.005 <0.005 <0.002 <0.002 <0.002	<0.003 <0.005 <0.005 0.002 0.002 0.160 0.011	<0.003 <0.005 <0.002 0.002 0.016 0.013	<0.003 <0.005 <0.005 0.019 <0.002 <0.002 <0.002
115. arsenic	F~11 D~10	6 2	<0.002 <0.003	0.050 <0.003 <0.005	. 0.013 <0.003 <0.005	<0.002 <0.003 <0.005
	E-2 E-8 F-7 F-8 F-9	2 1 4 4 3	<0.005 <0.005 <0.005 <0.002 <0.005	<0.005 <0.005 <0.005 0.002 0.030	<0.005 <0.005 0.002 <0.005	<0.005 <0.005 0.012 <0.002 <0.005
	F-10 F-11	3 3	<0.005 <0.002	<0.005 0.050	<0.005 0.013	<0.005 <0.002
117. beryllium	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3 3	<0.0005 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	0.002 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.0005 <0.010 <0.010 <0.020 <0.010 <0.010 <0.010	0.0005 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

Table V-71 (Continued)

		Stream	Sample		entration		
Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)		•					
TOXIO TOTTUCANTO	•		and the second			:	
•		5 10		<0.002	1.2	0.28	0.39
118. cadmium		D-10 E-2	6 2	<0.050	<0.050	<0.050	<0.050
•		E-8	1	<0.050	<0.050	10.000	<0.050
	*	F-7	4	<0.050	. <0.050	<0.050	<0.050
		F-8	4	<0.050	<0.050	<0.020	<0.050
•		F-9	3	<0.050	<0.050	<0.050	<0.050
•	*	F-10	3	<0.050	<0.050	<0.050	<0.050
		F-11	[*] 3	<0.050	<0.050	<0.050	<0050
		D=-1-0		0.042	1_1	26	36
119. chromium (total)	and the description of the state of the stat	<u>D</u>	2	<0.100	<0.100	0.180	<0.100
	- ,	E-8	1	<0.100	2.15	0.100	7.90
	•	F-7	4	<0.100	9.31	5.31	18.8
		F-8	4	<0.100	8,15	7.20	8.40
	•	F-9	3	<0.100	9.18	1.98	2.72
		F-10	3	<0.100	2.86	3.76	1.76
	. ! .	F-11	3	<0.100	1.33	1.46	6.20
400 '		n :10	e ·	0.068	0.38	0.18	0.22
120. copper		D-10 E-2	6 2	0.080	0.080	0.800	0.590
		E-8	1	0.080	14.0	0.000	87.4
		E-7.	. 4	0.170	37.6	20.0	53.5
		F-8	4	0.170	2,21	3.80	4.08
•	1	F-9	3	0.170	22.4	11.5	16.5
	-	F-10	3 .	0.170	29.6	40.5	21.5
•		F-11	3	0.170	14.0	14.1	52.5
101		E-2	2.	<0.02	<0.02	<0.02	<0.02
121. cyanide (total)		E-8	2 · 1	<0.02	<0.02	-0.02	<0.02
		E-8 F-7	4	<0.02	<0.02	<0.02	<0.02
		F-8	4	<0.02	<0.02	<0.02	<0.02
		F. 9	3	<0.02	<0.02	<0.02	<002
		F-10	3	<0.02	<0.02	<0.02	<0.02
	•	F-11	· 3	<0.02	<0.02	<0.02	<0.02

Table V-71 (Continued)

	Stream	Sample		entration		
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
TOXIC POTICIAITS (CONTINUES)						
122. lead '	D-10	6	<0.084	0.26	0,10	<0.084
	E-2	2	<0.100	<0.100	<0.100	<0.100
	E-8	1	<0.100	<0.100		<0.100
	F-7	4	<0.100	0.180	<0.100	0.180
	F∸8	4	<0.100	<0.100	<0.200	<0.100
,	F-9	3	<0.100	0.340	<0.100	<0.100
	F-10	3	<0.100	<0.100	0.120	<0.100
	F-11	3	<0.100	<0.100	<0.100	<0.100
123. mercury .	D-10	6	<0.0002	0.0002	<0.0002	0.0004
	E~2	2	<0.0010	<0.0010	<0.0010	<0.0010
	E-8	1	<0.0010	<0.0010		<0.0010
	F-7	4	<0.0020	<0.0020	<0.0020	<0.0020
•	F-8	4	<0.0020	<0:0020	<0.0020	<0.0020
	F-9	3	<0.0020	<0.0020	<0.0020	<0.0020
	F-10	3	<0.0020	<0.0020	<0.0020	<0.0020
	F-11	3	<0.0020	<0.0020	<0.0020	<0.0020
124. nickel	D-10	6	<0.003	76	18	25
	E-2	2	<0.100	0.300	2.20	1.30
	E-8	1	<0.100	24.6		183
	F7	4	0.200	174	124	364
	F-8	4	0.200	7.04	12.0	19.4
	F-9	3	0.200	105	51.2	96.8
	F-10	3	0.200	107	159	97.0
	F-11	3	0.200	4.59	57.6	196
125. selenium	D-10	6	<0.003	<0.003	<0.003	<0.003
	E-2	2	<0.010	<0.010	<0.010	<0.010
	E-8	1	<0.010	<0.010		<0.010
	F-7	4	<0.010	<0.010	<0.010	· 0.010
	F-8	4	<0.010	<0.010	<0.010	<0.010
	F-9	3	<0.010	<0.010	<0.010	<0.010
	F-10	. 3	<0.010	<0.010	<0.010	<0.010
	F-11	3	<0.010	<0.010	<0.010	<0.010

Table V-71 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	centration Day 1	ns (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
126. silver	D-10 E-2 E-8	6 2	<0.001 <0.002 <0.002	<0.001 <0.002 <0.002	0.003	0.002 <0.002 <0.002
	F-7 F-8 F-9	4 4 3	<0.002 <0.002 <0.002	<0.002 <0.002 0.012 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002
	F-10 F-11	3 3	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002	<0.002 <0.002 <0.002
-127thallium	D-10	6 2	<0.003 <0.002	<0.003 <0.002	<0.003 <0.002	<0.003 0.003
	E-8 F-7 F-8	1 4 4	<0.002 <0.005 <0.005	<0.002 <0.005 <0.005	<0.002 <0.005 <0.002	<0.002 0.019 <0.005
	F-9 F-10 F-11	3 3 3	<0.005 <0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
128. zinc	D-10 E-2	6	0.038	0.16	0.071	<0.005 0.065
	E-8 F-7	2 1 4	<0.050 <0.050 <0.050	<0.050 0.370 1.01	<0.050 0.670	<0.050 1.400 2.36
	F-8 F-9 F-10	4 3 3	<0.050 <0.050 <0.050	0.200 0.810 1.70	0.220 0.400 1.38	0.270 0.230 0.790
	F-11	3	<0.050	0.310	0.370	1.44

Table V-71 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	<u>Con</u> Source	centration Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants						
Acidity	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3 3	<1 <1 <1 <1 <1 <1 <1 <1	15 <1 130 300 <1 10 130 <1	49 <1 140 <1 140 130 <1	85 <1 198 390 <1 140 190 87
Alkalinity	D-10 E-2 E-8 F-7 F-8 F-9 F-10 F-11	6 2 1 4 4 3 3 3	180 83 83 61 61 61 61	<1 47 <1 <1 <1 170 <1 <1 29	<1 50 <1 76 <1 <1	<1 51 <1 <1 79 <1 <1 <1
Aluminum	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3 3	<0.050 0.300 0.300 0.910 0.910 0.910 0.910	1.5 0.100 0.960 <0.020 0.240 2.76 0.360 0.220	0.58 0.120 <0.020 0.220 0.180 0.770	0.78 0.060 <0.020 <0.020 0.160 0.020 <0.020 <0.020

Table V-71 (Continued)

· <u>Pollutant</u>	· · .	Stream <u>Code</u>	Sample Type	Con Source	centratio Day 1	ons (mg/l) Day 2	Day 3
Nonconventional Pollutants	(Continued)				-	:	
. Ammonia Nitrogen		D-10	6	<1	0.24	0.53	0.47
•		E-2	· 2	0.22	3.3	25	6.2
• •		E-8 F-7	4	0.22	0.55	0 10	130
		F-8	4	0.04	0.26	0.18	0.16
*		F-9	3	0.04	0.89	3.2	1.4
•		F-9 F-10		0.04	14 .	13	14
•		F-11	3	0.04	50	15	6.7
		F-11	. J	0.04	0.31	0.35	1.5
Barium		D-10 ·	6	0.12	0.15	0.23	0.10
•		E-2	2	0.060	0.040	0.040	0.030
<u> </u>	<u> </u>	E-8		0.060	0.030	0,0,0	0.040
		F-7	4	0.080	0.060	0.060	0.080
		F-8	4	0.080	0.060	0,000	0.070
	1	F-9	3	0.080	0.720	0.080	0.060
•		F-10	3	0.080	0.060	0.040	0.040
		F=11	3	0.080	0.030	0.060	0.070
Boron :		D-10	6	<0.009	0.97	<0.009	<0.009
		E-2	2	0.170	0.110	<0.100	<0.100
		Ē-8	. 1	0.170	0.200	10.100	0.470
	4	F-7	4	<0.100	0.440	0.220	1.34
		F-8	4	<0.100	0.550	0.220	0.830
·		F-9	3	<0.100	0.680	0.420	0.240
		F-10	. 3	<0.100	1.32	8.82	0.510
		F-11	3	<0.100	0.110	0.460	0.840
Calcium	*	D-10	6	63	98	940	660
		E-2	1	33.0	24.0	25.9	24.5
		Ē-8	i	33.0	18.4	-0.0	18.9
	•	F-7	4	46.2	32.0	32.1	37.0
	•	F-8	4	46.2	31.9	oz.,	30.2
•		F-9	3	46.2	38.2	32.7	32.1
		F-10	3	46.2	29.5	26.5	210
A CONTRACTOR OF THE CONTRACTOR	the statement of the seal	F-11	3	46.2	13.8	21.2	30.9

Table V-71 (Continued)

	Stream	Sample	Con	centration		
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
No	1					
Nonconventional Pollutants (Continued	,					
Chemical Oxygen Demand (COD)	D-10	6	<5	12	72	50
	E-2	2	34	10	18	57
	E-8	1	34	5 0		52
	F-7	4	< 1	13	59	13
	F-8	4	<1	<1	71	27
	F-9	4	<1	97	50 77	24 19
	F-10	3	<1	36	230	82
	F-11	3	<1	110	230	02
Chloride	D-10	6	34	49	175	130
•	E-2	2	26	<0.05	22	20
•	E-8	1,	26	35		78
	F-7	4	12	26	89	26
	F-8	4	12	81	37	37 53
	F-9	3	12	47	88	52
	F-10	3	12	130	190 38	6 5 24
	F-11	3	12	10	36	24
Cobalt	D-10	6	<0.006	4.0	1.2	1.7
	E-2	2 .	<0.100	<0.100	<0.100	<0.100
	E-8	1	<0.100	<0.100		<0.100
	F-7	4	<0.100	<0.100	<0.100	0.360
	F-8	4	<0.100	<0.100	_	<0.100
	F-9	3	<0.100	0.180	<0.100	0.140
ą	F-10	3	<0.100	<0.100	<0.100	<0.100
•	F-11	3	<0.100	<0.100	.<0.100	<0.100
Fluoride	D-10	6	0.45	0.91	1.1	210
	E-2	2	0.44	0.26	0.32	0.27
	Ē-8	1	0.44	0.40		0.52
·	F-7	4	0.43	42	35	41 -
	F-8	4	0.43	3.2	5.7	7.4
	F-9	3	0.43	1.1	1.6	2.0
	F-10	3	0.43	0.85	1.2	0.74
	F-11	3	0.43	9.6	2.9	91

Table V-71 (Continued)

Polluta	<u>.</u> int	Stream Code	Sample Type	Source	entration Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Po	ollutants (Continu	ied) .	- ·				
Iron	. :	D-10 E-2	6 2	0.066	27 0.696	5.6 0.750	7.4 0.380
	•	£−8 F−7 F−8	1 4 4	1.00 1.37 1.37	31.0 37.6 3.37	35.0	32.5 117 8.12
per personal de contra como constitución de co	enancialistici in anticoloristici dell'estato dell'est	F-9 F-10	3	1.37	22.4 29.6	13.1 84.5	17.1 37.3
		F-11	3	1.37	8.30	11.3	26.4
Magnesium		D-10 E-2 E-8	- 6 2 1	24 15.8 15.8	25 11.1 6.0	18 12.4	17 11.8 6.20
		F-7 F-8	4	12.7 12.7	10.2 9.54	10.4	11.2 8.35
•		F-9 F-10 F-11	3 · 3 3	12.7 12.7 12.7	11.2 7.66 4.36	10.4 6.33 5.05	9.40 6.23 8.55

	Stream	Sample		centration		
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued	1					
Nonconventional Politicants (Continued	,					
Manganese	D-10	6	0.012	0.50	0.14	0.16
<u>-</u>	E-2	2	0.140	0.050	0.020	<0.010
	E-8	1	0.140	0.630		2.00
	F-7	4	0.080	1.46	0.740	2.62
	F-8 ⋅	4	0.080	0.620		0.710
	F-9	3	0.080	1.99	0.570	0.920
	F-10	3	0.080	1.90	2.28	1.65
	F-11	3	0.080	34.0	9.93	27.5
Molybdenum -	D-10	6	0.030	9.6	1:7	13
mo typacham	E-2	2	<0.200	<0.200	<0.200	<0,200
	E-8	1	<0.200	<0.200	T.	<0.200
	F-7	4	<0.200	1.50	0.670	2.96
	F-8	4	<0.200	<0.200		0.270
	F-9	3	<0.200	1.20	0.250	<0.200
	F-10	3	<0.200	<0.200	<0.200	<0.200
,	F-11	3	<0.200	<0.200	<0.200	<0.200
Phenolics	E-2	1	0.014	<0.005	0.082	0.008
Thend Tes	Ē-8	i	0.014	0.016		0.015
	F-7	i	<0.005	0.025	<0.005	<0.005
•	F-8	1	<0.005	<0.005	0.009	<0.005
	F-9	1.	<0.005	<0.005	<0.005	<0.005
	F-10	1	<0.005	0.045	0.025	<0.005
	F-11	1	<0.005	<0.005	0.019	<0.005
Phosphate	D-10	6	<4	<4	9	<4
Modphate	E-2	2	16	8	. 6.6	16
	E-8	ī	16	<4	· - · -	<4
•	F-7	4	<4	<4	<4	<4
•	F-8	4	<4	10	<4	<4
	F-9	3	<4	<4	<4	<4
	F-10	. 3	<4	<4	<4	<4
•	F-11	3	<4	<4	<4	<4
-						

Table V-71 (Continued)

			Stream	Sample	Con	Concentrations (mg/l)			
Pol	lutant		Code	Type	Source	Day 1	Day 2	Day 3	
Nonconventiona	1 Pollutant	s (Continued)	•	-				
Sodium			D-10	6	9.5	30	520	330	
ood rom;			E-2	2	33.0	20.0	26.6	27.0	
	,		E-8	1	33.0	58.0		133	
	•		F~7	. 4	154	28.0	28.6	43.0	
		•	F-8	4	154	175		115 .	
•			F-9	3	154	35.0	49.0	61.0	
			F-10	3	154	157	184	82.0	
			F11	. 3	154	107.	134	184	
productions and the second sec		have given a region of the control o			•		•		
Sulfate			D-10 ·	6	53 .			,200	
			E-2	2 .	170	140	260	210	
			E-8	1 .	170	700 ·		,300	
•			F-7	4	130	250	200	260	
			F-:8	4	130	170 .	150	130	
			F-9	3	130	290	220	320	
			F-10	3	130	520 ·	770	400	
			F-11	3	130	57	93	130	
Tin		•	D-10	6	<0.12	1.7	1.1	1.6	
1 (1)			E-2	2	<0.200	<0.200	<0.200	<0.200	
			E-8	1	<0.200	<0.200		<0.200	
•			F-7	4	<0.200	<0.200	<0.200	<0.200	
			F-8	4	<0.200	<0.200		<0.200	
		-	F-9	3	<0.200	<0.200	<0.200	<0.200	
			F~10	3	<0.200	<0.200	<0.200	<d.20d< td=""></d.20d<>	
			F-11	3	<0.200	<0.200	<0.200	<0.200	
-				3	. 10.200	10.100	10.200		
Titanium	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	• •	D-10	6	<0.005	12	3.6	12	
			E-2	2	<0.020	<0.020	0.020	<0.020	
			E-8	1	<0.020	0.090		0.150	
			. F−7	4	<0.020	0.970	0.500	1.54	
			F-8	4	<0.020	0.160		0.290	
			F-9	3	<0.020	3.31	0.290	0.290	
	•	,	F-10	3	<0.020	0.370	0.290	0.120	
			F-11	· 3	<0.020	0.090	0.140	. 0.290	

Table V-71 (Continued)

Nonconventional Pollutants (Continued) Total Dissolved Solids (TDS)	3
E-2 2 330 270 180 330 E-8 1 330 920 2,000 F-7 4 320 1,240 860 2,100 F-8 4 320 670 490 560 F-9 3 320 700 670 800 F-10 3 320 1,300 1,800 870 F-11 3 320 610 730 1,400	
E-8 1 330 920 2,000 F-7 4 320 1,240 860 2,100 F-8 4 320 670 490 560 F-9 3 320 700 670 800 F-10 3 320 1,300 1,800 870 F-11 3 320 610 730 1,400	
F-7 4 320 1,240 860 2,100 F-8 4 320 670 490 560 F-9 3 320 700 670 800 F-10 3 320 1,300 1,800 870 F-11 3 320 610 730 1,400	
F-8 4 320 670 490 560 F-9 3 320 700 670 800 F-10 3 320 1,300 1,800 870 F-11 3 320 610 730 1,400	
F-9 3 320 700 670 800 F-10 3 320 1,300 1,800 870 F-11 3 320 610 730 1,400	
F-10 3 320 1,300 1,800 870 F-11 3 320 610 730 1,400	
F-11 3 320 610 730 1,400	
Total Organic Carbon (TOC) D-10 6 8 38 46, 13	
E-2 2 <1 <1 <1 <1	
n E−8 1 <1 10 3.9	
F-7 4 2 3.8 2 4	
F-8 4 2 10 3 4	
F-9 3 2 3 4 4	
F-10 3 2 9 23 5	
F-11 2 2 45 35	

Table V-71 (Continued)

<u>Pollutant</u>		Stream Code:	Sample Type	Con Source	centratio Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutar	nts (Continue	d)	•				•
Total Solids (TS)		D-10	6	395	900 5	,700 4	, 200
	•	E-2	2	380	250	240	330
		E-8	1.	380	930		,070
		F-7	4		,300		, 200
		F-8	4	330	820	530	570
		F-9	3		,510		,030
		F-10	3 .				,110
,	and the second of the second second section of the second section of the second section sectio		3	330	860	950 1	,600
Vanadium ·		D-10	. 6	0.016	0.52	0.12	0.26
		E-2	2	<0.010	<0.010	<0.010	<0.010
		E-8	1	<0.010	<0.010		<0.010
	•	F-7	4	<0.010	<0.010	<0.010	0.015
	A Company of the State of the Company of the Compan	F - 8	4	<0.010	<0.010		0.022
		F~9	3	<0.010	0.020	<0.020	<0.020
		F-10	3	<0.020	<0.010	<0.010	<0.010
		F-11	3	<0.010	<0.010	<0.010	<0.010
Yttrium	,	D-10	6	<0.002	0.015	0.004	0.009
•		E-2	2	<0.020	<0.020	<0.020	<0.020
		E-8	1 .	<0.020	<0.020		<0.020
		F-7	4	<0.020	<0.020	<0.020	<0.020
	1	F∸8	4	<0.020	<0.020		<0.020
		F-9	3	<0.020	<0.020	<0.020	<0.020
	- 4	F-10	3	<0.020	<0.020	<0.020	<0.020
. •		F-11	3	<0.020	<0.020	<0.020	<0.020
Conventional Pollutants							
_Oil_and Grease		D~10····		<-1		. 5	3
		E-2	†	<1	<1	3	<1
		E-8	1 1	<1	3		<1
		F-7	1	<1	7.8	. 3	3
		F-8	1 4	·<1	7.0	5	< 1
		F-9	1	<1	17	< 1	< 1
		F-10	11.	< 1	5.5	14	<1
	ř	F-11	1	<1	130	43	<1

Table V-71 (Continued)

Pollutant	Stream Code	Sample Type	Con Source	centratio	ons (mg/1) Day 2	Day 3
Conventional Pollutants (Continued)						
	•					
Total Suspended Solids (TSS)	D-10	6	<1	100	760	150
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	E-2	2	29	4	11	3.3
	E-8	1	29	7.4		7.3
	F-7	4	22	200	33	100
•	F-8	4	22	110	40	96
	F-9	3	2 2	670	35	19
•	F-10	3.	22	80	12	6
•	F-11	3	22	140	90	9
pH (standard units)	D-10	6	7.14	3.90	3.40	3.40
	E-2	2	6.71	6.39	7.35	7 16
	E-8	1	6.71	2.71		2.74
	F-7	4	6.64	2.79	3.36	2.41
	F-8	4	6.64	8.70	7.21	7.78
	F-9	3	6.64	3.39	3.28	2.75
	F-10	3	6.64	2.85	2.33	2.59
	F-11 ·	3	6.64	5.69	5.24	3.03

**Present, but not quantifiable.

- 1. The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 13-22, 24-27, 29-35, 38-42, 44-54, 56-60, 64, 65, 68, 69, 72-80, and 82-88.
- 2. Note that stream code Y-4 also appers on the titanium surface treatment rinsewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.
- 3. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-72
NICKEL-COBALT AMMONIA RINSE

Plant	Wastewater L/kkg	Discharge* gal/ton		
2 1 2	11.66 12.84 19.76	2.80 3.08 4.74		
Average	14.75	3.54		

^{*}Volume of spent rinse per mass of nickel-cobalt.

Table V-73
NICKEL-COBALT AMMONIA RINSE
RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Toxic Po	ollutants			
11. 1.	,1,1-trichloroethane	F-19	1	0.014 ND
44. me	ethylene chloride	F-19	1	0.002 0.950
55. na	aphthalene	F-19	1	0.001 ND
68. di	i-n-butyl phthalate	F-19	1	ND 0.028
114. ar	ntimony	F-19	1	<0.002 0.020
115. ar	rsenic	F-19	1	<0.005 0.160
117. be	eryllium	F-19	1	<0.010 <0.010
118. ca	admium	F-19	1	<0.050 <0.050
119. ch	nromium (total)	F-19	1 .	<0.100 108
120. co	opper	F-19	. 1	0.170 54.0
121. cy	yanide	F-19	. 1	<0.02 <0.02
122. 16	ead	F-19	1	<0.100 0.540
123. me	ercury	F-19	1	<0.0020 <0.0020
124. n	ickel	F-19	1	0.200 456
125. se	elenium	F-19	1	<0.010 0.070
126. s	ilver	F-19	1	<0.002 0.020
127. tł	hallium	F-19	1	<0.005 <0.005
128. z	inc	F-19	1 .	<0.050 32.0
Nonconve	entional Pollutants			
Acidity		F-19	1	<1 <1
Alkalin	ity	F-19	1	61 1,500
Aluminur	m	F-19	1	0.910 160

Table V-73 (Continued) .

NICKEL-COBALT AMMONIA RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)) -	•	
Ammonia Nitrogen	F-19	1	0.040 <0.01
Barium	F-19	1	0.080 <0.020
Boron	F-19	1	<0.100 5.74
Calcium	F-19	1	46.2 94.4
Chemical Oxygen Demand (COD)	F-19	1	<1 840
Chloride	.F=19	1 .	12 6,500
Cobalt	F-19	1	<0.100 <0.100
Fluoride	F-19	1	0.43 1.5
Iron	F-19	1	1.37 592
Magnesium	F-19	1	12.7 17.4
Manganese	F-19	1	0.080 50.7
Molybdenum	F-19	. 1	<0.200 11.8
Phenolics Phenolics	F-19	1	<0.005 0.011
Phosphate	F-19	. 1	<4 <4
Sodium	F-19	. 1	154 770
Sulfate	F-19	1	130 33,000
Tin	F-19	1	<0.200 <0.200
Titanium	F-19	1 .	<0.020 0.540
Total Dissolved Solids (TDS)	F-19	1	320 32,000
Total Organic Carbon (TOC)	F-19	1	2 16 -

Table V-73 (Continued)

NICKEL-COBALT AMMONIA RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Inc, 3
Nonconventional Pollutants (Continued)	•	4	
Total Solids (TS)	F-19	1	330 100,000
Vanadium	F-19	1	<0.010 0.070
Yttrium	F-19	1	<0.020 <0.020
Conventional Pollutants		÷	
Oil and Grease	F-19	1	<1 <1 .
Total Suspended Solids (TSS)	F-19	1	22 9,000
pH (standard units)	F-19	1	6.64 7.90

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-67, and 69-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-74
NICKEL-COBALT ALKALINE CLEANING SPENT BATHS

1.		
Plant	Wastewater L/kkg	Discharge** gal/ton
		J /
1*	1.20	0.29
1*	2.00	0.48
2 3	2.64	0.63
	4.00	0.96
4 ,	4.08	0.98
5	10.7	2.56
4	12.84	3.08
4	33.91	8.13
6	37.91	9.09
4	56.68	13.59
7	90.61	21.73
4	114.8	27.52
8	131.0	31.40
4	196.7	47.17
9	213.3	51.15
10	NR	NR
11	NR	NR
12	NR	NR
13	NR	NR
14	NR	NR
15	NR	NR
16	NR	NR
17	NR	NR
Average	60.82	14.58
•		

NR - Data not reported

^{*}Nickel forming no longer performed at this plant. **Volume of spent bath per mass of nickel cleaned.

640

Table V-75

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample	Com	untration		
	TOTTOCATE	_coue_	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants				-		
11.	1,1,1-trichloroethane	F-12	['] 1	0.014	ND		
44.	methylene chloride	F-12	1 .	0.002	3.550		
55.	naphthalene	D-14 F-12	1 1	ND 0.001	ND	ND	
		F-14 F-27	1	0.001	ND.	ND ND	
••							
66.	bis(2-ethylhexyl) phthalate	D-14 F-12	1	0.009 ND	ND.	ND	
		F-14 F-27	. 1	ND ND		ND ND	
114.	antimony	D-14	1	<0.003		<0.003	
		F-12 F-14	1 1	<0.002 <0.002	0.043	0.200	
		F-27	i	<0.002		0.020	
115.	arsenic	D-14	1	<0.003		<0.003	•
		F-12 F-14	1 1	<0.005 ·<0.005	0.180	<0.005	
		F-27	1 .	<0.005		0.070	
117.	beryllium	D-14 F-12	1	<0.0005		<0.0005	-
		F-14	1 1	<0.010 <0.010	<0.010	<0.010	
		F-27	1	<0.010		<0.010	
118.	cadmium	D-14 F-12	1	<0.002 <0.050	40.050	0.084	
		F-14	i	<0.050	<0.050	<0.050	
		F-27	1	<0.050		<0.050	
119.	chromium (total)	D-14	1	0.042		1.0	
		F-12 F-14	1 1	<0.100 <0.100	3.59	0.410	
		F-27	. 1	<0.100		38.0	

Table V-75 (Continued)

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

		Stream Sample		Concentrations (mg/l)			
	<u>Pollutant</u>	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
	Toxic Pollutants (Continued)	•	•				
		0.14					
	120. copper	D-14	. 1	0.068		0.12	
		F-12 F-14	1	0.170	39.2	4.51	
		F-14 F-27	1 1	0.170 0.170		0.210	
		, 2,	ı	0.170		0.210	
	121. cyanide (total)	F-12	1	<0.02	<0.02		
		F-14	1	<0.02		<0.02	
	• *	F-27	1	<0.02		<0.02	
	122. lead	D-14	1	<0.084		<0.084	
		F-12	1	<0.100	0.560		in a record to the contract of
	The state of the s	F-14	1	<0.100		<0.100	
	` .	F-27	1	<0.100		<0.100	
	123. mercury	D-14	· 1	<0.0002	-	<0.0002	-
	, 20, 110, 021)	F-12	i	<0.0020	<0.0020	-0,0002	-
	•	F-14	i	<0.0020	0.0020	<0.0020	
		F-2.7	1	<0.0020	-	<0.0020	
	124. nickel	D-14	1	<0.003		4.8	
*	124. HICKET	F-12	1	0.200	122	4.0	
		F-14	1	0.200	122	16.6	
		F-27	1 .	0.200		0.100	•
	105	D- 14		40.000		40.000	
	125. selenium	D-14 F-12	1	<0.003	0.000	<0.003	
		F-14	1	<0.010 <0.010	0.080	<0,010	
	0 	F-27	1	<0.010		0.220	
		1-21	Ι,	<0.010		U.220	-
	126. silver	D-14	1	<0.001		<0.001	
		F-12	1	<0.002	0.005		
		F-14 F-27	1	<0.002 <0.002		<0.002 _<0002	•
	The second secon						
	127. thallium	D-14	1 5	<0.003	- 1 N	0.006	
		F-12	1	<0.005	<0.005		
	/	F-14	1	<0.005		<0.005	
٠		F-27	1	<0.005		<0.005	
	128, zinc	D-14	1	0.038		0.85	•
		F-12	1	<0.050	3.90	•	
		F-14	1	<0.050	<i>\$</i>	0.870	
		F-27	1	<0.050		0.050	

Table V-75 (Continued)

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants			
4 - 1 - 1 A A	D~14	1	<1 190
Acidity	F~12	1	<1 <1
	F-14	1	<1 <1
	F-27	1	<1 <1
Alkalinity	D-14	1	180 <1
Alkalility	F-12	1	61 3,800
	F-14	1	61 29,000
	F-27	1	61 150,000
Aluminum	D-14	1	<0.050 1.1
ATUIRTIUM	F-12	1	0. 9 10 5.90
	F-14	1	0.910 1.38
	F-27	1	0.910 11.9
Ammonia Nitrogen	D-14	1	<1 0.33
Allimottra itterogen	F-12	1	0.04 1.4
	F-14	1	0.04 < 0.01
•	F-27	1	0.04 <0.01
Barium	D-14	1 -	0.12 0.22
Dai idili	F-12	. 1	0.080 0.470
	F-14	1	0.080 0.280
	F-27	. 1	0.080 <0.010
Boron	D-14	1	<0.009 1.4
	F-12	1	<0.100 112
	F-14	1	<0.100 88.0
•	F-27	1	<0.100 131

Table V-75 (Continued)

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>		Stream Code	Sample Type	. Concentrat		Day 3
	Nonconventional Pollutants (Con	ntinued)				•	-
	Calcium		D-14 F-12 F-14 F-27	1 1 1	63 46.2 206 46.2 46.2	270 37.3 0.980	
-	Chemical Oxygen Demand (COD)		D-14 F-12 F-14 F-27	1 1 1	<5 <1 63,000 <1 <1	250 3,200 <1	
	Chloride		D-14	1 1	34	. 66	
		: .	F=12 F-14 F-27	1	-12930 12 12	58 1,160	-
))	Cobalt		D-14 F-12 F-14 F-27	1 1 1	<0.006 <0.100 <0.100 <0.100	1.0 <0.100 <0.100	
	Fluoride		D-14 F-12 F-14 F-27	1 1 1	0.45 0.43 7.7 0.43 0.43	1.3 2.1 1.9	
	Iron	:	D-14 F-12 F-14 F-27	1 1 1 1	0.066 1.37 304 1.37 1.37	8.3 3.42 0.100	·
	Magnesium		D-14 F-12 F-14 F-27	1	24 12.7 106 12.7	40 10.2 -0.550	
•	Manganese		D-14 F-12 F-14 F-27	1 1 1 1	0.012 0.080 11.0 0.080 0.080	0.62 1.67 7,440	
•	Molybdenum		D-14 F-13 F-14 F-27	1	0.030 <0.200 0.940 <0.200 <0.200	1.2 <0.200 0.970	

Ω Ω

NICKEL-COBALT ALKALINE CLEANING SPENT BAHRS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)		
Phenolics	F-12 F-14 F-27	1 1 1	<0.005
Phosphate	D-14 F-12 F-14 F-27	1 1 1	- <4 7,000 <4 1,800 <4 <4 <4 <4
Sodium	D-14 F-13 F-14 F-27	1 1 1 1	9.5 270 154 3,200 154 1,640 154 49,000
Sulfate	D-14 F-12 F-14 F-27	1 1 1	53 400 130 2,100 130 7,900 130 2,500
Tin	D-14 F-13 F-14 F-27	1 1 1	<0.12
Titanium	D-14 F-12 F-14	1 1 1	<0.005
and the second	F-27	3	<0.020 <0.020
Total Dissolved Solids (TDS)	D-14 F-12 F-14 F-27	1 1 1	393 7,000 320 36,000 320 590,000 320 150,000
Total Organic Carbon (TOC)	D-14 F-12 F-14 F-27	1 1 1	8 76 2 15,000 2 770 2 26
Total Solids (TS)	D-14 F-12 F-14 F-27	1 1 1	395 7,600 330 43,000 330 630,000 330 260,000
	, 21	•	

	Stream	Sample	Concentrations (mg/l)			
Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)						
Vanadium	D-14	1	0.016		0.050	
•	F-12	i	<0.010	<0.010	0.030	
	F-14	1	<0.010	0.0.0	<0.010	
	F-27	1	<0.010		<0.010	
Yttrium	D-14	1	<0.002		<0.002	
	F-12	1	<0.020	<0.020	.0.002	
	F-14	1	<0.020		<0.020	
	F-27	1	<0.020		<0.020	
Conventional Pollutants				•		,
Oil and Grease	D-14	1	<1		22	
	F-14	i	<1	4	49	
•	F-27	1	<1		170	
Total Suspended Solids (TSS)	D-14	. 1	<1	• .	640	:
	F-12	1 .	22 4,0	ınn	. 640	
	F-14	i 1	22	700	780	
•	F-27	1	22		920	
pH (standard units)	D-14	1	7.14		2.30	
	F-12	1	6.64	8.45	2.30	-
	F-14	. 1	6.64	JU	9.52	
	F-27	1	6.64		12.80	
		1				

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-65, and 67-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-76
NICKEL-COBALT ALKALINE CLEANING RINSE

77 au t	Water	Use gal/ton	Percent Recycle	Wastewat L/kkg	ter Discharge gal/ton
Plant	L/kkg	gai/ton	recycre		9/
3	168.4	40.38	<100	0.00	0.00
10*	6.95	1.67	0.0	6.95	1.67
4	30.29	7.26	0.0	30.29	7.26
10*	96.23	23.08	0.0	96.23	23.08
11	976.7	234.2	0.0	977	234.2
5	2,140	514 ,	0.0	2,140	514
12	2,325	557.7	0.0	2,325	557.7
13	2,778	666.1	0.0	2,778	666.1
14	2,843	681.8	0.0	2,843	681.8
12	7,107	1,704	0.0	7,107	1,704
11	7,149	1,714	0.0	7,149	1,714
15	55,180	13,230	0.0	55,180	13,230
16	NR	NR	0.0	NR	NR
16	NR	NR	0.0	NR	NR
17	NR	NR	0.0	NR	NR
	NR	NR	NR	NR	NR
1 2 6 7	NR	NR	NR	NR	NR
6	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR
8	NR	NR	NR	NR	NR
8 9	NR	NR	NR	NR .	NR
18	NR	NR	NR	NR	NR
Average	6,733	1,615	•	7,330	1,758

NR - Data not reported

^{*}Nickel forming no longer performed by this plant.

Table V-77

NICKEL-COBALT ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	0-11		Stream	Sample	Concentrations (mg/l)			
		<u>Pollutant</u>	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
	Toxic	Pollutants	-		,			
	11.	1,1,1-trichloroethane	F-13	1.	0.014	. ND		
	44.	methylene chloride	F-13	1	0.002	0.027		
	55.	naphthalene	D-12 D-15	1 1	ND ND ,	ND .	ND	
	•	. •	F-13 F-15	3	0.001 0.001	ND	ND	ND
	58.	4-nitrophenol	D-1.2	1	, ND.	ND		
			D-15 F-13 F-15	1 3 3	ND ND ND	0.003	ND ND ND	ND
۲ / y	65.	pheno l	D-12 D-15	1 1	ND ND	0.004	0,002	
			F-13	. 3	ND	0.024	·	0.012
	66.	bis(2-ethylhexyl)phthalate	D-12 D-15 F-13	1	0.009	0.007	ND	
			F-15	3 3	ND ND	ND .	ND .	ND
	114.	antimony	D-12 D-15	. 1	<0.003 <0.003	<0.003		<0.003
			F-13 F-15	3	<0.002 0.0002	0.002	0.0021	<0.002
	115.	arsenic	D-12 D-15	1	<0.003 <0.003	<0.003	0.003	
		on the second control of the second control	F-13 F-15	3 3	<0.005 <0.005	0.0015		<0.005 <0.005
	117.	beryllium	D-12 D-15	1	<0.0005 <0.0005	0.001	<0.0005	
		٠	F-13 F-15	3	<0.010	<0.010	<0.0005 <0.010	<0.010
:	118.	cadmium	D-12 D-15	1	<0.002 <0.002	0.002	<0.008	:
	-		F-13 F-15	: 3 3	<0.050 <0.050	<0.050	2.000	<0.050 <0.050

Table V-77 (Continued)

NICKEL-COBALT ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
	-				==1_ =	EEL_S
Toxic Pollutants (Continued)						
119. chromium (total)	D-12	1	0.040	0.10		
	D-15	1	-<0.068		0.17	
	F-13	3	<0.100	<0.100		0.270
	F-15	3	<0.100		<0.100	
120. copper	D- 12	1	0.068	0.036		
	D-15	1	0.068		0.023	
	F-13	3	0.170	0.120		1.50
	F-15	3	0.170		0.400	
		_	.0			
121. cyanide (total)	F-13	1	<0.02	<0.02		<0.02
-	F-15	1	<0.02		<0.02	
122. lead	D-12	•	<0.004	0.16		
122. (eau	D-12 D-15	!	<0.084	0.16	40 004	
	_	1	<0.084	40 400	<0.084	-0 400
	F-13	3 3	<0.100	<0.100		<0.100
	F-15	3	<0.100			<0.100
123. mercury	D-12	1	<0.0020	<0.0020		
120. mercury	D-15	1	<0.0020	,u.uu20	<0.0002	
•	F-13	3	<0.0002	<0.0020	\U.000Z	:
•		ა 3		\U.002U		<0.0020
	F-15	3	<0.0020			<0.0020
·						

Table V-77 (Continued)

NICKEL-COBALT ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)		•		•		
		-	-	•	-	
104	D-12	,	<0.003	0.24	2.4	
124. nickel	D-15	1	<0.003	0.24	0.050	
	F-13	3	0.200	0.280	0.050	5.58
	F-16	3	0.200	0.200		1.08
125. selenium	D-12	6 .	<0.003	<0.003	0.003	
720. Sevenium	D-1	i i	<0.003	-0.000	0.003	
	F-13	3	<0.010	<0.01.0		<0.010
	F-15	3	<0.010		<0.010	
126. silver	D <u>~</u> 1.2	1	<0.001	_<000-1		
the resolution results at a larger to the second se	D-15	1	<0.001		<0.001	
	F-13	3	<0.002	<0.002		<0.002
	F-15	3	<0.002	-	<0.002	
			10.000			
127. thallium	D-12	1	<0.003	<0.003	<0.003	-
	D-15 F-13	3	<0.003 <0.005	<0.005	<0.003	<0.005
	F-15	3	<0.005	\0.00s	<0.005	\U.UU5
	1 13		10.005		٠٥.٥٥٥	
128. zinc	D-12	. 1	0.038	0.071		
	D-15	1	0.038		0.13	
	F-13	3	<0.050	0.050		0.110
	F-15	3	<0.050		0.240	
Nonconventional Pollutants						
		ŕ				
Acidity	D-12	1	<1	< 1		•
•	D-15	1	< 1		<1	
	F-13	3 .	<1	<1		<1.
	F-15	· 3	< 1		< 1	•
Alkalinity	D-12		1 8.0.	1 1.0		
The second secon	D-15	1	180		170	
	F-13	3	61	46		52
	F-15	, 3	61	1	170	
Aluminum .	D-12	1 40	<0.050	0.052	-	
	D-15	. 1	<0.050		<0.050	
	F-13	3	0.910	0.420		0.480
	F-15	3	0.910			0.100

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))				i.	
Ammonia Nitrogen	D-12 D-15 F-13 F-15	<1 1 3 3	<1 0.04 0.04	0.62	0.19	0.03
Barium	D-12 D-15 F-13 F-15	1 1 3 3	0.12 0.12 0.080 0.080	0.13 0.030	0.15 0.12 0.040	0.070
Boron	D-12 D-15 F-13 F-15	1 1 3 3	<0.009 <0.009 <0.100 <0.1002	0.094	0.12	0.260 4.07
Calcium	D-12 D-15 F-13 F-15	1 1 3 3	40 63 46.2 46.2	22.7	61	32.8 29.9
Chemical Oxygen Demand	D-12 D-15 F-13 F-15	1 1 3 3	<5 <5 <1 <1	<5 160	<5 540	160
Chloride	D-12 D-15 F-13 F-15	1 1 3 3	34 34 12 12	50 34	54 32	31
Cobalt	D-12 D-15 F-13 F-15	1 1 3 3	<0.006 <0.006 <0.100 <0.100	0.16	0.021	<0.100 <0.100
Fluoride	D-12 D-15 F-13 F-15	1 1 3 3	0.45 0.45 0.43 0.43	0.61	1.8	1.0
Iron	D-12 D-15 F-13 F-15	1 1 3 3	0.066 0.066 1.37 1.37	0.38	0.47	3.24 0.260
		•				

Table V-77 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

			•	Stream	Sample	Cond	centration	s (mg/1)	
	Po 1 1	utant	•	Code	Туре	Source	<u>Day 1</u>	Day 2	Day 3
	Nonconventional	Pollutants	(Continued)				•		
	Nonconventional	FOTTCEATES							
	Magaaaium			D-12	1	24	30.		-
	Magnesium			D-15	i	24	30,	23	
		, .		.F~13	3	12.7	8.04		11.1
	•	•	•	F-15.	3	12.7		8.45	
	Manganese	•		D-12	i	0.012	0.034		
	Manganese .		•	D-15	1	0.012	0.00	0.023	
		*		F-13	3	0.080	0.030		0.130
			•	F-15	, . 3	<0.080			0.200
- 1	-Molybdenum	and a state of the state of the state of the state of	and any as a second second second second second	D-12	1	0.030	0.093		
				D-15	i	0.030		0.098	
				F-13	3	<0.200	<0.200		<0.200
	•			F-15	3	<0.200	•	<0.200	•
	Phenolics			F-13	1	<0.005	<0.005		0.095
				F-6	1 .	<0.005	0.012	0.012	<0.005
	Phosphate			D-12 :	1	<4	<4		•
		•		D-15	1	<4		<4	
-				F-13	3	<4	12		<4
		-		F-15	3	<4	1,	200	
	Sodium			D-12	1 ·	9.5	14		
				D-15 '	1	9.5		13	
				F-13	3	154	27.6		32.8
			•	F-15	3	154		840	•
	Sulfate	٠,		D-12	1	53	5 9		
				D-15	1 -	53		53	
				F-13	_. 3	130	190		110
		y a manager of the contract		F1.5	3	.1,30	The second second second	340	
	Tin		` † .	D-12	1	<0.12	0.17		
	•			D-15	1	<0.12		<0.12	
				F-13	3 .	<0.200			<0.200
				F-15	3	<0.200	•	<0.200	•
	Titanium			D-12	1	<0.005	0.11		
				D-15	-1	<0.005		0.360	0.040
			P.	- F-13	3	<0.020	0.020	0.000	0.040
				F-15	3	<0.020		0.090	

Table V-77 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	Centrations Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Total Dissolved Solids (TDS)	D-12	1	393	400		
(012) 510501105 501105 (150)	D-15	1	393	;	300	
	F-13	3	320	320		315
	F-15	3	320	2,	60 0	
Total Organic Carbon (TOC)	D-12	1	8	3		
intal organic carbon (100)	D-15	i	Ř	_	5	
	F-13	3	2	25	•	34
•	F-15	3	8 8 2 2	20	82	
Total Solids (15)	D-12	1	395	390		
10001 001100 (10)	D-15	1	39 5			570
	F-13	3	330	830		460
	F-15	3	330	2,	70 0	
Vanadium	D-12	1	0.016	0.062		
Variau i uiii	D-15	i	0.010		0.028	
* .	F-13	3	<0.010	<0.010		<0.010
`	F-15	3	<0.010		0.010	
		_	10.000	0.000		
Yttrium	D-12	1	<0.002	0.008	0.000	
	D-15	1	<0.020	10.000	0.006	<0.000
	F-13	3	<0.020	<0.020		<0.020
	F-15	3	<0.020			<0.020

Table V-77 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Source	entratio Day 1	ns (mg/l Day 2	Day 3
Conventional Pollutants		•				•
Oil and Grease	D-12 D-15 F-13 F-15	1 1 1	<1 <1 <1 <1	3 6.5	<1 2	26
Total Suspended Solid (TSS)	D-12 D-15	1	<1	5		
	F-15	3 3	22 22	8.6	61	190
pH (standard units)	D-1.2 D-15 F-13 F-15	1 1 3 3	7.14 7.14 6.64 6.64	8.14 7.48	7.00	6.65 13

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- Note that stream code Y-6 also appears on the titanium molten salt rinsewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-78
NICKEL-COBALT MOLTEN SALT RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	33.40	8.01	P	33.40	8.01
2	198.1	47.50	P	198.1	47.50
3	513.2	123.1	0.0	513.2	123.1
4	1,465	351.2	0.0	1,465	351.2
5	2,535	607.8	0.0	2,535	607.8
4	6,379	1,530	0.0	6,379	.,530
4	23,620	5,664	0.0	23,620	6,664
б	16,120	3,865	0.0	16,120	8,865
		•			
Average	6,358	1,525		6,358	.,525

P - Periodic discharge

Table V-79

NICKEL-COBALT MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA

		Pollutant		Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/l) Day 2	Day 3
	Toxic	: Pollutants							
-				5.0		-0.00			
	114.	antimony	•	D-9	6	<0.003	<0.003	<0.003	<0.003
				E-5 F-6	1	<0.005	40 000	0.000	0.050
		•		F~6	3	<0.002	<0.002	0.002	<0.002
	115.	arsenic		D-9	6	<0.003	<0.003	<0.003	<0.003
				E-5	6	<0.005			0.260
			•	F-6	3	<0.005	<0.005	<0.005	<0.005
				Б. О		.0.000	0.00.		
	117.	beryllium		D-9	6	<0.0005	0.001	0.001	0.001
				E-5	1	<0.010			<0.010
-1		A DE CO.		F-6	3	<0.010	<0.010	<0.010	<0.010
	118.	cadmium		D-9	6 ·	<0.002	0.14	0.075	0.22
				E-5	1	<0.050	-		<0.050
1		•		F-6	. 3	<0.050	<0.050	<0.050	0.050
	119.	chromium (total)	,	D-9	. 6	0.042	49	66	36
•		cm om am (total)		E-5	. 0	<0.100	43		100
				F-6	3	<0.100	11.9	10.4	36.3
				. 0	0	VO. 100	11.5	10.4	30.3
	120.	copper	•	D-9	6	0.068	0.35	0.26	0.32
				E-5	1	0.080			8.05
				F-6	3	0.170	0.650	0.080	0.220
	121,	cyanide (total)		E~5	. 1	<0.02			<0.02
		(1014)		F-6	i	<0.02	<0.02	<0.02	<0.02
		•				,			
	122.	lead		D-9	6	<0.084	<0.084	0.089	<0.084
				E-5	1	<0.100			<0.100
				F-6	3	<0.100	<0.100	<0.100	<0.100
	123.	mercury .		D-9	´ 6	<0.0002	<0.0002	<0.0002	<0.0002
		and the second of the second o		E-5	1	<0.0010	- 0.000Z	.0.0002	<0.0012
				. F-6	3	<0.0020	<0.0020	<0.0020	<0.0010
					-			0.0000	

Table V-79 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

	Stream Sample Concent							
Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3		
Toxic Pollutants (Continued)								
124. nickel	0-9	6	<0.003	10	5.3	14		
	E-5	1	<0.100			<0.100		
	F-6	3	0.200	0.500	0.380	1.64		
125. selenium	D-9	6	<0.003	<0.003	<0.003	<0.003		
	E-5	1	<0.010			0.090		
	F-6	3	<0.010	<0.010	D.012	<0.010		
126. silver	D-9	6	<0.001	0.008	0.010	0.005		
•	E-5	1	<0.002			<0.002		
	F-6	3	<0.002	<0.002	<0.002	<0.002		
127. thallium	D-9	6	<0.003	0.013	0.006	0.004		
	E-5	1	<0.002			0.019		
	F-6	3	<0.005	<0.005	<0.005	<0.005		
128. zinc	D-9	6	0.038	0.26	0.40	0.21		
-	E-5	- 1	<0.050			0.390		
	F-6	3	<0.050	0.050	<0.050	0.020		
Nonconventional Pollutant's								
Acidity	D-9	6	<1	<1	<1	< 1		
	E-5	1	<1			< 1		
	F-6	. 3	<1 .	<1-	<1	<1 .		
Alkalinity	D-9	6	180 1	,600 1	,980 1	,140		
•	E-5	1	83		170	,000		
	F-6	3	61	550	740 1	,340		
Aluminum	D-9	6	<0.050	0.37	0.37	0.30		
	E-5	1	0.300			5.90		
•	F-6	3	0.910	0.420	0.220	0.300		

Table V-79 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	centratio Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)	e Lagent and the second	-				
Ammonia Nitrogen	D-9 E-5 F-6	6 1 3	<1 0.22 0.04	0.44	0.52 0.05	0.63 5.2 <0.01
Barium	D-9 E-5 F-6	6 1 3	0.12 0.060 0.080	0.21	0.12 0.030	0.15 0.780 0.030
Boron	. D-8	6	<0.009	<0.009	<0.00	<0:, 0.09
1	E-5 F-6	1 3	0.170 <0.100	<0.100	<0.100	340 0.210
Calcium	D-9 E-5 F-6	6 1 3	63 1 33.0 46.2	,000	830 14.2	810 1.60 9.63
Chemical Oxygen Demand	D-9 E-5 F-6	6 1 3	<5 34 <1	100 <1	133	56 650 5
Chloride	D-9 E-5 F-6	6 1 3	34 26 12	3 60 .		280 ,000 130
Cobalt	D-9 E-5 F-6	6 1 3	<0.006 <0.100 <0.100	2.5	0.72 <0.100	2.8 0.400 <0.100
Fluoride	D-9 E-5	6 1	0.45	1.1	0.49	740
and the second s	F-6	3	0.43	0.66	5.5	61
Iron	D-9 E-5 F-6	6 1 3	0.066 1.00 1.37	6.1 0.590	3.6 0.430	8.2 0.220 0.010

Table V-79 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)		
Magnesium	D-9	6	24 18 13 12
	E-5	1	15.8 <0.100
	F-6	3	12.7 4.20 3.01 1.19
Manganese	D-9	6	0.012 1.2 1.1 0.99
	E-5	1	0.140 <0.010
	F-6	3	0.080 0.100 0.050 0.230
Molybdenum	D-9	6	0.030 23 25 16
	E-5	1	<0.200 15.5
	F-6	3	<0.200 <0.200 0.260 0.380
Phenolics	E-5	†	0.014
	F-6	†	<0.005 0.012 0.012 <0.005
Phosphate	D-9 E- 5 F-6	6 1 3	<4 14 <4 <4 16 <4 <4 <4
Sodium	D-9	6	9.5 1,400 1,700 1,000
	E-5	1	33.0 9,400
	F-6	3	154.0 380 380 880
Sulfate	D-9	6	53 3,700 3,800 2,900
	E-5	1	170 3,800
	F-6	3	130 100 98 120
Tin	D-9 E-5 F-6	6 1 3	<pre><0.12 3.1 1.9 2.7 <0.200</pre>

Table V-79 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Contir	ued)		
Titanium	D-9 E-5 F-6	6 1 3	<0.005 2.0 0.61 1.6 <0.020 0.360 <0.020 0.040 0.020 0.070
Total Dissolved Solids (TDS)	D-9 E-5 F-6	6 1 3	393 7,700 8,350 6,000 330 230,000 320 1,100 1,100 2,700
Total Organic Carbon (TOC)	D-9 E-5	6 1	8 42 42 29 <1 7.2
Total Solids (TS)	D-9 E-5 F-6	3 6 1- 3	2 2.0 <1 <1 395 9,000 10,000 7,100 380 230,000 330 1,200 1,020 2,800
Vanadium	D-9 E-5 F-6	6 · . 1 · . 3	0.016 0.46 0.59 0.36 <0.010 1.88 <0.010 0.020 0.030 0.050
Yttrium	D-9 E-5 F-6	6 1 3	<pre><0.002 0.010 0.011 <0.002 <0.020</pre>
Conventional Pollutants			
Oil and Grease	D-9 E-5 F-6	i 1 1	<1 38 4 <1 <1 <1 <1 <1
Total Suspended Solids (TSS)	D-9 E-5 F-6	6 1 - 3	<1 790 770 550 29 4,200 22 80 39 21
pH (standard units)	D-9 E-5 F-6	6 1 3	7.14 10.40 11.80 11.50 6.71 12.84 6.64 10.19 10.70 11.60

Table V-79 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- 2. Note that stream code Y-6 also appears on the titanium molten salt rinsewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-80 NICKEL-COBALT SAWING OR GRINDING SPENT EMULSIONS

	Wate	er Use**	Percent		ewater arge***
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
٦	NR	NR	100	0.00	0.00
1 2					
2 +	NR	NR	100	0.00	0.00
3*	NR	NR	NR	0.00	0.00
4	38.37	9.20	100	0.00	0.00
5	39.53	9.48	100	0.00	0.00
5 .	164.2	39.38	100	0.00	0.00
4 5 5 6 7	1,960	470	99.9	0.00	0.00
7	2,480	594	100	0.00	0.00
8	476,600	114,300	100	0.00	0.00
8 9	500,400	120,000	NR	4.29	1.03
10	NR	NR	NR	11.60	2.78
9	NR	NR	NR	16.26	3.90
10 9 9	0.00	0.00	<99.9	67.25	16.13
11	97.64	23.42	0.0	97.64	23.42
12	NR	NR	NR	NR	NR
13	NR	NR	NR	NR	NR
14	NR	NR	NR	NR	NR
15	NR	NR	NR	NR :	NR
16	NR	NR	NR	NR	NR
17	NR	NR	NR .	NR :	NR
18	NR	NR	NR	NR ·	NR
19	NR	NR	100	NR :	NR
20	· NR	NR	NR	NR	NR
17	NR	NR	NR	NR	NR
21	NR	NR	NR	NR	NR
Average	122,700	29,430		39.41	9.45

NR - Data not reported

^{*}Nickel forming no longer performed at this plant. **Application rate.

^{***}Volume of spent lubricant generated per mass of nickel-cobalt.

Table V-81

NICKEL-COBALT SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Conc	entration		
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
	luxic Pollutants						
	1. acenaphthene	D-5	1	ND		ND	
	1. accuspitations	D-16	- 1	ND	ИD		
		D-17	1	ND		ИÐ	
		D-18	' 1	NÐ		1.450	
		F-20	1	ND		ND	
	•	F-22	1	ИĎ	ND		
		F-23	1	ND	ND		
		F-24	1	ND	ND		
	·	F-25	1	ND	ND		
		F-26	1	ΝĐ		ИD	
	4. benzene	D-5	1	ND		ND	
	4. Benzene	D-16	1	ND	0.026		
		D-17	1	ND		ΝD	
	·	D-18	1	ND		ND	
	•	F-20	1	ND		ND	
ì		F-22	1	ND	ND.		
)		F-23	1	ND	0.003		
	•	F-24	1	ND	ND		
		F-25	1	ND	ND		
		F-26	1	ND		ND	
	11. 1.1.1-trichloroethane	D-5	1	0.009		0.019	
	i. i, i, i ii felifor de chane	D-16	1	၌.009	0.001		
		0-17	1	0.009	-	0.029	
	•	D-18	1	0.009		0.030	
		F-20	1	0.014	-	ND	
		F-22	1	0.014	0.034		
		F-23	1	0.014	0.012		
		F-24	1	0.014	ND		
		F-25	1	0.014	ND		
	·	F-26	1	0.014		ND	

Table V-81 (Continued)

Pollutant	Stream Code	Sample . Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Portucano						
Toxic Pollutants (Continued)						
13. 1,1-dichloroethane	D-5	1	ND		0.007	
70. 1,1 0.0	D-16	1	ND	ND		
•	D-17	i	ND	2	ND	
•	D-18	1	ND		ИD	
	F-20	1	ND		ND	
	F-22	1	ND	0.015		
	F-23	1	ND	ND		
	F-24	1_	ND	ND	_	
The state of the large angles and company participate of the contract to the contract of the c	F-25	1	ND	MD	and the second second	
	F-26	1	, ND		ИD	
•						
•						
22. p-chloro-m-cresol	D-5	1	ЙD		ND	
	D-16	1	ND	0.116		
	D-17	1	, ND		ИD	
	· D-18	. 1	ND		ND	
•	F-20	1	ND		ND .	
	F-22	1	· ND	МD		
	F-23	1	ND	ND		
	F-24	1	ND	ND	•	
	F-25	1	ND	ИD		
•	F-26	1	ND		- ND	

Table V-81 (Continued)

Pollutant	Stream _Code	Sample Type	Conc. Source	entration Day 1	s (mg/1) Day 2	Day 3
				<u>-</u>	==/_=	
<u>loxic Pollutants</u> (Continued)						
23. chloroform	D-5	1	0.144		ND	
25. (111010101111	D-16	1	0.144	ND	ND	
	D-17	1	0.144	NU	ND	
	D-18	i	0.144		ND	
	F-20	i	ND			
	F-22	1	ND ND	NO	ND	
	F-23	-		ND		
	F-24	1	ND	ND		
			ND	ND	•	
	F-25	1	ND	ND		
	F-26	1	ND		ЙD	
34. 2,4-dimethylphenol	D-5	1	ND		ND	
	D-16	i	ND	0.168	1,5	
	D-17	i	ND		ND	
,	D-18	i	ND		ND	
	F-20	i	ND		ND	
•	F-22	i	ND	ND	.,,	
•	F-23	i	ND	0.105		
	F-24	i	ND	ND		
	F-25	1	ND	ND		
	F-26	1	ND	ND	ND	
37. 1,2-diphenyThydrazine	D-5	1 .	. ND		ND	
	D-16	1	ND	ND		
	D-17	1	ND		ND	
	D-18	1	ND		ND	
	F-20	1	ND		ND	
	F-22	1	ND	ND		
	F-23	1	ND	0.009		
	F-24	. 1	ND	ND		
	.F−25	1	ND	· ND		
· · · · · · · · · · · · · · · · · · ·	F-26	1 1	ND		ND	
. 39. fluoranthene	D (NB			
39. fluorantheme	D-5	1.	ND		ND .	
	D-16	1	ND	ND	****	
•	D-17	1	ND	•	ND	
	D-18	1	. ND		3.850	
	F-20	1	ND		,ND	
	F-22	1	ND	ND		
•	F-23	1	, ND	ND		
·	F-24	1	ND	ND		
	F-25	1	ND	ND		•
·	F-26	1	ИD		ND	

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
					. ==7=	==7_=
loxic Pollutants (Continued)						
•						
44. methylene chloride	D-5	•	0.000		0.001	
44. Methyrene chioride	D-16	1	0.002 0.002	0.017	0.001	
	D-17	1	0.002	0.017	ND	
	D-18	1	0.002		·ND	
	F-20	1	0.002		1,110	
	F-22	1	0.002	0.006	1.110	
the state of the s	F-23	1	0.002	0.003		
	F-24	ì	0.002	1.210		
	F-25	i ·	. 0.002	0.133		
	F-26	- i	0.002		0.039	
					0.000	
•						
55. naphthalene	D-5	. 1	ND	÷	ΝD	•
• • •	D-16	1	ND	0.027		
	D-17	1.	ND		ND	
	D~18	1.	ND		ND	•
	F-20	1	0.001		ND	
• •	F-22	1	0.001	ND .		
() ·	F-23	1	0.001	ND		
	F-24	1	0.001	ND		•
•	F-25	1	0.001	1.240		
•	F-26	· 1	0.001		. ND	
57. 2-nitrophenol	D~5	1	ND		· ND	
	D-16	1	, ND	0.105		
	D-17	1	, ND		ND	
·	D-18	7	ND ·		ND	
The second secon	F-20				DИ	
The second of th	F-22	1	ND	ND		
•	F-23	1	ND	ND .		
	F-24	1	ND	ND		
·	F-25	1	. ND	ND		
	F-26	1	ND		ND	

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Con Source	centration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
58. 4-nitrophenol	D-5	1 .	ND		ND	
•	D-16	1	ND	0.446		
	D-17	1	ND		ND	
	D-18	1	ND	•	ND	
	F-20	1	ND		ND	
	F-22	1	ND	ND		
	F-23	1	ИD	ND		
	F-24	1	ND	ND		
	F-25	1 .	ND	ND		
	F-26	1	ND	•	ND	
60. 4,6 dinitro-o-cresol	D-5	1	ND		ND	
•	D-16	1	ND	0.593		
	D-17	1	ND		ND	
	D-18	. 1	ND		ND	
	F-20	1	ND	,	ND	
<u>.</u>	F-22	1	ND	ND		
	F-23	1	ND	ND		
	F-24	1	ND	ND		
	F-25	1	ND	ND		_
	F-26	1	ND		ND	
64. pentachlorophenol	D-5	1	ND		ND	
	D-16	1	ND	ND		
	D-17	1	ND		ND	
•	. D-18	1	. ND		ND	
	F-20	1	ND		1.950	
	F-22	1	ND	ND		
	F-23	1	ND	ND		
	F-24	1	ND	ND		
•	F-25	1	ND	145 .		
•	F-26	1	ND		ND	

Table V-81 (Continued)

		Stream	Sample	Concentrations (mg/1)				
	<u>Pollutant</u>	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3	
Toric	Pollutants (Continued)	1 - 1 -					- *	
TOXIC	, Fortutaits (continued)				•			
65.	pheno l	D-5	1	ND .		ND		
		บ-16	1 1	ND	ND			
		D-17	1 .	ND .		0.547		
		D-18 ³	1	ND		ND		
	•	F-20	1	ND		0.090		
		F-22	1	ND	. ND			
		F-23	1	ND	0.195			
		F-24 ·	1	ND	ND			
		F-25		:ND	ND			
		F-26	1	ND		ND		
66.	bis(2-ethylhexyl) phthalate	D-5	1 :	0.009		0.010	,	
		D-16	1	0.009	ND			
		D-17	1	0.009		ND		
	-	D-18	1	0.009		ND		
· :		. F-20	1	ND		0.015		
	•	F-22	1	ND	ND			
		F-23	1	ND	0.007		•	
		F-24	1	ND	ND			
		F-25	1	. ND	0.381			
		F-26	1	ND		ND		
. 68.	di-n-butyl phthalate	D-5	1 .	ND		ND		
	• •	D-16	1	· ND	ND .			
	•	D-17	1 '	ND		ND		
		D-18	1	ND		ND		
		F-20	1	ND		ND		
		F-22	1	ND	ND			
		F-23	1.	ND	0.004			
	'a	F-24	1 .	ND	ND		•	
		F-25	1	ND ND	ND			
		· F-26	. 1	ND	-	ND		
69.	di-n-octyl phthalate	D-5	1	ND		ND		
		D-16	1	ND .	ND		*	
		D-17	1	· ND		ND		
	•	D-18	1	ND		ND		
		F-20	1	ND		0.001		
		F-22	1 -	ND .	ND	•		
		F-23	1	ND	ИD			
		F-24	1	ND	ЙD			
		F-25	1	ND	ND			
		F-26	_. 1	ND		ND		

	Stream	Sample	Concentrations (mg/1)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
luxic Pollutants (Continued)						
op - The section of t						
77, acenaphthylene	D-5	1	ND		ND	-
77. acenaphing tene	D-16	1	ND	0.007	IAD.	
	D-17	1	ND	0.007	ND	
•	D-18	i	ND		ND	
	F-20	i	ND		ND	
	F-22	i	ND	ND	110	
	F-23	i	ND	ND		
1	F-24	i	ND	ND		
	F-25	i	ND	ND		
	F-26	1	ND		ND	
:	1 20	•			110	
Bii, fluorene	D-5	1	ИD		ND	
	D-16	1	ND	ND		
:	D-17	i	ND		ND	
!	D-18	i	ND		1.730	
	F-20	1	ND		ND	•
•	F-22	i	ND	ND		
	F-23	1 /	ND	ND		
	F-24	i	ND	ND		
	F-25	1	ND	ND		
•	F-26	i	ND	.,_	ND	
	, 20	•			,_	
81. phenanthrene	D-5	1	ND		ND	
1	D-16	i	ND	0.002		
	D-17	i	ND		0.804	
	D-18	1	ND		7.420	
	F-20,	1	ND		0.286	
	F-22	7	- ND	ND		
	· F-23	1	ИD	ND		
	F-24	1	ИD	8.550		
	F-25	1	ND	0.354		
	F-26	1	ND		ND	
	•					
84. pyrene	D-5	1	ND		ND	
	D-16	1.	МÐ	ND		
i L	D-17	ī	ND ·		ND	
Annual Control of the	D-18	1	ND		1.800	
	F-20	1	ND		ND	
	F-22	1	ND	ND		
1	F-23	1	ND	ND		
	F-24	1	ND .	ND		
	F-25	1	ND	ND		
•	F-26	1	ND		ND	

Table V-81 (Continued)

100	. <u>Pollu</u>			Stream Code	Sample Type	<u>Conc</u> Source	entration Day 1	mg/l) Day 2	Day 3
	Toxic Pollutants	(Continued)							
	114. antimony	*		D~5	1	<0.003		<0.003	
				D-16	1	<0.003	<0.003		
				D-17	1	<0.003		<0.003	
				D-18	1	<0.003		<0.003	
				F-20	1	<0.002		<0.002	
				F-22	1	<0.002	0.002		
				F-23		<0.002	0.003		
				F-24	1	<0.002	0.006		
				F-25	1	<0.002	0.004		
				F-26 Y-7	1	<0.002		0.003	0 0605
				Y-8	1	0.0002			0.0625 0.0022
וי				Y - 0	1	0.0002			0.0022
6									
	115. arsenic			D-5	1	<0.003		<0.003	
	rio. arbonio			D-16	i	<0.003	<0.003		
		•		D-17	i	<0.003	0.000	<0.003	
	·			D-18	1	<0.003	•	<0.003	
				F~20	1	<0.005		0.007	
				F-22	1	<0.005	0.012		
				F-23	1	<0.005	0.023		
				F-24	1 .	<0.005	0.017		
			,	F-25	1	<0.005	0:008		
				F-26	1	<0.005		<0.005	
				Y-7	. 1	0.002			0.26
		•		Y-8	1	0.002			0.024
		200			_				
	117. beryllium			D-5	1	<0.0005	.0 0005	<0.0005	
				D-16		<0.0005	<0.0005	:- n50#:	
			1	D-17	1	<0.0005		<0.0005	
				D-18 F-20	1	<0.0005 <0.010	-	0.001 <0.010	
		•		F-22	.1	<0.010	<0.010	VU.010	
				F-23	1	<0.010	<0.010		
			*	F-24	1	<0.010	<0.010	•	
				F-25	1	<0.010	<0.010		
			*	F-26	i	<0.010	.0.010	<0.010	
				Y-7	1	<0.02		0.0.0	<0.02
			1	Y-8	i	<0.02			<0.02
				, 3	•				

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/l) Day 2	Day 3
Toxic Pollutants (Continued)						
118. cadmium	D-5	1	<0.002		0.010	
ito. Caumium	D-16	1	<0.002	0.066	0.010	
	D-17	i	<0.002	0.000	0.035	
•	D-18	i	<0.002		0.072	
	F-20	1	<0.050		<0.050	
	F-22	i	<0.050	<0.050	.0.000	
	F-23	i	<0.050	<0.050		
	F-24	i	<0.050	<0.050		
	F-25	1	<0.050	<0.050		
	F-26	1	<0.050		<0.050	
	Y-7	1	<0.03			<0.03
•	Y-8	1	<0.03			<0.03
119. chromium (total)	D-5	1	0.042		0.19	
(1011)	D-16	1	0.042	2.5	••••	
•	D-17	i	0.042	0	1.9	
	D-18	1	0.042		1.2	
	F-20	1	<0.100		<0.100	
•	F-22	1	<0.100	<0.100		
	F-23	1	<0.100	24.0		
•	F-24	1	<0.100	11.2		
·	F-25	1	<0.100	<0.100		
	F-26	1	.<0.100	•	0.670	
	Y-7	1	<0.02			0.7
	A-8	1	<0.02			0.2
120. copper	D-5 .	1	0.068	,	0.10	
. Саброт	D-16	1	0.068	0.28	0.10	
	D-17	i	0.068	0.20	0.26	
	D-18	i	0.068		0.76	
	F-20	1	0.170		0.790	
	F-22	i	0.170	0.120	01/00	
,	F-23	· i	0.170	1.20		
	F-24	i	0.170	16.5		
	F-25	1	0.170	1.42	*	
	F-26	1	0.170		0.390	
	Y-7	1	<0.02			0.5
	Y-8	1	<0.02			0.4

Table V-81 (Continued)

	Stream	Sample	Concentrations (mg/l)			
Pollutant	_Code_	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)	-					
Toxic Torideanes (continued)						
					10.00	
121. cyanide (total)	F-20	1	<0.02	40.00	<0.02	
	F-22	!	<0.02	<0.02		
,	F-23	1	<0.02	<0.02		
**	F-24	. !	<0.02	<0.02	•	
	F-25	!	<0.02	<0.02	.0.00	
	F-26	1	<0.02		<0.02	
en anniquentes desentas serie fundamentes entre entre entre entre entre el compositorio de la compositorio de Anni El Compositorio de la compositorio de Anni	Y-7		0 -03	-		3-1
	A-8	1	0.03			<0.02
122. lead	D-5	1	<0.084		<0.084	
1000	D-16	i 1	<0.084	<0.084	10.004	
	D-17	1	<0.084	10.004	<0.084	
	D-18	1	<0.084		<0.084	
	F-20	1	<0.100		<0.100	
	F-22	1	<0.100	<0.100	102.100	
	F-23	1	<0.100	1.00		
	F-24	1	<0.100	0.250		
	F-25	1	<0.100	0.240		
•	F-26	i	<0.100	0.240	<0.100	
	Y-7	· 1	0.067	•	10.100	0.25
	Y-8	1	0.067			0.13
'	1 0	·	0.007	,		0.13
123. mercury	D-5	1	<0.0002		<0.002	
•	D-16	1	<0.0002	<0.0002		
	D-17	1 .	<0.0002		<0.0002	
	D-18	1	<0.0002		<0.0002	
	F-20	1	<0.0020		<0.0020	
	F-22	1	<0.0020	<0.0020		
	F-23			<0.0020		
	F-24	1	<0.0020	<0.0020		
	F-25	1	<0.0020	<0.0020		
•	F-26	1	<0.0020	-	<0.0020	
	Y-7	1	<0.005			<0.009
	Y-8	•	<0.005			<0.005

1/9

	Stream	Sample	Concentrations (mg/l)			
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Towic Dollutooks (Continued)						
Tuxic Pollutants (Continued)						
124. nickel	D-5	1	<0.003		1.4	
	D-16	1	<0.D03	4.8		
	D-17	1	<0.003		2.8	
	D-18	1	<0.003		4.0	
	F-20	1	0.200		4.10	
	F-22	1	0.200	0.100		
	F-23	1	0.200	116		
	F-24	1	0.200	26.0		
	F-25	1	0.200	2.54		
	F-26	1	0.200		0.870	
•	Y-7	1	0.1			66.0
	8-Y	1	0.1			3.7
125. selenium	D-5	1	<0.003		<0.003	
· · ·	D-16	i	<0.003	<0.003	10.000	
	D-17	i	<0.003	٠٥.٥٥٥	<0.003	
	D-18	· i	<0.003		<0.003	
	F-20	i	<0.010		<0.010	
	F-22	i	<0.010	<0.010	\0.010	
	F-23	i	<0.010	<0.010		
	. F-24	i	<0.010	<0.010		
•	F-25	i	<0.010	<0.010		
	F-26	i	<0.010	10.010	<0.010	
	Y-7	i	<0.001		10.010	0.7
. *	у−8	. i	<0.001			0.002
						0.002
126. silver	D-5	1	<0.001		<0.001	
	D-16	1	<0.001	<0.001		
•	D-17	1	<0.001		<0.001	
	D-18	1	<0.001		<0.001	
	F-20	1	<0.002		<0.002	
•	F-22	1 .	<0.002	<0.002		
	F-23	1	<0.002	<0.002		
,	F-24	1	<0.002	0.003	•	
	F-25	1.1	<0.002	<0.002		
	F-26.	1	<0.002		0.005	-
•	Y-7	1	<0.0005			0.0053
	Y-8	1	<0.0005		-	<0.0005

Table V-81 (Continued)

Stream Sample <u>Concent</u> Pollutant <u>Code Type Source D</u>	rations (mg/l)
Pollutant Code Type Source D	
	ay 1 Day 2 Day 3
	
Toxic Pollutants (Continued)	
	A Property of the Control of the Con
127. thallium D-5 1 <0.003	, 0.007
	.003
D-17 1 <0.003	<0.003
D-18 1 <0.003	0.006
. F-20 1 <0.005	<0.005
	005
F-23 1 <0.005 <0	005
F-24 1 <0.005 <0	005
	005
F-26 1 <0.005	<0.005
Y−7 1 <0.001	0.002
Y-8 1 <0.001	0.002
	•
128 zinc D-5 1 0.038	0.32
	12
D-17 1 0.038	0.42
D-18 1 0.038	0.87
F-20 1 . <0.050	0.280
	.050
	730
	900
	970
	0.590
Y-7 1 0.08	0.06
Y-8 1 0.08	0.43
	the second secon
Nonconventional Pollutants	
Acidity D-5 1 <1	<1
D-1,6 1 <1 <1	
	૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽૽
D-18 1 <1	< 1
F-20 1 <1	<1 ·
F-22 1 <1 <1	
· F-23 1 <1 <1	•
F-24 1 <1 <1	
F-25 1 <1 <1	
F-26 1 <1	<1
V-7 1 11.0	200.0
Y-8 1 11.0	230.0

Table V-81 (Continued)

	Stream	Sample	Con	centratio	ns (mg/1)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Noncenventional Pollutants (Continued)						
Alkalinity	D-5	1	180	1	,870	
	D-16	1	180	550		
	D-17	1	180		930	
	D-18	1	180		940	
	F-20	1	61		360	
	F-22	1		,700		
	F-23	1	61	37		
	F-24	1	61	810		
	F-25	i	61	300		
	F-26	i	61	-	510	
	Y-7	i	31.0			860.0
	Y-B	1	31.0			370.0
A Lunii num	D-5	1	<0.050		0.19	-
A Frank Fright	D-16	1	<0.050	7.2	-	
	D-17	i	<0.050		1.6	
	D-18	i	<0.050		19	
	F-20	i	0.910		0.760	
•	F-22	i	0.910	0.150		•
	F-23	1	0.910	12.4		
	F-24	i	0.910	2.53		
	F-25	i	0.910	0.260		
	F-26	i	0.910	3.200	0.740	
	Y-7	<u> </u>	0.03		2	12.0
	ν-8	i	0.03			1.5

Table V-81 (Continued)

	× ×	Stream	Sample	Concentrations (mg/1)			
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
	Nunconventional Pollutants (Continued	١					
	(continued	•			-		
	Ammonia Nitrogen	D-5	1 .	<1	_	7.8	
		D-16	1	<1	5		
		D-17	1	<1		0.40	
	• •	P∼18	1	<1		0.91	
		F-20	1	0.04		<0.01	
		F-22		0.04	0.25	and the engineering section of the engineering	
	control reproducts and control of the state	F-23	1	0.04	27		
		F-24	. 1	0.04	1.44		
		F-25	1	0.04	0.10		
		.F-26	1	0.04		<0.01	
² 67	Harism :	D-5	. 1	0.12	-	0.028	
ű		D-16	1	0.12	0.020		
•		D-17	i	0.12		0.006	
		D-18	1	0.12		0.33	
	<i>:</i>	F-20	1	0.080		<0.010	•
		· F-22	1	0.080	0.020		981
		F-23	1	0.080	0.030		
		F-24	i	0.080	0.110		•
	:	F-25	1	0.080	0.050		
	6.5	F-26	1	0.080	0.000	0.090	
		Y-7	1	<0.02		0.000	0.04
		Y-8	1	<0.02			<0.02
		. 1 0					10.02
	Boron	D-5	1	<0.009		0.023	
		D-16	1	<0.009	0.31		
	•	D-17	1	<0.009		0.73	
	•	D-18	i	<0.009		0.19	
	the control of the co	F-20	1	<0.100		0.130	**
		F-22	1	<0.100	0.570		
		F-23	i	<0.100	5.74		
	•	F-24	i	<0.100	1.26		
		F-25	1	<0.100	0.270	•	
		F-26	. 1	<0.100	0.2.0	0.760	
		′ . Y~7	1	2.2		0.700	9.1
		y−8	1	2.2			9.9
	•	1 0	'	2.2			5.5

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Source	entrati Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)				•		
Calcium	D~5	1	63		42	
	D~16	1	63	51		
	D-17	1	63		38	
	D-18	1	63		85	
	F-20	1	46.2		5.26	
	F-22	1	46.2	1.14		
	F-23	1	46.2	2.43		
	F-24	1	46.2	5.33		
	F-25	1	46.2	35.2		
	F-26	1	46.2		37.0	Å1
	Y-7	1	12.0			7.7
	Y-8	1	12.0			17.0
Chemical Oxygen Demand (COD)	D-5	1	<5		5,240	
themical oxygen behand (obb)	D-16	1	<5 1	,280		
	D-17	1	<5	-	9,150	
	D-18	1	<5		3,230	
	F-20	1	<1	.3	4,000	-
	F-22	1	<1	290	e -	
	F-23	1	<1	340		
	F-24	1	<1 230	.000		
	F-25	1	<1 2	,800		
	F-26	1	<1	1	7,000	
Chloride	D-5	1	34		52	w.
311,31.122	D-16	1	34	54		
	D-17	1	34		190	
	D-18	1	34		160	
	F-20	1	12		95	
	F-22	1	12	42		
	F-23	1	12 .	140		
	F-24	ì	12	740		
	F-25	i	12	58		
	F-26	i	12		47	-
			-			

Table V-81 (Continued)

				•				
		Stream	Sample	Con	centratio	ns (mg/l)	-	
	Pollutant	Code	_Type_	Source	Day 1	. <u>Day 2</u>	Day 3	
	News appropriate Delluterte (Coette ed)		-					
	Nonconventional Pollutants (Continued)							
				٠,	•			
	Cobalt	D-5	. 1	<0.006		0.049		
		D-16	1.	<0.006	0.067	0.045	•	
		D-17	i	<0.006	0.007	0.19		
		D-18	i	<0.006		3.3		
	•	F-20	i	<0.100	-	<0.100		
		F-22	. 1	<0.100	<0.100	10.100		
		F-23	i	<0.100	1.72			
		F-24	i	<0.100	<0.100			
	•	F-25	1	<0.100	0.140		*	
		F-26		<0.100		0.740		
		Y-7	i	<0.03		0.740	3.4	
		Y-8	1.	<0.03			0.3	
		, 0	٠,	10.00			0.3	
	Fluoride	D-5	1	0.45		0.47		
		D-16	1.	0.45	110	0		
	•	D-17	3	0.45	, , ,	1.7		
	•	D-18	1	0.45	•	2.2		
	ſ	F-20	1	0.43		1.2		
	•	F-22	1	0.43	0.42			
		F-23	1	0.43	720			
		F-24	1 .	0.43	220			
	•	F-25	1 ·	0.43	2.7			
		F-26	i	0.43	۷.,	2.0		
	•	Y-7	i	290.0		0	100.0	
		Y-8	1.	290.0	-		10.0	

Table V-81 (Continued)

NICKEL-COBALT SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	s (mg/l)	
Pollur <u>ant</u>	Code	Type	Source	Day 1	Day 2	Day 3
POT TOTAL						
Nonconventional Pollutants (Continued)					
	D-5	1	0.066		30	
lion	D-16	1	0.066	11		
	D-17	1	0.066		1.9	
	D-18	1	0.066		1.2	
	F-20	1	1.37		1.66	
	F-22	1	1.37	2.12		
	F-23	1	1.37	47.3		
	F-24	1	1.37	8.46		
	F-25	1	1.37	2.20		
•	F-26	1	1.37		94.2	0
	Y-7	1	0.061			11.0
	Y-8	1	0.061			5.4
Magnesium	D-5	1	24		21	
Magnesium .	D-16	1	24	26		
•	D-17	1	24		64	
	D-18	1	24 .		22	
•	F-20	1	12.7		2.07	
	F-22	1	12.7	2.53	*	
	F-23	1	12.7	7.05		
•	F-24	1	12.7	16.1		
	F-25	1	12.7	11.8		
	F-26	1	12.7		.11.8	
	V-7	1	1.8			6.5
	Y-8	1	1.8			7.9
	n =	•	0.012		0.52	
Manganese	D-5	1	0.012	0.28	0.01	
	D-16		0.012	0.20	0.43	
•	D-17		0.012		0.93	
	D-18	l ,	0.012		0.200	
	F-20	,		0,080	0.200	
	F-22	i •	0.080 0.080	4.10		
	F-23	1		0.990		
	F-24	1	0.080 0.080	0.400	_	
	F-25	1	0.080	0.700	1.25	
	F-26	1			,	0,36
	Y−7	1	<0.01			0.38
	Y-8	1	<0.01			0.55

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Source	entration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)				•		
Môlýbdenum	D-5 D-16	1 1	0.030	13	0.95	* r
	D-17 D-18 F-20	1 1 1	0.030 0.030 <0.200		22 30 <0.200	
	F-22 F-23 F-24	1 1	<0.200 <0.200 <0.200	0.360 5.40 10.0	\0.200	
	F-25 F-26 Y-7	1 1	<0.200 <0.200 <0.200 0-056-	0.680	2.32	
	Y-8	1	0.056			52.0
Phenolics	F-20 F-22 F-23 F-24 F-25	· 1 1 1 1	<0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.83 1.42	0.14	
	F-26	i	<0.005	0.11	0.023	

	Stream	Sample	Concentration		ons (mg/l)
Pollutant_	Code	Туре	Source		Day 2	Day 3

Nonconventional Pollutants (Continued))					
						•
			<4		<4	
Phosphate	D-5	1	<4	<4	~~	
	D-16	1		\4	<4	
	D-17	1	<4		<4	
	D-18	- 1	<4		<4	
	F-20	1	<4	- 1	7-1	
	F-22	1	<4	<4		
•	F-23	1	<4	10		
	F-24	1	<4	<4		
	F-25	1	<4	<4		
	F-26	1	<4		<4	
Sodium	D-5	1	9.5		1,200	
tua (an	D-16	1	9.5	290		
	D-17	1	9.5		510	
	D-18	1	9.5		540	
•	F-20	1	154		12.6	
	F-22	1	154	3,050		
	F-23	1	154	16.5		
	F-24	1	154	328		
	F-25	i	154	130		
	F-26	1	154		154	
	Y-7	i	14.0	•		7,000.0
•	v-8	ì	14.0			360.0
		,				
	D-5	1	53		58	
Sulfate	D-16	1	53	95		
i .	D-17	1	53		360	
•	. D-18	1	53		370	
	F-20	i	130		160	
	F-20	'n	130	66		
	F-23	1	130	140		
:	F-24	1	130	6,400		
The second secon	F-24 F-25	1 -	130	150		
		1	130		490	
i.	F-26	• 1	130			

Table V-81 (Continued)

Pollutant	•	Strèam Code	Sample	Con		ns (mg/l)	
, orrorant		Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (C	Continued)	•					
		•					-
						-	
lin		D-5	1	<0.12		<0.12	
		D-16	1	<0.12	0.30	0,	
•	•	D-17	1	<0.12		1.1	
		D-18	1	<0.12		2.0	
		F-20	1	<0.200		<0.200	
		F-22	1	<0.200	<0.200		
		F-23	1	<0.200	<0.200		
•		F-24	1	<0.200	<0.200		
		F-25	. 1	<0.200	<0.200		
		F-26	.1	<0.200		<0,200	
	-	Y-7	1	<1.0	•		<1.0
•		Y-8	1	<1.0			<1.0
litanium	-			2.5	1.1		
rrearream		D-5	1.	<0.005		0.60	
		D-16	1	<0.005	0.B1		
		D-17	1	<0.005		0.13	
*		D-18	1	<0.005		0.068	
•		F-20	1	<0.020	-	<0.020	
* * * * * * * * * * * * * * * * * * *		F-22	1	<0.020	<0.020	,	
		F-23	. 1	<0.020	<0.020		
		F-24	1	<0.020	0.120		
		F-25	1	<0.020	0.030		
		F-26 Y-7	!	<0.020		<0.020	
	•	Y-8	!	0.5			72.0
1		1 - O	1	0.5			1.6
otal Dissolved Solids (TDS)		D-5	1	393	3	.900	
		D-16			.500	, 800	•
		D-17 ·		393		106	
6		D-18		393		,186	
t a	•	F-20		320	8	,700 .600 ·	
	-,	F-22			,200	, 600	.,
•		F-23			,200	ď	
	•	F-24			500		
		F-25			400		
₽	-	F-26		320		,800	
		Y-7		120.0	5.		400 0
·		Y-8		120.0			490.0 100.0

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nunconventional Pollutants (Continued))		
lotal Organic Carbon (TOC)	D-5	1	8 1,670
	D-16	1	8 480
	D-17	1	8 6,500
•	D-18	1	8 990
	F-20	1	8 990 2 5,600 2 38 2 17
	F-22	1	2 38
	F-23	1	2 17
	F-24	1	2 41,000
	F-25	1	2 41,000 2 280
	F-26	1	2 4,700
lotal Solids (TS)	D-5	1 -	395 7,300
	D-16	1	395 2,400
	D-17	1	395 5,700
٦	, D∽18	1	395 12,000
	F-20	1	330 12,000
	F-22	1	330 8,400
•	F-23	1	330 2,600
	F-24	1	330 40,000
	F-25	1	330 3,800
•	F-26	1	9,400
•	Y-7	1	1,400.0
	Y-8	1	120.0 3,400.0
Vanadium	D-5	1	0.016 0.13
	D-16	1	0.016 0.060
	D-17	1	0.016 0.025
	D-18	1	0.016 0.033
	F-20	1	<0.010 0.020
	F-22	1	<0.010 <0.010
•	F-23	1	<0.010 <0.010
	F-24	1	<0.010 <0.010
•	F-25	1	<0.010 <0.010
	F-26	1	<0.010 0.370
	Y-7	1	<0.1 11.0
	Y-8	1	<0.1 5.1

Table V-81 (Continued)

•		Stream Sample		Concentrations (mg/l)			
	<u>Pollutant</u>	Code	Туре	Source	Day 1	Day	2 Day 3
	Nonconventional Pollutants (Continued))			•		
						•	• .
	Yttrium	D-5	1	<0.002		<0.00	2
		D-16	.1	<0.002	<0.002		
		D-17	1 .	<0.002		<0.00	
		D-18	1	<0.002		<0.00	
		F-20	1	<0.020		<0.02	0
	·	F-22	1	<0.020			
		F-23	1 '	<0.020	<0.020		
	•	F-24	1	<0.020	<0.020		
	er gerin vivin i grafionskinninning og sam sam skanskin klassing og sam sam skanskin	F-25		<0.020	<0.020	<0.02	
		F-26 Y-7	1	<0.020 <0.1		<0.02	<0.1
		Y-8	i	<0.1			<0.1
		, 0	• '	٠٠.١			10.1
מ	conventional Pollutants						
งั						•	
	Oil and Grease	D-5 .	1	. <1		12	
	•	D-16	. 1	· <1	3		
	•	D-17	1	<1		1,500	
		D-18	1 ,	<1	16	6,000	
	•	F-20	1	<1		160	
		F-22	1	< 1	120		
		F-23	1	<1	7.5		
		F-24	1	<1	660	•	•
		F-25	1		3,200	000	-
-	•	F-26 Y-7	1	<1		800	250.0
	•	· Y-8	1	1.0 1.0			12,000.0
		· Y-6	1	1.0			12,000.0
	Total Suspended Solids (TSS)	D-5	1	·<1		820	
	101011303pended 301103 (133)	D-16	i	<1	46	020	
	ويرجون والمراور والمراور والمراور والمراور والمراور والمراور والمراور والمراور والمراور	D-17		· · < 1 · · · ·		2,180	
	•	D-18	1	<1		1.070	
		F-20	· 1	. 22		390	
		F-22	1	22	100		
		F-23	1		1,900	•	•
		F-24	. 1		2,440		
		F-25	1	22	440		
	•	F-26	1	22		300	
		Y-7	1	54.0			360.0
		Y-8	1	54.0			1,100.0

Table V-81 (Continued)

	Stream	Sample	Cond	entration	s (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants (Continued)						
pH (standard units)	D-5	1	7.14		8.63	
, (D-16	1	7.14	8.04		
	D-17	1	7.14		8.31	
	D-18	1	7.14		8.54	
•	F-20	1	6.64		7.23	
	F-22	1	6.64	10.33		
	F-23	1	6.64	6.42		
	F-24	ì	6.64	7.64		
*	F-25	i	6.64	7.20		
•	F-26	i	6.64		8.19	
	Y-7	1	6			8
	Y-8	1	6	•		7

- 1. The following toxic pollutants were not detected in this waste stream: 2, 3, 5-10, 12, 14-21, 24-33, 35, 36, 38, 40-43, 45-54, 56, 59, 61-63, 67, 70-76, 78, 79, 82, 83, and 85-88.
- 2. Note that stream codes Y-7 and Y-8 also appear on the titanium sawing or grinding spent emulsions and synthetic coolants raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.
- 3. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-82
NICKEL-COBALT SAWING OR GRINDING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	>0.0	1,814	434.9
Average	NR	NR	•	1,814	434.9

NR - Data not reported

Table V-83
NICKEL-COBALT STEAM CLEANING CONDENSATE

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1*	30.11	7.22	0.0	30.11	7.22
2	NR	· NR	0.0	NR	NR
Average	30.11	7.22		30.11	7.22

NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

Table V-84

NICKEL-COBALT HYDROSTATIC TUBE TESTING AND ULTRASONIC TESTING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastew L/kkg		Discharge gal/ton
1* 2	1,355 NR	324.9 NR	0.0 NR	1,355 NR	7 c * F	324.9 NR
Average	1,355	324.9		1,355	i i	324.9

NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

Table V-85

NICKEL-COBALT DYE PENETRANT TESTING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	40	9.5	0.0	40	9.5
2	385	92.2	0.0	· 385	92.2
3	NR	NR	NR	NR	NR
4	NR	NR	0.0	NR	NR
3	NR	NR	0.0	NR	NR
3	NR	NR	NR	NR	NR
Average	213	50.9		213	50.9

NR - Data not reported

Table V-86

NICKEL-COBALT DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)				
Pollutant	<u>Code</u>	Type	Source	Day 1	Day 2 Day 3		
Toxic Pollutants	** · · · · · · · · · · · · · · · · · ·	•	P. T. B.	ā.			
117. beryllium	BK=1	•	• ••	<0.100	•		
118. cadmium	BK-1		-	<0.500	÷ ,		
119. chromium (total)	BK-1		-	<0.300			
120. copper	BK-1		- .	<0.200			
122lead	BK-1	and the second section of the second section is a second section of the section		<5.000			
124. nickel	BK-1		-	<1.200			
128. zinc	BK-1		-	<0.200			
Nonconventional Pollutants					•		
Aluminum	BK-1.		·	<1.2	•		
Barium	BK-1		- .	<0.100			
Boron	BK-1		-	1.8			
Calcium	BK-1		-	3.6			
Cobalt	BK-1		-	<0.400			
Iron	BK-1 .	•	_	1.400			
Magnesium	BK-1		-	0.300	·		
Manganese	BK-1		_	0.120			
Molybdenum	BK-1		-	<2.000			
Sodium	BK-1		-	8.600			
Tin	BK-1	* .		1.700			
Titanium .	BK-1	•	-	<1.000	•		

Table V-86 (Continued)

NICKEL-COBALT DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entrations	s (mg/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued))					
Vanadium	BK-1 -		-	<0.200		
Yttrium	BK- <u>,</u> 1		-	<1.000		

1. No analyses were performed on the following toxic pollutants: 1-116, 121, 123, 125-127 and 129.

690

Table V-87
NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN

		and the second s		Waste	ewater
	Wate	r Use	Percent	Disch	narge*
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	96.0	0.00	0.00
. 2	26.9	112	<100	0.00	0.00
3	8.30	1.99	0.0	8.30	1.99
4 5	25.59	6.14	0.0	25.59	6.14
	, NR	NR	100	25.66	6.15
- 6	NR	NR	NR	124.5	29.85
7	571.0	137.0	25.0	428.0	102.6
8	488.2	117.1	0.0	488.2	117.1
9	46,940	11,260	98.0	938.7	225.1
10	NR	NR	92.0	NR	NR
11	NR	NR	100	NR	NR
12	NR	NR	>0.00	NR	NR
13	NR	NR	NR	NR	NR
Average	8,010	1,939		291.3	69.85

NR - Data not reported

^{*}Discharge to surface waters.

Table V-88

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	0-11-4-4	Stream	Sample		entration		-
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Tuxic	Pollutants						
114.	antimony	D-11	. 1	<0.003	<0.003		
		F-21	3	<0.002		0.003	
115.	arsenic	D-11	1	<0.003	<0.003		
		F-21	3	<0.005		0.003	
117.	beryllium	D-11	1	<0.0005	<0.0005		
		F-21	3 .	<0.010		<0. 0 20	
118.	cadmium	D-11	1	<0.002	0.011		
		F-21	3	<0,050		<0. 0 20	•
+19	chromium (total)	D-11	1	0.042	0.14		
		F-21	3	<0.100		1.75	
120.	copper	D-11	1	0.068	<0.001		
		F-21	3	0.170		2.85	
121.	cyanide (total)	F-21	1 ·	<0.02		<0.02	
122.	lead	D-11	1	<0.084	<0.084		
	•	F-21	3	<0.100		<0.200	
123.	mercury	D-11	1	<0.0002	<0.0002		
		F-21	3 .	<0.0020		<0.0020	
124.	nickel	D-11	1	<0.003	0.86	*	
	•	F-21	3	0.200		20.0	•
125.	selenium	D-11	1	<0.003	<0.003		
		F-21	3 .	<0.010	,	<0.010	

Table V-88 (Continued)

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Con	centration	ns (mg/l)	
<u>Pollutant</u>	Code	Type	Source	<u>Day 1</u>	Day 2	Day 3
Toxic Pollutants (Continued)		*				
126. silver	D-11	1	<0.001	<0.001		
	F-21	3	<0.002	-	<0.002	
127. thallium	D-11 F-21	1 3	<0.003 <0.005	<0.003	<0.002	
128. zinc	D-11 F-21	3	0.038 <0.050	0.18	0.060	
Nonconventional Pollutants	. · · .			•		٠.
Acidity	D-11 F-21	1	<1 <1	120 .	<1	
Alkalinity	D-11 F-21	1 3	180 61	<1	47	
Aluminum	D-11	1	<0.050	5.8		•
Ammonia Nitrogen	D-11 F-21	1 3	<1 0.04	<1	0.39	
Barium	D-11	1	0.12	0.22		
Boron	D-11	1	<0.009	16		2
Calcium	D-11	1	63	29		
Chemical Oxygen Demand	F-21	3	. <1	·· <5 ·· ·	44	
Chloride	D-11 F-21	1 3	34 12	41	55	

693

	Stream	Sample		centration		
Pollutant	_Code	<u>Type</u>	Source	Day 1	Day 2	Day 3
Nunconventional Pollutants	(Continued)					
conalt	D-11	1	<0.006	0.079		
Fluoride	D-11 F-21	. 1	0.45 0.43	700	1.2	
from	D-11	1	0.066	0.53		
Magnesium	D-11	1	24	. 22		
Manganese	D-11	1	0,012	0.029		
^{®al} ýbdenum	D-11	1	0.030	0.23	•	
Phenolics	F-21	1	<0.005		<0.005	
Phosphate	D-11 F-21	. 1 3	<4 <4	<4	<4	
Sodium	D-11	1	9.5	240		

Table V-88 (Continued)

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source	centratio Day 1	ns (mg/1)` Day 2	Day 3
Nonconventional Pollutants (Continued	;				•	и яя
Sulfate	D-11 F-21	1 3	53 130	41	94	
fin	D-11	1	<0.12	<0.12		
Titanium	D-11 '	1	<0.005	0.11		
Total Dissolved Solids (TDS)	D-11 F-21	1 3	393 320	780	230	
lotal Organic Carbon (TOC)	D-11 F-21	1 3	8 2	13	<1	
lotal Solids (TS)	D-11 F-21	1 3	395 330	860	460	,
vanadium	D-11	1	0.016	0.016		•
Ytti ium •	D-11	1	<0.002	0.003		
Conventional Pollutants						
Oil and Grease	D-11 F-21	1 1	<1 <1	<1	11	
Total Suspended Solids (TSS)	D-11 F-21	1 . 3	<1 22	15	190	
pH (standard units)	D-11 F-21	. 1 3	7.14 6.64	2.63	7.47	

Table V-88 (Continued)

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- Note that stream code Y-5 also appears on the titanium wet air pollution control blowdown raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-89
NICKEL-COBALT ELECTROCOATING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	3,367	807.4	0.0	3,367	807.4
Average	3,367	807.4		3,367	807.4

Table V-90 PRECIOUS METALS ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2	NR NR	NR NR	NR 100	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

Table V-91
PRECIOUS METALS ROLLING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	P .	25.00	6.00
2	NR	NR	P	46.47	11.14
3	NR	NR	P ·	160.1	38.40
4	67.6	16.2	NR	NR	NR
4	NR	NR	P	NR	NR
5	NR	NR	. P	NR '	NR
Average	67.60	16.20	•	77.20	18.51

P - Periodic discharge NR - Data not reported

Table V-92

PRECIOUS METALS ROLLING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conce Source	ntrations (mg/1) Day 1 Day 2 Day 3
Toxic	Pollutants				
4.	benzene	I - 5	1	ND	0.319
11.	1,1,1-trichloroethane	1-5	1	.0.022	ND
44.	methylene chloride	I-5	1	0.003	1.330
87.	trichloroethylene	I-5	1	ND	1.380
114.	antimony	I-5	1	<0.010	<0.010
115.	arsenic	I-5	1	<0.010	<0.010
117.	beryllium	1-5	1	<0.005	<0.050
118,	cadmium	1-5	1	<0.020	<0.200
119.	chromium (total)	I-5	1	<0.020	<0.200
120.	copper	I-5	1	0.200	25.0
121.	cyanide (total)	1-5	1	<0.02	<0.02
122.	lead ,	I-5	1	<0.050	1.00
123.	mercury	I-5	. 1	<0.0002	. 0.0006

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant		Stream Code	. Sample Type	Source	Centrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)	•					
124, nickel	- 14	I-5	1	<0.050	1.00	
125, selenium		I-5	1	<0.010	<0.010	
126. silver		I-5	1	<0.010	0.130	e
127, thallium		I-5	1	<0.010	<0.010	
128. zinc		I -5	· 1	0.040	6.00	
Nonconventional Pollutants		-	-	-		-
Acidity		I-5	1	<1	<1	
Alkalinity		I-5	1	40	2,100	
Aluminum	l	1-5	_ 1° ·	<0.100	<1.00	ti.
Ammonia Nitrogen		I-5	1	0.06	0.4	e,
Barium		I-5	1	<0.050	<0.500	1

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Conc</u> Source	entrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued		E 0.000		
Boron	I-5	1	<0.100	<1.00
Calcium	I-5	1	13.8	7.00
Chemical Oxygen Demand (COD)	° 1-5	1	150	900
Chloride	I-5	1	30	42
Cobalt	I-5	1	<0.050	<0.500
Fluoride	1-5	1	0.32	0.29
Iron	1-5	1	0.100	26.5
Magnesium	1-5	1	2.70	3.00
Manganese	1-5	. 1	0.100	<0.500
Molybdenum	I-5	1	<0.050	<0.500
Phenolics	I-5	1	<0.005	<0.005

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Conc. Source	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)	•	•			•
Phosphate	I-5	1	2.7	570	
Sodium	I-5	1	28.0	585	•
Sulfate	I-5	1	740	8,500	
Tin	I-5	1	<0.050	<0.500	
Titanium	I-5	1	<0.050	<0500	· :
Total Dissolved Solids (TDS)	I-5	1.	850	32,000	, A
Total Organic Carbon (TOC)	I-5	1	63	43	
Total Solids (TS)	I-5	1 11	,500	33,000	

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	<u>Conc</u>	entrations (mg/L) Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)	ı			
Vanadium	1-5	1	<0.050	<0.500
Yttrium	I-5	1	<0.050	<0.500
Conventional Pollutants				•
Oil and Grease	. 1-5	1	<1	1,500
Total Suspended Solids (TSS)	I-5	1	300	500
μΗ (standard units)	I-5	1	6.10	8.70 •

A - Sample would not evaporate at 180C.

1. The following toxic pollutants were not detected in this waste stream: 1-3, 5-10, 12-43, 45-86, and 88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-93
PRECIOUS METALS DRAWING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NŖ	NR	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

Table V-94
PRECIOUS METALS DRAWING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 1	NR NR	NR NR	100 100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	35,500	8,520	P	9.47	2.27
4 5 5 6	NR	NR	P	14.77	3.54
5	NR	NR	P	32.90	7.89
5	NR	NR	P	38.63	9.26
6	NR	NR	P	141.8	33.99
2 3	148.4	35.60	0.0	142.4	34.15
3	NR	NR	P	NR	NR
7	NR	NR	P	NR	NR
8	NR	NR	NR	NR	NR
Average	17,820	4,278		63.32	15.18

P - Periodic discharge NR - Data not reported

Table V-95

PRECIOUS METALS DRAWING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	<u>Conc</u> Source	entrations (mg/l) Day 2 Day 3 Day 4
Toxic Pollutants				
11. 1,1,1-trichloroethane	I-7	1	0.022	3.040
44. methylene chloride	I-7	1	0.003	0.879
114. antimony	I-7	. 1	<0.010	<0.010
115. arsenic	I-7	1	<0.010	<0.010
117. beryllium	I-7	1	<0.005	<0.005
118 cadmium			~ 0.020 ~~	<0.020
119. chromium (total)	I-7	1	<0.020	<0.020
120. copper	I-7	1	0.200	46.4
121. cyanide (totał)	I-7	, 1	<0.02	<0.02
122. lead	I-7	1	<0.050	1.05
123. mercury	I-7	ī	<0.0002	<0.0002
124. mickel	I-7	1	<0.050	0.750
125. selenium	I-7	1	<0.010	<0.010
126. silver	I-7	- 1	<0.010	0.090
127. thallium	I-7	1	<0.010	<0.010
128. zinc	I-7	1	0.040	5.18
Nonconventional Pollutants	·			*
Acidity	1-7	1	<1	<1
Alkalinity	I-7 ·	. 1	40	1,300
Aluminum	I-7	1 _	<0.100	0.100
Ammonia Nitrogen .	I-7	. 1	0.06	0.4
Barium .	I-7	1	<0.050	<0.050

Table V-95 (Continued)

PRECIOUS METALS DRAWING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream Sample			entrations (mg/1) Day 2 Day 3 Day 4
Pollutant	Code	Туре	Source	Day 2 Day 3 Day 4
Nonconventional Pollutants (Continued				
Boron	I-7	1	<0.100	0.100
Calcium	I-7	1	13.8	5.70
Chemical Oxygen Demand (COD)	I-7	1	150	1,600
Chloride	I-7	1	30	57
Cobalt	I-7	1	<0.050	0.050
Fluoride	1-7	1	0.32	0.14
Iron	I-7	1	0.100	7.10
Magnesium	I-7	1	2.70	1.90
Manganese	I-7	1	<0.050	.0.150
Molybdenum	I-7	1	<0.050	<0.050
Phenolics	I-7	1	<0.005	<0.005
Phosphate	I-7	1	2.7	1,000
Sodium	1-7	1	28.0	109
Sulfate	I-7	1	740	1,600
Tin	I-7	1	<0.050	0.150
Titanium	1-7	1	<0.050	<0.050
Total Dissolved Solids (TDS)	I-7	1	850	420
Total Organic Carbon (TOC)	I-7	- 1	63	18
Total Solids (TS)	I-7	1 1	1,500	1,430
Vanadium	1~7	1	<0.050	<0.050
Yttrium	1-7	1	<0.050	<0.050

Table V-95 (Continued)

PRECIOUS METALS DRAWING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Source	entrations (mg/l) Day 2 Day 3	Day 4
Conventional Pollutants		-			
Oil and Grease	I-7	1	<1	33,000	e e
Total Suspended Solids (TSS)	1-7	1	300	<1 .	
pH (standard units)	1-7	1	6.10	8.20	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, and 45-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-96

PRECIOUS METALS DRAWING SPENT SOAP SOLUTIONS

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	NR	NR	P	3.12	0.748
	NR	N R	NR	NR	NR
Average	NR	NR		3.12	0.748

P - Periodic discharge NR - Data not reported

Table V-97

PRECIOUS METALS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER

Plant	Water L/kkg	Use gal/ton		Percent Recycle	Wastew L/kkg		Discharge gal/ton
1	6,922	1,660		0.0	6,683	1,	,603
Average	6,922	1,660	•		6,683	. 1,	,603

Table V-98

PRECIOUS METALS DIRECT CHILL CASTING

PRECIOUS METALS DIRECT CHILL CASTING CONTACT COOLING WATER

Plant	Water	r Use	Percent	Wastewate	r Discharge.
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	64,200	15,400	0.0	0.00	0.00
2	2,590	622.0	0.0	2,590	622.0
2	19,000	4,550	0.0	19,000	4,550
3	145,000	34,700	NR	NR	NR
Average	57,700	13,820		10,800	2,590

NR - Data not reported

Table V-99

PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle		r Discharge gal/ton
1	3,670	880.2	0.0	3,670	880.2
Average	3,670	880.2		3,670	880.2

Table V-100
PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

		Stream	Sample		entration:		Day 3
	Pollutant	Code	Туре	Source	Day I	Day 2	bay 5
Toxic	Pollutants						
11.	1,1,1-trichloroethane	1-3	1	0.022	0.018		
44	methylene chloride	1-3	1	0.003	0.004		
86.	toluene	1-3	1	ND	0.003		
87.	trichloroethylene	1-3,	1	ND	0.002		
114.	antimony	1-3	1	<0.010	0.050	<0.010	
115.	arsenic	1-3	1	<0.010	<0.010	<0.010	
117.	beryllium	1-3	1	<0.005	<0.005	<0.005	
118.	cadmium	1-3	1	<0.020	0.040	9.88	
119.	chromium (total)	1-3	1	<0.020	<0.020	<0.020	
120.	copper	1-3	1	0.200	0.600	0.500	
121.	cyanide (total)	1-3	- 1	<0.02	<0.02	<0.02	
122.	lead	1-3	1	<0.050	0.050	<0.050	
123.	mercury	1-3	1	<0.0002	<0.0002	<0.0002	
124.	nickel .	1-3	1	<0.050	<0.050	0.100	
125.	selenium	1-3	1	<0.010	<0.010	<0.010	
126.	silver	1-3	1	<0.010	0.050	0.040	
127.	thallium	. I-3	1	<0.010	<0.010	<0.010	
128.	zinc	1-3	1	0.040	0.520	5.66	
Nonce	onventional Pollutants						
Acid	ity	I-3	1	<1	<1	<1	
Alka	linity	1-3	1	40	47	5 6	`
Alum	inum	1-3	1	<0.100	<0.100	<0.100	

Table V-100 (Continued)

PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Con	centratio	ns (ma/1)	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Дау 3
Nonconventional Pollutants (Continued)	-	-				
Ammonia Nitrogen	I-3	1	0.06	0.04	0.03	
Barium	1-3	1 .	<0.050	<0.050	<0.050	
Boron	1-3	1	<0.100	1.70	9.00	
Calcium	1-3	1	13.8	11.1 .	11.1	
Chemical Oxygen Demand (COD)	I-3	1 .	150	35 1	,500	
Chloride	1-3	1	30	28	29	
Cobalt	I-3	<u>. 1</u>	<0.050	<0.050	<0.050	
fluoride	1-3	t	0.32	0.03	0.19	
Iron	1-3	1 ·	0.100	0.350	0.100	
Magnesium	1-3	1	2.70	2.40	2.40	
Manganese	I-3.	1	0.100	0.100	0.050	
Molybdenum	I-3	. 1	<0.050	<0.050	<0.050	
Phenolics	I-3	1	<0.005	<0.005	<0.005	
Phosphate	I-3	1	2.7	8.2	12	
Sodium	1-3	1	28.0	28.7	28.4	
Sulfate	I-3	1	740	400	330	
Tin	I-3 ·	1	<0.050	<0.050	<0.050	
Titanium	I-3	1	<0.050	<0.050	<0.050	
Total Dissolved Solids (TDS)	I~3	1	850	150	580	
Total Organic Carbon (TOC)	I-3 ·	1	63	< 1	38	•
Total Solids (TS)	1-3	1 11	,500	230	590	
Vanadium	1-3	1	<0.050	<0.050	<0.050	
Yttrium	I-3	1 :	<0.050	<0.050	<0.050	

15

Table V~100 (Continued)

PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
unventional Pollutants						
Oil and Grease	I-3	1	<1	<1	54	
Total Suspended Solids (TSS)	1-3	1	300	91	<1	
pH (standard units)	1-3	1	- 6.10	6.34	6.70	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-85, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-101

PRECIOUS METALS STATIONARY CASTING CONTACT COOLING WATER

Plant	Wat L/kkg	er Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
i	NR	NR	100	0.00	0.00
2	NR	NR	P	61.30	14.70
3	52,120	12,500	99.8	110.2	26.43
4	NR	NR	NR	NR	NR
5	NR	NR	NR	NR	NR
Average	52,120	12,500		'85.76	20.57

P - Periodic discharge NR - Data not reported

Table V-102

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER.

Plant	Wate L/kkg	er Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	255,500	61,270	100	0.00	0.00
2	402,000	96,400	100	0.00	0.00
3	10,349	2,482	0.0	10,349	2,482
4	NR	NR	0.0	NR	NR
5	NR	NR	NR	NR	NR
Average	222,600	53,380		10,349	2,482

NR - Data not reported

Table V-103

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

		C+	C 1					•
	Pollutant	Stream <u>Code</u>	Sample Type	Source	Day 1	Day 2	mg/L) Day 3	Day 4
Toxic	Pollutants				٠.			
114.	antimony	I-2	2	<0.010	2.01			<0.010
115.	arsenic	I-2	2	<0.010				<0.010
117.	beryllium	I-2	2	<0.005		,		<0.005
118.	cadmium	1-2	2	<0.020	•			<0.020
119.	chromium (total)	I-2	Ż	<0.020			•	<0.020
120.	copper	I-2	. 2	0.200				. 0 . 100
121.	cyanide (total)	I-2	. 1	<0.02	,			0.50
122.	lead	I-2	2	<0.050		•		<0.050
123.	mercury	I-2	2	<0.0002		•	-	0.0002
124.	nickel	I-2	2	<0.050				<0.050
125.	selenium	I-2	2	<0.010				<0.010
126.	silver	I-2	2	<0.010				<0.010
127.	thallium	I-2	2 ,	<0.010				<0.010
128.	zinc	I-2	2	0.040				<0.020

Table V-103 (Continued)

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream Sample		Concentrations (mg/L)			
Pollutant	Code	Type	Source	Day 1	Day 2 Day 3	Day 4
Nonconventional Pollutants						
Acidity	I-2	2	<1			<1
Alkalinity	I-2	2	40			43
Aluminum	I-2	2	<0.100			<0.100
Ammonia Nitrogen	I-2	2	0.06			0.13
Barium	I-2	2	<0.050			<0.050
Boron	1-2	2	<0.100	w.		<0.100
Calcium	I-2	2	13.8			11.8
Chemical Oxygen Demand (COD)	I-2	2	150			91
Chloride	1-2	2	3 0			28
Cobalt	I-2	2	<0.050			<0.050
Fluoride	I-2	2	0.32			0.32
Iron	I-2	2	0.100			0.200
Magnesium	1-2	2	2.70			2.40
Manganese	I-2	2	0.100			0.100

Table V-103 (Continued)

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		Concent	rations (
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants	(Continued)						•
Molybdenum	I-2	2	<0.050				<0.050
Phenolics	I-2	1	<0.005				<0.005
Phosphate	1-2	2	2.7				1.9
Sodium	1-2	2	28.0			•	28.2
Sulfate	I-2	2	740				780
. Tio	1-2	2	<0.050				<0.050

Table V-103 (Continued)

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type		Concent Day 1	rations (mg/L) Day 3	Day 4
Nonconventional Pollutants (Cor			•				
Titanium	1-2	2	<0.050				<0.05 0
Total Dissolved Solids (TDS)	I-2	2	850				110
Total Organic Carbon (TOC)	r-2	2	63				<1
Total Solids (TS)	I-2	2 1	1,500				110
Vanadium	1-2	2	<0.050				<0.05
Yttrium	I-2	2	<0.050				<0.050
Conventional Pollutants							
Oil and Grease	I-2	1	<1				6
Total Suspended Solids (TSS)	I-2	2	300				43
pH (standard units)	I-2	2	6.10				6.50

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-104

PRECIOUS METALS HEAT TREATMENT CONTACT COOLING WATER

		į.		ì	
	Wate	r Use	Percent	Wastewa	ter Discharge
Plant -	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
		-	_	i	-
1	NR	NŖ	100	0.00	0.00
2	4,170	1,000	100	0.00	0.00
3	NR	NR	100	0.00	0.00
4	NR	NR	P	1.01	0.24
4	658.7	158.0	0.0	658.8	158.0
2	938.0	225.0	0.0	938.0	225.0
4 2 1 5	NR	NR	P	1,318	316.1
5	1,377	330.2	0.0	i,377	330.2
5	2,616	627.4	0.0	2,616	627.4
4	3,065	735.0	0.0	3,065	735.0
	4,170	1,000	0.0	4,170	1,000
4 2 2 2	9,260	2,220	0.0	9,260	2,220
2	9,380	2,250	0.0	9,380	2,250
2	147,000	35,200	63.0	54,200	13,000
6	69,830	16,750	0.0	69,830	16,750
6 7	NR	$NR^{'}$	P	NR	NR
8	NR	NR	NR	NR	NR
9	18,200	4,360	NR	NR	NR
10	NR	NR	0.0	NR	NR
11.	NR	NR [']	NR	NR ;	NR
		i i		,	
Average	22,560	5,404		13,070	3,134

P - Periodic discharge NR - Data not reported

Table V-105

PRECIOUS METALS SURFACE TREATMENT SPENT BATHS

Plant	Wastewater L/kkg	Discharge gal/ton
1 2 1 3 4 5 6 7 8 9 10 11 10 12 13 14 5 15 16 17	0.00 0.00 0.00 7.59 54.03 139.5 182.9 NR NR NR NR NR NR NR NR NR NR	0.00 0.00 0.00 1.82 12.96 33.45 43.85 NR NR NR NR NR NR NR NR NR NR NR NR NR
Average	96.3	23.1

NR - Data not reported

Table V-106 PRECIOUS METALS SURFACE TREATMENT RINSEWATER

Plant	Water	Use	Percent	Wastewa	ter Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	123.00	29.40	100	0.00	0.00
2	231.40	55.49	0.0	231.40	55.49
3	NR	NR	P	350.60	84.07
4	1,390	333.0	0.0	1,390	333.0
5	5,365	1,287	0.0	5,365	1,287
6	NR	NR	CCR3	5,920	1,420
7 8 9	6,192 6,933	1,485 1,663	0.0	6,192 6,933	1,485 1,663
9	22,880	5,488	0.0	22,880	5,488
10	NR	NR	CCR2	60,630	14,540
11	NR	NR	NR	NR	NR
7	NR	NR	0.0	NR	NR
12	NR	NR	NR	NR	NR
13	NR	NR	NR	NR	NR
14 15	NR NR	NR NR	P 0.0 P	NR NR NR	NR NR NR
16 13 17	NR NR NR	NR NR NR	NR NR	NR NR NR	NR NR NR
Average	6,160	1,477		12,210	2,928

P - Periodic discharge NR - Data not reported

CCR2 - Two-stage countercurrent cascade rinse.
CCR3 - Two-stage countercurrent cascade rinse followed by a single stage rinse.

Table V-107

PRECIOUS METALS SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA

	Poll utant	Stream Code	Sample Type	Source	Concent Day 1	rations (Day 2	mg/L) Day 3	Day 4
Toxi	<u>c Pollu</u> tants							
114	antimony	I-10 M-5	2	<0.010 <0.010		<0.010	<0.010 <0.020	<0.010
115	arsenic	I-10 M-5	2	<0.010 <0.010		<0.010	<0.010 <0.010	<0.010
117	beryllium	I-10 M-5	2	<0.005 <0.005		<0.005	<0.005 <0.005	<0.005
111	cadmium	I-10 M-5	2	<0.020 <0.020		<0.020	<0.020 11.1	<0.020
119	Chromium (total)	I-10 M-5	2	<0.020 <0.020	N.	0.020	<0.020 <0.020	<0.020
120.	copper	I-10 M-5	2	0.200 <0.050		2.50	1.80 60.6	2.05
121.	cyanide (total)	I-10 M-5	1	<0.02 <0.02		<0.02	<0.02 <0.02	<0.02
122.	lead	I-10 M-5	2	<0.050 <0.050		0.100	<0.050 <1.00	0.100
123.	mercury	I - 10 M-5	2	<0.0002 <0.0002		<0.0002	<0.0002 <0.0002	<0.0002

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream _Code	Sample Type	Source	Concentrations Day 1 Day 2	(mg/L) Day 3	Day 4
lovic Pollutants (Continued)						
124. nickel	I-20 M-5	2	<0.050 <0.050	0.100	0.050 0.300	0.100
125. selenium	I-10 M-5	2	<0.010 <0.010	<0.020	<0.020 <0.010	<0.010
126. silver	I-10 M-5 M-11	2 1 1	<0.010 <0.010 <0.0005	, <0.010 0.714	<0.010 6.70	<0.010
127. thallium	I-10 M-5	2	<0.010 <0.010	<0.010	<0.010 <0.010	<0.010
1.48. zinc	I-10 M-5	2	0.040	4.66	1.84 0.260	2.32
Nonconventional Pollutants						
Acidity	I-10 M-5	2	<1 <1	1,400	120 430	470
Alkalinity	I-10 M-5	2	40 100	<1	< 1 < 1	< 1
Aluminum	I-10 M-5	2	<0.100 0.200	0.100	<0.100 0.300	0.100

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	le Concentrations (mg/L)							
Pollutant	Code	Type	Source	Day 1	ay 2	Day 3	Day 4			
Normanventional Pollutants (Continued)										
Aumonia Nitrogen	I-10 M-5	2 1	0.06 <0.1	0.	. 2	0.04 0.2	0.21			
Barrum	I-10 M-5	2 1	<0.050 <0.050	<(0.050	<0.050 <0.050	<0.05 0			
Bar on	I-10 M-5	2 1	.<0.100 <0.100	<(0.100	<0.100 <0.100	<0,100			
(a)cium	I-10 M-5	2 1	13.8 36.5	14	1.1	9.10 36.5	13.2			
Chemical Oxygen Demand (COD)	I-10 M-5	2 1	150 <5	1,80		,800 <5	100			
interide	I-10 M-5	2 1	30 10	1:	3	28 <0.1	28			
Cobalt	I-10 M-5	2	<0.050 <0.050	<	0.050	<0.050 <0.050	<0.050			
,Fluoride	I-10 M-5	2 1	0.32 0.85	•.	0.10	0.07 0.94	0.20			

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/L)					
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3	Day 4	
Nonconventional Pollutants (Continued)						•	
Leon	I-10 M-5	2 1	0.100 <0.050		0.650	0.250 0.150	0.300	
Magnesium	I-10 M-5	2 1	2.70 11.3		2.70	1.80	2.60	
Manganese	I-10 M-5	2	0.100 <0.050		0.100	0.050 <0.050	0.050	
Malyhdenum	I-10 M-5	2	<0.050 <0.050		<0.050	<0.050 <0.050	<0.050	
Phenolics	I-10 M-5	1	0.005 <0.005	reco as designated of the proper	<0.005	<0.005 <0.005	<0.005	
inosphate	I-10 M-5	2 1	2.7 <4		39	44 <4	33	
Sodium	I-10 M-5	2 1	28.0 5.20		28.2	19.0 5.40	28.6	
Sylfate	I-10 M-5	1	740 43		1,700	630 54	800	
Tin	I-10 M-5	2 1	<0.050 <0.050		<0.500	<0.050 <0.050	<0.500	

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutan <u>t</u>	Stream Code	Sampl Type		Concentra Day 1	ations Day 2	(mg/L) Day 3	Day 4
POTICIALLE							
Nonconventional Pollutants (Cor	itinued)						
litanium	I-10	2	<0.050	,	<0.050	<0.050	<0.050
	M-5	1	<0.050			<0.050	
(TDC)	I-10	2	850	a	00	950	360
Tutal Dissolved Solids (TDS)	M-5	1	270.0		00	510.0	555
	0	_					
Total Organic Carbon (TOC)	I-10	2 1	63		57	28 10	<1
	M-5	1	<1			10	
Total Solids (TS)	I-10	2	11,500	4,0	00	930	390
10121 301103 (70)	M-5	1	280.0			800	
			40.0E0		<0.050	<0.050	<0.050
\anadium	I-10 M-5	2 1	<0.050 <0.050		10.000	<0.050	10,000
	W J	,	10.000				
viljium	I-10	2	<0.050		<0.0 50	<0.050	<0.050
	M-5	1	<0.050			<0.050	
(ntional Bollutants							
Conventional Pollutants							_
Oil and Grease	I-10	1	<1		4	3	8
	M-5	1	3.0			<1	

730

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source	Concentrations Day 1 Day 2	(mg/L) Day 3	Day 4				
Conventional Pollutants (Continued)										
Total Suspended Solids (TSS)	I-10 M-5	2 1	300 14.0	3,000	<1 310	11				
pH (standard units)	I-10 M-5	2 · 1	6.10 7.30	1.90	2.20 2.50	1.30				

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-108

PRECIOUS METALS ALKALINE CLEANING SPENT BATHS

Plant	Wastewater L/kkg	Discharge gal/ton
1 2 3 4 5 6 7 8	60.00 NR NR NR NR NR NR NR	14.40 NR NR NR NR NR NR
Average	60.00	14.40

NR - Data not reported

Table V-109

PRECIOUS METALS ALKALINE CLEANING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewat: L/kkg	er Discharge gal/ton
1	3,149	755.1	0.0	3,149	755.1
2	6,933	1,663	0.0	6,933	1,663
. 1	15,840	3,800	0.0	15,840	3,800
1	18,890	4,530	0.0	18,890	4,530
3	NR	NR	NR	NR	NR
4	NR	NR	NR	NR	NR
5	NR	NR	NR	NR	NR
Average	11,200.00	2,687.00	•	11,200.00	2,687.00

NR - Data not reported

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER

Table V-110

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewa L/kkg	ater Discharge gal/ton
ı	10.20	2.45	0.0	10.20	2.45
2	93,800	22,500	P	126.0	30.20
3	173.8	41.67	0.0	173.8	41.67
4	873.7	209.5	0.0	873.7	209.5
4	6,635	1,591	0.0	6,635	1,591
5	16,480	3,951	NR	16,480	3,951
6	20,030	4,804	0.0	20,030	4,804
7	83,400	20,000	0.0	83,400	20,000
Average	27,680	6,637		15,970	3,829

P - Periodic discharge NR - Data not reported

Table V-111

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER
RAW WASTEWATER SAMPLING DATA

			Stream Sample		Concentrations (mg/L)			
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Day 4
Toxic	Pollutants							
11.	1,1,1-trichloroethane	1-9	1	0.022	Ē	0.008	0.007	0.007
	,,,,	K-4	1	ND	0.010.	0.011	0.015	0.007
44.	methylene chloride	1-9	1	0.003		0.012	0.016	0.006
	·	K-4	1	0.003	0.133	0.006	0.005	
45.	methyl chloride	1-9	1	ND		0.070	ND	ND .
	(chloromethane)	K-4	1	ND	ND	. ND	ND	•
65.	pheno l	I - 9	2	ND		ND	ND	0.001
		K-4	6	ND	ND	ND	ND	
6 6 .	bis(2-ethylhexyl)	1-9	2	ND		ND	ND	ND
	phthalate	K-4	6	ND	МD	0.005	ND	
86.	toluene	1-9	1	ND		ND ·	ND	ND
		K-4	1	0.002	0.818	0.006	0.003	
87.	trichloroethylene	I-9	1	ND		ND	ND	0.025
	•	K-4	1	ND	ND	ND	ND	
114.	antimony	I-8	2	<0.010		<0.020	<0.010	
		I-9	2	<0.010		<0.010	<0.010	<0.010
		K-4	6	<0.010	<0.010	<0.010	<0.010	
115.	arsenic	1-8	2	<0.010		<0.010	<0.010	
		I-9	2	<0.010		<0.010	<0.010	<0.010
		K-4	6	<0.010	<0.010	<0.010	<0.010	
117.	beryllium	1-8	2	<0.005		<0.005	<0.005	
	-	I-9	2	<0.005		<0.005	<0.005	<0.005
	•	K-4	6	<0.005	<0.005	<0.005	<0.005	
1.18	cadmium 🔑 🚚 .	1-8	- 2 -	<0.020		~<0.020-	<0.020	and the second of the second o
	•	I-9	2	<0.020		0.420	0.040	0.060
	· .	K-4	6	<0.020	0.120	0.080	0.060	•
119.	chromium (total)	I-8	2	<0.020		<0.020	<0.020	
		1-9	2	<0.020		<0.020	<0.020	<0.020
	<u>;</u>	, K-4	6	<0.020	0.140	0.200	0.180	•
120.	copper	I-8	2	0.200		2.25	0.750	
		1-9	2	0.200		0.600	2.55	1.25
		K-4	6	0.100	4.95	5.95	3.80	

ω

Table V-111 (Continued)

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	le Concentrations (mg/L)				
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3	Day 4
Toxic Pollutants (Continued)							
121. cyanide (total)	1-8	1	<0.02		<0.02	<0.02	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1-9	1	<0.02		<0.02	<0.02	<0.02
	K-4	1	0.09	0.28	0.077	<0.02	
122. lead	1-8	2	<0.050		0.100	<0.050	
	1-9	2	<0.050		0.050	0.150	0.200
	K-4	6	<0.050	0.250	0.050	<0.050	
123. mercury	1-8	2	<0.0002		<0.0002	<0.0002	
·	I-9	1	<0.0002		<0.0002	<0.0002	<0.0002
	K-4	6	<0.0002	<0.0002	<0.0002	<0.0002	
124. nickel	1-8	2	<0.050		3.60	<0.050	
	I-9	2	<0.050		0.600	0.200	0.150
	K-4	6	<0.050	0.250	0.300	0.350	
125. selenium	I-8	2	<0.010		<0.020	<0.010	
•	I-9	2	<0.010		<0.010	<0.010	<0.010
	K-4	6	<0.010	<0.010	<0.010	<0.010	
126. silver	1-8	2	<0.010		<0.010	<0.010	
•	1-9	2	<0.010		0.100	0.040	0.040
	K-4	6	<0.010	0.060	0.020	0. 0 10	
127. thallium	1-8	2	<0.010		<0.010	<0.010	
	I-9	2	<0.010 ·		<0.010	<0.010	<0.010
•	K-4	6	<0.010	<0.010	<0.010	<0.010	
128. zinc	1-8	2	0.040		0.980	0.280	
	I -9	2	0.040	•	0.060	0.100	0 120
	K-4	6	<0.020	0.400	2.32	0.780	
Nonconventional Pollutants							
Acidity	I-8	2	< 1		180	120	
	I-9	2	<1		<1	<1	< 1
	K-4	6	<1	<1	<1	<1	
Alkalinity	I -8	2	40		<1	<1	
	I-9	- 2	40		45	48	37
·	K-4	6	43	. 10	1.2	15	
Aluminum	I-8	2	<0.100		<0.100	<0.100	
	I-9	2	<0.100		<0.100	<0.100	<0.100
	K-4	6	<0.100	10.7	26.1	43.9	

	Stream Sample Concentrations (mg.	le Concentrations (mg/L)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants (Con	tinued)				-	-	•
Ammonia Nitrogen	I-8	2	0.06		0.08	0.04	
	I-9	2	0.06		0.1	0.05	0.03
	K-4	6	0.17	0.32	0.07	0.07	
Barium	I-8	2 .	<0.050		<0.050	<0.050	
	I-9	2	<0.050		<0.050	<0.050	<0.050
	K-4	6	<0.050	1.40	0.250	0.650	3,,,,
Boron	1-8	2	<0.100		22,1	9.70	
	1-9		<0.100			<0:100	<0.100
	K-4	6	<0.100	<0.100	<0.100	0.200	\0. ₁ 00
Callat "			40.0		- · · _		
Calcium	I~8	.2	13.8		14.7	15.1	
	1-9	2	13.8		13.6	12.8	12.3
•	K-4	6	8.70	10.2	10.3	10.8	
Chemical Oxygen Demand (COD)	I-8	2	150	*	320 1	,900	
	I-9	2	150		18	150	78
	K-4	6	34	200	87	160	
Chloride	I-8	2	30		30	. 3,1	
•	I - 9	2	30		<1	26	30
	K-4	6	35	5 5	70	62	
Cobalt	I ~8	2	<0.050		<0.050	<0.050	
	I -9	2	<0.050		<0.050	<0.050	<0.050
	K-4	6	<0.050	<0.050		<0.050	0.000
Fluoride	I-8	2.	0.32		0.51	0.17	
-	I -9	2	0.32	-	0.08	0.17	0.68
	K-4	6	1.31	7.7	1.6	1.7	0.00
Iron,			10.050				
fron,	I-8 I-9	2 2 .	<0.050		1.00	0.250	0.400
	K-4	6	<0.050 <0.050	4.75	0.650 6.15	0.400	0.400
	Λ 4		VU.050	4.75	0.15	4.85	
Magnesium	I-8	2	<0.050		2.80	2.80	
@	I-9	2	<0.050		2.70	2.50	2.50
	K-4	6	2.10	2.20	2.20	2.20	
Manganese	1-8	2	<0.050		0.150	0.100	
- · · · · · · · · · · · · · · · · · · ·	1-9	- 2	<0.050		0.100	0.050	0.050
• ,	K-4	6	<0.050	0.150	0.150	0.150	

Table V-111 (Continued)

* PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	9	Concent	trations	(mg/L)	
Pollutant	Code	Туре		Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants (Cor	/hauntte						
Nonconventional Politicants (Col	it illueu)					-	
Molybdenum	1-8	2	<0.050		<0.050 <0.050	<0.050 <0.050	<0.050
	1-9	2 6	<0.050 <0.050	<0.050	<0.050	<0.050	VO.050
	K-4	Ö	VO.050	٧٥.050	10.000	10.000	
Phenolics	1-8	1	<0.005		<0.005	<0.005	
11101101100	1-9	1	<0.005		<0.005	<0.005	<0.005
	K-4	1	<0.005	<0.005	<0.005	<0.005	
Disassina ka	1-8	2	2,7		35	15	
Phosphate	1-9	2	2.7		16	30	18
	K-4	6	4.8	100	100	58	
	× 0	2	28.0		436	77.1	
Sodium	1-8 1-9	2	28.0		37,1	35.4	30.2
	K-4	6	32.9	50.3	53.8	60.3	
					500	450	
Sulfate	1-8	2	740 740	ı	,500 300	450 480	630
	I-9	2 6	740 4 00	410	630	840	030
	K-4	6	400	410	000	0.10	
Tin	1-8	2	<0.050		<0.050	<0.050	
	I-9	2	<0.050		<0.050	<0.050	<0.050
	K-4	6	<0.050	<0.050	<0.050	<0.050	
Titanium	1-8	2	<0.050		<0.050	<0.05 0	
[Call Call	1-9	2	<0.050		<0.050	<0.050	<0.050
	K-4	6	<0.050	0.450	<0.050	0.150	
Total Dissolved Solids (TDS)	I-8	2	850	2	.500	650	•
lotal Dissolved Solids (103)	1-9	2	850			,850	116
	K−4	6	140	225	200	240	
(700)	T 0	2	63		15	17	-
Total Organic Carbon (TOC)	I-8 I-9	2	63		4	18	5
	K-4	6	<1	19	14	22	
		_	44 500	-	2,900	680	
Total Solids (TS)	1-8 1-8	2 2	11,500 11,500	4		,900	130
	1-9 K-4	6	160	300 -	450	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Λ Τ	J		-			
Vanadium	. I-8	2	<0.050		<0.050	<0.050	40. DE 0
	1-9	2	<0.050	40.050	<0.050	<0.050 <0.050	<0.050
	K-4	6	<0.050	<0.050	<0.050	\U,U3U	

138

Table V-111 (Continued)

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		Concen	trations	(mg/L)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants (Con	tinued)						
Yttrium	I-8 I-9 K-4	2 2 6	<0.050 <0.050 <0.050	<0.050	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050
Conventional Pollutants		•	•				
Oil and Grease	I-9	1	<1 <1 <1		5 5	15 (<1
•	K-4	1	<1	16	10	10	
Total Suspended Solids (TSS)	I-8. I-9 K-4	2 2 6	300 300 16	47	400 50 68	<1 <1 180	19
pH (standard units)	K-4 I-8 I-8	2 2 6	6.10 6.10 6.70	5.40	2.30 6.40 4.60	3.70 6.10 7 .90	6.10

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 46-64, 67-85, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-112

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewate L/kkg	r Discharge gal/ton
1	992.6	238.0	0.0	992.6	238.0
2	1,053	252.5	0.0	1,053	252.5
1	5,745	1,378	0.0	5,745	1,378
3	40,700	9,760	0.0	40,700	9,760
4	NR	NR	0.0	NR	NR
Average	12,120	2,907		12,120	2,907

NR - Data not reported

Table V-113

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Con	centration	s (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic	Pollutants						
11.	1,1,1-trichloroethane	I-4	1	0.022	0.017		
		K-3	1	ND	ND	ИD	ND
16.	chloroethane	I-4	1	ND	0.001 ND	ND	ND
*	•	K-3	1	ND		ND	ŊD
44.	methylene chloride	I-4 K-3	1	0.003 0.003	0.004 0.041	0.031	0.007
40	haishla asflus nomethana	I-4	1	ND	0.001		
49.	trichlorofluoromethane	. K-3.	1	ND	_ ND	D ::.	
86.	toluene	1-4	1	ND	ND		
		K-3	1	0.002	0.028	0.088	0.005
114.	antimony	I-4	. 2	<0.010	0.050		
		K-3	6	<0.010	·<0.010	<0.010	<0.010
115.	arsenic	I-4 K-3	2 6	<0.010 <0.010	<0.020 <0.010	<0.010	<0.010
			_				10.010
117.	beryllium	I-4 K-3	2 6	<0.005 <0.005	<0.005 <0.005	<0.005	<0.005
118.	cadmium	I~4	2	<0.020	0.060		
1102	Cadmiram	K-3	6	<0.020	0.720	0.700	0.600
119.	chromium (total)	1-4	· 2	<0.020	<0.020		
		K-3	6	<0.020	3.18	0.500	0.120
120.	copper	I-4	2	0.200	142 5.50	F 10	6 25
		K-3	6	0.100		5.10	6.25
121.	cyanide (total)	I-4 K-3	1	<0.02 0.09	<0.02 <0.02	<0.02	0.08
122	load	I-4	2	<0.050	1.85		-
122.	lead	K-3	6	<0.050	<0.050	<0.050	<0.050
123.	mercury	I-4	2	<0.0002	<0.0002		
•	•	K-3	6	<0.0002	0.0005	0.0004	<0.0002
124.	nickel	I-4	2	<0.050	0.100		
		к-з	6	<0.050	1.35	3.25	2.10

Table V-113 (Continued)

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		ns (mg/1)		
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
125. selenium	I-4 К-З	2 6	<0.010 <0.010	<0.010 <0.010	<0.010	<0.010
126. silver	I-4 K-3	2 6	<0.010 <0.010	0.070 0.080	0.220	0.080
127. thallium	I-4 K-3	2 6	<0.010 <0.010	<0.010 <0.010	<0.010	<0.010
128. zinc	I-4 K-3	2 6	0.040 <0.020	3.16 0.160	0.180	0.140
Nonconventional Pollutants						
Acidity	I-4 K-3	2 6	<1 <1	190 <1	<1	<1
Alkalinity	I-4 K-3	2 6.	40 43	<1 130	120	96
Aluminum	I-4 K-3	2 6	<0.100 <0.100	0.400 0.300	0.300	0.100
Ammonia Nitrogen	I-4 K-3	2 6	0.06 0.17	0.03 0.09	0.08	1.1
Barium	I-4 K-3	2 6	<0.050 <0.050	<0.050 <0.050	<0.050	·<0.050
Boron	I-4 K-3	2 6	<0.100 <0.100	0.400 0.700	0.300	10.7
Calcium	I-4 K-3	2 6	13.8 8.70	11.1 9.30	9.70	9.90
Chemical Oxygen Demand (COD)	I-4 K-3	2 6	150 34	51 250	190	160
Chloride	I-4 K-3	2	30 35	24 42	47	40
Cobalt	I-4 K-3	2 6	<0.050 <0.050	<0.050 <0.050	<0.050	<0.050
				÷ ,,=	•	
\$ * C * C * C * C * C * C * C * C * C *					=	

Table V-113 (Continued)

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Co Source	ncentration Day 1	ons (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)					==1 =	Day o
Fluoride	T 4					
· · · · · · · · · · · · · · · · · · ·	I-4 K-3	6	0.32 1.31	0.25 1.6	1.1	1.3
Iron	I-4	2	0.100	0.750		
	K-3	. 6	<0.050	3.05	7.85	5.30
Magnesium	I - 4	. 2	2.70	2.40		
	K-3	6	2.10	2.20	2.10	2.10
Manganese		2	0.100	0.100		* * * *
	K-3	. 6	<0.050	1.05	0.450	1.00
Molybdenum	I4	2	<0.050	<0.050	•	
	K-3	6	<0.050	<0.050	<0.050	<0.050
Phenolics	I-4	1	<0.005	<0.005		
	K-3	1	<0.005	<0.005	<0.005	<0.005
Phosphate	I-4 K-3	2 6		2,800		
	N-3	6	4.8	130	110	130
Sodium	I -4 K-3	6	28.0	371	:	
C. 16-1-			32.9	89.5	58.2	68.3
Sulfate	I-4 K-3	2 6	740 (8,300 680	000	700
Tin					600	760
	I-4 K-3	2 · 6	<0.050 <0.050	<0.050 <0.050	<0.050	10 050
Titanium		,		VU.U5U	\U.U5U	<0.050
Treatification	I-4 K-3	2 . 6 ·	<0.050 <0.050	<0.050 <0.050	<0.050	ź0: 0=0
Total Dissolved Solids (TDS)					\U.U5U	<0.050
Total bissolved Solids (105)	I-4 K-3	2 6	850. §	9,700 290	280	280
Total Organic Carbon (TOC)				-	200	200
	I-4 K-3	2 6	63 <1	27 49	46	57
Total Solids (TS)	I-4	2 11			10	
	K-3	2 11 ,	,500 10 160	410	410	380

Table V-113 (Continued)

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Con	cent <u>ration</u>	ns (mg/l)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
						
Nonconventional Pollutants (Continued)					
tte en diferen	I-4	2 6	<0.050	<0.050		40.050
Vanadium	K-3	6	<0.050	<0.050	<0.050	<0.050
•	1-4	2	<0.050	<0.050		
Yttrium	к−3	2 6	<0.050	<0.050	<0.050	<0.050
Conventional Pollutants						
01) 1 0	I-4	1	<1	< 1		
Oil and Grease	к-3	1	<1	40	38	<1
	T 4:	2	300	10		
Total Suspended Solids (TSS)	I-4 K-3	6	16	100	110	62
•	7. 4	2	6.10	2.52	*	
pH (standard units)	I-4 K-3	6	6.70	8.70	7.30	6.50

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-15, 17-43, 45-48, 50-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-114

PRECIOUS METALS SAWING OR GRINDING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	100	0.00	0.00
Average	NR	NR)		0.00	0.00

NR - Data not reported

Table V-115

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 1 2 2	2,220 2,270 NR NR	533.0 545.0 NR NR	P P P	3.17 8.92 177.6 2,775	0.76 2.14 42.60 665.4
Average	2,245	539.0		741.1	177.7

p - Periodic discharge
NR - Data not reported

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

Table V-116

*				
Pollutant	Stream	Sample		entrations (mg/l)
-	Code	Type	Source	Day 2 Day 3 Day 4
<u>Toxic Pollutants</u>				
11. 1,1,1-trichloroethane	1-6	1	0.022	ND
44. methylene chloride	I-6 .	1	0.003	0.110
65. phenol	1-6	1	ND	0.038
114. antimony	I-6	1	<0.010	<0.010
115. arsenic	I-6 .	1	<0.010	<0.010
117. beryllium	I-6	1	_ <_0 . 005	<0.005
118. cadmium	1~6	1	<0.020	<0.020
119. chromium (total)	1-6	1	<0.020	<0.240
120. copper	1-6	1	0.200	0.550
121. cyanide (total)	1-6	1	<0.02	<0.02
122. lead	I-6	1	<0.050	0.100
123. mercury	1-6	1	<0.0002	<0.0002
124. nickel	I-6	1	<0.050	0.150
125. selenium	1-6	1	<0.010	<0.010
126. silver	1-6	1	<0.010	<0.010
127. thallium .	1-6	1	<0.010	<0.010
128. zinc	I-6	1	_0.040	
Nonconventional Pollutants				
Acidity	1-6	· 1	<1	<1
Alkalinity	1-6	4	40	81
Aluminum	1-6	1	<0.100	0.100
Ammonia Nitrogen	1-6	1	0.06	0.02

141

Table V-116 (Continued)

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	entrations (mg/1) Day 2 Day 3 Day 4
Nonconventional Pollutants (Continued)			
Barium	1-6	1	<0.050	<0.050
Boron	1-6	1	<0.100	5.10
Calcium	1-6	1	13.8	15.7
Chemical Oxygen Demand (COD)	1-6	1	150	2700
Chloride	1-6	1	30	40
Cobalt	1-6	1	<0.050	<0.050
Fluoride	1-6	1	0.32	0.09
Iron	1-6	1	0.100	16.7
Magnesium	1-6	1	2.70	3.50
Manganese	1-6	1	0.100	0.500
Molybdenum	1-6	1	<0.050	<0.050
Phenolics	1-6	1	<0.005	<0.005
Phosphate	1-6	- 1	2.7	11

748

Table V-116 (Continued)

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Conce</u> Source	entrations (mg/l) Day 2 Day 3	Day 4
Nonconventional Pollutants (Continued)					
Sodium	I-6	1	28.0	. ·	
Sulfate	1-6	1	740	720	
Tin	I-6	1	<0.050	<0.050	
Titanium	I-6	1	<0.050	<0.050	•
Total Dissolved Solids (TDS)	I-6	1	850	1,480	
Total Organic Carbon (TOC)	I=6-		-63	25	
Total Solids	I-6	1 11	,500 ·	1,500	
Vanadium	I-6	1	<0.050	<0.050	
Yttrium	I-6 .	1	<0.050	<0.050	
Conventional Pollutants		•			
011 and Grease	I-6	1	<1	500	
Total Suspended Solids (TSS)	I-6	1.	300	<1	•
pH (standard units)	I-6	1 -	6.10	7.50	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-64, and 66-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-117

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	83.50	20.00	0.0	83.50	20.00
Average	83.50	20.00		83.50	20.00

Table V-118

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

•	Stream	Sample	Conce	entration	s (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
114. antimony	K-2	1	<0.010			<0.010
115. arsenic	K-2	1	<0.010			<0.010
117. beryllium	K-2	1	<0.005			<d.005< td=""></d.005<>
118. cadmium	K-2	1	<0.020		•	0.060
119. chromium	K-2	1	<0.020			0.060
120. copper	K-2	1	0.100			7.85
121. cyanide (total)	K-2	1	0.09	-	-	<0.02
122. lead	K-2	1	<0.050		*	0.250
123. mercury	K-2	1	<0.0002			<0.0002
124. nickel	K-2	1	<0.050			0.400
125. selenium	K-2	1 -	<0.010			<0.010
126. silver	K-2	1	<0.010		-	0.050
127. thallium	K-2	1	<0.010			<0.010
128. zinc	K-2	1	<0.020			3.42
Nonconventional Pollutants					•	
Acidity	K-2	1	<1			<1
Alkalinity	K-2	1	43			52
Aluminum	K-2	1	<0.100			56.3
Ammonia Nitrogen	K-2 .	1	0.17			0.08
Barium	K-2	1	<0.050			0.100
Boron	K-2	1	<0.100			0.100
Calcium	K-2	1 .	8.70			15.4

Table V-118 (Continued)

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream Sample			Concentrations (mg/1)		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued	1)					
Chemical Oxygen Demand (COD)	K-2	1	34			42
Chloride	K-2	1	35			38
Cobalt	K-2	1	<0.050			<0.050
Fluoride	K-2	1	1.31			1.4
Iron	K-2	1	<0.050			29.4
Magnesium	K-2	1	2.10			55.4
Manganese	K-2	1	<0.050			1.00
Molybdenum	K-2	1	<0.050			<0.050
Phenolics .	K-2	1	<0.005			<0.005
Phosphate .	K-2	1	4.8			11,
Sodium	K-2	. 1	32.9			36.6
Sulfate	K-2	1 .	400			780
Tin	K-2	1	<0.050			0.100
Titanium	`K−2	1	<0.050			0.100
Total Dissolved Solids (TDS)	K-2	1	140			140
Total Organic Carbon (TOC)	K~2 ⁻	1	<1			<1
Total Solids (TS)	K-2	1	160			150
Vanadium	K-2	1	<0.050			<0.050
Yttrium	K~2 .	. 1	<0.050			<0.050

Table V-118 (Continued)

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entrations	s (mg/i)	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Conventional Pollutants		•				
Oil and Grease	K-2	1	<1			10
Total Suspended Solids (TSS)	K-2	1	16			4 .
pH (standard units)	K-2	1 .	6.70			7.90

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-119

PRECIOUS METALS WET AIR POLLUTION CONTROL BLOWDOWN

	Wat	er Use	Percent	Wastewater	Discharge
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	47,500	11,400	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	P	NR	NR
4	NR	NR	NR	NR	NR
2	NR	NR	NR	NR	NR
_					
Average	47,500	11,400		0.00	0.00

P - Periodic discharge NR - Data not reported

Table V-120

REFRACTORY METALS ROLLING SPENT NEAT OILS AND GRAPHITE-BASED LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	NR NR	NR NR	100 100	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-121

REFRACTORY METALS ROLLING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	P	428.8	102.8
Average	NR	NR		428.8	102.8

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-122
REFRACTORY METALS DRAWING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	NR	0.00	0.00
4	NR	NR	NR	0.00	0.00
5	NR	NR	100	0.00	0.00
5	NR	NR	100	0.00	0.00
6	NR	NR	NR	NR	NR
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-123
REFRACTORY METALS EXTRUSION SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
ı	NR	NR	0.0	0.00	0.09
2	NR	NR	0.0	0.00	0.00
3	NR	NR	0.0	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-124

REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
.1	1,190	285.4	0.0	1,190	285.4
Average	1,190	285.4		1,190	285.4

^{*}Discharge from operation.

REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Table V-125

Pollutant	Stream <u>Code</u>	Sample Type	Conce Source	ntrations (mg/l) Day 1 Day 2 Day 3
Toxic Pollutants				
11. 1,1,1-trichloroethane	N-2	1	ND	0.745
23. chloroform	N-2	1	0.015	ND
24. 2-chlorophenol	N-2	1	ND	<0.010
44. methylene chloride	N-2	1	ND	0.980
58. 4-nitrophenol	N-2	1	0.010	ND
65. phenol	N-2	1	ND	0.418
66. bis(2-ethylhexyl) phthalate	N-2	1	<0.010	286
67. butyl benzyl phthalate	N-2	. 1	ND .	1,040
68. di-n-butyl phthalate	N-2	1	ND	1.683
69. di-n-octyl phthalate	N-2	1	ND	265
70. diethyl phthalate	N-2	1	ND	2.340
72. benzo(a)anthracene (a)	N-2	1	ND	455
76. chrysene(a)	N-2	1 .	ND	455
85. tetrachloroethylene	N-2	1	ND	26.3
86. toluene	N-2	1	ND	0.110
114. antimony	N-2	1	<0.002	0.060
115. arsenic	N-2	1 1	<0.001	<0.7001
117. beryllium	N-2	1	<0.0005	0.003
118. cadmium	N-2	1	<0.001	.0.32
119. chromium (total)	N-2	1	0.10	0.60
120. copper	N-2	1	0.030	21
122. lead	N-2	, 1	0.084	. 18

Table V-125 (Continued)

REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conce Source	entrations (mg/l) Day 1 Day 2	Day 3
<u>Toxic</u> <u>Pollutants</u> (Continued)		•			
123. mercury	N-2	1	<0.0002	•	<0.0002
124. nickel	N-2	1	0.11		0.44
125. selenium	N-2	1	<0.008		<0.008
126. silver	N-2	1	<0.002		0.32
127. thallium	N-2	1	<0.001		<0.001
128. zinc	N-2	1 .	0.20		18
Nonconventional Pollutants					
Molybdenum	N-2	1	0.10		20
Total Dissolved Solids (TDS)	N-2	1 ,	360	350	,000
Conventional Pollutants					
Oil and Grease	N-2	, 1	14	44	,000
Total Suspended Solids (TSS)	N-2	1	<1	. 19	,000
pH(standard units)	N-2	1	7.4		8.5

(a) Reported together

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 25-43, 45-57, 59-64, 71, 73-75, 77-84, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, 121, and 129.

Table V-126
REFRACTORY METALS FORGING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 1 2 3	2.23 6.75 NR NR	0.54 1.62 NR NR	0.0 0.0 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00
Average	4.49	1.08		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-127
REFRACTORY METALS FORGING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	323 NR	77.5 NR	0.0	323 NR	77.5 NR
Average	323	77.5		323	77.5

NR - Data not reported

^{*}Discharge from operation.

Table V-128

REFRACTORY METALS METAL POWDER PRODUCTION WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 1	1,183 280.6	283.7 67.29	0.0	0.00	0.00
2	37.11	8.90	0.0	36.02	8.64
3	151.9 34,450	36.43 8,262	0.0	151.9	36.43
3	34,430	0,202	0.0	34,450	8,262
Average	7,221	1,732		11,550	2,769

^{*}Discharge from operation.

Table V-129

REFRACTORY METALS METAL POWDER PRODUCTION FLOOR WASHWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	183.4	43.99	100	0.00	0.00
2	35.83	8.59	0.0	35.83	8.59
Average	109.6	26.29		35.83	8.59

^{*}Discharge from operation.

Table V-130

REFRACTORY METALS METAL POWDER PRESSING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	100	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-131

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1	13.09	3.14
2	94.12	22.57
3	232.3	55.71
4	343.9	82.47
2	469.8	112,7
5	1,180	282.9
6	NR	NR
7	NR	NR
8	NR	NR
6	NR	NR
7	NR	NR
2	NR	ŃR
6	NR	NR
9	NR	NR
10	NR	NR
Average	388.8	93.25

NR - Data not reported

^{*}Discharge from operation.

Table V-132

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concent	rations (mg/l)
Pollutant	Code	Type	Source D	ay 1 Day 2 Day 3
Toxic Pollutants				
114. antimony	M-6	1	<0.010	<0.050
115. arsenic	M-6	1	<0.010	<0.010
117. beryllium	M-6	1	<0.005	<0.005
118. cadmium	M-6,	1	<0.020	0.500
119. chromium (total)	M-6	1	<0.020	0.100
120. copper	. M-6	1	<0.050	6.30
121. cyanide (total)	M-6	1	<0.02	<0.02
122. lead	M-6	1	<0.050	<0.100
123. mercury	M-6	1	<0.0002	0.0002
124. nickel	M-6	. 1	<0.050	12.4
125. selenium	M-6	1	<0.010	<0.010
126. silver	M-6	. 1	<0.010	6.10
127. thallium	M-6	1	<0.010	<0.100
128. zinc	M-6	1	0.080	1.75
Nonconventional Pollutants				
Acidity	M-6	1	·<1	1,900
Alkalinity	M-6	1	100-	- <1 - · · · · · ·
Aluminum	M-6	1	0.200	0.400
Ammonia Nitrogen	M-6	1	.<0.1	<0.1
Barium	M-6	1	<0.050	<0.050
Boron	M-6	1	<0.100	9.00
Calcium	M-6	1	36.5	39.1

Table V-132 (Continued)

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

					•
•	Stream	Sample		entrations (mg/l)	
Pollutant	Code	Туре	Source	Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)					•
Chemical Oxygen Demand (COD)	M-6	1	<5	1,800	
Chloride .	M-6	1	10	100	
Cobalt	M-6	1	<0.050	<0.050	
Fluoride	M-6	7	0.85	0.27	
Iron	M-6	i	<0.050	14.7	tin to the
Magnesium	M-6	1	11.3	13.2	
Manganese	M-6	1	<0.050	0.150	
Molybdenum	M-6	1	<0.050	0.050	
Phenolics	M-6	1	<0.005	<0.005	
Phosphate	M-6 .	1	<4 ·	<4 '	
Sodium	M-6	1	5.20	60.1	•
Sulfate	M-6	1	43	61	
Tin	M-6	1	<0.050	<0.050	
Titanium	M-6 ·	1,	<0.050	0.050	
Total Dissolved Solids (TDS)	M-6	1	270	660	
Total Organic Carbon (TOC)	M-6	1	<1	12	-
Total Solids (TS)	M-6	1	280	1,300	
Vanadium	M-6	1	<0.050	<0.050	
Yttrium	M-6	1	<0.050	<0.050	

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day l Day 2 Day	3
Conventional Pollutants					
Oil and Grease	M-6	1	. 3	<1	
Total Suspended Solids (TSS)	M-6	1 .	14	140	
pH (standard units)	м-6	1	7.30	0.80	

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

770

Table V-133 REFRACTORY METALS SURFACE TREATMENT RINSE

Plant	Wat	er Use	Percent	Wastew	ater Discharge*
	L/kkg	gal/ton	Recycle	L/kk	g gal/ton
1	5,949	1,427	0.0	5,949	1,427
2	NR	NR	CCR	9,381	2,250
3	9,673	2,320	0.0	9,673	2,320
4	24,570	5,893	0.0	24,570	5,893
2	NR	NR	CCR	27,970	6,707
5	444,800	106,700	0.0	444,800	106,700
6	NR	NR	NR	NR	NR
6	NR	NR	NR	NR	NR
7	NR	NR	P	NR	NR
6	NR	NR	0.0	NR	NR
8	NR	NR	NR	NR	NR
9	NR	NR	0.0	NR	NR
10 2	NR NR 121,200	NR NR 29,090	NR NR	NR NR 87,060	NR NR 20,880

P - Periodic discharge NR - Data not reported CCR - Two stage countercurrent rinsing in-place

^{*}Discharge from operation.

Table V-134

REFRACTORY METALS SUPPOCE THEATMENT RINSE PAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants						
114. antimony	M-7 M-10 0-2 Z-1	1 1 2 1	<0.010 <0.010 <0.10 0.0004	0.00025	<0.010 <0.100	<0.1
115. arsenic	M-7 ` M-10 0-2 Z-1	1 1 2 1	<0.010 <0.010 <0.01 <0.001	0.0018	<0.010 <0.010	<0.01
117. beryllium	M-7 M-10 O-2 Z-1	1 1 2 1	<0.005 <0.005 <0.001 <0.01	<0.01	<0.005 <0.200	0.004
118. cadmium	M-7 M-10 0-2 Z-1	1 1 2 1	<0.020 <0.020 <0.002 <0.01	0.03	<0.020 <0.040	0.040
119. chromium (total)	M-7 M-10 0-2 Z-1	1 1 2 1	<0.020 <0.020 <0.005 0.038	0.11	<0.020 0.440	0.100
120. copper	M-7 M-10 0-2 Z-1	1 1 2 1	<0.050 <0.050 0.030 0.013	0.12	0.050 0.400	0.200
121. cyanide (total)	M-7 M-10	1 1	<0.02 <0.02		<0.02 <0.02	
122. lead	M-7 M-10 O-2 Z-1	1 1 2 1	<0.050 <0.050 <0.020 0.097	0.16	<0.050 0.500	0.060

72

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Cond	Concentrations (mg/1)			
<u>Pollutant</u>	_Code_	Туре	Source	Day 1	Day 2	Day 3	
Toxic Pollutants (Continued)							
	·	-					
123. mercury	M-7	1	40.0000		<u> </u>		
,	M-10	1	<0.0002		<0.0002		
•	0-2	2	<0.0002 <0.0001		<0.0002	_	
	Z-1	1	<0.005	40 0 05		0,0001	
	- '	' .	.0.005	<0.005			
124. nickel	M7	1	<0.050		0.600		
•	M-10	i	<0.050		10.2		
	0-2	2	<0.005		. 10.2	0.070	
•	Z~1	1	0.038	0.086		0.070	
125. selenjum	M−7		<0.010				
	M-10	1	<0.010 <0.010	-	<0.010	,	
	0-2	2	<0.010		<0.010		
	Z-1	1	0.0004	<0.0004		<0.01	
	- '		0.0004	<0.0004			
126. silver	M-7	1	<0.010		0.050		
	M-10	i	<0.010		<0.010		
	0-2	2	<0.02		\0.010	<0.02	
	Z-1	1	0.0005	0.0005		\U.UZ	
127. thallium	M-7	1	<0.010		-0.000		
	₩-10	, i ,	<0.010		<0.050		
	0-2	2	<0.1		<0.010		
	Z-1	ī	<0.001	<0.001		<0.2	
100			0.00.	.0.001	•		
128. zinc	M-7	1	0.080		0.040		
	M-10	1	0.080		0.080		
	0-2	2	<0.060		2.000	0.200	
•	Z-1	1	<0.25	0.034		3.200	

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pallutant</u>	Stream <u>Code</u>	Sample Type	Conc Source	entratio Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants						
Aniditu	M-7	1	<1	1	,500	
Acidity	M-10	i	<1	•	890	
	Z-1	1	<10 1	,200		
Alkalinity	M-7	1	100		<1	
•	M-10	1	100		<1	
	Z-1	1	69	<10		
Aluminum	M-7	1	0.200		0.200	
	M-10	1	0.200		19.6	.0 500
	0-2	2	<0.050			<0.500
•	Z-1	1	0.11	0.46		
Ammonia Nitrogen	M-7	1	<0.1		<0.1	
Barium	M-7	1	<0.050		<0.050	
Sur Tum	M-10	1	<0.050		0.100	
	0-2	2	0.020			0.040
	Z-1	1	0.04	0.012		
Boron	M-7	1	<0.100		0.100	
501 011	M-10	- 1	<0.100		46.4	
	Z-1	1	0.5	0.97		
Calcium	M~7	1	36.5		33.8	
Careram	M-10	1	36.5		37.6	
	0-2	2	<5.0	-		<5.0
	Z-1	1	79	5		
Chemical Oxygen Demand (COD)	M-7	1	<5		<5	
Greinica - Gryger Jamera (555)	0-2	2	8			114
Chloride			- 10			
	M-10	1	10		12	
	0-2	2				12
			•			

774

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Con Source	centration Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)						`-
Cobalt	М-7	1	<0.050		<0.050	
	M-10	. 1	<0.050		<1.00	
· .	Z-1	i	<0.01	<0.01		
Columbium	Z-1	1	ND	4.4	_	
Fluoride	M-7 .	1	0.85		1.1	
. *	M-10	1	0.85	3,	000	
•	0-2	2 .		•		5.2
	Z-1	1	0.2	82	*	
Iron	M-7	1	<0.050	•	0.300	
	M-10	1	<0.050	-	2.00	
•	0-2	2	<0.200			5.00
•	Z-1	1	0.24	0.72		
Magnesium	M-7	1	11.3		10.7	
	M-10	1	11.3		11.8	
•	0-2	2	0.7			0.9
	Z-1	1	8.0	0.034		
Manganese	M-7	1.	<0.050		<0.050	
	M-10	1	<0.050		<0.100	
·	0-2	2	<0.005			0.080
	Z-1	• 1	0.012	0.03		
Molybdenum	M-7	1	<0.050		<0.050	
	M-10	1	<0.050		0.700	
	0-2	2	<0.005			0.400
	Z-1	1	<0.03	<0.03		

	Stream	Sample	Conc	entratio	ns (mg/1)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)				•	
Phenolics	M-7	1	<0.005		<0.005	
FILEHOLICO		_			<4	
Phosphate	M-7	1	<4		\4	
Sodium	M-7	1	5.20		7.60	
Sodium	M-10	1	5.20		36.8	
. *	0-2	2	<15			27
	Z-1	1	27	43		
	M-7	1	43		44	
Sulfate	M-10	i	43		380	
•						
Tantalum	Z-1	1	ŅD	9.2		
	M-7	1	<0.050		<0.100	
Tin	M-10	i	<0.050		<1.00	
	0-2	2	<0.005			0.010
	Z-1	1	<0.28	<0.28		
	M-7 .	1 .	<0.050		<0.050	
Titanium	M-10	i	<0.050		<0.100	
	0-2	2	<0.020			0.020
	Z-1	1	<0.25	2		
		•	270		270	
Total Dissolved Solids (TDS)	M−7 M−10	1	270		770	
•	Z-1	i	110	87	• • •	
	2 !	•		•		•
Total Organic Carbon (TOC)	M-7	1	<1		9	
10141 01 341110 031 3611 (100)	0-2	2	6			46
	M-7	1	280		330	
Total Solids (TS)	M-10	i	280		980	
	Z-1	1	390	390		

//

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Politykask	Stream	Sample	Cor	centratio	ns (mg/1)	
<u>Pollutant</u>	<u>Code</u> .	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)						
(00111110007)					•	
Vanadium				•		
vanadium	M-7	1	<0.050		<0.050	
•	M-10	1	<0.050		<0.100	
	0 . 2 7 Z – 1	2	<0.010			0.020
	2-1	ı	<0.02	0.031		
Yttrium	M-7	1	<0.050		<0.050	•
	M-10	i	<0.050		<0.100	
	0-2-	2	<0.020		10.100	<0.020
	Z-1	- 1	<0.25	<0.25		,0.020
Zirconjum	71					
	Z-1		0.26	0.64		
•					• .	
Conventional Pollutants						
Oil and Grease	7		_			
orr and drease	M-7 0-2	1	3		<1	
	0 2	ı				6
Total Suspended Solids (TSS)	M-7 ·	1	14		120	
	M-10	i	14		140	•
	0-2	2	<1		0	52
· · · · ·	Z-1	1 1	100	15		02
pH (standard units)	M-7		7.00	•		
in the contract of directory	M-10	. 1	7.30		1.50	
	Z-1	1	7.30 6	2	2.10	
	- ·	'	U	4		

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-135

REFRACTORY METALS ALKALINE CLEANING SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1	95.00	22.80
2	435.6	104.5
3	472.0	113.2
4	NR	NR
5	NR	NR
6	NR	NR
7	NR	NR
8	NR	NR
9	NR	NR
10	NR	NR
11	NR .	NR
10	NR	NR
12	NR	NR
13	NR .	NR
Average	334.2	80.15

NR - Data not reported

^{*}Discharge from operation.

Table V-136

REFRACTORY METALS ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
<u>Pollutant</u>	_Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
114. antimony	Z-3	1	0.0004	0.00028		
115. arsenic	Z-3	1 1	<0.001	0.016		
117. beryllium	Z-3	1 -	<0.01	0.036		
118. cadmium	Z-3	1	<0.01	0.02		
119. chromium (total)	Z-3	1	0.038	0.75		
120. copper	Z-3	1_ `	0.013	0.96	_	
122. lead	z-3	1	0.097	9.9		•
123. mercury	Z-3	1	<0.005	<0.005		
124. nickel	Z-3	1	0.038	0.65		
125. selenium	Z-3	1	0.0004	0.0011		
126. silver	Z-3	1	0.0005	0.0055		
127. thallium	Z-3	1	<0.001	0.0028		
128. zinc	Z-3	1	<0.25	<1.6		
Nonconventional Pollutants				*		
Acidity	Z-3	1	<10 <	<10		
Alkalinity	Z-3	1	69 >9,5	500		
Aluminum	Z-3	1	0.11	17		
Barium	Z-3	1	0.04	0.35		
Boron	Z-3	1	0.5 1	170		
Calcium	Z-3	. 1		80		
Cobalt	z-3	1	<0.01	0.036		
Columbium	Z-3	1		165		

Table V-136 (Continued)

REFRACTORY METALS ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Monconventional Pollutants (Continued)					
Fluoride	Z-3	1	0.2	41		
Iron	z-3	1	0.24	8.5		
Magnesium	Z-3	1	8.0	4.1		
Manganese	z-3	1	0.012	0.18		
Molybdenum	Z-3	1	<0.03	0.7		
Sodium	Z-3	1	27 31	,000		
Tantalum	Z -3	1	ND	585		
Tin ·	z-3	1	<0.28	<0.28		
Titanium	Z-3	1	<0.25	6.5		
Total Dissolved Solids (TDS)	Z-3	1	110	200.0		
Total Solids (TS)	Z-3	1	390	295.0		
Vanadium	Z-3	1	<0.02	0.37		
Yttrium	Z-3	1	<0.25	<0.25		
Zirconium	Z-3	1	0.26	8.5		
Conventional Pollutants						
Oil and Grease	Z-3	1	<1	13		
Total Suspended Solids (TSS)	Z-3	1	100	54.0		
pH (standard units).	z-3	1	6	14		

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

Table V-137

REFRACTORY METALS ALKALINE CLEANING RINSE

	Wa	ater Use	Percent Wastewater Discharge*
Plant	L/kkg	gal/ton	Recycle L/kkg gal/ton
-			
1	9,874	2,368	0.0 9,874 2,368
-1	20,910	5,014	0.0 20,910 5,014
2	33,860	8,119	0.0 33,860 8,119
3	36,730	8,807	0.0 36,730 8,807
4	43,220	10,370	0.0 43,220 10,370
5	103,000	24,700	0.0 103,000 24,700
1 2 3 4 5 6	226,100	54,210	0.0 226,100 54,210
7	240,200	57,600	0.0 240,200 57,600
6	909,400	218,100	0.0 909,400 218,100
	,102,000	504,000	0.0 2,102,000 504,000
	,254,000	1,260,000	0.0 5,254,000 1,260,000
	•	•	
8 9	NR ND	NR	NR NR NR
	NR	NR	P NR NR
10	NR	NR	0.0 NR NR
11	NR	NR	NR NR NR
12	NR	NR	0.0 NR NR
13 :	NR	NR	0.0 NR NR
14	NR	ŊR	NR NR NR
	1	•	
Average	816,300	195,800	816,300 195,800

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-138

REFRACTORY METALS MOLTEN SALT RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3 3 4 5	52.13 1,830 3,739 5,594 20,416 NR	12.50 438.8 896.7 1,341 4,896 NR	0.0 0.0 0.0 0.0 0.0 NR	52.13 1,830 3,739 5,594 20,416 NR	12.50 438.8 896.7 1,341 4,896 NR
Average	6,326	1,517		6,326	1,517

NR - Data not reported

^{*}Discharge from operation.

Table V-139

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Čonc	entration	ns (mg/l)	•
<u>Pollutant</u>	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
11. 1,1,1-trichloroethane	N-3	· 1	ND		<0.010	
23. chloroform	И-3	1	0.015		<0.010	٠
44. methylene chloride	N-3	1	. ND		<0.010	
58. 4-nitrophenol .	N-3	<u>.</u> 3	0.010		ND	•
66. bis(2-ethylhexyl) phthalate	N-3	3	<0.010		ND	
85. tetrachloroethylene	N-3	1	ND		0.017	
104. gamma-BHC	N-3	- 3	<0.005		ND	
114. antimony	M-4 M-9 N-3	1 1 3	<0.010 <0.010 <0.002	<0.050	<0.040 0.003	<0.050 <0.010
	Z-4	1	0.0004	<0.00025		
115. arsenic	M-4 M-9	1	<0.010 <0.010	<0.020	<0.020	<0.020 <0.020
	N-3 Z-4	3 : 1	<0.001 <0.001	<0.001	<0.001	
117. beryllium	M-4 M-9 N-3	1 1 3	<0.005 <0.005 <0.0005	<0.010	<0.010 <0.0005	<0.010 <0.005
	Z-4	, 1	<0.01	0.022		
118. cadmium	М-4 М-9	1 .	<0.020 <0.020	<0.050	<0.050	<0.050 <0.020
····	N-3 Z-4	3 1	<0.001 <0.01	<0.01	<0.001	•
119. chromium (total)	M-4	. 1	<0.020	<0.050	0.400	0.400
	M-9 N-3 Z-4	1 3 · 1	<0.020 0.10 0.038	0.059	0.095	0.020
120. copper	M-4 M-9	. 1	<0.050 <0.050	<0.050	0.050	0.050 <0.050
	N-3 Z - 4	1 1	0.030 0.013	0.023	0.035	

Table V-139 (Continued)

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conce	centrations (mg/l)		
m 11 took	Code	Type	Source	Day 1	Day 2	Day 3
Pollutant						
Toxic Pollutants (Continued)						
TOXIC PUTTULATES (CONTINUES)						
•			<0.02	<0.02	<0.02	<0.02
121. cyanide (total)	M-4	1	<0.02	10.02		<0.02
	M-9	1	0.003		<0.001	
	N-3	1	0.003		10,00	
	M-4	1	<0.050	<0.100	<0.100	<0.100
122. lead	M-9	i	<0.050			0.050
	N-3	3	0.084		0.070	
	Z-4	1	0.097	0.21		
	2-4	•	0.00.			
	M-4	1	<0.0002	<0.0002	<0.0002	<0.0002
123. mercury	M-9	1	<0.0002			<0.0002
	N-3	3	<0.0002		<0.0002	
	Z-4	1	<0.005	<0.005		
•	2 4	-				
	M-4	1	<0. 0 50	<0.200	<0.200	<0.200
124. nickel	M-9	1	<0.050			<0.050
	N-3	3	0.11		0.016	
	Z-4	1	0.038	0.43		
	_ ,					
	M-4	1	<0.010	<0.020	<0.020	<0.020
125. selenium	M-9	1	<0.010			<0.020
	N-3	3	<0.008		<0.008	
•	Z-4	1	0.0004	<0.0004		
		•				
100 - 11	M-4	1	<0.010	0.040	0.020	0.026
126. silver	M-9	1 .	<0.010			<0.020
	N-3	3	<0.002		<0.002	
·	Z-4	1	0.0005	<0.0005		
					40 010	<0.050
127. thallium	M-4	1	<0.010	<001.0	<0.010	\U .030
127. Ella i i dili	N-3	. 3	<0.001		<0. 0 01	
	Z-4	1	<0.001	<0.001		
				0 150	<0.500	<1.00
128. zinc	M-4	1	0.080	0.150	\U,50U	0.020
120. 2.110	M-9	1	0.080		0.10	0.020
	И-3	3	0.20	0 024	0.10	
	Z-4	1	<0.25	0.034		
			,	_		

Table V-139 (Continued)

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

•		• •				
	Stream	Sample		oncentrations (mg/l)		
<u>Pollutant</u>	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
	•					
Nonconventional Pollutants						
					•	•
Acidity	M-4	1	<1	<1	<1	<1
•	M-9 Z-4	1 .	<1 . <10	27		<1
•	2-4	ı	\10	21		
Alkalinity	M-4	1	100 2	1,900	26,000	690
	M-9	, 1	100		1	,940
	Z-4	1	69	· 3		
Aluminum	M-4	1	0.200	<10.0	2.00	3.00
A LOWER COMM.	M-9	1	0.200			0.100
	Z-4	1 - 1	0.11	0.23		
· · · · · · · · · · · · · · · · · · ·	M-4	1 .	<0.1	<0.1	<0.1	0.22
Ammonia Nitrogen	M-9	1	<0.1	\0. 1	~0. 1	<0.1
	3	·. ·				
Barium .	M-4	1	<0.050	<5.00	<0.500	
	M-9	1	<0.050			<0.050
•	Z-4	1	0.04	0.052		
Boron	M-4	1	<0.100	10.0	5.00	6.00
	M-9	1 .	<0.100			<0.100
	Z-4	. 1	0.5	0.3		
Calcium	M-4	1	36.5	<10.0	1.00	1.00
Carcium	M-9	1	36.5	4,0.0	1.00	20.7
	Z-4	1	79	8.6		
01 1 0 D (COD)	M-4		<5	120	110	100
Chemical Oxygen Demand (COD)	M-4 M-9	1	<5	120	110	100 <5
	III 3	"	.0			15
Chloride	M-4	1	10	110	21	120
•	M-9	1	10			14
Cobalt	M-4	1	<0.050	<5.00	<0.500	<0.500
	M-9	1	<0.050	.0.00		<0.050
	. Z-4	i,	<0.01	<0.01		,
	7. 4		ND			
Columbium	. Z-4	1 -	ND	2.3		
Fluoride	M-4	· . 1	0.85	1.7	0.65	0.67
•	M-9	· 1	0.85			0.82
	Z-4	1	0.2	18		

α

Table V-139 (Continued)

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)			
<u>Pollutant</u>	Code	Туре	Source Day 1 Day 2 Day 3			
Nonconventional Pollutants (Continued)					
Iron	M-4	1	<0.050 <5.00 <0.500 <0.500			
11 011	M-9	i	<0.050 0.550			
	Z-4	1	0.24 1			
Magnesium	M-4	1	11.3 <10.0 <1.00 <1.00			
Magnesium	M-9	i	11.3 5.10			
•	3 Z−4	i	8.0 0.39			
•		•				
Manganese	M-4	1	<0.050 <5.00 <0.500 <0.500			
	M-9	1	<0.050			
•	Z-4	1	0.012 0.12			
Molybdenum	M-4	1	<0.050 <5.00 <1.00 0.500			
mo i y bacilam	M-9	i	<0.050 <0.050			
•	N-3	3	0.10 5.2			
	Z~4	1 .	<0.03 <0.03			
		•	•			
Phenolics	M-4 M-9	1 1	<pre><0.005 0.007 0.005 <0.005 <0.005</pre>			
	N-3	1	0.0017 0.00062			
	N-3	ı	0.0002			
Phosphate	M-4	1	<4 21 <4 24			
	M-9	1	<4 <4			
6 11	M 4	1				
Sodium	M~4 M-9	1	F 00			
	M 9 Z-4	i	27 300			
	2 7		27 000			
Sulfate	M-4	1	43 46 43 57			
	M-9	. 1	43 36			
Tanta]um	Z-4	- 1	ND 2.5			
i anta i ulii	4 7	•	110			
Tin	M-4	1	<0.050 <5.00 <2.00 <5.00			
	M-9	1	<0.050 <0.200			
	Z-4	1	<0.28 <0.28			
- · · · · · · · · · · · · · · · · · · ·		_	.0 000 .5 00 .0 500 .0 500			
Titanium	M-4	1	<0.050 <5.00 <0.500 <0.500			
	M-9	1	<0.050			
	Z-4	. 1	<0.25 <0.25			

786

Table V-139 (Continued)

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type			mg/1) ay 2 Day 3
Nonconventional Pollutants (Continu	ued)				
Total Dissolved Solids (TDS)	M-4 M-9 N-3 Z-4	1 1 3 1	270 20,00 270 360 110 10	00 19,000 490 07.0	2,500
Total Organic Carbon (TOC)	M-4 M-9	· · · · • · · • · · · · · · · · · · · ·	. <15	50 22	18 ·
Total Solids (TS)	M-4 M-9 Z-4	1 1	280 3,00 280 390 17	00 24,00 78.0	0 33,000 2,500
Vanadium	M-4 M-9 Z-4	1 1 1	<0.Ò50	<5.00 <0 <0.02	.500 <0.500 <0.050
Yttrium	M-4 M-9 Z-4	1 1 1	<0.050	<5.00 <0 <0.25	.500 <0.500 <0.050
Zirconium	Z-4	1	0.26 <	0.13	

Pollutant	Stream <u>Code</u>	Sample Type	Con Source	centratio Day 1	ons (mg/l) Day 2	Day 3
Conventional Pollutants						
Oil and Grease	M-4 M-9	1 1	3 3	<1	<1	<1 <1
Total Suspended Solids (TSS)	M-4 M-9 N-3 Z-4	1 1 1 1	14 14 14 100	80.0	240	130 230
pH (standard units)	M-4 M-9 N-3 Z-4	1 1 3 1	7.30 7.30 <1 6	11.80	11.90 8.0	11.80 11.80

1. Toxic pollutants 89-113 were analyzed in this waste stream.

788

2. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, 45-57, 59-65, 67-84, 86-103, and 105-113.

3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-140

REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER

	Wat	er Use	Percent	Wastewa	ter Discharge*
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
. 1	952.7	228.5	0.0	952.7	228.5
2	992.8	238.1	0.0	992.8	238.1
3	1,359	325.9	0.0	1,359	325.9
2	5,745	1,378	0.0	5,745	1,378
4	19,300	4,628	0.0	19,300	4,628
. 2	65,010	15,590	0.0	65,010	15,590
5	599,300	143,700	0.0	599,300	143,700
5	666,100	159,700	0.0	666,100	159,700
6	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR
Average	169,800	40,720		169,800	40,720

NR - Data not reported

^{*}Discharge from operation.

Table V-141

REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		centratio		
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
11. 1,1,1-trichloroethane	M-2	1	0.011	0.011	0.011	0.015
, , , , , , , , , , , , , , , , , , , ,	M-3	i	0.011		0.0	0.017
	M-13	1	0.011			0.018
23. chloroform	M-2	1	0.016	ND	ND	ND
	M-3	1	0.016			0.007
	M-13	1	0.016			0.006
44. methylene chloride	M-2	1	0.001	0.002	0,002	0.002
•	M-3	1	0.001			0.008
•	M-13	1	0.001			0.004
55. naphthalene	M-2	1	ND	ND	0.002	ND
	M-3	2	ND			ИD
	M-13	1	ND			ИD
66. bis(2-ethylhexyl) phthalate	M-2	1	ND	ND	0.001	0.002
•	M-3	2	ND		•	ND
	M-13	1	ND		-	0.014
114. antimony	M-2	1	<0.010	<0.010	<0,.010	<0.010
	M-3	1	<0.010			<0.010
	M-13	1	<0.010			<0.010
115. arsenic	M-2	1	<0.010	·<0.010	<0.010	<0.010
	M-3	2	<0.010			<0.010
	M-13	1	<0.010			<0.010
117. beryllium	M-2	1	<0.005	<0.005	<0.005	<0.005
·	M-3	2 1	<0.005			<0.005
	M-13	1	<0.005			<0.010
118. cadmium	M-2	1	<0.020	<0.020	0.120	0.060
	M-3	2	<0.020			0.140
	M-13	1	<0.020			0.040
119. chromium (total)	M-2	, 1	<0.030	0.020	0.780	0.380
•	M-3	2	<0.020			0.060
<u> </u>	M-13	1	<0.020			0.520

Table V-141 (Continued)

	Stream	Sample	· Conc	entration	ns (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)	* * * * * * * * * * * * * * * * * * * *	•				
		-		•		
120. copper	M-2	1	<0.050	1.90	8.65	3.95
.20, 2000	M-3	2	<0.050			2.15
	M-13	1	<0.050			<0.100
121. cyanide (total)	M-2	1 .	<002	<0.02	<0.02	<0.02
	M-3	1	<0.02			<0.02
	M∵13	1	<0.02			<0.02
122. lead	M-2	1	<0.050	<0.500	<10.0	<5.00
	M-3 ·	2	<0.050		•	<1.00
	M~13	1	<0.050			<10.0
123. mercury	. M~2	1	<0.0002	<0.0002	<0.0002	<0.0002
•	M-3	2 ·	<0.0002			<0.0002
	M-13	· 1	<0.0002		•	<0.0002
124. nickel	M-2	1	<0.050	0.750	23.7	16.0
	M-3	2	<0.050			103
	M-13	1 .	<0.050			<0.100
125. selenium	M-2	. 1	<0.010	<0.010	<0.010	<0.010
4	M-3	2	<0.010			<0.010
	M-13	1 -	<0.010			<0.010
126. silver	M-2	1	<0.010	0.140	0.220	0.150
	M-3	2	<0.010			0.140
	M-13	_!	<0.010		and the second	<0.010
127. thallium	M-2	1	<0.010	<0.010	<0.010	<0.010
•	M-3	2	<0.010			<0.010
	M~13	, 1	<0.010			<0.010
128. zinc	. M-2	1	0.080	0.060	<0.500	<0.500
	M-3	2	0.080			0.520
	M-13	1	0.080		•	<0.500

Table V-141 (Continued)

	Stream	Sample	Cor	centration	ns (mg/1)	ıg/1)	
Pollutant	Code	Type	Source	<u>Day 1</u>	Day 2	Day 3	
Nonconventional Pollutants							
A a i with .		_		_			
Acidity	M-2 M-3	1	<1	< 1	<1	<1	
	_	2	<1			<1	
	M-13	1	<1			<1	
Alkalinity	M-2	1	100	100	41	85	
•	M-3	2	100			,260	
÷	M-13	1	100		,	190	
Aluminum	M-2	1	0.200	0.500	23,4	16.7	
	M-3	2	0.200	0.500	20.4	3.10	
	M-13	1	0.200			21.6	
	10	•	0.200			21.0	
Amm o nia Nitrogen	M-2	1	<0.1	<0.1	1.6	0.41	
	M-3	2	<0.1			0.3	
	· M-13	1	<0.1			<0.1	
Barium	M-2	1	<0.050	<0.050	0.400	0.200	
,	M-3	2	<0.050	٠٠,٠٠٥	0.400	0.050	
•	M-13	ī	<0.050			0.100	
		•	10.000			0.100	
Boron	M-2	1	<0.100	<0.100	1.70	8.20	
·	M-3	2	<0.100			1.60	
	M-13	1	<0.100			0.500	
Calcium	M-2	1	36.5	35.3	43.5	41.2	
	M-3	2	36.5		40.5	36.5	
	M-13	. 1	36.5	•		41.0	
Chemical Oxygen Demand (COD)	M-2	1	<5	<5	11	< 5	
	M-3	2	<5			120	
	M:- 13	1	<5			<5	
Chloride	M-2	1	10	7.1	17	14	
	M-3	2	10		17	13	
	M-13	. 1	10			28	
						20	

Table V-141 (Continued)

		C1-	Cont	centration	oc (ma/1)		
D-11 1	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3	
Pollutant		. Type	3001 00	<u> </u>	==1_=		
		÷					
Nonconventional Pollutants (Conti	nued)						
						•	
Cobalt	. M-2	1	<0.050	<0.050	0.100	0.050	
CODATE	M-3	2	<0.050			0.050	
	M-13	1	<0.050		1 1	0.100	
	N O	,	0.85	2.2	0.86	0.79	
Fluoride	M−2 M−3	1	0.85	2.2	0,00	1.0	
	M−13	2 1	0.85	-	-	0.78	
	W TO		0.00				
Iron	M-2	1	<0.050	0.800	15.1	8.05	
	M-3	2	<0.050			17.6	
	, M-13	1	<0.050			4.60	
	м о	•	11.3	11.1	13.6	12.7	
Magnesium	M−2 M−3	1 2	11.3	11.1	13.0	11.6	
	M-13	1	11.3			13.4	
	W-13	'	1,1.0				
Manganese	. M-2	1	<0.050	0.050	0.750	0.350	
,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	M-3	2	<0.050			0.300	
•	M-13	1	<0.050			0.200	
	M-2	1	<0.050	0.400	4,45	0:950	
Molybdenum	M-3	2	<0.050	0.400		<0.050	
•	M-13	1	<0.050			<0.500	
•		•					
- Phenolics-			<0.005	<0.005	0.007	<0.005	
	M-3	1	<0.005			<0.005	
	M-13	1	<0.005			<0.005	
Dharaha	M-2	1	<4	12	29	23	
Phosphate	M-3	2	<4			120	
•	M-13	. 1	<4			17	
•		-					

Table V-141 (Continued)

	Stream	Sample	Соп	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants (Continued))						
Sodium	M-2 M-3 M-13	1 2 1	5.20 5.20 5.20	6.80	18.5	19.3 561 65.6	
Sulfate	M-2 M-3 M-13	1 2 1	4 3 43 43	45	62	49 130 65	
Tin	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	<0.100	<0.500	<0.500 <0.500 <0.500	
Titanium	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	0.050	0.950	0.550 1.55 3.80	
Total Dissolved Solids (TDS)	M-2 M-3 M-13	1 2 1	270 270 270	200 1,		,600 ,900 530	
Total Organic Carbon (TOC)	M-2 M-3 M-13	1 2 · 1	<1 <1 <1	17	15	4 75 22	
Total Solids (TS)	M-2 M-3 M-13	1 2 1	280 280 280	390 3,	3	3,500 3,000 3,200	
Vanadium .	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	<0.050	0.800	0.350 <0.050 <0.100	

Table V-141 (Continued)

	Stream	Stream Sample		Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day'3	
Nonconventional Pollutants (Continued	d)						
Yttrium	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	<0.050	<0.050	<0.050 <0.050 <0.100	
Conventional Pollutants		•					
Oil and Grease	M-2 M-3 M-13	1 1 1	3 3 3	<1	<1 - ^~	<1 13 1.3	
Total Suspended Solids (TSS)	M-2 M-3 M-13	1 2 1	14 14 14	200 2	1	,700 ,300 ,400	
pH (standard units)	M-2 M-3 M-13	1 2 1	7.30 7.30 7.30	8.30	5.30	6.40 10.00 6.60	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, 45-54, 56-65, and 67-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-142

REFRACTORY METALS SAWING OR GRINDING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	P	17.07	4.09
2	NR	NR	P	564.4	135.4
3	NR	NR	NR	NR	NR
Average	NR	NR		290.7	69.72

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-143

REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS

•				•	
Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
		- ,	-		
1	NR .	NR	NR	0.00	0.00
2	168.8	40.47	100	0.00	0.00
1	NR	NR	NR	0.00	0.00
	NR	NR	NR	0.00	0.00
3	NR	NR	P	2.17	0.52
1 3 3	NR	NR	P	20.85	5.00
4	136.6	32.75	0.0	136.6	32.75
1	NR	NR	P	1,027	246.3
5	N R	NR	P	NR	NR
6	NR	NR ·	P	NR	NR
7	NR	NR	NR	NR	NR
. 7	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR
5	NR	NR	P	NR .	NR
5	NR	NR	P	NR	NR
8	NR	NR	NR	NR	NR
Average	152.7	36.6		296.6	71.14

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-144

REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Cond	entration	s (mg/1)	
<u>Pollutant</u>	_Code_	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
TOXIC TOTTOCANCO						
117. beryllium	BG-1	1	-	<0.002		
	BQ-1		-	<0.010		
118. cadmium	BG-1	1	_	<0.001		
•	BQ-1		-	<0.010		
119. chromium (total)	BG-1			0.000		
ris. Chiomitan (total)		1	<u>-</u>	0.030		
	BQ-1 ·			<0.010		
120. copper	BG-1	1	-	<0.100		
	BQ-1		-	1.5		*
121. cyanide	BG~1	1	_	. 0.020		
	BQ-1	'	_	0.38		
•	טע ו			0.38		
122. lead	BG-1	1 .	_	<0.010		
	BQ1		-	<0.010		
124. nickel	BG~ 1	1	_	0.200		
	BQ-1	'	_	2.000		
	24 1			2.000		
128. zinc	BG-1	1	-	0.030		
	BQ-1		-	0.400		
Nonconventional Pollutants						
Fluoride	BG−1	₁		2.60		
	BQ-1	'	_	11.50		
·	bQ⊡I			11.50		
Molybdenum	BG-1	. 1	-	<0.03	-	

Table V-144 (Continued)

REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Conc</u> <u>Source</u>	entration: Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))	•	-			
Tungsten	BQ-1 BG-1	<u>,</u> 1	- - -	<1.0 390.0		
Conventional Pollutants			•			•
Dil and Grease	BQ-1		- - -	47.000		
Total Suspended Solids (TSS)	BQ-1 BG-1		_	486.000 5.000		
ρН	BQ-1		-	8.67		•

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 123 and 125-127.

Table V-145

EFRACTORY METALS SAWING OR GRINDING

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewate L/kkg	er Discharge* gal/ton
1	NR	NR	100	0.00	0.00
1	NR	NR	100	0.00.	0.00
1	NR	NR .	100	0.00	0.00
2	NR	NR	P	135.5	32.49
3	6,255	1,500	0.0	6,255	1,500
4	9,621	2,307	0.0	9,621	2,307
5	56,890	13,640	80.0	11,380	2,729
2	24,390	5,848	0.0	24,390	5,848
6	119,100	28 , 570	0.0	119,100	28,570
Average	43,250	10,370		28,480	6,831

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-146

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

•	•						
	•	Stream	Sample	Cance	entration	ns (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	: Pollutants						
	1,1,1-trichloroethane	M-12	1	0.011			0 017
11,	i, i, i-trichiordethane	N-12 N-4	1	ND		0.177	0.017
		14-4		NO		0.177	
15.	1,1,2,2-tetrachloroethane	M-12	. 1	ND			ND
13.	1,1,2,2 toti deliloi detilalio	N-4	i	ND .		<0.010	ND .
		* '					
23.	chloroform	M-12	1	0.016			ND
		N-4	1	0.015		ND	
29.	1,1-dichloroethylene	M-12	1	ND			ND
	The second secon	N−4 ·	1	ND .	***	<0.010	-
						4	
34.	2,4-dimethylphenol	M-12	1	ND	•		0.013
		N-4	1.	ND		ND	
39.	fluoranthene	M-12	1	ND			ND
		N-4	1	ND		<0.010	
44.	methylene chloride	M-12		0.002			0.005
44.	methyrene chronitae	N-12	1	ND		<0.010	0.005
		N-4	, !	מא		\0.010	
55.	naphthalene	.M-12	1	ND			0.005
00.	Trapit trial to to	N-4	. 1	ND		И́D	0.005
		., .		****		1,10	
57.	2-nitrophenol	M-12	1	ND			ND
	·	N-4	1	ND		0.071	
58.	4-nitrophenol	M-12	1	. ND			ND
	,	N-4	, j 1	0.010		ИD	
63.	N-nitrosodi-n-propylamine	M-12	1	·ND	*		ND .
		N-4	1	ND	•	0.213	
	er en	,					
65.	phenol	M-12	1	ND .		0.004	0.058
	• •	Ņ-4	, 1	ND		0.034	
66	bis(2-ethylhexyl) phthalate	M-12	1	ND	•	•	0.001
00.	, bis(2 ethylliekyl) pitthalate	N-4	 1	<0.010		<0.010	. 0.001
	•		'	10.010		\0.010	
68.	di-n-butyl phthalate	M-12	1	ND		•	ND
		N-4	i	ND ·	-	<0.010	
	•		*	• •-			•
69.	di-n-octyl phthalate	M-12	1	ND			ND
		N-4	1	ND		<0.010	

Table V-146 (Continued)

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type		trations (mg/1) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					
78. anthracene	M-12 N-4	1 1	ND ND	<0.010	ND
84. pyrene	M-12 N-4	· 1	ND ND	<0.010	ND
104. gamma-BHC	N-4	1	<0.005	ND	
114. antimony	M-12 N-4	1 1	<0.010 <0.002	. 0.040	<0.010
115. arsenic	M-12 N-4	1 1	<0.010 <0.001	0.016	<0.010
117. beryllium	M-12 N-4	1 .	<0.005 <0.0005	<0.0005	<0.005
118. cadmium	M-12 N-4	1 1	<0.020 <0.001	0.040	0.020
119. chromium (total)	M-12 N-4	1 1	<0.020 0.10	0.86	0.080
120. copper	M-12 N-4	1 1	<0.050 0.030	0.21	0.050
121. cyanide (total)	M-12 N-4	1 ' .	<0.02 0.003	2.0	<0.02
122. lead	M-12 N-4	. 1	<0.050 0.084	0.35	<1.00
123. mercury .	M-12 N-4	1 1	<0.0002 <0.0002	0.0003	<0.0002
124. nickel	M-12 N-4	1 1	<0.050 <0.11	1.0	<0.050
125. selenium	M-12 N-4	. 1	<0.010 <0.008	<0.008	. <0.010
126. silver	M-12 N-4	1 .	<0.010 <0.002	<0.002	<0.010

Table V-146 (Continued)

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	<u>Conce</u>	entrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)		-			•
127. thallium	M-12 N-4	1 1	<0.010 <0.001	0.007	<0.010
128. zinc	M-12 N-4	1 1	<0.010 0.20	0.90	0.240
Nonconventional Pollutants	•	•			
Acidity	M-12	. 1	<1		<1
Alkalinity	M-12	1	100	-	56
Aluminum	M-12	1	0.200		1.20
Ammonia Nitrogen	M-12	1	<0.1		0.50
Barium	M-12	1	<0.050		<0.050
Boron	M-12	1	<0.100	0	<0.100
Calcium	M-12	1	36.5		78.2
Chemical Oxygen Demand (COD)	M-12	1	<5		58 - •
Chloride	M-12	1	10		35
Cobalt	M-12	1	<0.050	·	<0.050
Fluoride	M-12	1	0.85		1.5
Tron	M-12	- 1	<0.050		1.3 . 0
Magnesium	M-12	1	11.3	•	12.1
Manganese	M-12	1	<0.050	•	0.050
Molybdenum	M-12 N-4	1	<0.050 0.10	5,470	<0.100
Phenolics	M-12 N-4	1 1	<0.005 0.0017	0.019	<0.005

Table V-146 (Costinued)

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

0-11 10-4	Stream	Sample		entrations (mg/1	
Pollutant	Code	Туре	Source	Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)		•		
Phosphate	M-12	1	<4		<4
·		•	•		-
Sodium	M-12	1	5.20		6.00
Sulfate	M~12	1	43		200
Tin	M-12	1	<0.050		<0.200
Titanium	M-12	1	<0.050		0.050
Total Dissolved Solids (TDS)	M-12	1	270		580
	N-4	1	360	25,000	
Total Organic Carbon (TOC)	M-12	1	<1		4
Total Solids (TS)	M-12	1	280		1,200
Vanadium	M-12	1	<0.050		<0.050
Yttrium	M-12	1	<0.050		<0.050
Conventional Pollutants					
Oil and Grease	M-12	1	3		2.9
	N-4	1	14	7.3	
.Total Suspended Solids (TSS)	M-12	1	14		380
	N-4	1	<1	240	
pH (ständard units)	M=12 N=4	1- · · · · · · · · · · · · · · · ·	7.30	5.7	6.40
	•••	•		5.7	

1. Toxic pollutants 89-113 were analyzed in this waste stream.

2. The following toxic pollutants were not detected in this waste stream: 1-10, 12-14, 16-22, 24-28, 30-33, 35-38, 40-43, 45-54, 56, 59-62, 64, 67, 70-77, 79-83, 85-103, and 105-113.

3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-147
REFRACTORY METALS SAWING OR GRINDING RINSE

Plant	. Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	135	32.5	0.0	135	32.5
1	ŅR	NR	0.0	NR	NR
Average	135	32.5		135	32.5

NR - Data not reported

^{*}Discharge from operation.

Table V-148

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	77.6	18.6	0.0	77.6	18.6
Average	77.6	18.6		77.6	18.6

^{*}Discharge from operation.

Table V-149

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

•	Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Toxic	: Pollutants					*
11.	1,1,1-trichloroethane	N-5	1	ÑĎ	0.170	
13.	1,1-dichloroethane	N-5	1	ND	<0.010	
23.	chloroform	N-5	1	0.015	<0.010	
29.	1,1-dichloroethylene	N-5	1	ND	<0.010	
35.	2,4~dinitrotoluene	, N=5.	1	ND	0.143	
39.	fluoranthene	N-5	1	ND	0.284	٠.
44.	methylene chloride	N-5	1	ND ·	<0.010	
55.	naphthalene	N-5	1	ND .	0.134	
56.	nitrobenzene	N-5	1	· ND	0.019	
58.	4-nitrophenol	N-5	1.	0.010	ND	•
60.	4,6-dinitro-o-cresol	N-5	1	ND	0.039	•
62.	N-nitrosodiphenylamine	N-5	1 .	ND	0.039	
65.	pheno1	N-5	i	ND	0.049	
66.	bis(2-ethylhexyl) phthalate	N-5	1	<0.010	0.019	
69.	di-n-octyl phthalate	N-5	1	ND	<0.010	
77.	acenaphthylene	N-5_	1	ND	0.021	
78.	anthracene · (a)	N-5	. 1	ND	0.049	
80.	fluorene	N-5	1	· ND·	0.021	
81.	phenanthrene (a)	N-5	1	ND .	0.049	
85.	tetrachloroethylene	N-5	1	ND .	<0.010	
95.	alpha-endosulfan .	N-5	·, 1 ·	ND ,	**	~
104.	gamma-BHC	N-5	1	<0.005	<0.005	

Table V-149 (Continued)

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream Code	Sample Type		trations (mg/1) Day 1 Day 2 Day 3
Toxic	Pollutants (Continued)				
114.	antimony	N-5	1	<0.002	<0.002
115.	arsenic	N-5	1	<0.001	<0.001
117.	beryllium	N-5	1	<0.0005	<0.0005
118.	cadmium	N-5	1	<0.001	<0.001
119.	chromium (total)	N-5	1	0.10	3.7
120.	copper .	N-5	1	0.030	0.28
121.	cyanide (total)	N-5	1 .	0.003	<0.001
122.	lead	N-5	· 1	0.084	0.055
123.	mercury	N-5	t · -	<0.0002	<0.0002
124.	nickel	N-5	1	0.11	1.6
125.	selenium	N-5	1	<0008	<0.008
126.	silver	N~5	1	<0.002	<0.002
127.	thallium	N-5	1	<0.001	<0.001
128.	zinc	N-5	1	0.20	1.2
Nonco	nventional Pollutants		· · · ·		
Molyb	denum ; "	N-5	1	0.10	0.50
Pheno	lics	N-5	1	0.0017	0.025
Total	Dissolved Solids (TDS)	N-5	1	360	440

Table V-149 (Continued)

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

Dollutoot	Stream	Sample	Concentrations (mg/l)			
<u>Pollutant</u>	_Code_	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants				•		-
Oil and Grease	N-5	1	14	٠.	72	
Total Suspended Solids (TSS)	N-5	. 1	<1		22	
pH (standard units)	N-5	1	7.4		7.5	

(a) Reported together.

**Present, but not quantifiable.

- 1. Toxic pollutants 89-113 were analyzed in this waste stream.
- 2. The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-22, 24-28, 30-34, 36-38, 40-43, 45-54, 57, 59, 61, 63, 64, 67, 68, 70-76, 79, 82-84, 86-94, 96-103, and 105-113.
- 3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-150

REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	32.36	7.76	100	0.0	0.0
1	13.9	3.34	0.0	13.9	3.34
2	66.1	15.8	0.0	66.1	15.8
2	2,673	641.0	0.0	2,673	641.0
2	2,687	644.2	0.0	2,687	644.3
3	21,140	5,070	0.0	21,140	5,070
Average	4,435	1,064		5,316	1,275

^{*}Discharge from operation.

REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

Table V-151

Pollutant	Stream Code	Sample: Type	Conc. Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic Pollutants						
117. beryllium	BG-2	1	. -	<0.002		
118. cadmium	BG-2	1 .	-	0.001		
119. chromium (total)	BG-2	1	-	0.070		
120. copper	BG-2	1		1.400		
121. cyanide	BG-2	.1.	- ·	0.340		
122. lead	BG-2	1	- -	0.600		
124. nickel	BG-2	1	-	0.050		
128. Zinc	BG-2	1 .		0.500		
Nonconventional Pollutants						•
Fluoride	BG-2	1		2.600		
Molybdenum	BG-2	1		<0.03		

Table V-151 (Continued)

REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Tungsten	BG-2		-	2.40		
Conventional Pollutants						
Oil and Grease	BG-2	1	-	5.00		
Total Suspended Solids (TSS)	BG-2	1		64.00		

χ 1.

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 123 and 125-127.

Table V-152
REFRACTORY METALS MISCELLANEOUS WASTEWATER SOURCES

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3	NR 3,459 NR	NR 829.6 NR	100 0 NR	0.00 3,459 NR	0.00 829.6 NR
Average	3,459	8296		3,459	829.6

NR - Data not reported

^{*}Discharge from operation.

Table V-153

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Wat	er Use	Percent	Wastewate	r Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100	0.00	0.00
2	NR	NR	P	8.32	2.00
1	14,330	3,436	93.2	977.8	234.5
3	2,622	628.8	0.0	2,622	628.8
4	6,672	1,600	0.0	6,672	1,600
5	2,502,000	600,000	0.0	02,000	00,000
6	NR	NR	2,50	NR	NR
7	NR	NR	0.0	NR	NR
8	NR	NR	0.0	NR	NR
Averag	e 631,400	151,400	. 5	02,500	.20,500

P - Periodic discharge
NR - Data not reported

^{*}Discharge from operation.

Table V-154

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

•	•				*	
Pollutant	Stream Code	Sample	Conc Source	entration		Day 2
	code	<u>Type</u>	3001 CE	Day 1	Day 2	Day 3
Toxic Pollutants	• •		*	•		
11. 1,1,1-trichloroethane	M~,1 1	1	0.011		0.010	
23. chloroform	M-11	1 .	0.016	•	ND	,
44. methylene chloride	M-11	· 1 .	0.002		0.003	
114. antimony	M-11 Z-2	1 1	<0.010 0.0004	0.0005	0.020	•
115. arsenic	M-11 Z-2	1	<0.010 <0.001	0.0061	<0.010	,
117. beryllium	M-11 Z-2	1	<0.005 <0.01	<0.01	<0.005	~,
118. cadmium	M-11 Z-2	1	<0.020 <0.01	<0.01	<0.020	
119. chromium (total)	M-11 Z-2	1 1	<0.020 0.038	0.044	<0.020	
120. copper	M~11 Z-2	1	<0.050 0.013	0.024	0.050	
121. cyanide (total)	M-11	1	<0.02		<0.02	
122. lead	M-11 Z-2	1 1.	<0.050 0.097	0.16	<0.050	
123. mercury	M-11 Z-2	1 1	<0.0002 <0.005	<0.005	<0.0002	
124. nickel	M-11 Z-2	1 1	<0.050 0.038	0.042	<0.050	
125. selenium	M−11 Ż−2	[*] 1 1	<0.010 0.0004	0.0058	<0.010	
126. silver	M-11 Z-2	. 1 1	<0.010 0.0005	0.0073	<0.010	,
127. thallium	M-11 Z-2	1 1	<0.010 <0.001	0.0071	<0.01.0	

Table V-154 (Continued)

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentration	(mg/1)	
D-11hank	Code	Type	Source Day 1	Day 2 Day 3	
<u>Pollutant</u>					
Toxic Pollutants (Continued)					
	M-11	1	0.080	0.120	
128. zinc	Z−2	1	<0.25 0.046		
Nonconventional Pollutants					
	M-11	1	<1	<1	
Acidity	Z-2	1	<10 <10		
		1	100	80	
Alkalinity	M-11 Z-2	i	69 4,400	•	
· ·	2 2	•			
A Normal more	M-11	1	0.200	0.300	
Aluminum .	Z-2	1	0.11 5.7		
	M-11	1	<0.1	0.67	
Ammonia Nitrogen	M-11	•			
	M-11	1	<0. 0 50	<0.050	
Barium	Z-2	1	0.04 0.02		
	M-11	1	<0.100	0.200	
Boron	M-11 Z-2	·i	0.5 18		
	<i>L L</i>	•	•	00.0	
Calcium	M-11	1	36.5 79 3.5	29.9	
Carcium	Z2	1	79 3.5		
	M-11	- 1	<5 ·	47	
Chemical Oxygen Demand (COD)	IAI. I I	,			
Chloride	M-11	` 1	10		
Chioride			<0.050	<0.050	
Cobalt	M-11 Z-2	. 1	<0.01 <0.01		
	2-2	•		•	
O = 1 · · · · · · · · · · · · · · · · · ·	Z-2	1	ND ND		
Columbium		_ ,	0.85	130	
Fluoride	M-11	1	0.85	100	
	Z-2	'	0.2 .,000		
	M-11	1	<0.050	0.150	
Iron	Z-2	1	0.24 0.8		
		1	11.3	14.6	
Magnesium	M-11 Z-2	1	8.0 0.35		
	2 2		= -		

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Con	centrati	ons (mg/l)	
<u>Pollutant</u>	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)				•		
Manganese	M-11 Z-2	1 1	<0.050 0.012	0.11	<0.050	
Molybdenum .	M-11 Z-2	1 1	<0.050 <0.03	<0.03	<0.050	
Phenolics	M-11	1 .	<0.005		<0.005	
Phosphate	M-11	1	<4		<4	
Sodium	M-11 Z-2	1.	5.20 27 7	,600	154	· .
Sulfate	M-11	1	43		41	
Tantalum	Z-2	1	ND	ND		•
Tin	M-11 Z-2	1	<0.050 <0.28	<0.28	<0.100	
Titanium	M-11 Z-2	· 1	<0.050 <0.25	<0.25	<0.050	
Total Dissolved Solids (TDS)	M-11 Z-2	. 1	270 110	170	540	,
Total Organic Carbon (TOC)	M-11	1	<1		50	
Total Solids (TS)	M-11 Z-2	1	280 390	200	780	
Vanadium .	M-11 Z-2	1 1	<0.050 <0.02	<0.02	<0.050	
Yttrium	M-11 Z-2	1	<0.050 <0.25	<0.25	<0.050	
Zirconium	Z-2	1 -	0.26	4.1		

Table V-154 (Continued)

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entration		
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Conventional Pollutants						
Oil and Grease	M-11	1	. 3		<1	-
Total Suspended Solids (TSS)	M-11	1	14	20	150	a.
•	Z-2	1	100	20	-	
pH (standard units)	M-11 Z-2	1 1	7.30 6	12 .	6.60	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, and 45-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-155
TITANIUM ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	NR NR	NR NR	100 NR	0.00	0.00
Average	NR	NR.		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-156
TITANIUM ROLLING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1.	NR	NR	0.0	NR	NR
2	4,884	1,171	0.0	4,884	1,171
3	NR	NR	P	NR	NR
4	NR	NR	100	NR	NR
Average	4,884	1,171		4,884	1,171

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-157
TITANIUM DRAWING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	NR	NR	NR
2	NR	NR	NR	NR	NR
Average	NR	NR	•	NR	NR

NR - Data not reported

^{*}Discharge from operation.

Table V-158
TITANIUM EXTRUSION SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5	NR NR NR 3.56 NR	NR NR NR 0.85 NR	NR 0.0 0.0 0.0 NR	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Average	3.56	0.85		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-159
TITANIUM EXTRUSION SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	71.90	17.20	0.0	71.90	17.20
Average	71.90	17.20	•	71.90	17.20

^{*}Discharge from operation.

Table V-160
TITANIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	178.3	42.77	0.0	178.3	42.77
Average	178.3	42.77		178.3	42.77

^{*}Discharge from operation.

TITANIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Table V-161

<u>Pollutant</u>	Stream Code	Sample Type	<u>Conce</u>	entration Day 1	s (mg/l) Day 2	Day 3
Nonconventional Pollutants						
Fluoride	AK-1	3	-	2.30		
Conventional Pollutants				•	•	
Oil and Grease	AK-1	3	-	10.0		
Total Suspended Solids (TSS)	AK-1	3	- '	7.0		
pH	AK-1	3		6.8	- 20	

Table V-162
TITANIUM FORGING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	2.10	0.50	0.0	0.00	0.00
2	NR	NR	0.0	0.00	0.00
1	6.80	1.63	0.0	0.00	0.00
3	NR	NR	0.0	0.00	0.00
4	NR	NR	NR	0.00	0.00
5	NR	NR	0.0	0.00	0.00
6	339.4	81.37	0.0	0.00	0.00
7	NR	NR	NR	NR	NR
Average	116.1	27.83		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-163
TITANIUM FORGING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	5,252	1,259	95.0	245.1	58.77
2	417.0	100.0	0.0	417.0	100.0
3	323	77.5	0.0	323	77.5
4	NR	NR	NR	NR	NR
Average	1,997	479.0		328.4	78.76

NR - Data not reported

^{*}Discharge from operation.

Table V-164

TITANIUM FORGING EQUIPMENT CLEANING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	13.92 66.10	3.34 15.86	0.0 0.0	13.92 66.10	3.34 15.86
Average	40.01	9.60		40.01	9.60

^{*}Discharge from operation.

Table V-165
TITANIUM FORGING PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	1,010	242.3	0.0	1,010	242.3
2	NR	NR	NR	NR	NR
Average	1,010	242.3		1,010	242.3

NR - Data not reported

^{*}Discharge from operation.

Table V-166
TITANIUM TUBE REDUCING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewate:	r Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	2,356	565.0	0.0	294.3	70.57
2	1,050	251.9	0.0	1,050	251.9
3	7,359	1,765	0.0	7,359	1,765
2	NR	NR	NR	NR	NR
Average	3,588	860.6		2,901	695.7

NR - Data not reported

^{*}Discharge from operation.

Table V-167
TITANIUM TUBE REDUCING SPENT LUBRICANT RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Conce</u> Source	entrations Day 1	s (mg/l) Day 2	Day 3
			300.00	<u> </u>	<u> </u>	
Toxic Pollutants						
117. Beryllium	AX-1	1	-	<0.1		
118. Cadmium	AX-1	1 ·	<u>-</u>	<0.1		
119. Chromium (total)	AX-1	1	-	<0.5		;
120. Copper	AX-1	1		4.800		
121. Cyanide	AX-1	1	-	<0.800	n	
122. Lead of the second	AX-1	11=	<u> </u>	<0.5		I 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
124. Nickel	AX-1	1	-	<0.5		
128. Zinc	AX-1	, 1	-	10.000		
Nonconventional Pollutants				•		,
Aluminum	AX-1	1 -		<2.000		
Ammonia (as N)	AX-1	. 1	-	<0.5		,
Flouride	AX-1	1	-	1.570		
Iron .	AX-1	1	-	46.800		
Titanium	AX-1	_ 1	-	65.400		
Vanadium	AX-1	1		2.500		
Conventional Pollutants		e e e e e e				en en en en en en en en en
Oil and Grease	AX~1	1	- 4,	937.0		
Total Suspended Solids (TSS)	AX-1	1	- 14,	150.0	•	
рН	AX-1	. 1	·	7.8		
1. No analyses were performed pollutants: 1-116, 123 and 125-127.		following	toxic		•	

Table V-168
TITANIUM HEAT TREATMENT CONTACT COOLING WATER

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5 6 7 8 9 10	110,840 NR 214.3 1,747 2,067 3,233 12,530 23,070 NR NR	26,580 NR 51.40 418.9 495.7 775.4 3,006 5,531 NR NR	99.9 NR 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.58 19.25 214.3 1,747 2,067 3,233 12,530 23,070 NR	3.26 4.62 51.40 418.9 495.7 775.4 3,006 5,531 NR
Average	21,957	5,265		5,362	1,286

NR - Data not reported

^{*}Discharge from operation.

Table V-169

TITANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

		Stream	Sample		centration		
-	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants						
117.	beryllium	AK-2	3	· -	<0.020		
	· ·	AW-1	1	_	<0.100		
		BW-2		-	0.006		
		BK-2		-	<0.001		
118.	cadmium	AK-2	. з		<0.010		
	والمراجع والمراجع والمحاصون والمحاصون والمحا	AW-1		<u> </u>	<0.050		·
		BW-2		_ `	0.033		
		BK-2		-	<0.005		
119.	chromium (total)	AK-2	3	_	<0.020		
	, , , , , , , , , , , , , , , , , , , ,	AW-1	Ī	_	<0.010		
		BW-2	•	-	0.460		
		BK-2		-	0.010		
120.	copper	AK-2	3	-	0.420	•	
	01pp0.	AW-1	ĭ	-	<0.050	•	
		BW-2	·	-	11.000	•	
		, BK-2		_	0.033		
	•			•	*		
121.	cyanide	AW-1	1	-	0.036		
122.	lead	AK-2	3	_	<0.020		
	•	AW-1	1	, –	<0.100		
		BW-2		-	0.510		
		BK-2	•	-	<0.050		
124.	nickel	AK-2	3	_	<0.020		
		AW-1	ĭ	_	0.100		•
	and the second of the second o	BW-2			1.300	•	
		BK-2		_	0.360		
128.	zinc	AK-2	3	_	0.170		
120.		AW-1	. 1		<0.050	•	
		BW-2	• • •	-	6.700		
	•	BK-2			0.008		
		D			0.000		-

8

Table V-169 (Continued)

TITANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Con	centration	s (mg/1)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants						
HOHICOHIVEHETOHAT TOTTGEARES						
aluminum	AW-1	1	-	<1.00		
	BW-2		-	24.00		
	BK-2			0.096		
ammonia	AW-1	1	_	<0.100	Ü	•
cobalt	BW-2		-	0.330		
	BK-2		-	0.009		
flouride	AW-1	1	_	1.200		
1,001,100						
iron	AW-1	1	_	0.340		
	BW-2		_	440.0		
	вк-2			0.960		
magnesium	BW−2		_	14.00	•	
magnesium	BK-2		_	7.80		
	DW-3			6.400		
manganese	BW-2			0.017		
	вк-2		-	0.017		
molybdenum	BW-2			0.450		
	BK-2			0.069		-
titanium	AK-2	3	_	<0.050		
Li Laiti din	AW-1	í	-	2.000		
•	BW-2	·	-	0.810		
	BK-2		-	0.012		
	AW-1	1 -	_	<0.200		
vanadium	BW-2	•	_	0.600		
	BK-2		· 	0.061		
		•		<0.100		
zirconium	AK-2	3	_	\U. 100		

Table V-169 (Continued)

TITANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Con</u> Source	centration Day 1	s (mg/1) Day 2	Day 3
	-					
Conventional Pollutants						
oil and Grease	AW-1	. 1 .	· <u>-</u>	1.10		
total Suspended Solids (TSS)	AW-1	1	-	390.0		•
рн	·AW-1	1	-	7.4		

1. No analyses were performed on the following toxic pollutants: 1-116, 123 and 125-127.

Table V-170
TITANIUM SURFACE TREATMENT SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5 6 7 8 9 10 5 11 12 10 13 14 11 10 14 11 17 18 11 19 11 20 21 22 21	NR	0.00 1.71 2.19 6.65 8.93 9.57 12.17 12.54 24.00 24.78 26.67 49.88 52.62 57.47 61.25 118.1 120.1 166.6 211.5 284.6 600.0 ,311 NR NR NR NR NR NR NR NR NR NR NR NR NR
Average	599.4	エオフ・/

NR - Data not reported

^{*}Discharge from operation.

Table V-171
TITANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA*

			Stream	Sample	Conc	entration	s (mg/1)	<u> </u>
	Pollutant	•	Code	Type	Source .	Day 1	Day 2	Day 3
Toxic	Pollutants						• • • • • •	
114.	antimony .		L-2 L-4	1 1	<0.010 <0.010		<0.10	0.30
115.	arsenic	٠	L-2 L-4	1 1	<0.010 <0.010		1.60	1.80
117.	beryllium	٠.	L-2 L-4	1 1	<0.005 <0.005	.•	<5.00	<5.00
118.	cadmium	*	L-2 L-4	1 1	<0.020 <0.020		<2.00	<0.20
119.	chromium (total)		L-2 L-4	. 1 . 1 1	<0.020 <0.020		18.0	12.8
120.	copper		L-2 L-4	1	<0.050 <0.050		5.00	4.00
122.	lead	٠	L-2 L-4	1 1	<0.050 <0.050		65.0	214
123.	mercury		L-2 L-4	1	<0.0002 <0.0002		<0.002	<0.002
124.	nickel		L-2 L-4	1 1	<0.050 <0.050		5.00	10.0
125.	selenium		L-2 L-4	1 1	<0.100 <0.100		<1.00	<1.00
126.	silver		L-2 L-4	1	<0.010 <0.010	- m	<0.10	<0.10

838

Table V-171 (Continued)

TITANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA*

				· ·			
Collinterat	Stream Sample		Conc	Concentrations (mg/l)			
<u>Pollutant</u>	Code	Туре	Source	Day 1 Day	2 Day		
Nonconventional Pollutants (Continued)		,					
			*				
_	•		,				
Iron	L-2	. 1	<0.050	31,200			
	L-4	1 ,	<0.050		2,840		
Magnesium	L-2	. 1	34.0	270			
_	L-4	: 1	34.0	. 270	20.0		
			.= · • •		20.0		
Manganese	L-2	1	<0.050	50.0			
	L-4 .	1	<0.050		16.0		
Molybdenum	L-2	· . <u></u>	<0.050	:	1 1		
,	L-4	1	<0.050	495	126		
		•	40.00 <u>0</u> .		. 120		
Sodium	L-2	1	19.6	140	*-		
	L-4	1	19.6		753		
Sulfate	L-2 .	. 1 2	1,000				
× ×	L-4		1,000	430,000	150		
•		1 2	1,000		150		
Tin	L-2	1	<0.050	<50.0			
•	L-4	1	<0.050		<50. 0		
Titanium	L-2	1	<0.0EC	60.005			
	L-4	1	<0.050 <0.050	60,300	27 000		
			~0.050	•	27,900		
Total Dissolved Solids (TDS)	L-2	1 .	390	280,000			
· u	L-4	· 1	390		50,000		
Total Solids (TS)	L-2						
10001 001100 (10)	L-2 L-4	· l	400 400	302,000			
	L -		400	1:	51,000		

Table V-171 (Continued)

TITANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA*

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants (Continue	d)			
Vanadium .	L-2 L-4	1	<0.050 <0.050	1,150
Yttrium	L-2 L-4	1	<0.050 <0.050	<5.00 <0.50
Conventional Pollutants				
Total Suspended Solids (TSS)	L-2 L-4	1 1	7 7	3,360 480
рН (standard units) ·	L-2 L-4	1 1	7.61 7.61	2.20

*Sample concentrations for Streams L-2 (Day 2) and L-4 (Day 3) have been adjusted to account for the ten-fold dilution of the sample which was performed on-site at the time of collection.

NA - Not analyzed.

1. No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

Table V-172
TITANIUM SURFACE TREATMENT RINSE

Plant	Wa L/kkg	ter Use gal/ton	Percent Recycle	Wastewat L/kkg	er Discharge* gal/ton
1 2 3 4 5 6 7 8 9 7 4 10 7 11 12 8 13 7 14 7 15 14 11 16 17 18 19 20 21	NR	NR		100.1 222.8 350.2 1,456 1,769 2,946 3,376 5,752 7,217 7,846 8,530 10,878 17,809 19,624 33,989 50,040 50,040 66,370 79,521 83,686 444,391 662,562 971,365 NR NR NR NR NR	24.00 53.44 83.99 349.2 424.2 706.5 809.5 1,379 1,731 1,881 2,046 2,609 4,271 4,706 8,151 12,000 12,000 12,000 15,916 19,070 20,069 106,569 158,888 232,941 NR NR NR NR NR NR NR
Average	360,633	86,483		109,993	26,377

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-173

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conce	entrations		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
114. antimony	L-3	6	<0.010	<0.010	<0.010	<0.010
11-1. With thistry	L-5	6	<0.010	<0.010	<0.010	<0.010
	L-6	1	<0.010	<0.010		
115. arsenic	L-3	6	<0.010	<0.010	<0.010	<0.010
115. arsenic	Ĺ-5	6	<0.010	<0.010	<0.010	<0.010
	L-6	1	<0.010	<0.010		
4.477 December 2.1.4 com	L-3	6	<0.005	<0.050	<0.005	<0.050
117. beryllium	L-5	6	<0.005	<0.005	<0.005	<0.005
	L-6	1	<0.005	<0.005		
440	L '- 3	6	<0.020	<0.020	<0.020	<0.020
118. cadmium	L-5	6	<0.020	<0.020	<0.020	<0.020
•	L-6	1 .	<0.020	<0.020		
140iva (total)	L-3	6	<0.020	0.060	0.020	0.040
119. chromium (total)	L-5	6	<0.020	<0.020	<0.020	<0.020
	L-6	1	<0.020	0.380		
	L-3	6	<0.050	0.150	0.050	0.050
120. copper	L-5	6	<0.050	<0.050	<0.050	<0.050
	L-6	1	<0.050	0.450		
121. cyanide (total)	L-7	1	<0.03	<0.02		-
121. Gyannas (1914.)						0 400
122, lead	L-3	6	<0.050	0.550	0.400 0.200	0.400 0.300
•	L~5	6 1	<0.050 <0.050	0.050 5.90	0.200	0.500
•	L-6	1	~U.USU	5.30		•
123. mercury	L-3	6	<0.0002	<0.0002	<0.0002	<0.0002
	L-5	6	<0.0002	<0.0002	<0.0002	<0.0002
	L-6	1	<0.0002	<0.0002		

842

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Cor Source		ns (mg/l) Day 2	Day 3
Toxic Pollutants (Continued)						
124. nickel	L~3 L~5 L~6	6 6 1	<0.050 <0.050 <0.050	<0.050 <0.050 0.950	<0.050 <0.050	<0.050 <0.050
125. selenium	L-3 L-5 L-6	6 6 1	<0.100 <0.100 <0.100	<0.100 <0.100 <0.100	<0.100 <0.100	<0.100 <0.100
126. silver	L-3 L-5 L-6	6 6 1	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010
127. thallium	L-3 L-5 L-6	6 6 1	<0.010 <0.010 <0.010	<0.010 <0.010 <0.040	<0.020 <0.010	<0.020 <0.010
128. zinc	L-3 L-5 L-6	6 6 1	<0.020 <0.020 <0.020	0.400 0.020 0.660	0.120 <0.020	0.180 <0.020
Nonconventional Pollutants			•.			•
Acidity	L-3 L-5 L-6	6 6 1	<1 <1 <1	460 <1 190		400 500
Alkalinity	L-3 L-5 L-6	6 6 1	250 250 250	<1 170 <1	<1 <1	<1 <1
Aluminum	L-3 L-5 L-6	6 6 1	0.200 0.200 0.200	17.0 0.500 13.8	4.30 1.90	6.90 2.90

84:

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)					
Ammonia Nitrogen	∟ −3	6	0.08	18	19	18 20
	L-5 L-6	6 1	0.08 0.08	1.7 52	13	20
Barium	L∸3	6	0.100	0.100	0.100	0.100
24	L-5	6	0.100	0.100 0.200	0.100	0.100
	L-6	1	0.100	0.200		
Boron	L-3	6	<0.100	0.400	0.200	0.400
501 011	L-5	6	<0.100	<0.100	<0.100	0.100
	L-6	1	<0.100	0.700		
Calcium	L-3	6	77.6	71.1	74.6	72.5
Cajcium	L-5	6	77.6	71.6	74.3	73.2
	Ŀ-6	1 -	77.6	162		
Chemical Oxygen Demand (COD)	L-3	6	<1	3.1	43	25
Chemical Oxygen Demand (COD)	. L-5	6	<1	<1	3 1	17
•	L-6	1	<1	34		
Chlanida	L=3	6	50	47	45	40
Chloride	L-5	6	50	45	46	45
	L-6	1	50	94	•	
Cabalt	L-3	6	<0.050	0.350	0.100	0,150
Cobalt	L-5	6	<0.050	<0.050	<0.050	0.050
•	L-6	1	<0.050	0.100		
C)	L-3.	6	1.1	170	130	1.1
-F-luoride	L-5	6	1.1	12	46	1.3
	L-6	1	1.7	215		
-	L-3	6	<0.050	75.3	20.4	3 6 .6
Iron	L-5 L-5	6	<0.050	0.550	2.35	6.15
	L-6	1	<0.050	119		

844

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Con-	centration	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))					
Magnesium	L-3 L-5 · L-6	6 6 1	34.0 34.0 34.0	32.4 32.7 72.1	33.6 33.4	32.1 32.5
Manganese	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	0.150 <0.050 2.10	0.050 <0.050	0.100 0.050
Molybdenum	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	1.60 <0.050 0.050	0.200 0.200	0.550 0.200
Phosphate	L-3 L-5 L-6	6 6 1	1 1 1	3 1 1.9	2.2 0.5	<0.5 <0.5
Sodium	L-3 L-5 L-6	6 6 1	19.6 19.6 19.6	55.9 20.1 50.2	20.1 19.9	17.9 17.9
Sulfate	L-3 L-5 L-6		000 5,		,000 ,000	460 760
Tin	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	0.050 0.650 0.050	<0.050 <0.050	<0.050 <0.050
Titanium	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	186 3.55 15.1	47.9 20.3	79.7 34.4
Total Dissolved Solids (TDS)	L-3 L-5 L-6	6 ;	390	300 440 400	900 900	660 640

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type .		centration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)	1					
Total Organic Carbon (TOC)	L-3 L-5 L-6	6 6 1	2 2 . 2	4 4 15	6 5	4 5
Total Solids (TS)	L-3 L-5 L-6	6 6 1	400 400 400 1		,200 ,011	740 530
Vanadium	L-3 L-5 L-6	6 6 . 1	<0.050 <0.050 <0.050	3.85 0.100 0.350	1.65 0.650	2.30 1.10
Yttrium	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Conventional Pollutants						
Total Suspended Solids (TSS)	L-3 L-5 L-6	6 6 1	.7 7 7	40 32 <1	66 39	34 28
pH (standard units)	L-3 L-5 L-6	6 6 . 1	7.61 7.61 7.61	2.73 6.90 3.80	2.70 1.30	0.53 0.58

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

^{2.} Note that stream code Y-4 also appears on the nickel-cobalt surface treatment rinsewater raw wastewer sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-174
TITANIUM ALKALINE CLEANING SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5 3 5 6	52.10 57.08 229.9 239.6 1,962 3,679 9,812 2 NR	12.50 13.69 55.14 57.46 470.6 882.4 ,353
Average	2,290	549.2

NR - Data not reported

^{*}Discharge from operation.

Table V-175
TITANIUM ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entrations	s (mg/1)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
117. beryllium	AQ-1		_	<0.001		
117. beryllium	AX-2		••	<0.100		
	AX-5		-	<0.100		
118. cadmium	AQ-T		-	<0.005		
118. Cadmidm	AX-2			<0.100		
	AX-5		-	<0.100		
(10 (10 to 1)	AQ-1		_	0.011		
119. chromium (total)	AX-2		-	<0.500		
:	AX-5		-	<0.500		
120	AQ-1		_	0.770		
120. copper	AX-2		-	4.300		
•	AX-5		-	6.300		
121. cyanide	AX-2			0.700		
121. Cyanide	AX-5		-	<0.500		
122. lead	AQ-1		_	<0.050		
122. lead	AX-2			<0.500		
	AX-5		-	<0.500		
124. nickel	AQ-1		-	<0.012		
124. HICKET	AX-2		-	<0.500		
	AX-5		-	< 0. 500		
128. zinc	AQ-1		_	0.491		
	AX-2		_	<0.100		
.*	AX-5		-	<0.100	•	
with the second		* * * * * * * * * * * * * * * * * * *	•			

Table V-175 (Continued)

TITANIUM ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

-	Stream	Sample	Con	centrations	s (mg/1)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
· ·				-		
Nonconventional Pollutants			. •			
Monconventional Portutaits	-					
Aluminum	AQ-1		-	0.123		
717 4	AX-2		. -	<2.00		
	AX-5			<2.00		
Ammonia (as N)	. AX-2		_	<0.500		
Animotria (as it)	AX-5	•	-	<0.500		
	AQ-1		_	0.021	•	
Cobalt	AQ-1			0.021		
Fluoride	AX-2		_	1.070		
1 Tuoi Tue	AX-5		_	0.780		. *
Iron	AQ-1			1.530		,
	AX-2		-	5.400		•
	AX-5		-	1.900		
Titanium	AQ-1		-	6.500		
,	AX-2		. –	4.800	•	•
•	AX-5	•	-	<1.100		
Vanadium	AQ-1	•	_	0.0026		•
vanadium	AX-2		_	<0.100		
	AX-3		-	<1.00		
					•	
Conventional Pollutants	•		•			
•						
Oil and Grease	AQ-1	*	_	720.00		
off and drease	AX-2		_	930.00		
	, AX-5		-	<2.0.		
	- Eurieti			400 00		
Total Suspended Solids (TSS)	AX-2		<u>-</u>	400.00		
·	AX-5	, e	-	9.00		
. На	AX-2		. –	9.5		
P., .	AX-5		· -	2.7		
	. 87					* .

1. No analyses were performed on the following toxic pollutants: 1-116, 123, 125-127 and 129.

Table V-176
TITANIUM ALKALINE CLEANING RINSE

Plant	Wate: L/kkg	T Use gal/ton	Percent Recycle	Wastewat L/kkg	er Discharge* gal/ton
1	348.0	83.40	0.0	348.0	83.40
2	350.3	84.00	0.0	350.3	84.00
3	5,177	1,241	0.0	5 , 177	1,241
4	82,320	19,740	0.0	79,290	19,010
5	166,800	40,000	0.0	166,800	40,000
5	314,000	75,290	0.0	314,000	75,290
6	NR	NR	NR	NR	NR
Average	94,830	22,740		94,330	22,620

NR - Data not reported

^{*}Discharge from operation.

Table V-177
.
TITANIUM ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA

•	Stream	Sample	Con	centration	s (mg/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants	· ·					
117. beryllium	AQ-2 AX-3	1	- -	<0.001 <0.100		
118. cadmium	AQ-2 AX-3	1	<u>-</u> -	0.0120 <0.100		
119. chromium (Total)	AQ-2 AX-3	1 .	-	<0.003 <0.500	•	
120. copper	AQ-2 AX-3	1	. T	0.270 6.300		: -
121. cyanide	- AX-3	1	-	<0.500		
122. lead	AQ-2 AX-3	1	<u> </u>	0.072 ND		
124. nickel	AQ-2 AX-3	1 .	· _	<0.012 <0.500		
128. zinc	AQ-2 AX-3	1	- -	0.309 ND		P
Nonconventional Pollutants						
Aluminum	AQ÷2 AX-3	1	- -	0.113 <2.00	•	
Ammonia	AX-3	. 1	_	<0.500		
Fluoride	AX-3		· · · <u>-</u>	0.990		
Iron	AQ-2 AX-3	. 1	-	0.536 1.900	-	7
Titanium	AQ-2 AX-3	1	<u>:</u>	0.825 <1.10		

Table V-177 (Continued)

TITANIUM ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

Stream	Sample	Conc	entration	s (mg/l)	
Code	Туре	Source	Day 1	Day 2	Day 3
E-XA	1	-	<2.0		
ΑХ-3.	1	-	9.00		
AX-3	1	-	7.4		
	AX-3	Code Type AX-3 1 AX-3 1	Code Type Source AX-3 1 - AX-3 1 -	Code Type Source Day 1 AX-3 1 - <2.0	Code Type Source Day 1 Day 2 AX-3 1 - <2.0

1. No analyses were performed on the following toxic pollutants: 1-116, 123, 125-127 and 129.

Table V-178
TITANIUM MOLTEN SALT RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	954.9	229.0	0.0	954.9	229.0
Average	954.9	229.0		954.9	229.0

^{*}Discharge from operation.

Table V-179
TITANIUM TUMBLING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton	
1	790.0	189.4	0.0	790.0	189.4	
Average	790.0	189.4		790.0	189.4	

^{*}Discharge from operation.

TITANIUM TUMBLING WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant Code Type Source Day 1 Day 2 Day 1 Toxic Pollutants 114. antimony L-9 1 <0.010 0.020 115. arsenic L-9 1 <0.010 <0.010 117. beryllium L-9 1 <0.005 <0.050 118. cadmium L-9 1 <0.020 <0.200 119. chromium (total) L-9 1 <0.020 0.400 120. copper L-9 1 <0.050 <0.500 121. cyanide (total) L-9 1 <0.050 22.0 123. mercury L-9 1 <0.0002 0.016 124. nickel L-9 1 <0.050 1.00 125. selenium L-9 1 <0.100 <0.100	
115. arsenic L-9 1 <0.010	
117. beryllium L-9 1 <0.005	
118. cadmium L-9 1 <0.020	
119. chromium (total) L-9 1 <0.020	•
120. copper L-9 1 <0.050	
121. cyanide (total) L-9 1 0.03 4.1 122. lead L-9 1 <0.050	
122. lead L-9 1 <0.050	
123. mercury L-9 1 <0.0002	
124. nickel L-9 1 <0.050	
125. selenium L-9 1 <0.100 <0.100	
·	
100	
126. silver L-9 1 <0.010 <0.010	
127. thallium L-9 1 <0.010 <0.010	
128. zinc L-9 1 <0.020 0.800	
Nonconventional Pollutants	
Acidity L-9 1 <1 <1	
Alkalinity L-9 1 250 2,600	
Aluminum L-9 1 0.200 182	
Ammonia Nitrogen L-9 1 0.08 34	
Barium L-9 1 0.100 1.00	
Boron L-9 1 <0.100 116	
Calcium L-9 1 77.6 192	

Table V-180 (Continued)

TITANIUM TUMBLING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)				
Chemical Oxygen Demand (COD)	L-9	1	<1	21,000	
Chloride	L-9	1	50	120	
Cobalt	L-9	1	<0.050	<0.500	
Fluoride	L-9	1	1.1	110	
Iron	L-9	1	<0.050	111	
Magnesium ·	L-9	1	34.0	13.0	
Manganese	L-9	1	<0.050	1.50	
Molybdenum	L-9	1	<0,050	8.00	
Phosphate	L-9	1 ,	1	< 1	
Sodium	L~9	1	19.6	2,730	
Sulfate	L~9	1	21,000	900	
Tin	L-9	1	<0.050	12.0	
Titanium	L-9	1	<0.050	156	
Total Dissolved Solids (TDS)	L~9	1	390	18,000	
Total Organic Carbon (TOC)	L~9	1	2	380	
Total Solids (TS)	L-9	. 1	400	18,000	
Vanadium	L~9	1	<0.050	1.50	
Yttrium	L~9	1	<0.050	<0.500	

Table V-180 (Continued)

TITANIUM TUMBLING WASTEWATER RAW WASTEWATER SAMPLING DATA

•	Stream	Sample	Conc	entrations (mg/l)	
<u>Pollutant</u>	Code	Туре	Source	Day 1 Day 2	Day 3
	-			• •	
Conventional Pollutants				* · · · · · · · · · · · · · · · · · · ·	
Oil and Grease	L-9	1	<1	17 .	
Total Suspended Solids (TSS)	L-9	1	7	6,800	
pH (standard units)	L-9	1.	7.61	10.50	

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-181
TITANIUM SAWING OR GRINDING SPENT NEAT OILS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	2.36	0.57	0.0	0.00	0.00
2	NR	NR	NR	NR	NR ·
Average	2.36	0.57	•	0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-182
TITANIUM SAWING OR GRINDING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge*
Flanc	ц/кку	gai/ton	Kecycie	п/кку	gai/ton
1	39.60	9.50	NR	0.00	0.00
1	164.5	39.46	NR	0.00	0.00
2	NR	NR	100	0.00	0.00
2 3	15,040	3,606	100	0.00	0.00
3 -	15,030	3,603	100	0.00	0.00
2 ,	NR ·	NR	100	0.00	0.00
4	NR	NR	NR	0.00	0.00
4 5 6	NR	NR	NR	0.00	0.00
	35,400	8,490	100	21.25	5.10
7 -	NR '	NR	100	27.02	6.48
.8	NR	ŊŖ	100	75.47	18.10
9	NR	NR	0.0	97.87	23.47
10	NR	NŖ	100	352.4	84.51
10	NR	NR	0.0	521.3	125.0
11	NR	NR	100	NR	NR
11	NR	NR	100	NR	NR
б	NR ·	NR	NR	NR .	NR
6	NR	NR	NR .	NR ;	NR .
11	NR	NR	100	NR	NR
Average	13,140	3,150		182.5	43.78

NR - Data not reported

^{*}Discharge from operation.

Table V-183
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2 Day 3
Toxic	Pollutants				
6.	carbon tetrachloride	L-10	1	0.004	0.002
23.	chloroform	L-10	1	0.123	ND
44.	methylene chloride	L-10	1	ND	0.005
48.	dichlorobromomethane	L-10	1	0.023	ND
51.	chlorodibromomethane	L-10	1	0.002	ND
114.	antimony	L-10	1	<0.010	0.010
115.	arsenic	L-10	1	<0.010	<0.010
117.	beryllium	L-10	1	<0.005	<0.050
118.	cadmium	L-10	1	<0.020	<0.200
119.	chromium (total)	L-10 .	1	<0.020	1.20
120.	copper	L~10	1	<0.050	<0.500
121.	cyanide (total)	L-10	. 1	0.03	3.8
122.	lead	L-10	1	<0.050	<0.500

98

Table V-183 (Continued)

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Source	entrations (mg/l) Day 1 Day 2 Day 3
Toxic Pollutants (Continued)			f .	•
123. mercury	L-10	1	<0.0002	<0.0004
124. nickel	L-10	1	<0.050	9.50
125 selenำเก็ "	or couldate	1-	<0.100	
126. silver	L-10	1	<0.010	<0.010
127. thallium	L-10	1	<0.010	<0.010
128. zinc	L-10	. 1	<0.020	0.40
Nonconventional Pollutants				
Acidity	. L-10	1	<1	<1
Alkalinity	L-10	. 1	250	2,000
Aluminum	L-10	. 1	0.200	33.0
Ammonia Nitrogen	L-10	. 1	0.08	3.8
Barium .	L-10	. 1	0,100	<0.500

862

Table V-183 (Continued)

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Dellutert	Stream	Sample		entrations (mg/1)	
Pollutant	<u>Code</u>	Туре	Source	Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)				
				•	
Boron	L-10	1	<0.100	<1.00	
Calcium	L _ 10	1	77.6	64.0	
Chemical Oxygen Demand (COD)	L-10	1	<1	24,000	
Chloride	L-10	1	50	130	
Cobalt	L-10	. 1	<0.050	<0.500	
Fluoride	L-10	1	1.1	110	•
Iron	L-10	1	<0.050	17.5	*
Magnesium	L-10	1,	34.0	44.0	
Manganese	L=10·	1	<0.050	<0.500	
Molybdenum .	L-10	1	<0.050	18.0	
Phosphate	Ļ-10	1	1 .	. 9	
Sodium	L-10	. 1	19.6	3,130	

Table V-183 (Continued)

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample . Type		trations (mg/l) Day 1 Day 2 Day 3	
Nonconventional Pollutants (Continued)					
Şulfate	L-10	1 21	,000	20,000	
Tin	L-10	1	<0.050,	<0.500	
Titanium	L-10	1	<0.050	6.00	
Total Dissolved Solids (TDS)	L-10;	1	3,90	11,500	
Total Organic Carbon (TOC)	L-1,0	1	2	1,400	
Total Solids (TS)	L-10	1	400	14,000	
Vanadium	L-10	1,	<0.050	2.50	
Yttrium	L-10	•	<0.050	<0.500	
Conventional Pollutants					
Oil and Grease	L-10	, 1	<1	34	
Total Suspended Solids (TSS)	L-10	1	7	244	

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	s (mg/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants (Continued)						
pH (standard units)	L-10	1	7.61		10.30	

- 1. The following toxic pollutants were not detected in this waste stream: 1-5, 7-22, 24-43, 45-47, 49, 50, and 52-88.
- 2. Note that stream codes Y-7 and Y-8 also appear on the nickel-cobalt sawing or grinding spent emulsions raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.
- 3. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-184
TITANIUM SAWING OR GRINDING CONTACT COOLING WATER

Plant	. Water L/kkg	Use gal/ton	Percent Recycle		Discharge*
1	4,760	1,141	0.0	4,760	1,141
Average	4,760	1,141		4,760	1,141

^{*}Discharge from operation.

TITANIUM SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Table V-185

-	Stream	Sample	Concentrations (mg/l)
Pollutant	Code	Туре	Source Day 1 Day 2 Day 3
Toxic Pollutants			•
117. beryllium	8 S -1		<0.001
118. cadmium	BS-1		<0.005
119. chromium (total)	8S-1		0.0034
120. copper	BS-1		0.093
122. lead	BS-1		<0.050
124. nickel	BS-1		<0.012
128. zinc	BS-1		0.009
Nonconventional Pollutants			
Aluminum	BS-1		1.190
Cobalt	BS-1		0.0066
Iron	BS-1		1.340
Magnesium	BS-1		13.50
Manganese	BS-1		0.224
Molybäenum	BS-1		<0.020
Titanium	BS-1		7.060
Tin	BS-1	•	0.222
Vanadium _.	BS-1		0.4560

1. No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125-127 and 129.

Table V-186
TITANIUM DYE PENETRANT TESTING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
ļ	384.6	92.23	0.0	384.6	92.23
2	1,848	443.1	0.0	1,848	443.1
3	NR	NR	NR	NR	NR
· 3	NR	NR	0.0	NR ·	NR ´
3	NR	NR	NR	NR	NR ·
4	NR	NR	NR	NR .	NR
Average	1,116	267.7		1,116	267.7

NR - Data not reported

^{*}Discharge from operation.

Table V-187
TITANIUM HYDROTESTING WASTEWATER

Plant	Wate L/kkg	er Use gal/ton	Percent Recycle	Wastewat L/ k kg	er Discharge* gal/ton
1	56,240	13,490	0.0	56,240	13,490
Average	56,240	13,490		56,240	13,490

^{*}Discharge from operation.

Table V-188

TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 2 3 4 2 5 2 6 7 8 9 10	175.2 88.13 273.5 25,020 7,660 892.8 1,459 2,146 53,740 85,320 554,300 NR	42.01 21.14 65.60 6,000 1,837 214.1 349.9 514.5 12,890 20,460 132,900 NR NR	91.0 0.0 0.0 P 95.0 0.0 0.0 90.0 92.0 95.0 NR NR		3.60 21.14 65.60 68.57 96.71 214.1 349.9 514.5 859.2 1,648 1,662 NR
11	NR	NR	NR	NR	NR
Average	66,460	15,940		2,086	500.3

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-189
TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Concentration Source Day 1	ns (mg/1) Day 2 Day 3
Toxic	Pollutants				
114.	antimony	L-8	1	<0.010	<0.010
115.	arsenic	L-8	1	<0.010	<0.010
117.	beryllium	L-8	1	<0.005	<0.005
118.	cadmium	L-8	1	<0.020 .	<0.020
119.	chromium (total)	L-8	1	<0.020	<0.020
120.	copper	L-8	1	<0.050	<0.050
122.	lead	L-8	1	<0.050	0.100
123.	mercury	L-8	1	<0.0002	<0.0002
124.	nickel	L-8	1	<0.050	<0.050
125.	selenium	L-8	1	<0.100	<0.100
126.	silver	L-8	1	<0.010	<0.010
127.	thallium .	L-8	1	<0.010	<0.010
128.	zinc	Ľ-8	1	<0.020	0.300

Table V-189 (Continued)

TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Conc</u> Source	entrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants	^		200,00	bay 2 bay 3
Acidity	L-8	1	<1	· <1
Alkalinity	L-8	1	250	390
A)uminum	L-8	1	0.200	0.400
Ammonia Nitrogen	L-8	. 1	0.08	0.15
Barjum	L-8	. 1	0.100	<0.050
Boron	. L-8	1	<0.100	<0.100
Calcium	L-8	1	77.6	19.8
Chemical Oxygen Demand (COD)	L-8	1	<1	220
Chloride	L-8	1	50	55
Cobalt	L-8	1	<0.050	0.050
Fluoride	L-8	1	1.1	33
Iron	L-8	1	<0.050	1.80
Magnesium	L-8	1	34.0	30.0
Manganese	L-8	1	<0.050	<0.050
Molybdenum	L-8	1	<0.050	<0.050

α/

Table V-189 (Continued)

TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continue	d)				
Phosphate	L-8	1	1	<2	
Sodium	L-8	1	19.6	253	
Sulfate	L-8	1 21	,000	6,000	
Tin	L-8	1	<0.050	<0.050	
Titanium	L-8	1	<0.050	2.75	
Total Dissolved Solids (TDS)	L-8	1	390	720	
Total Organic Carbon (TOC)	L-8	1	2	40	
Total Solids (TS)	L-8	1	400	870	
Vanadium	L-8	1	<0.050	0.100	•
Yttrium	L-8	1	<0.050	<0.050	
Conventional Pollutants					
Total Suspended Solids (TSS)	L-8	1	7	40	
pH (standard units)	L-8	1 .	7.61	9.81	

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Note that stream code Y-5 also appears on the nickel-cobalt wet air pollution control blowdown raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-190

URANIUM EXTRUSION SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater Discharge
	1/kkg	gal/ton	Recycle	l/kkg gal/ton
1	NR .	NR	NR	0 (+)

^{+ -} Loss due to evaporation and drag-out

Table V-191
URANIUM EXTRUSION TOOL CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	344	82.5	0	344	82.5

^{+ -} Loss due to evaporation and drag-out

Table V-192

URANIUM FORGING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge
	l/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	NR	NR '	. NR	0 (+)	0 (+)

^{+ -} Loss due to evaporation and drag-out

Table V-193

URANIUM HEAT TREATMENT CONTACT COOLING WATER

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	P	6.21	1.49
	NR	NR	P	18.6	4.47
	NR	NR	P	69.2	16.6
2	948	227	0	948	227
	2,846	682	0	2,846	682

P - Periodic discharge

Table V-194

URANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code		Sample Type	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3
		_ code		Туре	3001 CE	Day I	Day Z	Day 0
Toxic Po	ollutants			-				
	grand the second second							
114. ar	ntimony	V-14	1	<0.0				.0023
		V-15	1	<0.0				.0006
	•	V-16	1	<0.0	006 .		<0	.0006
115. ar	rsenic	V-14	1	<0.0	01		<0	. 001
		V~15	1	<0.0	01	•		.001
		V-16	1	<0.0	01		<0	.001
117. be	eryllium	V14	1	0.0	12		0	.017
		.V-15	i	0.0		,		.014
		V~16	1	0.0				.013
118. ca	admi um	V-14	1	<0.0	3		<0	.03
		V-15	1	<0.0	3		<0	.03
•		V-16	1	<0.0	3		<0	.03
119. ct	nromium (total)	V-14	1	0.0	61		0	.099
•	*	V-15	1	0.0	61		<0	.03
		V-16	1	0.0	61		0	. 051
120. cc	opper	V-14	1	0.0	88		0	. 14
		V15	1	0.0	88			.8
	•	V-16	1	0.0	88		0	. 095.
121. cy	yanide (total)	V-14	1	<0.0			<0	.01
		V 15	1	<0.0			<0	.01
		V-16	1	<0.0	1		<0	.01
122. le	ead	V-14	1	0.0	36		14	.0
		V-15	1	0.0				. 15
	•	V~16	1	0.0	36		4	.9
123. me	ercury	V-14	1	<0.0	05		<0	.005
		V-15	1	<0.0			<0	.005
	•	V-16	1	<0,0	05		<0	.005
124. ni	icke1	V-14	1	0.0	55		2	.3
		V-15	1	0.0	55			.055
•		. V−16	1	0.0	55		<0	.03
125. se	elenium	V-14	1	<0.0	01		<0	.001
	•	V-15	1	<0.0	01		<0	. 00 1
		V-16	1	<0.0	01		<0	. 001

Table V-194 (Continued)

	Pollutant	Stream Code		Sample Type	Conc Source	entrations Day 1	mg/1) Day 2	Day 3
Toxic	Pollutants							
126.	silver	V-14 V-15 V-16	1 1 1	<0.	0005 0005 0005		<0	.001 .0005 .0005
127.	thallium	V-14 V-15 V-16	1 1 1	<0. <0.	001 001 001		<0),0168),001),001
128.	zinc	V-14 V-15 V-16	1 1 1	0.	, 101 , 101 , 101		Ċ).23).06).081

Table V-194 (Continued)

	Stream		Sample	Concentrations (mg/l)			
<u>Pollutant</u>	Coc	de	Туре	Source	Day 1	Day 2	Day 3
							-
Nonconventional Pollutants							
Acidity	V-14	1	<10.0			270	
	V-15	1	<10.0		•	<10	
	V-16	1	<10.0		•	<10	
Alkalinity	V-14	1	33.0			<1	
	V-15	1	33.0			62	
	V-16	1	33.0		-	77	· · ·
Aluminum	V-14 ·	1 .	0.1	0.1	•	0	
A TOM THOM	V-15	1	0.1				.5 .14
	V-16	1.	0.1				.3
Ammondo Nátroco	V 14			_			
Ammonia Nitrogen	V14 V15	1	0.0			27	
	V-15 V-16	, 1	0.0		200	<0	. 1 . 2 1
	V 10	′.'	0.0			. 0	. 4 1
Barium	V-14	1	0.2			987	.0
•	V-15	1	0.2				.3
•	V-16	1	0.2			0	.8
Boron	V-14	1	<0.2			0	. 16
	V-15	1	<0.2				.077
•	V-16	1	<0.2			. <0	.03
Calcium	V-14	1	0.0	45		477	o.
•	V-15	1	0.0			110	
	V-16	1	0.0	45			. 8
Chemical Oxygen Demand (COD)	V-14	1	<50.0			40	
	V-15	i	<50.0			50	
•	V-16	1	<50.0			<5	
Chloride	V-14	1	36.0	•		5,300	
	V-15	1	36.0			5,300	
	V-16	1	36.0			30	
Cobalt	V-14	. 1	0.04			•	0.4
	V-1 4 V-15	1	0.04				. 24 . 06
	V-16	1	0.04				.053

Table V-194 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations Day 1		Day 3
Nonconventional Pollutants (Contin	nued)					
Fluoride	V-14 V-15 V-16	1 0).41).41).41		1.8 0.3 0.9	35
Iron	V−14 V−15 V−16	1 0).16).16).16		77.0 0.4 1.6	,
Magnesium	V-14 V-15 V-16	1 8	3.0 3.0 3.0		8.4 0.8 10.0	3
Manganese	V-14 V-15 V-16	1 .0	0.058 0.058 0.058		7.2 0.2 0.2	2 .
Molybdenum	V-14 V-15 V-16	1 <0	0.03 0.03 0.03	•	0.0 0.0 <0.0	05

Table V-194 (Continued)

<u>Pollutant</u>	Str <u>Co</u>		Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Contin	nued)						
Nitrate	V-14	1	<0.09	9		<0	. 09
	V-15 V-16	1	<0.09				. 9
	V-16	į.	<0.09	9		'n	. 46
Phosphorus	V-14	1	0.5			2	. 0
	V-15	1	0.5				.0
	V-16	1-	0.5	* *		1:	. 7
Sodium	V-14	1	74.0			45	. n
•	V-15	1	74.0			120	
	V-16	1	74.0			183	
Sulfate	V-14	1	2.8			4	Q.
· · · · ·	V-15	1-	2.8			7	
	V-16	1	2.8			8	
Tin ·	V-14	1	<0.25	5		0	. 25
	V-15	1	<0.25				. 25
	V-16	1	<0.25	5			. 25
Titanium	V-14	1	<0.2			0.	2
	V-15	i	<0.2			<0.	
	V-16	1	<0.2			<0.	
Total Dissolved Solids (TDS)	V-14	1	300.0			7,800	
	V-15	1	300.0			140	
	V-16	1	300.0			4,000	
Total Organic Carbon (TOC)	V-14	1	<10.0			. <1.	
	V-15	. 1	<10.0	· · ·		<1	
	V-16	1	<10.0			3	
Total Solids (TS)	V-14	1	330.0			7,900	
	V~15	1	330.0			86	
	V-16	1	330.0			2,000	
Uranium	V~14	1.	. 0.89)		51.	5
	V-15	1	0.89			9.	
	V-16	1	0.89)		10.	

Table V-194 (Continued)

Pollutant	Stre <u>Cod</u>		Sample Conc Type Source	Day 1 Day 2 Day 3
Nonconventional Pollutants (Cor	ntinued)			
Vanadium	V-14	1	<0.03	0.15
	V-15	1	<0.03	0.05
	V-16	1	<0.03	0.045
Yttrium	V-14	1	<0.1	<0.1
	V-15	1	<0.1	<0.1
	V-16	1	<0.1	<0.1
			Concentra	tions (nCi/L)
Gross Alpha	V-14	1	0.014	33.5
	V-15	1	0.014	6.7
	V-16	1	0.014	7.8
Gross Beta	V-14 V-15 V-16	1 1	<0.013 <0.013 <0.013	66.7 10.2 10.3
Radium-226	V-14	1	<0.0008	<0.0017
	V-15	1	<0.0008	0.04
	V-16	1	<0.0008	0.0118

Table V-194 (Continued)

	•						
	Stream		Sample		entration		Day 3
<u>Pollutant</u>	Cod	<u>e_</u>	Туре	Source	Day 1	Day 2	Day 3
O tional Ballytanta			*			٠	
Conventional Pollutants							
Oil and Grease	V-14	, 1	. <1.0			71	
	V-15	1	<1.0			<1	
	V-16	1	<1.0			. 84	
Total Suspended Solids (TSS)	V-14	1	<1.0			100	
,	V−15	1	<1.0			1	
	V-16	1	<1.0			25	
pH (standard units)	V-14	- 1	6			." u 7	
	V-15	1	6			7	
	V-16	1	6			7	

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-195
URANIUM SURFACE TREATMENT SPENT BATHS

Plant	Wastewater 1/kkg	Discharge gal/ton
1	27.2	6.52
. 2	NR	NR
3	NR	NR

Table V-196

URANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	e Co	ncentration	s (mg/1)	
<u>Pollutant</u>	<u>Code</u>	Type	Source	<u>Day 1</u>	Day 2	Day 3
Toxic Pollutants						
114. antimony	. V-2	1	<0.0006	0.0038		•
115. arsenic	V-2	1,	<0.001	<0.004		
117. beryllium	V-2	1	0.012	0.7		·
118. cadmium	V-2	1	<0.03	0.5		
119. chromium (total)	V-2	1	0.061	0.8		
120. copper	V-2	· 1	0.088	16.0		
122. lead	V-2	· 1	0.036	860.0		
123. mercury	V-2	1	<0.005	0.0325		
124. nickel	V-2	1 .	0.055	3.9		•
125. selenium	V-2	1	<0.001	<0.001		
126. silver	V-2	1	<0.0005	0.002	•	•
127. thallium	V-2	1	<0.001	0.0022		
128. zinc	V-2	1	0.101	0.6		
Nonconventional Pollutants						
Aluminum	V-2	1	0.131	430.0		
Barium	V-2	1	0.2	5.8		*** * * *
Boron	V-2	1	<0.2	3.6		
Calcium,	V-2	1	0.045	0.17		
Cobalt	V-2	1	0.044	4.6		
Iron	V-2	1	. 0.16	17.0		
Magnesium	V-2	، 1	8.0	0.56		

Table V-196 (Continued)

URANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type		centrations Day 1	mg/1) Day 2	Day 3
Nonconventional Pollutants (Continue	d)					
Manganese	V-2	1	0.058	2.8		
Molybdenum	V-2	1	<0.03	2.1		
Sodium	V-2	1	74.0	4.5		
Tin	V-2	1	<0.25	0.9		
Titanium	V-2	1	<0.2	7.3		
Vanadium	V-2	1	<0.03	1.8		
Yttrium	V-2	1	<0.1	6.0		

URANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrations (mg/l)			
<u>Pollutant</u>	-	Code	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants					-		Ÿ
pH (standard units)		V-2	1	6	<1		
*							

1. No analyses were performed for the following toxic pollutants: 1-113, 116, 121, and

Table V-197
URANIUM SURFACE TREATMENT RINSE

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	268	64.3	0	268	64.3
2	406	97.5	0	406	97.5

Table V-198

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Pollutant				Sample Cond Type Source	centrations Day 1	s (mg/1) Day 2 Day 3
Toxic	Pollutants	•	٠				
114.	antimony .	V-3 V-4	1 2	<0.0006 <0.0006		<0.0006	<0.0006
115.	arsenic	V-3 V-4	1 2	<0.001 <0.001	<0.001	<0.001	<0.001
117.	bery11ium	V-3 V-4	1 2	0.012	0.7	0.2	0.3
118.	cadmium	V-3 V-4	1 2	<0.03 <0.03	0.4	0.13	0.25
119.	chromium (total)	V-3 V-4	1 2	0.061 0.061	0.6	0.17	0.4
120.	copper	V-3 V-4	1 2	0.088 0.088	12.0	3.0	4.7
121.	cyanide (total)	V-3 V-4	1	<0.01 <0.01	<0.1		0.05
122.	lead	V-3 V-4	1 2	0.036 0.036	110.0	6.0	14.0
123.	mercury	V-3 V-4	1 2	<0.005 <0.005	<0.005	<0.005	<0.005
124.	nickel	V-3 V-4	. 1	0.055 0.055	3.4	- 08.	1.7
125.	selenium	V-3 V-4	1 2	<0.001 <0.001	<0.001	<0.1	0.0015
126.	silver	V-3 V-4	1 2	<0.0005 <0.0005	0.0009	<0.0005	<0.0005
127.	thallium	V-3 V-4	1 2	<0.001 <0.001	<0.001	<0.001	<0.001
128.	zinc	V-3 V-4	1 2	0.101 0.101	0.6	0,8	0.6

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant			Stream Code	Sample Type Sour	Concentration ce Day 1	s (mg/1) Day 2 Day 3
Nonconventioal Pollu	tants					
Acidity	V-4	2	<10.0		1,200	3,500
Alkalinity	V-4	2	33.0		<1	<1
Aluminum	V-3 V-4	1 2	0.131 0.131		9.4	2.1
Ammonia Nitrogen	V−3 V−4	1 2	0.07 0.07	<0.3	0.68	0.24
Barium	V-3 V-4	1 2	0.2 0.2	195.0	3.7	39.0

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample C	Concentrations ce Day 1	s (mg/1) Day 2 Day 3
Nonconventional Polluta	ants (Continued)			
Boron	V-3 1 V-4 2	<0.2 <0.2	3.2	0.7	1.5
Calcium	V-3 1 V-4 2	0.045 0.045		69.0	48.0
Chemical Oxygen Demand (COD)	V-3 1 V-4 2	<50.0 <50.0	50	<50	50
Chloride	V-4 2	36.0	e er jede in ege	33	160
Cobalt	V-3 1 V-4 2	0.044 0.044		1.1	2.3
Fluoride	V-4 2	0.41		0.73	1.5
Iron	V-3 1 V-4 2	0.16 0.16	19.0	2.9	20.0
Magnesium	V-3 1 V-4 2	8.0 8.0	1.2	110.0	2.4
Manganese	V-3 1 V-4 2	0.058 0.058	3.3	1.4	0.073
Molybdenum	V-3 1 V-4 2	<0.03 <0.03	1.5	0.6	1.4
Nitrate	.V-4 2	<0.09		2,200	4,600
Phosphorus	V-3 V-4 2	0.5		25	60
Sodium	V-3 1 V-4 2	74.0 74.0	68.0	21.0	33.0
Sulfate	V-4 2	2.8		17	28
Tin	V-3 1 V-4 2	<0.25 <0.25	0.8	<0.2	0.4

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSEWATER RAW WASTEWATER SAMPLING DATA

Pollutant			Stream Code	Sample Type		rations Day 1	(mg/1) Day 2	Day 3
Nonconventional Polluta	ints (Conti	nued)						
Titanium	V-3 V-4	1 2	<0.2 <0.2	2	1.0	1.5	7.	6
Total Dissolved Solids TDS	V-4	2	300.0		5,60)0	9,800	
Total Organic Carbon (TOC)	V-3 V-4	1 2	<10.0 <10.0	18		30	<1	
Total Solids (TS)	V-4	2	330.0		6,00	00	11,000	

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

			Stream	Sample	Concentration				
<u>Pollutant</u>			Code	Type_	Source Day 1	Day 2 Day 3			
Nonconventional (Contir	nued)								
Uranium	V-3	ĺ	0.89	2,700		•			
	V-4	2	0.89	, -	900	760			
Vanadium	V-3	1	<0.03	140.0)				
	V-4	2	<0.03		2.9	5.8			
Yttrium	V-3	1	<0.1	2.4	4				
	V-4	2	<0.1		0.5	0.7			
				Conce	ntrations (nCi/L)				
Gross Alpha	V-3	1	0.014	9,920					
	V-4	2	0.014	•	794	1,960			
Gross Beta	V-3	1	<0.013	22,727					
	V-4	2	<0.013		1,150	2,700			
Radium-226	V-3	1	<0.0008	3 0.1	105				
	· V-4	2	<0.0008	3	0.018	0.00813			
				Concer	ntrations (mg/1)	ions (mg/1)			
Conventional Pollutants	<u>.</u>								
Oil and Grease	V-3	1	<1.0	<1					
	V-4	1	<1.0			10			
Total Suspended Solids (TSS)	V-4	2	<1.0		52	430			
pH (standard units)	V-3	1	6	<1					
	V-4	2	6		4	4			

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-199
URANIUM SAWING OR GRINDING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	P	3.23	0.774
2	NR	NR	P	8.14	1.95
3	. NR	NR	P	NR	NR

P - Periodic batch discharge

Table V-200

URANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

·	Stream		entrations (mg/1)
<u>Pollutant</u>	Code	Type Source	Day 1 Day 2 Day 3
Toxic Pollutants			
23. chloroform	V-6 1	0.103	ND .
81. phenanthrene	V-6 1	ND	32.607
114. antimony	V-6 1	<0.0006	0.0014
115. arsenic	V-6 1	<0.001	<0.001
117. beryllium	V-6 1	0.012	0.028
118. cadmium	V-6 1	<0.03	0.07
119. chromium (total)	V-6 1	0.061	0.1
120. copper	V-6 1	0.088	0.9
121. cyanide (total)	V-6 1	<0.01	0.03
122. lead	V-6 1	0.036	7.3
123. mercury	V-6 1	<0.005	<0.005
124. nickel	V-6 1	0.055	0.2
125. selenium	V-6 1	<0.001	0.001
126. silver	V-6 · 1	<0.0005	0.0013
127. thallium	V-6 1	<0.001	0.0018
128. zinc	V-6 1	0.101	7.5
Nonconventional Pollutants			•
Acidity	V-6 1	<10.0	130
Alkalinity	V - 6 1	33.0	210
Aluminum	V-6 1	0.131	2.4
Ammonia Nitrogen	V-6 1	-0.07	<0.02
Barium	V-6 1	0.2	0.2

8

Table V-200 (Continued)

URANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	l •	Sample Conc Type Source	entrations (mg/1) Day 1 Day 2 Day 3
Nonconventional Pollutants (Contin	ued)			
Boron	V-6	1	<0.2	0.6
Calcium	V -6	1	0.045	32.0
Chemical Oxygen Demand (COD)	V-6	1	<50.0	<50
Chloride	V-6	1	36.0	260
Cobalt	V-6	1	0.044	0.2
Fluoride	V-6	1	0.41	10
Iron	V-6	1	0.16	14.0
Magnesium	V-6	1	8.0	23.0
Manganese	V-6	1	0.058	0.7
Molybdenum .	V-6	1	<0.03	0.15
Nitrate	V-6	1	<0.09	280
Phosphorus	V-6	1	0.5	3.3
Sodium	V-6	1	74.0	750.0
Su!f a te	V-6	1	2.8	31
Tin	V-6	1	<0.25	<0.25
Titanium	V-6	1	<0.2	0.5
Total Organic Carbon (TOC)	V-6	1	<10.0	1,500
Uranium	V-6	1	0.89	37.5
Vanadium	V-6	1	<0.03	0.3
Yttrium	V-6	1	<0.1	<0.1

80

Table V-200 (Continued)

URANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant		Stream Code	Sample Type	<u>Con</u> Source	centrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continu	red)	,			*	-
Gross Alpha	V - 6	1	0.0	014*	70.3*	
Gross Beta	V - 6	1	<0.	013*	176*	
Radium-226	V-6	1	<0.0	*8000	0.0212*	
Conventional Pollutants					v.	
Oil and Grease	·V-6	1	<1.0)	7,500	
Total Suspended Solids (TSS)	V -6	1	<1.0)	510	
pH (standard units)	V-6	1	6		7-8	

^{*}concentrations are reported in nanocuries/liter

The following toxic pollutants were not detected in this waste stream: 1-22, 24-80, and 82-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-201

URANIUM SAWING OR GRINDING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1.	NR	NR	NR	1,647	395

Table V-202

URANIUM SAWING OR GRINDING RINSE

Plant	Water	Use	Percent	Wastewater	Discharge
	l/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	NR	NR	Р .	4.65	1.12

P - Periodic batch discharge

Table V-203
URANIUM AREA CLEANING WASHWATER

Plant	Water l/kķg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	P .	1.37	0.33
	NR	NR ·	P	30.1	7.28
	NR	NR	P	97.2	23.3

Table V-204

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

		Pollutant		Stream	Sample	Conc	entrations	
		TOT TOTAL	-	Code	Type	Source	Day 1	Day 2 Day 3
	Toxio	Pollutants						
	22.	p-chioro-m-cresol	V-8	1	ND		15.031	
•		•	V-18	1	ND	-	15.031	NB
		w	V-19	i	ND			ND
				•				, ND
	23.	chloroform	V-8	1.	0.103		ND -	
	66.	bis(2-ethylhexyl)	V-8	•				. /-
	•••	phthalate	V-18	1	ND		4.879	
		piitilaiate	V-18 V-19	1	ND		•	0.085
9			V-19	•	ND			0.989
106	114.	antimony	V-8	1	<0.0006		40.0000	
_			V-18	i	<0.0006		<0.0006	
			V-19	i	<0.0006			0.0006
			• .0	•	\0.000			<0.0006
	115.	arsenic	V-8	1	<0.001		0.0013	
	•		V-18	ĺ	<0.001		0.0013	0.00==
			V-19	i	<0.001			0.0055
-					0.00		•	0.0028
	117.	beryllium	V-8	1	0.012		0.025	
			V-18	1	0.012		0.025	0.051
			V-19	1	0.012			0.051
	1.0							0.031
	118.	cadmium	V-8	1	<0.03.		0.063	
			V-18	1	<0.03			0.049.
			V-19	1	<0.03			0.064
	119.	chromium (total)						
	113.	Chromium (total)	V-8	1	0.061		1.5	
	•		V-18	1 .	0.061			0.3
			V-19	1	0.061			0.6
	120.	copper	V-8	•	0.000			
		Соррег	V-8 V-18	1 . 1	0.088		2.2	
			V-19	1	0.088			1.9
		· ·	V 13	ı	0.088	•		2.3
•	121.	cyanide (total)	V-8	1	<0.01		0.10	
			V-18	i	<0.01		0.10	
			V-19	i	<0.01			<0.01
				•	-5.01			<0.01

Table V-204 (Continued)

	<u>Pollutant</u>		Stream Code	Sample Type	Concentrations Source Day 1	(mg/l) Day 2 Day 3
Toxic	Pollutants (Continued)					
122.	1 ead	V-8 V-18 V-19	1 1 . 1	0.036 0.036 0.036	3.4	3.07 4.1
123.	mercury	V-8 V-18 V-19	1 1 1	<0.005 <0.005 <0.005	<0.005	<0.0005 <0.0005
124.	nickel	V-8 V-18 V-19	1 1 1	0.055 0.055 0.055	0.3	0.5 0.5
125.	selenium	V-8 V-18 V-19	1 1 1	<0.001 <0.001 <0.001	0.0018	<0.001 0.0033

902

Table V-204 (Continued)

÷		Stream	Sample	Conc	entrations	(mg/1)
Pollutant		Code	Type	Source	Day 1	Day 2 Day 3
Toxic Pollutants (Continued)						·
126. silver	V-8 V-18 V-19	1 1 1	<0.0005 <0.0005 <0.0005		0.0011	0.001 0.0008
127. thallium	V-8 V-18 V-19	1 1 1	<0.001 <0.001 <0.001		<0.001	<0.001 <0.001
128. zinc	V-8 V-18 V-19	1 1 1.	0.101	the second	11.0	5.2 4.0
Nonconventional Pollutants						
Acidity	V-8 V-18 V-19	1 1 1	<10.0 <10.0 <10.0		<10	<10 <10
Alkalinity	V-8 V-18 V-19	1 1 1	33.0 33.0 33.0		634	1,060 618
Aluminum	V-8 V-18 V-19	1 1 1	0.131 0.131 0.131	-	54.0	23.0 34.0
Ammonia Nitrogen	V-18 V-19	1 1	0.07 0.07			1.2
Barium	V-8 V-18 V-19	1 1 1	0.2 0.2 0.2		1.0	36.0 8.7
Boron	V-8 V-18 V-19	1 1	<0.2 <0.2 <0.2		0.4	0.6
Calcium	V-8 V-18 V-19	1 1 1	0.045 0.045 0.045		416.0	320.0 739.0
Chemical Oxygen Demand (COD)	V-8 V-18 V-19	1 1 1	<50.0 <50.0 <50.0		<50	10 15

Table V-204 (Continued)

Pollutant		Stream Code	Sample Type	Concentr Source Da		g/1) y 2 Day 3
Nonconventional Pollu	utants (Continued	1)				
Chloride	V-8 V-18 V-19	1 1 1	36.0 36.0 36.0	97	,	445 74
Cobait	V-8 V-18 V-19	1 1 1	0.044 0.044 0.044	(0.23	0.4 0.4
Fluoride	V-8 V-18 V-19	1 1 1	0.41 0.41 0.41	(6.4	1.6 1.8

Table V-204 (Continued)

Pollutant		Stream <u>Code</u>	Sample Type	Concentration Source Day 1	s (mg/l) Day 2 Day	3
Nonconventional Pollutar	nts (Continue	d)				
· · I ron	V-8	1	0.16	50.0		
	V-18	1	0.16		66.0	
	V-19	1	0.16		48.0	
Magnesium	V-8	1	8.0	151.0		
-	V-18	1	8.0		330.0	
	V-19	1	8.0		1,499.0	
Manganese	V-8	1	0.058	1.6		
	V-18	1	0.058		1.8	
	V-19	1	0.058		2.3	
Molybdenum	V-8	1 .	<0.03	0.5		
	V−18	1	<0.03		0.5	
	v-19	1.	<0.03	· w	0.6	-
Nitrate	V-8	1	<0.09	- 790		
	V−18	1	<0.09		77	
5	V-19	1	<0.09		75	
Phosphorus	·V-8	1	0.5	2.5	•	
	V-18	1	0.5		39	
	V 19-	1	0.5	read of the second	2.6	
Sodium	· V-8	1	74.0	1,769.0		
	∙ V−18	1	74.0		3,145.0	
•	V-19	1	74.0		10,298.0	
Sulfate	V-8	1	2.8	21		
*	V-18	- 1	2.8		2.4	
	V-19	1	2.8	•	8.8	
Tin	V-8	1	<0.25	<0.25		
	V-18	1 '	<0.25		<0.25	
	V-19	. 1	<0.25		<0.25	**
Titanium	V-8	1 .	<0.2	3.7		
	V-18	1	<0.2		2.8	
	V-19	1	<0.2		1.8	

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

			-			-
		Stream	Sample	Concentration	ns (mg/1)	
<u>Pollutant</u>		Code	Туре	Source Day 1	Day 2 D	ay 3
Nonconventional Pollutants (C	ontinued	1)				
Total Dissolved Solids (TDS)	V-8	1	300.0	6,600		
(10tal b) 8880 (00 (100 (100)	V-18	1	300.0		3,400	
•	V-19	1	300.0		680	
Total Organic Carbon (TOC)	V-8	1	<10.0	2,700		
. Otal Organie Caramin (1917)	V-18	1	<10.0		. 2 2	
	V-19	1	<10.0	·	2	
Total Solids (TS)	V-8	1	330.0	9,500		
10(21 301 105 (15)	v-18	i	330.0		4,400	
	V-19	1	330.0		3,100	
Jranium	V-8	1	0.89	49		
	V-18	1	0.89		130	
	V-19	1	0.89		79	

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>		Stream Code	Sample Type	Concentrations Source Day 1	(mg/1) Day 2 Day 3
•	Nonconventional Pollutants ((Continued)	•			· .
	Vanadium	V-8 V-18 V-19	1 1 1	<0.03 <0.03 <0.03	<0.3	0.8
	Yttrium	V-8 V-18 V-19	1 1 1	<0.1 <0.1 <0.1	2.0	11.0 14.0
· • · .					Concentrations (nCi/	L)
.	Gross Alpha	V-8 V-18 V-19	1 1 1	0.014 0.014 0.014	76.4	227 315
1	Gross Beta	V-8 V-18 V-19	1 1 1	<0.013 <0.013 <0.013	109	314 479
	Radium-226	V-8 V-18 V-19	1 1	<0.0008 <0.0008 <0.0008		0.143 0.183
	Conventional Pollutants					37.33
	Oil and Grease	V-8 V-18 V-19	1 1 1	<1.0 <1.0 <1.0	6,000	17 · . 25
	Total Suspended Solids (TSS)	V-8 V-18 V-19	1 1 1	<1.0 <1.0 <1.0	775	60 1,600
N	pH (standard units)	V-8 V-18 V-19	1 1 - 1 - 1 - 1 - 1 - 1	6 6	10.	10' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

The following toxic pollutants were not detected in this waste stream: 1-21, 24-65, and 67-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-205

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Wate 1/kkg	r Use gal/ton	Percent Recycle	Wastewater 1, kkg	Discharge gal/ton
l	NR	NR	NR	0	0
2	NR	NR	P	3.49	0.836

Table V-206

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Pollutant	ie i e -	-		Sample <u>Conc</u> Type Source	centrations Day 1		Day 3
	Toxic Pollutants				•		•	-
	114. antimony	V-5	1	<0.0006	<0.0006			
	115. arsenic	V-5	1	<0.001	<0.001			
	117. beryllium	V-5	1	0.012	0.02			
	118. cadmium	V-5	1	<0.03	<0.03			
	119. chromium (total)	V-5	1	0.061	<0.03			
90	120. copper	V-5	1	0.088	0.15			
9	121. cyanide (total)	V-5	1	<0.01	<0.1			
	122. lead	V-5	₁	0.036	0.6			
	123. mercury	V-5	. 1	<0.005	<0.005			
	124. nickel	V-5	1	0.055	0.081			
	125. selenium	V-5	1	<0.001	<0.001			
	126. silver	V-5.	- 1	<0.0005	0.0007			
	127. thallium	V-5	1	<0.001	<0.0078			
	128. zinc	V-5	1	0.101	1.1			
	Nonconventional Polluta	ants						
	Acidity ·	V-5	1	<10.0	<10			
	Alkalinity	V-5	1	33.0	>2,000		•	
	Aluminum	V-5	1	0,131	0.6		•	
	Ammonia Nitrogen	V-5	1	0.07	2.0		•	
	Barium	V-5	1	0.2	<0.1			

Table V-206 (Continued)

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

			Stream	Sample	Concentrations (mg/l)			
Pollutant	•		Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Polluta	nts (Cor	ntinued)						
Boron	V-5	1	<0.2		0.6			
Calcium	V-5	1	0.045		0.8		•	
Chemical Oxygen Demand (COD)	V-5	1	<50.0	1:	20			
Chloride	V-5	1	36.0	4,10	00			
Cobalt	V-5	1	0.044		0.088			
Fluoride	V-5	1	0.41		31			
Iron	V-5	1	0.16	-	0.4			
Magnesium	V-5	1	8.0		0.78	•		
Manganese	V-5	. 1	0.058	3	0.1			
_ Molybdenum	V-5	1	<0.03		0.23			
. Phosphorue	V-5	. 1	0.5		3.4			
Sodium	V-5	. 1	74.0	1	41.0			
Sulfate	V~5	1	2.8		5.3			
Tin	V-5	1	<0.25		<0.2			

16

Table V-206 (Continued)

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

·	Pollutant			Stream Code	Sample Co	oncentrations (mg, e Day 1 Day		
	Nonconventional Pollut	<u>ants</u> (Cont	inued)					
	Titanium	V-5	1	<0.2	1.2		÷	
•	Total Dissolved Solids (TDS)	V-5	1	300.0	510,000			
	Total Organic Carbon (TOC)	V-5	1	<10.0	280			
	Total Solids (TS)	V-5	1	330.0	510,000	,		
911	Uranium	V-5	1	0.89	1,000			
	Vanadium	V-5	1	<0.03	0.16			
	Yttrium	V-5	1	<0.1	0.2			
	Nonconventional Polluta	ants (Conti	inued)		Concentrati	ons (nCi/L)		
	Gross Alpha	V-5	1	0.014	134			
	Gross Beta	V-5	1	<0.013	1,970			
	-Radium-226	V-5	1	<0.0008	0.011			and the company of the contract of the contrac
					Concentrati	ons (mg/1)		
	Conventional Pollutants	i	•					
	Oil and Grease	V-5	. 1	<1.0	<1			
•	Total Süspended Solids (TSS)	V-5	2	<1.0	650			
	ρΗ (standard units)	V-5	1	6	9			÷

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-207
URANIUM DRUM WASHWATER

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
٦	NR	NR	>0	44.3	10.6

Table V-208

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

_		Pollutant		ream ode	Sample Type	Conc	entration Day 1	s (mg/1) Day 2	Day 3	
	Toxio	<u>Pollutants</u>				<u>554. 55</u>	<u> </u>	<u> </u>	Day 3	
	114.	antimony	. V-9	1	· <0.	0006 -		. <0	.0006	_
	115.	arsenic	V-9	1	<0.	001			.001	
	117.	beryllium	V-9	1	0.	012		0	.013	
	118.	cadmium	V-9	1	<0.	03		<0	.03	
	119.	chromium (total)	V-9	, 1	0.	061		0	.06	
	120.	copper	.V-9	1	0.	088		0	.6	
	121.	cyanide (total)	V-9	1	<0.0	01		<0	.1	
9	122.	lead	V-9	1	0.	036		0	.22	
Ľω	123.	mercury	V-9	1	<0.0	005		<0	.005	
	124.	nickel	V-9	1	0.0	055		<0	.03	
	125.	selenium	V-9	1	<0.0	001		- <0	.001	
	126.	silver	V-9	1	<0.0	0005		<0	.0005	
	127.	thallium	V-9	1	<0.0	001		<0	.001	
	128.	zinc	V-9	1	0.	101		0	. 8	
	Nonco	onventional Pollutants			age areas and reducers . Lower in a reducement that there	and the second of the second o		ne ni ing ga masa		n 4/10
	Acidi	ty	V-9	1	<10.0)		<10		
,	Alkal	inity	V-9	1	33.0)		779		
	Alumi	num		- 1-	0.	131		2	. 2	-
	Ammon	nia Nitrogen	V-9	, 1	0.0)7		0	. 30	
	Bariu	ım	V-9	1	0.2	2		0	.3	
	Boron	I	V-9	1	<0.2	2		0	.04	
,	Calci	um	V-9	1	0.0)45		56	. 0	

Table V-208 (Continued)

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

	Stream	n	Sample	Conc	entration	s (mg/1)	
Pollutant	Code		Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continu	ied)						
Chemical Oxygen Demand (COD)	V-9	1	<50.0	0		10	
Chloride	V-9	1	- 36.0	0		850	
Cobalt	V-9	1	0.0	044		0	.041
Fluoride	V-9	1	0.4	41		3	. 5
Iron	V-9	1	0.	16		4	.3
Magnesium	V-9	1	8.0	0		28	. 6

Table V-208 (Continued)

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample Type Sour	Concentrations	
Nonconventional Pollutants	(Continued)			<u> </u>	Day 2 Day 3
Manganese	V-9) 1	0.058		0.2
Molybdenum	· V-9	1	<0.03		<0.03
Nitrate	V-9	1	<0.09		4.3
Phosphorus .	. V-9	1	0.5		310
Sodium	v-9	1	74.0		678.0
Sulfate	V-9	1	2.8		5.4
Tin .	V-9	-1	<0.25		<0.2
Titanium	V - 9	. 1	<0.2		<0.2
Total Dissolved Solids (TDS)	1	300.0		2,100
Total Organic Carbon (TOC)	V-9	1	<10.0		2
Total Solids (TS)	V-9	1	330.0		2,300
Uranium	V-9	1	0.89		5.7
Vanadium	V-9	1	<0.03		0.03
Yttrium	- V-9	1	<0.1		0.1
•	* ** **		Cor	ncentrations (
Gross Alpha	v-9	1	0.014		3.7
Gross Beta	V-9	1	<0.013		4.5
Radium-226	V-9	111	<0.0008	- .	0.0019

Table V-208 (Continued)

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Strea <u>Code</u>		Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Contin	nued)						
Conventional Pollutants			·	Concen	trations	(mg/1)	·
Oil and Grease	V-9	1	<1.0	0		12	
Total Suspended Solids (TSS)	V-9	1	<1.0	0		23	
pH (standard units)	V-9	1	6			9-	10

1. No analyses were performed for the following toxic pollutants: 1-113, 116, and 129.

Table V-209

URANIUM LAUNDRY WASHWATER

Plant		Water liters/ employee- day	Use gallons/ employee- day	Percent Recycle	Water liters/ employee- day	Use gallons/ employee- day
1 '	į	52.4	12.6	0	52.4	12.6

Table V-210

URANIUM LAUNDRY WASH WATER
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrati		
<u>Pollutant</u>		Code	Type 5	Source Day 1	Day 2	Day 3
Toxic Pollutants		e e cape e e	en an la la la mere la e			e get e
114. antimony	V-7	1	<0.0006	<0.0006		
115. arsenic	V~7	1	<0.001	0.028		r
117. beryllium	V~7	1	0.012	0.015		
118. cadmium	V~7	1	<0.03	<0.03		
119. chromium (total)	V-7	. 1	0.061	<0.03		
t20. copper	V~7	1	0.088	0.25		
121. cyanide (total)	V-7	1	<0.01	<0.1		
122. lead	V-7	1 -	0.036	0.042		
123. mercury	V-7	1	<0.005	<0.005		
124. nickel	V-7	1	0.055	<0.03		
125. selenium	V-7	1	<0.001	<0.001		
126. silver	V-7	1	<0.000	5 0.0048		
127. thallium	V-7	1	<0.001	<0.001		•
128. zinc	V-7	1	0.101	0.7		
Nonconventional Pollutants						
Acidity	V-7	1	<10.0	<10		
Alkalinity	V-7	1	33.0	59		
Aluminum ·	V-7	1	0.131	0.9		
Ammonia Nitrogen	V-7	1	0.07	2.3	-	
Barium	. V-7	1	0.2	0.2		
Boron	V-7	1	<0.2	0.3		

Table V-210 (Continued)

URANIUM LAUNDRY WASH WATER RAW-WASTEWATER-SAMPLING DATA-

<u>Pollutant</u>		Stream Code	Sample Type	Concentration Source Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Con	ntinued)			•		
Calcium	V-7	1	0.045	17.0		
Chemical Oxygen Demand (COD)	V7	, 1	<50.0	<50		,
Chloride	V-7	1	36.0	210		
Cobalt	· V-7	1	0.044	0.25		
Fluoride	V-7	. 1	0.41	0.79		
Iron	V-7	. 1	0.16	0.16		
Magnesium	· v-7	1	8.0	5.3	*	•
Manganese	V-7	1 .	0.058	0.2		

Table V-210 (Continued)

URANIUM LAUNDRY WASH WATER RAW WASTEWATER SAMPLING DATA

Pollutant		Stream Code	Sample Type Sou	Concentration	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Co	ntinued)					
Molybdenum	V-7	1	<0.03	<0.03		
Nitrate	V-7	1	<0.09	<0.09		
Phosphorus	V-7	1	0.5	12		
Sodium	V-7	1	74.0	133.0		
Sulfate	V-7	1	2.8	14		
Tin	V-7 -	1	<0.25	<0.2		
Titanium	V-7	1	<0.2	<0.2		
Total Dissolved Solids (TDS)	V-7	1	300.0	590		
Total Organic Carbon (TOC)	V-7	1	<10.0	46		
Total Solids (TS)	V~7	1	330.0	630		
Uranium	V-7	1	0.89	0.51		
Vanadium	V-7	1	<0.03	<0.03		
Yttrium	V-7	1	<0.1	7.3		
•			Co	ncentrations (nCi/L)	
Gross Alpha	V-7	1	0.014	13.7	•	
Gross Beta	V-7	1	<0.013	18.5		
Radium-226	V-7	1	<0.0008	3.6		
			Co	ncentrations (mg/1)	
Conventional Pollutants	•					
Oil and Grease	V-7	1	<1.0	42		
Total Suspended Solids (TSS)	V-7	1	<1.0	. 11		
pH (standard units)	V-7	1	6	6		

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-211

ZINC ROLLING SPENT NEAT OILS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR ·	NR	100	0	0

NR - Data not reported

Table V-212 ZINC ROLLING SPENT EMULSIONS

Plant	Water Us 1/kkg ga		ccent Wast cycle 1/k	ewater Disch kg gal,	
1	NR	NR 1	100 0	0	
2	NR	NR	P 1.	39 (CH) 0.3	334 (CH)
3	NR	NR	NR NR	(LA) NR	(LA)

NR - Data not reported
CH - Contract hauled
LA - Land application
P - Periodically discharged

Table V-213

ZINC ROLLING CONTACT COOLING WATER

Plant	n w	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	:	471	113	0	471	113
1		600	144	0	600	144
2		NR	NR	P	NR	NR

NR - Data not reported P - Periodically discharged

Table V-214 ZINC DRAWING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	p	5.80 (CH)	1.39 (CH)
2	NR	NR	P	NR (CH)	NR (CH)
3	NR	NR	P	NR	NR
4	NR	NR	P	NR	NR

NR - Data not reported
CH - Contract hauled
P - Periodically discharged

Table V-215
ZINC DIRECT CHILL CASTING CONTACT COOLING WATER

Plant	Wate: l/kkg	r Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	100	0	0
2	505	121	0	505	121

NR - Data not reported

Table V-216 ZINC STATIONARY CASTING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	l/kkg	gal/ton
1	NR	NR	100	0 (+1)	0 (+)

NR - Data not reported + - Loss due to evaporation

Table V-217 ZINC HEAT TREATMENT CONTACT COOLING WATER

*	 Wate	er Use	Percent	Wastewater	Discharge
Plant	1/kkg	gal/ton	Recycle	l/kkg	gal/ton
1.	NR	NR	P	763	183

NR - Data not reported
P - Periodically discharged

Table V-218
ZINC SURFACE TREATMENT SPENT BATHS

Plant	Wastewater 1/kkg	Discharge gal/ton
1	65.1	15.6
	70.9	17.0
	130	31.2
2	NR	NR

NR - Data not reported

Table V-219

ZINC SURFACE TREATMENT RINSE

Plant	Wat 1/kkg	er Use gal/ton	Percent Recycle	Wastewate 1/kkg	r Discharge gal/ton
1	4,170	1,000	0	4,170	1,000
; ; ;	5,000	1,200	0	5,000	1,200
2	1,570	376	0	1,570	376

NR - Data not reported

Table V-220
ZINC SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA

			Sample	Conc	Concentrations (mg/l)		
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic	Pollutants			e e	errower en a	* * *	
3.	acrylonitrile	G -3	1	0.002	0.001		
4.	benzene.	G-3	1	0.017	0.015		
6.	carbon tetrachloride	G -3	1	0.004	0.003		
7.	chlorobenzene	G-3	1	**	**		,
10.	1,2-dichloroethane	G-3	1	**	**.		
11.	1,1,1-trichloroethane	G-3	1	0.003	ND		•
13.	1,1-dichloroethane	G-3	1	0.001	0.001		
14.	1,1,2-trichloroethane	G-3	1	**	**		
15.	1,1,2,2-tetrachloroethane	G-3	1	0.001	0.001		
18.	bis(2-chloroethyl)ether	G-3	1	ND	0.001		
23.	chloroform	G-3	1	0.051	0.015		
29.	1,1-dichloroethylene	G-3	1	0.002	0.002	•	
30.	1,2- <u>trans</u> -dichloroethylene	G-3	1	0.002	0.002		
32.	1,2-dichloropropane	G-3	1	0.002	**		
33.	1,3-dichloropropene	G-3	1	**	**		
34.	2,4-dimethylphenol	G-3	. 1	ND	0.005		
36.	2,6-dinitrotoluene	G-3	1	0.002	0.002		•
37.	1,2-diphenylhydrazine	G-3	1	**	**		
38.	ethylbenzene	G-3	1	0.011	0.011		
39.	fluoranthene	G-3	1	0.001	ND		
43.	bis(2-chloroethoxy)methane	G-3	1	**	0.001		
44.	methylene chloride	G-3	1	0.003	0:008		• .

Table V-220 (Continued)

ZINC SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	Concentrations (mg/l)			
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3	
Toxic Pollutants (Continued)		- 	ā u = .				
46. methyl bromide (bromomethane)	G-3	. 1	**	ND			
47. bromoform (tribromomethane)	G-3	1	0.002	0.002			
48. dichlorobromomethane	G-3	1	0.005	0.001			
51. chlorodibromomethane	G-3	. 1	0.031	0.140			
55. naphthalene	G-3	1	**	0.001			
66. bis(2-ethylhexyl) phthalate	G-3	· · 1	0.003	**			
67. butyl benzyl phthalate	G-3	1	0.001	0.002			
68. di-n-butyl phthalate	G-3	1	0.017	0.037			
69. di-n-octyl phthalate	G-3	· 1	**	QИ			
70. diethyl phthalate	G-3	1	0.009	0.016			
72. benzo(a)anthracene	G-3 .	1	0.001	0.001			
74. benzo(b)fluoranthene	G-3	1	0.002	ND .	-		
	G=3	1	0002	NÐ			
76. chrysene	G~3	1	0.001	0.001			
78. anthracene	G-3	1	0.001	**		1 (
79. benzo(ghi)perylene	G-3	1:	0.007	ND			
80. fluorene	G-3	- 1	0.001	ND		-	
81. phenanthrene	G-3	· 1	-0.001	**:			
83. indeno(1,2,3-c,d)pyrene	G-3	1	0.016	ND			
84. pyrene	G-3	1	0.001	ND			
85. tetrachloroethylene	G-3	1.	0.009	0.009		i	
86. toluene	G-3	7-11	0.007	0.002		•	

Table V=220 (Continued)

ZINC SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
87. trichloroethylene	G-3	1	0.009	0.008		
114. antimony	G-3	1	<0.010	<0.010		
115. arsenic	G-3,	1	<0.010	<0.010		
117. beryllium	G-3	1	<0.005	<0.005	•	• *
118. cadmium	G-3	1	<0.020	<0.020		
119. chromium (total)	G-3	1	<0.020	0.160		
120. copper	G-3	1	<0.050	<0.050		
121. cyanide (total)	G-3	1	<0.07	<0.03		
122. lead	G-3	. 1	<0.050	<0.050		
123. mercury	G-3	1	<0.0002	<0.0002	÷	•
124. nickeł	G-3	1	<0.050	8.10		
125. selenium	G-3	1	<0.010	<0.010		
126. silver	G-3	1	<0.010	<0.010		•
127. thallium	G-3	1	<0.010	<0.050		
128. zinc	G-3 .	1	0.100	42.3		
Nonconventional Pollutants						
Acidity	G-3	1	<1	<1		
Alkalinity	G-3	1	67	26		
Aluminum .	G-3	1	0.100	0.500		
Ammonia Nitrogen	G-3	1	<0.02	<0.02		
Barium	G _. -3	. 1	<0.050	<0.050		

Table V-220 (Continued)

-ZINC-SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Con Source	centrations Day 1	mg/1) Day 2	Day 3
	Nonconventional Pollutants (Continued)	• • •		•			•
٠	Boron	G-3	1	0.100	0.100		-
	Calcium	G-3	1	29.1	30.0		
	Chemical Oxygen Demand (COD)	G-3	1	560	<1		
-	Chloride	G-3	1	36	<1		
	Cobalt	G-3	1	<0.050	<0.050		
) D	Fluoride	G-3	1	96	108		٠
์ ว	Iron	G-3	1	< 0.050	0.150		-
	Magnesium	G-3	1	4.10	4.30		
	Manganese	G-3	- 1	< 0.050	< 0.050		
	Molybdenum	G-3	1	< 0.050	< 0.050		
	Phenolics	G-3	. , 1	< 0.005	< 0.005		
	Phosphate	G-3	• 1	1.6	300		
· months mark	Sodium	G-3		600	8.10		ne ma ni annovama i e perendenti di e
	Sulfate	G÷3	1	47	49	: : :	
	Tin	G-3	1	< 0.050	< 0.050		
	Titanium	G-3	1	< 0.050	< 0.050		
	Total Dissolved Solids (TDS)	G-3	1	160	380	-	
	Total Organic Carbon (TOC)	G-3	1	< 1	< 1	;	
	Total Solids (TS)	G-3	1	92	400		
	Vanadium	G-3	1	< 0.050	< 0.050		
:	Yttrium	G-3	1	< 0.050	< 0.050		

7

ZINC SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Conventional Pollutants			
Oil and Grease	G-3	1	4 < 1
Total Suspended Solids (TSS)	G-3	1	10 20
pH (standard units)	G-3	1.	7.98 5.72

**Present, but not quantifiable.

1. The following toxic pollutants were not detected in this waste stream: 1, 2, 5, 8, 9, 12, 16, 17, 19-22, 24-28, 31, 35, 40-42, 45, 49, 50, 52-54, 56-65, 71, 73, 77, 82, and 88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

934

Table V-221
ZINC ALKALINE CLEANING SPENT BATHS

Plant	Wastewater 1/kkg	Discharge gal/ton
1	1.67	0.400
2	5,42	1.30

Table V-222 ZINC ALKALINE CLEANING RINSE

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	2,290	549	CCR2	2,290	549
2	1,080	260	0 (S)	1,080	260

CCR2 - Two-stage countercurrent cascade rinsing
S - Spray rinsing

Table V-223
ZINC ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA

Dollutant	Stream	Sample	Cond	centration		
	_Code	_Type_	Source	Day 1	Day 2	Day 3
c Pollutants						
acenaphthene	G-2	. 1	ND	**		
acrylonitrile	G-2	1	0.002	0.001		
benzene	G-2	1	0.017	0.004	•	•
carbon tetrachloride	G-2	5 1	0.004	0.003		
chlorobenzene	G-2	1	**	**		
1,2-dichloroethane	G-2	. 1	**	**		
1,1,1-trichloroethane	G-2	1	0.003	0.003		
1,1-dichloroethane	G-2	. 1	0.001	0.001		
1,1,2-trichloroethane	G-2	. 1	**	**		
1,1,2,2-tetrachloroethane	G-2 ·	· 1	0.001	0.001		
bis(2-chloroethyl)ether	G-2	. 1	ND	**		
chloroform	G-2	1 1	0.051	0.013		- / #
1,1-dichloroethylene	G-2 .	1	0.002	0.002		
1,2- <u>trans</u> -dichloroethylene	G-2	- 1	0.002	0.002		.*
1,2-dichloropropane	G-2	1	0.002	0.002		
1,3-dichloropropene	G-2	1	**	0.001		
2,6-dinitrotoluene	G-2	. 1	0.002	0.003		
1,2-diphenylhydrazine	G-2	1	**	**		:
ethylbenzene	G-2	1	0.011	0.011		
fluoranthene	G-2	1				
bis(2-chloroethoxy)methane	G-2	1	**		. ,	
methylene chloride	G-2	•	0.003	0.008		
	acrylonitrile benzene carbon tetrachloride chlorobenzene 1,2-dichloroethane 1,1,1-trichloroethane 1,1,2-trichloroethane 1,1,2-trichloroethane 1,1,2,2-tetrachloroethane bis(2-chloroethyl)ether chloroform 1,1-dichloroethylene 1,2-trans-dichloroethylene 1,2-dichloropropane 1,3-dichloropropane 2,6-dinitrotoluene 1,2-diphenylhydrazine ethylbenzene fluoranthene bis(2-chloroethoxy)methane	Pollutants acenaphthene	Pollutants Code Type c Pollutants acenaphthene G-2 1 acrylonitrile G-2 1 benzene G-2 1 carbon tetrachloride G-2 1 chlorobenzene G-2 1 thorobenzene G-2 1 1,2-dichloroethane G-2 1 1,1-trichloroethane G-2 1 1,1-dichloroethane G-2 1 1,1,2-trichloroethane G-2 1 1,1,2-trichloroethane G-2 1 bis(2-chloroethyl)ether G-2 1 chloroform G-2 1 1,1-dichloroethylene G-2 1 1,2-dichloroethylene G-2 1 1,2-dichloropropane G-2 1 1,3-dichloropropene G-2 1 2,6-dinitrotoluene G-2 1 1,2-diphenylhydrazine G-2 1 ethylbenzene G-2 1 fluoranthene	Pollutants Code Type Source c Pollutants acenaphthene G-2 1 ND acrylonitrile G-2 1 0.002 benzene G-2 1 0.0017 carbon tetrachloride G-2 1 0.004 chlorobenzene G-2 1 ** 1,2-dichloroethane G-2 1 ** 1,1,1-trichloroethane G-2 1 0.003 1,1-dichloroethane G-2 1 ** 1,1,2-trichloroethane G-2 1 ND chloroform G-2 1 ND chloroform G-2 1 0.051 1,1-dichloroethylene G-2 1 0.002 1,2-trans-dichloroethylene G-2 1 0.002 1,2-dichloropropane G-2 1 0.002 1,3-dichloropropane G-2 1 0.002 1,2-diphenylhydrazine G-2 1 0.011 ethylbenzene <	Pollutant Code Type Source Day 1 c Pollutants acenaphthene G-2 1 ND ** acrylonitrile G-2 1 0.002 0.001 benzene G-2 1 0.004 0.003 carbon tetrachloride G-2 1 0.004 0.003 chlorobenzene G-2 1 ** ** 1,2-dichloroethane G-2 1 ** ** 1,1-trichloroethane G-2 1 0.003 0.003 1,1-dichloroethane G-2 1 0.001 0.001 1,2-trichloroethane G-2 1 ND ** chloroform G-2 1 ND ** chloroform G-2 1 0.001 0.001 1,1-dichloroethylene G-2 1 0.002 0.002 1,2-dichloroethylene G-2 1 0.002 0.002 1,2-dichloropropane G-2 1 0.002	Pollutants Code Type Source Day 1 Day 2 c Pollutants acenaphthene G-2 1 ND ** acrylonitrile G-2 1 0.002 0.001 benzene G-2 1 0.017 0.004 carbon tetrachloride G-2 1 0.004 0.003 chlorobenzene G-2 1 ** ** chlorobenzene G-2 1 ** ** 1,2-dichloroethane G-2 1 ** ** 1,1,1-trichloroethane G-2 1 0.003 0.003 1,1,2-trichloroethane G-2 1 0.001 0.001 1,1,2-trichloroethane G-2 1 ND ** 1,1,2-trichloroethane G-2 1 ND ** chloroform G-2 1 ND ** chloroform G-2 1 0.051 0.013 1,1-dichloroethylene G-2 <

Table V-223 (Continued)

ZINC ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Conce Source	Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
46.	methyl bromide (bromomethane)	G-2	1	**	**		
47.	bromoform (tribromomethane)	G-2	1	0.002	0.002		
48.	dichlorobromomethane	G-2	1	0.005	0.002		
51.	chlorodibromomethane	G-2	1	0.031	0.090		
55.	naphthalene	G-2	1	**	0.002		
66.	bis(2-ethylhexyl) phthalate	G-2	1	0,003	0.075		
67.	butyl benzyl phthalate	G-2	1	0.001	0.001		
68.	di-n-butyl phthalate	Ģ-2	1	0.017	ND		
69.	di-n-octyl phthalate	G-2	1	**	ND .		
70.	diethyl phthalate	G-2	1	0.009	0.011	*	
72.	benzo(a)anthracene	G-2	. 1	0.001	0.005		
74.	benzo(b)fluoranthene	G-2	1	0.002	ND		
75.	benzo(k)fluoranthene	G-2	1	0.002	ND		
76.	chrysene	G-2	1	0.001	ND		
78.	anthracene	G-2	1	0.001	0.001		
79.	benzo(ghi)perylene	G-2	1	0.007	ND	,	
80.	fluorene	G-2	1	0.001	ND		
81.	phenanthrene	G-2	1	0.001	0.003		
83.	indeno(1,2,3-c,d)pyrene	G-2	1	0.016	0.016		
84.	pyrene	G-2	1	0.001	ND		
85.	tetrachloroethylene	G-2	1	0.009	0.009		-
86.	toluene	G-2	<u>į</u> .	0.007	0.004		

ي

Table V-223 (Continued)

ZINC ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

			Stream	Sample		centration	s (mg/l)	
	<u>Pollutant</u>	•	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
	Toxic Pollutants (Continued)				· · · · · · · · · · · · · · · · · · ·			
	87. trichloroethylene		G-2	1	0.009	0.006		
	114. antimony		G-2	1	<0.010	<0.010	•	-
	115. arsenic	•	G-2	1	<0.010	<0.010		
	117. beryllium		G-2	1	<0.005	<0.005		
	118. cadmium		G-2	1	<0.020	<0.020		
	119. chromium (total)		G-2	1	<0.020	<0.020		
	120. copper		G-2	1	<0.050	<0.050		
0 0 0	121. cyanide:(total)		G-2	1	0.07	1.3		÷
٥	122. lead		G-2	1	<0.050	<0.050		
	123. · mercury · · · · ·		G-2	1	<0.0002	<0.0002		
·	124. nickel		G-2	1	<0.050	<0.050		
	125. selenium	,	G-2	1	<0.010	<0.010		
	126. silver		G-2	1	<0.010	<0.010		
	127. thallium.	o er er man monern i san en monern	G-2		~··<00-10···	-<0-010		
	128. zinc		G-2	1	0.100	1.12		
	Nonconventional Pollutants							
	Acidity		G-2	1	<1	<1		
•	Alkalinity	• .	G-2	1	67	84		•
	Aluminum		G-2	1	0.100	0.100		
	Ammonia Nitrogen		G-2	-1	<0.02	<0.02		
	Barium		G-2	1	<0.050	<0.ŭã0		
	Boron		G-2	1	0.100	0.100		

(

Table V-223 (Continued)

ZINC ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Calcium	G-2	1	29.1	29.0		
Chemical Oxygen Demand (COD)	G-2	1	560	<1		
Chloride	G-2	1	36	<1		
Cobalt	G-2	1	<0.050	<0.050		
Fluoride	G-2	1	96	95		
: Iron :	G-2	1	<0.050	0.550		
Magnesium	G-2	1	4.10	4.10		
Manganese	G-2	1	<0.050	<0.050		
Molybdenum	G-2	1	<0.050	<0.050		
Phenolics	G-2	1	<0.005	<0.005		÷
Phosphate	G-2	1	1.6	3.5		
Sodium	G-2	1	6.00	14.2		
Sulfate	G-2	1	47	53	_	
Tin	G-2	1	<0.050	<0.050		
Titanium	G-2	1	<0.050	<0.050		
Total Dissolved Solids (TDS)	G-2	1	160	190		
Total Organic Carbon (TOC)	G-2	1	<1	54		
Total Solids (TS)	G-2	1	92	280		
	G~2	1	<0.050	<0.050		•
Vanadium	G-2	1	<0.050	<0.050		
Yttrium	U 4	•				

Pollutant	Stream <u>Code</u>	Sample Type	Source	Day 1	mg/1) Day 2	Day 3
Conventional Pollutants						
Oil and Grease	G-2	1	4	23		
Total Suspended Solids (TSS)	G-2	1	10	90		
pH (standard units)	G-2	1	7.98	7.55		

**Present, but not quantifiable.

- 1. The following toxic pollutants were not detected in this waste stream: 2, 5, 8, 9, 12, 16, 17, 19-22, 24-28, 31, 34, 35, 40-42, 45, 49, 50, 52-54, 56-65, 71, 73, 77, 82, and 88
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-224 ZINC SAWING OR GRINDING SPENT EMULSIONS

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	NR	NR	100 (P)	23.8	5.71

NR - Data not reported P - Periodically discharged

Table V-225

ZINC ELECTROCOATING RINSE

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	2,294	550	0	2,294	550

Table V-226
ZIRCONIUM-HAFNIUM ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use ' gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	0.0	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-227
ZIRCONIUM-HAFNIUM DRAWING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	0.0	0.00	0.00
2	NR	NR	NR	NR	NR
3	NR	NR	NR	NR	NR
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-228
ZIRCONIUM-HAFNIUM EXTRUSION SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/k'cg	Discharge* gal/ton
1 2 3 3 4	NR 4.74 NR NR NR	NR 1.14 NR NR NR	0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Average	4.74	1.14		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-229
ZIRCONIUM-HAFNIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	:	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1		237.4	56.94	0.0	237.4	56.94
Average	-	237.4	56.94		237.4	56.94

^{*}Discharge from operation.

Table V-230

ZIRCONIUM-HAFNIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants Fluoride	AK-3	3	-	2.3		
Conventional Pollutants						
Oil and Grease	AK-3	3	-	10.0		
Total Suspended Solids (TSS)	AK-3	3	- -	7.0		
рН	AK-3	3	-	6.8		

Table V-231
ZIRCONIUM-HAFNIUM SWAGING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	0.0	0.00	0.00
Average	NR	NR	•	0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-232
ZIRCONIUM-HAFNIUM TUBE REDUCING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	0.0	0.00	0.00
2	2,364	566.9	0.0	298.3	71.52
3	1,051	252.0	0.0	1,051	252.0
4	3,315	794.9	0.0	3,315	794.9
5	7,359	1,765	0.0	7,359	1,765
3	NR	NR	NR	NR	NR
Average	3,522	844.6		3,006	720.8

NR - Data not reported

^{*}Discharge from operation.

Table V-233
ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle		astewater L/kkg	Discharge* gal/ton
1 2	135.2 285.4	32.43 68.43	P P		135.2 285.4	32.43 68.43
1	400.7	96.10	0.0		400.7	96.10
3	6,005 NR	1,440 NR	0.0 NR	ь,	005 NR	1,440 NR
3	NR	NR	NR	-	NR	NR
Average	1,707	409.2	;	1,	707	409.2

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-234

ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conc Source	centrations (mg/l) Day 1 Day 2	Day 3
Toxic	Pollutants					
117.	beryllium	BV-1 BV-2 BV-3		- - -	<0.010 <0.001 <0.001	
		AK-4	3	-	<0.020	
118.	cadmium .	BV-i BV-2 BV-3 AK-4	3	- - - -	0.061 <0.005 <0.005 <0.010	
119.	chromium (total)	BV-1 BV-2 BV-3 AK-4	3	- - 	0.670 0.110 0.280 <0.020	
120.	copper	BV-1 BV-2 BV-3		- - -	0.180 0.012 0.080 0.420	
122.	l ead	8V-1 BV-2 BV-3 AK-4	3	- - - -	3.500 <0.050 <0.050 <0.020	
124.	nickel	BV-1 BV-2 BV-3 AK-4	3	- - - -	0.490 0.031 <0.012 <0.020	
128.	zinc :	BV-1 BV-2 BV-3 AK-4	3	- - - -	0.035 0.024 0.040 0.170	

Table V-234 (Continued)

ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

			Stream	Sample	C		- (()-)	
	Pollutant		_ Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollu	tants							
	•							
Aluminum			BV-1		-	3.000		
			BV-2		-	0.170		
,-			BV-3		-	0.045		
		i i	AK-4	3	-	<0.050		
Hafnium			BV-1		-	9.600		
•			BV-2		-	2.100		
-			BV-3		-	ND		
Iron			BV−1		_	12.000		
,			BV-2		_	2.500	•	
			BV-3		_	0.730		
			. AK-4	3	-			
Magnesium			BV-1	•	_	22.000	•	
			BV-2		· -	0.140		
			BV-3	•	-	30.000		
, ,			AK-4	3	-	ND		
Molybdenum	•	•	BV-1		_	370.0		
			BV-2		_	0.270		
			BV-3			0.280		
		1	AK-4	3	-	ND		
Titanium		, F	BV-1-			<0.100	•	
	•		BV-2		_	0.015		
	4		BV-3		_	<0.010		•
	•		AK-4	·3	-	<0.050		•

ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
<u>Pollutant</u>	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
Zirconium	BV-1 BV-2 BV-3 AK-4	3	- - - -	1.600 87.000 0.052 <0.100		

1. No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125-127 and 129.

Table V-235
ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS

Plant	Wastewate L/kkg	r Discharge* gal/ton
1 2 1 3 4 5 6 1 6 3 7	NR	24 40 56 49 57 36 67 78 81 54 90 14 118 3 166 4 211 9
8 4	NR NR	NR NR
8	NR	NR
4	NR	NR
Average	6,791	1,628

NR - Data not reported

^{*}Discharge from operation.

Table V-236

IRCONTUM-HAENTUM SURFACE TREATMENT SPENT BAT

ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

Dall tank		Stream Sample			Concentrations (mg/1)				
	Pollutant	Code	Type	Source	<u>Day 1</u>	Day 2	Day 3		
Toxi	<u>c</u> <u>Pollutants</u>								
2.	acrolein	P-2 P-3	1 1	ND ND	ND 0.021				
4.	benzene	P-2 P-3	1 1	ND ND	<0.010 <0.010				
7.	chlorobenzene	P-2 P-3	1 1	ND ND	<0.010 <0.010				
11.	1,1,1-trichloroethane	P-2 P-3	1 1	ND ND	0.023 0. 3 90				
13.	1,1-dichloroethane	P-2 P-3	1 1	ND ND	ND <0.010				
23.	chloroform	P-2 P-3	1 1	0.023 0.023	<0.010 <0.010				
38.	ethylbenzene .	P-2 P-3	1 1	ND ND	<0.010 0.018				
44.	methylene chloride	P-2 P-3	1	ND ND	0.480 0.016				
48.	dichlorobromomethane	P-2 P-3	1 1	0.002 0.002	ND ND				
57.	2-nitrophenol	P-2 P-3	1	ND ND	ND <0.010				
66.	bis(2-ethylhexyl) phthalate	P-2	1		<0.010				

Table V-236 (Continued)

ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic Pollutants (Continued)				•		
68. di-n-butyl phthalate	P-2 P-3	1 1		<0.010 <0.010		
70. diethyl phthalate	P-2 P-3	1 1		<0.010 <0.010		
78. anthracene (a)	P-2 P-3	1 1		<0.010 ND		
81. phenanthrene (a)	P-2 P-3	1		<0.010 ND		
85. tetrachloroethylene	P-2 P-3	1	ND ND	ND <0.010		
86. toluene	P-2 P-3	1	ND ND	<0.010 0.015		
87. trichloroethylene	P-2 P-3	1 1	ND ND	<0.010 <0.010		

Table V-236 (Continued)

ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
114. antimony	P-2 P-3	1 1	ND ND	5 6		
115. arsenic	P-2 P-3	1 1	ND ND	3 0.6		
117. beryllium	P-2 P-3	1 1	ND ND	<0.2 <0.2		
118. cadmium	P-2 P-3	1 1	0.010 0.010	0.09 <0.07		
119. chromium (total)	P-2 P-3	1 1	ND ND	24 12		
120. copper	P-2 P-3	1 1	0.008 0.008	1.2 0.1		
121. cyanide (total)	P-2 P-3	1 1		0.118 0.356		
122. lead	P-2 P-3	1 1	ND ND	1.4 0.53		

Table V-236 (Continued)

ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

-,		Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
	<u>Toxic</u>	Pollutants (Continued)		-			
	123.	mercury	P-2 P-3	1 1		0.0056 <0.0022	
	124.	nickel	P-2 P-3	1 1	ND ND	3.6 0.64	
	125.	selenium	P-2 P-3	1 1	0.013 0.013	<0.02 <0.02	,
۵	126.	silver	P-2 P-3	1 1	ND ND	<0.02 <0.02	
л o	127.	thallium	P-2 P-3	1 1	ND ND	0.57 <0.5	
-	128.	zinc	P-2 P-3	1 1	ND ND	7.5 0.17	

Table V-236 (Continued)

ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants			
Alkalinity	P-2 P-3	. 1	0.0 8,910
Ammonia Nitrogen	P-2 P-3	1	<0.1 6.81 <0.1 104
Calcium	P-2 P-3	1 1	208 5.60
Fluoride	P-2 P-3	.1 1	<0.10 17,100 <0.10 6,500
Magnesium	P-2 P-3	1 1	11.7
Phenolics	P-2 P-3	1 1	0.026 0.053
Sulfate	P-2 P-3	1 1	1,080 142

Table V-236 (Continued)

ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream _Code	Sample Type	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)	·		• .			
Total Dissolved Solids (TDS)	P-2	1		,000		
Conventional Dallutants	P-3	ι	. 36	6,400		
Conventional Pollutants					•	
Oil and Grease	P-2	1	1.1	83.9		
	P-3	1	1.1	1.87		
Total Suspended Solids (TSS)	P-2	1	<0.5	8.70		
	P-3	1	<0.5	12.6		
pH (standard units)	P-2	1		. <1		
	P~3	.1		3.7		

- (a) Reported together
- 1. Toxic pollutants 89-113 were analyzed in this waste stream.
- The following toxic pollutants were not detected in this waste stream: 1, 3, 5, 6, 8-10, 12, 14-22, 24-37, 39-43, 45-47, 49-56, 58-65, 67, 69, 71, 77, 79, 80, 82-84.
- 3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-237

ZIRCONIUM-HAFNIUM SURFACE TREATMENT RINSE

Plant	Wate L/kkg	er Use gal/ton	Percent Recycle	Wastewat L/kkg	ter Discharge* gal/ton
1 2	296.7 1,302	71.14 312.2	0.0 0.0	296.7 1,302	71.14 312.2
1	2,057	493.3	0.0	2,057	493.3
2	2,266	543.5	0.0	2,266	543.5
2 3	5,738	1,376	0.0	5,738	1,376
	12,020	2,881	0.0	12,020	2,881
5	18,110	4,343	0.0	18,110	4,343
4 5 3 6	50,040	12,000	0.0	50,040	12,000
6	79,740	19,120	0.0	79,530	19,070
7	971,500	233,000	0.0	971,500	233,000
8	NR	NR	NR	NR	NR
8	NR	NR	NR	NR	NR
Average	114,300	27,410		114,300	27,410

NR - Data not reported

^{*}Discharge from operation.

Table V-238
ZIRCONIUM-HAFNIUM ALKALINE CLEANING SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1 2 2 3 4 2 5	12.44 37.16 64.96 232.0 239.8 321.1 632.0 955.2	2,98 8,91 15,58 55,63 57,50 77,00 151,3 229,1
1 6 3 6 5	1,244 1,962 3,689 9,812 NR	298.3 470.6 884.8 2,353 NR
Average	1,600	383.7

NR - Data not reported

^{*}Discharge from operation.

Table V-239
ZIRCONIUM-HAFNIUM ALKALINE CLEANING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewate L/kkg	er Discharge* gal/ton
1	321.1	77.00	0.0	321.1	77.00
2	597.0	143.2	0.0	597.0	143.2
1	815.0	195.5	0.0	815.0	195.5
3	5,176	1,241	0.0	5,176	1,241
3 2	7,589	1,820	0.0	7,589	1,820
2	8,955	2,148	0.0	8,955	2,148
	80,150	19,220	0.0	79,410	19,040
4 5	166,800	40,000	0.0	166,800	40,000
6	181,600	43,560	0.0	181,600	43,560
ნ 5	313,900	75,280	0.0	313,900	75,280
7	NR	NR	NR	NR	NR
Average	31,390	7,530		31,390	7,530

NR - Data not reported

^{*}Discharge from operation.

Table V-240
ZIRCONIUM-HAFNIUM MOLTEN SALT RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	20.86 15,090	5.00 3,619	0.0	20.86 15,090	5.00 3,619
Average	7,556	1,812		7,556	1,812

^{*}Discharge from operation.

Table V-241
ZIRCONIUM-HAFNIUM SAWING OR GRINDING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	0.0	0.00	0.00
Average	NR ·	. NR		0.00	0.00

NR - Data not reported .

^{*}Discharge from operation.

Table V-242
ZIRCONIUM-HAFNIUM SAWING OR GRINDING SPENT EMULSIONS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	39.62 NR	9.50 NR	0.0 NR	0.00	0.00
2 2 3	NR	NR	0.0	0.00	0.00
	NR	NR	P	281.1	67.42
	NR	NR	NR	NR	NR
3	NR	NR	NR	NR	NR
	NR	NR	NR	NR	NR
Average	39.62	9.50		281.1	67.42

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-243
ZIRCONIUM-HAFNIUM SAWING OR GRINDING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	321.1	77.00	0.0	321.1	77.00 NR
2	NR	NR	NR	NR	
Average	321.1	77.00		321.1	77.00

NR - Data not reported

^{*}Discharge from operation.

Table V-244
ZIRCONIUM-HAFNIUM SAWING OR GRINDING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewate L/kkg	er Discharge* gal/ton
1 %	122.9	29.46	0.0	122.9	29.46
2 .	592.0	142.0	0.0	592.0	142.0
1 į.	3,002	720.0	0.0	3,002	720.0
2 3.0	19,620	4,706	0.0	19,620	4,706
Average	5,835	1,399	;	5,835	1,399

^{*}Discharge from operation.

Table V-245
ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER

Plant	Wate	r Use	Percent	Wastewate	er Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	15.43	3.70	0.0	15.43	3.70
2	56,270	13,490	0.0	56,270	13,490
3	NR	NR	NR	NR	NR
3	NR	NR	NR	NR	NR
Average	28,140	6,749		28,140	6,749

NR - Data not reported

^{*}Discharge from operation.

ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER
RAW WASTEWATER SAMPLING DATA

Table V-246

		•							
		D= 11t= = 1		Stream	Sample	Con	centration	s (mg/l)	
		Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3
	Toxic	Pollutants			•			4	
	117.	beryllium		BV~8			40.001		
				AX-4	1 -		<0.001 <0.100		
					•		VO. 100		٠.
	118.								
	110.	cadmium		BV-8	_	-	<0.005		
				AX-4	. 1	. -	<0.500		
	119.	chromium (total)		BV-8		·	0.003		
				AX-4	1 .	-	<0.050		
	-								•
9 .	120.	copper .		BV-8		_	0018		
971	•		,	AX-4	1	-	0.050		
\vdash	101						0.000		
	121.	cyanide .		AX-4	1	-	<0.500		•
	122.	lead		8V-8			<0.050	-	
				AX-4	1	_	<0.100		,
					·		10.100	:	
	124.	nickel		BV~8		_	<0.012		
				AX-4	1	-	<0.100		
	128.	zinc	•	BV~8			0.160	•	
			-	AX-4	1	_	1.000		
							1.000		

Table V-246 (Continued)

ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants						
Aluminum	BV-8			0.030		
Ammonia (as N)	AX-4	1	_	<0.05		
Cobalt	8∛-8		_	<0.004		
Fluoride	. AX-4	1	_	1.150		
•	BV-8		_	ND		
Hạfnium	*			0.040		
Iron	BV-8 AX-8	1	_	<0.100		
Molybdenum	BV-8		-	0.077		
Titanium	BV-8		- -	<0.010		
i i tanium	AX-4	1	-	<0.500		
				· (

ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant Nonconventional Pollutants (Continued)	Stream <u>Code</u>	Sample Type	Conc Source	centrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued					
· Vanadium	BV-8 AX-4	1	<u>-</u>	<0.002 <1.00	
Zirconium	BV-8 AX-4	1	-	<0.020 <2.5	
Conventional Pollutants					
Oil and Grease	BV-8 AX-4	1	<u>-</u>	<1 <2.00	
Total Suspended Solids (TSS)	AX-4	1	_	4.000	
рН	AX-4	1.	-	7.3	

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 123, 125-127 and 129.

Table V-247
ZIRCONIUM-HAFNIUM DEGREASING SPENT SOLVENTS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100.0	0.00	0.00
2	85.57	20.52	P	85.57	20.52
3	NR	NR	P	NR	NR
Average	85.57	20.52		85.57	20.52

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-248
ZIRCONIUM-HAFNIUM DEGREASING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	4,054	972.3	0.0	4,054	972.3
Average	4,054	972.3		4,054	972.3

^{*}Discharge from operation.

Table V-249
ZIRCONIUM-HAFNIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	2,650 NR	636.0 NR	100.0 P	0.00 8.17 93.16	0.00 1.96 22.34
3 4 3	558.9 10,200 NR	134.0 2,446 NR	83.3 94.7 80.0	536.9 NR	128.8 NR
5 5	NR NR	NR NR	0.0	NR NR	NR NR
5	NR	NR	0.0	NR	NR
Average	4,470	1,072		212.7	51.03

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-250

METAL POWDERS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	125	30.0	0	125	30.0
2	1,450	348	0	1,450	348
	2,240	538	0	2,240	538
3	2,740	656	0	2,740	656
4	6,670	1,600	. 0	6,670	1,600
5	17,000	4,080	0	17,000	4,080
6	NR	NR	NR	NR	NR

NR - Data not reported

Table V-251

METAL POWDERS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant		Stream <u>Code</u>	Sample Type	Concer Source	Day 1 Day	
Toxic Pollutants						
115. arsenic	S-1	2	<0.01	<0.01		
118. cadmium	S~1	2	<0.05	<0.05		
119. chromium (total)	S~1 T~1	2 6	<0.005 <0.01	1.95 8.3	0.022	0.026
120. copper	S-1 T-1	2 6	<0.05 0.048	1.090 45.000	5.40Ó	0.0044
121. cyanide (total)	S~1 T~1	1 1	<0.01 <0.01	0.026	<0.01	<0.01
122. lead	S-1 T-1	2 6	<0.1 <0.005	0.523 <0.005	<0.005	0.0054
123. mercury	S-1	2	<0.0002	<0.0002		
124. nickel	S-1 T-1	2 6	<0.200 0.075	9.200 81.0	1.600	1.100
128. zinc	S-1	2	<0.05	0.607		
Nonconventional Pollutants						•
Acidity	T-1	6	**	**	**	**
Aluminum	S-1 T-1	2 6	<0.2 0.14	0.407 0.630	0.110	0.041
Cobalt	S-1 T-1	2 6	<0.1 <0.01	<0.1 11.000	0.250	0.240
Fluoride	S-1 T-1	2 6	<0.1 1.01	0.14	0.89	0.95
Iron	S-1 T-1	2 6	0.122 0.27	1,210 40.000	0.46	0.280
Conventional Pollutants						
Oil and Grease	S-1 T-1	1 1	<1 <0.1;0.4	3.1 0.1;1.	1 0.1;6.1	0.3;5.1

9/0

METAL POWDERS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant	• .• •	Stream	Sample Type		ntrations Day 1	(mg/1) Day 2 Day	
Conventional Pollutants) (Contin	ued)			.,			
Total Suspended Solids (TSS)	S-1 T-1	2 6	<0.1 1.0	2,127	10.0	12.0	
pH (standard units)	S-1 T-1	1 .	7.7	8.1-8.2	7.7	7.76	

**Less than detection limit. Detection limit not known.

- 1. No analyses were performed on the following toxic pollutants: 1-114, 116, 125, 126, 127, and 129.
- 2. Note that stream code T-1 also appears on the nickel-cobalt metal powder production wet atomization wastewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories:

Table V-252

METAL POWDERS TUMBLING, BURNISHING OR CLEANING WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	100	0	0
	NR	NR	0	NR	NR
2	27.8	6.67	0	27.8	6.67
3	59.2	14.2	0	59.2	14.2
	173	41.6	0	173	41.6
	446	107	0	446	107
4	83.4	20.0	0	83.4	20.0
5	125	30.0	0	125	30.0
6	174	41.7	0 (+)	156	37.5
7	4,380	1,050	90.9	397	95.2
8	NR	NR	P	397	95.2
	1,660	398	0	1,660	399
9	653	158	0	659	158
10	1,660	397	0 (+)	663	159
11	834	200	0	834	200
12	1,010	243	0	1,010	243
13	1,040	250	0	1,040	250
14	1,240	297	0	1,240	297
	11,400	2,730	0	11,400	2,730
15	1,540	370	0	1,540	370
16	3,270	783	0	3,270	783

Table V-252 (Continued)

METAL POWDERS TUMBLING, BURNISHING
OR CLEANING WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewate 1/kkg	r Discharge gal/ton
17	4,300	1,030	0 (+)	3,840	922
18	6,380	1,530	0	6,380	1,530
) :	6,960	1,670	0	6,960	1,670
	15,600	3,750	. 0	15,600	3,750
19	7,760	1,860	. 0	7,760	1,860
20	16,300	3,920	0	16,300	3,920
21	22,800	5,460	Ó	22,800	5,460
22	NR	NR	0	NR	NR
!	NR	NR	0	NR	NR
	NR	NR	NR	NR	NR
23	NR	NR	0	NR	NR
24	NR	NR	0	NR	NR
25	NR	NR	0	NR	NR
26	NR	NR	NR	NR	NR
!	NR	NR	NR	NR	NR
	NR	NR	NR	NR	NR
27	NR	NR	NR	NR	NR
28	NR	NR	NR	NR	NR
29	NR	NR	NR	NR	NR
}	and the second second		•	d i i i i i i i i i i i i i i i i i i i	

NR - Data not reported + - Loss due to drag-out

Table V-253

METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants						
4.	benzene	J-2 J-3 J-4	1 1 1	ND ND ND	0.033 ND ND	ND ND ND	ND 0.002 ND
6.	carbon tetrachloride	J-2 J-3 J-4	1 1 1	ND ND ND	0.005 0.012 0.011	ND ND 0.008	ND 0.016 0.010
11.	1,1,1-trichloroethane	J-2 J-3 J-4	1 1 1	ND ND ND	0.003 0.034 0.030	ND ND 0.024	ND 0.071 0.033
23.	chloroform	J-2 J-3 J-4	1 1 1	0.027 0.027 0.027	ND ND ND	ND ND ND	ND ND
44.	methylene chloride	J-2 J-3 J -4	1 1 1	ND ND ND	0.010 ND 0.018	ND ND ND	ND ND 0.008
48.	dichlorobromomethane	J-2 J-3 J-4	1 1 1	0.004 0.004 0.004	ND ND ND	ND ND ND	ND ND ND
86.	toluene	J-2 J-3 J-4	1 1 1	ND ND ND	0.013 ND ND	ND ND ND	ND ND ND
114.	antimony	J-2 J-3 J-4	1 2 6	<0.010 <0.010 <0.010	<0.010 0.010 <0.010	<0.010 0.060 <0.010	<0.010 <0.010 <0.010
115.	arsenic	J-2 J-3 J-4	1 2 6	<0.010 <0.010 <0.010	<0.010 0.010 <0.010	<0.010 0.100 <0.010	<0.010 <0.010 () ()10
117.	beryllium	J-2 J-3 J-4	1 2 6	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.050 <0.005	<0.005 <0.005 <0.005
118.	cadmium	J-2 J-3 J-4	1 2 6	<0.020 <0.020 <0.020	<0.020 <0.020 <0.020	<0.020 <0.200 <0.020	<0.020 <0.020 <0.020

Table V-253 (Continued)

METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

De Wildersch		Stream	Sample	Cond	entration	s (mg/1)		
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
-	Toxic	Pollutants (Continued)			- ,			e e -
	119.	chromium (total)	J-2	1 .	<0.020	<0.020	<0.020	<0.020
		•	J−3 J−,4	2 6	<0.020 <0.020	0.080 0.160	0.200 0.180	0.060 0.060
	120.	copper	J-2 J-3	1 2	<0.050 <0.050	<0.050 253	<0.050 16.5	<0.050 5.50
	٠		J-4	6	<0.050	34.0	21.2	10.5
	121.	cyanide (total)	J-2 J-3	1 1	<0.02 <0.02	0.11 0.04	<0.02 0.39	<0.02 · 0.15
			J-4	1	<0.02	1.8	1.6	0.10
9	122.	lead	J-2 J-3	1 2	<0.050 <0.050	<0.050 45.1	<0.050 2.00	<0.050 1.00
-	122	mercury	J−4 J−2	· 1	<0.050 <0.0002	5.20	3.15	7.50
	123.	mer cur y	J-3 J-3	2 6	<0.0002 <0.0002 <0.0002	<0.0002	<0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002
	124.	nickel	J-2	1	<0.050	<0.050	<0.050	<0.050
			J-3 J-4	2 6	<0.050 <0.050	0.500 0.600	3.00 0.550	2.65 0.400
	1-25.	-selenium	J−2 J−3		<00-10 <0.010	<00-10 <0.010		<0.010
			J-4	6		<0.010		<0.010
	126.	silver	J−2 J−3	1 2	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
- :			J-4	6	<0.010	<0.010		<0.010
	127.	thallium	J−2 J−3	1 2	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
			J-4	6	<0.010	<0.010	<0.010	<0.010
	128.	zinc	J−2 J−3	· 1 2	0.080 <0.050	0.100	0.080 9.56	<0.060 0.890
	•	•	J-4	6	<0.080	0.600	0.620	0.480

METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

Table V-253 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	ocentratio Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants						
Acidity	J-2	1	<1	<1	<1	<1
	J-3	2	<1	<1	<1	<1
	J-4	6	<1	<1	<1	<1
Alkalinity	J-2	1	1 3	12	43	11
	J-3	2	13	510 4	,500 1	,300
	J-4	6	13	810	730	880
Aluminum	J-2	1	0.300	0.200	0.300	0.300
	J-3	2	0.300	34.3	33.0	11.9
	J-4	6	0.300	18.5	28.0	19.6
Ammonia Nitrogen	J-2	1	0.16	0.06	0.07	0.7
	J-3	2	0.16	0.90	0.74	0.18
	J-4	6	0.16	1.9	1.5	1.1
Barium	J-2	1	0.050	0.050	0.050	0.050
	J-3	2	0.050	0.200	0.500	0.100
	J-4	6	0.050	0.150	0.200	0.150
Boron	J-2	1	<0.100	<0.100	<0.100	<0.100
	J-3	2	<0.100	58.7	440	4.00
	J-4	6	<0.100	61.7	35.4	56.1
Calcium	J-2	1	10.4	9.80	9.40	10.0
	J-3	2	10.4	17.9	13.0	1,2.0
	J-4	6	10.4	11.6	11.0	11.3
Chemical Oxygen Demand (COD)	J-2 J-3 J-4	1 2 6	70 70 70	450 7	,900	,500 19.0 ,600
Chloride	J-2	1	<1	<1	<1	< 1
	J-3	2	<1	14	44	< 1
	J-4	6	<1	11	9	< 1
Cobalt	J-2	1	<0.050	<0.050	<0.050	<0.050
	J-3	2	<0.050	<0.050	<0.500	<0.050
	J-4	6	<0.050	<0.050	<0.050	<0.050
Fluoride	J-2	1	1.2	1.0	1.1	1.2
	J-3	2	1.2	1.1	1.1	1.1
	J-4	6	1.2	2.1	1.1	1.2

Table V-253 (Continued)

METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Cond	centratio	ns (mg/l)		
<u>Pollutant</u>	_ <u>Code</u> _	Туре	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants (Contin	nued)				. `		
Iron	J - 2	1	0.100	0.100	0.300	0.100	
	J-3	2	0.100	49.2	211	50.1	
	J-4	6	0.100	94.2	115	68.8	
Magnesium	J-2	1	1.40	1.40	1.30	1,40	
, magnooran	J-3	2	1.40	3.20	4.00	1.80	
•	J-4	6	1,40	9.30	8.30	5.20	
Manganese	J-2	1	0 200	<0.050	<0.050	0.00	
	J-3	2	0.200	0.450	0.500	0.300	
	J-4	6	0.200	1.00	0.650	0.600	
Molybdenum	J-2	1	<0.050	<0.050	<0.050	<0.050	
	J-3	2	<0.050	<0.050	0.100	<0.050	
	J-4	6	<0.050	0.400	0.500	0.600	
Phenolics Phenolics	J-2	1	<0.005	3.6	. 33	3.9	
	J-3	i	<0.005	2.1	0.33	<0.005	
	J-4	1	<0.005	0.96	0.56	0.56	
Phosphate	J-'2	•	40 F	. 1		-0.4	
Filospilate	J-3	1 2	<0.5	<1 200	<1	<0.4	
<i>:</i>	J-4	6	<0.5 1,	130	<1 80	45 120	
enten filmber sentre () de si la		-:					
Sodium	J−2	1	111	2.30		2.30	
	J-3	2	111			,670	
	J-4	6	111	278	390	440	
Sulfate	J-2	1	90	600 1	.500 1	,350	
ing the second of the second o	J 3	2 .		400 1		,000	
-	J-4	. 6	90 2,	400 4	,500 1	,500	
Tin	J~2	1	<0.050	<0.050	<0.050	0.100	
•	J-3	2	<0.050	15.8	4.50	0.150	
-	J-4	. 6	<0.050	3.40	1.75	0.350	
Titopius							
Titanium	J−2 J −3	1	<0.050	<0.050	<0.050	<0.050	
	J-4	2 6	<0.050 <0.050	1.90 1.20	2.50	1.30	
·	J 4	·	\U.UUU	1.20	1.40	0.900	
Total Dissolved Solids (TDS)	J-2	1 -	76 1,	500 3	,050	52	
	J3	2	76 1,	740 1	•	,800	
	J-4	6	76 2,	500 2	,000 2	,900	

Table V-253 (Continued)

METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	<u>Con</u> Source	centrati Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Total Organic Carbon (TOC)	J-2 J-3 J-4	1 2 6	3 3 3 2	50 300 2,600		98 ,850 3,620
Total Solids (TS)	J-2	1	123 1	,600	3,940	410
Vanadium	J-2 J-3 J-4	1 2 6	<0.050 <0.050 <0.050	<0.050 0.100 <0.050	<0.500	<0.050 <0.050 <0.050
Yttrium	J-2 J-3 J-4	1 2 6	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.500	<0.050 <0.050 <0.050
Conventional Pollutants					1	
Oil and Grease	J-2 J-3 J-4	1 1 1	<1 <1 <1	850 88	2,100 22 27	520 4 6 ·
Total Suspended Solids (TSS)	J-2 J-3 J-4	1 2 6	42 42 42	99 1,300 260	1,370	390 3,000 900
pH (standard units)	J-2 J-3 J-4	1 2 6	2.71 2.71 2.71	6.50 9.41 9.60		6.20 9.10 9.10

^{1.} The following toxic pollutants were not detected in this waste stream: 1-3, 5, 7-10, 12-22, 24-43, 45-47, 49-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-254

METAL POWDERS SAWING OR GRINDING SPENT NEAT OILS

Plant	; ; k	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	1	NR	NR	NR	6.17 (CH)	1.48 (CH)

NR - Data not reported CH - Contract haul

Table V-255 METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	4,590	1,100	0 (+)	0	0
2	NR	NR	P .	4.63	1.11
3	NR	, NR	P	6.13	1.47
	NR	NR	P	26.7	6.40
4	NR	NR	P	11.8	2.83
	59,200	14,200	P	41.1	9.85
5	550	132	0 (+)	221	52.9

NR - Data not reported + - Loss due to drag-out P - Periodic discharge

Table V-256

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Pollutant				Sample Type	Con Source	centration Day 1	s (mg/1) Day 2	Day 3
	Toxic	Pollutants	4				,		
	6.	carbon tetrachloride		J-5 J-6	1 1	ND ND	0.015 ND		
	11.	1,1,1-trichloroethane		J~5 J~6	1	ND ND	0.055 0.019		
	23.	chloroform		J−5 J−6	1 1	0.027 0.027	ND ND		
	48.	dichlorobromomethane		J-5 J-6	1 1	0.004 0.004	ND ND		
	86.	toluene		J-5 J-6	1	ND ND	0.007 0.002		
989	114.	antimony		J-5 J-6	1 1	<0.010 <0.010	<0.010 <0.010		
	115.	arsenic		J-5 J-6	1 1 .	<0.010 <0.010	<0.010 <0.200		-
	117.	beryllium		J-5 J-6	1	<0.005 <0.005	<0.005 <0.050		
	11,8.	cadmium		J-5 J-6	1 1	<0.020 <0.020	<0.020 <0.200		
. 1	119.	chromium (total)	\$ 1	J~5 J-6	1	<0.020 <0.020	0.080	58 . 2 .	
	1.20.,	copper		J - 5 J-6	1 1	<0.050 <0.050	1.55		· .
	121.	cyanide (total)		J−5 J−6	1	<0.02 <0.02	2.5 <0.02		E
,	122.	lead	i	J−5 J−6	1. 1.	<0.050 <0.050	0.200 <0.500		
	123.	mercury		J-5 J-6	1	<0.0002 <0.0002	<0.002 <0.002		
	124.	nickel	is a second	J-5 J-6	1 1	<0.050 <0.050	0.150 <0.500		•

Table V-256 (Continued)

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
<u>Pollutant</u>	<u>Code</u>	Туре	Source Day 1 Day 2 Day 3			
Toxic Pollutants (Continued)						
125. selenium	J-5 J-6	1 1	<0.010 <0.010 <0.010 <0.100			
126. silver	J-5 J-6	1 1 ,	<0.010 <0.010 <0.010 <0.010			
127. thallium	J-5 J-6	. 1 1	<0.010 <0.010 <0.010 0.010			
128. z.inc	J-5 J-6	1	0.080 3.26 0.080 1.56			
Nonconventional Pollutants						
Acidity	J-6	1 1	<1 <1 <1 4.30			
Alkalinity	J-5 J-6	1 1	13 1,920 13 <1			
.Aluminum	J-5 J-6	1 1	0.300 1.60 0.300 7.00			
Ammonia Nitrogen	J-5 J-6	1 1	0.16 0.16 0.16 5.5			
Barium	J-5 J-6	1	0.050 0.050 0.050 0.500			
Boron	J-5 J-6	1 1	<0.100 0.400 <0.100 166			
Calcium	J-5 J-6	. 1	10.4 15.7 10.4 22.0			
Chemical Oxygen Demand (COD)	J-5 J-6	1 1	70 7,000 70 24,000			
Chloride	J-5 J-6	1 1	<1 <1 <1 <1			

Table V-256 (Continued)

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>		Stream Code	Sample Type	Con Source	centration Day 1	ns (mg/1) Day 2	Day 3
	Nonconventional Pollutants	(Continued)				 _		
	Cobalt	· · · · · · · · · · · · · · · · · · ·	J-5 J-6	1	<0.050 <0.050	0.100 <0.500	¢	
	Fluoride		J-5 J-6	1 1 .	1.2	2.2 8.3		
	Iron		J-5 J-6	1	0.100 0.100	16.2 ,176		
	Magnesium		J-5 J-6	1 1	1.40 1.40	2.70 3.00		
,	Manganese		J~5 J-6	1 1 .	0.200 0.200	0.800 4.00		
) 	Molybdenum		J-5 J-6	1	<0.050 <0.050	<0.050 <0.500		
	Phenolics		J-5 J-6	1	<0.005 <0.005	45 120		
	Phosphate		J-5 J-6	1 1	<0.5 <0.5	10 15		٠
	Sodium		J-5 J-6			,010 ,150		
	Sulfate	1	J-5 J-6	1 1		,000 ,000		and consideration for the constant of the cons
	Tin		J-5 J-6	1 1	<0.050 <0.050	<0.050 <0.500		· · · · · · · · · · · · · · · · · · ·
r ±	Titanium	1	J~5 J-6	1,	<0.050 <0.050	<0.050 <0.500	erioner Eug	
	Total Dissolved Solids (TDS)	J-5 J-6	.1 - 1 1		,400 ,900		
	Total Organic Carbon (TOC)		J-5 J-6	. 1		,600 ,300		
	Total Solids (TS)		J-5 J-6			,000 .000		

Table V-256 (Continued)

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Cor Source	ncentration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Vanadium	J-5 J-6	1	<0.050 <0.050	<0.050 <0.500		
Yttrium	J-5 J-6	1	<0.050 <0.050	<0.050 <0.500		
Conventional Pollutants						
Oil and Grease	J-5 J-6	1 1	<1 <1	720 2		. •
Total Suspended Solids (TSS)	J-5 J-6	1 1	42 42	92 120		
pH (standard units)	J-5 J-6	1 1	7.71 2.71	9.13 2.80		

^{1.} The following toxic pollutants were not detected in this waste stream: 1-5, 7-10, 12-22, 24-47, 49-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-257

METAL POWDERS SAWING OR GRINDING CONTACT COOLING WATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	162,000	38,900	0	162,000	38,900
2	NR	NR	NR	NR	NR
!	NR	NR	NR	NR	NR
	NR	NR	NR	NR	NR

NR - Data not reported

Table V-258

METAL POWDERS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Con- Source	centrations Day 1	(mg/1) Day 2	Day 3
Toxic Pollutants		•				
117. beryllium	AH-3		-	0.028		
118. cadmium	AH-3		-	<0.050		
119. chromium (total)	AH-3		-	<0.030		
120. copper	AH-3		- .	230.000		
122. lead	AH-3		-	<0.500		
124. nickel	AH-3		-	0.310		
128. zinc	ан-3		- .	0.910		
Nonconventional Pollutants						
Aluminum	аң-з		-	40.00		
Iron	AH-3		-	0.800		
Magnesium	в-на		-	11.00		
Manganese	AH-3			0.320		
Tin	AH-3			0.360		

^{1.} No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125, 127 and 129.

Table V-259 METAL POWDERS SIZING SPENT NEAT OILS

Plant		Water	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	1	NR	NR	100	0 (+)	0 (+)
2	* 1	NR	NR	1,00	0 (+)	0 (+)

NR - Data not reported + - Loss due to evaporation and drag-out

Table V-260
METAL POWDERS SIZING SPENT EMULSIONS

Plant	Water	Use	Percent	Wastewater	Discharge
	l/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	14.6	3.50	100	0 (+)	0 (+)

^{+ -} Loss due to evaporation and drag-out

Table V-261

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	792	190	0	792	190

Table V-262

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrations (mg/l)			
	<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants						
4.	benzene	J-1	1	ND	0.004	ND	0.003
6.	carbon tetrachloride	J-1	1	ND	ND	0.005	0.006
11.	1,1,1-trichloroethane	J-1	1	ND	0.007	0.005	0.006
23.	chlorotorm	J-1	1 .	0.027	ND	ND	ND
44.	methylenechloride	J-1	1	ND	0.008	0.005	ND
48.	dichlorobromomethane	J-1	1	0.004	ИD	ND	ИD
86.	toluene	J-1	1	14D	0.002	0.004	σ $1\omega 2$
114.	antimony	J-1	6	<0.010	<0.010	<0.010	<0.010
115.	arsenic	J-1	6	<0.010	<0.010	<0.010	·U.U10
117.	beryllium ·	J-1	6	<0.005	<0.005	<0.005	<0.005
118.	cadmium	J-1	. 6	<0.020	<0.020	<0.020	<0.020
119.	chromium (total)	J-1	6	<0.020	<0.020	<0.020	<0.020
120.	copper	J-1	6	<0.050	<0.050	<0.050	<0.050
121.	cyanide (total	J-1	1	<0.02	0.13	<0.02	0.03
122.	lead	J-1	6	<0.050	<0.050	<0.050	<0.050
123.	mercury	J-1	6	<0.0002	<0.0002	<0.0002	<0.0002
124.	nickel	J-1	6	<0.050	<0.050	<0.050	<0.050
125.	selenium	J-1	6	<0.010	<0.010	<0.010	<0.010
126.	silver	J-1	6	<0.010	<0.010	<0.010	<0.010
127.	thallium	J-1	6	<0.010	<0.010	<0.010	<0.010
128.	zinc	J-1 ·	6	0.080	0.040	0.030	0.020

Table V-262 (Continued)

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

Dallabara		Stream			Concentrations (mg/l)		
	Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
	Nonconventional Pollutants						
	Acidity	J-1	6	<1	<1	<1	<1
	Alkalinity	J-1	6	13	10	10	8.6
	Aluminum	J-1	6	0.300	0.200	0.300	0.300
	Ammonia Nitrogen	J-1	6	0.16	0.64	0.47	0.7
	Barium	. J-1	6	0.050	0.050	0.050	0.050
	Boron	J-1	6	<0.100	<0.100	<0.100	<0.100
	Calcium	J-1	6	10.4	10.7	11.2	10.9
	Chemical Oxygen Demand (COD)	J-1	6	70	380	84	540
99	Chloride	J-1	6	<1	110	8	8
99	Cobalt	J-1	6	<0.050	<0.050	<0.050	<0.050
	. Fluoride	. J-1	6	1.2	1.0	1.3	1.2
	Iron	J-1	6	0.100	0.100	0.150	0.050
	Magnesium	J~1	6	1.40	1.50	1.50	1.50
	Manganese	J-1	6	0.200	<0.050	<0.050	0.100
	Molybdenum		6	<0.050	<0.050	<0.050	<0.050
	Phenolics	J-1	1 4	0.005	23	33	30
	Phosphate	J-1	. 6	~0.5	8	<1	Nu.5 ,
	Sodium	J-1	6	.1.11	2.40	2.60	2.40
	Sulfate	J~1	6	90 1	600 2,	700	75
	Tin	J~1	6	<0.050	<0.050	<0.050	<0.050
	Titanium	J-1	6	<0.050	<0.050	<0.050	<0.050
	Total Dissolved Solids (TDS)	J.−1	6	76	170	65	99

Table V-262 (Continued)

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
•				•		
Nonconventional Pollutants (Continued))					
Total Organic Carbon (TOC)	J-1	6	3	15	27	16
Total Solids (TS)	J-1	6	1 25	180	134	350
Vanadium	J-1 .	6	<0.050	<0.050	<0.050	<0.050
Yttrium	J-1	6	<0.050	<0.050	<0.050	<0.050
Conventional Pollutants			•			
Oil and Grease	J-1	1	<1	35	42	31
Total Suspended Solids (TSS)	J-1	6	42	15	80	200
ρΗ (standard units)	J-1	6	2.71	5.81	6.21	6.00

^{1.} The following toxic pollutants were not detected in this waste stream: 1-3, 5, 7-10, 12-22, 24-43, 45-47, 49-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-263 METAL POWDERS OIL-RESIN IMPREGNATION SPENT NEAT OILS

Plant	W 1/kkg	ater Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	100	0 (+)	0 (+)
2	NR	NR	100	0 (+)	0 (+)
3	NR	NR	NR	10.9 (CH)	2.61 (CH)
4	36.8	8,83	0	36.8 (CH)	8.83 (CH)
5	NR	NR	NR	NR (CH)	NR (CH)
6	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR

NR - Data not reported + - Loss due to evaporation and drag-out CH - Contract hauled

Table V-264

METAL POWDERS HOT PRESSING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	8,800	2,110	0	8,800	2,110

Table V-265

METAL POWDERS HOT PRESSING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream <u>Code</u>	Sample Cor Type Source	ncentrations (mg/l)	Davi 3
	Toxic Pollutants	Code	Type Source	Day 1 Day 2	Day 3
	· 117. beryllium	AH-2 .	<u>.</u> –	0.002	
	118. cadmium	AH-2	-	<0.005	•
	119. chromium (total)	AH-2	_	0.010	
	120. copper	AH-2	, -	2,200	
	122. lead	AH-2	-	<0.050	
J	124. nickel	AH-2	-	0.043	
1003	128. zinc	AH-2	-	0.079	
	Nonconventional Pollutants				· •
	Aluminum	AH-2	_	0.490	
	Cobalt	AH-2	_	0.008	
	Iron	AH-2	-	5.300	
	Magnesium	AH-2	AND CONTRACT OF ANY AND ADMINISTRAL PROPERTY OF A THE ANGLE AND ADMINISTRATION OF A THE ANGLE AND A THE ANGL	3.500	and the second s
	Tin	AH-2	-	0.046	
:	Titanium	AH-2		0.011	
	Vanadium	AH-2	in the second se	0.006	
	and the second s				

^{1.} No analyses were performed for the following toxic pollutant: 1-116, 121, 123, 125-127 and 129.

Table V-266

METAL POWDERS MIXING WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	l/kkg	gal/ton
1	79,000	18,900	90	7,900	1,890

METAL POWDERS MIXING WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream	Sample	Conc	Concentrations (mg/1)			
	Toxic Pollutants	_Code	_Type	Source	Day 1	Day 2	Day 3	
- war or								
	117. beryłlium	AH-1		_	<0.001	•		
	118. cadmium	AH~1		_	<0.005			
	119. chromium (totał)	AH 1		-	<0.003		•	
	120. copper	AH-1		~ .	1.200			
	122. lead	AH~1		-	<0.050			
	124. nickel	AH1		-	<0.012		•	
)	128. zinc	AH-1		-	0.031			
)	Nonconventional Pollutants							
	Aluminum	AH1	-	_	0.058	-		
	Iron	AH 1		-	0.570			
	Magnesium	AH~1	-	-	4.500			
	Manganese	AH-1	-	- -	0.300			
	Molybdenum	AH-1			<0.020		Minimal administrative with the additional and an electric terms of the contract of the contra	
1	Titanium	AH- 1	- - -		<0.010			

1. No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125-127, and 129.

Table V-268
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A

		Stream	Sample	Concent	rations (mg/l)	
Pollutant		Code	Type	Source Da	ay 1 Day 2	Day 3
Toxic Pollutants					0.017	
114. antimony ·	A-4	3	<0.003	0.021 0.044	0.017 0.060	
	A-5	4	<0.003	0.044		
115. arsenic	A-4	3	<0.003	0.017	0.006	
113. arsenic	A-5	4	<0.003	0.043	0.037	
117. beryllium	A-4	3	<0.0005	<0.0005	<0.0005	
117. beryllium	A-5	4	<0.0005	<0.0005	<0.0005	
	A:-4	3	<0.002	0.009	<0.002	
118. cadmium	A-5	4	<0.002	0.007	0.003	
	A-4	3	<0.001	0.66	0.51	
119. chromium (total)	A-5	4	<0.001	<0.001	<0.001	
	A-4	3	<0.001	0.2	0.089	
120. copper	A-4 A-5	4	<0.001	0.023	0.012	
		3	<0.084	4.8	4.3	
122. lead	A-4 A-5	4	<0.084	<0.084	<0.084	
·		_	10.000	0,47	0.39	
124. nickel	A-4 A-5	3 · 4	<0.003 <0.003	0.47	0.35	
•	A~ģ	4			0.04	•
128. zinc	A-4	3	0.72	2.8	0.34 <0.003	
1201	A-5	4	0.72	0.15	10.000	
Nonconventional Pollutants						
*	A-4	3	<0.050	0.87	0.54	
Aluminum	A-5	4	<0.050	<0.050	<0.050	
	A-4	3	0.15	0.060	0.055	
Barium	A-4 A-5	4	0.15	0.029	0.049	
		2	<0.009	1,7	1.2	
Boron	A-4 A-5	3 4	<0.009	1.8	1.4	
•			*	91	62	
Calcium	A-4 A-5	3 4	69 69	73	75	
	M0	•	_	-0.000	<0.006	
Cobalt	A-4	3 4	<0.006 <0.006	<0.006 0.009	<0.006	
	A~5	4	\0.000	2.300	•	

Table-V-268 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A

<u>Pollutant</u>		Stream <u>Code</u>	Sample Type		trations (mg/1) Day 1 Day 2	Day 3
Nonconventional Pollutant	s (Continued)					
Iron	A-4	3	<0.008	23	18	
	A-5	4	<0.008	<0.008	<0.008	
Magnesium	A-À	3	27	34	24	
	A-5	4	27	29	30	
Manganese	A-4	3	<0.001	0.23	0.17	
	A-5	4	<0.001	0.10	0.13	
Molybdenum	A-4	3	<0.002	0.011	<0.002	
	A-5	4	<0.002	0.037	0.015	
Sodium	A-4	3	10	540	330	
	A-5	4	10	3,000	2,700	
Tin	A-4	3	<0.12	<0.12	<0.12	
	A-5	4	<0.12	<0.12	<0.12	

Table V-268 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A

<u>Pollutant</u>		Stream Code	Sample Type	Concentrat Source Day		Day 3
Nonconventional Pollutants (Conf	tinued)					
Titanium	A-4 A-5	3 4	<0.005 <0.005	<0.005 0.013	<0.005 <0.005	
Vanadium	A-4 A-5	3 4	<0.003 <0.003	<0.003 0.028	<0.003 <0.003	
Yttrium	A-4 A-5	3 4	<0.002 <0.002	<0.002 0.003	<0.002 <0.002	
Conventional Pollutants			-		*	
Oil and Grease	A-4 A-5	1 1	<1 <1	<1 <1	<1 <1	
Total Suspended Solids (TSS)	A-4 A-5	3 4	23 23	26 33	26 25	
pH (standard units)	A-4 A-5	•	6.5 6.5	1.40 NA	1.31 7.11	

NA - Not Analyzed.

Footnote: No analyses were performed on the following toxic pollutants: 1 - 113, 116, 121, 123, 125-127, and 129.

Table V-269
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

	Dollartes		Stream	Sample	Con	centratio	ns (mg/l)
	Pollutant		_Code	Type .	Source	Day 1	Day 2	
Toxi	c Pollutants							
6.	carbon tetrachloride		8-7 8-8	1	ND ND	ND ND	ND ND	0.013 0.012
11.	1,1,1-trichloroethane		B-7 B-8	1	0.003	ND 0.004	0.003 ND	0.045
23.	chloroform		B-7 B-8	1	ND ND	ND 0.005	0.005 0.005	0.005 0.006
26.	1,3-dichlorobenzene		B-7 B-8	6	0.039	ND ND	ND ND	ND ND
38.	ethylbenzene		B-7 B-8	· 1	ND ND	0.054 0.018	0.027 0.015	0.032 0.039
44.	methylene chloride		B-7 B-8	1 1 .	ND ND	0.105 0.027	0.017 0.014	0.017 0.021
62.	N-nitrosodiphenylamine	,	B-7 B-8	6 6	ND ND	ND ND	ND ND	0.013 ND
65.	phenol - ·		B-7 B-8	6	ND ND	0.014 ND	ND ND	ND ND
66.	bis(2-ethylhexyl) phthalat	е	B-7 B-8	6	ND ND	0.021 ND	ND 0.015	0.023 ND
72.	benzo(a)anthracene	*	B-7 B-8	6 6	0.061 0.061	ND ND	ND ND	ND ND
86.	toluene	4	B-7 B-8	1	ND .	0.046 0.020	0.046 0.025	0.084 0.096
114.	antimony .	f	B-7 B-8	6 6	<0.010 <0.010	0.040 0.010	0.090	0.040 0.050
	rarsenic	deninger i	B-7 B-8	6	<0.010 <0.010	0.020 <0.010	0.020	0.030
1,17.	beryllium		B-7 B-8 .	6 6	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
118.	cadmium		.B-7 B-8	6	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020

Table V-269 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

<u>Pollutant</u>	Stream Code	Sample Type		Co Source	oncentration Day 1	ns (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)							
119. chromium (total)		B-7 B-8	6 6	<0.0 <0.0			0.780 0.100
120. copper		B-7 B-8	6 6	<0.0 <0.0		2.00 0 0.250	3.35 0.600
121. cyanide (total)		B-7 B-8	1				0.34 0.82
122. lead	8-7 8-8	6 6		<0.050 <0.050	1.85 0.450	3.45 0.450	2.70 0.300
123. mercury	B-7 B-8	6 6		<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002
124. nickel	B-7 B-8	6 6		<0.050 <0.050	0.200 0.050	0.100 0.050	0.100 0.100
125. selenium	B-7 B-8	6 6		<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
126. silver	B-7 B-8	6 6		<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
127. thailium	B-7 B-8	· 6		<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.020
128. zinc	B-7 B-8	6 6		<0.020 <0.020	2.22 0.460	2.88 0.440	3.88 0.400
Nonconventional Pollutants							
Acidity	B-7 B-8	6 6		<1 <1	< 1 < 1	<1 <1	<1 <1
Alkalinity	B-7 B-8	6 6		240 240	230 200	250 200	19 0 200
Aluminum	B-7 B-8	6 6		<0.100 <0.100	1.20 0.200	0.800 0.200	0.500 0.100
Ammonia Nitrogen	B-7 B-8	6 6		<1 <1	6	6.3 7	6.3 5.8

Table V-269 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

	Stream	Samp-1 e		Concentrati	ons (mg/-1-)	·
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants	(Continued)					
Barium	8-7 8-8	6	<0.050 <0.050	1.85	3.20 0.400	2.70
Boron	B~7 B÷8	6 6	<0.100 <0.100	0.700 0.600	0.800 0.700	1.00 0.900
Calcium	8-7 B-8	6 6	62.0 62.0	47.1 71.5	55.4 64.2	57.1 57.8
Chemical Oxygen Demand (COD) B-7 B-8	6 6	<5 <5	490 330	280 310	440 460
Çhloride	B-7 B-8	. 6 6	6 6	67 62	8 1 70	91 79
Cobalt	B-7 B-8	6 6	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Fluoride	B-7 B-8	6 6	1.2	2.6 2.4	5.1 3.3	0.47 0.97
Iron	B-7 B-8	6 6	1.00 1.00	4.50 0.850	3.90 0.750	4.15 0.650
Magnesium	B-7 B-8	6	19.7 19.7	15.5 14.7	17.2 13.9	18.5 13.2
Manganese	B-7 B-8	6 6	0.100 0.100	0.200 <0.050	0.150 <0.050	0.150 <0.050
Molybdenum	8-7 8-8	6	<0.050 <0.050	0.150 0.100	0.200 0.150	0.300 0.250
Phenolics	B-7 B-8	. 1 . 1	0.010	0.021 0.031	0.020 0.034	0.030 0.030
Phosphate	B-7 B-8	6 6	56 56	92 19	130 <4	170 9.6
Sodium	B-7 B-8	6 6	6.80 6.80	108 98.5	127 119	149 134

Sulfate

67 180 72 160

7.8 7.8 72 120

Table V-269 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

	Stream	Sample	le <u>Concentrations (mg/l)</u>			}
Pollutant	Code	Type	Source	Day 1	Day 2	ת איים
Nonconventional Pollutants (Con	ntinued)					
Tin	B-7	6	<0.050	<0.050	<0.050	<0.050
	B-8	6	<0.050	<0.050	<0.050	<0.050
Titanium	B~7	6	<0.050	0.100	0.050	<0.050
	B~8	6	<0.050	<0.050	<0.050	<0.050
Total Dissolved Solids (TDS)	B~7	`6	390	320	730	700
	B~8	6	390	300	730	620
Total Organic Carbon (TOC)	B~7	6	12	150	120	110
	B~8	6	12	110	130	130
Total Solids (TS)	B~7	6	490	790	1,100	1,030
	β~8	6	490	660	1,000	860
Vanadium	B~7	6	<0.050	<0.050	<0.050	<0.050
	8~8	6	<0.050	<0.050	<0.050	<0.050
Yttrium .	B-7 B-8	6	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Conventional Pollutants						
Oil and Grease	B-7	1	15	36	40	36
	B-8	1	15	10	10	13
Total Suspended Solids (TSS)	B-7	6	110	490	210	210
	B-8	6	110	340	48	200
pH (Standard Units)	В-7	6	7.43	6.70	6.53	6.53
	в-8	6	7.43	6.80	6.63	6.81

Footnote:

- 1. The following toxic pollutants were not detected at this plant: 1-5, 7-10, 12-22, 24, 25, 27-37, 39-43, 45-61, 63, 64, 67-71, 73-85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-270
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D

		Stream	Sample	Con	Concentrations (mg/l)			
	Pollutant .		Туре			- Day 2	Day 3	
Toxio	Pollutants							
11	1 1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	D 00						
. ''•	1,1,1-trichloroethane	D-20 D-21	1	0.009 0.009	0.007 0.013	0.006 0.008	0.008 0.014	
22.	p-chloro-m-cresol	D-20	6	ND	ND	ND	ND	
		D-21	6	, ND	ND	ND	0.375	
23.	chloroform	D-20	1	0.144	0.001	ND	0.002	
		D-21	1	0.144	0.013	0.012	0.011	
34.	2,4-dimethylphenol	D-20	. 6	: ND	ND .	ND	0.028	
		D-21	6	ND	0.048	ND	ND	
44.	methylene chloride	D-20	1	0.002	0.001	0.002	0.007	
		D-21	1,	/0.002	0.002	0.003	0.012	
66.	bis(2-ethylhexyl) phthalate;	D-20	. 6	0.009	1.260	ND	ND .	
		D-21	6	0.009	ND	ND	ND .	
81.	phenanthrene :	- D-20	6	ND	ND -	ND	0.002	
		D-21	6	ND	ND	ND	ИД	
86.	toluene	D-20	1	. ND	ND	ND	0.002	
	•	D-21	1,	ND .	ND	ND	ND	
114.	antimony	D-20	6	<0.003	<0.003	<0.003	<0.003	
		D-21 ·	6	<0.003	<0.003	<0.003	<0.003	
115.	arsenic	D-20	6	<0.003	<0.003	<0.003	<0.003	
		D-21	6	<0.003	<0.003	<0.003	<0.003	
117,	beryllium	D-20	6	<0.0005	<0.0005	<0.0005	<0.0005	
		D-21	.6	<0.0005	<0.005	0.002	<0.0005	
118.	cadmium	D-20 -	·. 6	<0.002	7.3	5.3	7.6	
	القاباتي والمقاد المقد على المناس المناس	D-21k	6	i.<0.002	0.051	0.017	0.002	
119.	chromium (total)	D-20	6	0.042	718	120	1.60	
		D-21	6	0.042	0.83	0.20	0.18	
120.	copper	D-20 ·	6	0.068	4.8	3.5	5.1	
		D-21	6	0.068	0.40	0.050	0.029	
121.	cyanide (total)	D-20	1 :	<0.02	0.41	1.5	1.6	
	·	D-21	1 ્	<0.02	0.11	0.51	0.33	

Table V-270 (Continued)

Pollutant	Stream Code	Sample Type	Source	Concentrat Day 1	ions (mg/l Day 2	Day 3
Toxic Pollutants (Continued)						
122, lead		D-20 D-21			.72 0.6 .084 0.1	
123. mercury		D-20 D-21			0002 <0.0	0002 <0.0002 0002 <0.0002
124. nickel		D-20 D-21		0.003 340 0.003 3.	300 .5 0. 8	340 32 0.83
125. selenium	D-20 D-21	6 6	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003
126. silver	D-20 D-21	6 6	<0.001 <0.001	0.013 0.008	0.012 0.008	0.020 0.008
127. thallium	D-20 D-21	6	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	0.020 <0.003
128. zinc	D-20 D-21	6	0.038 0.038	1.9 0.021	1.4 0.007	2.0 0.014
Nonconventional Pollutants	:			•		
Acidity	D-20 D-21	6 6	<1 <1	80 <1	<1 <1	<1
Alkalinity	D-20 D-21	· 6 6	180 180	<1 96	1,600	1,360 110
Aluminum	D-20 D-21	6 6	<0.050 <0.050	32 0.14	37 0.15	44 <0.050
Ammonia Nitrogen	D-20 D-21	6 6	<1 <1	0.15 0.35	0.35 1.2	0.423 0.44
Barium	D-20 D-21	6 6	0.12 0.12	0.83 0.23	0.72 0.22	0.91 0.17
Boron	D-20 D-21	6 6	<0.009 <0.009	14 <0.009	9.7 <0.009	14 <0.009
Calcium	D-20 D-21	6 6	63 6 3	1,90 0 960	1,600 900	1,900 850

Table V-270 (Continued)

	<u>Poll</u>	utant	Stream Code	Sample Type		Concentra Day 1	tions (mg/ Day 2	1) <u>Day 3</u>	
	Nonconventional	Pollutants (Cor	ntinued)			,	•		
	Chemical Oxygen	Demand (COD)	D-20 D-21	6 6	<5 <5	130 80	190 110	170 100	
	Chloride		D-20 D-21	6 6	34 34	200 1 7 0	195 165	160 160	
	Cobalt		D-20 D-21	6	<0.006 <0.006	55 0.34	38 0.092	55 0.077	
	Fluoride		D-20 D-21	6 6	0.45 0.45	2.1 2.7	0.47 0.63	500 59	
	Iron	м	D-20 D-21	6 6	0.066 0.066	190	140 0.25	210 0.27	
1015	Magnesium	:	D-20 D-21	6	24 24	43 20	36 11	51 11	
0.	Manganese		D-20 D-21	6 6	0.012 0.012	5.2 0.087	3.8 0.040	5.4 0.041	
	Molybdenum		D-20 D-21	6 6	0.030 0.030	44 1 9	35 10	44 10	
	Phosphate	:	D-20 D-21	6 6	<4 <4	21 <4	<4 <4	<4 <4	
	Sodium	resident. Sie de altor d'Intérior (1809-181) destruit (1809-181)	D-20 D-21	6	9.5 9.5	7 7 0 600	590 340	540 320	
	Sulfate	٠.	D-20 D-21	6	53 53	2,200 3,600	2,400 3,300	2,300 4,000	
. :	-Tin		D-20 D-21	- 6	<0.12 <0.12	<0.12 1.5	<0.12 1.4	<0.12 - 0.90	
	Titanium		D-20 D-21	6 6 .	<0.005 <0.005	62 0.53	19 0.22	85 0.11	
	Total Dissolved	Solids (TDS)	D-20 D-21	6 6	393 393	4,000 5,800	5,600 5,600	3,900 5,400	
	Total Organic Ca	arbon (TOC)	D~20 D-21	. 6 6	. 8 8	5 4 7	46 22	29 34	

Table V-270 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D

	Stream	Sample		Concentra	tions (mg/1	
Pollutant	_Code_	Type	Source	Day 1	Day 2	<u>Day 3</u>
Nonconventional Pollutants (Con	tinued)					
Total Solids (TS)	D-20	6	395	12,000	10,000	5,700
	D-21	6	395	6,200	6,000	5,600
Vanadium	D-20	6	0.016	4.3	3.1	4.6
	D-21	6	0.016	0.056	0.11	0.035
Yttrium	D-20 D-21	6 6	<0.002 <0.002	0.099 0.006		0.051 0.007
Conventional Pollutants						•
Oil and Grease	D-20	1	<1	91	120	790
	D-21	1	<1	5	5	10
Total Suspended Solids (TSS)	D-20	6	<1	8,300	5,200	770
	D-21	6	<1	53	30	23
pH (Standard Units)	D-20	6	7.14	3.90	9.02	7.81
	D-21	6	7.14	6.73	6.43	6.47

^{1.} The following toxic pollutants were not detected at this plant: 1-10, 12-21, 24-33, 35-43, 45-65, 67-80, 82-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

Table V-271

							-
		Stream	Sample	С	oncentrati	ons (ma/1)	
Polli	utant	Code	Type	Source	Day 1	Day 2	Day 3
Toxio	C Pollutants						
						*	•
5.	benzidine	E-6	3 ·	0.762	0.010	1.159	0.576
		E-7	3	0.762	**	**	0.033
		E-8	1	0.762			0.965
11.	1,1,1-trichloroethane	E-6	1	0.005	0.540	0.720	0.820
		E-7	1	0.005	0.490	0.490	0.960
		E-8	1 -	0.005		0.450	0.020
12.	hexachloroethane	E-6	3	ND			
		E-7	3	ND	ND O OOG	0.006	ИD
		E-8	1	ND ND	0.006	0.006	ND
			•	ND			0.006
13.	1,1-dichloroethane	E~6	1	ND	NĐ	ND	0.005
		E-7	1	ND	0.040	0.035	0.025
		E-8	1	ND			ND
22.	p-chloro-m-cresol	E-6	3	ND	0.680	ND	**
-	•	E-7	3	ND	**	ND	ND
	•	E-8	1	ND		ND	ND
23.	chloroform	E-6	1	0.015	LiB.		
		E-7	i	0.015	Й DN	ND 0.015	ND
		E-8	. i	0.015	ND	0.015	ND ND
27.	1,4-dichlorobenzene	F 0	•				
	1,4 dicirrol openzene	E-6	3	ND	ND	ND	ND
		E-8	1	ND	ND	ND	0.005
		_ 0	r -	ND	-		ND
28.	3,3′-dichlorobenzidine	E-6	3	0.001	0.810	0.010	0.019
	· ·	E-7	3 -	0.001	0.001	0.001	0.519
		E-8	1	0.001			ND
34.	2,4-dimethylphenol	E-6	.3	ND	**	**	» . ND
		E-7	,3	ND	0.046	0.053	0.046
	,	E-8 '	1	ND	0.040	0.000	ND ND
36.	2,6-dinitrotoluene	E-6	3	0.002	0.001	0.004	
		E-7	3	0.002	0.001	0.001	0.001
		E-8	1	0.002	0.002	0.003	0.001
0.7				0.002			0.002
37,	1,2-diphenylhydrazine	E-6	3	0.001	0.001	0.001	0.001
		E-7	3	0.001	0.001	0.001	0.001
		E-8	1 1	0.001			ND

Table V-271 (Continued)

<u> Pollu</u>	<u>tant</u>	Stream Code	Sample Type	Source	ncentration Day 1	ns (mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
39.	fluoranthene	E-6 E-7 E-8	3 3 1	ND ND ND	0.001 ND	0.001 0.001	0.001 ND ND
43.	bis(2-choroethoxy)methane	E-6 E-7 E-8	3 3 1	0.001 0.001 0.001	ND 0.001	0.001 0.0002	0.002 0.0003 0.0001
44.	methylene chloride	E-6 E-7 E-8	1 1 1	ND ND ND	0.160 ND	ND ND	ND ND ND
55.	naphthalene	E-6 E-7 E-8	3 3 1	0.001 0.001 0.001	0.002 0.001	0.001	0.002 0.001 0.001
61.	N-nitrosodimethylamine	E-6 E-7 E-8	3 3 1	0.001 0.001 0.001	0.001 ND	0.001 ND	0.001 ND 0.001
62.	N-nitrosodiphenylamine	E-6 E-7 E-8	3 3 1	ND ND ND	ND ND	ND ND	ND ND 0.196
63.	N-nitrosodi-n-propylamine	E-6 E-7 E-8	3 3 1	0.024 0.024 0.024	0.018 0.016	0.021 0.020	0.016 0.032 0.023
65.	phenol	E-6 E-7 E-8	3 3 1	ND ND	**	**	** ** ND
66.	bis(2-ethylhexyl) phthalate	E-6 E-7 E-8	3 3 1	0.001 0.001 0.001	** 0.030	0.003 0.002	** 0.001 0.002
67.	butyl benzyl phthalate	E-6 E-7 E-8	3 3 1	0.001 0.001 0.001	0.003	0.002 0.002	0.005 0.003 0.001
70.	diethyl phthalate	E-6 E-7 E-8	3 3 1	<0.00001 <0.00001 <0.00001	ND 0.0001	0.001 0.0001	ND ND 0.0001

			Stream	S	ample	C	oncentratio	ns (mg/l)	
	Pol1u	tant	Code	-	Туре	Source	Day 1	Day 2	Day 3
	Toxic	Pollutants (Continued)							
	71.	dimethyl phthalate	E-6 E-7 E-8		3 3 1	ND ND ND	ND ND	0.004	ND ND 0.003
	72.	benzo(a)anthracene	E-6 E-7 E-8		3 3 1	ND ND ND	ND 0.0002	ND 0.0001	** ND ND
	73.	benzo(a)pyrene	E-6 E-7 E-8		3 3 1	ND ND ND	17.40 ND	ND ND	ND ND ND
	75.	benzo(k)fluoranthene	E-6 E-7 E-8		3 3 1	ND ND ND	** ND	ND **	ND ** ND
019	76.	chrysene	E-6 E-7 E-8		3 3 1	ND ND ND	ND ND	ND ND	** ** ··· ND
	78.	anthracene	E-6 E-7 E-8		3 3 1	ND ND ND	0.002 ND	ND 0.001	0.002 0.001 ND
nk tronkanderson	81.	phenanthrene	E-6 E-7 E-8	. :	3 3. _1	ND ND ND	ND 0.001	0.001	ND ND 000-1
	83.	indeno(1,2,3-c,d)pyrene	E-6 E-7 E-8		3 3 1	ND ND ND	ND ND	ND ND	0.001 ND ND
	84.	pyrene	E-6 E-7 E-8		3 3	ND ND ND	0.001	0.001	0.001 0.001 ND
	86.	toluene	E-6 E-7 E-8		1 1 1	ND ND ND	ND ND	ND ND	ND 0.015 ND
	114.	antimony	E-6 E-7 E-8 E-9		3 3 1 3	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005

Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

		Stream	Sample	Ca	ncentratio	ns (<u>mg/</u> l)	
Pollu	tant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
10.10	(00						
115.	arsenic						
115.	at senic	E-6	3	<0.005	<0.005	<0.005	<0.005
		E-7	3	<0.005	<0.005	<0.005	<0.005
		E-8	•1	<0.005	<0.005	٠٥. ٥٥٣	<0.005
		E-9	3	<0.005		<0.005	
117.	beryllium	E-6	3	<0.010	<0.010	<0.010	<0.010
	20.7	E~7	3	<0.010	<0.010	<0.010	<0.010
		E-8	1	<0.010	<0.010		<0.010
		E-9	3	<0.010		<0.010	
118.	cadmium	E-6	3	<0.050	<0.050	<0.050	<0.050
110.	Cadilitain	E-7	3 3	<0.050	<0.050	<0.050	<0.050
*		E-8	1	<0.050	<0.050		<0.050
		E-9	3	<0.050		<0.050	
119.	chromium (total)	E-6	3	<0.100	<0.100	<0.100	<0.100
1.5.	citi diriciii (co co c	E-7	3	<0.100	<0.100	<0.100	<0.100
		E-8	1	<0.100	2.15		7.90
	•	E-9	3	<0.100		<0.100	
120.	copper	E-6	3	0.080	0.620	0.180	0.750
120.		E~7	3	0.080	0.100	0.110	0.080
		E-8	1	0.080	14.0		87.4
	· · · · ·	E-9	3	0.080		0.140	
121.	cyanide (total)	E-6	1	<0.02	<0.02	<0.02	<0.02
121.	cyanias (total)	E~7	1	<0.02	<0.02	<0.02	<0.02
		E-8	1	<0.02	<0.02		<0.02
		E-9	1	<0.02		<0.02	
122.	lead	E-6	3	<0.100	0.240	0.220	0.190
122.	, caa	E-7	3	< 0.100	0.100	<0.100	0.100
		E-8	1	<0.100	<0.100		<0.100
	•	E-9	3	<0.100		<0.100	6.
123.	mercury	E-6	3	<0.0010	<0.0010	<0.0010	<0.0010
140.	mor car y	E-7	. 3	<0.0010	<0.0010	<0.0010	<0.0010
		E-8	1	<0.0010	<0.0010	0.004-	<0.0010
		E-9	3	<0.0010		<0.0010	

Table V-271 (Continued)

	Stream	Samp.) e		Concentrations (mg/l)			
Pollutant	Code	_Type_	Source	Day 1	Day 2	Day 3	
Toxic Pollutants (Continued)	4 - 4 - 4 - 4						
124. nickel	E-6 E-7 E-8	3 3	<0.100 <0.100 <0.100	0.510 <0.100	<0.100 <0.100	1.30 0.100	
	E-9	3	<0.100		<0.100		
125. selenium	E-6 E-7 E-8 E-9	3 3 1 3	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	
126. silver	E-6 E-7 E-8 E-9	3 3 1 3	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	
127. thallium	E-6 E-7 E-8 E-9	3 3 1 3	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	
128. zinc	E-6 E-7 E-8 E-9	3 3 1 3	<0.050 <0.050 <0.050 <0.050	0.310 0.080 0.370	0.100 0.110 <0.050	0.240 0.080 1.40	
Nonconventional Pollutants	÷						
Acidity	E-6 E-7 E-8	3 3 1	<1 <1 <1	<1 <1 130	<1 <1	<1 <1 198	
	E-9	3	<1		<u>^</u> <1	4	
Alkalinity	E-6 E-7 E-8 E-9	3 3 1 3	83 83 83 83	120 230 <1	150 160 250	150 160 <1	
Aluminum	E-6 E-7 E-8 E-9	3 3 1 3	0.300 0.300 0.300 0.300	0.800. 0.140 0.960	0.200 0.160 0.040	0.500 0.150 <0.020	
Ammonia Nitrogen	E-6 E-7 E-8 E-9	3 3 1 3	0.22 0.22 0.22 0.22	0.19 0.14 0.55	0.19 0.14 30	0.37 9.3 130	

Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

<u>Pollutant</u>	Stream Code	Sample Type	Source Source	Concentrati Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Cor	itinued)					
Barium	E-6 E-7 E-8 E-9	3 3 1 3	0.060 0.060 0.060 0.060	0.120 0.110 0.030	0.080 0.100 <0.020	0.070 0.080 0.040
Boron	E-6 E-7 E-8 E-9	3 3 1 3	0.170 0.170 0.170 0.170	0.400 0.590 0.200	0.140 0.480 0.100	0.460 0.510 0.470
Calcium	E-6 E-7 E-8 E-9	3 3 1 3	33.0 33.0 33.0 33.0	34.2 34.6 18.4	32.8 36.5 9.70	30.4 32.5 18.9
Chemical Oxygen Demand (COD)	E-6 E-7 E-8 E-9	3 3 1 3	34 · 34 34 34	330 470 50	18 460 <0.05	890 460 52
Chloride	E-6 E-7 E-8 E-9	3 3 1 3	26 26 26 26	24 31 35	24 29 40	21 28 78
Cobalt	E-6 E-7 E-8 E-9	3 3 1 3	<0.100 <0.100 <0.100 <0.100	<0.100 <0.100 <0.100	<0.100 <0.100 <0.100	<0.100 <0.100 <0.100
Fluoride	E-6 E-7 E-8 E-9	3 3 1 3	0.44 0.44 0.44 0.44	0.39 0.44 0.40	0.69 0.30 0.39	0.64 0.75 0.52
Iron	E-6 E-7 E-8 E-9	3 3 1 3	1.00 1.00 1.00 1.00	3.50 2.50 31.0	1.60 2.60 0.120	2.40 4.40 32.5
Magnesium	E-6 E-7 E-8 E-9	3 3 1 3	15.8 15.8 15.8 15.8	14.4 15.6 6.00	15.0 15.8 3.00	13.3 13.8 6.20

Table V-271 (Continued)

									•		
				Stread			ample			ions (mg/l)	
	<u>Pollutant</u>			Code	_		Туре	Source	Day 1	Day 2	Day 3
	Nonconvention	al Pollutar	nts (Cont	ınuea	,						
	Manganese			E-6			3 .	0.140	0.100	0:080	0.110
	Manganese			E-7			3	0.140	0.170	0.160	0.140
				E-8			1	0.140	0.630	0.100	2.00
		* .		E-9			3	0.140	0.030	0.018	2.00
				LJ			3	0.140		0.018	
	Molybdenum			E-6			3	<0.200	<0.200	<0.200	<0.200
	moryoddiam			E-7			3	<0.200	<0.200	<0.200	<0.200
				E-8			1	<0.200	<0.200	10.200	<0.200
				E-9			3	<0.200	10.200	<0.200	10,1200
				_ 0			· ·	0.200		.0.200	. 7
	Phenolics			E-6			1	0.014	8.5	2.4	9.52
		•		E-7			1	0.014	13	11	13
				E-8			1	0.014	0.016		0.015
				E-9			1	0.014	**	0.032	
											*
10	Phosphate			E-6			3	16	21	18	30
2				E-7			3	16	23	28	27
ω				E-8			1	16	<4		<4
				E-9			3	16		13	
											- 0
	Sodium			E-6			3	33.0	71.0	75.0	80.0
	•			E-7			3	33.0	83.0	80.0	73.0
				E-8		:	1	33.0	58.0		133
				E-9			3	33.0		292	
	Sulfate			E-6			3	170	170	190	190
				E-7			3	170	120	150	130
	and the same of th	de alemandare audustrativo de la del sector de la descripción de la del sector de la delicita		E-8			_ 1	1.70	7.0.0		1300
		F 7		E-9			3	170		. 580	÷
	T ! -			F 6			•		-0.000		
	Tin			E-6			3	<0.200	<0.200	<0.200	<0.200
		• '		E-7			3	<0.200	<0.200	<0.200	<0.200
		A Comment		£-8 E-9			1	<0.200	<0.200	40.000	<0.200
				E-9			3	<0.200		<0.200	
	Titanium			E-6	*		3	<0.020	<0.020	<0.020	<0.020
	TTCarrion			E-7	٠.		3 -	<0.020	<0.020	<0.020	<0.020
	•			E8			1 .	<0.020	0.020	~U.UZU	0.150
				E-9		*	3	<0.020	0.090	<0.020	0.150
				_ 9			J	\U.UZU		\U.UZU	
	Total Dissolv	ed Solids ((TDS)	E-6			3	.330	470	360	580
	, 5 - 4 / 5 . 5 5 6 / 4		,	E-7			3	330	720	420	590
				E-8			1	330	920	. 20	2000
				E-9		:	3	330		860	
							-				

Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

Pollutant	Stream Code	Sample Type	Source (Concentrati Day 1	ons (mg/l) <u>Day 2</u>	Day 3
Nonconventional Pollutants (Co	ntinued)				*	
Monconventional Fordatants (Co	,,,,,,,,,					
Total Organic Carbon	E-6 E-7	3 3	<1 <1	68 110	89 150	110 67
	E-8 E-9	1 3	<1 <1	10	<1	3.9
Total Solids (TS)	E-6 E-7	3 3	380 380	590 830	470 600	800 690
	E-8 E-9	1 ° 3	380 380	930	900	2070
Vanadium	E-6 E-7	3 3	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
	E-8 E-9	1 3	<0.010 <0.010	<0.010	<0.010	<0.010
Yttrium	E-6 E-7	3 3	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020
	E-8 E-9	1 3	<0.020 <0.020	<0.020	<0.020	<0.020
Conventional Pollutants						-
Oil and Grease	E-6 E-7	1	<1 <1	350 76	340 32	420. 45
	E-8 E-9	1 1	< 1 < 1	3	5	<1
Total Suspended Solids	E-6 E-7	3 3	29 29	220 13	33 16	250 74
	E-8 E-9	. 3	29 29	7.4	2.3	7.3
pH (standard units)	E-6 E-7	3 3	6.71 6.71	6.12 6.01	6.56 6.24	6.91 6.10
	E-8 E-9	1 3	6.71 6.71	2.71	8.50	2.74

- 1. The following toxic pollutants were not detected at this plant: 1-4, 6-10, 14-21, 24-26, 29-33, 35, 38, 40-42, 45-54, 56-60, 64, 68, 69, 74, 77, 79, 80, 82, 85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

^{**}Present, but not quantifiable.

Table V-272

..WASTEWATER -TREATMENT--PERFORMANCE DATA-----PLANT--F

	the second of th	Stream	Sample		entration		
	Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
	Toxic Pollutants						
	11. 1,1,1-trichloroethane	F-31	1	0.014	ND	ND	ND
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F-32	i	0.014		ND.	ND
		F-33	1	0.014		ND	0.011
		F-34	1 .	0.014		0.012	ND
	23. chloroform	F-31	1	ND	ND	ND	ND
	20. 0111010101111	F-32	i	ND .	,,,,	ND	ND
		F-33	i	ND		ND	ND
		F-34	1	ND		0.006	ND
	44. methylene chloride	F-31	1	0.002	1.170	4.940	0.494
	44. Methyrene Chroride	F-32	1	0.002	1.170	1.150	0.494
		F-33	í	0.002		0.040	0.002
		F-34	1	0.002		0.005	ND
⊢. .		, , ,	•	0.002		0.005	ΝÞ
102	55. naphthalene	F-31	1	0.001	ND	0.398	0.744
.5		F-32	1	0.001		ND	0.353
J		F-33	4	0.001		0.001	ND
		F~34	4 -	0.001		0.001	ND
	58. 4-nitrophenol	F-31	1 .	ND	ND	0.250	ND
		F-32	1	ND		ND	ND
		F-33	['] 4	ND		ND	ND
•		F-34	4	ND		ND	ND
	64. pentachlorophenol	F-31	1	ND	0.818	0.981	1.080
		F-32	i	ND		ND	ND
	The state of the s	F-33	4	ND .		· ND .	. ND
		F-34	: 4	ND		ND	ND
	66. bis(2-ethylhexyl) phthalate	; F-31	1.	ND	ND.	ND .	. ND
-	oo. Broth othymoxyry philiarae	F-32	1	ND		ND	- ND
	•	F-33	4	ND		0.004	0.004
	and the second of the second o	F-34	4	ND		ND	. ND
	68. di-n-butyl phthalate	F-31	1 -	· ND	ND -	. ND	. ND
•	ob: at it bacy i pittiatate	F-32	1 .	ND	, 110	0.105	ND
•	· ·	F-33	4	ND		0.001	ND
	•	F-34	4	ND		ND	ND
	91 phononthrops	. E91	•	ND	0.364	0.000	0.047
	81. phenanthrene	F-31 F-32	1 .	ND ND	0.364	0.896 ND	0.947
		F-33	4	ND ND	4.2	ИD	ND DN
	7						
	r ·	F-34	4	ND		ND .	: ND

Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

Pollutant	Stream Code	Sample Type	Conc Source	Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
86. toluene	F-31 F-32 F-33 F-34	1 1 1	ND ND ND ND	ND	ND ND 0.047 ND	ИД ИД ИД ИД
114. antimony	F-31 F-32 F-33 F-34	1 1 4 4	<0.002 <0.002 <0.002 <0.002	0.015 <0.002 0.005	0.015 0.015 0.003 0.004	<0.002 <0.002 <0.002 <0.002
115. arsenic	F-31 F-32 F-33 F-34	1 1 4 4	<0.005 <0.005 <0.005 <0.005	0.025 <0.005 <0.005	0.016 <0.005 0.021 0.020	<0.005 0.005 0.009 0.010
117. beryllium	F-31 F-32 F-33 F-34	1 1 4 4	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010
118. cadmium	F-31 F-32 F-33 F-34	1 1 4 4	<0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.050
119. chromium (total)	F-31 F-32 F-33 F-34	1 1 4 4	<0.100 <0.100 <0.100 <0.100	<0.100 3.16 0.170	4.15 0.870 3.82 0.110	0.940 0.980 7.78 0.100
120. copper	F-34 F-34 F-34 F-34	1 1 4 4	0.170 0.170 0.170 0.170	4.10 21.2 0.630	5.17 0.590 26.5 0.450	1.10 0.280 52.0 0.360
121. cyanide (total)	F-31 F-32 F-33 F-34	1 1 1	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02
122. lead	F-31 F-32 F-33 F-34	1 1 4 4	<0.100 <0.100 <0.100 <0.100	2.40 <0.100 <0.100	2.69 1.73 0.110 <0.100	0.530 1.46 0.190 <0.100

Table V-272 (Continued)

	Pollutant	Stream	Sample		centration		
	Portutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxio	<u> Pollutants</u> (Continued)						
, -					- 46.		
123.	mercury	F-31	1	<0.0020	<0.0020	<0.0020	<0.0020
		F-32	1	<0.0020		<0.0020	<0.0020
	•	F-33	4	<0.0020	<0.0020	<0.0020	<0.0020
		F-34	4	<0.0020	<0.0020	<0.0020	<0.0020
124.	nickel	F-31	1	0.200	23.6	39.0	7.10
		F-32	1 -	0.200		18.4	25.8
	•	F-33	4	0.200	113	190	9.50
		F-34	4	0.200	3.79	2.72	3.93
125.	selenium	F-31	1	<0.010	<0.010	<0.010	<0.010
	•	F-32	1	<0.010		<0.010	<0.010
		F-33	4	<0.010	0.011	<0.010	0.021
-		F-34	4	<0.010	0.019	<0.010	0:032
126.	silver	F-3]1	1 .	<0.002	0.003	0.006	<0.002
		F-32	1	<0.002		<0.002	<0.002
5:		. F-33 ···	4	<0.002	<0.002	0.002	0.002
		F-34	4	<0.002	<0.002	<0.002	<0.002

Table V=272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

		Stream	Sample		tions (mg/	(1)
Pollutant		Code	Type So	urce <u>Day</u>	1 Day	2 <u>Day 3</u>
Toxic Pollutants (Continued)						
127. thallium	F-31 F-32 F-33 F-34	1 1 4 4	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005
128. zinc	F-31 F-32 F-33 F-34	1 1 4 4	<0.050 <0.050 <0.050 <0.050	8.50 0.700 0.060	17.4 6.20 1.13 0.050	3.40 10.2 1.41 0.050
Nonconventional Pollutants			•			
Acidity	F-31 F-32 F-33 F-34	1 1 4 4	<1 <1 <1 <1	<1 <1 <1	<1 110 <1 <1	<1 110 <1 <1
Alkalinity	F-31 F-32 F-33 F-34	1 1 4 4	61 61 61 61	61 <1 470	35 <1 130 790	22 <1 390 1240
Aluminum	F-31 F-32 F-33 F-34	1 1 4 4	0.910 0.910 0.910 0.910	2.30 <0.020 0.100	5.20 1.48 0.020 0.200	0.950 0.380 0.020 0.380
Ammonia Nitrogen	F-31 F-32 F-33 F-34	1 1 4 4	0.04 0.04 0.04 0.04	7.6 2.2 1.5	<0.01 1.4 6.1 11	5.5 5.8 2.7 5.2
Barium	F-31 F-32 F-33 F-34	4	0.080 0.080 0.080 0.080	0.110 0.050 0.020	0.220 0.080 0.050 0.030	0.210 0.110 0.080 0.060
Boron	F-31 F-32 F-33 F-34	. 1	<0.100 <0.100 <0.100 <0.100	0.320 <0.100 0.190	0.440 0.310 <0.100 0.350	0.110 0.360 0.760 0.720

Nonconventional Pollutants Continued		Dallutant		Stream	Sample		trations (n		
Calcium F-31 1 46.2 30.1 34.7 9.30 F-32 1 46.2 34.9 25.0 31.4 44.5 F-32 4 46.2 22.2 21.9 36.8 F-34 4 6.2 22.2 21.9 36.8 F-34 4 6.2 22.2 21.9 36.8 F-32 1 <1 7,900 4,900 23,000 F-31 1 1 1 2 30 61 34 F-33 4 4 1 8 55 93 F-34 4 1 1 4 4 8 8 F-34 F-34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	Pollutant		Code	Туре	Source	Day 1 Da	ay 2 Day	/ 3
F-32 1 46.2 34.9 34.7 44.5 F-33 4 46.2 34.9 25.0 31.4 F-34 4 46.2 22.2 21.9 36.8 Chemical Oxygen Demand (COD) F-31 1 <1 46,000 18,000 23,000 F-32 1 <1 7,900 4,900 F-33 4 <1 8 55 93 F-34 4 <1 <1 43 8 Chloride F-31 1 12 30 61 34 F-32 1 12 20 22 F-33 4 12 130 180 330 F-34 4 12 130 180 330 F-34 4 12 120 170 310 Cobalt F-31 1 <0.100 0.130 0.310 <0.100 F-32 1 <0.100 <0.100 <0.100 <0.100 F-33 4 <0.100 <0.100 <0.100 <0.100 F-34 4 <0.100 <0.100 <0.100 <0.100 F-34 4 <0.100 <0.100 <0.100 <0.100 F-34 4 <0.43 37 13 16 F-34 4 <0.43 31 40 108 F-34 4 <0.43 32 42 7 160 Iron F-31 1 1.37 58.4 80.0 16.6 F-32 1 1.37 58.4 80.0 85.1 F-33 4 1.37 25.2 50.0 85.1 F-34 4 1.37 25.2 50.0 85.1 F-35 1 1.27 6.44 9.29 1.46 F-36 F-37 1 1.27 6.80 7.63 F-37 4 1.27 7.02 7.83 13.8 Manganesium F-31 1 0.080 0.980 1.40 0.260 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 3.88 5.34 5.20 F-35 1 0.080 0.860 1.02 F-36 1 0.080 0.420 0.830 <0.200 F-37 1 0.080 0.420 0.830 <0.200 F-38 4 0.080 0.440 0.610 1.99		Nonconventional Pollutants (Cont	inued)						
F-32 1 46.2 34.9 34.7 44.5 F-33 4 46.2 34.9 25.0 31.4 F-34 4 46.2 22.2 21.9 36.8 Chemical Oxygen Demand (COD) F-31 1 <1 46,000 18,000 23,000 F-32 1 <1 7,900 4,900 F-33 4 <1 8 55 93 F-34 4 <1 <1 43 8 Chloride F-31 1 12 30 61 34 F-32 1 12 20 22 F-33 4 12 130 180 330 F-34 4 12 130 180 330 F-34 4 12 120 170 310 Cobalt F-31 1 <0.100 0.130 0.310 <0.100 F-32 1 <0.100 <0.100 <0.100 <0.100 F-33 4 <0.100 <0.100 <0.100 <0.100 F-34 4 <0.100 <0.100 <0.100 <0.100 F-34 4 <0.100 <0.100 <0.100 <0.100 F-34 4 <0.43 37 13 16 F-34 4 <0.43 31 40 108 F-34 4 <0.43 32 42 7 160 Iron F-31 1 1.37 58.4 80.0 16.6 F-32 1 1.37 58.4 80.0 85.1 F-33 4 1.37 25.2 50.0 85.1 F-34 4 1.37 25.2 50.0 85.1 F-35 1 1.27 6.44 9.29 1.46 F-36 F-37 1 1.27 6.80 7.63 F-37 4 1.27 7.02 7.83 13.8 Manganesium F-31 1 0.080 0.980 1.40 0.260 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 3.88 5.34 5.20 F-35 1 0.080 0.860 1.02 F-36 1 0.080 0.420 0.830 <0.200 F-37 1 0.080 0.420 0.830 <0.200 F-38 4 0.080 0.440 0.610 1.99		Calcium	E-31						
F-33		Service of the servic							
Chemical Oxygen Demand (COD) F-31				1		24.0			
Chemical Oxygen Demand (COD) F-31 F-32 1									
F-32 1 <1 7,900 4,900 F-33 4 <1 8 55 93 F-34 4 <1 <1 43 8 55 93 F-34 1		Chemical Oxygen Demand (COD)	F-31	,	~1	46 000	10.000		
F-33		and the state of t				40,000			
Chloride F-34				•		0			
Chloride F-31									
F-32				-	``	\ 1	43	8	
F-32		Chloride	F-31	1	12	30	. 61	24	
F=33	:					00			
Cobalt F-34			F-33	4		130			
Cobalt F-31			F~34	4					
F-32	•							0.10	
F-32 1 <0.100		Cobalt		1	<0.100	0.130	0.310	<0.100	
F-33					<0.100	•	0.120		
Fluoride F-31						<0.100	<0.100		
F-32 1 0.43 19 12 F-33 4 0.43 31 40 108 F-34 4 0.43 24 27 160 Iron F-31 1 1.37 58.4 80.0 16.6 F-32 1 1.37 49.0 48.1 F-33 4 1.37 25.2 50.0 85.1 F-34 4 1.37 1.33 0.790 0.180 Magnesium F-31 1 12.7 6.44 9.29 1.46 F-32 1 12.7 6.80 7.63 F-33 4 12.7 10.5 8.03 9.03 F-34 4 12.7 7.02 7.83 13.8 Manganese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 3.88 5.34 5.20 F-34 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-33 4 0.200 0.440 0.610 1.99			F-34	4	<0.100	<0.100	<0.100	<0.100	
F-32 1 0.43 19 12 F-33 4 0.43 31 40 108 F-34 4 0.43 24 27 160 Iron F-31 1 1.37 58.4 80.0 16.6 F-32 1 1.37 49.0 48.1 F-33 4 1.37 25.2 50.0 85.1 F-34 4 1.37 1.33 0.790 0.180 Magnesium F-31 1 12.7 6.44 9.29 1.46 F-32 1 12.7 6.80 7.63 F-33 4 12.7 10.5 8.03 9.03 F-34 4 12.7 7.02 7.83 13.8 Manganese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 3.88 5.34 5.20 F-34 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-33 4 0.200 0.440 0.610 1.99	1	Fluoride	E-31	- 1	0 40				
F-33						37			
F-34 4 0.43 24 27 160 Iron F-31 1 1.37 58.4 80.0 16.6 F-32 1 1.37 49.0 48.1 F-33 4 1.37 25.2 50.0 85.1 F-34 4 1.37 1.33 0.790 0.180 Magnesium F-31 1 12.7 6.44 9.29 1.46 F-32 1 12.7 6.80 7.63 F-33 4 12.7 10.5 8.03 9.03 F-34 4 12.7 7.02 7.83 13.8 Manganese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 0.860 1.02 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200						21			
Iron F-31									
Magnesium F-32 1 1.37 49.0 48.1 F-33 4 1.37 25.2 50.0 85.1 F-34 4 1.37 1.33 0.790 0.180 Magnesium F-31 1 12.7 6.44 9.29 1.46 F-32 1 12.7 6.80 7.63 F-33 4 12.7 10.5 8.03 9.03 F-34 4 12.7 7.02 7.83 13.8 Mangariese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 0.860 1.02 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200 -0.200 -0.200 -0.200 F-33 4 <0.200 0.440 0.610 1.99				-	. 0.43	24	21	160	
F-32		Iron,	F-31	1	1.37	58 4	90 0	16 6	-
F-33 4 1.37 25.2 50.0 85.1 F-34 4 1.37 1.33 0.790 0.180 Magnesium F-31 1 12.7 6.44 9.29 1.46 F-32 1 12.7 6.80 7.63 F-33 4 12.7 10.5 8.03 9.03 F-34 4 12.7 7.02 7.83 13.8 Manganese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 0.860 1.02 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200			F-32	1		55.7			
Magnesium F-34 4 1.37 1.33 0.790 0.180 Magnesium F-31 1 12.7 6.44 9.29 1.46 F-32 1 12.7 6.80 7.63 F-33 4 12.7 10.5 8.03 9.03 F-34 4 12.7 7.02 7.83 13.8 Manganese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 0.860 1.02 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200 -0.200 -0.200 -0.200 F-33 4 0.0200 0.440 0.610 1.99			F-33	4		25.2			
Magnesium $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Market recording with an expension of the course of the co	F-34 -	4					
Manganese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 0.980 1.40 0.260 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200 0.420 0.830 <0.200 F-33 4 <0.200 0.440 0.610 1.99	ľ				:			. 0.100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Magnesium		1 "		6.44	9.29	1.46	y .
Mangariese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200 F-33 4 <0.200 0.440 0.610 1.99		•		•					
Mangariese F-31 1 0.080 0.980 1.40 0.260 F-32 1 0.080 0.860 1.02 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200				-			8.03		
F-32 1 0.080 0.860 1.02 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200			F-34	4	12.7	7.02	7.83	13.8	
F-32 1 0.080 0.860 1.02 F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200	. 4	Mannanese	F 0.1					•	
F-33 4 0.080 3.88 5.34 5.20 F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200		:				0.980			÷
F-34 4 0.080 0.120 0.070 0.230 Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200 <0.200 <0.200 <0.200 F-33 4 <0.200 0.440 0.610 1.99		•							
Molybdenum F-31 1 <0.200 0.420 0.830 <0.200 F-32 1 <0.200 <0.200 <0.200 <0.200 F-33 4 <0.200 0.440 0.610 1.99									
F-32 1 <0.200		•	, 54	4	0.080	0.120	0.070	0.230	
F-32 1 <0.200		Molybdenum	F-31	1	<0.200	0 420	0.630	<0.200	
F-33 4 <0.200 0.440 0.610 1.99						0.420			
5.250 0.440 0.010 1.99		•	F-33			N 44N			
			F-34	4	<0.200	<0.200	<0.200	1.51	

Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

<u>Pollutant</u>		Stream Code	Sample Type S		rations (mg ay 1 Day	1/1) 2 Day 3
Nonconventional Pollutants (Con	tinued)					
	F-31	1	<0.005	0.49	1.2	0.15
Phenolics		1	<0.005		0.12	0.12
	F-32	1	<0.005	<0.005	<0.005	<0.005
	F-33 F-34	ί	<0.005	<0.005	<0.005	<0.005
	F-34	•	10.000			
Discondition	F-31	1	<4	53	23	39
Pho sp hat e	F-32	1	<4		40	34
	F-33	4	<4	<4	<4	<4
•	F-34	4	<4	<4	<4	<4
				01.0	14.2	5 50
Sodium	F-31	1	154	31.2	26.4	27.8
-	F-32	1	154	0.40	820	1,580
	F-33	4	154	640		4,200
	F-34	4	154	1,010	1,200	4,200
0.10.1	F-31	1	130	330	230	370
Sulfate	F-32	1	130		930	750
	F-33	4	130	640	850	1,400
	F-34	4	130	610	940	1,400
	- 01	1	<0.200	<0.200	<0.200	<0.200
Tin	F-31	1	<0.200	0.25	<0.200	
	F-32	4	<0.200	<0.200		
•	F33	4	<0.200	<0.200		
	F-34	4	\0.200	10.20		
** b t	F-31	1	<0.020	0.100		
Titanium	F-32	1	<0.020		0.020	
1	F-33	4	<0.020	0.31	0.440	
	F-34		<0.020	0.02	<0.020	<0.020
(TDC)	F-31	1	320	5,070	130,000	3,040
Total Dissolved Solids (TDS)	F-31		320	-,	8,110	1,700
	F-32		320	2,500	3,400	6,100
	F-33		320	3,000	3,900	6,800
			_	4 000	3,800	3,600
Total Organic Carbon (TOC)	F-31		2	4,600		25
10 24 1 31 34 11 2 2	F-32		2	_	1,600	11
	F-33	4	2	8	4	
	F-34	. 4	2	4	4	5
Turn Salida (TS)	F-31	. 1	330	41,800	340,000	70,000 .
Total Solids (TS)	F-32		330		8,200	4,000
	F-33		330	2,700	3,900	6,600
	F-34		330	3,140	3,900	6,800

Table V-272 (Continued)

Pollutant		Stream	Sample	Conce	ntrations	(mg/1)	
- orracant		Code	Туре	Source	Day 1		ay 3
Nonconventional Pollutants (Co	ntinued)					_	
Vanadium	F-31						
	F-32		<0.010		30 <0.	010 <0.0	110
		1	<0.010		< 0.		
	F-33	4	<0.010		10 <0.0		
	F-34	4	<0.010	<0.0	10 0.0	010 <0.0	
Yttrium	F-31	•	10.000				
	F-32	1	<0.020		20 <0.0	020 <0.0	20
6 ×	F-33	1	<0.020		<0.0	020 <0.0	20
•	F-34	4	<0.020	0.0.		020 <0.0	20
	1 34	4	<0.020	<0.02	20 <0.0	020 < 0.0	20
Conventional Pollutants							
Oil and Grease	F-31						
	F-32	- 1	<1	4,700	12,000	59,000	
	F-33		<1		· 310	380	
*	F-34		<1	17	- 18	10	
	Г-34	1	<1	4	< 1	<1	
Total Suspended Solids (TSS)	F∸31	1	. 22				
	F-32			8,400	2,400	16,500	
	F-33	4	22		144	260	
	F-34	4	22	100	240	700	
	, 04	4	22	30	27	58	
oH (standard units)	F-31	1	6.64			_	
	F-32	i	6.64	5.14			
	F-33	4	6.64		2.3		
	F-34	4	6.64	4.29			
and transfer for the first and the second of the control of the co		····	0.04	8.89	9.4	19.20)

- 1. The following toxic pollutants were not detected at this plant: 1-10, 12-22, 24-43, 45-54, 56, 57, 59-63, 65, 67, 69-80, 82-85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-273
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

		Stream	Sample	Conce	ntrations	(mg/1)	
		Code	Type	Source	Day 2	Day 3	Day 4
	<u>Pollutant</u>						
Toxic	Pollutants Pollutants					0.058	0.057
		I-11	1	0.022		0.058	0.010
11.	1,1,1-trichloroethane	I-12	1	0.022			0.023
		I-13	1	0.022	0.012	0.024	0.020
						0.004	0.004
	1,1,2-trichloroethane	I-11	1	ND		ND	ND
14.	1,1,2 (1 (0)) 000.	I-12	1	ND	ND	0.001	ND
		I-13	1	ND	ND	0.00.	• • •
				ND		ND	0.015
29.	1,1-dichlaroethylene	I-11	1	ND		ND	ND
23.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I-12	1	ND	ND	ND	0.007
*	•	I-13	1	ND	11.5		
			1	ND		0.096	0.139
3 0.	1,2- <u>trans</u> -dichloroethylene	I-11	i	ND		ND	ND
		I-12	i	ND	0.022	0.051	0.037
		. I-13	•				
		I-11	1	0.003		0.082	0.101
44.	methylene chloride	I-12	i	0.003		0.003	0.005
		I-12	i	0.003	0.028	0.026	0.030
	•	1-10	•				
		I-11	4	ND		0.011	0.024
65.	phenol	I-12	1,3	, ND		ND	ND
		I-13	4	ND	0.004	ND	0.007
		1 10	•				ND
		I-11	4	ND		**	ND 0.002
66.	bis(2-ethylhexyl) phthalate	Ī-12	1,3	ND		ND	ND
		I-13	4	ND	ND	ND	ND
						0.015	0.020
	tetrachloroethylene	I-11	1	ND		ND	ND
85.	tetrachiordethyrene	I-12	1	ND	NB	0.005	0.004
		I-13	1	ND	ND	0.005	0.001
						ND	ND
0.0	toluene	I-11	1	ND		0.001	0.001
86.	totaene	I-12	1	ND	ND	0.001	0.001
		1-13	1	ND	ND	0.00	
			•	ИĎ		0.972	1.250
87.	trichloroethylene	I-1,1	1			ND	0.018
01.	(1 1 Cit 1 0 0 Cit)	I-12	1.	ND ND	0.252	0.346	0.391
		I-13	1	MD	0.202		
				<0.010		<0.010	<0.010
114.	antimony	I-11	4	<0.010			<0.010
	——————————————————————————————————————	I-12	3 4	<0.010	<0.010	<0.010	<0.010
		I-13	4	\U.U1U			

Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

Toxic Pollutants (Continued) Type Source Day 2 Day 3 Day 4			Pollutant		Stream	Sample	Cor	centratio	ns (mg/1)	1 3
115. arsenic			<u> </u>		_code.	Туре	Source	Day 2		
1-11		<u>Toxi</u>	c Pollutants (Contin	ued)						
I-12 3	- ,	115.	arsenic		T_11 7 7					
1-13									<0.010	<0.010
117.				,						
117. beryllium					1-13	4	<0.010	<0.010	<0.010	
1-12 3		117.	beryllium	•	T-11			-		
1-13			•						<0.005	<0.005
118. cadmium 1-11								*		
118. cadmium					1-13	4	<0.005	<0.005	<0.005	
1-11		118.	cadmium			-				0.000
119. chromium (total)									0.050	0.020
119. chromium (total)							<0.020			
1-11		119.	Chromium (total)	I .		4	<0.020	0.120	0.080	
1-13		,	om om om (total)	· ·			<0.020			
120. copper						3	<0.020		0.020	
120. copper				*	I-13	-4	<0.020	<0.020	<0.020	
1-12 3 0.200 0.700 0.450 1-13 4 0.200 1.70 0.750 0.450 1-13 4 0.200 1.70 0.750 0.450 121. cyanide (total)	0	120	Copper						.0.020	10.020
1-12 3 0.200 1.70 0.750 0.450			coppei			4	0.200		0.700	0 450
121. cyanide (total) I - 11	įω					3			, 0.700	
121. cyanide (total)					I-13	4		1.70	0.750	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		121	Cyanida (tatal)			•			0.750	0.450
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-121,	cyanide (total)			1	<0.02		<0 0°2	40.00
1-13					I-12	. 1				
122. lead $ \begin{array}{ccccccccccccccccccccccccccccccccccc$					I-13	1		<0.02		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		122	1.00				.0.02	10.02	₹0.02	<0.02
1-12 3 <0.050 0.300 0.300		122.	read		I-11	4	<0.050		0 :050	
123. mercury 1-11					I-12				0.050	
123. mercury I-11					I-13			0 200	0 4=0	
1-12 3 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002		122				•	٠٠.٥٥٥	0.200	0.150	0.100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_143.	mercury		—I−1-1	4	<0.0002			
I-13 4 <0.0002 <0.0002 <0.0002 <0.0002 124. nickel I-11 4 <0.050 0.050 0.050 I-12 3 <0.050 0.100 1-13 4 <0.010 <0.010 <0.010 I-12 3 <0.010 <0.010 I-13 4 <0.010 <0.010 <0.010 I-13 4 <0.010 <0.010 I-13 4 <0.010 <0.010 I-13 4 <0.010 <0.010		"			I-12	3			<0.0002	
124. nickel					I-13			<0.0000		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		124		-	÷	-	, \0.0002	<0.0002	<0.0002	<0.0002
1-12 3 <0.050 0.050 0.100 0.100 0.100 0.200 0.050 <0.050 0.100 0.1		144.	птске!	. 1	I-11	4	<0.050		0.050	
1-13 4 <0.050 0.200 0.050 <0.050 125. 'selenium	4.			,	I-12				0.050	
125. selenium			•					0 200		
I-12 3 <0.010 <0.010 <0.010 I-13 4 <0.010 <0.010 <0.010							\0.050	0.200	0.050	<0.050
I-12 3 <0.010 <0.010	1	J25.	'selenium	* .	I-11	٠.4	<0.010			
I-13 4 0.010 <0.010									<0.010	
4 \U.UU \U.010 \<0.010 \\ <0.010				•				.0.0.0	1	
					- 10		\U.UIU	<0.010	<0.010	<0.010

Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

	Stream	Sample	Conc	entration	s (mg/1)	
Pollutant	Code	Type	Source	Day 2	Day 3	Day 4
Toxic Pollutants (Continued)						
100 - ilven	I-11	4	<0.010		0.020	0.060
126. silver	I-12 I-13	3 4	<0.010 <0.010	0.110	<0.010	0.030 0.030
	I-11	4	<0.010		<0.010	<0.010
127. thallium	I-12 I-13	4 3 4	<0.010 <0.010	<0.010	<0.010	<0.010 <0.010
		4	0.040		0.140	0.320
128. zinc	I-11 I-12	3	0.040	1.42	0.340	0.620 0.320
	I-13	4	0.040	1.72	0.0 (0	
Nonconventional Pollutants					<1	<1
Acidity	I-11 I-12	4 3	<1 <1			140
	I-13	4	<1	<1	<1	<1
Alkalinity	I-11 I-12	4 3	40 40		44	39 <1
	I-13	4	40	32	59	70
Aluminum	I-11	. 4	<0.100		<0.100	<0.100 0.100
	I-12 I-13	3 4	<0.100 <0.100	0.400	0.200	0.200

Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

<u> </u>	Pollutant		Stream Code	Sample Type S	Concentra ource Da	ations (mg.	/1) 3 Day 4
Nonconventio	onal <u>Pollutants</u> (Co	ontinued)					
Ammonia Nitr	ogen .	I-11 I-12	4 . 3	0.06		0.06	0.37
•		I-13	4	0.06	1.1	0.05	0.07 <0.01
Barium		I-11	4	<0.050	,	<0.050	<0.050
		I-12 I-13	3 4	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
Boron		I-11 I-12	4	<0.100		1.50	0.400
		I-12 I-13	3 4	<0.100 <0.100	0.170	1.70	0.500 0.800
Calcium		I-11 I-12	4 , 3	13.8	•	11.8	11.9
		I-13	4	13.8 13.8	15.1	12.6	13.1 12.4
Chemical Oxy	gen Demand (COD)	I-11 I-12	4 3	150 150	1	,800	76
-		I-13	4	150	180 -1	,500	72 <10
Chloride		I-11 I-12	4	30		26	35
		I-13	4	30 30	<1	27	27 32
Cobalt		I-11 I-12	· 4 3	<0.050 <0.050		<0.050	<0.050
		I-13	4	<0.050	<0.050	<0-050	<0.050 <0.050
Fluoride		I-11 I-12	4 3	0.32 0.32		0.08	0.17
**		I-13	. 4	0.32	0.29	0.08	0.35 0.22
Iron		I-11 I-12	4	0.100 0.100		0.500	0.300
		I-13	4	0.100	1.45	0.800	0.850 0.500
Magnesium	:	I-11 I-12	4 3	2.70 2.70		2.40	2.40
		I-13	4	2.70	2.90	2.40	2.50 2.30
Manganese		I-11 I-12	4 3	0.100 0.100		0.050	0.050
	:	I-13	4	0.100	0.150	0.050	0.100 0.050

Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

<u>Pol lutant</u>		Stream Code	Sample Type S	Concentra Source Day	tions (mg/ 2 Day	1) 3 Day 4
Nonconventional Pollutants (Conti	nued)					
Nonconventional Portidents (Source						
	I-11	4	<0.050		<0.050	<0.050
	I-12	3	<0.050			<0.050
	I-13	4	<0.050	<0.050	<0.050	<0.050
	I-11	1.	<0.005		0.25	<0 005
	I-12	1	<0.005		<0.005	<0.005
	I-13	1	<0.005	<0.005	<0.005	<0.005
	I-11	4	2.7	•	13	12
	I-12	3	2.7			17
	I-13	4	2.7	30	17	9.8
						00.5
Sodium	I-11	4	28.0		34.9	33.6 29.2
304 10111	I-12	3	28.0	00.0	84.8	84.6
	I-13	4	28.0	68.3	84.0	04.0
Sulfate	I-11	4	740	•	480	570
Surrate	I-12	3	740		000	580 760
	I-13	4	740	460	390	700
T1-	I-11	4	<0.050		<0.050	<0.050
Tin	I-12	3	<0.050			<0.050
	I-13	4	<0.050	<0.050	<0.050	<0.050
7.1. 1	I-11	4	<0.050		<0.050	<0.050
Titanium	I-12	3	<0.050			<0.050
	I-13	4	<0.050	<0.050	<0.050	<0.050
tal Dissolved Soli d s (TDS)	I-11	4	850		850	134
tal Dissolved 301103 (100)	I-12	3	850			180
	I-13		850	300	440	250
Total Organic Carbon (TOC)	I-11	4	63		36	11
otal organic carbon (100)	I-12	3	63			4
	I-13		63	20	17	5
~ C-lide (TC)	I-11	4	11,500		900	150
Total Solids (TS)	I-12	_	11,500		450	240
	I-13		11,500	500	450	290

Table V-273 (Continued)

	•						
	معادي والسالم المراجع والمال والمال والمساور	Stream	Sample-		<u>Concentrati</u>	ons (mg/1)	
	Pollutant	Code	Type	Source	Day 2	Day 3	Day 4
	Nonconventional Pollutants (Co	ontinued)					
	when property or some set of the second second			1 - 67			* * **
	Vanadium	I-11	4	<0.050		<0.050	<0.050
		I-12	. 3	<0.050			<0.050
		I-13	4	<0.050	<0.050	<0.050	<0.050
	Yttrium	I-11	4	<0.050		<0.050	<0.050
		I-12	3	<0.050			<0.050
		I-13	4	<0.050	<0.050	<0.050	<0.050
	Conventional Pollutants	* *					
	Oil and Grease	I-11	1	<1		59	<1
		I-12	1	<1		66	<1
	•	I-13	1	< 1	3	49	<1
) 	Total Suspended Solids (TSS)	I-11	4	300		48	16
J	,	I-12	3	300 -			16
7		I-13	4	300	200	<1	4
	pH (Standard Units)	I-11	₄	6.10		6.10	6.20
		I-12	3	6.10		20.0	2.80
		I-13	4	6.10	6.10	6.80	8.40

- 1. The following toxic pollutants were not detected at this plant: 1-10, 12, 13, 15-28, 31-43, 45-64, 67-84, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

^{**}Present, but not quantifiable.

Table V-274
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT J

Pollutant	Stream Code	Sample Type	Source	entrations (mg/1) Day 1 Day 2 Day 3
Toxic Pollutants				
114. antimony	J-7	1	<0.010	<0.010
115. arsenic	J-7	1	<0.010	<0.010
117. beryllium	J-7	1	<0.005	<0.005
118. cadmium	J-7	1	<0.020	<0.020
119. chromium (total)	J-7	1	<0.020	<0.020
120. co p per	J-7	1	<0.050	0.950
121. cyanide (total)	J-7	1	<0.02	<0.02
122. lead	J-7	1	<0.050	0.200
123. mercury	J-7	1	<0.0002	<0.0002
124. nickel	J-7	1	<0.050	<0.050
125. selenium	J-7	1	<0.010	<0.010
126. silver	J-7	1	<0.010	<0.010
127. thallium	J-7	1	<0.010	<0.010
128. zinc	J-7	1	0.080	0.100
Nonconventional Pollutants				
Acidity	J-7	1	<1	<1
Alkalinity	J-7	1	13	44
Aluminum	J-7	1	0.300	0.300
Ammonia Nitrogen	J-7	1	0.16	0.40
Barium	J-7	1	0.050	0.050
Boron	J-7	. 1	<0.100	<0.100
Calcium	J-7	. 1	10.4	9.30
Chemical Oxygen Demand (COD)	J-7	1	70	740

Table V-274 (Continued)

	<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	Day 1 Day 2	Day 3
	Nonconventional Pollutants (Continued)					
	Chloride .	J-7	1	<1	7	
	Cobalt	J-7	1	<0.050	<0.050	
	Fluoride	J-7	1.	1.2	* 1.1	
	Iron	J-7	1	0.100	0.400	-
	Magnesium	J-7	1	1.40	1.30	
	Manganese	J-7	1	0.200	<0.050	•
	Molybdenum	J-7	1 .	<0.050	0.050	
10	Phenolics	J-7	1	<0.005	. 32	•
39	Phosphate	J - 7	1	<0.5	. 4	
	Sodium	J7	1	.111	9.50	
	Sulfate	J7	1	90	1,800	
	Tin	J-7	1	<0.050	<0.050	
	Titanium	J-7	1	<0.050	<0.050	
	Total Dissolved Solids (TDS)	J-7:	1	76	260	
	Total Organic Carbon (TOC)	J-7	1	3 ,	600	
	Total Solids (TS)	J-7	• 1	125	950	
	Vanadium	J-7	1	<0.050	<0.050	2
••	Yttrium	J-7	1	<0.050	<0.050	
			•			

Table V-274 (Continued)

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Conc Source	centrations (mg/l) Day 1 Day 2 Day 3	<u> </u>
Conventional Pollutants					
Oil and Grease .	J-7	1	<1	200	
Total Suspended Solids (TSS)	J-7	1	42	500	
pH (standard units)	J-7	1	2.71	7.90	

- 1. No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected at this plant: 1, 5, 8, 9, 12, 18, 20-22, 24-28, 31, 34-37, 39-43, and 52-84.

		Stream	Sample	Conc	entration	s (mg/1)	
	<u>Pollutant</u>	_Code	Туре	Source	Day 1	Day 2	Day 3
	Toxic Pollutants						
	11. acrylonitrile	M-14	1	0.011		0.008	n an interest of
	•	M-15	1	0.011			0.017
	:	M-16	1	0.011	0.010	0.008	0.015
	'	M-17	1	0.011	0.011	0.010	0.013
		M-18	1	0.011	0.016	0.010	0.019
		M-19	1	0.011	0.011	0.009	0.018
	14. 1,1,2-trichloroethane	M-14	1	ND		ND	
		M-15	1	ИÐ			ИD
		M-16	1	ND	ND	ND	ND
		M-17	1	ND	0.001	ND	ND
		M-18	1	ND	0.001	0.001	ND
	·	M-19	1	ND	ND	. ND	ND
1041	23. chloroform	M-14	1	0.016	4	0.005	
4-		M-15	1	0.016	•		0.005
		M-16	1	0.016	ND	ND	ND
		M-17 .	.1	0.016	ND	ИD	ND
-		- M~18	1	0.016	ND	ND -	- ND
		M-1'9	1	0.016	ND	ND	ND
	26. 1,3-dichlorobenzene	M-14	1	ND		ND	
		M-15	1	ND			ND
		M-16	3	ND	0.001	ND	ND
		M~17	3	ND	ND.	ND	ИŪ
		M-18	. 1	ND	ND	ND	ND
-	=	M=19		ND	ND	ND	ND
	44. methylene chloride	M-14	1	0.002	** :	0.002	
	•	M-15	⁻ 1	0.002	· .		0.004
		M-16	1	0.002	0.003	0.003	0.002
		M-17	1	0.002	0.003	0.003	0.001
		M-18	. 1	0.002	0.003	0.003	0.003
	*	M-19	1	0.002	0.003	0.002	0.005
	55. naphthalene	. M-14	1	ND	-	ND	
		M-15	. 1	ND			N.D
	•	. M-16	. 3	ND	ND	ИD	ND
		M-17	3	ND	ND	ND	0.003
		M-18	1	. ND	ND	ΝĐ	ND
-		M-19 ,	1	NĎ.	ND	ND	ND :

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

Pollus	tant_	Stream Code	Sample Type			ntrations ay 1	s (mg/1) Day 2	Day 3	
Toxic	Pollutants (Continued)								
66.	bis(2-ethylhexyl) phthala	te	M-14 M-15 M-16 M-17 M-18 M-19	1 3 3 1	ND ND ND ND ND	ND ND ND ND	ND 0.002 ND ND ND	ND 0.005 0.001 ND ND	
86.	toluene		M-14 M-15 M-16 M-17 M-18 M-19	1 1 1 1 1	ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND 0.001 0.003	
114.	antimony		M-14 M-15 M-16 M-17 M-18 M-19	1 3 3 1 1	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 0.040 <0.100	<0.010 0.270	<0.010 <0.010 <0.010 <0.010 <0.050	
115.	arsenic		M-14 M-15 M-16 M-17 M-18 M-19	1 3 3 1	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.020	<0.010 <0.010	<0.010 0.080 0.020 <0.010 <0.020	
117,	beryllium		M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.050	<0.005 <0.200	<0.005 <0.005 <0.005 <0.005 <0.010	
118.	cadmium		M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<0.020 <0.020 <0.020 <0.020 <0.020 <0.020	0.300 0.080 <0.020 <0.200	0.020	0.020 2.10 0.020 <0.020 <0.050	

Table V-275 (Continued)

Pollu	tant	Stream Code	Sample Type	Sou		ntrations ay 1	(mg/i) Day 2	Day 3
Toxic	Pollutants (Continued)							
119.	chromium (total)	M M M	-14 -15 -16 -17 -18	1 1 3 3 1	<0.020 <0.020 <0.020 <0.020 <0.020 <0.020	0.020 <0.020 0.060 <0.200	0.220 0.200 0.020 0.240 <0.200	0.220 0.240 0.040 0.040 <0.050
120.	copper	M- M- M-	-14 -15 -16 -17 -18 -19	1 3 3 1 1	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	1.20 0.200 <0.050 <0.500	9.25 25.6 0.300 0.300 <0.500	<0.050 29.0 0.400 0.050 0.100

Table V-275 (Continued)

	Stream		Sample	e en	Concentrat	ions (mg/l)
Pollutant	Code		Туре	Source		Day 2	Day 3
T :- D-11torta (Continued)		÷					
Toxic Pollutants (Continued)							
						10.010	
127. thallium	M-14		1 1	<0.010 <0.010		<0.010	<0.010
	M-15 M-16		3	<0.010	<0.010	<0.050	<0.050
	M-17		3	<0.010	<0.010	<0.010	<0.100
	M-18		1	<0.010	<0.010	<0.010	<0.010
•	M-19		i	<0.010	<0.050	<0.050	<0.050
128. zinc	M-14		1 .	0.080		<0.050	-
120: 21110	M-15		1	0.080			<0.500
	M-16		3	0.080	0.240	5.16	6.06
	M-17		3	. 0.080	0.020	0.040	<0.020
	м-18		. 1	0.080	0.080	0.080	0.060
	M-19	i	1	0.080	<0.200	<0.200	<0.050
Nonconventional Pollutants	•			ž.			
	N- 1 4		1	<1		<1	
Acidity	M-14 M-15		1	<1		` '	<1
	M-16		¦	<1	<1	<1	<1
	M-17		3	<1	<1	<1	<1
•	M-18		ī	<1	580	1,200	430
	M-19		1	< 1	<1	<1	<1
Alkalinity	M-14		1	100		150	
Aikarinitay	M-15		1	100			300
	M-16		3	100	190	1,950	2,050
Contract Con	M-17		3,	100	800	T,330	830
	M-18		1	100	<1	<1	<1 160
	M-19		1,	100	5,740	86	160
A 2	M-14		1	0.200		2.20	
Aluminum	M-15		1	0.200		2.20	5.00
	M-16	and to do	3	0.200	0.500.	7.40	8.20
	:. M-17		3 .	0.200	0.100	0.100	0.100
	M-18		. 1	0.200	1.40	15.4	1.20
	M-19		1	0.200	<1.00	<1.00	<1.00
Ammonia Nitrogen	M-14		1	<0.1		<0.1	•
Animorria Arci ogcii	M-15		1	< 0.1			<0.1
	. M-16		3	<0.1	0.18	<0.1	2.0
	M-17		3	<0.1	<0.1	<0.1	1.3
	M-18		1	<0.1	<0.1	<0.1	<0.1
••	M-19		1 -	<0.1	0.2	<0.1	0.80

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

Pollutant	Stream Code	Sample Type	Source Source	Concentrati Day 1	ions (mg/1) Day 2	Day 3
Nonconventional Pollutants (Cor	ntinued)					
Barium	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.500	0.050 0.300 <0.050 0.100 <0.500	<0.050 0.350 <0.050 <0.050 <0.500
Boron	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<0.100 <0.100 <0.100 <0.100 <0.100 <0.100	2.10 1.60 1.60 <1.00	5.50 3.00 2.50 38.8 <1.00	<0.100 4.20 2.90 1.30 <1.00
Calcium	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1 1	36.5 36.5 36.5 36.5 36.5	37.3 26.6 30.1 390	36.9 236 15.3 34.2 425	38.7 286 13.1 31.5 63.0
Chemical Oxygen Demand (COD)	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<5 <5 <5 <5 <5 <5	62 10 20 98	60 110 58 <5 32	150 240 97 <5 40
Chloride	M-14 M-15 M-16 · M-17 M-18 M-19	1 1 3 3 1 1	10 10 10 10 10 10	187 130 14	13 540 400 14 120	<0.1 620 490 14 93
Cobalt	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.500	<0.050 0.100 <0.050 <1.00 <0.500	0.050 0.150 <0.050 <0.050 <0.500

Table V-275 (Continued)

	Stream	Sample	(Concentrat	ions (mg/l)	
Pollutant	_Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutant	s (Continued)					
Fluoride	M-14 M-15	, <u>1</u>	0.85 0.85		1.3	1.1
	M-16	3	0.85	4.8	0.83	0.66
	M-17	3	0.85	1.3	0.91	0,96
	M-18 M-19	1 1	0.85	340		,980
	M-19	ı	0.85	9.6	23	63
Iron	M-14	1	<0.050		3.85	
	M-15	1	<0.050			2.60
	M-16 M-17	3 3	<0.050 <0.050	6.80	84.5	110
•	M-18	1	<0.050	0.650 0.700	0.850 1.70	1.50 0.6 50
• .	M-19	i	<0.050	<0.500	<0.500	<0.500
Magnesium	M-14	1	11.3		11.8	
	M-15	i	11.3		11.0	10.9
	M-16	3	11.3	12.1	146	173
	M~17	3	11.3	4.00	1.70	1.80
	M-18 M-19	1 1	11.3	12.5	12.4	11.6
	. WIT 19	ı	11.3	<1.00	16.0	1.00
Manganese	M-14	1	<0.050		0,100	
	M-15	1	<0.050			0.100
	M-16	3	<0.050	0.200	2.50	3.10
	M-17 	3.	<0.050 <0.050	<0.050 <0.050	<0.050 <0.100	<0.050
	M-19	1	<0.050	<0.500	<0.500	<0.050 <0.500
**************************************			0.000			,
Molybdenum	M-14	. 1	<0.050		7.15	•
	M-15	1	<0.050			<0.500
	M−16 M−17	3 3	<0.050	0.200	1,10	1.00
in the second of	M-18	. 3	<0.050 <0.050	0.200	0.400	0.650 0.050
	M-19	i	<0.050	<0.500	<0.500	<0.500
Phenolics	M-14	1	<0.005		0.007	-
ź	M-15	. 1	<0.005	-	0.007	<0.005
	M-16	i	<0.005	<0.005	<0.005	<0.005
	M-17	_ 1	<0.005	<0.005	0.005	<0.005
	M-18	1	<0.005	<0.005	<0.005	<0.005
	M-19	1	<0.005	<0.005	<0.005	<0.005

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

	Stream	Sample		Concentrat	ions (mg/l)
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)					
Nonconverte tona?	,					
Phosphate	M-14	. 1	<4		31	
Phosphare	M-15	i	<4			44
	M-16	3	<4	24	20	<4
	M-17	3	<4	17	<4	21 2 7
*	M-18	1	<4 <4	17 17	120 17	12
	M-19	1	\4	1,	' '	
Sodium	M-14	1	5.20		49.4	
354,4	M-15	1	5.20			124
•	M-16	3	5.20	178	534	543 680
	M-17	3	5.20	441	818 96.8	213
•	M-18	1 1	5,20 5,20	61.1 5,570	5,040	3,540
	M-19	ı	5,20	5,570	3,040	0,0.0
Sulfate	M-14	1	43		68	
	M-15	1	43			120
	M-16	3	43	100	110	150 140
	M-17	3	43	75 230	110 290	110
	M-18	1 1	43 43		15,000	9,000
	M-19	ı	70	0,700	13,000	0,000
Tin	M-14	1	<0.050		<0.500	
	M-15	1	<0.050			<0.500
	M~16	3	<0.050	<0.050	1.20	1.45
•	M~17	3	<0.050	<0.050	<0.500	<0.500 <0.500
	M-18	1 1	<0.050 <0.050	<0.200 <5.00	<0.500 <5.00	<5.00
	M-19	ı	<0.050	\5.00	13.00	13.00
Titanium	M-14	1	<0.050		0.150	
	M-15	1	<0.050			0.800
	M-16	3	<0.050	<0.050	0.500	0.550
•	M-17	3	<0.050	<0.050	<0.050	<0.050 <0.050
	M-18	1	<0.050	<0.050	<0.100 <0.500	<0.500
	M-19	1	<0.050	<0.500	<0.500	١٥.500
Total Dissolved Solids (TDS)	M-14	1	270		520	1
.0.4, 2.02204	M-15	1	270			670
	M-16	3	270	600	1,500	1,500
	M-17	3	270	1,200	2,400	1,800 1,100
	M-18	1	270 2 7 0	490 17,000	1,200 18,000	12,000
	M-19	1 .	210	17,000	10,000	

Table V-275 (Continued)

	Pollutant		Code	-		Туре	<u>S</u>	ource	<u>Day</u>	<u>1</u> <u>D</u>	ay 2	<u>Day</u>
	Nonconventional Pollutants	(Con	tinued))								
	Total Organic Carbon (TOC)		M-14	*****	<i>-</i>	1 .		**				
			M-15			1	< 1					27
			M-16			3	<1		20	42		50
			M-17		'	3	<1		15	26		22
			M-18			1	<1		10	24		8
			M-19			1	<1		25	29		7
	Total Solids (TS)	٠.	M-14	:		1	280			1,100		-
			M-15			1	.280					1,400
			M~16			3	280		870	5,300		5,800
			M-17			3.	280		1,300	2,500		2,100
			M-18			1	280		550	1,200		1,100
			M-19		:	1	280		18,000	19,000		12,000
	Vanadium	:	M-14			1	<0.	050		0	. 100	
			M-15			1	<0.	050				<0.0
			M-16			3	<0.	050	<0.09	50 0	.100	
			M-1,7			3	<0.	050	<0.09	50 <0	.050	
	•		M-18		•	1	<0.	050	<0.09	50 <0	.100	
			M-19			1 ,	<0.	050	<0.50	00 <0	.500	
	Yttrium ·	1	M-14			1	<0.	050		<0	.050	
			M-15	,		1	<0.	050				<0.0
	•		- M−16			3	<0.	050	<0.05	50 <0.	. 100	
			M~17			3		050	<0.05		.050	
	•		M-18			1	<0.	050	<0.05	io <0.	100	<0.09
			M-19			1	<0.	050	<0.50		500	
-	Conventional Pollutants			1			: .					
•	0:1 1 0			:	;							
	Oil and Grease	. '	M-14		: '	1	3			<1		
		-1	M~15			1	3		•			· <1
-	-	. :	M-16			1	3		7.8	170		47
	and the second s	وو	M-17	i,		1,	3		<1 .	2.	9	3.7
		. ;	M-18			1	3		< 1	_: < 1		<1
			M-19			1 .	3		2	: <1		. <1
	Total Suspended Solids (TSS)	: 1	M-14		-	1	1.4			: 200		
	10121 000ponded 301105 (133)	' .	. M~15	,		1	14			600		
	1		M-16			3	14 14		0.40	4 100		520
		· .	M-17		•	3 3			240	4,100		4,500
			M-18			1	14 14		150 110	65 . 46		90 23

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

Pollutant	Stream Code	Sample Type	Coi Source	ncentration Day 1	ns (mg/l) Day 2	Day 3
FOTTGEATTE						
Conventional Pollutants (Contin	ued)					
pH (Standard Units)	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	7.30 7.30 7.30 7.30 7.30 7.30	7.90 11.50 1.90 11.60	6.50 10.30 11.70 1.60 9.90	7.10 10.10 11.70 2.80 11.40

- The following toxic pollutants were not detected at this plant: 1-10, 12, 13, 15-22, 24, 25, 27-43, 45-54, 56-65, 67-85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-276

		Stream	Sample	Concentrations (mg/l)				
	Pollutant	Code	Type	Source	Day 1	Day 2	Day (
Γο.x.i.α	Pollutants	* * *			e ee e	r r r r		
11.	1,1,1-trichloroethane	Q-11	1	0.018	ND	* -	0.008	
		Q-14	i	0.018	0.008	**	**	
		0-15	1	0.018	0.012	0.007	0.00	
		Q-16	1	0.018	0.009		0.00	
		Q-17	1	0.018	ND		0.00	
22.	p-chloro-m-cresol	Q-11	3	0.011	ND		ND	
		Q-14	4	0.011	ND	ND .	ND	
		Q-15	4	0.011	ND	ND	ND	
	;	Q-16	4	0.011	ND		ИD	
•		Q-17	1	0.011	ND	•	ND	
30.	1,2- <u>trans</u> -dichloroethylene	Q-11	1	ND	ND		ND	
	-	Q-14	1	ND	ND	ND	ИÐ	
	•	Q-15	1	ND	ND	ND	ИD	
		Q-16	31	ND	0.023	:	0.01	
		Q-17		ND	ND		ND	
44.	methylene chloride	Q-11	- 1	0.002	0.004		0.01	
		Q-14	1	0.002	0.016	0.014	0.01	
		Q-15 ·	1	0.002	0.004	0.005	0.12	
		Q-16	1	0.002	0.004		0.00	
		Q-17	1	0.002	0.004	÷	0.00	
65.	phenol	Q-11	3	ND	0.001		ND	
	and the second s	Q-14	4	ND	ND	ND	ND	
		Q-15	4	ND	0.016	0.006	. 0.00	
	,	Q-16	4	ND	0.003	in the second	0.00	
-		Q-17	. 1	ND	ND,	· .	В	
66.	bis(2-ethylhexyl) phthalate	Q-11	3	ND	ND =		ND	
		Q-14	4	ND	ND	0.003	ND	
		Q-15	4	ND	ND	" ND "	0.00	
	•	Q-16	4 ,	ND	ИĎ	· .	ИD	
		Q-17	1 .	ND ·	ND -		ИD	
85.	tetrachloroethylene	Q-11	1	ND	ND		ND	
	•	Q-14	1	ИD	ND	3.660	5.77	
	•	Q-15	. 1	ИD	0.399	0.555	0.46	
		: Q-16	1	ND	0.031	* .	0.13	
		Q-17	. 1	ND ·	ND		ND	

Table V-276 (Continued)

	Stream	Sample		Concentrations (mg/1)				
Pollutant	Code	Type		Source	Day 1	Day 2	Day 3	
Toxic Pollutants (Continued)								
87. trichloroethylene		Q-11	1	ND	ND		ND	
2,.		Q-14	1	ИD	ND	ND	ND	
		Q-15	1	ND	ND	ND	ND	
		Q-16	1	ND	0.001		ND	
		Q-17	1	ДИ	ND		ND	
88. vinyl chloride (chloroethy	lene)	Q-1·1	1	ND	ND		ND	
30. 1,, · 1, · 1, · (3, 1)	•	Q-14	1	ND	ND	ND	ND	
		Q-15	1	ND	ND	ND	ND	
·		Q-16	1	ND	0.002		ND	
		Q-17	1	ND	ИD		ND	

Table V-276 (Continued)

			Stream	Sample	Concentrations (mg/l)			
<u>Pollutar</u>	<u>nt</u>		<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
To-v-ie Do	allutante	(Continued)						
TOXIC FO	31 rucanes	(continued)						
114. ar	ntimony		0-11	. 3	<0.010	<0.010		<0.010
11-7. αι	TC THIOTHY		Q-14	. 4	<0.010	<0.010	<0.010	<0.010
			Q-15	4	<0.010	<0.200	<0.200	<0.100
			Q-16	4	<0.010	<0.010		<0.050
			Q-17	1	<0.010	<0.010		<0.010
115. ar	rsenic		Q-11	3	<0.010	<0.010	-	<0.010
			Q-14	4	<0.010	<0.010	<0.010	<0.010
	=		Q-15	: 4	<0.010	<0.050		<0.080
,			Õ−16	4	<0.010	<0.010		<0.010
•	-		Q-17	1	<0.010	<0.010		<0.010
117. be	eryllium		Q-11	3	<0.005	<0.005		<0.005
	3. ,		Q-14	. 4	<0.005	<0.050	<0.050	<0.050
			Q-15	. 4	<0.005	<0.005	<0.005	<0.005
		i	Q-16	4	<0.005	<0.005		<0.005
			-Q=17	1	- <0-,-005	<0.005		-<0.005
118. ca	admium		Q-11	. 3	<0.020	<0.020		<0.020
			0-14	4	<0.020	<0.200	<0.200	<0.200
			Q-15	4	<0.020	<0.020	<0.020	<0.020
			Q-16	4	<0.020	<0.020		<0.020
			Q-17	, 1	<0.020	<0.020		<0.020
119. ch	nromium (1	total)	Q-11 ·	3	<0.020	0.020		0.020
			Q-12	3	<0.020	1,800		and a second
			Q-13	3	<0.020	1,900	1	
•			Q-14	. 4	<0.020		1,590 1	,430
		1 24	Q-15	• 4	<0.020	0.080	0.100	0.060
			Q-16	4	<0.020	0.040		0.020
			Q-17	1	<0.020	0.020		0.040
110		nexavalent)	0-12	:. 3	<0.020	1,700		
119. 61	aromium (i	iexavaient)	Q-12 Q-13	3	<0.020	0.60	; •	
120. co			Q-11	. 3	<0.050	<0.050		<0.05°0
120. 60	phhei	•	0-14	. 3	<0.050	0.500	1.00	1.00
			Q-15	4	<0.050	<0.050	<0.050	<0.050
	•		Q-16	4	<0.050	<0.050	~0.000	<0.050
		•	Q-16 Q-17 -	1	<0.050	<0.050	i	<0.050
			U-1/ -	i i	SULUDU	~ u.usu		>u. uau

Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

		Stream	Sample	Co	oncentratio	us (ma/l)	
Pollu	tant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
121.	cyanide (total)	Q-11 Q-14 Q-15 Q-16 Q-17	1 1 1 1	<0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02	<0.02 <0.02 <0.02 <0.02 <0.02
122.	1 ead	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <5.000 0.150 <0.050 <0.050	<5.000 0.150	<0.050 <5.000 0.150 <0.050 <0.050
123.	mercury	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.0002 0.0002 0.0002 0.0002 0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002	<0.0002 0.0008 <0.0002 <0.0002 <0.0002
124.	nickel	Q-11 Q-14 Q-15 Q-16 Q-17	3 - 4 4 4 1	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
125.	selenium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010
126.	silver	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 1	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010 <0.010 <0.010
127.	thallium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.040 <0.010 <0.010	<0.010 <0.020	<0.010 <0.010 <0.010 <0.010 <0.020

		Stream	Sample			ions (mg/l	
<u>Pollutant</u>		Code	Туре	Source	Day 1	Day 2	Day 3
 Toxic Pollutants (Conti	านed) ***	-					
128. zinc		Q-11	3	0.040	0.320		0.420
128. 21110		Q-11 Q-14	4	0.040	13.2	10.4	9.40
		Q-15	4	0.040	0.020	<0.020	<0.020
		Q-16 Q-17	4 1	0.040 0.040	0.520 0.120		0.260 0.080
Nonconventional Polluta	nts	4	•	0.5.0	3.123		0.000
	· · · · · · · · · · · · · · · · · · ·						
Acidity		Q-11 Q-14	3 4	<1 <1	<1 130	130	<1 130
		Q-15	4	<1	<1	<1	<1
		Q-16	4	<1	<1		<1
•		Q-17	1	<1	<1		<1
Alkalinity		Q-11	3 ,	160	240		330
 		Q-14 0-15	4	160 160	<1 1,300	<1 1,100	<1 1,000
•		Q-16	· 4	160	800	1,100	670
		Q-17	1	160	150		150
Aluminum		Q-11	. 3	<0.100	0.400		0.700
A dill tridill		Q-14	4	<0.100	19.0	23.0	26.0
		Q-15	4	<0.100	0.200	0.200	0.400
		Q-16 0-17	. 4 1	<0.100 ≺0.100	0.400	ne illus aleans distinction of the second of the second	0.500 <0.100
		•	•				
Ammonia Nitrogen		Q-11 Q-14	-3 -4	0.4	1.2 8.4	28	0. 8 29
		Q-15	4	0.4	20	16	17
e de la companya de	eric - vi	Q-16	. 4	0.4	4.4	- 1	5.4
 بها المنظم ا		Q-17		0.4	1.3		0.5
Barium		Q-11	3	<0.050	<0.050		<0.050
:	,	Q-14	. 4	<0.050	<0.500	<0.500	0.500
		Q-15 Q-16	4 4	<0.050 <0.050	0.050 <0.050	0.100	0.100 <0.050
		Q-17	1	<0.050	<0.050		<0.050
Boron	•	Q~11	з .	0.300	0.100		0.100
		Q-14	4	0.300	<1.00	1.00	1.00
		Q-15	.4	0.300	0.200	0.400	0.500
		Q-16 Q-17	-1	0.300 0.300	0.200 <0.100		0.200 0.100

Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

<u>Pollutant</u>	Stream Code	Sample Type	Source	Concentratio	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Con	ntinued)					
Calcium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	3.70 3.70 3.70 3.70 3.70	5.00 15.0 191 28.3 5.00	14.0 249	5.00 13.0 199 47.2 5.60
Chemical Oxygen Demand (COD)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	500 500 500 500 500			780 ,000 ,000 770 <10
Chloride	Q-11 Q-14 Q-15 Q-16 Q-17	. 3 4 4 4 1	7 7 7 7	<1 <1 80 31 <1	<1 76	<1 <1 80 44 <1
Cobalt	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
Fluoride	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.3 0.3 0.3 0.3 0.3	0.5 8.9 2.6 2.7 1.2	8.1	1.9 9.2 3.4 1.1 0.29
Iron	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4	<0.050 <0.050 <0.050 <0.050 <0.050	30.5 0.250 0.500	30.5 0.400	0.100 30.5 0.350 0.300 0.750
Magnesium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.900 0.900 0.900 0.900	16.0 600 <0.100 28.4	487 <0.100	42.4 437 .<0.100 27.8 1.10

Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

Pollutant	Stream Code	Sample Type	Source	Concentrate Day 1	ions (mg/1 Day 2) Day 3
Nonconventional Pollutants (Con	ntinued)					
Titanium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
Total Dissolved Solids (TDS)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	260 260 260 260 260		7,400 2,000 1	580 3,300 2,000 3,800 290
Total Organic Carbon (TOC)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	4.2 4.2 4.2 4.2 4.2		2,200 1,200	69 2,100 1,300 350 <1
Total Solids (TS)	Q-11 Q-14 · Q-15 Q-16 Q-17	3 4 4 4 1	200 200 200 200 200		,	760 7,500 12,000 4,000 10,000
Vanadium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050	<5.00 <0.0 5 0	<0.050 <5.00 <0.050 <0.050 <0.050
Yttrium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050 <0.050	<0.500 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
Conventional Pollutants						
Oil and Grease	Q-11 Q-14 Q-15	1 1 1	<1 <1 <1	<1 <1	6 5	5 14 12
	Q-16 Q-17	1	<1 <1	<1 <1		9 4

Table V-276 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

Pollutant	Stream _Code	Sample Type	Source	Concentration Day 1	ns (mg/l	1) Day 3
Conventional Pollutants (Contin	ued)					
Total Suspended Solids (ISS).	Q-11 Q-14 Q-15 Q-16 Q-17		31 31 31 31 31	50 92 150 77 45	70 36	1-2- 32 2 38 3
pH (Standard Units)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4	7.90 7.90 7.90 7.90 7.90	6.80 4.40 5.50 7.80 7.40	4.40 5.30	7.30 4.40 5.30 7.30 7.80

- 1. The following toxic pollutants were not detected at this plant: 1-10, 12-21, 23-29, 31-43, 45-64, 67-84, and 86.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

**Present but not quantifiable.

Table V-277
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT R

Pollutant		Stream Code	Sample Type	Concentration Source Day 1	s (mg/1) Day 2 Day 3
Toxic Pollutants					
119. chromium (total)	R-1 R-2 R-3 R-4	7 6 6 6	<0.01 <0.01 <0.01 <0.01	0.890 0.340 <0.01 <0.01	0.740 0.300 <0.01 <0.01
124. nickel	R-1 R-2 R-3 R-4	7 ·6 6 6	0.022 0.022 0.022 0.022	0.240 <0.02	25.0 0.440 0.022 0.10
Nonconventional Pollutants					
Acidity	R-1 R-2 R-3 R-4	7 6 6 6	0 0 0	20 0 0 -	27 0 0 -
Fluoride	R-1 R-2 R-3 R-4	7 6 6 6	0.19 0.19 0.19 0.19	0.23 0.22 0.18 0.26	0.17 0.19 0.18 0.29
Iron ·	R-1 R-2 R-3 R-4	7 6 6 6	1.6 1.6 1.6	7.6 0.21 <0.1 0.38	6.8 0.28 <0.1 0.36
Conventional Pollutants					
Oil and Grease	R-1 R-2 R-3 R-4	1 1 1 1	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0

-Table V-277 (Continued)

<u>Pollutant</u>		Stream Code	Sample Type	Concentration Source Day 1	s (mg/1) Day 2 Day 3
Conventional Pollutants (Contin	ued)		· · · · · · · · · · · · · · · · · ·		. <u> </u>
Total Suspended Solids (TSS)	R-1 R-2 R-3 R-4	7 6 6 6	14 14 14 14	56 6.0 6.0 9.0A	25 7.2 1.0 7.5
pH (standard units)	R-1 R-2 R-3 R-4	1 1 1 1	· -	4.8 9.8 6.8 7.4	6.0 9.3

A - Average Value.

No analyses were performed on the following toxic pollutants: 1-118, 120-123, and 125-129.

Table V-278
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT S

			Stream	Sample	Concentrati	ons (mg/1)	
	<u>Pollutant</u>		Code	Type	Source Day 1		Day 3
Toxic	Pollutants						
115.	arsenic	S-2 S-4	2 5	<0.01 <0.01			
118.	cadmium	S-2 S-4	2 5	<0.05 <0.05			
119.	chromium (total)	S-2 S-4	2 5	<0.05 <0.05			
120.	copper	S-2 S-4	2 5	<0.05 <0.05			
121.	cyanide (total)	S-2 S-4	2 5	<0.0°			
122.	1 ead	S-2 S-4	2 5	<0.1 <0.1	0.101 <0.100		
123.	mercury	S-2 S-4	2 5	<0.00 <0.00			
124.	nickel	S-2 S-4	2 5	<0.2			
128.	zinc	S-2 S-4					
Nonce	onventional Pollutants						
Alum	inum	S-2 S-4					
Coba	1 t	S-2 S-4			<0.100 <0.100		
Fluo	ride	S-2 S-4					
Iron		S-2 S-4					

Table V-278 (Continued)

<u>Pollutant</u>	Stre <u>Cod</u>		ample Type	Concentration Source Day 1	ns (mg/l) Day 2	Day 3
Conventional Pollutants						
0il and Grease	S-2 S-4	1	<1 <1	1.6 <1		
Total Suspended Solids (TSS)	S-2 S-4	2 5	<0.1 <0.1	347 5,2		
pH (standard units)	S-2 S-4	1	<u>-</u>	8.0-8.2 7.5-8.7		

Footnote: No analyses were performed on the following toxic pollutants: 1 - 114, 116, 117, 125-127, and 129.

Table V-279
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT T

Pollutant	Stream Code		mple ype Sou	Concentratice Day		
Toxic Pollutants						
119. chromium (total)	T-2	6	<0.01	0.019	0.023	<0.010
120. copper	T-2	6	0.048	0.300	1.400	1.300
121. cyanide (total)	T-2	1	<0.01	<0.01	<0.01	<0.01
122. lead	T-2	6	<0.005	<0.005	<0.005	<0.005
124. nickel	T-2	6	0.075	0.260	0.510	0.340
Nonconventional Pollutants						
Acidity	T-2	6	**	**	**	**
Aluminum	T-2	6	0.14	0.027	0.220	0.072
Cobalt	T-2	6	<0.01	0.310	0.240	0.220
Fluoride	T-2	6	1.01	-	0.87	0.92
Iron	T-2	6 ·	0.270	0.320	0.210	0.220
Conventional Pollutants						•
Oil and Grease	T-2	1	<0.1;0.4	0.2;<0.1	1.4;2.0	•
Total Suspended Solids (TSS)	T-2	6	1	4	6	6
pH (standard units)	T-2	6	7.70	8.2	8.2	7.83

^{**}Less than detection limit. Detection limit not known.

^{1.} No analyses were performed on the following toxic pollutants: 1-118, 123, and 125-129.

Table V-280

							•	2	
	Pollutant			Stream Code	Sample	Con	centrations	(mg/1)	
				Code	Type	Source	Day 1	Day 2 D	ay 3
Toxio	Pollutants			• • • • • • • • • • • • • • • • • • •	F 7				
11.	1,1,1-trichlo-	U-15	1	N)				
	ethane .	U-18	1	NE		0.008		1.80)
23.	chloroform	U-15	1	0.0	180				
		U-18	i	0.0		0.016		0.097	7
44.	methylene chloride	U-15	1	NE)				
*		U-18	1	NE		ИD		0.082	2
48.	dichlorobromo-	U-15	1	0.0	06	*			
	methane	U-18	1	0.0		ND	•	ND	
114.	antimony	U-15	3	<0.0	006				
		U-18	3 6	<0.0		0.0067	0.216	0.001 0.151	
115.	arsenic	U~15	3	<0.0	01				
		U-18	- 6	<0.0		<0.001	<0.001	<0.001 <0.001	
117.	beryllium	U-15	3	<0.0	1				
		U-18	6	<0.0		<0.01	<0.01	<0.01 <0.01	
118.	cadmium	U-15	3 -	0.0	2.4				
		U-18	. 6	0.00		0.15	2.9	0.031 0.79	

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

	Pollutant			Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2 Day 3
Toxic	Pollutants (Contin	ued)				•		
119.	chromium (total)	U-15 U-18	3 6		033 033	0.031	0 .059	0.026 0. 16
120.	copper	U-15 U-18	3 6	0.3 0.3		1.1	1.7	0.29 5.1
121.	cyanide (total)	U−15 U−18	1	<0.0 <0.0		<0.01	<0.01	<0.01 0.034
122.	lead	U-15 U-18	3 6	0. 0.		0.31	0.23	0.15 1.3
123.	mercury	U-15 U-18	3 6	<0. <0.		<0.005	0.021	<0.005 0.006
124.	nickel	U-15 U-18	3 6		022 022	0.09	1.2	0.05 2.4
125.	selenium	U-15 U-18	3 6	<0. <0.		<0.001	0.002	<0.001 0.001

Table V-280 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

 	<u>Pollutant</u>	****	Stre Cod	•		Day 1	(mg/1) Day 2 Day 3
Toxic	Pollutants (Continu	ed)	•		•		
126.	silver	U-15 U-18	3 6	<0.0005 <0.0005	0.012	0.0025	0.011
127.	thallium	U-15 U-19	3 6	<0.001 <0.001	0.002	0.0022	<0.001 0.0027
128.	zinc	U-15 U-18	3	<0.01 <0.01	1.7	0.38	0.81 3.0
Noncoi	nventional Pollutant	s					
Acidi	ty	U-15 U-18	3 6	20.0	<10.0	<10.0	10.0 30.0
Alkal	inity	U-15 U-18	3 6	25.0 25.0	120.0	380.0	24.0 136.0

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

Pollutant		Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2 Day 3
Nonconventional Pollutar	its (Continue	<u>1)</u>				
Aluminum	U-15 U-18		. 22 . 22	0.29	0.64	0.22 0.75
Ammonia Nitrogen	U-18	6 0.	.06	0.75	2.5	2.7
Barium	U-15 U-18	3 '<0.		<0.01	0.016	<0.01 =0.01
Boron		-	.033 .033	0.08	0.47	<0.02 0.19
Calcium	U-15 U-18	3 12. 5 12.		88.0	74.0	12.0 88.0
Chemical Oxygen Demand	U-18	100	. 0	100.0	<50.0	50.0
Chloride	U-15 U-18		.0	67.0	110.0	17.0 200.0
Cobalt		-	.01 .01	0.02	<0.01	<0.01 <0.01

Table V-280 (Continued)

	Poll	tant		Sample Type	Conc	entration		
			0000	Type	<u> source</u>	Day 1	Day 2 D	ay 3
	Nonconventional	Pollutants (Continued)			,			•
	Fluoride	U-15 3						
			1.4	,	3.1	7.6	1.3 25.0	
	Gold	U-15 3 U-18 6	<0.25				<0.25	
		U-18 6	<0.25	<	0.25	<0.25	<0.25	
	Iron .	U-15 3 U-18 6	0.23			÷	0.25	
•		U-18 6	0.23		1.2	1.7	2.3	
	Magnesium	U-15 3 U-18 6	2.1				2.1	
		U-18 6	2.1		1.9	2.0	2.9	
	Manganese	U-15 3 U-18 6	<0.02				0.17	~
		U-18 6	<0.02	(0.46	0.12	0.32	
ь	Molybdenum	U-15 3	<0.03				<0.03	
.06		U-18 6	<0.03	<(0.03	<0.03	<0.03	
60	Phosphorus	U-18 6	0.78	:	3.5	3.8	6.5	

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

Pollutant		Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/l) Day 2	Day 3
Nonconventional Pollutan	<u>ts</u> (Continued	1)					
Sodium	U-15 U-18	3 7. 5 7	.2 4	00.0	1,100.0	8. 730.	
Sulfate	U-15 U-18		.3 .3 1	20.0	200.0	7. 150.	
Tin	U-15 U-18		. 25 . 25	<0.25	<0.25	<0. <0.	
Titanium .		3 <0 5 <0	. 25 . 25	<0.25	<0.25	<0. <0.	
Total Dissolved Solids (TDS)		3 150 6 150		100.0	8,600.0	140. 2,900.	
Total Organic Carbon (TOC)	U-18	6 132	.0	27.0	9.0	25 .	0
Total Solids (TS)		3 150 6 150	_	400.0	9,100.0	150. 3,000.	

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

<u>Pollutant</u>			Stream Samp Code Typ		Day 1	s (mg/1) Day 2 Day 3
Nonconventional Pollutar	nts (Conti	nued)				
Vanadium	U-15	3	<0.02			<0.02
	U-18	6	<0.02	<0.02	<0.02	<0.02
Yttrium	U-15	3	<0.12		-	<0.12
	U-18	. 6	<0.12	<0.12	<0.12	<0.12
Conventional Pollutants						
Oil and Grease	U-15	1	24.0			160.0
	U-18	1	24.0	300.0	63.0	<1.0
Total Suspended Solids	U-15	3	<1.0			2.0
(TSS)	U-18	6	<1.0	14.0	53.0	20.0
pH (standard units)	U-15	3	5			. 4
	U-18 ,	6	5	- 5	5	5

^{1.} The following toxic pollutants were not detected at this plant: 1-10, 12-22, 24-43, 45-47, and 49-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-281
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V

					Concentrations	(mg/l)		
Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Toxic Pollutants								
22. p-chloro-m-	V-10	1	ND	0.227			1.047	
cresol	V-11 -	1	ND	ND			0.187	
	V-12	1	ND			189.655		
	V-13	1	ND			26.395		
23. chloroform	V-10	1	0.103	0.098			0.035	
23. (111010101111	V-11	1	0.103	0.044			0.011	
	V-12	1	0.103			ND		
	V-13	1	0.103			ND		
66. bis(2-ethylhexyl) V-10	1	ND	ND			0.055	
phthalate	V-11	1	ND	ND			ND	
phinarace	V-12	i	ND			4.416		
	V-13	i	ND			ND		
68. di-n-butyl	V-10	1	ND	ND			0.019	
phthalate	V-11	i	ND	0.015			ND	
philialate	V-12	1	ND			ND		
	V-13	1	ND			ND		
85. tetrachloro-	V-10	1	ND	0.059			0.310	•
ethylene	V-11	i	ND	ND			0.047	
ernyrene	V-12	i	ND			<5.000		
	V-13	i	ND			ND		
114. antimony	V-10	1	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006
ii air imony	V-11	i	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006
	V-12	i	<0.0006			0.0018		
	V-13	i	<0.0006			<0.0006		
115. arsenic	V-10	1	<0.001	<0.001	<0.001		0.0011	<0.001
115. arsenic	V-10	i	<0.001	<0.001	<0.001		<0.001	<0.001
	V-11 V-12	i	<0.001			0.0035		
	V-13	i	<0.001			0.0067		
117 honyllium	V=10	1	0.012	0.3	0.2		0.1	0.086
117. beryllium	V=10 V=11	1	0.012	0.012	0.015	*	0.13	0.033
	V-12	i	0.012			0.02		
	V-13	i	0.012			0.035		
	v 10	•	- · · · -					

Table V-281 (Continued)

					Concentrations	s (mg/l)		
Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
		· 						
Toxic Pollutants (Cont	inued)							
118. cadmium	V-10 V-11 V-12 V-13	1 1 . · · 1 1	<0.03 <0.03 <0.03 <0.03	0.18 0.14	0.17 <0.03	<0.03 <0.03	0.08	0.05 <0.03
119. chromium (total)	.V-11 V-12 V-13	1 1 1 1	0.061 0.061 0.061 0.061	0.4 0.08	0.4 <0.03	0.1 0.09	0.2 0.044	0.21
119a. chromium (hexa- valent)	V-10 V-11	1	NA NA	<0.001 <0.001	<0.001	•	<0.001 <0.001	<0.00
120. copper	V-10 V-11 V-12 V-13	1	0.088 0.088 0.088 0.088	4.2 0.09	4.4 0.039	2.1 0.18	2.3 0.049	1.7 <0.03
121. cyanide (total)	V-10 V-11 V-12 V-13	1 1 1	<0.01 <0.01 <0.01 - <0.01	0.21 0.21	<0.1 0.21	0.21	0.13	0.27 0.38
122. lead	V-10 V-11 V-12 V-13	1 1 . 1 .	0.036 0.036 0.036 0.036	9.2	8.8	4.8 0.1	5.2 0.2	3.8 0.16
123. mercury	V-10 V-11 V-12 V-13	1 1 1 1	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.00 <0.00
124. nickel	V-10 V-11 V-12 V-13	1 1 1 1	0.055 0.055 0.055 0.055	1.4	1.3 0.038	0.17 0.18	0.7 0.047	0.6 0.03

Concentrations (mg/1)

Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Toxic Pollutants (C	ontinued)							
125. selenium	V-10 V-11 V-12 V-13	1 1 1	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.0012
126. silver	V-10 V-11 V-12 V-13	1 1 1	<0.0005 <0.0005 <0.0005 <0.0005	0.0011 <0.0005	0.0019 0.0005	0.0007 0.0008	0.0018 0.0011	0.001 <0.0005
127. thallium	V-10 V-11 V-12 V-13	1 1 1	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.0019	<0.001 <0.001	<0.001 <0.001
128. zinc	V-10 V-11 V-12 V-13	1 1 1	0.101 0.101 0.101 0.101	0.5 0.7	0.5	3.9 0.3	0.5 0.057	0.6 0.054
Nonconventional Pol	lutants							
Acidity	V-10 V-11 V-12 V-13	1 1 1	<10.0 <10.0 <10.0 <10.0	4,700 <10	120 20	<10 71	1,890 <10	940 <10
Alkalinity	V-10 V-11 V-12 V-13	1 1 1	33.0 33.0 33.0 33.0	33 196	<1 62	- 663 93	<1 294	<1 963
Aluminum	V-10 V-11 V-12 V-13	1 1 1 1	0.131 0.131 0.131 0.131	29.0 3.1	34.0 3.7	5.9 18.0	15.0 1.1	12.0

Table V-281 (Continued)

. <u> </u>					Concentration	ons (mg/l)		
Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Nonconventional Poll	utants (Cor	ntinued)			· · · · · · · · · · · · · · · · · · ·			
Ammonia Nitrogen	V-10 V-11 V-12 V-13	1 1 1 1	0.07 0.07 0.07 0.07	0.92 1.3	0.9	<0.02 16	<0.02 1.6	1.3 1.5
`Barium	V-10 V-11 V-12 V-13	. 1 . 1 1	0.2 0.2 0.2 0.2	2.6 0.8	2.3 0.13	0.5 1.0	1.4	0.8 0.195
Boron .	V-10 V-11 V-12 V-13	1 1 1 1	<0.2 <0.2 <0.2 <0.2	1.6 0.4	1.4	0.6 0.6	0.8	0.8 0.102
Calcium	V-10 V-11 V-12 V-13	1 1 1 1	0.045 0.045 0.045 0.045	268.0 1,418.0	230.0 1,750	68.0 47.0	457.0 1,336.0	492.0 1,350.0
Chemical Oxygen Dema (COD)	nd V-10 V-11 V-12 V-13	1 1 1	<50.0 <50.0 <50.0 <50.0	<50 <50	80 10	<50	<50	15
Chloride	V-10 V-11 V-12 V-13	1 1 - 1 1	36.0 36.0 36.0 36.0	385 100	210 55	230 120	38 60	30 42
Cobalt	V-10- V-11 V-12 V-13	1 1 1	0.044 0.044 0.044 0.044	2.2	2.1 0.049	0.18 0.15	0.9 0.079	0.8 0.05
. Fluoride	V-10 V-11 V-12 V-13	1 1 1	0.41 0.41 0.41 0.41	12 0.75	7.4 5.1	4.7 4.7	9.4 1.9	6.35 2.4

Table V-281 (Continued)

Concentrations (mg/1)

Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Nonconventional Po	ollutants (Con	tinued)						
Iron	V-10 V-11, V-12 V-13	1 1 1 1	0.16 0.16 0.16 0.16	8.1 0.23	7.6 0.4	37.0 44.0	7.8 0.17	8.7 0.15
Magnesium	V-10 V-11 V-12 V-13	1 1 1 1	8.0 8.0 8.0 8.0	24.0 1.5	5.7 0.42	50.0 2,400.0	31.0	6.4 0.25
Manganese	V-10 V-11 V-12 V-13	1 1 1	0.058 0.058 0.058 0.058	1.3 1.0	0.058 0.6	0.8 1.2	1.1	0.7 0.042
Molybdenum	V-10 V-11 V-12 V-13	1 1 1 1	<0.03 <0.03 <0.03 <0.03	9.2	9.2 4.0	2.1 0.094	4.3	5.1 1.4
Nitrate	V-10 V-11 V-12	1 1 1	<0.09 <0.09 <0.09	6,600 5,400	6,200	46	3,300	3,100
Phosphorus	V-10 V-11 V-12 V-13	1 1 1 1	0.5 0.5 0.5 0.5	60 1.2	5.8 <0.18	2.9 2.3	1.9 0.88	16 2.1
Sodium	V-10 V-11 V-12 V-13	1 1 1 1	74.0 74.0 74.0 74.0	860.0 778.0	220.0 217.0	1,519.0 11.2	1,030.0 1,033.0	305.0 1,072.0
Sulfate	V~10 V~11 V~12 V~13	1 1 1	2.8 2.8 2.8 2.8	84 73	8.8 97	12 1,100	10 97	93 91

Table V-281 (Continued)

		Concentrations (mg/1)									
Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2			
		1 10 1 10 mm	NAMES OF PERSONS ASSESSED.	, we see that the see that the see		and the second s	grand and see an				
Nonconventional Polluta	ants (Con	tinued)									
Tin	V-10	1	<0.25	0.3	0.3		<0.25	<0.2			
	V-11	1	<0.25	<0.25	<0.2		<0.25	<0.25			
	V-12	1	<0.25			<0.25					
	V-13	1	<0.25			<0.25					
Titanium	V-10	1	<0.2	24.0	23.0		15.0	6.8			
	V-11	1	<0.2	<0.2	<0.2		0.3	<0.2			
	V-12	1	<0.2			0.9					
	V-13	1	<0.2			1.3					
Total Dissolved Solids	V-10	1	300.0	11,000	11,000		7,000	5,600			
(TDS)	V-11	1	300.0	6,850	7,600		6,100	6,600			
	V-12	1	300.0			7,900					
•	V-13	, 1	300.0		•	11,000					
Total Organic Carbon	V-10	· · · · 1	<10.0	320	45		39	<1			
(TOC)	V-11	1	<10.0	50 .	<1		2	<1			
	V-12	1	<10.0		\vec{j}	1,800	-				
	V-13	1	<10.0			<1					
Total Solids (TS)	V-10	1	330.0	12,000	12,000		7,100	6,200			
	V-11	. 1 .	330.0	7,300	7,400		900	6,800			
*	V-12	1	330.0			1,500					
	V-13	1	330.0			14,000					
Uranium	V-10	1	0.89	2,300	2,100		1,300	6.4			
	V-11	1	0.89	3.4	4.6		30	5.1			
	V-12	1	0.89			37 .					
	V-13	' 1	0.89	•		0.427	•				
Vanadium	V-10	· 1	<0.03	6.0	5.3	•	2.7	1.8			
	V-11	1	<0.03	0.04	<0.03		0.041	0.12			
	V-12	1	<0.03		,	0.245					
	V-13	1	<0.03			0.11					
Yttrium	V-10	1	<0.1	1.7	1.6		1.3	0.8			
	V-11	1	<0.1	<0.1	0.1	•	<0.1	<0,1			
	V-12	1	<0.1			0.3					
	V-13	1	<0.1			<0.1					

0/

Table V-281 (Continued)

Concentrations (mg/1)

Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Nonconventional Po	llutants (Con	tinued)						***************************************
					Concentra	ations (nCi/L)		
Gross Alpha	V-10 V-11 V-12 V-13	1 1 1	0.014 0.014 0.014 0.014	2,250 3.0	2,160 2.8	25.4 0.23	994 0.94	96.7 1.1
Gross Beta	V-10 V-11 V-12 V-13	1 1 1	<0.013 <0.013 <0.013 <0.013	3,310 4.6	3,079 4.4	38.3 1.0	1,520 2.6	154 2.0
Radium-226	V-10 V-11 V-12 V-13	1 1 1 1	<0.0008 <0.0008 <0.0008 <0.0008	0.0087 <0.0008	0.005 0.0014	0.0045 <0.0009	0.0049 <0.0011	0.0060 <0.0013
					Concentra	ations (mg/l)		•
Conventional Pollu	tants						•	n.
Oil and Grease	V-10 V-11 V-12 V-13	1 1 1 1	<1.0 <1.0 <1.0 <1.0	83 7	60 <1	15,000	220 <1	10 <1

Table V-281 (Continued)

Concentrations	(mg/1)
----------------	--------

Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
deviance in the contract of th							and the second s	
Conventional Pollutants	(Contin	ued)						
Total Suspended Solids	V-10	1	<1.0	72	44		420	400
(TSS)	V-11	· 1	<1.0	180	6		420	91
	V-12	1	<1.0			470		
	V-13	1	<1.0			2,600		
pH (standard units)	V-10	1	6	1	1		2	9
	V-11	1	6	10	. 7		11-12	11-12
	V-12	1	6			8-9		
	V-13	1	6			6		

NA - Not analyzed.

^{1.} The following toxic pollutants were not detected at this plant: 1-21, 24-65, 67, 69-84, and 86-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-282
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W

	Pollutant		Stream <u>Code</u>	Sample Type	Concer Source	ntrations (mg Day 1 Day	
Toxic	<u>Pollutants</u>						
11.	1,1,1-trichloro- ethane	W-3	1	ND	ND	0.360	
14.	1,1,2-trichloro- ethane	W-3	1	ND	0.210	ND	
22.	p-chloro-m-cresol	W-3	6	ND	ND	0.048	
23.	chloroform	W-3	1 .	ND	ND	ND	
44.	methylene chloride	W-3	1	ND	31.000	9.700	
66.	bis(2-ethylhexyl) phthalate	W-3	6	ND	ND	0.016	
69.	di~n-octyl phthalate	W-3	6	ND	ND	0.012	
86.	toluene	W-3	1	ND	3.400	8.900	
114.	antimony	W-3	6	<0.0006	0.0006	0.0006	<0.0006
115.	arsenic	W-3	6	<0.001	<0.001	0.002	<0.001
117.	beryllium	W-3	6	0.2	0.059	<0.01	<0.01
118.	cadmium	W-3	6	<0.03	<0.03	<0.03	<0.03
119.	chromium (total)	W-3	6	0.052	<0.04	<0.03	<0.03
120.	copper	W-3	6	<0.03	0.032	<0.03	<0.03
121.	cyanide (total)	w-3	1	<0.1	0.63	<0.1	

Table V-282 (Continued)

	Pollutant		Stream Code	Sample Type	Conce Source	ntrations ((mg/1) Day 2 Day 3
	Toxic Pollutants (Contir	nued)		1,500	<u> </u>	<u>54,</u>	<u> </u>
	122. lead	w∸з	6	0.1	0.13	0.1	0.12
	123. mercury	w-3	6	<0.005	<0.005	<0.5	<0.005
	124. nickel	w-3	6	0.039	0.11	0.053	0.045
	125. selenium	.W-3	6	<0.0004	<0.0004	<0.0004	<0.0004
	126. silver	w-3	6	<0.005	0.005	<0.005	0.008
	127. thallium	w-3	6	<0.001	<0.001	<0.001	<0.001
	128. zinc	M-3	6	0.036	0.046	0.048	0.047
	Nonconventional Pollutar	nts					
 പ്ര	Acidity	w-3	6	10.0	70.0	20.0	10.0
108	Alkalinity	W−3	. 6	12.0	25.0	18.0	18.0
	Aluminum	- M-3	6 ··· ·	0.089	,0.9	1:.3	1.2
	Ammonia Nitrogen	W-3	6	<0.02	1.6	1.1	
	Barium	w-3	6	1.6	0.1	0.067	0.061
	Boron	W-3	6	0.19	0.083	0.3	0.12
	Ca-1-c-ium	W - 3	6	8.5	28.0	1.5	13.0
	Chemical Oxygen Demand (COD)	·-M-3	. 6	<50.0	<50.0	<50.0	

Table V-282 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W

Pollutant		Stream <u>Code</u>	Sample Type	Conce Source		(mg/1) Day 2 Day 3
Nonconventional Pollutants	<u>s</u> (Continu	ed)				
Chloride	W-3	6	3,.0	520.0	73.0	28.0
Cobalt	w-3	6	<0.03	<0.025	<0.03	<0.03
Fluoride	w-3	6	0.2	34.0	31.0	26.0
Iron	W-3	6	0.072	0.3	<0.03	0.11
Magnesium	W-3	6	2.0	0.06	3.4	2.9
Manganese	W-3	6	11.0	<0.1	0.3	0.2
Molybdenum	W-3	6	0.08	<0.03	<0.03	<0.03
Phosphorus	W-3	6	<0.18	<0.18	<0.18	
Sodium	W-3	6	14.0	390.0	170.0	110.0
Sulfate	W-3	. 6	6.2	8.5	8.5	25.0
Tin	W-3	6	<0.25	<0.25	<0.25	<0.25

<u>Pollutant</u>		Stream Code	-	Conc Source	Day 1	(mg/l) Day 2 Day	<u>/ 3</u>
Nonconventional Pollutants	(Continued)		r			
- Titanium · · · · · · · ·	8	6		<0.25		<02	
Total Dissolved Solids (TDS)	W-3	6	52.0	1,400.0	590.0	520.0	
Total Organic Carbon (TOC)	W-3	6 .	250.0	20.0	<1.0		
Total Solids (TS)	W-3	6	80.0	1,300.0	660.0	480.0	
Vanadium	W-3	6	<0.03	<0.03	<0.03	<0.03	
Yttrium	W-3	6	<0.1	<0.1	<0.1	<0.1	
Zirconium	w-3	6 -	140	. 13	11	4.8	
Conventional Pollutants			Ú				
Oil and Grease	W-3	1	6.0	71.0	9.0		
Total Suspended Solids (TSS)	w-3	6	1.0	1.0	<1.0	<1.0	
pH (standard units)	W-3	6 .	6-7	7	7	7 .	

^{1.} The following toxic pollutants were not detected at this plant: 1-10, 12, 13, 15-21, 24-43, 45-65, 67, 68, 70-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-283
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

				Stream	Sample		entrations	(mg/l)	
	Pollutant			<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
Toxio	<u>Pollutants</u>								
114.	antimony	X-4	1	<0.2		<0.2	<0.2	<0.	.2
		X-6	4	<0.2		<0.2	<0.2	<0.	
115.	arsenic	X-4	1	<0.00	05	<0.005	<0.005	<0.	.005
		X-6	4	<0.00		<0.005	<0.005		.005
117.	beryllium	X-4	1	<0.0	2	<0.02	<0.02	<0.	02
	•	X-6	4	<0.0		<0.02	<0.02	<0.	-
118.	cadmium	X-4	1	<0.03	3	0.07	0.05	n	.04
		X-6	4	<0.03		<0.03	<0.03	<0.	
119.	chromium (total)	X-4	1	<0.02	2	0.02	<0.02	<0.	nз
		X-6	4	<0.02		<0.02	<0.02	<0.	
120.	copper	X-4	1	<0.05	5	0.8	0.5	0.	4
		X-6	4	<0.0		<0.05	0.02		024
122.	lead	X-4	1	<0.1		7.1	7.0	4.	5
		X-6	4	<0.1		0.12	<0.1		11
123.	mercury	X-4	1	<0.00)5	<0.005	<0.005	<0	005
	•	X-6	4	<0.00	-	<0.005	<0.005		005
124.	nickel	X-4	1	<0.1		7.0	6.8	4.	6
	1	X-6	4	<0.1		0.17	0.14	0.	

Table V-283 (Continued)

	Pollutant			Stream Sample Code Type		entrations (m Day 1 Da	
	Toxic Pollutants (Cont	inued)					
	125. selenium	X-4	1	<0.005	<0.005	<0.005	<0.005
		X-6	4	<0.005	<0.005	<0.005	<0.005
	126. silver	X-4 X-6	1	0.002 0.002	0.57 <0.002	0.37 0.006	0.48 1.9
	127. thallium	X-4	1	<0.005	0.11	0.075	0.082
		X-6	4	<0.005	0.075	0.055	0.052
1	128. zinc	X-4	1	0.074	<0.02	<0.03	<0.03
	*	X-6	4	0.074	0.025	0.1	0.2
	Nonconventional Pollut	tants					
	Acidity	X-4	1	11	11	11	130
-	•	X-6	4	11	<10	<10	<10
	Alkalinity	X-4	1	122	129	135	172
	•	X-6	4	122	362	119	75
	Aluminum	X-4	1	0.12	0.22	0.1	<0.1
		X-6	4	0.12	1.0	2.1	1.8
	Barium	X-4	1	<0.02	<0.02	<0.02	<0.02
		X-6	4、	<0.02	<0.02	<0.02	<0.02

Table V-283 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

<u>Pollutant</u>		Stream Samp		centrations Day 1	(mg/1) Day 2 Day 3
Nonconventional Pollu	tant (Continued)			
Boron	X-4 1	0.073	2.6	3.0	4.2
	X-6 4	0.073	1.6	17	3.4
Calcium	X-4 1	31	30	36	36
	X-6 4	31	17	25	35
Cobalt	X-4 1	<0.02	<0.02	<0.03	<0.03
	X-6 4	<0.02	<0.02	<0.03	<0.03
Columbium	X-4 1	ND	ND	ND	ND
	X-6 4	ND	0.12	1.8	3.4
Fluoride	X-4 1	1.1	1.6	1.5	1.0
	X-6 4	1.1	170	200	160
Iron	X-4 1 X-6 4	0.052 0.052	2.3 0.1	2.0 0.3	1.1
Magnesium	X-4 1	10	9.1	11	11
	X-6 4	10	0.91	6.0	8.2

Table V-283 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

<u>Pollutant</u>	· · · · · · · · · · · · · · · · · · ·		ample <u>Cor</u> Type <u>Source</u>	Day 1	(mg/1) Day 2 Day 3
Nonconventional Polluta	<u>nts</u> (Continue	d)			•
Manganese	X−41 X−6 4	<0.01 <0.01	0.05 <0.01	0.07 <0.01	<0.01
Molybdenum	X-4 1	<0.03	0.7	0.6	0.6
	X-6 4	<0.03	<0.03	<0.03	<0.03
Sodium	X-4 1	23	2,000	1,400	1,600
	X-6 4	23	980	830	840
Tantalum	X-4 1	ND	ND	ND	ND
	X-6 4	ND	5.8	6.15	12
Tin	X-4 1	<0.5	<0.5	<0.5	<0.5
	X-6 4	<0.5	<0.5	<0.5	<0.5
Titanium	X-4 1 X-6 4	<0.2 <0.2	<0.2	<0.2 0.7	<0.2 0.6
Total Dissolved Solids	X-4 1	2,400	5,200	3,700	4,200
(TDS)	X-6 0 0 0.4	2,400	3,100	2,900	2,600
Total Solids (TS)	X-4 1	2,600	5,200	3,700	8,100
	X-6 4	2,600	3,000	3,000	2,800
Tungsten	X-4 1	ND	14	8.9	13.5
	X-6 4	ND	0.42	1.45	2.2

Table V-283 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

<u>Pollutant</u>		Stream Sampi Code Type		centrations Day 1	(mg/1) Day 2 Day 3				
Nonconventional Pollutants (Continued)									
Vanadium	X-4 1	<0.1	<0.1	<0.1	<0.1				
	X-6 4	<0.1	<0.1	<0.1	<0.1				
Yttrium	X-4 1	<0.0001	<0.1	<0.1	<0.1				
	X-6 4	<0.0001	<0.1	<0.1	<0.1				
Conventional Pollutants	(Continued)								
Oil and Grease	X-4 1 X-6 1	. 4	7 -15	2 <1	8 1 3				
Total Suspended Solids (TSS)	X-4 1	<1	5	17	150				
	X-6 4	<1	<1	200	200				
pH (standard units)	X-4 1	7.06	7.95	8.03	8.10				
	X-6 4	7.06	11.58	10.87	10.46				

No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

	<u>Pollutant</u>	- <u>-</u> -	Stream Code	Sample Type		trations (mg/1 Day 1 Day 2	
Toxic	Pollutants Pollutants			Separate de la constante de la	T TWEET IN A STATE OF THE		
114.	antimony	Y-13	- 6	0.0002	0.0002	<0.0002	<0.0002
115.	arsenic	Y-13	6	0.002	0.002	<0.001	0.005
117.	beryllium	Y-13	6	<0.02	<0.02	<0.02	<0.02
118.	cadmium	Y-13	6	<0.03	<0.03	<0.03	<0.03
119.	chromium (total)	Y-13	6	<0.02	<0.02	0.02	0.032
120.	copper	Y-13	6	<0.02	0.02	<0.02	<0.02
121.	cyanide (total)	Y-13	1	0.03	0.48	0.45	0.07
122.	lead	Y-13	6	. 0.067	0.14	0.14	0.15

Table V-284 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

D-11.44		Stream	Sample		trations (mg/l)	
<u>Pollutant</u>		<u>Code</u>	Type	Source	Day 1 Day 2	Day 3
Toxic Pollutants (Continued)						
123. mercury	Y-13	6	<0.005	<0.005	<0.005	<0.005
124. nickel	Y-13	6	0.1	0.3	0.3	0.7
125. selenium	Y-13	6	<0.001	<0.001	<0.001	<0.001
126. silver	Y-13	6	<0.0005	<0.0005	0.0006	<0.0005
127. thallium	Y-13	6	<0.001	<0.001	<0.001	0.003
128. zinc	Y-13	6	0.08	<0.03	<0.03	<0.03
Nonconventional Pollutants						
Acidity	Y-13	6	11.0	<10.0	21.0	40.0
Alkalinity	Y-13	6	31.0	44.0	28.0	31.0

Table V-284 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

<u>Pollutant</u>		Stream Code	Sample Type	Conce Source		g/1) y 2 Day 3
Nonconventional Pollutants	(Continued)					
Aluminum	Y-13	6	0.03	0.2	0.5	0.1
Barium	Y-13	6	<0.02	<0.02	<0.02	<0.02
Boron	Y-13	6	2.2	2.1	0.7	1.0
Calcium	Y-13	6	12.0	8,000.0	3,100.0	4,300.0
Cobalt	Y-13	6	<0.03	0.03	<0.03	0.042
Fluoride	Y-13	6	290.0	20.0	11.0	11.0
Iron	Y-13	6	0.061	0.2	0.1	0.2
Magnesium	Y-13	6	1.8	23.0	23.0	30.0

Table V-284 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

<u>Pollutant</u>		Stream <u>Code</u>	Sample Type	Conc Source	entrations (mg. Day 1 Day	
Nonconventional Pollutants (Co	ontinued))				
Manganese	Y-13	6	<0.01	<0.01	<0.01	0.02
Molybdenum	Y-13	6	0.056	1.5	1.1	0.9
Sodium	Y-13	6	14.0	880.0	1,200.0	960.0
Tin	Y-13	6	<1.0	<1.0	<1.0	<1.0
Titanium	Y-13	6	0.5	0.2	0.4	0.2
Total Dissolved Solids (TDS)	Y-13	6	120.0	9,984.0	110.0	84.0
Total Solids (TS)	Y-13	6	120.0	9,500.0	160.0	200.0
Vanadium	Y-13	6	<0.1	<0.1	<0.1	<0.1.
Yttrium	Y-13	6	<0.1	<0.1	<0.1	<0.1

Table V-284 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

Pollutant ·		Stream Code	Sample Type	Conc Source	entrations (m Day 1 Da	g/1) y 2 Day 3
Conventional Pollutants						
Oil and Grease	Y-13	1	1.0	2.0	7.0	<1.0
Total Suspended Solids (TSS)	Y-13	6	54.0	65.0	40.0	15.0
pH (standard units)	Y-13	6	6	10	7	7

NA - Not analyzed.

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-285
WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z

	<u>Pollutant</u>		Stream Code	Sample Type So	Concentrations ource Day 1	os (mg/1) Day 2	Day 3
Toxic	<u>Pollutants</u>						
114.	antimony	Z-5 Z-6 Z-7	1 1 1	0.0004 0.0004 0.0004	0.0066 0.00025 0.00025	•	
115.	arsenic	Z-5 Z-6 Z-7	1 1 1	<0.001 <0.001 <0.001	0.34 0.0053 <0.001		
117.	beryllium	Z-5 Z-6 Z-7	1 1 1	<0.01 <0.01 <0.01	0.03 <0.01 <0.01		
118.	cadmium	Z-5 Z-6 Z-7	1 1 1	<0.01 <0.01 <0.01	0.074 <0.01 0.026		
119.	chromium (total)	Z-5 Z-6 Z-7	1 1 1	0.038 0.038 0.038	13 1 0.07		
120.	copper	Z-5 Z-6 Z-7	1 1 1	0.013 0.013 0.013	0.5 0.042 0.031		
122.	lead	z-5 z-6 z-7	1 · 1 1	0.097 0.097 0.097	1.102 0.62 0.15		
123.	mercury	Z-5 Z-6 Z-7	1 1 1	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005		ü
124.	nickel	· Z-5 Z-6 Z-7	1 1 1	0.038 0.038 0.038	0.48 0.084 0.059		
125.	selenium	Z-5 Z-6 Z-7	1 1 1	0.0004 0.0004 0.0004	0.0011 0.0016 0.0004		
126.	silver	Z-5 Z-6 Z-7	1 1 1	0.0005 0.0005 0.0005	0.0022 0.057 0.044	and so the first of f	

Table V-285 (Continued)

WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z

عباس عداد وروايد		Stream	Sample-	Concentrations (mg/l)			
Pollutant		Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)	and the second second	90 - 100 Sapara <u></u>				
127. thallium	Z-5	1	<0.001	0.00	36		
	Z-6	1	<0.001	0.064			•
	Z-7	1	<0.001	. 0.02	7		
128. zinc	Z-5	1	<0.25	0.41			
	Z-6	1	<0.25	0.05	3		
	Z-7	1	<0.25				
Nonconventional Pollutants							
Acidity	Z-6	1	<10	<10	•		
•	Z-7	1	<10	27	,		
Alkalinity	Z-6						
Aikaimity	Z-7	1	69 69	925 57			
		·					
Aluminum	Z-5	1	0.11	36			
	Z-6 Z-7	1	0.11	2.4			
	2-7	1	0.11	0.23			
Barium	Z-5	1	0.04	0.34			
	Z-6	.1	0.04	0.2			
	Z-7	1	0.04	0.128			
Boron	Z-5	1	0.5	7.7			
eren eren alle alle alle eren eren eren eren eren eren eren e	Z-6	1	0.5	3.4			
	Z-7	1	0.5	1.2			
Calcium	Z-5	1	79	28,000			
	Z-6	i	79 79	9,300			•
	Z-7	1	79	1,400			
Cobalt	Z-5						
Cobair	Z-6	1 1	<0.01 <0.01	0.5	•		
	Z-7	1	<0.01	0.059			
			0.01				
Columbium	Z~5	1	ND	98			
	Z-6 Z-7	1 1	ND	3.5			
	<i>- 1</i>	ı	ND	ND			
Fluoride	Z-5	1	0.2	10			
	Z-6	1	0.2	5.3			
	Z-7	1	0.2	5.9			

1095

Table V-285 (Continued)

WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z

<u>Pollutant</u>		Stream Code	Sample Type	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants	(Continued))					
Iron	Z-5 Z-6 Z-7	1 1 1	0.24 0.24 0.24	0.53 83 0.52			
Magnesium	Z-5 Z-6 Z-7	1 1 1	8.0 8.0 8.0	83 4.6 0.31			
Manganese	Z-5 Z-6 Z-7	1 1 1	0.012 0.012 0.012	81 3.2 0.11	,		
Molybdenum	Z-5 Z-6 Z-7	1 · · · · · · · · · · · · · · · · · · ·	<0.03 <0.03 <0.03	0.26 0.12 0.13	!		
Sodium	Z-5 Z-6 Z-7 、	1 1 1	27 27 27	760 1,200 1,200			
Tantalum	Z-5 Z-6 Z-7	1 1 1	ND ND ND	90 3 ND			
Tin	Z-5 Z-6 Z-7	1 1 1	<0.28 <0.28 <0.28	0.87 <0.28 <0.28	3		
Titanium	Z-5 Z-6 Z-7	1 1 1	<0.25 <0.25 <0.25	170 11 <0.29	5		

Table V-285 (Continued)

WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z

	<u>Pollutant</u>	. An exemple we see an	Stream Code	Sample Type		rations Day 1	(mg√1) Day 2
	Nonconventional Pollutants (Cont.)		-			
	-Total Dissolved Solids (TDS)	Z=6 · · · · · · · · · · · · · · · · · · ·		110 - 110	1,000		п
	Total Solids (TS)	Z-6	1	390	1,800		
	Vanadium	Z-7	1	390 <0.02	110 7.9		
		Z-6 Z-7	1 .	<0.02 <0.02	0.55 0.02		
	Yttrjum	Z-5 Z-6 Z-7	1 1 1	<0.25 <0.25 <0.25	<0.25 <0.25 <0.25		
1097	Zirconium	2-5 Z-6 Z-7	1 1 . 1	0.26 0.26 0.26	6.7 1.4 <0.25		
	Conventional Pollutants						
	Oil and Grease	Z-5 Z-6 Z-7	1 1 1	<1 <1 <1	1 2 3	,	
	Total Suspended Solids (TSS)	Z-6 Z-7	1 1	100 100	570 45		
	_pH (standard units)	Z-5 Z-6 Z-7	1	6 6 6	1-2 1 2 6	va min - m 1 vv v v 1	

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

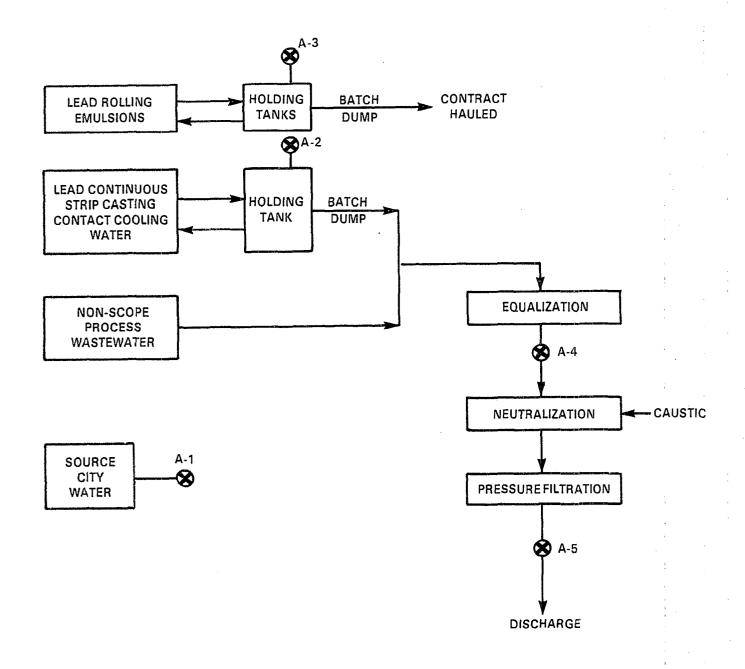


FIGURE V-1
WASTEWATER SOURCES AT PLANT A

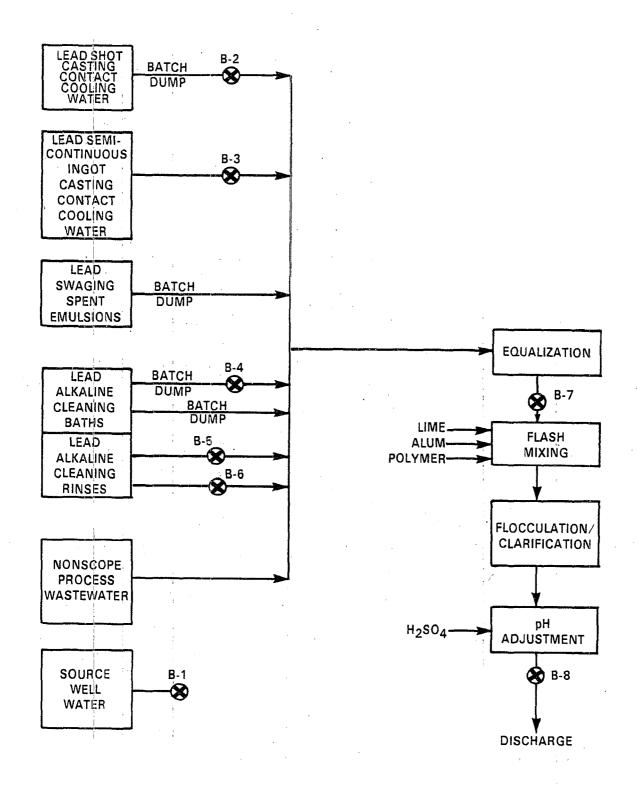


FIGURE V-2
WASTEWATER SOURCES AT PLANT B

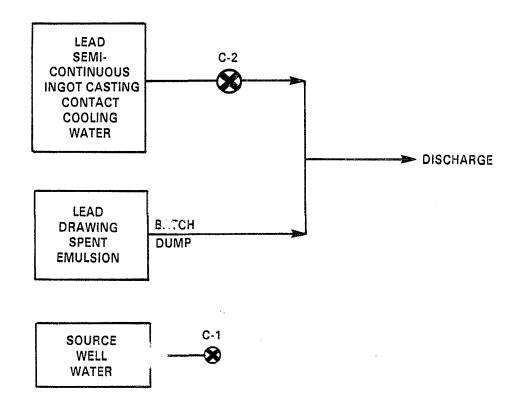


FIGURE V-3
WASTEWATER SOURCES AT PLANT C

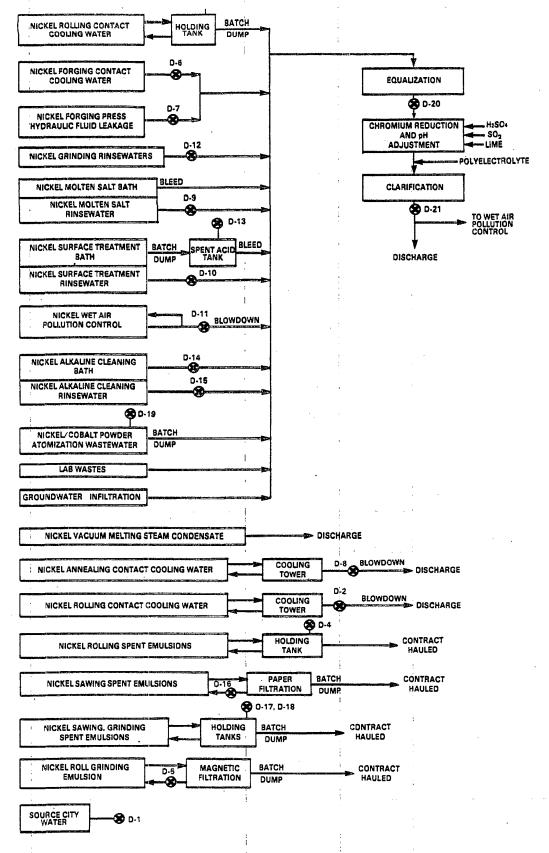


FIGURE V-4
WASTEWATER SOURCES AT PLANT D

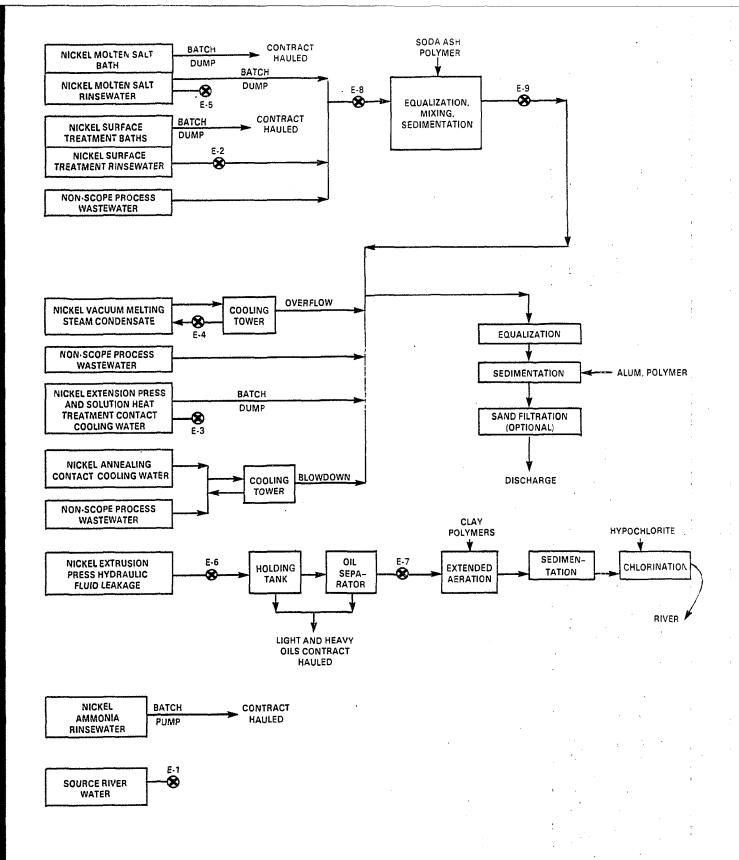
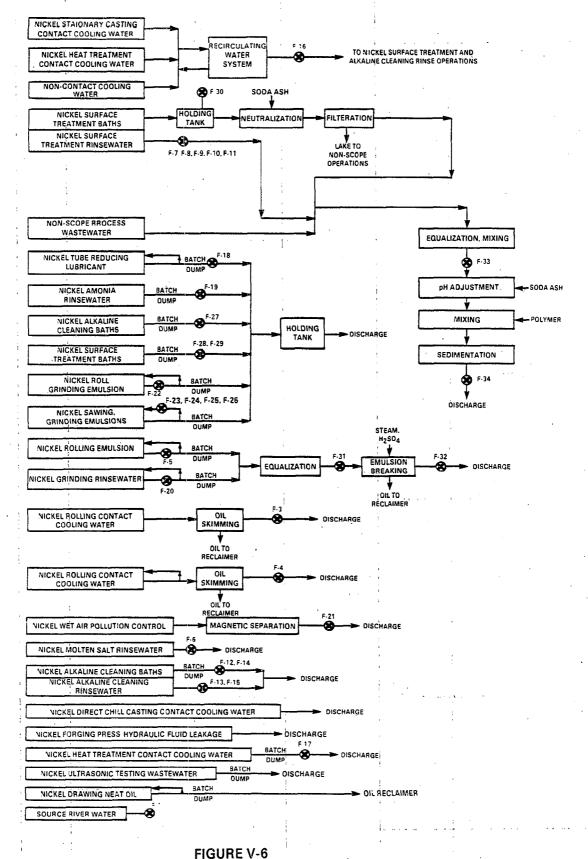
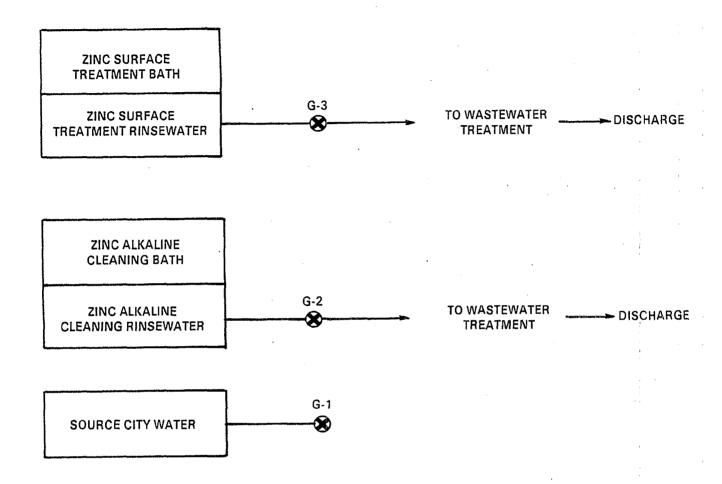




FIGURE V-5
WASTEWATER SOURCES AT PLANT E

WASTEWATER SOURCES AT PLANT F

FIGURES V-7
WASTEWATER SOURCES AT PLANT G

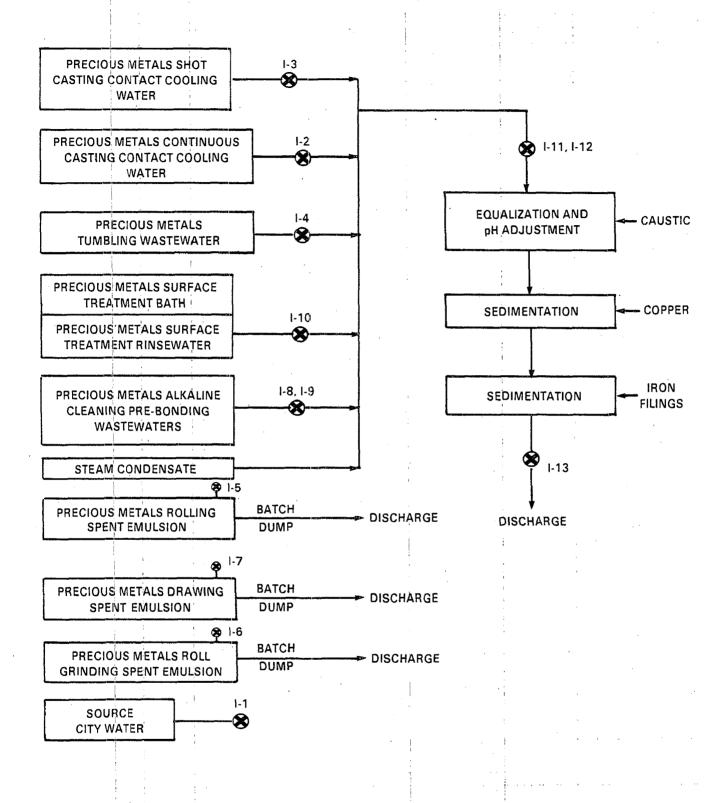


FIGURE V-8
WASTEWATER SOURCES AT PLANT I

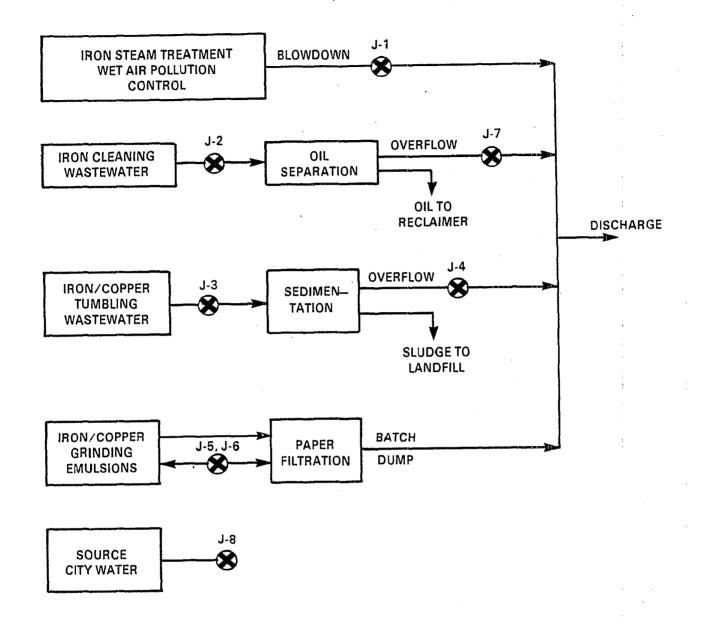


FIGURE V-9
WASTEWATER SOURCES AT PLANT J

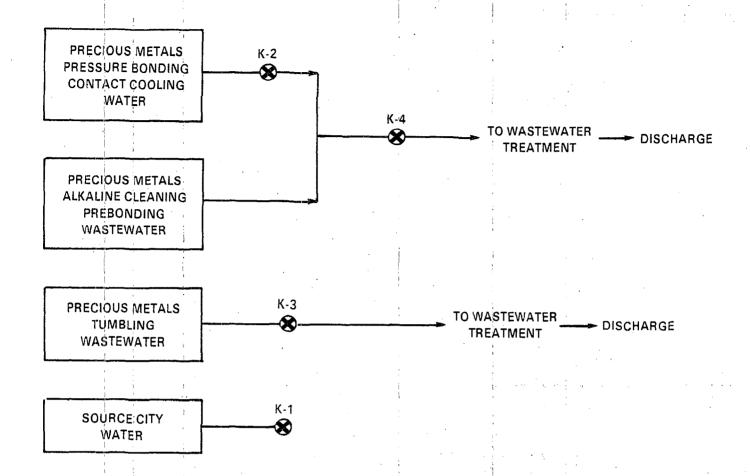


FIGURE V-10
WASTEWATER SOURCES AT PLANT K

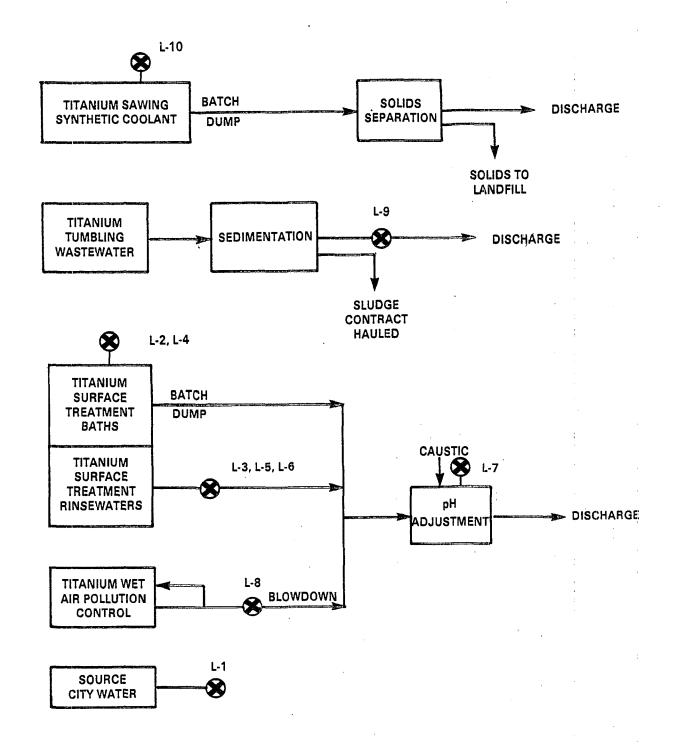
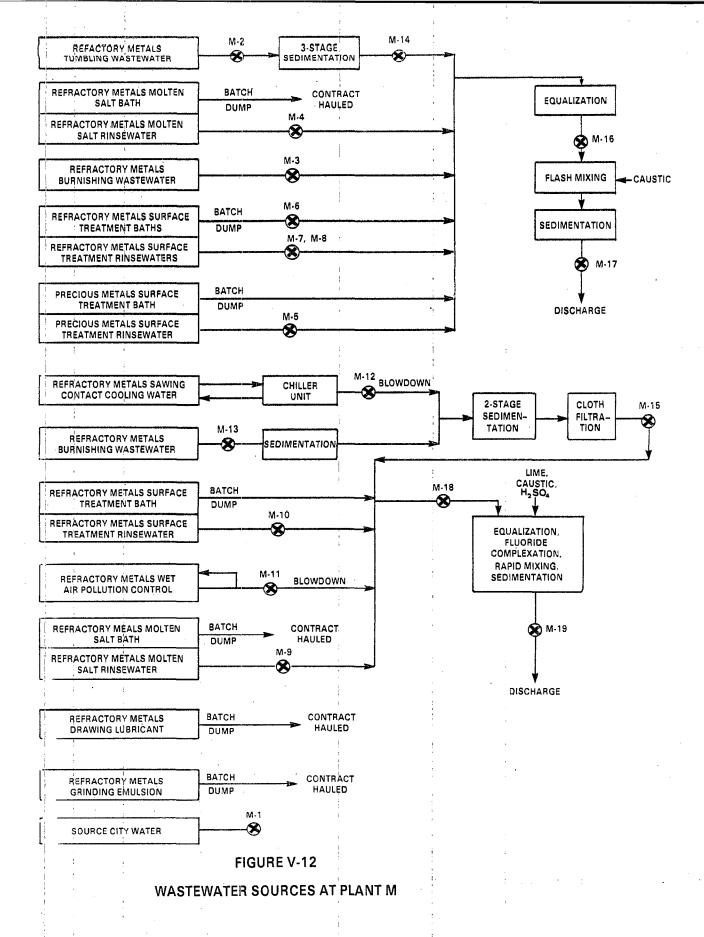



FIGURE V-11
WASTEWATER SOURCES AT PLANT L

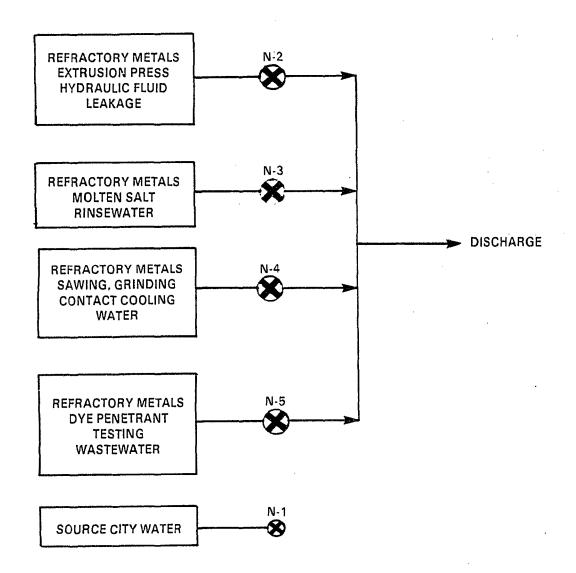


FIGURE V-13
WASTEWATER SOURCES AT PLANT N

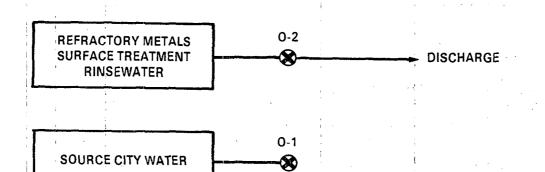


FIGURE V-14
WASTEWATER SOURCES AT PLANT O

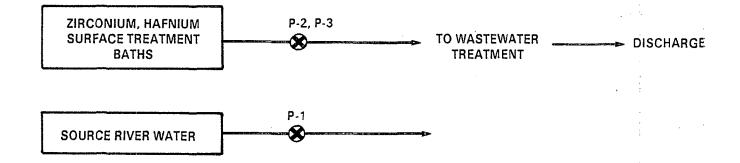
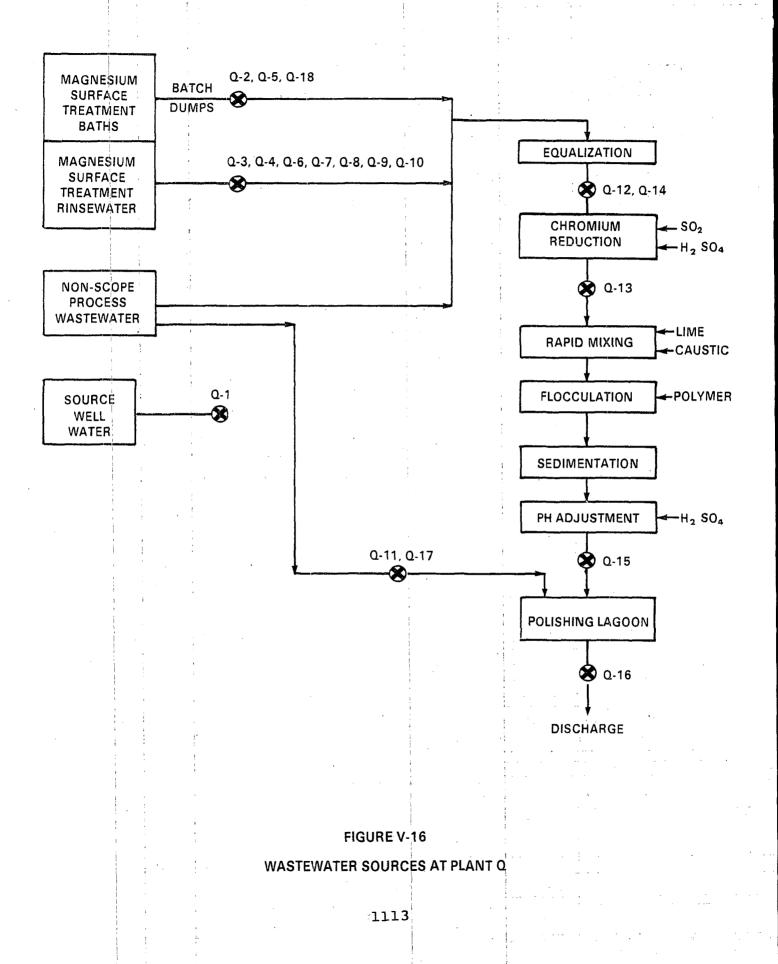



FIGURE V-15
WASTEWATER SOURCES AT PLANT P

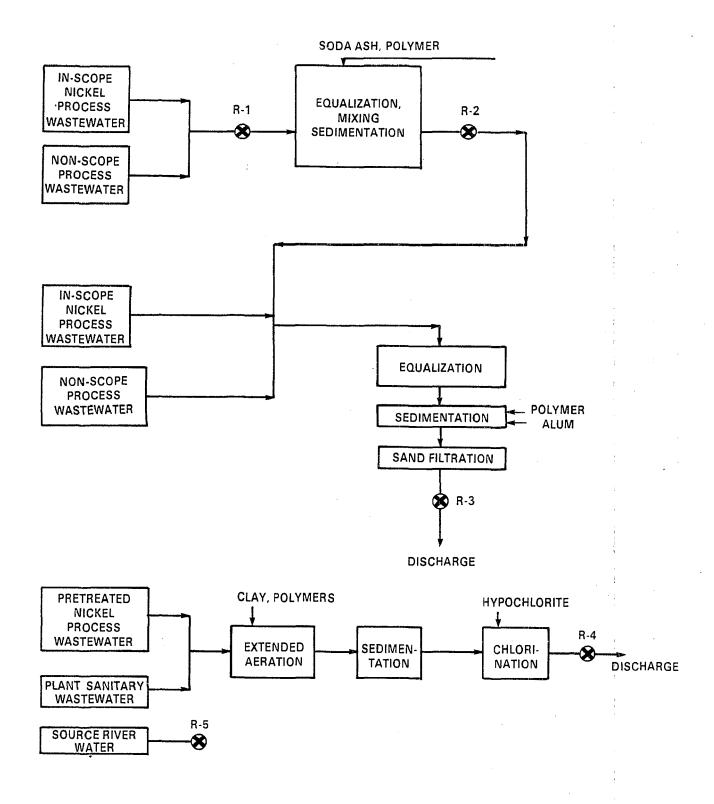
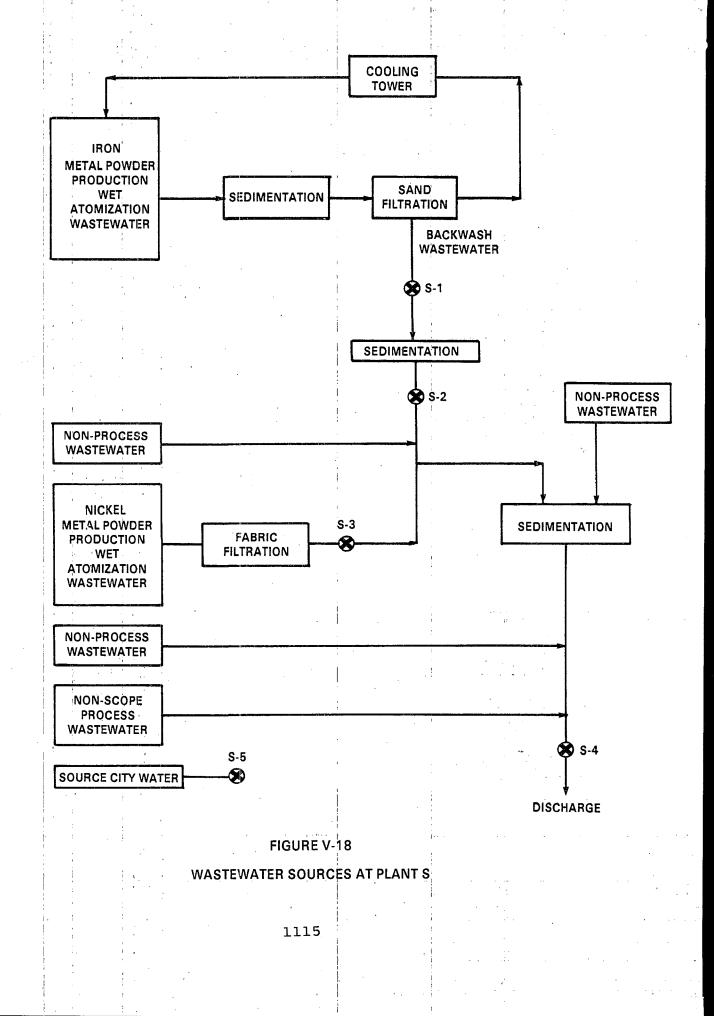



FIGURE V-17
WASTEWATER SOURCES AT PLANT R

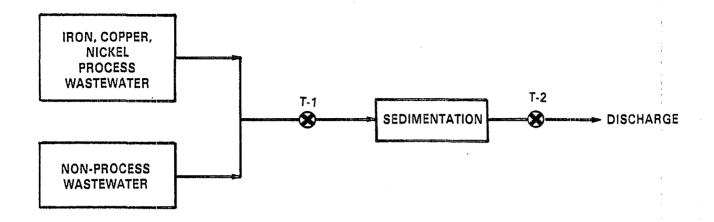
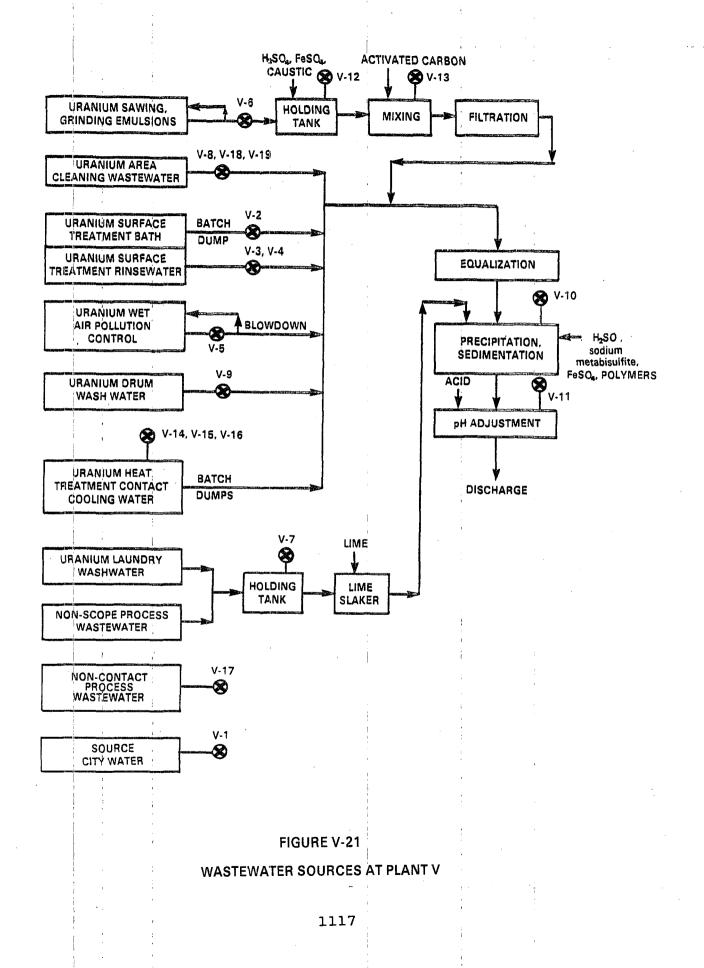



FIGURE V-19
WASTEWATER SOURCES AT PLANT T

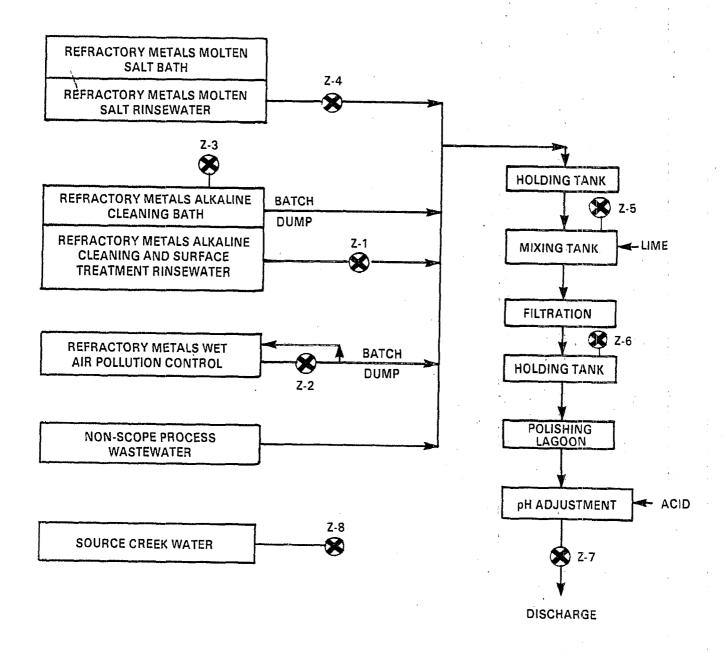


FIGURE V-25
WASTEWATER SOURCES AT PLANT Z

SECTION VI

SELECTION OF POLLUTANT PARAMETERS

The Agency has studied nonferrous metals forming wastewaters to determine the presence or absence of priority, conventional, and selected nonconventional pollutants. The priority and nonconventional pollutants are subject to BPT and BAT effluent limitations, as well as NSPS, PSES, and PSNS. The conventional pollutants are subject to BPT and BCT effluent limitations, as well as NSPS.

One hundred and twenty-nine pollutants (known as the 129 priority pollutants) were studied pursuant to the requirements of the Clean Water Act of 1977 (CWA). These pollutant parameters, which are listed in Table VI-1, are members of the 65 pollutants and classes of toxic pollutants referred to as Table 1 in Section 307(a)(1) of the CWA.

From the original list of 129 pollutants, three pollutants have been deleted in two separate amendments to 40 CFR Subchapter N, Part 401. Dichlorodifluoromethane and trichlorofluoromethane were deleted first (46 FR 2266, January 8, 1981) followed by the deletion of bis-(chloromethyl) ether (46 FR 10723, February 4, 1981).

studies by EPA and others have identified many nonconventional pollutant parameters useful nonpriority, characterizing industrial wastewaters and evaluating treatment process removal efficiencies. Certain of these and other parameters may also presence selected reliable indicators of the as of specific priority pollutants. For these reasons, a number of nonpriority pollutants were also studied for the nonferrous metals forming category.

The conventional pollutants considered (total suspended solids, oil and grease, and pH) traditionally have been studied to characterize industrial wastewaters. These parameters are especially useful in evaluating the effectiveness of wastewater treatment processes.

Several nonconventional, nonpriority pollutants were considered. As discussed in Section V, raw wastewater samples were analyzed for the following: acidity, alkalinity, aluminum, ammonia nitrogen, barium, boron, calcium, chemical oxygen demand (COD), chloride, cobalt, columbium, fluoride, gold, iron, magnesium, manganese, molybdenum, nitrate, phenolics, phosphate, phosphorus, sodium, sulfate, tantalum, tin, titanium, total dissolved solids (TDS), total organic carbon (TOC), total solids (TS), tungsten, uranium, vanadium, yttrium, zirconium, radium-226, gross-alpha, and gross-beta. Of these nonconventional pollutants, ammmonia, fluoride, gold, and molybdenum were

considered for limitation in particular subcategories, since they are found in significant concentrations in some nonferrous metals forming process wastewater streams and are not effectively controlled simply by controlling the priority metal pollutants.

RATIONALE FOR SELECTION OF POLLUTANT PARAMETERS

Exclusion of Toxic Pollutants

The Settlement Agreement in Natural Resources Defense Council, Inc. vs. Train, 8 ERC 2120 (D.D.C. 1976), modified 12 ERC 1833 (D.D.C. 1979), modified by orders of October 26, 1982, August 2, 1983, January 6, 1984, July 5, 1984 and January 7, 1985, which preceded the Clean Water Act, contains provisions authorizing the exclusion from regulation in certain instances of particular pollutants, categories, and subcategories.

Paragraph 8(a)(iii) of the Settlement Agreement allows the Administrator to exclude from regulation priority pollutants not detectable by Section 304(h) analytical methods or other stateof-the-art methods. Accordingly, pollutants that were never detected, or that were never found above their analytical quantification level, are excluded from regulation. The analytical quantification level for a pollutant is the minimum concentration at which that pollutant can be reliably measured. priority pollutants in this study, the analytical quantification 0.005 mg/l for pesticides, PCB's, and beryllium; levels are: 0.010 mg/l for antimony, arsenic, selenium, silver, thallium, and the remaining organic priority pollutants; 0.020 mg/l cadmium, chromium, cyanide, and zinc; 0.050 mg/l for copper, lead, and nickel; and 0.0002 mg/l for mercury.

Since there was no reason to expect TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) in nonferrous metals forming process water, EPA decided that maintenance of a TCDD standard in analytical laboratories was too hazardous. Consequently, TCDD was analyzed by GC/MS screening, and compared to EPA's GC/MS computer file. Samples collected by the Agency's contractor were not analyzed for asbestos. Asbestos is not expected to be a part of nonferrous metals forming wastewater since the category only includes metals that have already been refined from any ores that might contain asbestos. In addition, asbestos is not known to be present in any process chemicals used in any forming operations.

Paragraph 8(a)(iii) also allows the Administrator to exclude from regulation priority pollutants detected in amounts too small to be effectively reduced by technologies known to the Administrator. Pollutants which were detected below levels considered to be achievable by specific available treatment methods are excluded. For the priority metals, the chemical precipitation, sedimentation, and filtration technology treatment effectiveness values, which are presented in Section VII were used. For the priority organic pollutants detected above their analytical quantification level, treatment effectiveness values for activated carbon technology were used. These treatment effectiveness

values represent the most stringent treatment options considered for pollutant removal. This allows for the most conservative exclusion for pollutants detected below treatable levels.

Treatment effectiveness concentrations and analytical quantification concentrations are presented for the 129 priority pollutants in Table VI-2.

Paragraph 8(a)(iii) allows for the exclusion of a priority pollutant if it is detected in the source water of the samples taken.

In addition to the provisions outlined above, Paragraph 8(a)(iii) of the Settlement Agreement (1) allows the Administrator to exclude from regulation priority pollutants detectable in the effluent from only a small number of sources within the subcategory because they are uniquely related to those sources, and (2) allows the Administrator to exclude from regulation priority pollutants which will be effectively controlled by the technologies upon which are based other effluent limitations guidelines, or by pretreatment standards.

Waste streams in the nonferrous metals forming category have been grouped together by the subcategorization scheme described in Section IV. The pollutant exclusion procedure was applied for each of the following subcategories:

- (1) Lead-Tin-Bismuth Forming
- (2) Magnesium Forming
- (3) Nickel-Cobalt Forming
- (4) Precious Metals Forming
- (5) Refractory Metals Forming
- (6) Titanium Forming
- (7) Uranium Forming
- (8) Zinc Forming
- (9) Zirconium-Hafnium Forming
- (10) Metal Powders

Priority pollutants remaining after the application of the above exclusion process were selected for further consideration in establishing specific regulations.

DESCRIPTION OF POLLUTANT PARAMETERS

The following discussion addresses pollutant parameters detected above their analytical quantification level in any sample of nonferrous metals forming wastewater. The description of each pollutant provides the following information: the source of the pollutant; whether it is a naturally occuring element, processed metal, or manufactured compound; general physical properties and the form of the pollutant; toxic effects of the pollutant in humans and other animals; and behavior of the pollutant in a POTW at concentrations that might be expected from industrial discharges.

Acenaphthene (1). Acenaphthene (1,2-dihydroacenaphthylene, or 1,8-ethylene-naphthalene) is a polynuclear aromatic hydrocarbon (PAH) with molecular weight of 154 and a formula of $C_{12}H_{10}$.

Acenaphthene occurs in coal tar produced during high temperature coking of coal. It has been detected in cigarette smoke and gasoline exhaust condensates.

The pure compound is a white crystalline solid at room temperature with a melting range of 95C to 97C and a boiling range of 278C to 280C. Its vapor pressure at room temperature is less than 0.02 mm Hg. Acenaphthene is slightly soluble in water (100 mg/1), but even more soluble in organic solvents such as ethanol, toluene, and chloroform. Acenaphthene can be oxidized by oxygen or ozone in the presence of certain catalysts. It is stable under laboratory conditions.

Acenaphthene is used as a dye intermediate, in the manufacture of some plastics, and as an insecticide and fungicide.

So little research has been performed on acenaphthene that its mammalian and human health effects are virtually unknown. The water quality criterion of 0.02~mg/l is recommended to prevent the adverse effects on humans due to the organoleptic properties of acenaphthene in water.

No detailed study of acenaphthene behavior in a POTW is available. However, it has been demonstrated that none of the organic toxic pollutants studied so far can be broken down by biological treatment processes as readily as fatty acids, carbohydrates, or proteins. Many of the toxic pollutants have been investigated, at least in laboratory-scale studies, at concentrations higher than those expected to be contained by most municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of the toxic organic pollutants.

The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of acenaphthene. No evidence is available for drawing conclusions about its possible toxic or inhibitory effect on POTW operation.

Its water solubility would allow acenaphthene present in the influent to pass through a POTW into the effluent. The hydrocarbon character of this compound makes it sufficiently hydrophobic that adsorption onto suspended solids and retention in the sludge may also be a significant route for removal of acenaphthene from the POTW.

Acenaphthene has been demonstrated to affect the growth of plants through improper nuclear division and polyploidal chromosome number. However, it is not expected that land application of sewage sludge containing acenaphthene at the low concentrations bich are to be expected in a POTW sludge would result in any

adverse effects on animals ingesting plants grown in such soil.

Acrolein (2). The available data for acrolein indicate that acute and chronic toxicity to freshwater aquatic life occur at concentrations as low as 0.068 and 0.021 mg/l, respectively, and would occur at lower concentrations among species that are more sensitive than those tested.

For the protection of human health from the toxic properties of acrolein ingested through contaminated aquatic organisms, the ambient water criterion is determined to be 0.320 mg/l. For the protection of human health from the toxic properties of acrolein ingested though contaminated aquatic organisms alone, the ambient water criterion is determined to be 0.780 mg/l.

Acrolein has a wide variety of applications. It is used directly as a biocide for aquatic weed control; for algae, weed, and mollusk |control in recirculating process water systems; for control in the paper industry; and to protect liquid fuels Acrolein is also used directly for against microorganisms. crosslinking protein collagen in leather tanning and for tissue fixation in histological samples. It is widely used as an intermediate in the chemical industry. Its dimer, which is prepared by a thermal, uncatalyzed reaction, has several applications, including use as an intermediate for crosslinking agents, humectants, plasticizers, polyurethane intermediates, copolymers and homopolymers, and creaseproofing cotton. The monomer is utilized in synthesis via the Diels-Alder reaction as a dienophile or a Acrolein is widely used in copolymerization, but its diene. homopolymers do not appear commercially important. The copolymers of acrolein are used in photography, for textile treatment, in the paper industry, as builders in laundry and dishwasher detergents, and as coatings for aluminum and steel panels, well as other applications. In 1975, worldwide production was about 59 kilotons. Its largest market was for methionine manu-Worldwide capacity was estimated at 102 kilotons/year, facture. of which U.S. capacity was 47.6 kilotons/year.

Acrolein (2-propenal) is a liquid with a structural formula of $CH_2 = CHCHO$ and a molecular weight of 56.07. It melts at -86.95C, boils at 52.5 to 53.5C, and has a density of 0.8410 at 20C. The vapor pressure at 20C is 215 mm Hg, and its water solubility is 20.8 percent by weight at 20C.

A flammable liquid with a pungent odor, acrolein is an unstable compound that undergoes polymerization to the plastic solid disacryl, especially under light or in the presence of alkali or strong acid. It is the simplest member of the class of unsaturated aldehydes, and the extreme reactivity of acrolein is due to the presence of a vinyl group ($H_2C=H-$) and an aldehyde group on such a small molecule. Additions to the carbon-carbon double bond of acrolein are catalyzed by acids and bases. The addition of halogens to this carbon-carbon double bond proceeds readily.

Acrolein can enter the aquatic environment by its use as an

aquatic herbicide, from industrial discharge, and from the chlorination of organic compounds in wastewater and drinking water treatment. It is often present in trace amounts in foods and is a component of smog, fuel combustion, wood, and possibly other fire, and cigarette smoke. An evaluation of available data indicates that, while industrial exposure to manufactured acrolein is unlikely, acrolein from nonmanufactured sources is pervasive. Acrolein exposure will occur through food ingestion and inhalation. Exposure through the water or dermal route is less likely However, analysis of municipal effluents of Dayton, Ohio showed the presence of acrolein in six of 11 samples, with concentrations ranging from 0.020 to 200 mg/1.

Benzene (4). Benzene (C6H6) is a clear, colorless liquid obtained mainly from petroleum feedstocks by several different processes. Some is recovered from light oil obtained from coal carbonization gases. It boils at 80C and has a vapor pressure of 100 mm Hg at 26C. It is slightly soluble in water (1.8 g/l at 25C) and it dissolves in hydrocarbon solvents. Annual U.S. production is three to four million tons.

Most of the benzene used in the U.S. goes into chemical manufacture. About half of that is converted to ethylbenzene which is used to make styrene. Some benzene is used in motor fuels.

Benzene is harmful to human health, according to numerous published studies. Most studies relate effects of inhaled benzene vapors. These effects include nausea, loss of muscle coordination, and excitement, followed by depression and coma. Death is usually the result of respiratory or cardiac failure. Two specific blood disorders are related to benzene exposure. One of these, acute myelogenous leukemia, represents a carcinogenic effect of benzene. However, most human exposure data is based on exposure in occupational settings and benzene carcinogenesis is not considered to be firmly established.

Oral administration of benzene to laboratory animals produced leukopenia, a reduction in number of leukocytes in the blood. Subcutaneous injection of benzene-oil solutions has produced suggestive, but not conclusive, evidence of benzene carcinogensis.

Benzene demonstrated teratogenic effects in laboratory animals, and mutagenic effects in humans and other animals.

For maximum protection of human health from the potential carcinogenic effects of exposure to benzene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of benzene estimated to result in additional lifetime cancer risk at levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00015 mg/l, 0.0015 mg/l, and 0.015 mg/l, respectively.

Some studies have been reported regarding the behavior of benzene in a POTW. Biochemical oxidation of benzene under laboratory conditions, at concentrations of 3 to 10 mg/l, produced 24, 27,

24, and 20 percent degradation in 5, 10, 15, and 20 days, respectively, using unacclimated seed cultures in fresh water. Degradation of 58, 67, 76, and 80 percent was produced in the same time periods using acclimated seed cultures. Other studies produced similar results. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that benzene is 78 percent removed. Other reports indicate that most benzene entering a POTW is removed to the sludge and that influent concentrations of 1 g/l inhibit sludge digestion. There is no information about possible effects of benzene on crops grown in soils amended with sludge containing benzene.

Benzidine (NH₂(C₆H₄)2NH₂) is a (5). grayish-yellow, white or reddish-gray crystalline powder. melts at 127C (260F), and boils at 400C (752F). This chemical is soluble in hot water, alcohol, and ether, but only slightly soluble in water. It is derived by: (a) reducing nitrobenzene with zinc dust in an alkaline solution followed by distillation; (b) the electrolysis of nitrobenzene, followed by distillation; or, (c) the nitration of diphenyl followed by reduction of the product with zinc dust in an alkaline solution, with subsequent It is used in the synthesis of a variety of tillation. chemicals, such as stiffening agents in rubber organic compounding.

Available data indicate that benzidine is acutely toxic to fresh water aquatic life at concentrations as low as 2.50 mg/l and would occur at lower concentrations among species that are more sensitive than those tested. However, no data are available concerning the chronic toxicity to sensitive freshwater and salt water aquatic life.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to benzidine, through the ingestion of contaminated water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risk at levels of 10^{-5} , 10^{-6} , and 10^{-7} are 0.0000012 mg/l, 0.00000012 mg/l, and 0.00000012 mg/l, respectively.

With respect to treatment in POTWs, laboratory studies have shown that benzidine is amenable to treatment via biochemical oxidation. The expected 30-day average treated effluent concentration is 0.025 mg/l.

Carbon Tetrachloride (6). Carbon tetrachloride (CCl₄), also called tetrachloromethane, is a colorless liquid produced primarily by the chlorination of hydrocarbons - particularly methane. Carbon tetrachloride boils at 77C and has a vapor pressure of 90 mm Hg at 20C. It is slightly soluble in water (0.8 g/l at 25C) and soluble in many organic solvents. Approximately one-third of a million tons is produced annually in the U.S.

Carbon tetrachloride, which was displaced by perchloroethylene as

a dry cleaning agent in the 1930's, is used principally as an intermediate for production of chlorofluoromethanes for refrigerants, aerosols, and blowing agents. It is also used as a grain fumigant.

Carbon tetrachloride produces a variety of toxic effects in humans. Ingestion of relatively large quantities — greater than five grams — has frequently proved fatal. Symptoms are burning sensation in the mouth, esophagus, and stomach, followed by abdominal pains, nausea, diarrhea, dizziness, abnormal pulse, and coma. When death does not occur immediately, liver and kidney damage are usually found. Symptoms of chronic poisoning are not as well defined. General fatigue, headache, and anxiety have been observed, accompanied by digestive tract and kidney discomfort or pain.

Data concerning teratogenicity and mutagenicity of carbon tetrachloride are scarce and inconclusive. However, carbon tetrachloride has been demonstrated to be carcinogenic in laboratory animals. The liver was the target organ.

For maximum protection of human health from the potential carcinogenic effects of exposure to carbon tetrachloride through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of carbon tetrachloride estimated to result in additional lifetime cancer risk at risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.000026 mg/l, 0.00026 mg/l, and 0.0026 mg/l, respectively.

Many of the toxic organic pollutants have been investigated, at least in laboratory-scale studies, at concentrations higher than those expected to be found in most municipal wastewaters. General observations have been developed relating molecular structure ease of degradation for all of the toxic organic pollutants. The reached by study of the limited data is that conclusion biological treatment produces a moderate degree of removal carbon tetrachloride in a POTW. No information was for No information was found regarding the possible interference of carbon tetrachloride with treatment processes. The EPA's most recent study of the behavior toxic organics in a POTW indicates that carbon tetrachloride 50 percent removed. Based on the water solubility of carbon tetrachloride, and the vapor pressure of this compound, it is expected that some of the undegraded carbon tetrachloride will pass through to the POTW effluent and some will be volatilized in aerobic processes.

1,1,1-Trichloroethane (11). 1,1,1-Trichloroethane is one of the two possible trichlorethanes. It is manufactured by hydrochlorinating vinyl chloride to 1,1-dichloroethane which is then chlorinated to the desired product. 1,1,1-Trichloroethane is a liquid at room temperature with a vapor pressure of 96 mm Hg at 20C and a boiling point of 74C. Its formula is CCl₃CH₃. It is slightly soluble in water (0.48 g/l) and is very soluble in organic solvents. U.S. annual production is greater than one-third of a million tons.

1,1,1-Trichloroethane is used as an industrial solvent and degreasing agent.

Most human toxicity data for 1,1,1-trichloroethane relates to inhalation and dermal exposure routes. Limited data are available for determining toxicity of ingested 1,1,1-trichloroethane, and those data are all for the compound itself, not solutions in water. No data are available regarding its toxicity to fish and aquatic organisms. For the protection of human health from the toxic properties of 1,1,1-trichloroethane ingested through the comsumption of water and fish, the ambient water criterion is 15.7 mg/l. The criterion is based on bioassays for possible carcinogenicity.

Biochemical oxidation of many of the toxic organic pollutants has been investigated, at least in laboratory scale studies, at concentrations higher than commonly expected in municipal waste water. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of these limited data is that biological treatment produces a moderate degree of degradation of 1,1,1-trichloroethane. No evidence is available for drawing conclusions about its possible toxic or inhibitory effect on POTW operation. However, for degradation to occur, a fairly constant input of the compound would be necessary.

Its water solubility would allow 1,1,1-trichloroethane, present the influent and not biodegrada'ble, to pass through POTW into the effluent. The Agency s most recent behavior of toxic organics in a study of the indicates that 1,1,1-trichlorethane is 87 percent removed. One factor which has received some attention, detailed study, is the volatilization of the lower molecular weight organics from a POTW. Ιf 1,1,1-trichloroethane is will not biodegraded, it volatilize during aeration processes in the POTW. It has been demonstrated that none of the toxic organic pollutants of this type can be broken down by biological treatment processes as readily as fatty acids, carbohydrates, or proteins.

1,1-Dichloroethane (13). 1,1-Dichloroethane, also called ethylidene dichloride and ethylidene chloride, is a colorless liquid manufactured by reacting hydrogen chloride with vinyl chloride in 1,1-dichloroethane solution in the presence of a catalyst. How ever, it is reportedly not manufactured commercially in the U.S. 1,1-Dichloroethane boils at 57C and has a vapor pressure of 182 mm Hg at 20C. It is slightly soluble in water (5.5 g/l at 20C) and very soluble in organic solvents.

1,1-Dichloroethane is used as an extractant for heat-sensitive substances and as a solvent for rubber and silicone grease.

1,1-Dichloroethane is less toxic than its isomer (1,2-dichloroethane), but its use as an anesthetic has been discontinued

because of marked excitation of the heart. It causes central nervous system depression in humans. There are insufficient data to derive water quality criteria for 1,1-dichloroethane.

Many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained by most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic pollutants. The conclusion reached by study of the limited data is that biological treatment produces only a moderate removal of l,l-dichloroethane in a POTW by degradation. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that l,l-dichloroethane is 76 percent removed.

The high vapor pressure of 1,1-dichloroethane is expected to result in volatilization of some of the compound from aerobic processes in a POTW. Its water solubility will result in some of the 1,1-dichloroethane which enters the POTW leaving in the effluent from the POTW.

1,1,2,2-Tetrachloroethane (15). 1,1,2,2-Tetrachloroethane (CHCl2CHCl2) is a heavy, colorless, mobile, nonflammable, corrosive, toxic liquid. While it has a chloroform-like odor, it is more toxic than chloroform. It is soluble in alcohol or ether, but insoluble in water. It has no flash point, boils at 146.5C (296F) and has a vapor pressure of 5 mm Hg at 20.7C. It results from the interaction of acetylene and chlorine, with subsequent distillation. This chemical is used in organic synthesis, as a solvent, and for metal cleaning and degreasing.

Available freshwater data indicate that acute toxicity occurs at concentrations of 9.32 mg/l, and that chronic toxicity occurs at 4.000 mg/l. Available saltwater data indicate that acute toxicity occurs at 9.020 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to 1,1,2,2-tetrachloroethane, through contaminated water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risk at risk levels of 10^{-5} and 10^{-6} and 10^{-7} are 0.0017 mg/1, 0.00017 mg/1, and 0.000017 mg/1, respectively.

With respect to treatment in POTW, laboratory studies have shown that 1,1,2,2-tetrachloroethane is not amenable to treatment via biochemical oxidation. As this pollutant is insoluble in water, any removal of this pollutant which would occur in a POTW, would be related to physical treatment processes.

Para-chloro-meta-cresol Para-chloro-meta-cresol 22). (ClC₇H₆OH) is thought to be a 4-chloro-3-methyl-phenol (4-chloro-meta-cresol, or 2-chloro-5-hydroxy-toluene), but is also used by some authorities to refer to 6-chloro-3-methylphenol (6-chloro-meta-cresol, or 4-chloro-3-hydroxy-toluene), depending on whether the chlorine is considered to be para to the methyl or to the hydroxy group. It is assumed for the purposes of this document that the subject compound is 2-chloro-5-hydroxy-This compound is a colorless crystalline solid melting 66 to 68C. It is slightly soluble in water (3.8 g/l) and soluble in organic solvents. This phenol reacts with 4-amino antipyrene to give a colored product and therefore contributes to nonconventional pollutant parameter designated "Total Phenols." No information on manufacturing methods or volumes produced was found.

Para-chloro-meta cresol (abbreviated here as PCMC) is marketed as a microbicide, and was proposed as an antiseptic and disinfectant more than 40 years ago. It is used in glues, gums, paints, inks, textiles, and leather goods.

Although no human toxicity data are available for PCMC, studies on laboratory animals have demonstrated that this compound is toxic when administered subcutaneously and intravenously. Death was preceded by severe muscle tremors. At high dosages kidney damage occurred. On the other hand, an unspecified isomer of chlorocresol, presumed to be PCMC, is used at a concentration of 0.15 percent to preserve mucous heparin, a natural product administered intravenously as an anticoagulant. The report does not indicate the total amount of PCMC typically received. No information was found regarding possible teratogenicity, or carcinogenicity of PCMC.

reports indicate that PCMC undergoes degradation Two biochemical oxidation treatments carried out at concentrations higher than are expected to be encountered in POTW influents. study showed 50 percent degradation in 3.5 hours when a phenol-adapted acclimated seed culture was used with a solution of 60 mg/l PCMC. The other study showed 100 percent degradation a 20 mg/l solution of PCMC in two weeks in an aerobic sludge test system. No degradation of occurred under anaerobic conditions. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that PCMC is 89 percent removed.

Chloroform (23). Chloroform, also called trichloromethane, is a colorless liquid manufactured commercially by chlorination of methane. Careful control of conditions maximizes chloroform production, but other products must be separated. Chloroform boils

at 61C and has a vapor pressure of 200 mm Hg at 25C. It is slightly soluble in water (8.22 g/l at 20C) and readily soluble in organic solvents.

Chloroform is used as a solvent and to manufacture refrigerants, pharmaceuticals, plastics, and anesthetics. It is seldom used as an anesthetic.

Toxic effects of chloroform on humans include central nervous system depression, gastrointestinal irritation, liver and kidney damage and possible cardiac sensitization to adrenalin. Carcinogenicity has been demonstrated for chloroform on laboratory animals.

For the maximum protection of human health from the potential carcinogenic effects of exposure to chloroform through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of chloroform estimated to result in additional lifetime cancer risks at the levels of 10^{-7} , 10^{-6} , and 10^{-5} were 0.000021 mg/1, 0.00021 mg/1, and 0.0021 mg/1, respectively.

The biochemical oxidation of this compound was studied in one laboratory scale study at concentrations higher than those expected to be contained by most municipal wastewaters. After 5, 10, and 20 days no degradation of chloroform was observed. The conclusion reached is that biological treatment produces little or no removal by degradation of chloroform in a POTW.

The high vapor pressure of chloroform is expected to result in volatilization of the compound from aerobic treatment steps in a POTW. Remaining chloroform is expected to pass through into the POTW effluent. In addition, the most recent EPA study of the behavior of toxic organics in a POTW indicates that chloroform is 61 percent removed.

3,3'-Dichlorobenzidine (28). 3,3'-Dichlorobenzidine (DCB) or dichlorobenzidine (4,4'-diamino-3,3'-dichlorobiphenyl) is used in the production of dyes and pigments and as a curing agent for polyurethanes. The molecular formula of dichlorobenzidine is C12H10Cl2N2 and the molecular weight is 253.13.

DCB forms brownish needles with a melting point of 132 to 133C. It is readily soluble in alcohol, benzene, and glacial acetic acid, slightly soluble in HCl, and sparingly soluble in water (0.7 g/l at 15C). When combined with ferric chloride or bleaching powder, a green color is produced.

The affinity of DCB for suspended particulates in water is not clear; its basic nature suggests that it may be fairly tightly bound to humic materials in soils. Soils may be moderate to long term reservoirs for DCB.

Pyrolysis of DCB will most likely lead to the release of HCl. Because of the halogen substitution, DCB compounds probably bio-

degrade at a slower rate than benzidine alone. The photochemistry of DCB is not completely known. DCB may photodegrade to benzidine.

Assuming the clean air concentrations of ozone (2×10^{-9}) and an average atmospheric concentration of hydroxyl radicals $(3 \times 10^{-15} \text{ M})$, the half life for oxidation of DCB by either of these chemical compounds is on the order of one and one to 10 days, respectively. Furthermore, assuming a representative concentration of 10^{-19} M for peroxy radicals in sunlit oxygenated water, the half-life for oxidation by these compounds is approximately 100 days, given the variability of environmental conditions.

The data base available for dichlorobenzidines and freshwater organisms is limited to one test on bioconcentration of 3,3'-dichlorobenzidine. No statement can be made concerning acute or chronic toxicity of this pollutant.

No saltwater organisms have been tested with any dichlorobenzidine; no statement can be made concerning acute or chronic toxicity for that pollutant on saltwater organisms.

For the maximum protection of human health from the potential carcinogenic effects due to exposure of dichlorobenzidine through ingestion of contaminated water and contaminated aquatic organisms, the ambient water concentration should be zero based on the non-threshold assumption for this chemical. However, the levels that may result in incremental increase of cancer risk over the lifetime were estimated at 10^{-5} , 10^{-6} , and 10^{-7} . corresponding recommended criteria are 0.000103 mg/l, mg/l and 0.000001 mg/l, respectively. If the above 0.00001 estimates are made for consumption of aquatic organisms consumption of water, the levels are only, excluding 0.000020 0.000204 mg/1, mg/1, and 0.000002 mq/l, respectively.

1,1-Dichloroethylene (29). 1,1-Dichloroethylene (1,1-DCE), also called vinylidene chloride, is a clear colorless liquid manufactured by dehydrochlorination of 1,1,2-trichloroethane. 1,1-DCE has the formula CCl₂CH₂. It has a boiling point of 32C, and a vapor pressure of 591 mm Hg at 25C. 1,1-DCE is slightly soluble in water (2.5 mg/l) and is soluble in many organic solvents. U.S. production is in the range of hundreds of thousands of tons annually.

1,1-DCE is used as a chemical intermediate and for copolymer coatings or films. It may enter the wastewater of an industrial facility as the result of decomposition of 1,1,1-trichloroethylene used in degreasing operations, or by migration from vinylidene chloride copolymers exposed to the process water. Human toxicity of 1,1-DCE has not been demonstrated; however, it is a suspected human carcinogen. Mammalian toxicity studies have focused on the liver and kidney damage produced by 1,1-DCE.

Various changes occur in those organs in rats and mice ingesting 1,1-DCE.

For the maximum protection of human health from the potential carcinogenic effects of exposure to 1,1-dichloroethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. The concentration of 1,1-DCE estimated to result in an additional lifetime cancer risk of 1 in 100,000 is 0.0013 mg/1.

Under laboratory conditions, dichloroethylenes have been shown to be toxic to fish. The primary effect of acute toxicity of the dichloroethylenes is depression of the central nervous system. The octanol/water partition coefficient of 1,1-DCE indicates it should not accumulate significantly in animals.

Biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of 1,1-dichloroethylene. No evidence is available for drawing conclusions about the possible toxic or inhibitory effect of 1,1-DCE on POTW operation. Because of water solubility, 1,1-DCE which is not volatilized or degraded is expected to pass through a POTW. Very little 1,1-DCE is expected to be found in sludge from a POTW.

The most recent EPA study of the behavior of toxic organics in a POTW indicates that 1,1-DCE is 80 percent removed. The very high vapor pressure of 1,1-DCE is expected to result in release of significant percentages of this material to the atmosphere in any treatment involving aeration. Degradation of dichloroethylene in air is reported to occur, with a half-life of eight weeks.

2,4-Dimethylphenol (34). 2,4-Dimethylphenol (2,4-DMP), also called 2,4-xylenol, is a colorless, crystalline solid at room temperature (25C), but melts at 27C to 28C. 2,4-DMP is slightly soluble in water and, as a weak acid, is soluble in alkaline solutions. Its vapor pressure is less than 1 mm Hg at room temperature.

2,4-DMP is a natural product, occurring in coal and petroleum sources. It is used commercially as an intermediate for manufacture of pesticides, dye stuffs, plastics and resins, and surfactants. It is found in the water runoff from asphalt surfaces. It can find its way into the wastewater of a manufacturing plant from any of several adventitious sources.

Analytical procedures specific to this compound are used for its identification and quantification in wastewaters. This compound does not contribute to "Total Phenols" determined by the 4-aminoantipyrene method.

Three methylphenol isomers (cresols) and six dimethylphenol isomers (xylenols) generally occur together in natural products, industrial processes, commercial products, and phenolic wastes. Therefore, data are not available for human exposure to 2,4-DMP alone. In addition to this, most mammalian tests for toxicity of individual dimethylphenol isomers have been conducted with isomers other than 2,4-DMP.

In general, the mixtures of phenol, methylphenols, and dimethyl phenols contain compounds which produced acute poisoning in laboratory animals. Symptoms were difficult breathing, rapid muscular spasms, disturbance of motor coordination, and asymmetrical body position. In a 1977 National Academy of Science publication the conclusion was reached that, "In view of the relative paucity of data on the mutagenicity, carcinogenicity, teratogenicity, and long term oral toxicity of 2,4-dimethylphenol, estimates of the effects of chronic oral exposure at low levels cannot be made with any confidence." No ambient water quality criterion can be set at this time. In order to protect public health, exposure to this compound should be minimized as soon as possible.

Toxicity data for fish and freshwater aquatic life are limited; however, in reported studies of 2,4-dimethylphenol at concentrations as high as 2 mg/l no adverse effects were observed.

Biological degradability of 2,4-DMP as determined in one study, showed 94.5 percent removal based on chemical oxygen demand (COD). Another study determined that persistance of 2,4-DMP in the environment is low, and thus any of the compound which remained in the sludge or passed through the POTW into the effluent would be degraded within moderate length of time (estimated as two months in the report). The EPA's most recent study of the behavior of toxic organics in a POTW indicates that 2,4-DMP is 59 percent removed.

As a weak acid, the behavior of 2,4-DMP may be somewhat dependent on the pH of the influent to the POTW. However, over the normal limited range of POTW pH, little effect of pH would be expected.

2,4-Dinitrotoluene (35). 2,4-Dinitrotoluene [(NO₂)₂ C₆ H₄ CH₃], a yellow crystalline compound, is manufactured as a coproduct with the 2,6-isomer by nitration of nitrotoluene. : It melts at 71C. 2,4-Dinitrotoluene is insoluble (0.27 g/l at 22C) and soluble in a number of organic Production data for the 2,4-isomer alone are not solvents. The 2,4-and 2,6-isomers are manufactured in an 80:20 available. 65:35 ratio, depending on the process used. Annual U.S. commercial production is about 150 thousand tons of isomers. Unspecified amounts are produced by the U.S. government further nitrated to trinitrotoluene (TNT) for military use. major use of the dinitrotoluene mixture is for production of toluene diisocyanate used to make polyurethanes. Another use is in production of dyestuffs.

The toxic effect of 2,4-dinitrotoluene in humans is primarily methemoglobinemia (a blood condition hindering oxygen transport by the blood). Symptoms depend on severity of the disease, but include cyanosis, dizziness, pain in joints, headache, and loss of appetite in workers inhaling the compound. Laboratory animals fed oral doses of 2,4-dinitrotoluene exhibited many of the same symptoms. Aside from the effects in red blood cells, effects are observed in the nervous system and testes.

Chronic exposure to 2,4-dinitrotoluene may produce liver damage and reversible anemia. No data were found on teratogenicity of this compound. Mutagenic data are limited and are regarded as confusing. Data resulting from studies of carcinogenicity of 2,4-dinitrotoluene point to a need for further testing for this property.

For the maximum protection of human health from the potential carcinogenic effects of exposure to 2,4-dinitrotoluene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of 2,4-dinitrotoluene estimated to result in additional lifetime cancer risk at risk levels of 10^{-7} 10^{-6} and 10^{-5} are 0.0074 mg/l, 0.074 mg/l, and 0.740 mg/l, respectively.

Data on the behavior of 2,4-dinitrotoluene in a POTW are available. However, biochemical oxidation of 2,4-dinitrophenol was investigated on a laboratory scale. At 100 mg/l of 2.4dinitrotoluene, a concentration considerably higher than that expected in municipal wastewaters, biochemical oxidation by an acclimated, phenol-adapted seed culture produced 52 percent Based on this limited information degradation in three hours. and general observations relating molecular structure to ease of degradation for all the toxic organic pollutants, it was concluded that biological treatment in a POTW removes 2,4-dinitrotoluene to a high degree or completely. No information is available regarding possible interference by 2,4-dinitrotoluene in POTW treatment processes, or on the possible detrimental effect on sludge used to amend soils in which food crops are grown.

2,6-Dinitrotoluene (36). 2,6-Dinitrotoluene [(NO₂)₂C₆ H₄ CH₃], a yellow crystalline compound, is manufactured as a coproduct with the 2,4-isomer by nitration of It melts at 71C. 2,6-Dinitrotoluene is insoluble nitrotoluene. in water (0.27 g/l at 22C) and soluble in a number of organic Production data for the 2,6-isomer alone are not solvents. available. The 2,4- and 2,6-isomers are manufactured in an 80:20 65:35 ratio, depending on the process used. Annual U.S. commercial production is about 150 thousand tons of the two isomers. Unspecified amounts are produced by the U.S. government and further nitrated to trinitrotoluene (TNT) for military use. The major use of the dinitrotoluene mixture is for production of toluene diisocyanate used to make polyurethanes. Another use is in production of dyestuffs.

Data on the behavior of 2,6-dinitrotoluene in a POTW are not available. However, biochemical oxidation of the 2,4-dinitrotoluene isomer was investigated in a laboratory scale. mg/l of 2,4-dinitrotoluene, a concentration considerably higher than that expected in municipal wastewaters, biochemical oxidation by an acclimated, phenol-adapted seed culture produced percent degradation in three hours. Based on this limited information and general observations relating molecular structure to ease of degradation for all the toxic organic pollutants, it was concluded that biological treatment in a POTW removes 2,4-dinitrotoluene to a high degree. It is not known if the conclusion can be expanded to include the 2,6-isomer. No information is available regarding possible interference by 2,6-dinitrotoluene in POTW treatment processes, or on the possible detrimental effect on sludge used to amend soils in which food crops grown.

Ethylbenzene (38). Ethylbenzene is a colorless, flammable liquid manufactured commercially from benzene and ethylene. Approximately half of the benzene used in the U.S. goes into the manufacture of more than three million tons of ethylbenzene annually. Ethylbenzene boils at 136C and has a vapor pressure of 7 mm Hg at 20C. It is slightly soluble in water (0.14 g/l at 15C) and is very soluble in organic solvents.

About 98 percent of the ethylbenzene produced in the U.S. goes into the production of styrene, much of which is used in the plastics and synthetic rubber industries. Ethylbenzene is a constituent of xylene mixtures used as diluents in the paint industry, agricultural insecticide sprays, and gasoline blends.

Although humans are exposed to ethylbenzene from a variety of sources in the environment, little information on effects of ethylbenzene in man or animals is available. Inhalation can irritate eyes, affect the respiratory tract, or cause vertigo. In laboratory animals ethylbenzene exhibited low toxicity. There are no data available on teratogenicity, mutagenicity, or carcinogenicity of ethylbenzene.

Criteria are based on data derived from inhalation exposure limits. For the protection of human health from the toxic properties of ethylbenzene ingested through water and contaminated aquatic organisms, the ambient water quality criterion is 1.1 mg/1.

Laboratory scale studies of the biochemical oxidation of ethylbenzene at concentrations greater than would normally be found in municipal wastewaters have demonstrated varying degrees of degradation. In one study with phenol-acclimated seed cultures, 27 percent degradation was observed in a half day at 250 mg/l ethylbenzene. Another study at unspecified conditions showed 32, 38, and 45 percent degradation after 5, 10, and 20 days, respectively. Based on these results and general observations relating molecular structure of degradation, the conclusion was reached

that biological treatment produces only moderate removal of ethylbenzene in a POTW by degradation.

Other studies suggest that most of the ethybenzene entering a POTW is removed from the aqueous stream to the sludge. The ethylbenzene contained in the sludge removed from the POTW may volatilize.

In addition, the most recent EPA study of the behavior of toxic organics in POTW indicates that ethylbenzene is approximately 84 percent removed.

<u>Fluoranthene</u> (39). Fluoranthene (1,2-benzacenaphthene) is one of the compounds called polynuclear aromatic hydrocarbons (PAH). A pale yellow solid at room temperature, it melts at 111C and has a negligible vapor pressure at 25C. Water solubility is low (0.2 mg/l). Its molecular formula is $C_{16}H_{10}$.

Fluoranthene, along with many other PAH's, is found throughout the environment. It is produced by pyrolytic processing of organic raw materials, such as coal and petroleum, at high temperature (coking processes). It occurs naturally as a product of plant biosyntheses. Cigarette smoke contains fluoranthene. Although it is not used as the pure compound in industry, it has been found at relatively higher concentrations (0.002 mg/l) than most other PAH's in at least one industrial effluent. Further more, in a 1977 EPA survey to determine levels of PAH in U.S. drinking water supplies, none of the 110 samples analyzed showed any PAH other than fluoranthene.

Experiments with laboratory animals indicate that fluoranthene presents a relatively low degree of toxic potential from acute exposure, including oral administration. Where death occurred, no information was reported concerning target organs or specific cause of death.

There is no epidemiological evidence to prove that PAH in general, and fluoranthene, in particular, present in drinking water are related to the development of cancer. The only studies directed toward determining carcinogenicity of fluoranthene have been skin tests on laboratory animals. Results of these tests show that fluoranthene has no activity as a complete carcinogen (i.e., an agent which produces cancer when applied by itself), but exhibits significant cocarcinogenicity (i.e., in combination with a carcinogen, it increases the carcinogenic activity).

Based on the limited animal study data, and following an established procedure, the ambient water quality criterion for fluoranthene alone (not in combination with other PAH) is determined to be 200 mg/l for the protection of human health from its toxic properties.

There are no data on the chronic effects of fluoranthene on freshwater organisms. One saltwater invertebrate shows chronic toxicity at concentrations below 0.016 mg/l. For some fresh

water fish species the concentrations producing acute toxicity are substantially higher, but data are very limited.

Results of studies of the behavior of fluoranthene in conventional sewage treatment processes found in a POTW have been published. Removal of fluoranthene during primary sedimentation was found to be 62 to 66 percent (from an initial value of 0.00323 to 0.04435 mg/l to a final value of 0.00122 to 0.0146 mg/l), and the removal was 91 to 99 percent (final values of 0.00028 to 0.00026 mg/l) after biological purification with activated sludge processes.

A review was made of data on biochemical oxidation of many of the toxic organic pollutants investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of fluoranthene. The same study, however, concludes that fluoranthene would be readily removed by filtration and oil-water separation and other methods which rely on water insolubility, or adsorption on other particulate surfaces. This latter conclusion is supported by the previously cited study showing significant removal by primary sedimentation.

No studies were found to give data on either the possible interference of fluoranthene with POTW operation, or the persistance of fluoranthene in sludges or POTW effluent waters. Several studies have documented the ubiquity of fluoranthene in the environment and it cannot be readily determined if this results from persistence of anthropogenic fluoranthene or the replacement of degraded fluoranthene by natural processes such as biosynthesis in plants.

Methylene Chloride (44). Methylene chloride, also called dichloromethane (CH_2Cl_2) , is a colorless liquid manufactured by chlorination of methane or methyl chloride followed by separation from the higher chlorinated methanes formed as coproducts. Methylene chloride boils at 40C, and has a vapor pressure of 362 mm Hg at 20C. It is slightly soluble in water (20 g/l at 20C), and very soluble in organic solvents. U.S. annual production is about 250,000 tons.

Methylene chloride is a common industrial solvent found in insecticides, metal cleaners, paint, and paint and varnish removers.

Methylene chloride is not generally regarded as highly toxic to humans. Most human toxicity data are for exposure by inhalation. Inhaled methylene chloride acts as a central nervous system depressant. There is also evidence that the compound causes heart failure when large amounts are inhaled.

Methylene chloride does produce mutation in tests for this effect. In addition, a bioassay recognized for its extremely

high sensitivity to strong and weak carcinogens produced results which were marginally significant. Thus potential carcinogenic effects of methylene chloride are not confirmed or denied, but are under continuous study. These studies are difficult to conduct for two reasons. First, the low boiling point (40C) of methylene chloride makes it difficult to maintain the compound at 37C during incubation. Secondly, all impurities must be removed because the impurities themselves may be carcinogenic. These complications also make the test results difficult to interpret.

For the protection of human health from the toxic properties of methylene chloride ingested through water and contaminated aquatic organisms, the ambient water criterion is 0.002 mg/l. The biochemical oxidation of this compound was studied in one laboratory scale study at concentrations higher than those expected to be contained by most municipal wastewaters. After five days no degradation of methylene chloride was observed. The conclusion reached is that biological treatment produces little or no removal by degradation of methylene chloride in a POTW.

The high vapor pressure of methylene chloride is expected to result in volatilization of the compound from aerobic treatment steps in a POTW. It has been reported that methylene chloride inhibits anaerobic processes in a POTW. Methylene chloride that is not volatilized in the POTW is expected to pass through into the effluent.

The most recent EPA study of POTW removal of toxic organics indicates that methylene chloride is approximately 58 percent removed.

(45).Chloride Methyl chloride (CH₃Cl) Methyl colorless, noncorrosive liquifiable gas which is transparent in both the gaseous and liquid states. It has a faintly sweet, It boils at -23.7C (-11F). ethereal odor. It is soluble in water (by which it is decomposed) and soluble in alcohol, chloroform, benzene, carbon tetrachloride, and glacial acetic acid. It is derived by: (a) the chlorination of methane; (b) the action of hydrochloric acid on methanol, either in vapor or liquid phase. It is used as an extractant and solvent, as a pesticide, in the synthesis of organic chemicals, silicones.

The available data for this pollutant indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 11.0 mg/l. No data are available concerning this pollutant's chronic toxicity to sensitive freshwater aquatic life. The available data for this pollutant indicate that acute and chronic toxicities to saltwater aquatic life occur at concentrations as low as 12.0 mg/l and 6.40 mg/l, respectively. With respect to saltwater aquatic life, a decrease in algal cell numbers was found to occur at concentrations as low as 11.5 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to this pollutant, through

the ingestion of contaminated water and aquatic organisms, the ambient water concentration should be zero. Concentrations of in additional lifetime cancer this pollutant estimated to result, risks at risk levels of 10^{-5} 10^{-6} and 10^{-7} are 0.0019 mg/1, 0.00019 mg/1, and 0.000019 mg/1, respectively.

Concerning treatment in POTW, laboratory studies have shown that methyl chloride is not amenable to treatment via biochemical oxidation.

Chlorodibromomethane (51). Chlorodibromomethane (CHBr₂Cl) is a clear, colorless, heavy liquid. It boils at 116C (241F). This pollutant is used in the synthesis of various organic compounds.

The available data for this pollutant indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 11.0 mg/l. No data are available concerning this pollutant's chronic toxicity to sensitive freshwater aquatic life. The available data for this pollutant indicate that acute and chronic toxicities to saltwater aquatic life occur at concentrations as low as 12.0 mg/l and 6.40 mg/l, respectively. With respect to saltwater aquatic life, a decrease in algal cell numbers was found to occur at concentrations as low as 11.5 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to this pollutant, through the ingestion of contaminated water and aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risks at risk levels of 10^{-5} , 10^{-6} , and 10^{-7} are 0.0019 mg/1, 0.00019 mg/1, and 0.000019 mg/1, respectively.

With respect to treatment in POTW, laboratory studies indicate that this pollutant is not amenable to treatment via biochemical oxidation.

Naphthalene is an aromatic hydrocarbon with Naphthalene (55). two orthocondensed benzene rings and a molecular formula of As such it is properly classed as a polynuclear hydrocarbon (PAH). Pure naphthalene is a white CloHe. aromatic crystalline solid melting at 80C. For a solid, it has a relatively high vapor pressure (0.05 mm Hg at 20C), and moderate water solubility (19 mg/l at 20C). Napthalene is the most abundant single component of coal tar. Production is more than a third of a million tons annually in the U.S. About three fourths the production is used as feedstock for phthalic anhydride Most of the remaining production goes into manufacture. of insecticide, dyestuffs, manufacture pigments, pharmaceuticals. Chlorinated and partially hydrogenated naphthalenes are used in some solvent mixtures. Naphthalene is also used as a moth repellent.

Naphthalene, ingested by humans, has reportedly caused vision loss (cataracts), hemolytic anemia, and occasionally, renal disease. These effects of naphthalene ingestion are confirmed by

studies on laboratory animals. No carcinogenicity studies are available which can be used to demonstrate carcinogenic activity for naphthalene. Naphthalene does bioconcentrate in aquatic organisms.

For the protection of human health from the toxic properties of naphthalene ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 143 mg/l.

Only a limited number of studies have been conducted to determine the effects of naphthalene on aquatic organisms. The data from those studies show only moderate toxicity.

Biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces a high removal by degradation of naphthalene. One recent study has shown that microorganisms can degrade naphthalene, first to a dihydro compound, and ultimately to carbon dioxide and water.

Naphthalene has been detected in sewage plant effluents at concentrations up to 0.022 mg/l in studies carried out by the U.S. EPA. Influent levels were not reported. The most recent EPA study of the behavior of toxic organics in POTW indicates that naphthalene is approximately 61 percent removed.

Nitrobenzene (56). Nitrobenzene (C6H5NO2), also called nitrobenzol and oil of mirbane, is a pale yellow, oily liquid, manufactured by reacting benzene with nitric acid and sulfuric acid. Nitrobenzene boils at 210C and has a vapor pressure of 0.34 mm Hg at 25C. It is slightly soluble in water (1.9 g/l at 20C), and is miscible with most organic solvents. Estimates of annual U.S. production vary widely, ranging from 100 to 350 thousand tons.

Almost the entire volume of nitrobenzene produced (97 percent) is converted to aniline, which is used in dyes, rubber, and medicinals. Other uses for nitrobenzene include: solvent for organic synthesis, metal polishes, shoe polish, and perfume.

The toxic effects of ingested or inhaled nitrobenzene in humans are related to its action in blood: methemoglobinemia and cyanosis. Nitrobenzene administered orally to laboratory animals caused degeneration of heart, kidney, and liver tissue; paralysis; and death. Nitrobenzene has also exhibited teratogenicity in laboratory animals, but studies conducted to determine mutagenicity or carcinogenicity did not reveal either of these properties.

For the prevention of adverse effects due to the organoleptic properties of nitrobenzene in water, the criterion is 0.030 mg/l.

Data on the behavior of nitrobenzene in POTW are not available. However, laboratory scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewaters. Biochemical oxidation produced no degradation after 5, 10, and 20 days. A second study also reported no degradation after 28 hours, using an acclimated, phenol-adapted seed culture with nitrobenzene at 100 mg/l. Based on these limited data, and on general observations relating molecular structure to ease of biological oxidation, it is concluded that little or no removal of nitrobenzene occurs during biological treatment in POTW. The low water solubility and low vapor pressure of nitrobenzene lead to the expectation that nitrobenzene will be removed from POTW in the effluent and by volatilization during aerobic treatment.

2-Nitrophenol (57). 2-Nitrophenol (NO₂C₆H₄OH), also called ortho-nitrophenol, is a light yellow crystalline solid, manufactured commercially by hydrolysis of 2-chloro-nitrobenzene with aqueous sodium hydroxide. 2-Nitrophenol melts at 45C and has a vapor pressure of 1 mm Hg at 49C. 2-Nitrophenol is slightly soluble in water (2.1 g/1 at 20C) and soluble in organic solvents. This phenol does not react to give a color with 4-aminoantipyrene, and therefore does not contribute to the nonconventional pollutant parameter "Total Phenols." U.S. annual production is 5,000 to 8,000 tons.

The principal use of ortho-nitrophenol is to synthesize ortho-aminophenol, ortho-nitroanisole, and other dyestuff intermediates.

The toxic effects of 2-nitrophenol on humans have not been extensively studied. Data from experiments with laboratory animals indicate that exposure to this compound causes kidney and liver damage. Other studies indicate that the compound acts directly on cell membranes, and inhibits certain enzyme systems in vitro. No information regarding potential teratogencity was found. Available data indicate that this compound does not pose a mutagenic hazard to humans. Very limited data for 2-nitrophenol do not reveal potential carcinogenic effects.

The available data base is insufficient to establish an ambient water criterion for protection of human health from exposure to 2-nitrophenol. No data are available on which to evaluate the adverse effects of 2-nitrophenol on aquatic life.

Data on the behavior of 2-nitrophenol in POTW were not available. However, laboratory-scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewater. Biochemical oxidation using adapted cultures from various sources produced 95 percent degradation in three to six days in one study. Similar results were reported for other studies. Based on these data, and general observations relating molecular structure to ease of biological oxidation, it is

expected that 2-nitrophenol will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in POTW.

4-Nitrophenol (58) 4-Nitrophenol (NO₂C₆H₄OH), also called paranitrophenol, is a colorless to yellowish crystalline solid manufactured commercially by hydrolysis of 4-chloronitrobenzene with aqueous sodium hydroxide. 4-Nitrophenol melts at 114C. Vapor pressure is not cited in the usual sources. 4-Nitrophenol is slightly soluble in water (15 g/l at 25C) and soluble in organic solvents. This phenol does not react to give a color with 4-aminoantipyrene, and therefore does not contribute to the nonconventional pollutant parameter "Total Phenols." U.S. annual production is about 20,000 tons.

Paranitrophenol is used to prepare phenetidine, acetaphenetidine, azo and sulfur dyes, photochemicals, and pesticides.

The toxic effects of 4-nitrophenol on humans have not been extensively studied. Data from experiments with laboratory animals indicate that exposure to this compound results in methemoglobiof breath, nemia, shortness and stimulation followed by depression. Other studies indicate that the compound acts directly on cell membranes, and inhibits certain enzyme systems in vitro. No information regarding potential teratogenicity was Available data indicate that this compound does not pose found. mutagenic hazard to humans. Very limited data for 4nitrophenol do not reveal potential carcinogenic effects, although the compound has been selected by the national cancer institute for testing under the Carcinogenic Bioassay Program.

No U.S. standards for exposure to 4-nitrophenol in ambient water have been established.

Data on the behavior of 4-nitrophenol in a POTW are not available. However, laboratory scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewaters. Biochemical oxidation using adapted cultures from various sources produced 95 percent degradation in three to six days in one study. Similar results were reported for other studies. Based on these data, and on general observations relating molecular structure to ease of biological oxidation, it is concluded that complete or nearly complete removal of 4-nitrophenol occurs during biological treatment in a POTW.

4,6-Dinitro-o-cresol (60). 4,6-Dinitro-o-cresol (DNOC) is a yellow crystalline solid derived from o-cresol. DNOC melts at 85.8C and has a vapor pressure of 0.000052 mm Hg at 20C. DNOC is sparingly soluble in water (100 mg/l at 20C), while it is readily soluble in alkaline aqueous solutions, ether, acetone, and alcohol. DNOC is produced by sulfonation of o-cresol followed by treatment with nitric acid.

DNOC is used primarily as a blossom thinning agent on fruit trees and as a fungicide, insecticide, and miticide on fruit trees

during the dormant season. It is highly toxic to plants in the growing stage. DNOC is not manufactured in the U.S. as an agricultural chemical. Imports have been decreasing recently with only 30,000 lbs being imported in 1976.

While DNOC is highly toxic to plants, it is also very toxic to humans and is considered to be one of the more dangerous agricultural pesticides. The available literature concerning humans indicates that DNOC may be absorbed in acutely toxic amounts through the respiratory and gastrointestinal tracts and through the skin, and that it accumulates in the blood. Symptoms of poisoning include profuse sweating, thirst, loss of weight, headache, malaise, and yellow staining to the skin, hair, sclera, and conjunctiva.

There is no evidence to suggest that DNOC is teratogenic, mutagenic, or carcinogenic. The effects of DNOC in the human due to chronic exposure are basically the same as those effects resulting from acute exposure. Although DNOC is considered a cumulative poison in humans, cataract formation is the only chronic effect noted in any human or experimental animal study. It is believed that DNOC accumulates in the human body and that toxic symptoms may develop when blood levels exceed 20 mg/kg.

For the protection of human health from the toxic properties of dinitro-o-cresol ingested through water and contaminated aquatic organisms, the ambient water criterion is determined to be 0.0134 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is determined to be 0.765 mg/l. No data are available on which to evaluate the adverse effects of 4,6-dinitro-o-cresol on aquatic life.

Some studies have been reported regarding the behavior of DNOC in POTW. Biochemical oxidation of DNOC under laboratory conditions at a concentration of 100 mg/l produced 22 percent degradation in 3.5 hours, using acclimated phenol adapted seed cultures. In addition, the nitro group in the number 4 (para) position seems to impart a destabilizing effect on the molecule. Based on these data and general conclusions relating molecular structure to biochemical oxidation, it is expected that 4,6-dinitro-o-cresol will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in POTW.

N-nitrosodiphenylamine (62). N-nitrosodiphenylamine [(C6 $\rm H_5$)2 NNO], also called nitrous diphenylamide, is a yellow crystalline solid manufactured by nitrosation of diphenylamine. It melts at 66C and is insoluble in water, but soluble in several organic solvents other than hydrocarbons. Production in the U.S. has approached 1,500 tons per year. The compound is used as a retarder for rubber vulcanization and as a pesticide for control of scorch (a fungus disease of plants).

N-nitroso compounds are acutely toxic to every animal species tested and are also poisonous to humans. N-nitrosodiphenylamine

toxicity in adult rats lies in the mid range of the values for 60 N-nitroso compounds tested. Liver damage is the principal toxic effect. N-nitrosodiphenylamine, unlike many other N-nitrosoamines, does not show mutagenic activity. N-nitrosodiphenylamine has been reported by several investigations to be non-carcino-However in a recent study by the National Cancer genic. Institute, the compound was found to induce a significant incidence of urinary bladder tumors in both male and female rats. Few urinary bladder tumors were observed in mice, although there was a high incidence of non-neoplastic bladder lesions. addition, N-nitrosodipheylamine is capable of trans-nitrosation and could thereby convert other amines to carcinogenic N-Sixty-seven of 87 N-nitrosoamines studied were nitrosoamines. reported to have carcinogenic activity. No water quality criterion have been proposed for N-nitrosodiphenylamine.

No data are available on the behavior of N-nitrosodiphenylamine in a POTW. Biochemical oxidation of many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained in most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all the toxic organic pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no removal of N-nitrosodiphenylamine in a No information is available regarding possible interfer-POTW. ence by N-nitrosodiphenylamine in POTW processes, or on the possible detrimental effect on sludge used to amend soils in which crops are grown. However, no interference or detrimental effects are expected because N-nitroso compounds are widely distributed in the soil and water environment, at low concentraa result of microbial action on nitrates and as nitrosatable compounds.

N-nitrosodi-n-propylamine (63). No physical properties or usage data could be found for this pollutant. It can be formed from the interaction of nitrite with secondary and tertiary amines

The available data for this pollutant indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 5.85 mg/l. No data are available concerning this pollutant's chronic toxicity to freshwater and saltwater aquatic life. The available data indicate that acute toxicity to saltwater aquatic life occurs at concentrations as low as 3,300 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to this pollutant, through the ingestion of contaminatd water and aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risks of risk levels of 10^{-5} , 10^{-6} , and 10^{-7} are 0.00016 mg/1, 0.000016 mg/1, and 0.0000016 mg/1, respectively.

With respect to treatment in POTW, laboratory studies indicate that this pollutant is not amenable to treatment via biochemical oxidation.

Pentachlorophenol (64). Pentachlorophenol (C6Cl5OH) is a white crystalline solid produced commercially by chlorination of phenol or polychlorophenols. U.S. annual production is in excess of 20,000 tons. Pentachlorophenol melts at 190C and is slightly soluble in water (14 mg/l). Pentachlorophenol is not detected by the 4-aminoantipyrene method and so does not contribute to the nonconventional pollutant parameter "Total Phenols".

Pentachlorophenol is a bactericide and fungicide and is used for preservation of wood and wood products. It is competitive with creosote in that application. It is also used as a preservative in glues, starches, and photographic papers. It is an effective algicide and herbicide.

Although data are available on the human toxicity effects of pentachlorophenol, interpretation of data is frequently uncertain. Occupational exposure observations must be examined carefully because exposure to pentachlorophenol is frequently accompanied by exposure to other wood preservatives. Additionally, experimental results and occupational exposure observations must be examined carefully to make sure that observed effects are produced by the pentachlorophenol itself and not by the by-products which usually contaminate pentachlorophenol.

Acute and chronic toxic effects of pentachlorophenol in humans are similar; muscle weakness, headache, loss of appetite, abdominal pain, weight loss, and irritation of skin, eyes, and respiratory tract. Available literature indicates that pentachlorophenol does not accumulate in body tissues to any significant extent. Studies on laboratory animals of distribution of the compound in body tissues showed the highest levels of pentachlorophenol in liver, kidney, and intestine, while the lowest levels were in brain, fat, muscle, and bone.

Toxic effects of pentachlorophenol in aquatic organisms are much greater at pH 6 where this weak acid is predominantly in the undissociated form than at pH 9 where the ionic form predominates. Similar results were observed in mammals where oral lethal doses of pentachlorophenol were lower when the compound was administered in hydrocarbon solvents (un-ionized form) than when it was administered as the sodium salt (ionized form) in water.

There appear to be no significant teratogenic, mutagenic, or carcinogenic effects of pentachlorophenol.

For the protection of human health from the toxic properties of pentachlorophenol ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 0.140 mg/l.

Some data are available on the behavior of pentachlorophenol in a Pentachlorophenol has been found in the influent to a In a study of one POTW the mean removal was 59 percent POTW. over a seven day period. Trickling filters removed 44 percent at the influent pentachlorophenol, suggesting that biological degra-The same report compared removal of pentachlorodation occurs. phenol at the same plant and two additional POTW facilities on, a later date and obtained values of 4.4, 19.5 and 28.6 percent removal, the last value being for the plant which was 59 percent removal in the original study. Influent concentrations of pentachlorophenol ranged from 0.0014 to 0.0046 mg/l. Other studies, including the general review of data relating molecular structure to biological oxidation, indicate that pentachlorophenol is removed by biological treatment processes in a POTW. digestion processes are inhibited by 0.4 mg/l pentachlorophenol. The most recent EPA study of the behavior of toxic organics in a POTW indicates that pentachlorophenol is 52 percent removed.

The low water solubility and low volatility of pentachlorophenol lead to the expectation that most of the compound will remain in the sludge in a POTW. The effect on plants grown on land treated with pentachlorophenol-containing sludge is unpredictable. Laboratory studies show that this compound affects crop germination at 5.4 mg/l. However, photodecomposition of pentachlorophenol occurs in sunlight. The effects of the various breakdown products which may remain in the soil was not found in the literature.

Phenol (65). Phenol, also called hydroxybenzene and carbolic acid, is a clear, colorless, hygroscopic, deliquescent, crystal line solid at room temperature. Its melting point is 43C and its vapor pressure at room temperature is 0.35 mm Hg. It is very soluble in water (67 gm/l at 16C) and can be dissolved in benzene, oils, and petroleum solids. Its formula is C_6H_5OH .

Although a small percent of the annual production of phenol is derived from coal tar as a naturally occurring product, most of the phenol is synthesized. Two of the methods are fusion of benzene sulfonate with sodium hydroxide, and oxidation of cumene followed by cleavage with a catalyst. Annual production in the U.S. is in excess of one million tons. Phenol is generated during distillation of wood and the microbiological decomposition of organic matter in the mammalian intestinal tract.

Phenol is used as a disinfectant, in the manufacture of resins, dyestuffs, and in pharmaceuticals, and in the photo processing industry. In this discussion, phenol is the specific compound which is separated by methylene chloride extraction of an acidified sample and identified and quantified by GC/MS. Phenol also contributes to the "Total Phenols," discussed elsewhere which are determined by the 4-AAP colorimetric method.

Phenol exhibits acute and sub-acute toxicity in humans and laboratory animals. Acute oral doses of phenol in humans cause sudden collapse and unconsciousness by its action on the central

nervous system. Death occurs by respiratory arrest. Sub-acute oral doses in mammals are rapidly absorbed and quickly distributed to various organs, then cleared from the body by urinary excretion and metabolism. Long term exposure by drinking phenol contaminated water has resulted in statistically significant increase in reported cases of diarrhea, mouth sores, and burning of the mouth. In laboratory animals, long term oral administration at low levels produced slight liver and kidney damage. No reports were found regarding carcinogenicity of phenol administered orally -- all carcinogenicity studies were skin test.

For the protection of human health from phenol ingested through water and through contaminated aquatic organisms, the concentration in water should not exceed 3.4 mg/l.

Fish and other aquatic organisms demonstrated a wide range of sensitivities to phenol concentration. However, acute toxicity values were at moderate levels when compared to other toxic organic pollutants.

Data have been developed on the behavior of phenol in a POTW. Phenol is biodegradable by biota present in a POTW. The ability of a POTW to treat phenol-bearing influents depends upon acclimation of the biota and the constancy of the phenol concentration. It appears that an induction period is required to build up the population of organisms which can degrade phenol. Too large a concentration will result in upset or pass though in the POTW, but the specific level causing upset depends on the immediate past history of phenol concentrations in the influent. Phenol levels as high as 200 mg/l have been treated with 95 percent removal in a POTW, but more or less continuous presence of phenol is necessary to maintain the population of microorganisms that degrade phenol.

Phenol which is not degraded is expected to pass through the POTW because of its very high water solubility. However, in a POTW where chlorination is practiced for disinfection of the POTW effluent, chlorination of phenol may occur. The products of that reaction may be toxic pollutants.

The EPA has developed data on influent and effluent concentrations of total phenols in a study of 103 POTW facilities. However, the analytical procedure was the 4-AAP method mentioned earlier and not the GC/MS method specifically for phenol. Discussion of the study, which of course includes phenol, is presented under the pollutant heading "Total Phenols." The most recent study by EPA on the behavior of toxic organics in a POTW indicates that phenol is 96 percent removed.

Phthalate Esters (66-71). Phthalic acid, or 1,2-benzene dicarboxylic acid, is one of three isomeric benzenedicarboxylic acids produced by the chemical industry. The other two isomeric forms are called isophthalic and terephthalic acids. The formula for all three acids is $C_{6H_4(COOH)_2}$. Some esters of phthalic acid are designated as toxic pollutants. They will be

discussed as a group here, and specific properties of individual phthalate esters will be discussed afterwards.

Phthalic acid esters are manufactured in the U.S. at an annual rate in excess of one billion pounds. They are used as plasticizers -- primarily in the production of polyvinyl chloride The most widely used phthalate plasticizer (PVC) resins. (2-ethylhexyl) phthalate (66) which accounts for nearly is bis one-third phthalate esters produced. the particular ester is commonly referred to as dioctyl phthalate confused with one of the less used (DOP) and should not be esters, di-n-octyl phthalate (69), which is also used as plasticizer. In addition to these two isomeric dioctyl phthalates, four other esters, also used primarily pollutants. plasticizers, are designated as toxic Thev phthalate benzyl phthalate (67), di-n-butyl butyl (68), diethyl phthalate (70), and dimethyl phthalate (71).

Industrially, phthalate esters are prepared from phthalic anhydride and the specific alcohol to form the ester. Some evidence is available suggesting that phthalic acid esters also may be synthesized by certain plant and animal tissues. The extent to which this occurs in nature is not known.

Phthalate esters used as plasticizers can be present in concentrations up to 60 percent of the total weight of the PVC plastic. The plasticizer is not linked by primary chemical bonds to the PVC resin. Rather, it is locked into the structure of intermeshing polymer molecules and held by van der Waals forces. The result is that the plasticizer is easily extracted. Plasticizers are responsible for the odor associated with new plastic toys or flexible sheet that has been contained in a sealed package.

Although the phthalate esters are not soluble or are only very slightly soluble in water, they do migrate into aqueous solutions placed in contact with the plastic. Thus, industrial facilities with tank linings, wire and cable coverings, tubing, and sheet flooring of PVC are expected to discharge some phthalate esters in their raw waste. In addition to their use as plasticizers, phthalate esters are used in lubricating oils and pesticide carriers. These also can contribute to industrial discharge of phthalate esters.

From the accumulated data on acute toxicity in animals, phthalate esters may be considered as having a rather low order of toxicity. Human toxicity data are limited. It is thought that the toxic effect of the esters is most likely due to one of the metabolic products, in particular the monoester. Oral acute toxicity in animals is greater for the lower molecular weight esters than for the higher molecular weight esters.

Orally administered phthalate esters generally produced enlarging of liver and kidney, and atrophy of testes in laboratory animals. Specific esters produced enlargement of heart and brain, spleenitis, and degeneration of central nervous system tissue.

Subacute doses administered orally to laboratory animals produced some decrease in growth and degeneration of the testes. Chronic studies in animals showed similar effects to those found in acute and subacute studies, but to a much lower degree. The same organs were enlarged, but pathological changes were not usually detected.

A recent study of several phthalic esters produced suggestive but not conclusive evidence that dimethyl and diethyl phthalates have a cancer liability. Only four of the six toxic pollutant esters were included in the study. Phthalate esters do bioconcentrate in fish. The factors, weighted for relative consumption of various aquatic and marine food groups, are used to calculate ambient water quality criteria for four phthalate esters. The values are included in the discussion of the specific esters.

Studies of toxicity of phthalate esters in freshwater and salt water organisms are scarce. A chronic toxicity test with bis(2-ethylhexyl) phthalate showed that significant reproductive impairment occurred at 0.003 mg/l in the freshwater crustacean, Daphnia magna. In acute toxicity studies, saltwater fish and organisms showed sensitivity differences of up to eight-fold to butyl benzyl, diethyl, and dimethyl phthalates. This suggests that each ester must be evaluated individually for toxic effects.

The biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. Three of the phthalate esters were studed. Bis(2ethylhexyl) phthalate was found to be degraded slightly or not at all and its removal by biological treatment in a POTW is expected to be slight or zero. Di-n-butyl phthalate and diethyl phthalate were degraded to a moderate degree and their removal by biological treatment in a POTW is expected to occur to a moderate degree. Using these data and other observations relating molecustructure to ease of biochemical degradation of other toxic organic pollutants, the conclusion was reached that butyl benzyl phthalate and dimethyl phthalate would be removed in a POTW to a moderate degree by biological treatment. On the same basis, concluded that di-n-octyl phthalate would be removed to a slight degree or not at all. An EPA study of seven POTW facilities revealed that for all but di-n-octyl phthalate, which was not studied, removals ranged from 62 to 87 percent. The most EPA study of the behavior of toxic organics in POTW indicates removals ranging from 48 percent to 81 percent for the six phthalate esters designated as toxic pollutants.

No information was found on possible interference with POTW operation or the possible effects on sludge by the phthalate esters. The water insoluble phthalate esters — butyl benzyl and didnoctyl phthalate — would tend to remain in sludge, whereas the other four toxic pollutant phthalate esters with water solubilities ranging from 50 mg/l to 4.5 mg/l would probably pass through into the POTW effluent.

Bis(2-ethylhexyl) Phthalate (66). In addition to the general remarks and discussion on phthalate esters, specific information on bis(2-ethylhexyl) phthalate is provided. Little information available about the physical properties of bis(2-ethylhexyl) It is a liquid boiling at 387C at 5mm Hg and is phthalate. insoluble in water. Its formula $C_6H_4(COOC_8H_{17})$. This toxic pollutant format constitutes about one-third of the phthalate ester production in It is commonly referred to as dioctyl phthalate, or DOP, in the plastics industry where it is the most extensively used compound for the plasticization of polyvinyl chloride (PVC). Bis(2-ethylhexyl) phthalate has been approved by the FDA for use Therefore, it may be found in in plastics in contact with food. coming in contact with discarded plastic food wastewaters wrappers as well as the PVC films and shapes normally found in industrial plants. This toxic pollutant is also a commonly used organic diffusion pump oil, where its low vapor pressure is an advantage.

For the protection of human health from the toxic properties of bis(2-ethylhexyl) phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 15 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criteria is determined to be 50 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewater. In fresh water with a nonacclimated seed culture no biochemical oxidation was observed after 5, 10, and 20 days. However, with an acclimated seed culture, biological oxidation occurred to the extents of 13, 0, 6, and 23 percent of theoretical after 5, 10, 15 and 20 days, respectively. Bis(2-ethylhexyl) phthalate concentrations were 3 to 10 mg/l. Little or no removal of bis(2-ethylhexyl) phthalate by biological treatment in a POTW is expected. The most recent EPA study of the behavior of toxic organics in a POTW indicates that bis(2-ethylhexyl) phthalate is 62 percent removed.

Butyl Benzyl Phthalate (67). In addition to the general remarks and discussion on phthalate esters, specific information on butyl benzyl phthalate is provided. No information was found on the physical properties of this compound.

Butyl benzyl phthalate is used as a plasticizer for PVC. Two special applications differentiate it from other phthalate esters. It is approved by the U.S. FDA for food contact in wrappers and containers; and it is the industry standard for plasticization of vinyl flooring because it provides stain resistance.

No ambient water quality criterion is proposed for butyl benzyl phthalate.

Butyl benzyl phthalate removal in a POTW by biological treatment is expected to occur to a moderate degree. The most recent EPA study of the behavior of toxic organics in POTWs indicates that butyl benzyl phthalate is 59 percent removed.

Di-n-butyl Phthalate (68). In addition to the general remarks and discussion on phthalate esters, specific information on di-n-butyl phthalate (DBP) is provided. DBP is a colorless, oil liquid, boiling at 340C. Its water solubility at room temperature is reported to be 0.4 g/l and 4.5 g/l in two different chemistry handbooks. The formula for DBP, C6H4 (COOC4H)2 is the same as for its isomer, di-isobutyl phthalate. DBP production is 1 to 2 percent of total U.S. phthalate ester production.

Dibutyl phthalate is used to a limited extent as a plasticizer for polyvinyl chloride (PVC). It is not approved for contact with food. It is used in liquid lipsticks and as a diluent for polysulfide dental impression materials. DBP is used as a plasticizer for nitrocellulose in making gun powder, and as a fuel in solid propellants for rockets. Further uses are insecticides, safety glass manufacture, textile lubricating agents, printing inks, adhesives, paper coatings, and resin solvents.

For protection of human health from the toxic properties of dibutyl phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 34 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is 154 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewaters. Biochemical oxidation of 35, 43, and 45 percent of theoretical oxidation were obtained after 5, 10, and 20 days, respectively, using sewage microorganisms as an unacclimated seed culture.

Biological treatment in a POTW is expected to remove `di-n-butyl phthalate to a moderate degree. The most recent EPA study of the behavior of toxic organics in a POTW indicates that di-n-butyl phthalate is 48 percent removed.

Di-n-octyl phthalate (69). In addition to the general remarks and discussion on phthalate esters, specific information on di-noctyl phthalate is provided. Di-n-octyl phthalate is not to be confused with the isomeric bis(2-ethylhexyl) phthalate which commonly referred to in the plastics industry as DOP. Di-n-octyl phthalate is a liquid which boils at 220C at 5 mm Hq. molecular insoluble water. in Its formula is $(COOC_8H_{17})_2.$ Its production percent of all phthalate ester constitutes about production in the U.S.

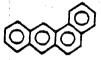
Industrially, di-n-octyl phthalate is used to plasticize polyvinyl chloride (PVC) resins.

No ambient water quality criterion is proposed for di-n-octyl phthalate.

Biological treatment in a POTW is expected to lead to little or no removal of di-n-octyl phthalate. The most recent EPA study of the behavior of toxic organics in POTWs indicates that di-n-octyl phthalate is 81 percent removed.

Diethyl phthalate (70). In addition to the general remarks and discussion on phthalate esters, specific information on diethyl phthalate is provided. Diethyl phthalate, or DEP, is a colorless liquid boiling at 296C, and is insoluble in water. Its molecular formula is $C_6H_4(COOC_2H_5)_2$. Production of diethyl phthalate constitutes about 1.5 percent of phthalate ester production in the U.S.

Diethyl phthalate is approved for use in plastic food containers by the U.S. FDA. In addition to its use as a polyvinyl chloride (PVC) plasticizer, DEP is used to plasticize cellulose nitrate for gun powder, to dilute polysulfide dental impression materials, and as an accelerator for dyeing triacetate fibers. additional use which would contribute to its wide distribution in the environment is as an approved special denaturant for ethyl The alcohol-containing products for which DEP is approved denaturant include a wide range of personal care items such as bath preparations, bay rum, colognes, hair preparations, face and hand creams, perfumes and toilet soaps. Additionally, denaturant is approved for use in biocides, cleaning solutions, disinfectants, insecticides, fungicides, and room deoderants which have ethyl alcohol as part of the formulation. expected, therefore, that people and buildings would have some surface loading of this toxic pollutant which would find its way into raw wastewaters.

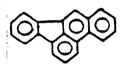

For the protection of human health from the toxic properties of diethyl phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 350 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is 1,800 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewaters. Biochemical oxidation of 79, 84, and 89 percent of theoretical was observed after 5, 15, and 20 days respectively. Biological treatment in a POTW is expected to lead to a moderate degree of removal of diethyl phthalate. The most recent EPA study of the behavior of toxic organics in POTWs indicates that diethyl phthalate is 74 percent removed.

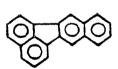
Polynuclear Aromatic Hydrocarbons (72-84). The polynuclear aromatic hydrocarbons (PAH) selected as toxic pollutants are a group of 13 compounds consisting of substituted and unsubstituted polycyclic aromatic rings. The general class of PAH includes heterocyclics, but none of those were selected as toxic pollutants. PAH are formed as the result of incomplete combustion when organic compounds are burned with insufficient oxygen. PAH are found in coke oven emissions, vehicular emissions, and volatile products of oil and gas burning. The compounds chosen as toxic pollutants are listed with their structural formula and melting point (m.p.). All are insoluble in water.

72 Benzo(a)anthracene (1,2-benzanthracene)

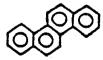
m.p. 162C


73 Benzo(a)pyrene (3,4-benzopyrene)

m.p. 176C


74 3,4-Benzofluoranthene

m.p. 168C


Benzo(k)fluoranthene (11,12-benzofluoranthene)

m.p. 217C

76 Chrysene (1,2-benzphenanthrene)

m.p. 255C

77 Acenaphthylene

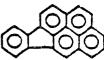
m.p. 92C

80 Fluorene (alpha-diphenylenemethane)

m.p. 116C

81 Phenanthrene

m.p. 101C


Dibenzo(a,h)anthracene (1,2,5,6-dibenzoanthracene)

m.p. 269C

83 Indeno (1,2,3-cd)pyrene (2,3-o-phenylenepyrene)

m.p. not available

84 Pyrene

m.p. 156C

Some of these toxic pollutants have commercial or industrial uses. Benzo(a)anthracene, benzo(a)pyrene, chrysene, anthracene, dibenzo(a,h)anthracene, and pyrene are all used as antioxidants. Chrysene, acenaphthylene, anthracene, fluorene, phenanthrene, and pyrene are all used for synthesis of dyestuffs or other organic chamicals. 3,4-Benzofluoranthrene, benzo(k)fluoranthene, benzo (ghi)perylene, and indeno (1,2,3-cd)pyrene have no known indus-

trial uses, according to the results of a recent literature search.

Several of the PAH toxic pollutants are found in smoked meats, in smoke flavoring mixtures, in vegetable oils, and in coffee. Consequently, they are also found in many drinking water supplies. The wide distribution of these pollutants in complex mixtures with the many other PAHs which have not been designated as toxic pollutants results in exposures by humans that cannot be associated with specific individual compounds.

The screening and verification analysis procedures used for the toxic organic pollutants are based on gas chromatography (GC). Three pairs of the PAH have identical elution times on the column specified in the protocol, which means that the parameters of the pair are not differentiated. For these three pairs [anthracene (78) - phenanthrene (81); 3,4-benzofluoranthene (74) - benzo(k)-fluoranthene (75); and benzo(a)anthracene (72) - chrysene (76)] results are obtained and reported as "either-or." Either both are present in the combined concentration reported, or one is present in the concentration reported.

There are no studies to document the possible carcinogenic risks to humans by direct ingestion. Air pollution studies indicate an excess of lung cancer mortality among workers exposed to large amounts of PAH containing materials such as coal gas, tars, and coke-oven emissions. However, no definite proof exists that the PAH present in these materials are responsible for the cancers observed.

Animal studies have demonstrated the toxicity of PAH by oral and dermal administration. The carcinogenicity of PAH has been traced to formation of PAH metabolites which, in turn, lead to tumor formation. Because the levels of PAH which induce cancer are very low, little work has been done on other health hazards resulting from exposure. It has been established in animal studies that tissue damage and systemic toxicity can result from exposure to non-carcinogenic PAH compounds.

Because there were no studies available regarding chronic oral exposures to PAH mixtures, proposed water quality criteria were derived using data on exposure to a single compound. Two studies were selected, one involving benzo(a)pyrene ingestion and one involving dibenzo(a,h)anthracene ingestion. Both are known animal carcinogens.

For the maximum protection of human health from the potential carcinogenic effects of exposure to polynuclear aromatic hydrocarbons (PAH) through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of PAH estimated to result in additional risk of 1 in 100,000 were derived by the EPA and the Agency is considering setting criteria at an interim target risk level in the range of 10^{-7} , 10^{-6} , or 10^{-5} with corresponding criteria of 0.00000097 mg/l, and 0.0000097 mg/l, respectively.

No standard toxicity tests have been reported for freshwater or saltwater organisms and any of the 13 PAH discussed here.

The behavior of PAH in a POTW has received only a limited amount of study. It is reported that up to 90 percent of PAH entering a POTW will be retained in the sludge generated by conventional sewage treatment processes. Some of the PAH can inhibit bacterial growth when they are present at concentrations as low as 0.018 mg/l.Biological treatment in activated sludge units has been shown to reduce the concentration of phenanthrene and anthracene to some extent; however, a study of biochemical oxidation of fluorene on a laboratory scale showed no degradation after 5, 10, and 20 days. On the basis of that study and studies of other toxic organic pollutants, some general observations were made relating molecular structure to ease of degradation. observations lead to the conclusion that the 13 PAH selected represent that group as toxic pollutants will be removed only slightly or not at all by biological treatment methods in a POTW. Based on their water insolubility and tendency to attach to sediment particles very little pass through of PAH to POTW effluent The most recent EPA study of the behavior of toxic organics in POTW indicates that removals for five of the 13 PAH range from 40 percent to 83 percent.

No data are available at this time to support any conclusions about contamination of land by PAH on which sewage sludge containing PAH is spread.

Tetrachloroethylene (85).Tetrachloroethylene (CCl₂CCl₂), also called perchloroethylene and PCE, is a colorless, nonflammable liquid produced mainly by two methods -pyrolysis of ethane chlorination and and propane, oxychlorination of dichloro ethane. U.S. annual production exceeds 300,000 tons. PCE boils at 121C and has a vapor pressure 19 mm Hg at 20C. It is insoluble in water but soluble organic solvents.

Approximately two-thirds of the U.S. production of PCE is used for dry cleaning. Textile processing and metal degreasing, in equal amounts consume about one-quarter of the U.S. production.

The principal toxic effect of PCE on humans is central nervous system depression when the compound is inhaled. Headache, fatigue, sleepiness, dizziness, and sensations of intoxication are reported. Severity of effects increases with vapor concentration. High integrated exposure (concentration times duration) produces kidney and liver damage. Very limited data on PCE ingested by laboratory animals indicate liver damage occurs when PCE is administered by that route. PCE tends to distribute to fat in mammalian bodies.

One report found in the literature suggests, but does not conclude, that PCE is teratogenic. PCE has been demonstrated to be a liver carcinogen in B6C3-F1 mice. For the maximum protection of human health from the potential carcinogenic effects of exposure to tetrachlorethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of tetrachloroethylene estimated to result in additional lifetime cancer risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.000020 mg/l, 0.00020 mg/l, and 0.0020 mg/l, respectively.

Many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained by most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic pollutants. The conclusions reached by the study of the limited data is that biological treatment produces a moderate removal of PCE in a POTW by degradation. No information was found to indicate that PCE accumulates in the sludge, but some PCE is expected to be adsorbed onto settling particles. Some PCE is expected to be volatilized in aerobic treatment processes and little, if any, is expected to pass through into the effluent from the POTW. The most recent EPA study of the behavior of toxic organics in POTWs indicates that PCE is 81 percent removed.

Toluene is a clear, colorless liquid Toluene (86). benzene-like odor. It is a naturally occuring compound derived primarily from petroleum or petrochemical processes. toluene is obtained from the manufacture of metallurgical Toluene is also referred to as totuol, methylbenzene, methacide, and phenylmethane. It is an aromatic hydrocarbon with the It boils at 111C and C6H5CH3. pressure of 30 mm Hg at room temperature. The water solubility of toluene is 535 mg/l, and it is miscible with a variety of organic solvents. Annual production of toluene in the U.S. is greater than two million metric tons. Approximately two-thirds toluene is converted to benzene and the remaining divided approximately equally into percent and use as a paint solvent and aviation gasoline manufacture, An estimated 5,000 metric tons is discharged to the additive. environment anually as a constituent in wastewater.

data on the effects of toluene in human and other mammals have been based on inhalation exposure or dermal contact studies. There appear to be no reports of oral administration of human subjects. A long term toxicity study on female rats revealed no adverse effects on growth, mortality, appearance and behavior, organ to body weight ratios, blood-urea nitrogen levels, bone marrow counts, peripheral blood counts, or morphol-The effects of inhaled toluene on the cenogy of major organs. tral nervous system, both at high and low concentrations, been studied in humans and animals. However, ingested toluene is expected to be handled differently by the body because absorbed more slowly and must first pass through the liver before reaching the nervous system. Toluene is extensively and rapidly metabolized in the liver. One of the principal metabolic products of toluene is benzoic acid, which itself seems to have little potential to produce tissue injury.

Toluene does not appear to be teratogenic in laboratory animals or man. Nor is there any conclusive evidence that toluene is mutagenic. Toluene has not been demonstrated to be positive in any in vitro mutagenicity or carcinogenicity bioassay system, nor to be carcinogenic in animals or man.

Toluene has been found in fish caught in harbor waters in the vicinity of petroleum and petrochemical plants. Bioconcentration studies have not been conducted, but bioconcentration factors have been calculated on the basis of the octanol-water partition coefficient.

For the protection of human health from the toxic properties of toluene ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 14.3 mg/l. If contaminated aquatic organisms alone are consumed excluding the consumption of water, the ambient water criterion is 424 mg/l. Available data show that the adverse effects on aquatic life occur at concentrations as low as 5 mg/l.

Acute toxicity tests have been conducted with toluene and a variety of freshwater fish and Daphnia magna. The latter appears to be significantly more resistant than fish. No test results have been reported for the chronic effects of toluene on freshwater fish or invertebrate species.

The biochemical oxidation of many of the toxic pollutants has been investigated in laboratory scale studies at concentrations greater than those expected to be contained by most municipal wastewaters. At toluene concentrations ranging from 3 to 250 mg/l biochemical oxidation proceeded to 50 percent of theoretical or greater. The time period varied from a few hours to 20 days depending on whether or not the seed culture was acclimated. Phenol adapted acclimated seed cultures gave the most rapid and extensive biochemical oxidation.

Based on study of the limited data, it is expected that toluene will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in a POTW. The volatility and relatively low water solubility of toluene lead to the expectation that aeration processes will remove significant quantities of toluene from the POTW. The EPA studied toluene removal in seven POTW facilities. The removals ranged from 40 to 100 percent Sludge concentrations of toluene ranged from 54 x 10⁻³ to 1.85 mg/l. The most recent EPA study of the behavior of toxic organics in a POTW indicates that toluene is 90 percent removed.

Trichloroethylene (87). Trichloroethylene (1,1,2-trichloroethylene or TCE) is a clear, colorless liquid boiling at 87C. It has a vapor pressure of 77 mm Hg at room temperature and is slightly soluble in water (1 g/l). U.S. production is greater than 0.25

million metric tons annually. It is produced from tetrachloroethane by treatment with lime in the presence of water.

TCE is used for vapor phase degreasing of metal parts, cleaning and drying electronic components, as a solvent for paints, as a refrigerant, for extraction of oils, fats, and waxes, and for dry cleaning. Its widespread use and relatively high volatility result in detectable levels in many parts of the environment.

Data on the effects produced by ingested TCE are limited. Most studies have been directed at inhalation exposure. Nervous system disorders and liver damage are frequent results of inhalation exposure. In the short term exposures, TCE acts as a central nervous system depressant -- it was used as an anesthetic before its other long term effects were defined.

TCE has been shown to induce transformation in a highly sensitive in vitro Fischer rat embryo cell system (F1706) that is used for identifying carcinogens. Severe and persistent toxicity to the liver was recently demonstrated when TCE was shown to produce carcinoma of the liver in mouse strain B6C3Fl One systematic study of TCE exposure and the incidence of human cancer was based on 518 men exposed to TCE. The authors of that study concluded that although the cancer risk to man cannot be ruled out, exposure to low levels of TCE probably does not present a very serious and general cancer hazard.

TCE is bioconcentrated in aquatic species, making the consumption of such species by humans a significant source of TCE. For the protection of human health from the potential carcinogenic effects of exposure to trichloroethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of trichloroethylene estimated to result in additional lifetime cancer risks of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00027 mg/l, 0.0027 mg/l, and 0.027 mg/l, respectively. If contaminated aquatic organisms alone are consumed excluding the consumption of water, the water concentration should be less than 0.807 mg/l to keep the additional lifetime cancer risk below 10^{-5} .

Only a very limited amount of data on the effects of TCE on freshwater aquatic life are available. One species of fish (fat head minnows) showed a loss of equilibrium at concentrations below those resulting in lethal effects.

In laboratory scale studies of toxic organic pollutants, TCE was subjected to biochemical oxidation conditions. After 5, 10, and 20 days no biochemical oxidation occurred. On the basis of this study and general observations relating molecular structure to ease of degradation, the conclusion is reached that TCE would undergo no removal by biological treatment in a POTW. The volatility and relatively low water solubility of TCE is expected to result in volatilization of some of the TCE in aeration steps in a POTW. The most recent EPA study of the behavior of toxic organics in a POTW indicates that TCE is 85 percent removed.

Antimony (114). Antimony (chemical name - stibium, symbol Sb), classified as a non-metal or metalloid, is a silvery white, brittle crystalline solid. Antimony is found in small ore bodies throughout the world. Principal ores are oxides of mixed antimony valences, and an oxysulfide ore. Complex ores with metals are important because the antimony is recovered as a by-product. Antimony melts at 631C, and is a poor conductor of electricity and heat.

Annual U.S. consumption of primary antimony ranges from 10,000 to 20,000 tons. About half is consumed in metal products — mostly antimonial lead for lead acid storage batteries, and about half in non-metal products. A principal compound is antimony trioxide which is used as a flame retardant in fabrics, and as an opacifier in glass, ceramics, and enamels. Several antimony compounds are used as catalysts in organic chemicals synthesis, as fluorinating agents (the antimony fluorides), as pigments, and in fire works. Semiconductor applications are economically significant.

Essentially no information on antimony-induced human health effects has been derived from community epidemiology studies. The available data are in literature relating effects observed with medicinal uses of antimony compounds therapeutic or industrial exposure studies. Large therapeutic doses of antimonial compounds, usually used to treat schistisomiasis, have caused severe nausea, vomiting, convulsions, irregular heart action, liver damage, and skin rashes. Studies of industrial antimony poisoning have revealed loss of appetite, diarrhea, headache, and dizziness in addition to the symptoms found in studies of therapeutic doses of antimony.

For the protection of human health from the toxic properties of antimony ingested through water and through contaminated aquatic organisms the ambient water criterion is determined to be 0.146 mg/l. If contaminated aquatic organisms are consumed, excluding the consumption of water, the ambient water criterion is determined to be 45 mg/l. Available data show that adverse effects on aquatic life occur at concentrations higher than those cited for human health risks.

The limited solubility of most antimony compounds expected in a POTW, i.e., the oxides and sulfides, suggests that at least part of the antimony entering a POTW will be precipitated and incorporated into the sludge. However, some antimony is expected to remain dissolved and pass through the POTW into the effluent. Antimony compounds remaining in the sludge under anaerobic conditions may be connected to stibine (SbH3), a very soluble and very toxic compound. There are no data to show antimony inhibits any POTW processes. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that antimony is 60 percent removed. Antimony is not known to be essential to the growth of plants, and has been reported to be moderately toxic. Therefore, sludge containing large amounts of antimony could be detrimental to plants if it is applied in large amounts to

Arsenic (115). Arsenic (chemical symbol As), is classified as a non-metal or metalloid. Elemental arsenic normally exists in the alpha-crystalline metallic form which is steel gray and brittle, and in the beta form which is dark gray and amorphous. Arsenic sublimes at 615C. Arsenic is widely distributed throughout the world in a large number of minerals. The most important commercial source of arsenic is as a by-product from treatment of copper, lead, cobalt, and gold ores. Arsenic is usually marketed as the trioxide (As2O3). Annual U.S. production of the trioxide approaches 40,000 tons.

The principal use of arsenic is in agricultural chemicals (herbicides) for controlling weeds in cotton fields. Arsenicals have various applications in medicinal and vetrinary use, as wood preservatives, and in semiconductors.

The effects of arsenic in humans were known by the ancient Greeks and Romans. The principal toxic effects are gastrointestinal disturbances. Breakdown of red blood cells occurs. Symptoms of acute poisoning include vomiting, diarrhea, abdominal pain, lassitude, dizziness, and headache. Longer exposure produced dry, falling hair, brittle, loose nails, eczema, and exfoliation. Arsenicals also exhibit teratogenic and mutagenic effects in humans. Oral administration of arsenic compounds has been associated clinically with skin cancer for nearly one hundred years. Since 1888 numerous studies have linked occupational exposure and therapeutic administration of arsenic compounds to increased incidence of respiratory and skin cancer.

the maximum protection of human health from the potential carcinogenic effects of exposure to arsenic through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of arsenic estimated to result in additional lifetime cancer risk levels of 10-7 10^{-6} , and 10^{-5} are 2.2 x 10^{-7} mg/1, 2.2 10^{-6} mg/1, and 2.2 x 10^{-5} mg/1, respectively. If If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the water concentration should be less than 10-4 to keep the increased lifetime cancer risk below 10^{-5} . Available data show that adverse effects on life occur at concentrations higher than those cited for human health risks.

A few studies have been made regarding the behavior of arsenic in a POTW. One EPA survey of nine POTW facilities reported influent concentrations ranging from 0.0005 to 0.693 mg/l; effluents from three POTW having biological treatment contained 0.0004 to 0.01 mg/l; two POTW facilities showed arsenic removal efficiencies of 50 and 71 percent in biological treatment. Inhibition of treatment processes by sodium arsenate is reported to occur at 0.1 mg/l in activated sludge, and 1.6 mg/l in anaerobic digestion processes. In another study based on data from 60 POTW facili-

ties, arsenic in sludge ranged from 1.6 to 65.6 mg/kg and the median value was 7.8 mg/kg. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that total trivalent arsenic is 65 percent removed. Arsenic in sludge spread on cropland may be taken up by plants grown on that land. Edible plants can take up arsenic, but normally their growth is inhibited before the plants are ready for harvest.

Beryllium (117). Beryllium is a dark gray metal of the alkaline earth family. It is relatively rare, but because of its unique properties finds widespread use as an alloying element, especially for hardening copper which is used in springs, electrical contacts, and non-sparking tools. World production is reported to be in the range of 250 tons annually. However, much more reaches the environment as emissions from coal burning operations. Analysis of coal indicates an average beryllium content of 3 ppm and 0.1 to 1.0 percent in coal ash or fly ash.

The principal ores are beryl (3BeO'Al₂O₃' 6SiO₂) and bertrandite [Be₄Si₂O₇(OH)₂]. Only two industrial facilities produce beryllium in the U.S. because of limited demand and the highly toxic character. About two-thirds of the annual production goes into alloys, 20 percent into heat sinks, and 10 percent into beryllium oxide (BeO) ceramic products.

Beryllium has a specific gravity of 1.846, making it the lightest metal with a high melting point (1,350C). Beryllium alloys are corrosion resistant, but the metal corrodes in aqueous environ ments. Most common beryllium compounds are soluble in water, at least to the extent necessary to produce a toxic concentration of beryllium ions.

Most data on toxicity of beryllium is for inhalation of beryllium oxide dust. Some studies on orally administered beryllium in laboratory animals have been reported. Despite the large number of studies implicating beryllium as a carcinogen, there is no recorded instance of cancer being produced by ingestion. How ever, a recently convened panel of uninvolved experts concluded that epidemiologic evidence is suggestive that beryllium is a carcinogen in man.

In the aquatic environment beryllium is chronically toxic to aquatic organisms at 0.0053~mg/l. Water softness has a large effect on beryllium toxicity to fish. In soft water, beryllium is reportedly 100 times as toxic as in hard water.

For the maximum protection of human health from the potential carcinogenic effects of exposure to beryllium through ingestion of water and contaminated aquatic organisms the ambient water concentration should be zero. Concentrations of beryllium estimated to result in additional lifetime cancer risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00000068 mg/l, 0.0000068 mg/l, and 0.000068 mg/l, respectively. If contaminated aquatic organisms alone are consumed excluding the consumption of water,

the concentration should be less than 0.00117 mg/l to keep the increased lifetime cancer risk below 10^{-5} .

Information on the behavior of beryllium in a POTW is scarce. Because beryllium hydroxide is insoluble in water, most beryllium entering a POTW will probably be in the form of suspended solids. As a result most of the beryllium will settle and be removed with sludge. However, beryllium has been shown to inhibit several enzyme systems, to interfere with DNA metabolism in the liver, and to induce chromosomal and mitotic abnormalities. This interference in cellular processes may extend to interfere with biological treatment processes. The concentration and effects of beryllium in sludge which could be applied to cropland has not been studied.

Cadmium (118). Cadmium is a relatively rare metallic element that is seldom found in sufficient quantities in a pure state to warrant mining or extraction from the earth's surface. It is found in trace amounts of about 1 ppm throughout the earth's crust. Cadmium is, however, a valuable by-product of zinc production.

Cadmium is used primarily as an electroplated metal, and is found as an impurity in the secondary refining of zinc, lead, and copper.

Cadmium is an extremely dangerous cumulative toxicant, causing progressive chronic poisoning in mammals, fish, and probably other organisms. The metal is not excreted.

Toxic effects of cadmium on man have been reported from through-Cadmium may be a factor in the development of out the world. such human pathological conditions as kidney disease, testicular arteriosclerosis, growth inhibition, tumors, hypertension, chronic disease of old age, and cancer. Cadmium is normally ingested by humans through food and water as well as by breathing contaminated by cadmium dust. Cadmium is cumulative in the liver, kidney, pancreas, and thyroid of humans and other animals. A severe bone and kidney syndrome known as itai-itai disease has been documented in Japan as caused by cadmium ingestion via drinking water and contaminated irrigation water. Ingestion of as little as 0.6 mg/day has produced the disease. Cadmium acts synergistically with other metals. Copper and zinc substantially increase its toxicity.

Cadmium is concentrated by marine organisms, particularly molluscs, which accumulate cadmium in calcareous tissues and in the viscera. A concentration factor of 1,000 for cadmium in fish muscle has been reported, as have concentration factors of 3,000 in marine plants and up to 29,600 in certain marine animals. The eggs and larvae of fish are apparently more sensitive than adult fish to poisoning by cadmium, and crustaceans appear to be more sensitive than fish eggs and larvae.

For the protection of human health from the toxic properties of

cadmium ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.010 mg/l. Available data show that adverse effects on aquatic life occur at concentrations in the same range as those cited for human health, and they are highly dependent on water hardness.

Cadmium is not destroyed when it is introduced into a POTW, and will either pass through to the POTW effluent or be incorporated into the POTW sludge. In addition, it can interfere with the POTW treatment process.

In a study of 189 POTW facilities, 75 percent of the primary plants, 57 percent of the trickling filter plants, 66 percent of the activated sludge plants, and 62 percent of the biological plants allowed over 90 percent of the influent cadmium to pass through to the POTW effluent. Only two of the 189 POTW facilities allowed less than 20 percent pass-through, and none less than 10 percent pass-through. POTW effluent concentrations ranged from 0.001 to 1.97 mg/l (mean 0.028 mg/l, standard deviation 0.167 mg/l). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that cadmium is 38 percent removed.

Cadmium not passed through the POTW will be retained in the sludge where it is likely to build up in concentration. Cadmium contamination of sewage sludge limits its use on land since it increases the level of cadmium in the soil. Data show cadmium can be incorporated into crops, including vegetables and grains, from contaminated soils. Since the crops themselves show no adverse effects from soils with levels up to 100 mg/kg cadmium, these contaminated crops could have a significant impact on Two Federal agencies have already recognized the human health. potential adverse human health effects posed by the use of sludge on cropland. The FDA recommends that sludge containing over: 30 mg/kg of cadmium should not be used on agricultural land. Sewage sludge contains 3 to 300 mg/kg (dry basis) of cadmium mean = 10 mg/kg; median 16 mg/kg. The USDA also recommends placing limits on the total cadmium from sludge that may be applied to land.

Chromium (119). Chromium is an elemental metal usually found as a chromite (FeO·Cr₂O₃). The metal is normally produced by reducing the oxide with aluminum. A significant proportion of the chromium used is in the form of compounds such as sodium dichromate (Na₂CrO₄), and chromic acid (CrO₃) -- both are hexavalent chromium compounds.

Chromium is found as an alloying component of many steels (especially high nickel stainless steels) and its compounds are used in electroplating baths, and as corrosion inhibitors for closed water circulation systems.

The two chromium forms most frequently found in industry waste waters are hexavalent and trivalent chromium. Hexavalent chromium is the form used for metal treatments. Some of it is

reduced to trivalent chromium as part of the process reaction. The raw wastewater containing both valence states is usually treated first to reduce remaining hexavalent to trivalent chromium, and second to precipitate the trivalent form as the hydroxide. The hexavalent form is not removed by lime treatment.

Chromium, in its various valence states, is hazardous to man. It can produce lung tumors when inhaled, and induces skin sensitizations. Large doses of chromates have corrosive effects on the intestinal tract and can cause inflammation of the kidneys. Hexavalent chromium is a known human carcinogen. Levels of chromate ions that show no effect in man appear to be so low as to prohibit determination, to date.

The toxicity of chromium salts to fish and other aquatic life varies widely with the species, temperature, pH, valence of the chromium, and synergistic or antagonistic effects, especially the effect of water hardness. Studies have shown that trivalent chromium is more toxic to fish of some types than is hexavalent chromium. Hexavalent chromium retards growth of one fish species at 0.0002 mg/l. Fish food organisms and other lower forms of aquatic life are extremely sensitive to chromium. Therefore, both hexavalent and trivalent chromium must be considered harmful to particular fish or organisms.

For the protection of human health from the toxic properties of chromium (except hexavalent chromium) ingested through water and contaminated aquatic organisms, the ambient water quality criterion is 170 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion for trivalent chromium is 3,443 mg/l. The ambient water quality criterion for hexavalent chromium is recommended to be identical to the existing drinking water standard for total chromium which is 0.050 mg/l.

Chromium is not destroyed when treated by a POTW (although the oxidation state may change), and will either pass through to the POTW effluent or be incorporated into the POTW sludge. Both oxidation states can cause POTW treatment inhibition and can also limit the usefulness of municipal sludge.

Influent concentrations of chromium to POTW facilities have been observed by EPA to range from 0.005 to 14.0 mg/l, with a median concentration of 0.1 mg/l. The efficiencies for removal of chromium by the activated sludge process can vary greatly, depending on chromium concentration in the influent, and other operating conditions at the POTW. Chelation of chromium by organic matter and dissolution due to the presence of carbonates can cause deviations from the predicted behavior in treatment systems.

The systematic presence of chromium compounds will halt nitrification in a POTW for short periods, and most of the chromium will be retained in the sludge solids. Hexavalent chromium has been reported to severely affect the nitrification process, but trivalent chromium has little or no toxicity to activated sludge,

except at high concentrations. The presence of iron, copper, and low pH will increase the toxicity of chromium in a POTW by

releasing the chromium into solution to be ingested by micro-organisms in the POTW.

The amount of chromium which passes through to the POTW effluent depends on the type of treatment processes used by the POTW. In a study of 240 POTW facilities, 56 percent of the primary plants allowed more than 80 percent pass-through to POTW effluent. More advanced treatment results in less pass through. POTW effluent concentrations ranged from 0.003 to 3.2 mg/l total chromium (mean = 0.197, standard deviation = 0.48), and from 0.002 to 0.1 mg/l hexavalent chromium (mean = 0.017, standard deviation = 0.020). The most recent EPA study of the behavior of toxic pollutants in POTWs indicates that hexavalent chromium is 18 percent removed.

Chromium not passed through the POTW will be retained sludge, where it is likely to build up in concentration. Sludge concentrations of total chromium of over 20,000 mg/kg (dry basis) Disposal of sludges containing very high have been observed. concentrations of trivalent chromium can potentially cause problems in uncontrolled landfills. Incineration, or similar destructive oxidation processes, can produce hexavalent chromium from lower valence states. Hexavalent chromium is potentially more toxic than trivalent chromium. In cases where high rates of chrome sludge application on land are used, distinct growth inhibition and plant tissue uptake have been noted.

Pretreatment of discharges substantially reduces the concentration of chromium in sludge. In Buffalo, New York, pretreatment of electroplating waste resulted in a decrease in chromium concentrations in POTW sludge from 2,510 to 1,040 mg/kg. A similar reduction occurred in Grand Rapids, Michigan, POTW facilities where the chromium concentration in sludge decreased from 11,000 to 2,700 mg/kg when pretreatment was made a requirement.

Copper (120). Copper is a metallic element that sometimes is found free, as the native metal, and is also found in minerals such as cuprite (Cu_2O), malechite [Cu_2O 03 Cu_2OH 12], azurite [$\text{2Cu}_2\text{CO}_3$ 0. Cu_2OH 12], chalcopyrite (Cu_2FeS_2 2), and bornite (Cu_2FeS_2 4). Copper is obtained from these ores by smelting, leaching, and electrolysis. It is used in the plating, electrical, plumbing, and heating equipment industries, as well as in insecticides and fungicides.

Traces of copper are found in all forms of plant and animal life, and the metal is an essential trace element for nutrition. Copper is not considered to be a cumulative systemic poison for humans as it is readily excreted by the body, but it can cause symptoms of gastroenteritis, with nausea and intestinal irritations, at relatively low dosages. The limiting factor in domestic water supplies is taste. To prevent this adverse organoleptic effect of copper in water, a criterion of 1 mg/l has been established.

The toxicity of copper to aquatic organisms varies significantly, not only with the species, but also with the physical and chemical characteristics of the water, including temperature, hardness, turbidity, and carbon dioxide content. In hard water, the toxicity of copper salts may be reduced by the precipitation of copper carbonate or other insoluble compounds. The sulfates of copper and zinc, and of copper and calcium are synergistic in their toxic effect on fish.

Relatively high concentrations of copper may be tolerated by adult fish for short periods of time; the critical effect of copper appears to be its higher toxicity to young or juvenile fish. Concentrations of 0.02 to 0.03 mg/l have proved fatal to some common fish species. In general the salmonoids are very sensitive and the sunfishes are less sensitive to copper.

The recommended criterion to protect freshwater aquatic life is 0.0056~mg/l as a 24-hour average, and 0.012~mg/l maximum concentration at a hardness of 50 mg/l CaCO3. For total recoverable copper the criterion to protect freshwater aquatic life is 0.0056~mg/l as a 24-hour average.

Copper salts cause undesirable color reactions in the food industry and cause pitting when deposited on some other metals such as aluminum and galvanized steel. To control undesirable taste and odor quality of ambient water due to the organoleptic properties of copper, the estimated level is 1.0 mg/l for total recoverable copper.

Irrigation water containing more than minute quantities of copper can be detrimental to certain crops. Copper appears in all soils, and its concentration ranges from 10 to 80 ppm. In soils, copper occurs in association with hydrous oxides of manganese and iron, and also as soluble and insoluble complexes with organic matter. Copper is essential to the life of plants, and the normal range of concentration in plant tissue is from 5 to 20 ppm. Copper concentrations in plants normally do not build up to high levels when toxicity occurs. For example, the concentrations of copper in snapbean leaves and pods was less than 50 and 20 mg/kg, respectively, under conditions of severe copper toxicity. Even under conditions of copper toxicity, most of the excess copper accumulates in the roots; very little is moved to the aerial part of the plant.

Copper is not destroyed when treated by a POTW, and will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with the POTW treatment processes and can limit the usefulness of municipal sludge.

The influent concentration of copper to a POTW has been observed by the EPA to range from 0.01 to 1.97 mg/l, with a median concentration of 0.12 mg/l. The copper that is removed from the influent stream of a POTW is absorbed on the sludge or appears in the sludge as the hydroxide of the metal. Bench scale pilot studies have shown that from about 25 percent to 75 percent of

the copper passing through the activated sludge process remains in solution in the final effluent. Four-hour slug dosages of copper sulfate in concentrations exceeding 50 mg/l were reported to have severe effects on the removal efficiency of an unacclimated system, with the system returning to normal in about 100 hours. Slug dosages of copper in the form of copper cyanide were observed to have much more severe effects on the activated sludge system, but the total system returned to normal in 24 hours.

In a recent study of 268 POTW facilities, the median pass-through was over 80 percent for primary plants and 40 to 50 percent for trickling filter, activated sludge, and biological treatment plants. POTW effluent concentrations of copper ranged from 0.003 to 1.8 mg/l (mean 0.126, standard deviation 0.242). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that copper is 58 percent removed.

Copper which does not pass through the POTW will be retained in the sludge where it will build up in concentration. The presence of excessive levels of copper in sludge may limit its use on cropland. Sewage sludge contains up to 16,000 mg/kg of copper, with 730 mg/kg as the mean value. These concentrations are significantly greater than those normally found in soil, which usually range from 18 to 80 mg/kg. Experimental data indicate that when dried sludge is spread over tillable land, the copper tends to remain in place down to the depth of the tillage, except for copper which is taken up by plants grown in the soil. Recent investigation has shown that the extractable copper content of sludge-treated soil decreased with time, which suggests a reversion of copper to less soluble forms was occurring.

Cyanide (121). Cyanides are among the most toxic of pollutants commonly observed in industrial wastewaters. Introduction of cyanide into industrial processes is usually by dissolution of potassium cyanide (KCN) or sodium cyanide (NaCN) in process waters. However, hydrogen cyanide (HCN) formed when the above salts are dissolved in water, is probably the most acutely lethal compound.

The relationship of pH to hydrogen cyanide formation is very important. As pH is lowered to below 7, more than 99 percent of the cyanide is present as HCN and less than 1 percent as cyanide ions. Thus, at neutral pH, that of most living organisms, the more toxic form of cyanide prevails.

Cyanide ions combine with numerous heavy metal ions to form complexes. The complexes are in equilibrium with HCN. Thus, the stability of the metal-cyanide complex and the pH determine the concentration of HCN. Stability of the metal-cyanide anion complexes is extremely variable. Those formed with zinc, copper, and cadmium are not stable — they rapidly dissociate, with production of HCN, in near neutral or acid waters. Some of the complexes are extremely stable. Cobaltocyanide is very resistant to acid distillation in the laboratory. Iron cyanide complexes are also stable, but undergo photodecomposition to give HCN upon

exposure to sunlight. Synergistic effects have been demonstrated for the metal cyanide complexes making zinc, copper, and cadmium

cyanides more toxic than an equal concentration of sodium cyanide.

The toxic mechanism of cyanide is essentially an inhibition of oxygen metabolism, i.e., rendering the tissues incapable of exchanging oxygen. The cyanogen compounds are true noncumulative protoplasmic poisons. They arrest the activity of all forms of animal life. Cyanide shows a very specific type of toxic action. It inhibits the cytochrome oxidase system. This system is the one which facilitates electron transfer from reduced metabolites to molecular oxygen. The human body can convert cyanide to a non-toxic thiocyanate and eliminate it. However, if the quantity of cyanide ingested is too great at one time, the inhibition of oxygen utilization proves fatal before the detoxifying reaction reduces the cyanide concentration to a safe level.

Cyanides are more toxic to fish than to lower forms of aquatic organisms such as midge larvae, crustaceans, and mussels. Toxic ity to fish is a function of chemical form and concentration, and is influenced by the rate of metabolism (temperature), the level of dissolved oxygen, and pH. In laboratory studies free cyanide concentrations ranging from 0.05 to 0.14 mg/l have been proven to be fatal to sensitive fish species including trout, bluegill, and fathead minnows. Levels above 0.2 mg/l are rapidly fatal to most fish species. Long term sublethal concentrations of cyanide as low as 0.01 mg/l have been shown to affect the ability of fish to function normally, e.g., reproduce, grow, and swim.

For the protection of human health from the toxic properties of cyanide ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be $0.200 \, \text{mg/1}$.

Persistence of cyanide in water is highly variable and depends upon the chemical form of cyanide in the water, the concentration of cyanide, and the nature of other constituents. Cyanide may be destroyed by strong oxidizing agents such as permanganate and chlorine. Chlorine is commonly used to oxidize strong cyanide solutions. Carbon dioxide and nitrogen are the products of complete oxidation. But if the reaction is not complete, the very toxic compound, cyanogen chloride, may remain in the treatment system and subsequently be released to the environment. Partial chlorination may occur as part of a POTW treatment, or during the disinfection treatment of surface water for drinking water preparation.

Cyanides can interfere with treatment processes in a POTW, or pass through to ambient waters. At low concentrations and with acclimated microflora, cyanide may be decomposed by microorganisms in anaerobic and aerobic environments or waste treatment systems. However, data indicate that much of the cyanide introduced passes through to the POTW effluent. The mean pass-through

of 14 biological plants was 71 percent. In a recent study of 41 POTW facilities the effluent concentrations ranged from 0.002 to 100 mg/l (mean = 2.518, standard deviation = 15.6). Cyanide also enhances the toxicity of metals commonly found in POTW effluents, including the toxic pollutants cadmium, zinc, and copper. The most recent EPA study of the behavior of toxic pollutants in POTWs indicates that free cyanide is 52 percent removed.

Data for Grand Rapids, Michigan, showed a significant decline in cyanide concentrations downstream from the POTW after pretreatment regulations were put in force. Concentrations fell from 0.66 mg/l before, to 0.01 mg/l after pretreatment was required.

Lead (122). Lead is a soft, malleable, ductile, blueish-gray, metallic element, usually obtained from the mineral galena (lead sulfide, PbS), anglesite (lead sulfate, PbSO₄), or cerussite (lead carbonate, PbCO₃). Because it is usually associated with minerals of zinc, silver, copper, gold, cadmium, antimony, and arsenic, special purification methods are frequently used before and after extraction of the metal from the ore concentrate by smelting.

Lead is widely used for its corrosion resistance, sound and vibration absorption, low melting point (solders), and relatively high imperviousness to various forms of radiation. Small amounts of copper, antimony and other metals can be alloyed with lead to achieve greater hardness, stiffness, or corrosion resistance than is afforded by the pure metal. Lead compounds are used in glazes and paints. About one third of U.S. lead consumption goes into storage batteries. About half of U.S. lead consumption is from secondary lead recovery. U.S. consumption of lead is in the range of one million tons annually.

Lead ingested by humans produces a variety of toxic effects including impaired reproductive ability, disturbances in blood chemistry, neurological disorders, kidney damage, and adverse cardiovascular effects. Exposure to lead in the diet results in permanent increase in lead levels in the body. Most of the lead entering the body eventually becomes localized in the bones where it accumulates. Lead is a carcinogen or cocarcinogen in some species of experimental animals. Lead is teratogenic in experimental animals. Mutagenicity data are not available for lead.

The ambient water quality criterion for lead is recommended to be identical to the existing drinking water standard which is 0.050 mg/l. Available data show that adverse effect on aquatic life occur at concentrations as low as 7.5×10^{-4} mg/l of total recoverable lead as a 24-hour average with a water hardness of 50 mg/l as \cdot CaCO₃.

Lead is not destroyed in a POTW, but is passed through to the effluent or retained in the POTW sludge; it can interfere with POTW treatment processes and can limit the usefulness of POTW sludge for application to agricultural croplands. Threshold concentration for inhibition of the activated sludge process is 0.1

mg/1, and for the nitrification process is 0.5 mg/1. In a study of 214 POTW facilities, median pass through values were over 80 percent for primary plants and over 60 percent for trickling filter, activated sludge, and biological process plants. Lead concentration in POTW effluents ranged from 0.003 to 1.8 mg/1 (mean = 0.106 mg/1, standard deviation = 0.222). The most recent EPA study of the behavior of toxic pollutants in a POTW indicates that lead is 48 percent removed.

Application of lead-containing sludge to cropland should not lead to uptake by crops under most conditions because normally lead is strongly bound by soil. However, under the unusual condition of low pH (less than 5.5) and low concentrations of labile phosphorus, lead solubility is increased and plants can accumulate lead.

Mercury (123). Mercury is an elemental metal rarely found in nature as the free metal. Mercury is unique among metals as it remains a liquid down to about 39 degrees below zero. It is relatively inert chemically and is insoluble in water. The principal ore is cinnabar (HgS).

Mercury is used industrially as the metal and as mercurous and mercuric salts and compounds. Mercury is used in several types of batteries. Mercury released to the aqueous environment is subject to biomethylation -- conversion to the extremely toxic methyl mercury.

Mercury can be introduced into the body through the skin and the respiratory system as the elemental vapor. Mercuric salts are highly toxic to humans and can be absorbed through the gastro-intestinal tract. Fatal doses can vary from 1 to 30 grams. Chronic toxicity of methyl mercury is evidenced primarily by neurological symptoms. Some mercuric salts cause death by kidney failure.

Mercuric salts are extremely toxic to fish and other aquatic life. Mercuric chloride is more lethal than copper, hexavalent chromium, zinc, nickel, and lead towards fish and aquatic life. In the food cycle, algae containing mercury up to 100 times the concentration in the surrounding sea water are eaten by fish which further concentrate the mercury. Predators that eat the fish in turn concentrate the mercury even further.

For the protection of human health from the toxic properties of mercury ingested through water and through contaminated aquatic organisms the ambient water criterion is determined to be 0.0002 mg/l.

Mercury is not destroyed when treated by a POTW, and will either pass through to the POTW effluent or be incorporated into the POTW sludge. At low concentrations it may reduce POTW removal efficiencies, and at high concentrations it may upset the POTW operation.

The influent concentrations of mercury to a POTW have been observed by the EPA to range from 0.002 to 0.24 mg/l, with a median concentration of 0.001 mg/l. Mercury has been reported in the literature to have inhibiting effects upon an activated sludge POTW at levels as low as 0.1 mg/l. At 5 mg/l of mercury, losses of COD removal efficiency of 14 to 40 percent have been reported, while at 10 mg/l loss of removal of 59 percent has been reported. Upset of an activated sludge POTW is reported in the literature to occur near 200 mg/l. The anaerobic digestion process is much less affected by the presence of mercury, with inhibitory effects being reported at 1,365 mg/l.

In a study of 22 POTW facilities having secondary treatment, the range of removal of mercury from the influent to the POTW ranged from 4 to 99 percent with median removal of 41 percent. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that mercury is 69 percent removed. Thus significant pass through of mercury may occur.

In sludges, mercury content may be high if industrial sources of mercury contamination are present. Little is known about the form in which mercury occurs in sludge. Mercury may undergo biological methylation in sediments, but no methylation has been observed in soils, mud, or sewage sludge.

The mercury content of soils not receiving additions of POTW sewage sludge lie in the range from 0.01 to 0.5 mg/kg. In soils receiving POTW sludges for protracted periods, the concentration of mercury has been observed to approach 1.0 mg/kg. In the soil, mercury enters into reactions with the exchange complex of clay and organic fractions, forming both ionic and covalent bonds. Chemical and microbiological degradation of mercurials can take place side by side in the soil, and the products — ionic or molecular — are retained by organic matter and clay or may be volatilized if gaseous. Because of the high affinity between mercury and the solid soil surfaces, mercury persists in the upper layer of the soil.

Mercury can enter plants through the roots, it can readily move to other parts of the plant, and it has been reported to cause injury to plants. In many plants mercury concentrations range from 0.01 to 0.20 mg/kg, but when plants are supplied with high levels of mercury, these concentrations can exceed 0.5 mg/kg. Bioconcentration occurs in animals ingesting mercury in food.

Nickel (124). Nickel is seldom found in nature as the pure elemental metal. It is a relatively plentiful element and is widely distributed throughout the earth's crust. It occurs in marine organisms and is found in the oceans. The chief commercial ores for nickel are pentlandite [(Fe,Ni)9S8], and a lateritic ore consisting of hydrated nickel-iron-magnesium silicate.

Nickel has many and varied uses. It is used in alloys and as the pure metal. Nickel salts are used for electroplating baths.

The toxicity of nickel to man is thought to be very low, and systemic poisoning of human beings by nickel or nickel salts is almost unknown. In non-human mammals nickel acts to inhibit insulin release, depress growth, and reduce cholesterol. A high incidence of cancer of the lung and nose has been reported in humans engaged in the refining of nickel.

Nickel salts can kill fish at very low concentrations. However, nickel has been found to be less toxic to some fish than copper, zinc, and iron. Nickel is present in coastal and open ocean water at concentrations in the range of 0.0001 to 0.006 mg/l although the most common values are 0.002 to 0.003 mg/l. Marine animals contain up to 0.4 mg/l and marine plants contain up to 3 mg/l. Higher nickel concentrations have been reported to cause reduction in photosynthetic activity of the giant kelp. A low concentration was found to kill oyster eggs.

For the protection of human health based on the toxic properties of nickel ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.0134 mg/l. If contaminated aquatic organisms are consumed, excluding consumption of water, the ambient water criterion is determined to be 0.100 mg/l. Available data show that adverse effects on aquatic life occur for total recoverable nickel concentrations as low as 0.0071 mg/l as a 24-hour average.

Nickel is not destroyed when treated in a POTW, but will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with POTW treatment processes and can also limit the usefulness of municipal sludge.

Nickel salts have caused inhibition of the biochemical oxidation of sewage in a POTW. In a pilot plant, slug doses of nickel significantly reduced normal treatment efficiencies for a few hours, but the plant acclimated itself somewhat to the slug dosage and appeared to achieve normal treatment efficiencies within 40 hours. It has been reported that the anaerobic digestion process is inhibited only by high concentrations of nickel, while a low concentration of nickel inhibits the nitrification process.

The influent concentration of nickel to a POTW has been observed by the EPA to range from 0.01 to 3.19 mg/l, with a median of 0.33 mg/l. In a study of 190 POTW facilities, nickel pass-through was greater than 90 percent for 82 percent of the primary plants. Median pass-through for trickling filter, activated sludge, and biological process plants was greater than 80 percent. POTW effluent concentrations ranged from 0.002 to 40 mg/l (mean 0.410, standard deviation = 3.279). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that nickel is 19 percent removed.

Nickel not passed through the POTW will be incorporated into the sludge. In a recent two-year study of eight cities, four of the cities had median nickel concentrations of over 350 mg/kg, and two were over 1,000 mg/kg. The maximum nickel concentration

Nickel is found in nearly all soils, plants, and waters. Nickel has no known essential function in plants. In soils, nickel typically is found in the range from 10 to 100 mg/kg. Various environmental exposures to nickel appear to correlate with increased incidence of tumors in man. For example, cancer in the maxillary antrum of snuff users may result from using plant materials grown on soil high in nickel.

Nickel toxicity may develop in plants from application of sewage sludge on acid soils. Nickel has caused reduction of yields for a variety of crops including oats, mustard, turnips, and cabbage. In one study nickel decreased the yields of oats significantly at 100 mg/kg.

Whether nickel exerts a toxic effect on plants depends on several soil factors, the amount of nickel applied, and the contents of other metals in the sludge. Unlike copper and zinc, which are more available from inorganic sources than from sludge, nickel uptake by plants seems to be promoted by the presence of the organic matter in sludge. Soil treatments, such as liming, reduce the solubility of nickel. Toxicity of nickel to plants is enhanced in acidic soils.

Selenium (125). Selenium (chemical symbol Se) is a non-metallic element existing in several allotropic forms. Gray selenium, which has a metallic appearance, is the stable form at ordinary temperatures and melts at 220C. Selenium is a major component of 38 minerals and a minor component of 37 others found in various parts of the world. Most selenium is obtained as a by-product of precious metals recovery from electrolytic copper refinery slimes. U.S. annual production at one time reached one million pounds.

Principal uses of selenium are in semi-conductors, pigments, decoloring of glass, zerography, and metallurgy. It also is used to produce ruby glass used in signal lights. Several selenium compounds are important oxidizing agents in the synthesis of organic chemicals and drug products.

While results of some studies suggest that selenium may be an essential element in human nutrition, the toxic effects of selenium in humans are well established. Lassitude, loss of hair, discoloration and loss of fingernails are symptoms of selenium poisoning. In a fatal case of ingestion of a larger dose of selenium acid, peripheral vascular collapse, pulmonary edema, and coma occurred. Selenium produces mutagenic and teratogenic effects, but it has not been established as exhibiting carcinogenic activity.

For the protection of human health from the toxic properties of selenium ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.010

mg/l, i.e., the same as the drinking water standard. Available data show that adverse effects on aquatic life occur at concentrations higher than that cited for human toxicity.

Very few data are available regarding the behavior of selenium in a POTW. One EPA survey of 103 POTW facilities revealed one POTW using biological treatment and having selenium in the influent. Influent concentration was 0.0025 mg/l, effluent concentration was 0.0016 mg/l, giving a removal of 37 percent. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that selenium is 46 percent removed. It is not known to be inhibitory to POTW processes. In another study, sludge from POTW facilities in 16 cities was found to contain from 1.8 to 8.7 mg/kg selenium, compared to 0.01 to 2 mg/kg in untreated soil. These concentrations of selenium in sludge present a potential hazard for humans or other mammals eating crops grown on soil treated with selenium-containing sludge.

Silver (126). Silver is a soft, lustrous, white metal that is insoluble in water and alkali. In nature, silver is found in the elemental state (native silver) and combined in ores such as argentite (Ag₂S), horn silver (AgCl), proustite (Ag₃AsS₃), and pyrargyrite (Ag₃SbS₃). Silver is used extensively in several industries, among them electroplating.

Metallic silver is not considered to be toxic, but most of its salts are toxic to a large number of organisms. Upon ingestion by humans, many silver salts are absorbed in the circulatory system and deposited in various body tissues, resulting in generalized or sometimes localized gray pigmentation of the skin and mucous membranes known as argyria. There is no known method for removing silver from the tissues once it is deposited, and the effect is cumulative.

Silver is recognized as a bactericide and doses from 0.000001 to 0.0005 mg/l have been reported as sufficient to sterilize water. The criterion for ambient water to protect human health from the toxic properties of silver ingested through water and through contaminated aquatic organisms is 0.010 mg/l.

The chronic toxic effects of silver on the aquatic environment have not been given as much attention as many other heavy metals. Data from existing literature support the fact that silver is very toxic to aquatic organisms. Despite the fact that silver is nearly the most toxic of the heavy metals, there are insufficient data to adequately evaluate even the effects of hardness on silver toxicity. There are no data available on the toxicity of different forms of silver.

The most recent EPA study of the behavior of toxic pollutants in a POTW indicates that silver is 66 percent removed.

Bioaccumulation and concentration of silver from sewage sludge has not been studied to any great degree. There is some indica-

tion that silver could be bioaccumulated in mushrooms to the extent that there could be adverse physiological effects on humans if they consumed large quantities of mushrooms grown in silver enriched soil. The effect, however, would tend to be unpleasant rather than fatal.

There is little summary data available on the quantity of silver discharged to a POTW. Presumably there would be a tendency to limit its discharge from a manufacturing facility because of its high intrinsic value.

Thallium (127). Thallium (T1) is a soft, silver-white, dense, malleable metal. Five major minerals contain 15 to 85 percent thallium, but they are not of commercial importance because the metal is produced in sufficient quantity as a by-product of lead-zinc smelting of sulfide ores. Thallium melts at 304C. U.S. annual production of thallium and its compounds is estimated to be 1,500 pounds.

Industrial uses of thallium include the manufacture of alloys, electronic devices and special glass. Thallium catalysts are used for industrial organic syntheses.

Acute thallium poisoning in humans has been widely described. Gastrointestinal pains and diarrhea are followed by abnormal sensation in the legs and arms, dizziness, and, later, loss of hair. The central nervous system is also affected. Somnolence, delerium or coma may occur. Studies on the teratogenicity of thallium appear inconclusive; no studies on mutagenicity were found; and no published reports on carcinogenicity of thallium were found.

For the protection of human health from the toxic properties of thallium ingested through water and contaminated aquatic organisms, the ambient water criterion is 0.013 mg/l.

No reports were found regarding the behavior of thallium in a POTW. It will not be degraded, therefore, it must pass through to the effluent or be removed with the sludge. However, since the sulfide (TIS) is very insoluble, if appreciable sulfide is present dissolved thallium in the influent to a POTW may be precipitated into the sludge. Subsequent use of sludge bearing thallium compounds as a soil amendment to crop bearing soils may result in uptake of this element by food plants. Several leafy garden crops (cabbage, lettuce, leek, and endive) exhibit relatively higher concentrations of thallium than other foods such as meat.

Zinc (128). Zinc occurs abundantly in the earth's crust, con centrated in ores. It is readily refined into the pure, stable, silver-white metal. In addition to its use in alloys, zinc is used as a protective coating on steel. It is applied by hot dipping (i.e., dipping the steel in molten zinc) or by electroplating.

Zinc can have an adverse effect on man and animals at high concentrations. Zinc at concentrations in excess of 5 mg/l causes an undesirable taste which persists through conventional treatment. For the prevention of adverse effects due to these organoleptic properties of zinc, 5 mg/l was adopted for the ambient water criterion. Available data show that adverse effects on aquatic life occur at concentrations as low as 0.047 mg/l as a 24-hour average.

Toxic concentrations of zinc compounds cause adverse changes in the morphology and physiology of fish. Lethal concentrations in the range of 0.1 mg/l have been reported. Acutely toxic concentrations induce cellular breakdown of the gills, and possibly the clogging of the gills with mucous. Chronically toxic concentrations of zinc compounds cause general enfeeblement and widespread histological changes to many organs, but not to gills. Abnormal swimming behavior has been reported at 0.04 mg/l. Growth and maturation are retarded by zinc. It has been observed that the effects of zinc poisoning may not become apparent immediately, so that fish removed from zinc-contaminated water may die as long as 48 hours after removal.

In general, salmonoids are most sensitive to elemental zinc in soft water; the rainbow trout is the most sensitive in hard waters. A complex relationship exists between zinc concentration, dissolved zinc concentration, pH, temperature, and calcium and magnesium concentration. Prediction of harmful effects has been less than reliable and controlled studies have not been extensively documented.

The major concern with zinc compounds in marine waters is not with acute lethal effects, but rather with the long-term sublethal effects of the metallic compounds and complexes. Zinc accumulates in some marine species, and marine animals contain zinc in the range of 6 to 1,500 mg/kg. From the point of view of acute lethal effects, invertebrate marine animals seem to be the most sensitive organism tested.

Toxicities of zinc in nutrient solutions have been demonstrated for a number of plants. A variety of fresh water plants tested manifested harmful symptoms at concentrations of 0.030 to 21.6 mg/l. Zinc sulfate has also been found to be lethal to many plants and it could impair agricultural uses of the water.

Zinc is not destroyed when treated by a POTW, but will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with treatment processes in the POTW and can also limit the usefulness of municipal sludge.

In slug doses, and particularly in the presence of copper, dissolved zinc can interfere with or seriously disrupt the operation of POTW biological processes by reducing overall removal efficiencies, largely as a result of the toxicity of the metal to biological organisms. However, zinc solids in the form of hydroxides or sulfides do not appear to interfere with biological

treatment processes, on the basis of available data. Such solids accumulate in the sludge.

The influent concentrations of zinc to a POTW has been observed by the EPA to range from 0.017 to 3.91 mg/l, with a median concentration of 0.33 mg/l. Primary treatment is not efficient in removing zinc; however, the microbial floc of secondary treatment readily adsorbs zinc.

In a study of 258 POTW facilities, the median pass-through values were 70 to 88 percent for primary plants, 50 to 60 percent for trickling filter and biological process plants, and 30 to 40 percent for activated process plants. POTW effluent concentrations of zinc ranged from 0.003 to 3.6 mg/l (mean = 0.330, standard deviation = 0.464). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that zinc is 65 percent removed.

The zinc which does not pass through the POTW is retained in the sludge. The presence of zinc in sludge may limit its use on cropland. Sewage sludge contains 72 to over 30,000 mg/kg of zinc, with 3,366 mg/kg as the mean value. These concentrations are significantly greater than those normally found in soil, which range from 0 to 195 mg/kg, with 94 mg/kg being a common level. Therefore, application of sewage sludge to soil will generally increase the concentration of zinc in the soil. Zinc can be toxic to plants, depending upon soil pH. Lettuce, tomatoes, turnips, mustard, kale, and beets are especially sensitive to zinc contamination.

Oil and grease are taken together as one pollutant parameter. This is a conventional pollutant and some of its components are:

- l. Light Hydrocarbons These include light fuels such as gasoline, kerosene, and jet fuel, and miscellaneous solvents used for industrial processing, degreasing, or cleaning purposes. The presence of these light hydrocarbons may make the removal of other heavier oil wastes more difficult.
- 2. Heavy Hydrocarbons, Fuels, and Tars These include the crude oils, diesel oils, #6 fuel oil, residual oils, slop oils, and in some cases, asphalt and road tar.
- 3. Lubricants and Cutting Fluids These generally fall into two classes: non-emulsifiable oils such as lubricating oils and greases and emulsifiable oils such as water soluble oils, rolling oils, cutting oils, and drawing compounds. Emulsifiable oils may contain fat, soap, or various other additives.
- 4. Vegetable and Animal Fats and Oils These originate primarily from processing of foods and natural products, but are sometimes used as metal forming lubricants.

These compounds can settle or float and may exist as solids or

liquids depending upon factors such as method of use, production process, and temperature of water.

Oil and grease even in small quantities cause troublesome taste and odor problems. Scum lines from these agents are produced on water treatment basin walls and other containers. Fish and water fowl are adversely affected by oils in their habitat. Oil emulsions may adhere to the gills of fish causing suffocation, and the flesh of fish is tainted when microorganisms that were exposed to waste oil are eaten. Deposition of oil in the bottom sediments of water can serve to inhibit normal benthic growth. Oil and grease exhibit an oxygen demand.

Many of the toxic organic pollutants will be found distributed between the oil phase and the aqueous phase in industrial waste waters. The presence of phenols, PCB's, PAH's, and almost any other organic pollutant in the oil and grease make characterization of this parameter almost impossible. However, all of these other organics add to the objectionable nature of the oil and grease.

Levels of oil and grease which are toxic to aquatic organisms vary greatly, depending on the type and the species susceptibility. However, it has been reported that crude oil in concentrations as low as 0.3 mg/l is extremely toxic to freshwater fish. It has been recommended that public water supply sources be essentially free from oil and grease.

Oil and grease in quantities of 100 l/sq km show up as a sheen on the surface of a body of water. The presence of oil slicks decreases the aesthetic value of a waterway.

Oil and grease is compatible with a POTW activated sludge process in limited quantity. However, slug loadings or high concentrations of oil and grease interfere with biological treatment processes. The oils coat surfaces and solid particles, preventing access of oxygen, and sealing in some microorganisms. Land spreading of POTW sludge containing oil and grease uncontaminated by toxic pollutants is not expected to affect crops grown on the treated land, or animals eating those crops.

pH. Although not a specific pollutant, pH is related to the acidity or alkalinity of a wastewater stream. It is not, however, a measure of either. The term pH is used to describe the hydrogen ion concentration (or activity) present in a given solution. Values for pH range from 0 to 14, and these numbers are the negative logarithms of the hydrogen ion concentrations. A pH of 7 indicates neutrality. Solutions with a pH above 7 are alkaline, while those solutions with a pH below 7 are acidic. The relationship of pH and acidity and alkalinity is not necessarily linear or direct. Knowledge of the water pH is useful in determining necessary measures for corrosion control, sanitation, and disinfection. Its value is also necessary in the treatment of industrial wastewaters to determine amounts of chemicals required to remove pollutants and to measure their effectiveness. Removal

of pollutants, especially dissolved solids is affected by the pH of the wastewater.

Waters with a pH below 6.0 are corrosive to water works structures, distribution lines, and household plumbing fixtures and can thus add constituents to drinking water such as iron, copper, zinc, cadmium, and lead. The hydrogen ion concentration can affect the taste of the water, and at a low pH water tastes sour. The bactericidal effect of chlorine is weakened as the pH increases, and it is advantageous to keep the pH close to 7.0. This is significant for providing safe drinking water.

Extremes of pH or rapid pH changes can exert stress conditiooons or kill aquatic life outright. Even moderate changes from acceptable criteria limits of pH are deleterious to some species.

The relative toxicity to aquatic life of many materials is increased by changes in the water pH. For example, metallocyanide complexes can increase a thousand-fold in toxicity with a drop of 1.5 pH units.

Because of the universal nature of pH and its effect on water quality and treatment, it is selected as a pollutant parameter for many industry categories. A neutral pH range (approximately 6 to 9) is generally desired because either extreme beyond this range has a deleterious effect on receiving waters or the pollutant nature of other wastewater constituents.

Pretreatment for regulation of pH is covered by the "General Pretreatment Regulations for Existing and New Sources of Pollution," 40 CFR 403.5. This section prohibits the discharge to a POTW of "pollutants which will cause corrosive structural damage to the POTW but in no case discharges with pH lower than 5.0 unless the works is specially designed to accommodate such discharges."

Suspended Solids (TSS). Suspended solids include both organic and inorganic materials. The inorganic compounds include sand, silt, and clay. The organic fraction includes such materials as grease, oil, tar, and animal and vegetable waste products. These solids may settle out rapidly, and bottom deposits are often a mixture of both organic and inorganic solids. Solids may suspended in water for a time and then settle to the bed the stream or lake. These solids discharged with man's wastes may be inert, slowly biodegradable materials, or rapidly decomposable substances. While in suspension, suspended solids increase the turbidity of the water, reduce light penetration, and impair the photosynthetic activity of aquatic plants.

Suspended solids in water interfere with many industrial processes and cause foaming in boilers and incrustations on equipment exposed to such water, especially as the temperature rises. They are undesirable in process water used in the manufacture of steel, in the textile industry, in laundries, in dyeing, and in cooling systems.

Solids in suspension are aesthetically displeasing. When they settle to form sludge deposits on the stream or lake bed, they are often damaging to the life in the water. Solids, when transformed to sludge deposit, may do a variety of damaging things, including blanketing the stream or lake bed and thereby destroy ing the living spaces for those benthic organisms that would otherwise occupy the habitat. When of an organic nature, solids use a portion or all of the dissolved oxygen available in the area. Organic materials also serve as a food source for sludgeworms and associated organisms.

Disregarding any toxic effect attributable to substances leached out by water, suspended solids may kill fish and shellfish by causing abrasive injuries and by clogging the gills and respiratory passages of various aquatic fauna. Indirectly, suspended solids are inimical to aquatic life because they screen out light, and they promote and maintain the development of noxious conditions through oxygen depletion. This results in the killing of fish and fish food organisms. Suspended solids also reduce the recreational value of the water.

Total suspended solids is a traditional pollutant which is compatible with a well-run POTW. This pollutant with the exception of those components which are described elsewhere in this section, e.g., heavy metal components, does not interfere with the operation of a POTW. However, since a considerable portion of the innocuous TSS may be inseparably bound to the constituents which do interfere with POTW operation, or produce unusable sludge, or subsequently dissolve to produce unacceptable POTW effluent, TSS may be considered a toxic waste.

Aluminum, a nonconventional pollutant, is the Aluminum (Al). most common metallic element in the earth's crust, and the third most abundant element (8.1 percent). It is never found free in Most rocks and various clays contain aluminum in the form of aluminosilicate minerals. Generally, aluminum is first converted to alumina (Al₂0₃) from bauxite ore. alumina then undergoes electrolytic reduction to form the metal. Aluminum powders (used in explosives, fireworks, and rocket fuels) form flammable mixtures in the air. Aluminum metal resists corrosion under many conditions by forming a protective oxide film on the surface. This oxide layer corrodes rapidly in strong acids and alkalis, and by the electrolytic action of other metals with which it comes in contact. Aluminum is ductile, possesses high thermal and electrical malleable, It can be formed, machined, conductivity, and is non-magnetic. Aluminum is used in the building and construction, transportation, and the container and packaging industries and competes with iron and steel in these markets.

Aluminum is soluble under both acidic and basic conditions, with environmental transport occurring most readily under these conditions. In water, aluminum can behave as an acid or base, can form ionic complexes with other substances, and can polymerize, depending on pH and the dissolved substances in

water. Aluminum's high solubility at acidic pH conditions makes it readily available for accumulation in aquatic life. Acidic waters consistently contain higher levels of soluble aluminum than neutral or alkaline waters. Loss of aquatic life in acidified lakes and streams has been shown to be due in part to increased concentrations of aluminum in waters as a result of leaching of aluminum from soil by acidic rainfall.

Aluminum has been found to be toxic to freshwater and marine aquatic life. In freshwaters acute toxicity and solubility increases as pH levels increase above pH 7. This relationship also appears to be true as the pH levels decrease below pH 7. Chronic effects of aluminum on aquatic life have also been documented. Aluminum has been found to be toxic to certain plants. A water quality standard for aluminum was established (U.S. Federal Water Pollution Control Administration, 1968) for interstate agricultural and irrigation waters, which set a trace element tolerance at 1 mg/l for continuous use on all soils and 20 mg/l for short term use on fine-textured soils.

There are no reported adverse physiological effects on man from exposure to low concentrations of aluminum in drinking water. Large concentrations of aluminum in the human body, however, are alleged to cause changes in behavior. Aluminum compounds, especially aluminum sulfate, are major coagulants used in the treatment of drinking water. Aluminum is not among the metals for which a drinking water standard has been established.

The highest aluminum concentrations in animals and humans occur in the lungs, mostly from the inhalation of airborne particulate matter. Pulmonary fibrosis has been associated with the inhalation of very fine particles of aluminum flakes and powders among workers in the explosives and fireworks industries. An occupational exposure Threshold Limit Value (TLV) of 5 mg/m³ is recommended for pyro powders to prevent lung changes, and a Time-Weighted Average (TWA) of 10 mg/m³ is recommended for aluminum dust. High levels of aluminum have been found in the brains, muscles, and bones of patients with chronic renal failure who are being treated with aluminum hydroxide, and high brain levels of aluminum are found in those suffering from Alzheimers disease (presentle dementia) which manifests behavioral changes.

Aluminum and some of its compounds used in food preparation and as food additives are generally recognized as safe and are sanctioned by the Food and Drug Administration. No limits on aluminum content in food and beverage products have been established.

Aluminum has no adverse effects on POTW operation at concentrations normally encountered. The results of an EPA study of 50 POTW revealed that 49 POTW contained aluminum with effluent concentrations ranging from less than 0.1 mg/l to 1.07 mg/l and with an average removal of 82 percent.

Ammonia. Ammonia (chemical formula NH3) is a nonconventional

pollutant. It is a colorless gas with a very pungent odor, detectable at concentrations of 20 ppm in air by the nose, and is very soluble in water (570 gm/l at 25C). Ammonia is produced industrially in very large quant ties (nearly 20 million tons annually in the U.S.). It is converted to ammonium compounds or shipped in the liquid form (it liquifies at -33C). Ammonia also results from natural processes. Bacterial action on nitrates or nitrites, as well as dead plant and animal tissue and animal wastes produces ammonia. Typical domestic wastewaters contain 12 to 50 mg/l ammonia.

The principal use of ammonia and its compounds is as fertilizer. High amounts are introduced into soils and the water runoff from agricultural land by this use. Smaller quantities of ammonia are used as a refrigerant. Aqueous ammonia (2 to 5 percent solution) is widely used as a household cleaner. Ammonium compounds find a variety of uses in various industries, as an example, ammonium hydroxide is used as a reactant in the purification of tungsten.

Ammonia is toxic to humans by inhalation of the gas or ingestion of aqueous solutions. The ionized form, ammonium (NH4+), is less toxic than the unionized form. Ingestion of as little as one ounce of household ammonia has been reported as a fatal dose. Whether inhaled or ingested, ammonia acts destructively on mucous membrane with resulting loss of function. Aside from breaks in liquid ammonia refrigeration equipment, industrial hazard from ammonia exists where solutions of ammonium compounds may be accidently treated with a strong alkali, releasing ammonia gas. As little as 150 ppm ammonia in air is reported to cause laryngeal spasms, and inhalation of 5,000 ppm in air is considered sufficient to result in death.

The behavior of ammonia in POTW is well documented because it is natural component of domestic wastewaters. Only very high concentrations of ammonia compounds could overload POTW. study has shown that concentrations of unionized ammonia greater than 90 mg/l reduce gasification in anaerobic digesters and concentrations of 140 mg/l stop digestion completely. Corrosion copper piping and excessive consumption of chlorine also result from high ammonia concentrations. Interference with processes can nitrification occur when Nitrites concentrations of ammonia suppress dissolved oxygen. then produced instead of nitrates. Elevated nitrite concentrations in drinking water are known to cause infant methemoglobinemia.

Cobalt (Co). Cobalt is a nonconventional pollutant. It is a brittle, hard, magnetic, gray metal with a reddish tinge. Cobalt ores are usually the sulfide or arsenic [smaltrite-(Co, Ni)As2; cobaltite-CoAsS] and are sparingly distributed in the earth's crust. Cobalt is usually produced as a by-product of mining copper, nickel, arsenic, iron manganese, or silver. Because of the variety of ores and the very low concentrations of cobalt, recovery of the metal is accomplished by several different processes. Most consumption of cobalt is for alloys.

Over two-thirds of U.S. production goes to heat resistant, magnetic, and wear resistant alloys. Chemicals and color pigments make up most of the rest of consumption.

Cobalt and many of its alloys are not corrosion resistant, therefore, minor corrosion of any of the tool alloys or electrical resistance alloys can contribute to its presence in raw wastewater from a variety of manufacturing facilities. Additionally, the use of cobalt soaps used in coatings may be a general source of small quantities of the metal. Several cobalt pigments are used in paints to produce yellows or blues.

Cobalt is an essential nutrient for humans and other mammals, and is present at a fairly constant level of about 1.2 mg in the adult human body. Mammals tolerate low levels of ingested water-soluble cobalt salts without any toxic symptoms; safe dosage levels in man have been stated to be 2-7 mg/kg body weight per day. A goitrogenic effect in humans is observed after the systematic administration of 3-4 mg cobalt as cobaltous chloride daily for three weeks. Fatal heart disease among heavy beer drinkers was attributed to the cardiotoxic action of cobalt salts which were formerly used as additives to improve foaming. The carcinogenicity of cobalt in rats has been verified, however, there is no evidence for the involvement of dietary cobalt in carcinogenisis in mammals.

There are no data available on the behavior of cobalt in POTW. There are no data to lead to an expectation of adverse effects of cobalt on POTW operation or the utility of sludge from POTW for crop application. Cobalt which enters POTW is expected to pass through to the effluent unless sufficient sulfide ion is present, or generated in anaerobic processes in the POTW to cause precipitation of the very insoluble cobalt sulfide.

Fluoride. Fluoride ion (F-) is a nonconventional pollutant. Fluorine is an extremely reactive, pale yellow, gas which is never found free in nature. Compounds of fluorine - fluorides are found widely distributed in nature. The principal minerals containing fluorine are fluorspar (CaF2) and cryolite (Na2AlF6). Although fluorine is produced commercially in small quantities by electrolysis of potassium bifluoride anhydrous hydrogen fluoride, the elemental form bears little relation to the combined ion. Total production of fluoride Total production of fluoride chemicals in the U.S. is difficult to estimate because of the varied uses. Large volume usage compounds are: calcium fluoride (estimated 1,500,000 tons in U.S.) and sodium fluoraluminate (estimated 100,000 tons in U.S.). Some fluoride compounds and their uses are sodium fluoroaluminate - aluminum production; calcium fluoride - steelmaking, hydrofluoric acid production, enamel, iron foundry; boron trifluoride - organic synthesis; antimony pentafluoride - fluorocarbon production; fluoboric acid and fluoborates - electroplating; perchloryl fluoride (Cl03F) - rocket fuel oxidizer; hydrogen fluoride - organic fluoride manufacture, pickling acid in stainless steelmaking, manufacture of aluminum fluoride; sulfur hexafluoride - insulator in high

voltage transformers; polytetrafluoroethylene - inert plastic. Sodium fluoride is used at a concentration of about 1 pm in many public drinking water supplies to prevent tooth decay in children.

The toxic effects of fluoride on humans include severe gastroenteritis, vomiting, diarrhea, spasms, weakness, thirst, failing pulse and delayed blood coagulation. Most observations of toxic effects are made on individuals who intentionally or accidentally ingest sodium fluoride intended for use as rat poison or insecticide. Lethal does for adults are estimated to be as low as 2.5 g. At 1.5 ppm in drinking water, mottling of tooth enamel is reported, and 14 ppm, consumed over a period of years, may lead to deposition of calcium fluoride in bone and tendons.

Fluorides found in irrigation waters in high concentrations have caused damage to certain plants exposed to these waters. Chronic fluoride poisoning of livestock has been observed. Fluoride from waters apparently does not accumulate in soft tissue to a significant degree; it is transferred to a very small extent into the milk and to a somewhat greater degree in eggs. Data for fresh water indicate that fluorides are toxic to fish.

Very few data are available on the behavior of fluoride in POTW. Under usual operating conditions in POTW, fluorides pass through into the effluent. Very little of the fluoride entering conventional primary and secondary treatment processes is removed. In one study of POTW influents conducted by the U.S. EPA, nine POTW reported concentrations of fluoride ranging from 0.7 mg/l to 1.2 mg/l, which is the range of concentrations used for fluoridated drinking water.

Gold (Au). The oldest and principle use of gold is in jewelry. Gold is chemically inert toward most substances, and does not tarnish or corrode in use. It is the most malleable of metals, has a bright pleasing color, alloys readily with common metals and has high electrical and thermal conductivity. Thus in jewelry, gold is nonallergenic, remains tarnish free indefinitely and is relatively easy to fashion. For many of the same reasons gold is used in dentistry, in inlays, crowns, bridges, and orthodontic appliances. Strategic and industrial uses of gold include electronic devices particularly printed circuit boards, connectors, keyboard contactors, and miniaturized circuitry. Instead of gold plating an entire device, the electronics industry has developed a selected-area plating process or make contact point from gold inlay and other types of bimetallic strip.

Gold is widely distributed in nature, occurring in trace quantities in several ores, and sea water. The pure metal is extremely inactive, and insoluble in water, thus gold ions are unlikely to be found in natural waters.

One study has shown gold ions to be lethal to the stickleback at

0.40 mg/l. Gold injections have been used to treat arthritis in humans, with apparently little toxic effect.

Iron (Fe). Iron is a nonconventional pollutant. It is an abundant metal found at many places in the earth's crust. The most common iron ore is hematite (Fe_20_3) from which iron is obtained by reduction with carbon. Other forms of commercial ores are magnetite (Fe_30_4) and taconite (Fe_30_1). Pure iron is not often found in commercial use, but it is usually alloyed with other metals and minerals. The most common of these is carbon.

Iron is the basic element in the production of steel. Iron with carbon is used for casting of major parts of machines and it can be machined, cast, formed, and welded. Ferrous iron is used in paints, while powdered iron can be sintered and used in powder metallurgy. Iron compounds are also used to precipitate other metals and undesirable minerals from industrial wastewater streams.

Corrosion products of iron in water cause staining of porcelain fixtures, and ferric iron combines with tannin to produce a dark The presence of excessive iron in color. discourages cows from drinking and thus reduces milk production. High concentrations of ferric and ferrous ions in water kill most fish introduced to the solution within a few hours. The killing action is attributed to coatings of iron hydroxide precipitates on the gills. Iron oxidizing bacteria are dependent on iron in These bacteria form slimes that can affect the water for growth. aesthetic values of bodies of water and cause stoppage of flows in pipes. However, high concentrations of iron can precipitate on bottom sediments and affect rooted aquatic and invertebrate benthos.

Iron is an essential nutrient and micro-nutrient for all forms of growth. Drinking water standards in the U.S. set a limit of 0.3 mg/l of iron in domestic water supplies based on aesthetic and organoleptic properties of iron in water.

High concentrations of iron do not pass through a POTW into the effluent. In some POTW iron salts are added to coagulate precipitates and suspended sediments into a sludge. In an EPA study of POTW the concentration of iron in the effluent of 22 biological POTW meeting secondary treatment performance levels ranged from 0.048 to 0.569 mg/l with a median value of 0.25 mg/l. This represented removals of 76 to 97 percent with a median of 87 percent removal.

Iron in sewage sludge spread on land used for agricultural purposes is not expected to have a detrimental effect on crops grown on the land.

Magnesium (Mg). Magnesium is the eighth most abundant element in the earth's crust and third most plentiful element dissolved in seawater with an average concentration of 1,300 mg/l. Magnesium

salts tend to be very soluble; for example magnesium carbonate will dissolve as much as 100 to 300 mg/l at 20C. At a pH 7 magnesium ions can be solubilized in water as much as 28,800 gram/l. Magnesium ions occur in significant concentration in natural waters, and along with calcium form the bulk of the hardness reaction.

Of the many magnesium-bearing ores, dolomite (CaCO3 Mg CO3), magnesite (MgCO3) brucite (Mg(OH)2) and olivine (Mg2Fe2SiO4) are the only ones used commercially to produce magensium metal. Magnesium metal and compounds are also prepared from seawaters, brines and bitterns. Dolomite, seawater and brines are widely distributed throughout the world.

is produced by one of Magnesium metal two techniques; electrolytically with a silicothermic process. Seawater or brine is the primary feed material for the electrolytic process. Hydrous magnesium chloride is produced by reacting dolomite with to precipitate dissolved magnesium seawater as hydroxide and then neutralizing with hydrochlric acid. resulting solution is dehydrated to produce a dust which is used feed for the electrolytic cells. Hydrous or anbydrous magnesium chloride is fed to an electrolytic cell containing molten magnesium choride at 1,292F. Graphite rods are the electrodes and steel rod the cathodes. Direct current magensium chloride releasing chlorine gas and molten The metal is formed at the cathode and rises to the magensium. surface.

Magnesium and its alloys can be cast by sand, die, and permanent mold processes using conventional foundry techniques, it can be extruded rolled drawn and forged at elevated temperatures ranging from 400 to 750F. Magnesium and its alloys are the easiest of the structural metals to machine. They can be joined by brazing, riveting, soldering, and adhesive bonding.

Of the magnesium consumed in the U.S., 85 percent is used in magnesium compounds, the remainder is used as metal. Its major use as a metal is an alloying agent in aluminum alloys. Magnesium metal is used in the auto manufacturing and power tool manufacturing. It is also used as a catalyst for producing organic chemicals and petrochemicals and as a reducing agent for producing other nonferrous metals.

Magnesium is considered relatively non-toxic to man; before toxic concentrations are reached it causes an unpleasant taste in water. Magnesium at high concentration has a laxative effect. Magnesium is essential to normal plant growth; however in very high concentrations (3000-5000 mg/l) MgCl $_2$ and MgSO $_4$ have been toxic to the bean plant.

Animals require magnesium salts in their diet; however, high doses of magnesium act as diurectics and cathartics among animals and may cause scouring diseases among stock. The relative concentrations of magnesium and calcium in water may be one

Luctor controlling the distribution of certain crustacean fish food organisms, such as copepods, in streams. Magnesium chloride and nitrate can be toxic to fish in distilled or tap water at concentrations between 100 and 400 mg/l as magnesium.

Molybdenum (Mo). Molybdenum is present in the environment in trace quantities. It is estimated that 3.6 x 10^{10} grams of molybdenum are released into surface waters of the world each year by natural processes. Most surface waters contain less than 0.02 mg/l of molybdenum, and sea water concentrations range from 0.004 to 0.012 mg/l. Finished waters in the United States contain a median of 0.0014 mg/l of molybdenum and a maximum of 0.068 mg/l. Normal concentrations in stream sediments range from l to 5 ppm and the concentration of molybdenum tends to increase with decreasing grain size.

Molybdenum is vitally necessary to plants and animals as it is a constituent of essential enzymes needed for life processes. Molybdenum concentrations in plants normally range from 1 to 2 mg/l, though a range of tenths to hundredths of ppm have been observed. Legumes tend to take up more molybdenum than other plants. Accumulation of molybdenum in plants occurs without detrimental effects.

Disease related to molybdenum in humans and animals has historically been a result of excessive uptake of molybdenum.

Average daily intake of molybdenum in the United States varies between 0.12 and 0.24 mg/day, depending on age, sex, and family income. Estimated daily intake of molybdenum in the U.S.S.R. has been reported to be between 0.329 to 0.376 mg/day. Abnormally high intakes, as high as 10 to 15 mg/day, have been documented in India, the U.S.S.R., and are suspected in Turkey. Diet plays a large part in determining molybdenum uptake. Legumes, cereal grains, leafy vegetables, liver, and kidney beans are among the foods which contain greater concentrations of molybdenum than fruits, root and stem vegetables, muscle meats, and dairy products.

The only clinical symptom resulting from excessive molybdenum uptake in humans is described as a gout-like disease. Study of a human population receiving 10 to 15 mg/day of molybdenum found high incidence of this gout-like disease. In addition, increased uric acid levels were noted. Another study where humans were exposed to 10 mg/day found greatly increased blood and urine levels of molybdenum, and significant increases in uric acid excretion, though the levels of uric acid were still within acceptable range for humans. For daily intake levels between 0.5 and 1.0 mg of molybdenum, increased urinary copper excretion was noted in human subjects. Increased urinary excretion molybdenum has been observed in humans whose water contained 0.05 to 0.2 mg/l No biochemical or clinical effects are known in humans whose water supply contains less than 0.05 mg/l of molybdenum.

Sources of molybdenum for animals are primarily in pasture forage and grain feed. Intake from water sources is not very significant. Molybdenum is more toxic to animals than to humans, and cattle and sheep are more susceptible to disease caused by excessive molybdenum than rats, poultry, horses, and pigs. These species differences are not understood. The Registry of Toxic Effects of Chemical Substances states the lower toxic dose (oral) for rats and rodents is 6.050 mg/kg.

All cattle are susceptible to molybdenosis, with dairy cattle and calves showing a higher susceptibility. The characteristic scouring disease and weight loss may be debilitating to the point of permanent injury or death. Pastures containing 20 to 100 ppm of molybdenum (dry weight basis) are likely to induce the disease compared to health forage containing 3 to 5 ppm molybdenum or difficult to assign a firm threshold value of is contained in pasture that will include molybdenosis because of the effects of two other dietary constituents. levels of molybdenum act to decrease the retention of copper an animal. Increased copper intake could, therefore, mitigate the effect of high amounts of molybdenum. The second factor the diet is sulfate. It has been shown that in animals showing increasing levels of molybdenum, an increase in dietary sulfate causes more of the molybdenum to be excreted harmlessly.

study of the effects on frogs to changes in the molybdenum concentration in the aqueous environment concluded that while high concentrations of aqueous molybdenum increased blood levels of molybdenum in frogs, no deleterious effects were observed. Laboratory bioassays involving rainbow trout have also been conducted to determine long-term and acute toxicity of molybde-Long-term toxicity tests included sodium molybdate dissolved in demineralized water in concentrations ranging from 0 to mg/l molybdenum. After one year, results showed no significant differences in growth and mortality for the exposed fish. Acute toxicity results determined that for rainbow trout averaging 55 mm and 20 mm, and 96 hr LC50 is 1,320 molydenum and 800 mg/l respectively. Studies performed on immature rainbow trout using continuous exposure to molybdenum from fertilization through 4 day after hatching produced an LC50 value of 0.79 mg/l.

A third study was done to determine whether or not molybdenum mining in Colorado was causing any environmental problems to the natural wildlife in geographic areas impacted by molybdenum mining and milling. Animals in the area were assayed, fish were placed a mile downstream of mine tailings, and tailings were fed to chicks. No serious adverse effects were discovered in animals, and chicks fed 20 percent mine tailings remained healthy. Some adverse effects and abnormal tissue were found in the fish, but it was not certain whether these conditions were caused by excessive molybdenum or other heavy metals also present in the stream.

Molybdenum is not very toxic to humans. Clinical effects have been reported at steady intake levels of 10 to 15 mg/day of molybdenum, and biochemical effects in the range of 0.5 to 10 mg/day. Below 0.5 mg/day, there is no evidence of substantial toxic effects of molybdenum to humans.

The greatest problem of molybdenum toxicity volves cattle and other ruminants. These animals are for unknown reasons particularly susceptible to molybdenosis, and in addition, rely entirely on forage for food. It is known that plants can accumulate molybdenum without harmful effects, but herbage containing more than 20 ppm (dry weight basis) may cause molybdenosis in cattle.

High molybdenum content in surface waters in the United States is rare and usually associated with molybdenum mining and milling, uranium mining and milling, copper mining and milling, molybdenum smelting and purification, or shale oil production. Toxicity of molybdenum to some aquatic life has been shown to be low. Surface or ground waters high in molybdenum that are used for farmland irrigation may increase molybdenum content of plants. This may have effects on animals further along the food chain.

Tantalum (Ta). Tantalum is a nonconventional pollutant. It occurs in a number of oxide minerals which almost invariably contain columbium. Tantalum does not occur naturally in the free state. The manufacture of tantalum metal is accomplished by extraction of tantalum from the ore or tin slag, separation of the extract of tantalum from other metals present, formation of a pure tantalum compound fluorotantalate, and reduction of the compound to metal powder.

Most of the world's resources of tantalum occr outside the United States. The U.S. consumes usually 60 percent of the tantalum produced worldwide. The relatively small amount of tantalum in the earth's crust and low concentrations in known deposits keep the cost of concentrates quite high. The presence of a naturally occuring oxide film on the surface of tantalum makes it resistant to corrosion in most severe acid environments and to many other chemicals encountered in industrial applications. About 60 percent of the world's annual production of tantalum is used in capacitors, because of the metals ability to form the stable dielectric oxide surface film; 27 percent is used as the carbide, TaC, in cemented carbide cutting tools.

Pure tantalum is soluble in fused alkalies. It is insoluble in acids except hydrofluoric and fuming sulfuric. Tantalum oxide, a compound used in intermediate preparation of pure tantalum, is slightly soluble in cold water and quite soluble in hot water.

Tantalum is inert and does not appear to have detrimental affects on the human body, when used in surgical implants. Tantalum powder, however, is moderately toxic by inhalation. It has been suspected of causing skin irratation and mild fibrosis of the lungs. The recommended threshold limit value (TLV) reported by

OSHA for exposure in workroom air is 5.0 mg/m³ of air.

In the aquatic environment, tantalum is found to cause chronic effects (as determined by embyro-larval bioassays on rainbow trout) at levels of 0.094 mg/l. Tantalum has been found to cause tumorigenic activity when implanted in rats at levels of $3760 \, \mathrm{mg/kg}$.

 $\overline{\text{tin}}$ (Sn). Tin is a nonconventional pollutant. This metallic element occurs in the earth's crust to the extent of 40 grams per metric ton. It is present in the form of nine different minerals from two types of deposits: the most commercially significant ore cassiterite, Sn0₂; and the complex sulfidic ores which are combinations with the sulfides of base metals and pyrites.

Tin is obtained by roasting the ore (cassiterite) to oxidize sulfates and to remove arsine, then reducing with coal in a reverberatory furnace, or by smelting in an electric furnace. The crude tin obtained from slags and by smelting ore concentrates is refined by further heat treatment, or sometimes electrolytic processes. The conventional heat treatment refining includes liquidation or sweating and boiling, or tossing.

In 1980, greater than 14,700 metric tons of tin were recovered in the United States from scrap. Sources include bronze rejects and used parts, solder in the form of dross or sweepings, dross from tinning pots, sludges from tinning lines, and babbitt from discarded bearings.

Tin is used in various industrial applications as cast and wrought forms obtained by rolling, drawing, extrusion, atomizing, and casting. Its uses include tin plate, terneplate, babbitt metal, pewter bronze, corrosion resistant coatings, collapsible tubes, anodes for electrotin plating, and hot-dipped coatings.

Tin is soluble in acids and hot potassium hydroxide solution. It is insoluble in water. Test have shown that considerable quantities of tin can be consumed without any effect on the human system. Small amounts of tin are present in most liquid canned products. The permitted limit of tin content in foods is 300 mg/kg in the United States. The OSHA standard for pulmonary exposure specifies a threshold limit value (TLV) of 2 mg tin per m³

Elemental tin has low toxicity, but most of its compounds are toxic. Lethal oral doses (LD50) of stannous chloride of 700 mg/kg and 1200 mg/kg for rats and mice have been reported. Stannous chloride is soluble in cold water and decomposes in hot water and a concentration of 0.019 mg/l has been reported to cause chronic effects on rainbow trout embryos.

Titanium (Ti). Titanium is a nonconventional pollutant. It is a lustrous white metal occurring as the oxide in ilmenite (Fe0·Ti0₂) and rutile (Ti0₂). The metal is used in heat-resistant, high-strength, light-weight alloys for aircraft

and missiles. It is also used in surgical appliances because of its high strength and light weight. Titanium dioxide is used extensively as a white pigment in paints, ceramics, and plastics.

Toxicity data on titanium are not abundant. Because of the lack of definitive data titanium compounds are generally considered non-toxic. Large oral doses of titanium dioxide ($Ti0_2$) and thiotitanic acid (H_4TiS0_3) were tolerated by rabbits for several days with no toxic symptoms. However, impaired reproductive capacity was observed in rats fed 5 mg/l titanium as titanite in drinking water. There was also a reduction in the male/female ratio and in the number of animals surviving to the third generation. Titanium compounds are reported to inhibit several enzyme systems and to be carcinogenic.

The behavior of titanium in POTW has not been studied. On the basis of the insolubility of the titanium oxides in water, it is expected that most of the titanium entering the POTW will be removed by settling and will remain in the sludge. No data were found regarding possible effects on plants as a result of spreading titanium-containing sludge on agricultural cropland.

Tungsten (W). Tungsten, a nonconventional pollutant, is the eighteenth most abundant metal, making up between 1 to 1.3 ppm of the earth's crust. In nature it exists primarily as tungsten trioxide in the form of ferberite, huebnerite, wolframite, and scheelite ores. These ores contain low concentrations of tungsten trioxide and must be concentrated via benefication before further processing. Seventy-five percent of the worlds tungsten deposits are located in the People's Republic of China. However, ninety-five percent of tungsten used in the U. S. comes from domestic sources. In 1980 thirty-five hundred tons of tungsten was produced at a value of sixty million dollars. Up to seventeen percent of tungsten produced has been recycled in past years.

In pure form tungsten is a hard, brittele silver-gray metallic element with very high electrical and thermal conductivity. Tungsten is resistant to extreme heat, as well as many chemicals. Only a mix of hydrofluoric and nitric acids will rapidly attack tungsten at room temperature. Sulfuric and phosphoric acids have little effect. Tungsten is weakly magnetic.

Most tungsten uses require a pure form. This is usually achieved by an extractive metallurgical process called Ammonium Paratungstate (APT) Conversion. This process converts tungsten trioxide to an intermediate form (APT) which can be reduced to a pure metal powder. Sixty-five percent of tungsten goes to tungsten carbide production. Tungsten carbide is used for high hardness, heat resistant tools, such as cutting and drilling tools, bearings, etc. Sixteen percent of tungsten is used as an alloying additive. In these processes, tungsten trioxide concentrates are used instead of pure tungsten to produce high temperature resistant steel for hot work tools. Ten percent of metallic tungsten is used to produce lamp filaments, X-ray

cargets, heat shields, and glass melting equipment. Tungsten compounds are often used as industrial and oil refining catalysts.

In the tungsten carbide industry many cases of pneumonia have been noted. It is believed that these incidences are related to other chemicals and metals used in the manufacturing process. Tungsten and tungsten ores alone seem to have little or no toxic effects upon humans. Some tungsten compounds have created acute and chronic toxic effects on test animals. The most toxic tungsten compound is sodium tungstate. Recommended exposure limits (TWA & TLV) have been set equally at 5.0 mg/m³ as tungsten.

In one study using rainbow trout embryos, tungsten was found to cause chronic, sub-lethal effects at levels of 1.066 mg/l.

Uranium (U). Uranium, a nonconventional pollutant, is a member of the actinide series of transition elements. It is present in the earth's crust at approximately 2 ppm. Ninety percent of the world's known uranium resources are contained in conglomerates and in sandstone. The methods used to extract uranium resources from ores vary widely, and composition is only one of several factors affecting the choice. Methods performed are crushing and grinding, roasting and calcining, preconcentration, and leaching. The resulting pure uranium is a dense, lustrous metal resembling iron; it is ductile and malleable. In air it tarnishes rapidly, and in a short time, even a polished surface becomes coated with a dark-colored layer of oxide. Uranium is attacked by water, acids and peroxides, but is inert toward alkalies.

The largest use of uranium is as a fuel in nuclear power reactors. Uranium provides a source of fissionable isotope 235 and plutonium by neutron capture. It is also used in inertial guidance devices, gyro compasses, as a counter-weight for missle re-entry vehicles, shielding material, and X-ray targets.

Uranium is found in both food and drinking water. The uranium content of most foods is in the range of 10-100 ng/g and the average intake of uranium in food is about 0.001 mg/day. The opportunity for ingesting uranium in drinking water usually exceeds that for food. The surface and ground water supplies identified as domestic water sources have a range of 0.00015-0.980 mg/l. EPA's Office of Drinking Water is considering proposing a health effects guidance level of 10 pCi/l (0.015 mg/l, assuming equilibrium of three uranium isotopes) for uranium in drinking water.

The toxicity of uranium caused by its radiation depends on the isotopes present. Such isotopes as 232U, which emits a fairly strong alpha radiation should be handled in a hot cell, others should be manipulated in a glove box.

Uranium is not only toxic because of its radiation, but it is also chemically toxic. Nephritis is the primary chemically-

induced health effect of uranium in animals and humans. LD50 values of 40-297 mg/kg body weight for male rats have been reported. The "no observed effect" level of 0.1 mg/kg has been derived from both human and animal data for one time only ingestions. There are no chronic studies of animals or humans at low levels for the ingestion of uranium.

The toxicity of uranium compounds varies. Uranium compounds may be ingested, inhaled, or absorbed through the skin. In acute uranium poisoning, kidney lesions, internal hemorrhage, and liver-cell changes were observed. Standard laboratory protective measures against chemical poisoning by uranium are mandatory, e.g., no pipetting by the mouth; protective clothing; surgical gloves; and in operations involving dust formation, face mask, and constant ventilation of working areas. The OSHA standard for pulmonary exposure specifies a threhold limit value (TLV) of 0.2 mg/m3.

There is little data on the toxic effects of uranium on aquatic life. In one study uranium was found to bioconcentrate in bottom feeding fish at levels much higher than other types of fish.

<u>Vanadium</u> (V). Vanadium, a transition metal, is a nonconventional pollutant. It makes up 0.07 percent of the lithosphere by weight and is ranked twenty-second for elemental abundance in the earth's crust. Usable world resources are estimated to exceed 120 billion tons in the form of vanadium ores found in deposits titaniferous magnetite, phosphate ores, uranium ores, and petroliferous material. Most vanadium ores are obtained as a byproduct of these larger scale mining operations. Vanadium ores are generally salt-roasted to obtain 86 percent pure vanadium pentoxide in a red cake which can be further processed by calcium reduction to obtain 99.5 percent pure vanadium metal. 5050 tons of vanadium was produced in the United States, and this number is expected to grow as industrial, transportation, high technology needs expand.

Pure vanadium is a silver-white solid that is corrosion resistant, insoluble in water and alkali solutions, and soluble in nitric, hydrofluoric, and concentrated sulfuric acid. The elemental form of vanadium is soft and ductile, yet susceptible to hydrogen, nitrogen, oxygen, and carbon embrittlement. The pure metal has relatively high thermal and electrical conductivity, and is paramagnetic. Pentavalent vanadium (vanadium pentoxide) is an amphoteric substance slightly soluble in water, and soluble in acid and alkali solutions.

The major end uses of vanadium are in the areas of transportation, machinery, and construction, where vanadium alloyed steel is used. Using vanadium as an alloying agent yields a very desirable ferrous alloy with greater toughness, impact resistance, wear resistance, weldability, and heat resistance. Because of these qualities vanadium steels are used in construction steel, machining tools, forged parts, auto parts,

ball bearings, etc. Nonferrous alloys of vanadium are becoming increasingly important in supersonic aircraft applications where consideration of strength to weight ratios is essential. Lesser uses consist of target material for X-rays, and catalysts for sulfuric acid and synthetic rubber production.

Vanadium metal is essentially non-toxic, however, vanadium pentoxide, the most common environmental form has been shown to be potentially toxic. Vanadium pentoxide can enter the atmosphere from the burning of fuels or oil refining processes, and has the potential to contaminate the aquatic environment, via fall-out. Surface water concentrations have been shown to be 0.05 mg/l on the average, and as high as 0.3 mg/l.

In studies done using the rat, it was found that very small amounts of vanadium were essential in the animals diet. Even at relatively high levels given in drinking water as vanadyl sulfate, no apparent deleterious effects were noted, even though small amounts did accumulate in various organs. A recommended standard for vanadium in livestock water is 0.1 mg/l maximum concentration.

Vanadium pentoxide was found to cause acute and chronic, sublethal effects at a concentrations of 11.2 mg/l and 0.08 mg/l, respectively, on adult american flagfish. It should also be noted that at low levels (0.041 mg/l), increased reproduction and greater female size resulted. Another study found vanadium pentoxide to cause chronic effects on rainbow trout (using embyro-larval bioassays) at levels of 0.009 mg/l.

The oral toxicity of vanadium on humans has been found to be minimal. However, toxicity due to dust and fumes have been noted. At several mg/m^3 direct pulmonary complications were observed. Most effects seem to be acute although a few chronic toxic effects were noted. OSHA threshold ceiling regulations have been set for vanadium pentoxide in the workspace as 0.5 mg/m^3 for dust and 0.1 mg/m^3 as fumes.

Zirconium (Zr). Zirconium is a nonconventional pollutant. It is a metallic element which forms a very stable oxide. Zirconium is found in at least 37 different mineral forms but the predominant commercial source is the mineral zircon (zirconium orthosilicate). Zircon is an almost ubiquitous mineral, occuring in granular limestone, gneiss, syenite, granite, sandstone, and many other minerals. The average concentration of zirconium in the earth's crust is estimated at 220 ppm.

Zirconium is a hard, shiny, ductile metal, similar to stainless steel in appearance. It can be hot-worked to form slabs, rods, and rounds from arc-melted ingot. Further cold-working of zirconium with intermediate annealings produces sheet, foil, bar wire, and tubing.

Zirconium is used as a containment material for the uranium oxide fuel pellets in nuclear power reactors. Zirconium is particulary

useful for this application because of its ready availability, good ductility, resistance to radiation damage, low thermal-neutron absorption cross section, and excellent corrosion resistance in pressurized hot water. Zirconium is used as an alloy strengthening agent in aluminum and magnesium, and as the burning component in flash bulbs. It is employed as a corrosion resistant metal in the chemical process industry, and as pressure-vessel construction material in the ASME Boiler and Pressure Vessel Codes.

Zirconium is soluble in hot, very concentrated acids and insoluble in water and cold acids.

Zirconium is generally nontoxic as an element or in compounds. Lethal doses (LD50) of zirconium tetrachloride for rats and mice of 1,688 mg/kg and 665 mg/kg have been reported. At pH normally associated with biological activity, zirconium chiefly exists as the dioxide which is insoluble in water and in this form, zirconium is physiologically inert. Zirconium tetrachloride decomposes in water. A chronic value of 0.01 mg/l for rainbow trout has been reported for zirconium tetrachloride.

The oral toxicity is low; OSHA standards for pulmonary exposure specify a threshold limit value (TLV) of 5 mg zirconium per m^3 .

POLLUTANT SELECTION BY SUBCATEGORY

Section V of this development document presented the data collected during nonferrous metals forming plant sampling visits and subsequent chemical analyses. This section examines that data and discusses the selection or exclusion of priority pollutants for limitation.

Pollutant Selection for Lead-Tin-Bismuth Forming

Table VI-3 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the lead-tin-bismuth forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table

VI-3 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-3 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile

- 5. benzidene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 44. methylene chloride
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 67. butyl benzyl phthalate

68. di-n-butyl phthalate 69. di-n-octyl phthalate 70. diethyl phthalate 71. dimethyl phthalate 72. benzo(a)anthracene 73. benzo(a)pyrene 74. benzo(b)fluoranthene 75. benzo(k)fluoranthene 76. chrysene 77. acenaphthylene 78. anthracene 79. benzo(ghi)perylene 80. fluorene 82. dibenzo(a,h)anthracene 83. indeno(1,2,3-cd)pyrene 84. pyrene 85. tetrachloroethylene 86. toluene 87. trichloroethylene 88. vinyl chloride 89. aldrin 90. dieldrin 91. chlordane 92. 4,4'-DDT 4,4'-DDE 93. 4,4'-DDD 94. 95. alpha-endosulfan 96. beta-endosulfan 97. endosulfan sulfate 98. endrin 99. endrin aldehyde 100. heptachlor 101. heptachlor epoxide 102. alpha-BHC 103. beta-BHC 104. gamma-BHC 105. delta-BHC 106. PCB-1242 107. PCB-1254 108. PCB-1221 109. PCB-1232 110. PCB-1248 111. PCB-1260 112. PCB-1016 113. toxaphene 116. asbestos 125. selenium 126. silver 127. thallium

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentra-

2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

129.

tion below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10 mg/1).

Carbon tetrachloride was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatments methods (0.05 mg/l).

1,1,1-Trichloroethane was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

1,1,2,2-Tetrachloroethane was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Parachlorometacresol was detected above its analytical quantification level in one of twelve samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chloroform was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

Ethylbenzene was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/1).

Arsenic was detected above its analytical quantification level in seven of twelve samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Beryllium was detected above its analytical quantification level in one of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Cadmium was detected above its analytical quantification level in two of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.049 mg/l).

Mercury was detected above its analytical quantification level in five of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Nickel was detected above its analytical quantification level in one of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.22 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-3 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources. The pollutants are individually discussed below.

Phenol was detected above its analytical quantification level in two of twelve samples and in one of seven sources.

Bis(2-ethylhexyl)phthalate was detected above its analytical quantification level in one of twelve samples and in one of seven sources.

Phenanthrene was detected above its analytical quantification level in one of twelve samples and in one of seven sources.

Chromium was detected above its analytical quantification level in one of thirteen samples and in one of eight sources.

Copper was detected above its analytical quantification level in four of thirteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.39 mg/l) in one of thirteen samples and in one of eight sources.

Cyanide was detected above its analytical quantification level in one of twelve samples and in one of seven sources.

Zinc was detected above its analytical quantification level in eight of thirteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.23 mg/l) in two of thirteen samples and in two of eight sources.

Pollutants Selected for Consideration in Establishing Regulations for the Lead-Tin-Bismuth Forming Subcategory. The priority pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Antimony was detected above its analytical quantification level in ten of twelve samples and above the level considered achievable by specific treatment methods (0.47 mg/l) in seven of twelve samples and in four of seven sources.

Lead was detected above its analytical quantification level in thirteen of thirteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in thirteen of thirteen samples and in eight of eight sources.

Pollutant Selection for Magnesium Forming

Table VI-4 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the magnesium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-4 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-4 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa dresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine

- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 66. bis(2-ethylhexyl) phthalate
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd)pyrene
- 84. pyrene
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan

- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 115. arsenic
- 116. asbestos
- 118. cadmium
- 120. copper 124. nickel
- 125. selenium
- 127. thallium
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-4 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Methylene chloride was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

1,1,1-Trichloroethane was detected above its analytical quantification level in three of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

2-Nitrophenol was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Phenol was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Antimony was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Mercury was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Silver was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-4 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Beryllium was detected above its analytical quantification level in three of fifteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.20 mg/l) in one of fifteen samples and in one of eleven sources.

Cyanide was detected above its analytical quantification level in three of fourteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.047 mg/l) in two of fourteen samples and in two of eleven sources.

Lead was detected above its analytical quantification level in one of fifteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.08 mg/l) in one of fifteen samples and in one of eleven sources.

Pollutants Selected for Consideration in Establishing Regulations for the Magnesium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-4 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chromium was detected above its analytical quantification level in ten of fifteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seven of fifteen samples and in six of eleven sources.

Zinc was detected above its analytical quantification level in thirteen of fifteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in nine of fifteen samples and in six of eleven sources.

Pollutant Selection for Nickel-Cobalt Forming

Table VI-5 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the nickel-cobalt forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-5 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-5 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 2. acrolein
- 3. acrylonitrile
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 35. 2,4-dinitrotoluene
- 38. ethylbenzene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 56. nitrobenzene

- 59. 2,4-dinitrophenol
- 74. benzo(b)fluoranthene
- 79. benzo(ghi)perylene
- 82. dibenzo(a,h)anthracene
- 85. tetrachloroethylene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 116. asbestos
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-5 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 72. benzo(a)anthracene
- 75. benzo(k)fluoranthene
- 76. chrysene

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-5 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in two of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10 mg/l).

Hexachloroethane was detected above its analytical quantification level in two of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Chloroform was detected above its analytical quantification level in one of thirty-six samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

1,1-Dichloroethylene was detected above its analytical quantification level in one of thirty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/1).

1,2-Diphenylhydrazine was detected above its analytical quantification level in four of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Bis(2-chloroethoxy) methane was detected above its analytical quantification level in two of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Butyl benzyl phthalate was detected above its analytical quantification level in four of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.001 to 0.01 mg/1).

Di-n-octyl phthalate was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Diethyl phthalate was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Dimethyl phthalate was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Acenaphthylene was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Anthracene was detected above its analytical quantification level in two of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Indeno(1,2,3-c,d)pyrene was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Toluene was detected above its analytical quantification level in one of thirty-four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Beryllium was detected above its analytical quantification level in four of eighty-eight samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Mercury was detected above its analytical quantification level in two of eighty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Thallium was detected above its analytical quantification level in five of eighty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-5 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level in one of thirty-nine samples and in one of twenty-nine sources.

Benzidene was detected above its analytical quantification level in three of thirty-eight samples and in two of thirty sources.

1,1-Dichloroethane was detected above its analytical quantification level in five of thirty-six samples and in five of twenty-eight sources.

Parachlorometa cresol was detected above its analytical quantification level in three of forty-three samples and in three of thirty-four sources.

- 3,3'-Dichlorobenzidene was detected above its analytical quantification level in two of forty-two samples and in one of thirty-two sources.
- 2,4-Dimethylphenol was detected above its analytical quantification level in three of forty-two samples and in three of thirty-three sources.
- 2,6-Dinitrotoluene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Fluoranthene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Methylene chloride was detected above its analytical quantification level in nineteen of thirty-nine samples; however, it was only found above the level considered achievable by specific treatment methods (0.10~mg/l) in twelve of thirty-nine samples and in ten of thirty-one sources.

Naphthalene was detected above its analytical quantification level in five of thirty-nine samples and in four of thirty-two sources.

2-Nitrophenol was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

4-Nitrophenol was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

4,6-Dinitro-o-cresol was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in two of forty-two samples and in two of thirty-three sources.

N-nitrosodi-n-propylamine was detected above its analytical quantification level in six of forty-two samples and in four of thirty-three sources.

Pentachlorophenol was detected above its analytical quantification level in five of forty-two samples and in three of thirty-three sources.

Phenol was detected above its analytical quantification level in fourteen of forty-two samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in ten of forty-two samples and in six of thirty-three sources.

Bis(2-ethylhexyl)phthalate was detected above its analytical quantification level in four of forty-two samples and in four of thirty-three sources.

Di-n-butyl phthalate was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Benzo(a)pyrene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Fluorene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Phenanthrene was detected above its analytical quantification level in seven of forty-two samples and in seven of thirty-three sources.

Pyrene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Antimony was detected above its analytical quantification level in seventeen of eighty-six samples and in fourteen of fifty-seven sources.

Arsenic was detected above its analytical quantification level in twenty-two of eighty-seven samples; however, it was only found above the level considered achievable by specific treatment methods (0.34 mg/l) in one of eighty-seven samples and in one of fifty-eight sources.

Cyanide was detected above its analytical quantification level in two of sixty-eight samples and in two of forty-one sources.

Selenium was detected above its analytical quantification level in five of eighty-six samples and in five of fifty-seven sources.

Silver was detected above its analytical quantification level in seven of eighty-six samples and in seven of fifty-seven sources.

Pollutants Selected for Consideration in Establishing Regulations for the Nickel-Cobalt Forming Subcategory. The priority pollutants identified by "RG" in Table VI-5 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

1,1,1-Trichloroethane was detected above its analytical quantification level in eighteen of thirty-five samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in eighteen of thirty-five samples and in fourteen of twenty-seven sources.

Cadmium was detected above its analytical quantification level in eighteen of eighty-seven samples and above the level considered achievable by specific treatment methods (0.049 mg/l) in seventeen of eighty-seven samples and in thirteen of fifty-eight sources.

Chromium was detected above its analytical quantification level in seventy-two of ninety samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seventy-one of ninety samples and in fifty of fifty-nine sources.

Copper was detected above its analytical quantification level in eighty-three of eighty-nine samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in fifty-six of eighty-nine samples and in thirty-nine of fifty-nine sources.

Lead was detected above its analytical quantification level in thirty-two of ninety samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in thirty-two of ninety samples and in twenty-six of fifty-nine sources.

Nickel was detected above its analytical quantification level in eighty-five of ninety samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in eighty-two of ninety samples and in fifty-two of fifty-nine sources.

Zinc was detected above its analytical quantification level in seventy-five of eighty-eight samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in forty-one of eighty-eight samples and in thirty-one of fifty-eight sources.

Pollutant Selection for Precious Metals Forming

Table VI-6 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the precious metals forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-6 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-6 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- acrylonitrile
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene

- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate

69. di-n-octyl phthalate 70. diethyl phthalate 71. dimethyl phthalate 72. benzo(a)anthracene 73. benzo(a)pyrene 74. benzo(b)fluoranthene 75. benzo(k)fluoranthene 76. chrysene 77. acenaphthylene 78. anthracene 79. benzo(ghi)perylene 80. fluorene 81. phenanthrene 82. dibenzo(a,h)anthracene 83. indeno(1,2,3-cd)pyrene pyrene 84. 85. tetrachloroethylene vinvl chloride 88. 89. aldrin 90. dieldrin 91. chlordane 4,4'-DDT 92. 4,4'-DDE 93. 4,4'-DDD 94. 95. alpha-endosulfan beta-endosulfan 96. endosulfan sulfate 97. 98. endrin endrin aldehyde 99. 100. heptachlor 101. heptachlor epoxide 102. alpha-BHC beta-BHC 103. 104. qamma-BHC delta-BHC 105. 106. PCB-1242 107. PCB-1254 108. PCB-1221 109. PCB-1232 110. PCB-1248 111. PCB-1260 112. PCB-1016 113. toxaphene 116. asbestos

129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

117.

125.

beryllium

selenium

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-6 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Phenol was detected above its analytical quantification level in two of sixteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in one of sixteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Chloroethane was detected above its analytical quantification level in one of sixteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Antimony was detected above its analytical quantification level in three of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Arsenic was detected above its analytical quantification level in five of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Mercury was detected above its analytical quantification level in four of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Thallium was detected above its analytical quantification level in six of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-6 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in one of sixteen samples and in one of ten sources.

1,1,1-Trichloroethane was detected above its analytical quantification level in five of sixteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.01 mg/l) in five of sixteen samples and in four of ten sources.

Methylene chloride was detected above its analytical quantification level in eight of sixteen samples; however, it was only found above the level considered achievable by specific treatment

methods (0.10 mg/l) in four of sixteen samples and in four of ten sources.

Methyl chloride was detected above its analytical quantification level in one of sixteen samples and in one of ten sources.

Toluene was detected above its analytical quantification level in three of sixteen samples and in two of ten sources.

Trichloroethylene was detected above its analytical quantification level in two of sixteen samples and in two of ten sources.

Pollutants Selected for Consideration in Establishing Regulations for the Precious Metals Subcategory. The priority pollutants identified by "RG" in Table VI-6 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chromium was detected above its analytical quantification level in eighteen of thirty-seven samples; however, it was only found above the level considered achievable by specific treatment methods (0.07 mg/l) in eight of thirty-seven samples and in four of twenty-six sources.

Cadmium was detected above its analytical quantification level in twenty-five of thirty-seven samples and above the level considered achievable by specific treatment methods (0.049 mg/l) in twenty-three of thirty-seven samples and in eighteen of twenty-six sources.

Copper was detected above its analytical quantification level in thirty-six of thirty-seven samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in thirty-four of thirtyseven samples and in twenty-four of twenty-six sources.

Cyanide was detected above its analytical quantification level in five of thirty-three samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in five of thirty-three samples and in four of twenty-three sources.

Lead was detected above its analytical quantification level in twenty-four of thirty-seven samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in twenty-four of thirty-seven samples and in twenty-two of twenty-six sources.

Nickel was detected above its analytical quantification level in twenty-six of thirty-seven samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in seventeen of thirty-seven samples and in thirteen of twenty-six sources.

Silver was detected above its analytical quantification level in twenty-seven of thirty-seven samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in eleven of thirty-seven samples and in nine of twenty-six sources.

Zinc was detected above its analytical quantification level in thirty-six of thirty-seven samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in twenty-seven of thirty-seven samples and in twenty-two of twenty-six sources.

Pollutant Selection for Refractory Metals Forming

Table VI-7 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the refractory metals subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-7 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-7 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 14. 1,1,2-trichloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine

```
ethylbenzene
 38.
 40.
      4-chlorophenyl phenyl ether
 41.
      4-bromophenyl phenyl ether
 42.
      bis(2-chloroisopropyl) ether
 43.
      bis(2-chloroethoxy) methane
 45.
      methyl chloride
      methyl bromide
 46.
      bromoform
 47.
 48.
      dichlorobromomethane
 49.
      trichlorofluoromethane
      dichlorodifluoromethane
 50.
 51.
      chlorodibromomethane
 52. hexachlorobutadiene
 53.
      hexachlorocyclopentadiene
 54.
      isophorone
 58.
      4-nitrophenol
 59.
      2,4-dinitrophenol
      N-nitrosodimethylamine
 61.
 64.
      pentachlorophenol
 71.
      dimethyl phthalate
 73.
      benzo(a)pyrene
 74.
      benzo(b)fluoranthene
 75.
      benzo(k)fluoranthene
      benzo(ghi)perylene
 79:
 82.
      dibenzo(a,h)anthracene
      indeno(1,2,3-cd)pyrene
 83.
 87.
      trichloroethylene
 88.
      vinyl chloride
 89.
      aldrin
 90.
      dieldrin
 91.
      chlordane
 92.
      4,4'-DDT
 93.
      4,4'-DDE
 94.
      4,4'-DDD
 95.
      alpha-endosulfan
 96.
      beta-endosulfan
 97.
      endosulfan sulfate
 98.
     endrin
 99.
     endrin aldehyde
100.
     heptachlor
101.
     heptachlor epoxide
102.
     alpha-BHC
103.
     beta-BHC
105.
     delta-BHC
106.
     PCB-1242
107.
    PCB-1254
108.
     PCB-1221
109.
    PCB-1232
110. PCB-1248
111. PCB-1260
```

129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

112.

116.

PCB-1016

asbestos

113. toxaphene

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-7 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 13. 1,1-dichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 24. 2-chlorophenol
- 29. 1,1-dichloroethylene
- 84. pyrene
- 104. gamma-BHC

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-7 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chloroform was detected above its analytical quantification level in two of eleven samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

2,4-Dimethylphenol was detected above its analytical quantification level in one of eleven samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Nitrobenzene was detected above its analytical quantification level in one of eleven samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Antimony was detected above its analytical quantification level in three of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/1).

Arsenic was detected above its analytical quantification level in two of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Beryllium was detected above its analytical quantification level in two of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Mercury was detected above its analytical quantification level in one of twenty-five samples; however, it was not found above

the level considered achievable by specific treatment methods (0.036 mg/1).

Selenium was detected above its analytical quantification level in three of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Thallium was detected above its analytical quantification level in two of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-7 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

2,4-Dinitrotoluene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Fluoranthene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Methylene chloride was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Naphthalene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

2-Nitrophenol was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

4,6-Dinitro-o-cresol was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

N-nitrosodi-n-propylamine was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Phenol was detected above its analytical quantification level in four of eleven samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in two of eleven samples and in two of nine sources.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level and the level considered achievable by

specific treatments methods (0.01 mg/l) in three of eleven samples.

Butyl benzyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Di-n-butyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Di-n-octyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Diethyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Benzo(a)anthracene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Chrysene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Acenaphthylene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Anthracene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Fluorene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Phenanthrene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Tetrachloroethylene was detected above its analytical quantification level in two of eleven samples and in two of nine sources.

Toluene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Cadmium was detected above its analytical quantification level in ten of twenty-five samples; however, it was only found above the level considered achievable by specific treatment methods (0.049 mg/l) in five of twenty-five samples and in four of twenty-one sources.

Cyanide was detected above its analytical quantification level in one of nineteen samples and in one of fifteen sources.

<u>For the Refractory Metals Forming Subcategory.</u> The priority pollutants identified by "RG" in Table VI-7 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing

regulations for this subcategory. The pollutants are discussed individually below.

1,1,1-Trichloroethane was detected above its analytical quantification level in ten of eleven samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in nine of eleven samples.

Chromium was detected above its analytical quantification level in nineteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in sixteen of twenty-five samples and in fourteen of twenty-one sources.

Copper was detected above its analytical quantification level in thirteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in nine of twenty-five samples and in seven of twenty-one sources.

Lead was detected above its analytical quantification level in eleven of twenty-five samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in eight of twenty-five samples and in eight of twenty-one sources.

Nickel was detected above its analytical quantification level in fifteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in thirteen of twenty-five samples and in eleven of twenty-one sources.

Silver was detected above its analytical quantification level in eleven of twenty-five samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seven of twenty-five samples and in five of twenty-one sources.

Zinc was detected above its analytical quantification level in eighteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in seven of twenty-five samples and in seven of twenty-one sources.

Pollutant Selection for Titanium Forming

Table VI-8 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the titanium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed above. Table VI-8 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-8 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile

- 4. benzene
- 5. benzidene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38, ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol

```
61.
     N-nitrosodimethylamine
 62.
     N-nitrosodiphenylamine
 63.
     N-nitrosodi-n-propylamine
 64.
     pentachlorophenol
 65.
     phenol
 66.
     bis(2-ethylhexyl) phthalate
 67.
     butyl benzyl phthalate
 68.
     di-n-butyl phthalate
 69.
     di-n-octyl phthalate
 70.
     diethyl phthalate:
 71.
     dimethyl phthalate
 72.
     benzo(a)anthracené
 73.
     benzo(a)pyrene
 74. benzo(b)fluoranthene
 75. benzo(k)fluoranthene
 76. chrysene77. acenaphthylene
 78. anthracene
 79.
     benzo(ghi)perylenę
 80. fluorene
    81.
 82. dibenzo(a,h)anthracene
 83. indeno(1,2,3-cd)pyrene
 84.
 84. pyrene
85. tetrachloroethylene
 86. toluene
 87. trichloroethylene
 88. vinyl chloride
 89.
    aldrin
 90. dieldrin
 91.
     chlordane
 92.
    4,4'-DDT
 93. 4,4'-DDE
 94. 4,4'-DDD
 95.
     alpha-endosulfan
 96. beta-endosulfan
 97. endosulfan sulfate
 98. endrin
 99. endrin aldehyde
100. heptachlor
101. heptachlor epoxide
102. alpha-BHC
103. beta-BHC
104. gamma-BHC
105. delta-BHC
106. PCB-1242
107. PCB-1254
108. PCB-1221
109. PCB-1232
110. PCB-1248
111. PCB-1260
```

2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

112. PCB-1016 113. toxaphene 116. asbestos

129.

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-8 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Carbon tetrachloride was detected above its analytical quantification level in one of one samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Methylene chloride was detected above its analytical quantification level in one of one samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

Antimony was detected above its analytical quantification level in four of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Beryllium was detected above its analytical quantification level in one of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Mercury was detected above its analytical quantification level in one of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods $(0.036 \, \text{mg/l})$.

Silver was detected above its analytical quantification level in four of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

Thallium was detected above its analytical quantification level in one of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-8 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually listed below.

Arsenic was detected above its analytical quantification level in six of twenty-one samples; however, it was only found above the

level considered achievable by specific treatment methods (0.34 mg/l) in two of twenty-one samples and in two of sixteen sources.

Cadmium was detected above its analytical quantification level in three of twenty-one samples and in three of sixteen sources.

Selenium was detected above its analytical quantification level in two of twenty-one samples and in two of sixteen sources.

Pollutants Selected for Consideration in Establishing Regulations for the Titanium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-8 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chromium was detected above its analytical quantification level in fifteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in thirteen of twenty-one samples and in twelve of sixteen sources.

Copper was detected above its analytical quantification level in twelve of twenty-one samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in ten of twenty-one samples and in nine of sixteen sources.

Cyanide was detected above its analytical quantification level in six of fourteen samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in five of fourteen samples and in five of thirteen sources.

Lead was detected above its analytical quantification level in eighteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in eighteen of twenty-one samples and in fourteen of sixteen sources.

Nickel was detected above its analytical quantification level in fourteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in twelve of twenty-one samples and in eleven of sixteen sources.

Zinc was detected above its analytical quantification level in sixteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in ten of twenty-one samples and in ten of sixteen sources.

Pollutant Selection for Uranium Forming

Table VI-9 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the uranium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-9 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-9 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 44, methylene chloride
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane

- dichlorodifluoromethane 50.
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 4,6-dinitro-o-cresol 60.
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene

- 77. acenaphthylene78. anthracene79. benzo(ghi)perylene
- 80. fluorene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd)pyrene
- 84. pyrene
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242

107. PCB-1254

108. PCB-1221

109. PCB-1232

110. PCB-1248

111. PCB-1260

112. PCB-1016

113. toxaphene

116. asbestos

129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-9 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Antimony was detected above its analytical quantification level in four of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Arsenic was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Mercury was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Selenium was detected above its analytical quantification level in four of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Silver was detected above its analytical quantification level in nine of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

Thallium was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-9 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Parachlorometa cresol was detected above its analytical quantification level in one of four samples and in one of four sources.

Phenanthrene was detected above its analytical quantification level in one of four samples and in one of four sources.

Beryllium was detected above its analytical quantification level in fourteen of fourteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.20 mg/l) in three of fourteen samples and in three of thirteen sources.

Cyanide was detected above its analytical quantification level in three of twelve samples and in three of twelve sources.

Pollutants Selected for Consideration in Establishing Regulations for the Uranium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-9 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in three of four samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in three of four samples and in three of four sources.

Cadmium was detected above its analytical quantification level in eight of fourteen samples and above the level considered achievable by specific treatment methods (0.049 mg/l) in seven of fourteen samples and in six of thirteen sources.

Chromium was detected above its analytical quantification level in eleven of fourteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in nine of fourteen samples and in eight of thirteen sources.

Copper was detected above its analytical quantification level in fourteen of fourteen samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in ten of fourteen samples and in nine of thirteen sources.

Lead was detected above its analytical quantification level in thirteen of fourteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in thirteen of fourteen samples and in twelve of thirteen sources.

Nickel was detected above its analytical quantification level in eleven of fourteen samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in eight of fourteen samples and in seven of thirteen sources.

Zinc was detected above its analytical quantification level in fourteen of fourteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in eleven of fourteen samples and in ten of thirteen sources.

Pollutant Selection for Zinc Forming

Table VI-10 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the zinc forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-10 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-10 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 2. acrolein
- 5. benzidene
- 9. hexachlorobenzene
- 12. hexachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. l,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 31. 2,4-dichlorophenol
- 35. 2,4-dinitrotoluene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 45. methyl chloride
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 52. hexachlorobutadiene

- 53. hexachlorocyclopentadiene
- 54. isophorone
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 69. di-n-octyl phthalate
- 71. dimethyl phthalate
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 77. acenaphthylene
- 79. benzo(ghi)perylene
- 80. fluorene
- 82. dibenzo(a,h)anthracene
- 84. pyrene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 114. antimony
- 115. arsenic
- 116. asbestos
- 117. beryllium
- 118. cadmium
- 120. copper
- 122. lead

- 123. mercury
- 125. selenium
- 126. silver
- 127. thallium
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-10 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 10. 1,2-dichloroethane
- 14. 1,1,2-trichloroethane
- 37. 1,2-diphenylhydrazine
- 46. methyl bromide

Pollutants Detected But Present Solely as a Result of Its Presence in the Intake Waters. Paragraph 8(a)(iii) allows for the exclusion of a priority pollutant if it is detected in the source water of the samples taken. The toxic pollutant identified by "TS" in Table VI-10 was found above its analytical quantification level but not above the level in the source water; therefore, it was not selected for consideration in establishing regulations for this subcategory. The pollutant is listed below:

83. indeno(1,2,3-cd) pyrene

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-10 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Acrylonitrile was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Benzene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10 mg/l).

Carbon tetrachloride was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment method (0.05 mg/l).

- 1,1,1-Trichloroethane was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- l,l-Dichloroethane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- 1,1,2,2-Tetrachloroethane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).
- Bis(2-chloroethylene) ether was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- Chloroform was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).
- 1,1-Dichloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).
- 1,2-trans-Dichloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/1).
- 1,2-Dichloropropane was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- 1,2-Dichloropropylene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- 2,4-Dimethylphenol was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).
- 2,6-Dinitrotoluene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Ethylbenzene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Fluoranthene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Bis(2-chloroethoxy) methane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Methylene chloride was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

Bromoform was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Dichlorobromomethane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/1).

Naphthalene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Butyl benzyl phthalate was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.001 to 0.01 mg/l).

Diethyl phthalate was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Benzo(a)anthracene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Chrysene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.001 mg/l).

Anthracene was detected above its analytical quantifica-tion level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods $(0.01 \, \text{mg/l})$.

Phenanthrene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Tetrachloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/1).

Toluene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Trichloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Pollutants Selected for Consideration in Establishing Regulations for the Zinc Forming Subcategory. The priority pollutants identified by "RG" in Table VI-10 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chlorodibromomethane was detected above its analytical quantification level in two of two samples and above the level considered achievable by specific treatment methods (0.10 mg/l) in one of two samples and in one of two sources.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in one of two samples and in one of two sources.

Di-n-butyl phthalate was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.025 mg/l) in one of two samples and in one of two sources.

Chromium was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in one of two samples and in one of two sources.

Cyanide was detected above its analytical quantification level in one of two samples and above the level considered achievable by

specific treatment methods (0.047 mg/l) in one of two samples and in one of two sources.

Nickel was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in one of two samples and in one of two sources.

Zinc was detected above its analytical quantification level in two of two samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in two of two samples and in two of two sources.

Pollutant Selection for Zirconium-Hafnium Forming

Table VI-11 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the zirconium-hafnium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-11 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-11 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 3. acrylonitrile
- 5. benzidene
- carbon tetrachloride
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol

- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 67. butyl benzyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene
- 77. acenaphthylene
- 79. benzo(ghi)perylene
- 80. fluorene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd)pyrene
- 84. pyrene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide

- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 116. asbestos
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-11 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 4. benzene
- 7. chlorobenzene
- 13. 1,1-dichloroethane
- 57. 2-nitrophenol
- 68. di-n-butyl phthalate
- 70. diethyl phthalate
- 78. anthracene
- 81. phenanthrene
- 85. tetrachloroethylene
- 87. trichloroethylene

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-11 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below:

Acrolein was detected above its analytical quantification level in one of ten samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Chloroform was detected above its analytical quantification level in one of ten samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Beryllium was detected above its analytical quantification level in thirteen of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Mercury was detected above its analytical quantification level in three of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods $(0.036 \, \text{mg/1})$.

Selenium was detected above its analytical quantification level in six of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods $(0.20 \, \text{mg/l})$.

Silver was detected above its analytical quantification level in five of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/1).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-11 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below:

Parachlorometa cresol was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Ethylbenzene was detected above its analytical quantification level in two of ten samples and in two of nine sources.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Di-n-octyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Antimony was detected above its analytical quantification level in three of nineteen samples and in three of fifteen sources.

Arsenic was detected above its analytical quantification level in two of nineteen samples and in two of fifteen sources.

Cadmium was detected above its analytical quantification level in three of nineteen samples and in three of fifteen sources.

Thallium was detected above its analytical quantification level in three of nineteen samples and in three of fifteen sources.

Pollutants Selected for Consideration in Establishing Regulations for the Zirconium-Hafnium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-11 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below:

1,1,1-Trichloroethane was detected above its analytical quantification level in three of ten samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in three of ten samples and in three of nine sources.

Methylene chloride was detected above its analytical quantification level in six of ten samples and above the level considered achievable by specific treatment methods (0.10 mg/l) in five of ten samples and in four of nine sources.

Toluene was detected above its analytical quantification level in five of ten samples and above the level considered achievable by specific treatment methods (0.05 mg/l) in four of ten samples and in three of nine sources.

Chromium was detected above its analytical quantification level in eighteen of nineteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in ten of nineteen samples and in eight of fifteen sources.

Copper was detected above its analytical quantification level in sixteen of nineteen samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in seven of nineteen samples and in seven of fifteen sources.

Cyanide was detected above its analytical quantification level in two of seventeen samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in two of seventeen samples and in two of thirteen sources.

Lead was detected above its analytical quantification level; in eighteen of nineteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in sixteen of nineteen samples and in fourteen of fifteen sources.

Nickel was detected above its analytical quantification level in eight of nineteen samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in five of nineteen samples and in five of fifteen sources.

Zinc was detected above its analytical quantification level in seventeen of nineteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in eight of nineteen samples and in eight of fifteen sources.

Pollutant Selection for Metal Powders

Table VI-12 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the metal powders subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-12 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-12 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 5. benzidene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene

- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 66. bis(2-ethylhexyl) phthalate
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd)pyrene
- 84. pyrene
- 85. tetrachloroethylene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
 - 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221

- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 116. asbestos
- 117. beryllium
- 118. cadmium
- 123. mercury
- 125. selenium
- 126. silver
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-12 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10~mg/l).

Carbon tetrachloride was detected above its analytical quantification level in four of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Methylene chloride was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/1).

Toluene was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods $(0.05 \, \text{mg/l})$.

Antimony was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Arsenic was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Thallium was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Selected for Consideration in Establishing Regulations for the Metal Powders Subcategory. The priority pollutants identified by "RG" in Table VI-12 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

1,1,1-Trichloroethane was detected above its analytical quantification level in seven of fourteen samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in seven of fourteen samples and in four of six sources.

Chromium was detected above its analytical quantification level in eleven of sixteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seven of sixteen samples and in five of eight sources.

Copper was detected above its analytical quantification level in ten of sixteen samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in ten of sixteen samples and in five of eight sources.

Cyanide was detected above its analytical quantification level in eleven of sixteen samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in eight of sixteen samples and in five of eight sources.

Lead was detected above its analytical quantification level in eight of sixteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in eight of sixteen samples and in four of eight sources.

Nickel was detected above its analytical quantification level in eleven of sixteen samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in ten of sixteen samples and in four of eight sources.

Zinc was detected above its analytical quantification level in thirteen of fifteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in nine of fifteen samples and in five of seven sources.

Table VI-1

LIST OF 129 PRIORITY POLLUTANTS

Compound Name

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- carbon tetrachloride (tetrachloromethane)

Chlorinated benzenes (other than dichlorobenzenes)

- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene

Chlorinated ethanes (including 1,2-dichloroethane, 1,1,1-trichloroethane and hexachloroethane)

- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane

Chloroalkyl ethers (chloromethyl, chloroethyl and mixed ethers)

- 17. bis (chloromethyl) ether
- 18. bis (2-chloroethy1) ether
- 19. 2-chloroethyl vinyl ether (mixed)

Chlorinated naphthalene

20. 2-chloronaphthalene

LIST OF 129 PRIORITY POLLUTANTS

<u>Chlorinated phenols</u> (other than those listed elsewhere; includes trichlorophenols and chlorinated cresols)

- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform (trichloromethane)
- 24. 2-chlorophenol

Dichlorobenzenes

- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene

Dichlorobenzidine

28. 3,3'-dichlorobenzidine

<u>Dichloroethylenes</u> (1,1-dichloroethylene and 1,2-dichloroethylene)

- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol

Dichloropropane and dichloropropene

- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene (1,3-dichloropropene)
- 34. 2,4-dimethylphenol

Dinitrotoluene

- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene

LIST OF 129 PRIORITY POLLUTANTS

Haloethers (other than those listed elsewhere)

- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-choroethoxy) methane

Halomethanes (other than those listed elsewhere)

- 44. methylene chloride (dichloromethane)
- methyl chloride (chloromethane) 45.
- 46. methyl bromide (bromomethane)
- bromoform (tribromomethane) 47.
- dichlorobromomethane 48.
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene56. nitrobenzene
- nitrobenzene

Nitrophenols (including 2,4-dinitrophenol and dinitrocresol)

- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol

Nitrosamines

- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine:
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol

LIST OF 129 PRIORITY POLLUTANTS

Phthalate esters

- 66. bis(2-ethylhexyl) phthalate
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate

Polynuclear aromatic hydrocarbons

- 72. benzo (a)anthracene (1,2-benzanthracene)
- 73. benzo (a)pyrene (3,4-benzopyrene)
- 74. 3,4-benzofluoranthene
- 75. benzo(k)fluoranthane (11,12-benzofluoranthene)
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene (1,11-benzoperylene)
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo (a,h)anthracene (1,2,5,6-dibenzanthracene)
- 83. indeno (1,2,3-cd)pyrene (w,e,-o-phenylenepyrene)
- 84. pyrene
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 88. vinyl chloride (chloroethylene)

Pesticides and metabolites

- 89. aldrin
- 90. dieldrin
- 91. chlordane (technical mixture and metabolites)

DDT and metabolites

- 92. 4.4'-DDT
- 93. 4,4'-DDE(p,p'DDX)
- 94. 4,4'-DDD(p,p'TDE)

LIST OF 129 PRIORITY POLLUTANTS

Endosulfan and metabolites

- 95. a-endosulfan-Alpha
- 96. b-endosulfan-Beta
- 97. endosulfan sulfate

Endrin and metabolites

- 98. endrin
- 99. endrin aldehyde

Heptachlor and metabolites

- 100. heptachlor
- 101. heptachlor epoxide

Hexachlorocyclohexane (all isomers)

- 102. a-BHC-Alpha
- 103. b-BHC-Beta
- 104. r-BHC (lindane)-Gamma
- 105. g-BHC-Delta

Polychlorinated biphenyls (PCB's)

- 106. PCB-1242 (Arochlor 1242)
- 107. PCB-1254 (Arochlor 1254)
- 108. PCB-1221 (Arochlor 1221)
- 109. PCB-1232 (Arochlor 1232)
- 110. PCB-1248 (Arochlor 1248)
- 111. PCB-1260 (Arochlor 1260)
- 112. PCB-1016 (Arochlor 1016)

Metals and Cyanide, and Asbestos

- 114. antimony
- 115. arsenic
- 116. asbestos (Fibrous)
- 117. beryllium
- 118. cadmium
- 119. chromium (Total)

LIST OF 129 PRIORITY POLLUTANTS

Metals and Cyanide, and Asbestos (Cont.)

- 120. copper
- 121. cyanide (Total)
- 122. lead
- 123. mercury
- 124. nickel
- 125. selenium
- 126. silver
- 127. thallium
- 128. zinc

Other

- 113. toxaphene
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Table VI-2

PRIORITY POLLUTANT ANALYTICAL QUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatment Effectiveness Concentration (mg/l)(b)
1.	acenaphthene	0.010	0.010
2.	acrolein	0.010	0.100
3.	acrylonitrile	0.010	0.01
4.	benzene	0.010	0.05 - 0.10
5.	benzidine	0.010	0.01
6.	carbon tetrachloride	0.010	0.05
7.	chlorobenzene	0.010	0.025
8.	1,2,4-trichlorobenzene	0.010	0.01
9.	hexachlorobenzene	0.010	0.01
10.	1,2-dichloroethane	0.010	0.1
11.	1,1,1-trichloroethane	0.010	0.01
12.	hexachloroethane	0.010	0.01
13.	1,1-dichloroethane	0.010	0.01
14.		0.010	0.01
	1,1,2-trichloroethane 1,1,2,2-tetrachloroethane	0.010	
15.	chloroethane		0.05
16.		0.010	0.01
17.	bis(chloromethyl) ether	0.010	0.01
18.	bis(2-chloroethyl) ether	0.010	0.01
19.	2-chloroethyl vinyl ether	0.010	0.01
20.	2-chloronaphthalene	0.010	0.01
21.	2,4,6-trichlorophenol	0.010	0.025
22.	parachlorometa cresol	0.010	0.05
23.	chloroform	0.010	0.1
24.	2-chlorophenol	0.010	0.05
25.	1,2-dichlorobenzene	0.010	0.05
26.	1,3-dichlorobenzene	0.010	0.01
27.	1,4-dichlorobenzene	0.010	0.01
28.	3,3'-dichlorobenzidine	0.010	0.01
29.	1,1-dichloroethylene	0.010	0.1
30.	1,2-trans-dichloroethylene	0.010	0.1
31.	2,4-dichlorophenol	0.010	0.01
32.	1,2-dichloropropane	0.010	0.01
33.	1,2-dichloropropylene	0.010	0.01
34.	2,4-dimethylphenol	0.010	0.05
35.	2,4-dinitrotoluene	0.010	0.05
36.	2,6-dinitrotoluene	0.010	0.05
37.	1,2-diphenylhydrazine	0.010	0.05
38.	ethylbenzene	0.010	0.05
39.	fluoranthene	0.010	0.01
40.	4-chlorophenyl phenyl ether	0.010	0.01
41.	4-bromophenyl phenyl ether	0.010	0.01
42.	bis(2-chloroisopropyl) ether		0.01
43.	bis(2-chloroethoxy) methane	0.010	0.01

PRIORITY POLLUTANT ANALYTICAL QUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatment Effectiveness Concentration (mg/l)(b)
44.	methylene chloride	0.010	0.10
45.	methyl chloride	0.010	0.01
46.	methyl bromide	0.010	0.01
47.	bromoform	0.010	0.05
48.	dichlorobromomethane	0.010	0.10
49.	trichlorofluoromethane	0.010	0.01
50.	dichlorodifluoromethane	0.010	0.01
51.	chlorodibromomthane	0.010	0.10
52.	hexachlorobutadiene	0.010	0.01
53.	hexachlorocyclopentadiene	0.010	0.01
54.	isophorone	0.010	0.05
55.	naphthalene	0.010	0.05
56.	nitrobenzene	0.010	0.05
57.	2-nitrophenol	0.010	0.01
58.	4-nitrophenol	0.010	0.05
59.	2,4-dinitrophenol	0.010	0.025
60.	4,6-dinitro-o-cresol	0.010	0.025
61.	N-nitrosodimethylamine	0.010	0.01
62.	N-nitrosodiphenylamine	0.010	0.01
63.	N-nitrosodi-n-propylamine	0.010	0.01
64.	pentachlorophenol	0.010	0.01
65.	phenol	0.010	0.05
66.	bis(2-ethylhexyl)phthalate	0.010	0.01
67.	butyl benzyl phthalate	0.010	0.001 - 0.01
68.	di-n-butyl phthalate	0.010	0.025
69.	di-n-octyl phthalate	0.010	0.01
70.	diethyl phthalate	0.010	0.025
71.	dimethyl phthalate	0.010	0.025
72.	benzo(a)anthracene	0.010	0.01
73.	benzo(a)pyrene	0.010	0.01
74.	3,4-benzofluoranthene	0.010	0.01
75.	benzo(k)fluoranthene	0.010	0.01
76.	chrysene	0.010	0.001
77.	acenaphthylene	0.010	0.01
78.	anthracene	0.010	0.01
79.	benzo(ghi)perylene	0.010	0.01
80.	fluorene	0.010	0.01
81.	phenanthrene	0.010	0.01
82.	dibenzo(a,h)anthracene	0.010	0.01
83.	indeno(1,2,3-cd)pyrene	0.010	0.01
84.	pyrene	0.010	0.001 - 0.01
85.	tetrachloroethylene	0.010	0.05
86.	toluene	0.010	0.05

PRIORITY POLLUTANT ANALYTICAL QUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

· .	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatment Effectiveness Concentration (mg/l)(b)
92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106.	trichloroethylene vinyl chloride aldrin dieldrin chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD alpha-endosulfan beta-endosulfan endosulfan sulfate endrin endrin aldehyde heptachlor heptachlor epoxide alpha-BHC beta-BHC gamma-BHC delta-BHC PCB-1242 PCB-1254	(mg/l)(a) 0.010 0.010 0.005	(mg/l)(b) 0.01 0.001 0.001 0.01 0.01 0.01 0.01
114. 115. 116.	antimony arsenic asbestos	0.010 0.010 10 MFL	0.47 0.34 10 MFL
117. 118. 119. 120. 121.	beryllium cadmium chromium copper cyanide (c)	0.005 0.020 0.020 0.050 0.02	0.20 0.049 0.07 0.39 0.047
122. 123. 124. 125. 126. 127.	lead mercury nickel selenium silver thallium	0.02 0.050 0.0002 0.050 0.010 0.010	0.047 0.08 0.036 0.22 0.20 0.07 0.34
128.	zinc	0.020	0.23

PRIORITY POLLUTANT ANALYTICAL OUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

Analytical Quantification Effectiveness Concentration Concentration (mg/l)(a)

Treatment (mq/1)(b)

Pollutant

2,3,7,8-tetrachlorodibenzo-129. p-dioxin (TCDD)

Analytical quantification concentration was reported with (a) the data (see Section V).

Treatment effectiveness concentrations are based on perfor-(b) mance of lime precipitation, sedimentation, and filtration for toxic metals and activated carbon for toxic organics.

⁽c) Analytical quantification concentration for EPA Method 352.2, Total Cyanide Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, March 1979.

Table VI-3

PRIORITY POLLUTANT DISPOSITION
LEAD-TIN-BISMUTH FORMING SUBCATEGORY

	Pollutant	Rolling Spent Emulsions	Extrusion Press and Soln. Heat Trt. CCW	Continuous Strip Casting CCW	Semi-Continuous Ingot Casting CCW	Shot Casting CCW	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Total Subcategory
1.	acenaphthene	ND	ND	NA	ND	ND	ND	ND	· ND
2.	acrolein	ND	ND	NA	ND	NA	NA.	NA NA	ND
3.	acrylonitrile	ND	ND	. NA	ND	NA	NA	NA NA	ND
4.	benzene	ND	NT	NA NA	ND	NA	NA	NA.	NT
5.	benzidine	ND	ND	NA NA	ND	ND	ND	ND	ND
6.	carbon tetrachloride	NT	ND	NA.	ND	NA.	NA	NA.	NT
7.	chlorobenzene	ND	ND	NA	ND	NA	NA.	NA	ND
8.	1,2,4-trichlorobenzene	ND	ND	NA	ND	ND	ND	ND	ND
9.	hexachlorobenzene	ND	ND	NA /	ND	ND	ND	ND	ND
10.	1.2-dichloroethane	ND	ND	NA.	ND	NA NA	NA.	NA	ND
11.	1,1,1-trichloroethane	NT	- ND	NA	ND.	NA	NA		NT
12		ND	ND	NA	ND	ND	ND	ND	ND
13.	1.1-dichloroethane	ND	ND	NA	ND	NA	NA NA	NA	ND
14.	1,1,2-trichloroethane	ND	ND	NA	ND	NA	NA	NA NA	ND
15.	1,1,2,2-tetrachloroethane	NT	ND	NA.	ND	NA.	NA NA	NA NA	TN
16.	chloroethane	ND	ND	NA	ND	NA	NA	NA NA	ND
17.	bis(chloromethyl) ether	ND	ND	NA	ND	· NA	NA	NA	ND
18.	bis(2-chloroethyl) ether	ND	ND	NA.	ND	ND	ND	ND	ND
19.	2-chloroethyl vinyl ether	ND	ND .	NA .	ND	NA.	NA	NA NA	ND
20.	2-chloronaphthalene	ND	ND .	NA	ND	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	ND	ND	NA	ND	ND	ND	ND ·	ND
22.	parachlorometa cresol	ND	ND	NA	ND	ND	NT	ND .	NT
23.	chloroform	NT	NT	NA	ND	NA	NA NA	NA .	NT
24.	2-chlorophenol	ND	ND	NA	ND	ND	ND	ND	ND
25.	1,2-dichlorobenzene	ND	ND	NA	ND	ND	ND	ND	ND
26.	1,3-dichlorobenzene	ND	ND	NA	ND	ND	ND	ND	ND
27,	1,4-dichlorobenzene	ND	ND	NA	ND	ND	ND	ND	ND
28.	3,3'-dichlorobenzidine	ND	ND	NA NA	ND	ND	ND	ND .	ND
29.	1,1-dichloroethylene	ND	ND	NA	ND	NA	NA	NA.	ND
30.	1,2-trans-dichloroethylene	ND	ND	NA	ND	NA	NA	NA NA	ND
31.	2,4-dichlorophenol	ND	ND	NA	ND	ND	ND	ND	ND
32.	1,2-dichloropropane	DИ	ND	NA	ND	NA	NA	NA.	ND
33.	1,2-dichloropropylene	ND	ND	NA	ND	NA NA	NA NA	NA NA	· ND
34.	2,4-dimethylphenol	ND	ND	NA	ND	, ND	ND		- ND
35.	2.4-dinitrotoluene	ND	ND .	NA.	ND	ND	ND .	ND	ND
36.	2,6-dinitrotoluene	ND	ND	NA	ND	ND	ND	ND	· ND
37.	1,2-diphenylhydrazine	ND	ND	NA	ND	ND	ND	ND	ND
38.	ethylbenzene	NT	ND	NA.	ND	NA	NA	NA NA	NT
39.	fluoranthene	ND	ND	NA NA	ND	ND	ND	ND	ND
40.	4-chlorophenyl phenyl ether	ND	ND	NA.	ND	ND	ND	ND	ND
41.	4-bromophenyl phenyl ether	ND	ND	NA	ND	ND	ND	ND	ND
42.	bis(2-chloroisopropyl) ether	ND	ND	NA.	ND	ND	ND	ND	ND
43.	bis(2-chloroethoxy) methane	ND	ND	NA NA	ND	ND	ND	ND	NO
•	,, ,, ,, ,, ,	=		.,,,		.,,,	,,,,	.,,,	110

PRIORITY POLLUTANT DISPOSITION LEAD-TIN-BISMUTH FORMING SUBCATEGORY

	Pollutant	Rolling Spent Emulsions	Extrusion Press and Soln. Heat Trt. CCW	Continuous Strip Casting CCW	Semi-Continuous Ingot Casting CCW	Shot Casting CCW	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Total Subcategory
44.	methylene chloride	DИ	ND	NA	ND	NA	NA	NA	ND
45.	methyl chloride	ND	ND	NA	ND	NA	NA	NA	ND
46.	methyl bromide	ND	ND	NA	ND	NA	NA	NA	ND
47.	bromoform	ND	ND	NA	ND	NA	NA	NA	ND
48.	dichlorobromomethane	ND	ND	NA	ND	NA	NA	NA	ND
49.	trichlorofluoromethane	ND	ND	NA	ND	NA	NA	NA	ND
50.	dichlorodifluoromethane	ND	ND	NA	ND	NA	NA	NA	ND
51.	chlorodibromomethane	ND	ND	NA	ND	NA	NA	NA	ND
52.	hexachlorobutadiene	ND	ND	NA	ND	ND	ND	ND	ΩИ
53.	hexachlorocyclopentadiene	ND	ND	NA	ND	ND	ND	ND	ND
54.	isophorone	ND	ND	NA	ND	ND	ND	ND	ND
55.	naphthalene	ND	ND	NA	ND	ND	ND	ND	ND
56.	nitrobenzene	ND	ND	NA	ND	ND	ND	ND	ND
57.	2-nitrophenol	ND	ND	NA	ND	ND	ND	ND	ND
58.	4-nitrophenol	ND	ND	NA	ND	ND	ND	ND	ДИ
59.		ND	ND	NA	ND	ND	ND	ND	ND
60.	4,6-dinitro-o-cresol	ND	ND	NA	ND	ND	ND	ND	ND
61.	N-nitrosodimethylamine	ND	ND	NA.	ND	ND	ND	ND	ND
62.	N-nitrosodiphenylamine	ND	ND	NA NA	ND	ND	ND	ND	ND
63.	N-nitrosodi-n-propylamine	ND	ND	NA NA	ND	ND	ND	ND	ИD
64.	pentachlorophenol	ND	ND	NA NA	ND	ND	ND	ND	ND
65.	pheno l	ND	ND	NA NA	ND	RG	ND	ND:	SU
66.	bis(2-ethylhexyl) phthalate	ND	ND	NA NA	ND	ND	RG	ND	SU
67.	butyl benzyl phthalate	ND	ND	NA NA	ND	ND	ND	ND	ND
68.	di-n-butyl phthalate	ND	NĐ	NA NA	ND	ND	ND	ND	ND
69.	di-n-octyl phthalate	ND	ND	NA NA	ND .	ND	· ND	ND	ND
70.	diethyl phthalate	ND	ND	NA NA	ND-	ND	ND	ND	ND
71.	dimethyl phthalate	ND	· ND	NA NA	ND	ND	ND	ND	ND
72.	benzo(a)anthracene	ND	ND	NA NA	ND	ND	ND	ND	ND:
73.	benzo(a)pyrene	ND -	ND	NA	ND	ND	ND	ND	ND
74.	3.4-benzofluoranthene	ND	ND	NA NA	ND	ND	ND	ND.	ND
75.	benzo(k)fluoranthene	ND	ND	NA NA	ND	ND	ND	ND	ND
76.	chrysene	DN	ND	NA NA	ND	ND	ND	ND	ND
77.	acenaphthylene	ND	ND	NA NA	ND	ND	ND	ND	ND
77. 78.	anthracene	ND	ND	NA NA	ND	ND	ND	ND	ND
78. 79.	benzo(ghi)perylene	ND	ND	NA NA	ND	ND	ND	ND	ND
79. 80.	fluorene	ND	, ND	NA NA	ND	ND	ND	ND	ND
	phenanthrene	ND	ND	NA NA	ND	ND	RG	ND	SU
81. 82.	dibenzo(a,h)anthracene	ND ND	ND	NA NA	ND ND	ND	ND	ďΩ	ND
		ND	ND	NA	ND ND	ND ND	ND	ND	ND ND
83.	indeno(1,2,3~c,d)pyrene	ND	ND	NA:	ND ND	ND	ND	ND	ND.
84.	pyrene	ND ND	. ND	NA NA	ND NA	ND ND	NA NA	NA NA	ND
85.	tetrachloroethylene	. ND	ND ND	NA NA	NA NA	ИD	NA NA	NA NA	ND
86.	toluene	, NO	י אט	INA	, NA	ND	· · · · -	110	IND

PRIORITY POLLUTANT DISPOSITION LEAD-TIN-BISMUTH FORMING SUBCATEGORY

				•	•				
	5.11.1	Rolling Spent	Extrusion Press and Soln. Heat	Continuous Strip	Semi-Continuous Ingot Casting	Shot Casting	Alkaline Cleaning Spent	Alkaline Cleaning	Total
	Pollutant	Emulsions	Trt. CCW	Casting CCW	CCM	CCW	Baths	Rinsewater	Subcategory
87.	trichloroethylene	ND	ND	NA	ND	NA	NA	NA	ND:
88.	vinyl chloride	ND	ND	NA	ND	NA.	NA	NA:	ND
89.	aldrin	NA	NA	NA	NA NA	NA	NA	NA.	NA.
90.	dieldrin	NA	NA	NA	NA	NA	NA	NA	NA:
91.	chlordane	NA	NA	NA	NA	NA	NA.	NA	NA
92.	4,4'-DDT	NA	NA	NA	NA	NA.	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA	NA	NA	NA	·NA	NA
94.	4,4'-DDD	NA	NA	NA	NA	NA	NA ·	NA	NA
95.	alpha-endosulfan	NA	NA	NA	NA	NA	NA	NA	NA
96.	beta-endosulfan	NA	NA	NA NA	NA	NA	NA	NA ·	NA
97.	endosulfan sulfate	NA	NA	. NA	NA ·	NA	NA	NA	NA
98.		NA	NA	NA	NA	NA	NA	NA	NA
99.	endrin aldehyde	NA	NA	NA	NA	NA	NA	NA	NA
100.	heptachlor	NA L	- NA	NA NA	- NA	NA	NA -	NA	NA
-101.	heptachlor epoxide	NA	NA	NA	NA	NA	NA	NA	NA
102.	alpha~BHC	NA	NA	NA	NÁ	NA	NA	NA	NA NA
103.	beta-BHC	NA	NA	NA	NA	NA	NA	. NA	NA
104.	gamma-BHC	NA	NA	NA	NA	NA	NA	NA	NA
105.	de1ta-BHC	NA	NA	NA	NA	NA	NA	NA	NA
106.	PCB-1242	NA	NA	NA	· NA	NA	NA	NA	NA
107.	PCB-1254	NA :	NA	NA	NA	NA	NA	NA	NA
108.	PCB=1221	NA	NA	NA	NA	NA	NA	NA	NA.
109.	PCB-1232	NA .	NA	NA	·NA	NA	NA	NA	NA
110.	PCB-1248	NA	NĄ	· NA	, NA	NA	- NA	NA	NA
111.	PCB-1260	NA '	NA	NA	NA	NA	NA	NA	NA
112.	PCB-1016	NA	NA	NA	NA	NA	NA	NA	NA
113.	toxaphene .	NA	NA	NA	ŅĀ	NA	NA	NA ·	. NA
114.	antimony	ND	ND	NA	NT	RG	RG	RG	RG
115.	arsenic	ND	ND	NA	NT	NT	. NT	NT	NT
116.	asbestos	NA ·	NA	NA	NA	NA	NA	NA	NA
117.	beryllium	ND	NT	.ND	ND	ND	ИD	ND	NT
118.	cadmium	ND	NT	NT	ND	ND	ND	ND	NT
119.	chromium	ND	RG ·	NT	· ND	ND	ND	ND	ŞU
120.	copper	NT	NT	RG	· ND	ND	ΝŢ	NT*	ςU
121.	cyanide	NA .	RG	NA	ND	ND	ND	ND	SU-
122.	lead	RG	RG	RG	RG	RG	RG	RG	RG
123.	mercury	ND	ND	NA	ND	NT	ND	NT	NT .
	nickel	- NT	NT	NT	ND	ND	ND	. ND	NT*
125.	selenium	ND	ND	NA	, ND	ND	ND	ND	ND
126.	silver	ND	ND	NA	ND	ND	ND	ND	ИĎ
	thallium	ND	ND	NA D.S.	ND	ND.	ND	ND	ND
128.	zinc	RG	ND	RG	NT	NT	NT	NT*	SU
129.	2,3,7,8-tetrachlorodibenzo-	NA	· NA	NA	· NA	NA	NA	- NA	NA
	p-dioxin (TCDD)				•			•	

PRIORITY POLLUTANT DISPOSITION LEAD-TIN-BISMUTH FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

1258

PRIORITY POLLUTANT DISPOSITION MAGNESIUM FORMING SUBCATEGORY

Table VI-4

Pollutant Spent Baths Rinsewater Subcategor 1. acenaphthene NA ND ND 2. acrolein NA ND ND 3. acrylonitrile NA ND ND 4. benzene NA ND ND 5. benzidine NA ND ND 6. carbon tetrachloride NA ND ND 7. chlorobenzene NA ND ND 8. 1,2,4-trichlorobenzene NA ND ND 9. hexachlorobenzene NA ND ND 10. 1,2-dichloroethane NA ND ND 11. 1,1,1-trichloroethane NA ND ND 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloroethyl vinyl ether NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	rv.
2. acrolein NA ND ND 3. acrylonitrile NA ND ND 4. benzene NA ND ND 5. benzidine NA ND ND 6. carbon tetrachloride NA ND ND 7. chlorobenzene NA ND ND 8. 1,2,4-trichlorobenzene NA ND ND 9. hexachlorobenzene NA ND ND 10. 1,2-dichloroethane NA ND ND 11. 1,1-trichloroethane NA ND ND 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) vinyl ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloromaphthalene	, ,
3. acrylonitrile NA ND ND 4. benzene NA ND ND 5. benzidine NA ND ND 6. carbon tetrachloride NA ND ND 7. chlorobenzene NA ND ND 8. 1,2,4-trichlorobenzene NA ND ND 9. hexachlorobenzene NA ND ND 10. 1,2-dichloroethane NA ND ND 11. 1,1-trichloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl vinyl ether NA ND ND 19. 2-chloropathtalene NA ND ND 20. 2-chlorop	
4. benzene NA ND ND 5. benzidine NA ND ND 6. carbon tetrachloride NA ND ND 7. chlorobenzene NA ND ND 8. 1,2,4-trichlorobenzene NA ND ND 9. hexachlorobenzene NA ND ND 10. 1,2-dichloroethane NA ND ND 11. 1,1-trichloroethane NA NT NT 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) vinyl ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
4. benzene NA ND ND 5. benzidine NA ND ND 6. carbon tetrachloride NA ND ND 7. chlorobenzene NA ND ND 8. 1,2,4-trichlorobenzene NA ND ND 9. hexachlorobenzene NA ND ND 10. 1,2-dichloroethane NA ND ND 11. 1,1-trichloroethane NA NT NT 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) vinyl ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
6. carbon tetrachloride	
7. chlorobenzene	
7. chlorobenzene	
8. 1,2,4-trichlorobenzene NA ND ND 9. hexachlorobenzene NA ND ND 10. 1,2-dichloroethane NA ND ND 11. 1,1-trichloroethane NA NT NT 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
9. hexachlorobenzene NA ND ND 10. 1,2-dichloroethane NA ND ND 11. 1,1,1-trichloroethane NA NT NT 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
10. 1,2-dichloroethane NA ND ND 11. 1,1,1-trichloroethane NA NT NT 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,7-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
11. 1,1,1-trichloroethane NA NT NT 12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
12. hexachloroethane NA ND ND 13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
13. 1,1-dichloroethane NA ND ND 14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
14. 1,1,2-trichloroethane NA ND ND 15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	ž
15. 1,1,2,2-tetrachloroethane NA ND ND 16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
16. chloroethane NA ND ND 17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
17. bis(chloromethyl) ether NA ND ND 18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
18. bis(2-chloroethyl) ether NA ND ND 19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
19. 2-chloroethyl vinyl ether NA ND ND 20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
20. 2-chloronaphthalene NA ND ND 21. 2,4,6-trichlorophenol NA ND ND	
21. 2,4,6-trichlorophenol NA ND ND	
22. parachlorometa cresol NA ND ND	
23. chloroform NA ND ND	
24. 2-chlorophenol NA ND ND	
25. 1,2-dichlorobenzene NA ND ND	
26. 1,3-dichlorobenzene NA ND ND	
27. 1,4-dichlorobenzene NA ND ND	
28. 3,3'-dichlorobenzidine NA ND ND	
29. 1,1-dichloroethylene NA ND ND	
30. 1,2-trans-dichloroethylene NA ND ND	
31. 2,4-dichlorophenol NA ND ND	
32. 1,2-dichloropropane NA ND ND	
33. 1,2-dichloropropylene NA ND ND	
34. 2,4-dimethylphenol NA ND ND	
35. 2,4-dinitrotoluene NA ND ND	
36. 2,6-dinitrotoluene NA ND ND	
37. 1,2-diphenylhydrazine NA ND ND	
38. ethylbenzene NA ND ND	-
39. fluoranthene NA ND ND	
40. 4-chlorophenyl phenyl ether NA ND ND	
41. 4-bromophenyl phenyl ether NA ND ND	
42. bis(2-chloroisopropy!) ether NA ND ND	
43. bis(2-chloroethoxy) methane NA ND ND	

PRIORITY POLLUTANT DISPOSITION MAGNESIUM FORMING SUBCATEGORY

	Pollutant	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Total Subcategory
44.	methylene chloride	NA	NT	NT
45.	methyl chloride	NA	ИD	ND
46.	methyl bromide	NA	ИD	ND
47.	bromoform	NA	ИD	ND
48.	dichlorobromomethane	NA	ND	ND
49.	trichlorofluoromethane	NA	ИD	ND
50.	dichlorodifluoromethane	NA	ИD	ND
51.	chlorodibromomethane	NA	ND	ND
52.	hexachlorobutadiene	NA	ND	ND
53.	hexachlorocyclopentadiene	NA	ND	ND ND
54.	isophorone	NA	ND	ND
55.	naphthalene	NA	ND	
56.	nitrobenzene	NA	ND	ND NT
57.	2-nitrophenol	NA	NT	ND
58.	4-nitrophenol	NA	ND	ND ND
59.	2,4-dinitrophenol	NA	ND	ND ND
60.	4,6-dinitro-o-cresol	NA	ND	ND ND
61.	N-nitrosodimethylamine	NA	ND	ND
62.	N-nitrosodiphenylamine	NA	ND	ND
63.	N-nitrosodi-n-propylamine	, NA	ND	ND
64.	pentachlorophenol	ΝA	ND NT	NT
65.	phenol	NA	ND ND	ND
66.	bis(2-ethylhexyl) phthalate	NA	ND	ND
67.	butyl benzyl phthalate	NA	ND ND	ND
68.	di-n-butyl phthalate	NA	ND ND	ND
69.	di-n-octyl phthalate	NA NA	ND ND	ND
70.	diethyl phthalate	NA NA	ND	ND
71.	dimethyl phthalate	NA NA	ND ND	ND
72.	benzo(a)anthracene	NA NA	ND	ND
73.	benzo(a)pyrene	NA NA	ND	ND
74.	3,4-benzofluoranthene	NA	ND	ND
75.	benzo(k)fluoranthene	NA	. ND	ND
76.	chrysene	NA NA	ND	ND
77.	acenaphthylene	NA NA	ND	ND
78.	anthracene	NA NA	ND	ND
79.	benzo(ghi)perylene	NA NA	ND	ND
80.	fluorene	NA NA	ND	ND
81.	phenanthrene	NA NA	ND	ND
82.	dibenzo(a,h)anthracene	NA NA	ND	ДŅ
83.	indeno(1,2,3-c,d)pyrene	. NA	ND	ND
84.	pyrene	NA NA	ND	ND.
85. 86.	tetrachloroethylene toluene	NA	ND	ND

Table VI-4 (Continued)

PRIORITY POLLUTANT DISPOSITION MAGNESIUM FORMING SUBCATEGORY

		Surface Trt.	Surface Trt.	Total
	Pollutant	Spent Baths	Rinsewater	Subcategory
87.	trichloroethylene	NA ~	ND	ND
88.	vinyl chloride	NA	ND	ND
89.	aldrin	NA	NA	ŅA
90.	dieldrin	NA	NA	NA .
91.	chlordane	NA .	NA	` NA
92.	4,4'-DDT	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA
94.	4,4'-DDD	, NA	. NA	NA
95.	alpha-endosulfan	. NA	NA	NA
96.	beta-endosulfan	NA ·	NA	NA
97.	endosulfan sulfate	NA	- NA	NA .
98.	endrin	V NA	NA	NA
99.	endrin aldehyde	NA	NA	NA
100.	heptachlor	NA	NA	NA
101.	heptachlor epoxide	NA NA	NA	. NA
102.	alpha-BHC	NA	NA	NA
103.	beta-BHC	NA	NA	NA
104.	gamma-BHC	NA	NA	NA 🕖
105.	delta-BHC	NA	NA -	. NA
106.	PCB-1242	NA	NA -	NA
107.	PCB-1254	NA	. NA	NA
108.	PCB-1221	NA	NA	NA -
109.	PCB-1232	- NA	NA	NA
110.	PCB-1248	. NA	NA	NA
111.	PCB-1260	· NA	NA .	NA
112.	PCB-1016	NA .	NA	NA
113.	toxaphene	NA	NA	NA
114.	antimony	NT	ND	NT
115.	arsenic	ND	ND	ND
116.	asbestos	NA	NA	NA
117.	beryllium	R G	NT	SU
118.	cadmium	ND .	ND	ND
119.	chromium	RG '	R G	RG
120.	copper	ND	ND	ND
121.	cyanide	RG	ND	SU
122.	lead	RG	ND	SU
123.	mercury	NT	NT	NT ·
124.	nickel	ND	ND	ND
125.	selenium	ND	ND -	ND
126.	silver	NT	ND	NT
127.	thallium	ND	ND	ND
128.	zinc	RG .	RG	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA	· NA	NA
	p-dioxin (TCDD)		÷	

PRIORITY POLLUTANT DISPOSITION MAGNESIUM FORMING SUBCATEGORY

Key: NA - Not Analyzed
ND - Never Detected
NQ - Never Found Above Their Analytical Quantification
NT - Detected Below Levels Achievable by Treatment
SU - Detected in a Small Number of Sources
RG - Considered for Regulation

Table VI-5
PRIORITY POLLUTANT DISPOSITION
NICKEL-COBALT FORMING SUBCATEGORY

		Rolling		Extrusion Press and	Extrusion Press		Tube Reducing	Powder Production	Vacuum Melting
	•	Spent	Rolling	Soln. Heat	Hydraulic	Forging	Spent	Wet Atomization	Steam
	Pollutant	Emulsions	CCW	- Trt. CCW	Fluid Leakage		Lubricants	Wastewater	Condensate
		willia re re	· · · ·	11 44 44			EUG TOUT.	nastonato.	001001.0010
1.	acenaphthene	ND	ND	ND	ND	ND	ND	NA	ND
2.	acrolein .	ND	ND	ND	ND -	ND	ND	NA	ND
З.	acrylonitrile	ND	ND	ND	, ND	ND	ND	NA	ND
4.	benzene	ND	ИĎ	. ND	ND	ИD	ND	NA .	ND
5.	benzidine	ND "	ND	NQ	RG ·	ND	ŅD	· NA	NQ ·
6.	carbon tetrachloride	ND	ND	ND	ND	ND	ND	NA	ND
7.	chlorobenzene	ND ·	ND	ND .	ND	ND	· ND	NA ,	ND
8.	1,2,4-trichlorobenzene	ND	ИD	ND	ND	ND	ND	NA	ND
9.	hexachlorobenzene	ND	, ND .	ND	ND	, ND	ND	. NA	ND .
10.	1,2-dichloroethane	ND	ND	ND		ND	ND	NA TO THE TOTAL TOTAL TO THE TH	ND
11.	1,1,1-trichloroethane	RG	RG	ND	RG	RG	RG ·	NA NA	. NT
12.	hexachloroethane	ND	ΝĎ	ND -	NT	· ND	ND .	NA .	NT
13.	1,1-dichloroethane	ND	SU	'nD	NT	ND	ND .	NA	ND
14.	1,1,2-trichloroethane	ND	ND	ND	ND	И́D	ND	NA .	ND
15.	1,1,2,2-tetrachloroethane	ND	ND	ND	ND	ND	ND ·	NA .	ND
16.	chloroethane	, ND	ND	ND.	ND	ИD	ND	NA .	¹ ND ⁻
17.	bis(chloromethyl) ether	ND .	ND	ND	ND	ИD	ND	NA	ND
18.	bis(2-chloroethy1) ether	ND	ND	ND	ND	ИD	ΝD	NA	ND
19.	2-chloroethyl vinyl ether	ND	ND	ND	ND	ИÐ	ND	NA NA	ND
20.	2-chloronaphthalene	ND	ND	ND	NĎ	ND	, ND	NA	ND
21.	2,4,6-trichlorophenol	ND .	ND	ND	ND	ND	ND	NA	ND
22.	parachlorometa cresol	ND	NT*	ND	RG	ND .	ND	NA	ND .
23.	chloroform	ND	ND	ND	ND	NT	ND	NA	ND
24.	2-chlorophenol	ND	ND	ND	ND	ND	ND	NA	ND
25.	1,2-dichlorobenzene	. ND	ND	ND	ND	ND	ND ,	NA	ND
26.	1,3-dichlorobenzene	ND	ND.	ND	ND	ND	ND	NA	ND
27.	1,4-dichlorobenzene	ND	ND	ND	ND	ND	ND	NΑ	ND
28.	3,3'-dichlorobenzidine	ND	ND	ND	RG	ИD	ND	NA	ФИ
29.	1,1-dichloroethylene	- ND	NT*	ND	ND	ND	ND	NA	ND
30.	1,2-trans-dichloroethylene	ND	ND	ND	, ND	ND	ND ·	· NA	ND
31.	2,4-dichlorophenol	ND	ND	ND	ND	ND	ND .	NA 1	ND
32.	1,2-dichloropropane	ND	ND	ND	ND	ND	ND	NA	٩ND
33	1,2-dichloropropylene	ND	- ND	ND	ND	ND	- ND		ND -
34.	2,4-dimethylphenol	NĎ	NT*	ND	ND	ŊD	ND	NA Ţ	ND
35.	2,4-dinitrotoluene	ND	ND	ND .	ND	ND	, ND	NA ³	ND
36.	2,6-dinitrotoluene	ND	· ND	NT	RG	, ND	. ND	NA	· NT
37.	1,2-diphenylhydrazine	ND	ND	ŃD	NT	ND	ND	NA	ND
38.	ethy1benzene	ND	ND	ND .	ND	ND	ND	NA	ND
39.	fluoranthene	, ND	ND	ND	NT	ND	ND	NA	ND
40.	4-chlorophenyl phenyl ether	ND	ND	ND	ND	ND .	ND '	NA	ND .
41.	4-bromophenyl phenyl ether	ND	ND	ND	ND	ND .	ФИ	NA	ND
42.	bis(2-chloroisopropyl) ether		ND	ND	ND .	. ND	ND	NA .	ND
43.	bis(2~chloroethoxy) methane	ND	ND	ND	NT	ND	ND	NA .	ND
			,			-	-		ļ

Table VI-5 (Continued)

PRIORITY POLLUTANT DISPOSITION NICKEL-COBALT FORMING SUBCATEGORY

		*		Extrusion	Extrusion		Tube	Powder	Vacuum
		Rolling		Press and	Press		Reducing	Production	Melting
		Spent	Rolling	Soln. Heat	Hydraulic	forging	Spent	Wet Atomization	Steam
	Pollutant	Emulsions	CCW	- Trt. CCW	Fluid Leakage	CCW	Lubricants	Wastewater	Condensate
44	. methylene chloride	RG	su	ND	ND	NT	RG	NA ·	ND
45	i. methyl chloride	ND.	ND	ND	ND	ND	ND	NA	ND
46	3. methyl bromide	ND	ND	ND	ND	ND	, ND	NA	ND
47	7. bromoform	ND	ND	ND	ND	ND	ND	NA	ND
48	3. dichlorobromomethane	ND	ND	ND	ND	ND	ND	NA	ND
49). trichlorofluoromethane	ND	ND	ND	ND	ND	ND	NA	ND
50). dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	NA ·	ND
5	l. chlorodibromomethane	ND	ND	ND	ND	ND	ND	NA .	ND
52		ND	ND	ND	ND	ND	ND	NA	ND
53		ND	ND	ND	ND	ND	ND	NA	ND
54		ND	ND	ND	ND	ND	ND	NA	ND .
55		RG	SU	ND	NΤ	ND	ND	NA	NT -
-56		ND	ND	ND	ND	ND	ND	NA	ND
57		ND	ND	ND	ND	ND	ND ·	NA	ND
58		ND	ND	ND	ND	ND	ND	NA ·	ND
59		ND	ND	ND	ND	ND	. ND	NA	ND -
60		ND	ND	ND	ND	ND	ND	NA	ND
6		ND	ND	NQ	NT	ND	ND	NA .	ND
62		ND	ND	ND	ND	ND	R G	NA	ND
63		ND	ND	SU	SU	ND	ND	. NA	TS
64		RG	ND	ND	ND	ND	ND	NA	ND
65		RG	su	ND	NQ	ND	ND	NA,	ND .
66		ND	su	NT	ΝT	NT	ND	NA ·	NT
67		ND	NT	ND	NT	ND	ND	NA	, ND
68		ND	NT	ND	ND	ND	ND	NA	ND
69		ND	ND	NT	ND	ND	ND	NA	ND
70	• • •	ND	ND	ND	ΝŢ	» ND	ND	NA	NQ
71		ND	ND	ND	NT	ND	ND	NA	. ND
72		- ND	ND	ND "	NQ	ND	ND	NA	ND .
73		ND	ND	ND	RG	ND	ND	NA	ND
74		ND	ND	ND	. ND	ND	ND	NA	ND
75		ND	ND	, ND	NQ	ND	ND	NĄ	ND
76		ND	ND	ND	NQ	ND	· ND	NÃ	ND
77		ND	ND	ND	ND	ND	ND	NA NA	ND
78		. ND	ND	ND	NT	ND	. ND	NA	ND
79		ND .	ND	ND	ND '	ND	ИD	NA	ND
80		ND	ND	ND	ИĎ	ND	ND .	NA	ND
81		RG	ND	ND	NT	ND	ND	NA	ND
82		ND	· ND	ND	ND	ND	ND	NA .	ND
83		ND	ND	ND	NT	ND	ND	NA	ND
84		ND	ND	ND	NT	ND	ND	NA	ND
85		.ND	ND	· ;· · ND	ND	ND	ND .	NA "	ND
86	. toluene .	ND	ND	ND	ND	NT	ND	NA	ND
	· · · · · · · · · · · · · · · · · · ·		•						

Table VI~5 (Continued)

PRIORITY POLLUTANT DISPOSITION NICKEL-COBALT FORMING SUBCATEGORY

٠	Pollutant	Rolling Spent Emulsions	Rolling CCW	Extrusion Press and Soln. Heat - Trt. CCW	Extrusion Press Hydraulic Fluid Leakage	Forging CCW	Tube Reducing Spent Lubricants	Powder Production Wet Atomization Wastewater	Vacuum Melting Steam Condensate
87.	trichloroethylene	ND	ND	ND	ND	ND	ND	NA	ND
88.	vinyl chloride	ND .	ND	ND	ND .	ND	ND	NA.	ND
89.	aldrin	-s" NA	NA	NA	NA	, NA	NA.	NA.	NA
90.	dieldrin	NA	NA .	NA NA	NA NA	NA NA	NA NA	· NA	NA
91.	chlordane	NA NA	NA .	NA NA	NA NA	NA NA	· NA	NA NA	NA
92.	4,4'-DDT	NA	NA.	. NA	NA NA	NA	NA	NA NA	NA
93.	4,4'-DDE	NA ·	NA NA	NA NA	NA ·	NA	NA NA	NA NA	NA NA
94.	4,4'-DDD	. NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA .
· · · · 95.	alpha-endosulfan	- NA	NA:	T.NAT. T.LTT.	NA	NA	NA	NA NA	NA NA
96.	beta-endosulfan	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA
97.	endosulfan sulfate	· NA	NA	NA	NA	NA .	NA.	NA .	NA NA
98.	endrin	NA NA	NA	NA .	ŇA	NA	NA.	NA NA	. NA
99.	endrin aldehyde	NA NA	NA NA	NA NA	NA.	NA.	NA NA	NA NA	NA NA
100.	heptachlor	NA	NA.	NA NA	NA	NA	NA NA	NA .	NA:
101.	heptachlor epoxide	- NA	NA NA	NA	NA NA	NA	NA NA	NA .	NA NA
102.	alpha-BHC	- NA	- NA	NA	NA	NA.	NA NA	NA NA	NA
103.	beta-BHC	NA NA	NA	NA	NA -	NA	NA	NA NA	NA
104.	gamma-BHC	NA ·	NA	NA	NA	NA	NA NA	NA .	, NA
105.	delta-BHC	NA	NA	NA NA	NA	NA .	NA	NA	- NA
106.	PCB-1242	NA	NA	NA NA	NA NA	NA	NA.	, NA	, NA
107.	PCB-1254	NA NA	NA	NA -	NA NA	NA	NA	NA NA	, NA
108.	PCB-1221	NA NA	NA NA	NA NA	NA NA	NA NA	. NA	· NA .	NA
109.	PCB-1232	NA .	NA	NA	NA NA	NA.	NA NA	NA	NA
110.	PCB-1248	NA '	NA .	NA	NA NA	NA	NA	NA NA	NA
111.	PCB-1260	. NA	NA	NA	NA	NA	NA	NA NA	NA
112.	PCB-1016	NA NA	NA NA	NA NA	- NA	NA NA	NA NA	NA NA	NA NA
113.	toxaphene	NA NA	, NA	NA .	NA	NA	NA NA	NA NA	. NA
114.	antimony	NT	NT	ND	ND	NT	ND	ND	, ND
115.	arsenic	NT	NT*	ND	ND	NT	NT	ND	, ND
116.	asbestos	NA	NA	NA	NA	NA	NA	NA NA	NA
117.	beryllium	ND	NT	ND	· ND	NT	ND ·	ND	ND
-118.		RG.	RG	ND	ND	RG	ND	ND	ND
119.	chromium	RG	RG ·	RG	ND	RG	RG	RG	
120.	copper	RG	SU	NT	RG	RG	RĞ	RG '	NT
121.	cyanide	ND ·	ND	. ND	ND	ND	ND	ND	ND
122.	lead	RG	SÜ	ND	RG	RG	RG	ND	ND
123.	mercury	ND	ND	ND	ND	ND	ND	ND	ND
124.	nickel .	RG	RG	NT	RG	RG	RG	RG	ND
125.	selenium	ND	ND	ND	ND ND	ND	ND	ND	ND
126.	silver	NT	ND	ND	ND	ND:	NT	NT	ND
127.	thallium	ND	ND	ND	ND	ND	ND	NT	ND
128.	zinc	RG	RG	NT	RG	NT	. RG	RG	NT
129.	2,3,7,8-tetrachlorodibenzo-	NA NA	NA	NA	NA NA	NA	, NA	NA .	NA
. 20.	p-dioxin (TCDD)	,	••••		••••				170

Table VI-5 (Continued)

	Pollutant	Annealing and Soln. Heat Trt. CCW	Surface Trt. Spent Bath	Surface Trt. Rinsewater	Ammonia Rinsewater	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Molten Salt Rinsewater	Sawing or Grinding Spent Emulsions
1.	acenaphthene	ND	NA	ND	ND	ND	ND	NA	SU
2.	acrolein	ND	NA	ND	. ND	ND	ND	NA	ND
3.	acrylonitrile	ND	NA	ND	ND	ND	ND	NA	ND
4.	benzene	ND	NA	ND	ND	ND	NÐ	NA	NT*
5.	benzidine	ND	NA	RG	ND	ND	ND	NA	ND
6.	carbon tetrachloride	ND	NA	ND	ND	ND	ND	NA	ND
7.	chlorobenzene	· ND	NA	. ND	ND	ND	ND	NA	ND
8.	1,2,4-trichlorobenzene	ND	NA	ND -	ND	ND	ND	NA	ND
9.	hexachlorobenzene	ND	NA	. ND	ND	ND	ND	NA	ND
10.	1,2-dichloroethane	ND	NA	ND	ND	ND	ND	NA	ΝD
11.	1,1,1-trichloroethane	ND	NA	RG	ND	ND	ND	NA	RG
12.	hexachloroethane	ND	NA	NT	ND	ND	ND	NA	ND
13.	1,1-dichloroethane	ND	- NA	ND	∖ ND	ND	ND	NA	SU
14.	1,1,2-trichloroethane	ND	NA	ND	ND	ND	ND	NA	ND
15.	1,1,2,2-tetrachloroethane	ND	NA	ND	ND	ND	ND	NA	ND
16.	chloroethane	ND .	NA	ND	ND	ND	ND	· NA	ND
17.	bis(chloromethyl) ether	ND	NA	ND	ИD	ND	ND	NA	ND
18.	bis(2-chloroethyl) ether	ND	NA	ЙD	ND	ND	ND	NA	ND
19.	2-chloroethyl vinyl ether	ND	NA	ND	ND	ND	ND	NA	ND
20.	2-chloronaphthalene	ND	NA	ND	ND	ND	ND	NA	ND
21.	2,4,6-trichlorophenol	ND	NA	ND	ND	ND	ND	NA	ND
22.	parachlorometa cresol	ND	NA	ND	ND	ND	ND	NA	SU
23.	chloroform	ND	NA	ND	ND	ND	ND	. NA	ND .
24.	2-chlorophenol	ND	NA	ND	ND	ND	ND	NA	ND =
25.	1,2-dichlorobenzene	ND	NA	ND	ND	ND	. ND	NA	ND
26.	1,3-dichlorobenzene	ND	NA	ND	ND	ND	ND	NA	ND
27.	1,4-dichlorobenzene	ND	NA	ND .	ND	ND .	ND	NA	ND
28.	3,3'-dichlorobenzidine	ND	NA	ND	ND	ND	ND	NA	ND
29.	1,1-dichloroethylene	ND	NA	ND	ND	ND	. ND	NA	ND
30.	1,2-trans-dichloroethylene	ND	NA	ND ND	ND	ND	, ND	NA	ND
31.	2,4-dichlorophenol	ND	NA	ND ND	ND	ND	ND	NA	ND
32.	1,2-dichloropropane	ND	NA		ND	ND	ND	NA	ND
33.	1,2-dichloropropylene	ND	NA	ND	ND	ND	ND	NA	ND
34.	2,4-dimethylphenol	ND	NA	ND	ND	" ND	ND	NA	SU
35.	2,4-dinitrotoluene	ND	NA	· ND	ND	ND	ND	NA	ND
36.	2,6-dinitrotoluene	ND	NA .	NT -	ND	ND	ND	NA .	ND
37.	1,2-diphenylhydrazine	ND	NA .	ND	ND	ND	ND	NA.	NΤ
38.	ethylbenzene	ND	. NA .	ND	ND .	ND	ND	, NA	ND
39.	fluoranthene	ND	NA NA	ND	ND	ND	ND	NA NA	SU
40.	4-chlorophenyl phenyl ether	ND	NA NA	ND	ND	ND	ND	NA NA	ND
41.	4-bromophenyl phenyl ether	ND	NA NA -	ND	ND ND	ND	ND ND	NA · NA	ND
42.	bis(2-chloroisopropyl) ether	ND ND	NA -	ND	. עט מא	ND ND	ND ND	NA NA	ND ND
43.	bis(2-chloroethoxy) methane	ND	MA	NQ	NO	טא	ND	- NA	שא

Table VI-5 (Continued)

		Pollutant	Annealing and Soln. Heat Trt. CCW	Surface Trt. Spent Bath	Surface Trt. Rinsewater	Ammonia Rinsewater	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Molten Salt Rinsewater	Sawing or Grinding Spent Emulsions
•	44.	methylene chloride	R G	NA .	ND	RG	RG	NT	NA	RG
	45.	methyl chloride	ND	NA	ND	ND	ND	ND	NA	ND
	46.	methyl bromide	. ND	NA	ND .	ND	ND	ND	NA .	ND
	47.	bromoform	ND	NA	ND	ND	ND	. ND	NA	ND
,	48.	dichlorobromomethane	ND	NA	ND	ND	ND	ND	NA	ND
	.49	trich-lorof-luoromethane		NA	ND	D/	ND	.ND,	NA:	ND.
	50.	dichlorodifluoromethane	ND	NA ·	ND	ND	ND	ND	NA	ND
	51.	- chlorodibromomethane	ND	NA	- ND	. ND	ND	ND 1	NA .	ND
	52.	hexachlorobutadiene	, ND	NA	ND 1	ND	ND	ND	NA	ND
	53.	hexachlorocyclopentadiene	· ND	- NA	ND `	ND	ND	- ND	NA ·	ND .
	54.	isophorone	ND ,	NA	ND	ND	ND [*]	ND	NA	ND
	55.	naphthalene	ND	NA	NT `	ND	ND	ND	NA	SU
	56.	nitrobenzene	, ND	NA .	ND	ND	ND	ND	NΆ	ND
	57.	2-nitrophenol	ND	NA	ND	ND	· ND	ND	NA -	SU
	58.	4-nitrophenol :	ND	NA	ND	ND	ND	ΝŤ	N [.] A	Su
-	. 59.	2,4-dinitrophenol	ND	NA	ND	ND .	ND .	ND	N'A	ND
	60.	4,6-dinitro-o-cresol	ND	. NA .	ND	, ND	ND	ND	NA	SU
•	61.	N-nitrosodimethylamine	ND	NA ·	NT	ND	· ND	ND	ΝA	ND
	62.	N-nitrosodiphenylamine	ND	NA	RG .	ND	ND	ND	NA	ND
	63.	N-nitrosodi-n-propylamine	ND	NA	SU	ND	ND	ND	NA	- ND
٠.	64.	pentachlorophenol ·	. ND	NA	ND	ND	ND	ND	NA	SU
	65.	phenoi	ND	NA	ND	ND	ND.	. NT*	N·A·	RG
	66.	bis(2-ethylhexyl) phthalate	NT	NA	NT .	ND	ND	NT	NA	รบ
	67.	butyi benzyl phthalate	ND	NA	NT	ND	- ND	ND	· NA	ND
	68.	di-n-butyl phthalate	ND	NA:	ND	RG	ND	ND	NA	NT
	69.	di-n-octyl phthalate	ND	NA ·	ND ,	ND	ND	ND	NA	· NT
	70.	diethy! phthalate	ND	NA	NQ	ND	ND	ND	NA	ND
	71.	dimethyl phthalate	, ND	NA	NT	ND	ND -	ND '	NA	ND
_	72.	benzo(a)anthracene	ND	NA	ND	ND	ND	ND	NA	ND
	73.	benzo(a)pyrene	ND	NA	ND	ND	ND	ND	NA	ND
	74.	3,4-benzofluoranthene	ND	NA	ND.	ND	ND	ND.	NA .	· ND
	75.	benzo(k)fluoranthene	ND	NA	ND	ND	ND	ND	NA	ND
	76.	chrysene	· ND	NA	ND	ND	ND	ND	NA ·	,ND
	77.	acenaphthylene	. ND	NΑ	ND	ND .	ND	ND	, NA	NT
	78.	anthracene	ND	NA	ND	` ND	ND	ND	NA	ND
	79.	benzo(ghi)perylene	ND	NA	МÐ	ND	ND	ND	NA	ND
		fluorene	ND	NA	ND	ND	- ND	ND	NA	Su
	81.	phenanthrene	ND	NA	NT	ND	ND	~ND	NA	· RG
	82.	dibenzo(a,h)anthracene	ND	NA	ND	, ND	ND	ND	NA	ND
	83.	indeno(1,2,3-c,d)pyrene	ND	NA	ND	ND	, ND	ND	NA .	ND
	84.	pyrene	ND	NA	. ND	ND	; ND	ND .	NA	SU
	85.	tetrachloroethylene	ЙД	NΑ	ND	ND	ND	ND	NA	ПD
•	86.	toluene	ŃD	NÁ	ND	ND	ND.	NÐ	N [.] A	ПN
			-				-			

Table VI-5 (Continued)

		•	Surface			Alkaline			Sawing or
		Annealing	Trt.	Surface		Cleaning	Alkaline	Molten	Grinding
		and Soln.	Spent	Trt.	Ammonia	Spent	Cleaning	Salt	Spent
	Pollutant	Heat Trt. CCW	Bath	Rinsewater	Rinsewater	Baths	Rinsewater	Rinsewater	Emulsions
87.	trichloroethylene	ND	NA	ND	ND	ND	ND	NA	ND.
88.	vinyl chloride	ND	NA	ND	ND	ND	ND	NA	ND
89.	aldrin	NA ,	NA	NA	NA	NA	NA	NA	NA
90.	dieldrin	NA	NA .	NA	NA	NA	NA	NA	NA
91.	chlordane	NA	NA .	NA	NA	NA	NA	NA	NA
92.	4,4'-DDT	NA	NA	NA	NA	NA .	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA	NA	NA	NA	NA	NA
94.	4,4'-DDD	· NA	NA	NA =	NA	NA	NA	NA	NA
95.	alpha-endosulfan	NA	NA	NA	NA	NA	NA	¹ NA	NA
96.	beta-endosulfan	NA	NA	NA	NA	NA	NA	NA	NA
97.	endosulfan sulfate	NA	NA	NA	NA	NA	N:A	NA	NA
98.	endrin	NA	NA	NA	NA	NA	· NA	NA	NA
99.	endrin aldehyde	NA	N-A	NA	NA	NA	NA	NA	NA
100.	heptachlor	NA	NA	NA	NA	NA	NA	· NA	NA
101.	heptachlor epoxide	NA	NA	NA	NA	NA	NA	NA	NA
102.	alpha-BHC	NA	NA	NA	NA	NA	NA	NA	NA
103.	beta-BHC	NA	NA	NA	NA	NA.	NA	ŇA	. NA
104.	gamma-BHC	NA	NA	NA.	NA	NA	NA	NA	N¦A
105.	delta-BHC	NA	NA	NA	NA	NA	NA .	NA NA	NA
106.	PCB-1242	NA	NA .	· NA	NA	NA	NA .	N.A	NA NA
107.	PCB-1254	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA
108.	PCB-1221	NA	NA .	- NA	NA	NA.	NA NA	NA	NA NA
109.	PCB-1232	NA	NA	NA NA	NA	NΑ	NA NA	NA	.NA
110.	PCB-1248	NA	NA	NA NA	· NA	NA.	NA NA	NA	NA
111.	PCB-1260	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA
112.	PCB-1016	NA	NA NA	NA NA	NA NA	NA.	NA NA	NA	NA
113.	toxaphene	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
114.	antimony	ND	SU	NT	NT	NT .	NT*	NT*	NT*
115.	arsenic	ND	ŞU	NT	NT	NT	NT*	NT	NT
116.	asbestos	N:A	N-A	NA	NA NA	- NA	NA NA	NA .	NA.
117.	beryllium	ND	รับ	NT.	ND	NT	NT	NT	NT
118.	cadmium	ND	RG	SU	ND	SU	NT	RG	SU
119.	chromium	RG	RG	RG	RG	RG	RG	RG	RG
120.	copper	RG	RG	· RG	RG	RG	RG	RG	RG
121.	cyanide	ND ND	ND	ND	ND	ND	ND	ND	. SU
122.	lead	ND	RG	RG	RG	SU	SU		, SU RG
123.		ND ND	NT*	NT*		ND		RG	
	mercury				ND		· ND	ND	ND
124.	nickel "	RG	RG	RG	RG	RG	RG	RG	RG
1.25.	selenium	ND	NT*	ND	NT.	SU	ND	NT	SU
126.	silver	NT	รบ	NT*	NT	NT	ND	NT	NT
127.	thallium	NT	ΝT	NT*	ND	NT	ND	NT	NT
128.	zinc	RG -	RG	RG	RG	RG	Su	RG	RG
1.29.	2,3,7,8-tetrachlorodibenzo-	··· N·A	_ NA -	, NA -	- NA	. NA -	NA	NA .	, NA
	p-dioxin (TCDD)								•

			•	
. •		WAPC Control	Forging Press Hydraulic	Total
,	Pollutant	Blowdown	Fluid Leakage	Subcategory
1.	acenaphthene	NA-	-ND	SU
2.	acrolein	NA .	ND	ND
З.	acrylonitrile	NA .	. ND	ND
4.	- benzene	· NA	ND	NT*
5.	benzidine	NA	· ND	SU
6.	carbon tetrachloride	· NA	ND	ND
7.	chlorobenzene	NA	ND .	ND .
8.	1,2,4-trichlorobenzene	NA	ND	ND
- 9.	hexachlorobenzene	NA	ND -	- ND
10.	1,2-dichloroethane	NA	ND	ND
11:	1,1,1-trichloroethane	NA	RG	RG
12.	hexachloroethane	NA	. ND	NT .
13.	1,1-dichloroethane	NA	RG	SU
14.	1,1,2-trichloroethane	NA	ND	ND
15.	1,1,2,2-tetrachloroethane	NA	ND	ND
16.	chloroethane	NA	ND	ND
17.	bis(chloromethyl) ether	NA	ND	ND
18.	bis(2-chloroethyl) ether	NA	ND	. ND
19.	2-chloroethyl vinyl ether	NA	ND	ND
20.	2-chloronaphthalene	. NA	ND	ND ,
21.	2.4.6-trichlorophenol	NA .	ND	ND
22.	parachlorometa cresol	NA .	ND	SU
23.	chloroform	· NA	ND	NT*
24.	2-chlorophenol	NA	ND	· ND
25.	1,2-dichlorobenzene	NA NA	ND	ND
26.	1,3-dichlorobenzene	NA NA	ND .	ND ND
27.	1,4-dichlorobenzene	NA NA	ND	ND
28.	3,3'-dichlorobehzidine	NA .	ND	SU
29.	1.1-dichloroethylene	NA NA	ND	NT*
30.	1,2-trans-dichloroethylene	NA NA	ND	ND
31.	2.4-dichlorophenol		ND	· * / · ND · · ·
32.	1,2-dichloropropane	NA NA	ND	ND
33.		NA.	ND	ND
	1,2-dichloropropylene			SU
34.	2,4-dimethylphenol	NA NA	ND	
35.	2,4-dinitrotoluene	NA	ND	ND
36.	2,6-dinitrotoluene	, NA	ND ND	SU
37.	1,2-diphenylhydrazine	NA	· ND	NT
38.	ethylbenzene	NA	ND	ND
39.	fluoranthene	NA	ND	. SU
40.	4-chlorophenyl phenyl ether	NA	ND	ND
41.	4-bromophenyl phenyl ether	NA NA	ND	. ND
42.	bis(2-chloroisopropyl) ether	NA	ND	ND
43.	bis(2-chloroethoxy) methane	, NA	ND	· NT

Table VI-5 (Continued)

		WAPC Control	Forging Press Hydraulic	Total
	Pollutant	Blowdown	Fluid Leakage	Subcategory
44.	methylene chloride	NA	NT	รบ
45.	methyl chloride	NA	ND	ND
46.	methyl bromide	NA	ND	ND
47.	bromoform	NA	ND	ND
48.	dichlorobromomethane	NA	ND *	ND
49.	trichlorofluoromethane	NA	ND	ND
50.	dichlorodifluoromethane	NA	ND	ND
51.	chlorodibromomethane	NA	ND	ND
52.	hexachlorobutadiene	NA	ND	ND
53.	hexachlorocyclopentadiene	NA	ND	ND
54.	isophorone	NA	ND	ND
55.	naphthalene	NA	ND	SU
56.	nitrobenzene	NA	ND	ND
57.	2-nitrophenol	NA	ND	SU
58.	4-nitrophenol	NA	ND	SU
59.	2,4-dinitrophenol	NA	· ND	ND
60.	4,6-dinitro-o-cresol	NA	ND	SU
61.	N-nitrosodimethylamine	NA	ND	NT
62.	N-nitrosodiphenylamine	NA	ND	SU
63.	N-nitrosodi-n-propylamine	NA	ND	SU
64.	pentachlorophenol	NA	ND "	SU
65.	pheno1	NA	ND	SU
66.	bis(2-ethylhexyl) phthalate	NA	RG	SU
67.	butyl benzyl phthalate	NA	ND	NT
68.	di-n-butyl phthalate	NA	ND	SU
69.	di-n-octyl phthalate	, NA	ND	NT
70.	diethyl phthalate	, NA	ND	NT
71.	dimethyl phthalate	NA	ND ·	NT
72.	benzo(a)anthracene	NA	ND	NQ
73.	benzo(a)pyrene	NA	ND	SU
74.	3,4-benzofluoranthene	NA	ND	ND
75.	benzo(k)fluoranthene	NA	ND	NQ
76.	chrysene	NA	ND	. NQ
77.	acenaphthylene	NA	ND.	NT
78.	anthracene	NA	ND	NT
79.	benzo(ghi)perylene	NA	ND	ND
80.	fluorene	NA	ND	SU
81.	phenanthrene	NA .	RG	SU
82.	dibenzo(a,h)anthracene	NA	ND	ND
83.	indeno(1,2,3-c,d)pyrene	NA	ND	NT
84.	pyrene	NA .	ND	SU
85.	tetrachloroethylene	NA.	N,D	ND
86.	toluene	NA	ИD	NT
	· ·			

Table VI-5 (Continued)

	Pollutant		WAPC Control Blowdown	Forging Press Hydraulic Fluid Leakage	Total Subcategory
87.	trichloroethylene		NA .	ND	· ND
88.	vinyl chloride		NA	ND .	ND
89.	aldrin		NA	NA.	NA
90.	dieldrin		NA NA	NA NA	NA NA
91.	chlordane		NA NA	NA NA	NA -
92.	4,4'-DDT		NA -	NA NA	NA NA
93.	4,4'-DDE		NA NA	, NA	NA NA
	4,4'-DDD		NA NA	NA NA	NA NA
94.	•		NA.	NA.	- NA
95	alpha-endosulfan		NA	NA	NA NA
96.	beta-endosulfan		NA NA	NA NA	NA ·
97.	endosulfan sulfate				
98.	endrin		NA	NA NA	NA NA
99.	endrin aldehyde		NA	NA . "	NA
100.	heptachlor	1.0	NA	NA	NA
101.	heptachlor epoxide		NA	NA	NA
102.	alpha-BHC		NA	ŅA	NA
103.	beta-BHC		NA	NA	NA .
104.	gamma-BHC		NA	· NA ,	. NA
105.	delta-BHC	• .	NA	NA	NA
106.	PCB-1242		NA	NA	NA
107.	PCB-1254		NA	- NA	NA
108.	PCB-1221		NA	NA	NA
109.	PCB-1232		` NA	NA -	NA '
110.	PCB-1248		NA	· NA	NA
111.	PCB-1260		NA	. NA	NA ·
112.	PCB-1016		· NA	NA	· NA
113.	toxaphene	*	" NA	NA	· NA
114.	antimony	•	NT	ND	SU
115.	arsenic		· NT	ND	SU ·
116.	asbestos	•	NA	NA	NA
117.			ND	ND	NT
118.	cadmium		NT	NT	RG
119.	chromium		RG	RG	RG
120.	copper		RG	RG	RG
121.	cyanide .		ND ·	, NA	SU
122.	lead		ND	RG	RG
123.	mercury .		ND	ND ·	NT*
123.			RG	RG	r RG
125.	nickel selenium		ND	ND	SU
	silver	*	ND	ND ND	SU
126.					_
127.	thallium		ND NT	ND	NT*
128.	zinc	1.56	NT	RG	RG
129.	2,3,7,8-tetrachioroc	npenzo-	NA .	NA	NA
	p-dioxin (TCDD)				

PRIORITY POLLUTANT DISPOSITION NICKEL-COBALT FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

Table VI-6

						•	
-						Semi-Continuous	
	•	Rolling	Drawing		Shot	and Continuous	Surface
	•	Spent	Spent		Casting	Casting	Trt.
	Pollutant	Emulsions	Emulsions		CCM	CCW .	Rinsewater
1.	: acenaphthene	ND	ND		ND	· NA	NA
2.	acrolein	ND	ND		ND	NA .	NA .
3.	acrylonitrile	ND	ND		ND	·NA	NA NA
4.	benzene	RG	· ND		ND	NA NA	. NA
5.	benzidine	ND ND	. ND		ND	NA NA	NA NA
6.	carbon tetrachloride	ND	ND	-	ND	NA NA	NA.
7.	chlorobenzene	ND	ND -		ND	NA	NA NA
8.	1,2,4-trichlorobenzene	ND .	. ND		ND	NA NA	· NA
9.	hexachlorobenzene	ND	ND .		ND	NA NA	NA NA
то.	1,2-dichToroethane	ND	ND ND		ND -	NA	NA NA
11.	1,1,1-trichloroethane	ND	RG		RG	NA NA	NA NA
12.	hexachloroethane	ND	ND		ND .	NA NA	NA NA
13.	1,1-dichloroethane	ND	ND.		ND -	NA NA	NA NA
	•		ND				
14.	1,1,2-trichloroethane	ND			ND .	NA NA	NA .
15.	1,1,2,2-tetrachloroethane	ND	ND		ND '	NA NA	. NA
16.	chloroethane	ND .	ND		ND		NA
17.	bis(chloromethyl) ether	ND	ND		ND	NA	NA NA
18.	bis(2-chloroethyl) ether	ND	ND		ND	NA	NA .
19.	2-chloroethyl vinyl ether	ND	ND -		ND	NA	NA
20.	2-chloronaphthalene	, ND ,	ND		ND	NA	NA NA
21.	2,4,6-trichlorophenol	ND ·	ND		ND	NA	· NA
22.	parachlorometa cresol	ND	ND		ND´	NA	NA
23.	chloroform	ND	ND		ND	NA	NA
24.	2-chlorophenol	ND	ND		ND "	NA	NA
25.	1,2-dichlorobenzene	ND	ND		ND	NA	NA
26.	1,3-dichlorobenzene	ND-	ND		ND	NA	NA
27.	1,4-dichlorobenzene	ND	ND		ND	NA.	NA
28.	3,3′-dichlorobenzidine	ND	· ND		ND	NA	NA
29.	1,1-dichloroethylene	ND	ND		ND	NA .	NA]
30.	1,2-trans-dichloroethylene	ND	ND		·ND	.NA.	NA.
31.	2,4-dichlorophenol	ND	ND		ND	` NA	NA
3.2	1,2-dichloropropane	"ND	ND			NA	NA.
33.	1,2-dichloropropylene	ND	ND		ND	, NA	NA
34.	2,4-dimethylphenol	ND .	ND		ИD	NA	NA
35.	2,4-dinitrotoluene	ND .	ND		ND	NA	. NA
36.	2,6-dinitrotoluene	ND	ND		ND	NA	NA
37.	1,2-diphenylhydrazine	ND	ND		ND	NA NA	NA NA
38.	ethylbenzene	ND	ND		ND	NA	` NA
39.	fluoranthene	ND	ND		ND	NA	' NA
40.	4-chlorophenyl phenyl ether	ND ·	· ND		ND	NA	NA
41.	4-bromophenyl phenyl ether	ND	ND		ND	NA -	` NA
42.	bis(2-chloroisopropyl) ether	, ND	ND		ND	NA	NA
43.	bis(2-chloroethoxy) methane	ND	ND		ИD	NA	. NA

	Pollutant	Rolling Spent Emulsions	Drawing Spent Emulsions	Shot Casting CCW	Semi-Continuous and Continuous Casting CCW	Surface Trt. Rinsewater
44.	methylene chloride	RG	RG	NT	NA	NA
45.	methyl chloride	ND	ND	ND	NA NA	NA NA
46.	methyl bromide	ND	ND	ND	NA NA	NA NA
47.	bromoform	ND	ND	ND	NA NA	NA NA
48.	dichlorobromomethane	ND	ND	ND	NA NA	NA NA
49.	trichlorofluoromethane	ND	ND	ND	NA NA	NA.
50.	dichlorodifluoromethane	ND	ND	ND	NA NA	NA NA
51.	chlorodibromomethane	ND	ND	ND	NA.	NA NA
52.	hexachlorobutadiene	ND	ND	ND	NA NA	NA NA
53.	hexachlorocyclopentadiene	ND	ND	- ND	NA NA	NA NA
54.	isophorone	ND	ND	ND ND	NA NA	NA NA
55.	naphthalene	ND	ND	· ND	NA NA	NA ·
56.		ND	ND	ND ND	NA NA	NA NA
50. 57.	nitrobenzene	ND	ND	ND	NA NA	NA NA
57. 58.	2-nitrophenol	ND	ND ND	ND	NA NA	NA NA
59.	4-nitrophenol	ND	ND	. , ND	NA NA	NA NA
60.	2,4-dinitrophenol	ND	ND ND	ND ND	NA NA	
	4,6-dinitro-o-cresol		ND ND	ND ND	NA NA	NA NA
61.	N-nitrosodimethylamine	ND	ND ND	ND ND	NA NA	NA NA
62.	N-nitrosodiphenylamine	ND				NA NA
63.	N-nitrosodi-n-propylamine	ND	ND	ND	NA	NA NA
64.	pentachlorophenol	ND	ND	ND	NA	NA NA
65.	phenol	ND ND	ND	ND	NA NA	NA
66.	bis(2-ethylhexyl) phthalate		ND	ИD	NA NA	NA
67.	butyl benzyl phthalate	, ND	ND	ND	NA	NA
68.	di-n-butyl phthalate	ND	ND	ND	NA NA	NA NA
69.	di-n-octyl phthalate	ND	ND	ND	NA	NA
70.	diethyl phthalate	ND	ND	ND '	NA	NA
71.	dimethyl phthalate	ND	ND	, ND	NA	NA NA
72.	benzo(a)anthracene	ND .	ND	ND	NA -	NA
73.	benzo(a)pyrene	ND .	· · · ND	• ND	NA	NA -
74.	3,4-benzofluoranthene	ND	ND	- ND	, NA	NA
75.	benzo(k)fluoranthene	ND	ND	ND	NA	NA
76.	chrysene	ND	ND	ND	NA	NA
77.	acenaphthylene	ND	ND	ND	NA	NA
78.	anthracene	ΝD	ND	ND	NA	NA
79.	benzo(ghi)perylene	ND	ND	ND	NA	NA
80,.	fluorene	ND	ND	ND	NA	NA
81.	phenanthrene `	ND	ND	ND	NA	NA ,
82.	dibenzo(a,h)anthracene	· ND · ·	ND	· ND · -		NA.
83.	indeno(1,2,3-c,d)pyrene	ND	ND	ND	NA	NA
84.	pyrene	· ND	ND	ND	NA	` NA
85.	tetrachloroethylene	ND	ND	, ND	NA NA	NA
86.	toluene	ND	ND	NT	NA	NA
						4

Table VI-6 (Continued)

						•
				C 1 1	Semi-Continuous	
		Rolling	Drawing	Shot	and Continuous	Surface
	Dellindent	Spent	Spent	Casting	Casting	Trt.
•	Pollutant	Emulsions	Emulsions	CCM	CCW	Rinsewater
87.	trichloroethylene	RG	ND	. NT	NA	NA
88.	vinyl chloride	ND	ND	ND	. NA	NA
89.	aldrin	· NA	NA	NA	. NA	NA
90,	dieldrin	NA	NA	, NA	NA	NA
91.	chlordane	NA	. NA	NA .	NA .	NA
92.	4,4'-DDT	., NA	NA	NA	NA	NA
93.	4,4'-DDE	" NA	NA	NA	NA	i. NA
94.	4,4'-DDD	NA	NA	NA	NA	NA
95.	alpha-endosulfan	NA _	NA	NA	NA .	NA
96.	beta-endosulfan	NA	NA	NA	NA .	NA .
	endosulfan sulfate	-2 NA 3	NA -	NA		NA
98.	endrin `	NA	NA .	NA	NA NA	NA
99.	endrin aldehyde	NA	NA	. NA	NA	NA
100.	heptachlor	NA	NA	NA,	NA .	NA ·
101.	heptachlor epoxide	NA -	· NA	· NA	NA	NA
102.	alpha-BHC	NA	NA	NA	NA	NA
103.	beta-BHC	NA	NA.	NA .	NA	NA
104.	gamma-BHC	. NA	NA .	NA	NA	NA
105.	delta-BHC .	NA "	NA	NA ´	NA	NA
106.	PCB-1242	NA	NA	NA	NA	NA
107.	PCB-1254	NA	NA	· NA	NA	NA
.108.	PCB~1221	NA	NA	, NA	NA ·	NA
109.	PCB-1232	NA	NA .	NA	NA	NA .
110.	PCB-1248	NA .	NA .	· NA	NA	NA
111.	PCB-1260	NA	NA	NA .	NA	NA
112.	PCB-1016	· NA	NA	· NA	. NA	NA NA
	toxaphene	NA	NA	NA	· NA	NA
114.	antimony	NT	ND	NT	ИD	NT
115.	arsenic	NT	ND ·	ND	ND	NT
116.	asbestos	NA	NA -	. NA	NA NA	NA
117.	beryllium	ND	ND ·	ND	ND	, N D
118.	cadmium '	RG	ND	RG	RG	RG
119	the control of the co	RG	· · · ND · ·	~ ND	- NT	- · · · · · · · · · · · · · · · · · · ·
120.	copper	RG	RG	RG	, RG	RG
121.	cyanide	ND	ND ,	ND -	RG .	ND
122.	lead	RG	RG ·	NT	RG:	RG
123.	mercury	NT	ND	ND	NT	ND
124.	nickel	RG	RG	NT	NT	RG
125.	selenium	ND	ND	ND	- ND	ND
126.	silver	RG	RG	NT	NT	RG
127.	thallium	ND	ND.	ND	. ND	· NT
128.	zinc	RG	RG	RG	NT ,	RG.
129.	2,3,7,8-tetrachTorodibenzo-	NA	NA	NA	NA	~ NA
	p-dioxin (TCDD)	r				•

	Pollutant	Alkaline Cleaning Prebonding Wastewater	Tumbling or Burnishing Wastewater	Sawing or Grinding Spent Emulsions	Pressure Bonding CCW	Total Subcategory
1.	acenaphthene	ND	ND	ND	NA	ND
2.	acrolein	ND	ND	ND	NA	ND
3.	acrylonitrile	ND	ND	ND	NA	ND
4.	benzene	ND	ND	ND	NA	SU
5.	benzidine	ND	ND	ND	NA	ND
6.	carbon tetrachloride	ND	ND	ND	NA	ND
7.	chlorobenzene	ND	ND	ND	NA	ND
8.	1,2,4-trichlorobenzene	ND	ND	ND	. NA	ND -
9.	hexachlorobenzene	ND	ND	ND	NA	ND
10.	1,2-dichloroethane	ND	ND	ND	NA	ND
11.	1,1,1-trichloroethane	RG	RG.	ND	NA	SU
12.	hexachloroethane	ND	ND	ND .	· NA	ND
13.	1,1-dichloroethane	ND	ND	ND	NA	ND
14.	1,1,2-trichloroethane	ND	ND	ND	NA	ND
15.	1,1,2,2-tetrachloroethane	ND	ND	ND	NA	. ND .
16.	chloroethane	ND	NT -	ND	NA	NT
17.	bis(chloromethyl) ether	ND	ND	ND	NA	ND.
18.	bis(2-chloroethyl) ether	ND	ND	,ND	NA	ND ,
19.	2-chloroethyl vinyl ether	ND	ND	ND	NA	ND
20.	2-chloronaphthalene	ND	ND	ND	NA	ND
21.	2,4,6-trichlorophenol	ND	ND	ND	NA	ND →
22.	parachlorometa cresol	ND	ND	- ND	NA	ND
23.	chloroform	ND	ND	ND	NA ·	ND
24.	2-chlorophenol	. ND	ND	ND	NA	ND
25.	1,2-dichlorobenzene	ND	ND ·	ND	NA	ND
26.	1,3-dichlorobenzene	ND	ND	ND	NA	ND
27.	1,4-dichlorobenzene	ND	ND .	ND	NA	ND
28.	3,3'-dichlorobenzidine	ND	ND	. ND	NA	ND
29.	1,1-dichloroethylene	ND	ND	ND	NA	ND "
30.	1,2-trans-dichloroethylene	ND	ND	ND	NA	ND
31.	2.4-dichlorophenol	ND	ND	ND	NA	ND .
32.	1,2-dichloropropane	ND	ND	ND	NA	ND
33.	1,2-dichloropropylene	ND	· ND	ND	NA	ND
34.	2,4-dimethylphenol	ND	ND	ND	NA	ND
35.	2,4-dinitrotoluene	ND	ND ·	ND	NA [,]	ND
36.	2,6-dinitrotoluene	ND	ND	ND	NA	ND
37.	1,2-diphenylhydrazine	ND	ND	ND	NA	ND
38.	ethylbenzene	NĎ	ND	ND	NA	- ND
39.	fluoranthene	ND	ND	ND	NA	ND
40.	4-chlorophenyl phenyl ether	ND	ND	ND	NA	ND
41.	4-bromophenyl phenyl ether	ND	ND	ND ·	N-A	· ND
42.	bis(2-chloroisopropyl) ether	ND	ND	ND	NA	ND
43.	bis(2-chloroethoxy) methane	ND ·	ND	ND -	NA.	ND ·

Table VI-6 (Continued)

	Pollutant	Alkaline Cleaning Prebonding Wastewater	Tumbling or Burnishing Wastewater	Sawing or Grinding Spent Emulsions	Pressure Bonding CCW	Total Subcategory
44.	methylene chloride	SU	NT ·	RG	NA	SU
45.	methyl chloride	SU	. ND	ND	NA	SU
46.	methyl bromide	ND .	ND	ND	NA	ND
47.	bromoform	ND	ND	ND	NA	·ND
48.	dichlorobromomethane	ND	ND	ND	NA	ND
49.	trichlorofluoromethane	ND	NT	ND	NA NA	NT ·
50.	dichlorodifluoromethane	ND	ND	ND	NA	ND
51.	chlorodibromomethane	ND	ND	· ND	NA	ND
52.	hexachlorobutadiene .	ND	ND ·	ND	NA	ND
53.	hexachlorocyclopentadiene	ND	ND	ND	NA	ND
54.	isophorone	ND	ND	ND	NA	ND
55.	naphthalene	ND	, ND	, ND	· NA	. ND
56.	nitrobenzene	ND	ND	ND	NA	ND
57.	2-nitrophenol	ND	ND	ND	NA .	·· ND
58.	4-nitrophenol	ND	-ND	ND	NA	ND
59.	2,4-dinitrophenol	ND	ND	ND	NA	ND
60.	4,6-dinitro-o-cresol	ND	ND	- ND	NA NA	ND
61.	N-nitrosodimethylamine	, ND	ND	ND	ŃΆ	ND
62:	N-nitrosodiphenylamine	ND	ND	ND	NA	. ND
63.	N-nitrosodi-n-propylamine	ND	ND -	ND	' NA	ND
64.	pentachlorophenol	ND	ND	ND	NA	ND
65.	phenol	NT	ND .	NT	: NA	NT
66.	bis(2-ethylhexyl) phthalate	NT	ND	ND	NA	ŇΤ
67.	butyl benzyl phthalate	ND -	ND	ND	NA	ND
68.	di-n-butyl phthalate	ND	ND	ND	NA	ND
69.	di-n-octyl phthalate	ND .	· ND	ND	NA	ND
70		ND	ND	ND	ŃΑ	N,D
71.	dimethyl phthalate	ND	ND	ND	NA	ND
72.	benzo(a)anthracene	["] ND	. ND	HD:	NA	ND
73.	benzo(a)pyrene	ND	ND	. ND	NA	ND
74.	3,4-benzofluoranthene	ND.	ND	ND ·	ΝA	ND
75.	benzo(k)fluoranthene	ND	ND	ΝĐ	NA	ND
76.	chrysene	· · NĐ · · ·	ND	· · · ND · · ·	NA	ND
77.	acenaphthylene	ND	ND ·	ND	NA	ND
78.	anthracene	ND	. ND	ND.	· NA	ND
79.	benzo(ghi)perylene	ND	ND	ND	NA	ΝD
80.	fluorene	ND	ND	ND	NA,	ND
81.	phenanthrene	ND	"ND	ND	NA	ND
82.	dibenzo(a,h)anthracene	ND	ND	ND .	. NA	ND
83.	indeno(1,2,3-c,d)pyrene	ND .	ND	ND	NA	ND
84.	pyrene	ND	ND	, ND	- NA	ND
85.	tetrachloroethylene	ND	ND	ND	NA	ND
86.	toluene	SU	SU	ND	, NA	S U

	Pollutant	Alkaline Cleaning Prebonding Wastewater	Tumbling or Burnishing Wastewater	Sawing or Grinding Spent Emulsions	Pressure Bonding CCW	Total Subcategory
87.	trichloroethylene	NT	ND	ND	NA	SU
88.	vinyl chloride	ND	ND	ND	NA	ND
89.	aldrin	NA	NA	NA	NA	NA '
90.	dieldrin	NA	NA	NA	NA	NA
91.	chlordane	NA	NA	NA	NA	NA
92.	4,4'-DDT	NA	NA	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA	NA	NA
94.	4,4'-DDD	NA	-NA	NA	NA	NA
95.	alpha-endosulfan	NA	NA	NA	NA	NA
96.	beta-endosulfan	NA	NA ·	NA	NA	NA NA
97.	endosulfan sulfate	NA	NA	NA	NA	NA
98.	endrin	NA	NA	NA .	NA	NA.
99.	endrin aldehyde	NA	NA	NA	NA	NA.
100.	heptachlor	NA	NA	NA	NA	NA.
101.	heptachlor epoxide	NA	NA	NA	NA	NA NA
102.	alpha-BHC	NA	NA	NA	NA	, NA
103.	beta-BHC	NA	NA	NA	NA	NA
104.	gamma-BHC	NA	NA	NA	NA	NA NA
105.	delta-BHC	NA	NA	· NA	NA	NA NA
106.	PCB-1242	NA	NA	. NA	NA	NA NA
107.	PCB~1254	NA	NA	. NA	NA	NA NA
108.	PCB~1221	NA	NA NA	NA	NA	NA NA
109.	PCB-1232	NA	NA	· NA	NA	NA NA
110.	PCB-1248	NA	NA	NA	NA	NA
111.	PCB-1260	NA	ΝA	NA	NA	NA .
112.	PCB-1016	NA	NA	NA	NA	NA
113.	toxaphene	· NA	NA	. NA	NA	NA ·
114.	antimony	ND	NT	ND	ND	NT
115.	arsenic	ND	ND	ND	ND	NT
116.	asbestos	NA .	NA	NA	NA	NA
117.	beryllium	ND	ND	ND	ND	ND
118.	cadmium	RG	RG	ND	RG	-RG
119.	chromium	RG	RG	ND	NT	SU
120.	copper	RG	RG .	RG	RG	RG
121.	cyanide	RG	TS	ND	ND	RG
122.	lead	RG	RG.	RG	RG	RG
123.	mercury	ND	ΝĬ	ND	· ND	NT
124.	nickel	RG.	RG.	NT .	RG-	
125.	selenium	ND	ND	ND	ND	ND
126.	silver /	SU	RG	ND	NT	RG
127.	thallium	ND	ND	ND	ND	NT
128.	zinc	RG	RG	RG	RG	RG
129.	2,3,7,8~tetrachlorodibenzo-	NA NA	NA NA	NA NA	NA	.NA
	prdioxin (TCDD)		1373	NA	INM.	ixv

PRIORITY POLLUTANT DISPOSITION PRECIOUS METALS FORMING SUBCATEGORY

Key: NA - Not Analyzed

ND - Never Detected

NO - Never Detected
NQ - Never Found Above Their Analytical Quantification
NT - Detected Below Levels Achievable by Treatment
SU - Detected in a Small Number of Sources
RG - Considered for Regulation

Table VI-7

PRIORITY POLLUTANT DISPOSITION
REFRACTORY METALS FORMING SUBCATEGORY

	Pollutant	Extrusion Press Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	- Alkaline - Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or Grinding CCW	Dye Penetrant Testing Wastewater
1.	acenaphthene	ND	NA	NA	NA	- ND	ND	ND	ND
2.	acrolein	ΝD	-NA	NA .	NA	ND	ND	ND	ND
3.	acrylonitrile	ND .	NA	NA	NA	ND	ND	ND	ND
4.	benzene	ND .	NA	NA	NA	ND '	ND ,	ND	ND
5.	benzidine	ND	NA	NA :	NA	ND	ND	ND	ND
6.	carbon tetrachloride	ND	NA	NA	NA	ND	ND	ND	NĐ
7.	chlorobenzene	ND	NA	NA .	NA	ND	ND	ND	ND
8.	1,2,4-trichlorobenzene	ND	NA	NA	NA	ND	ND	ND	ND
9.	hexachlorobenzene	ND	NA	NA	NA	ЙD	ND	ND	, DN
10.	1,2-dichloroethane	ND	NA	NA	NA	ЙD	ND	ND	ND
11.	1,1,1-trichloroethane	RG.	NA	NA	NA	NQ -	RG	RG	RG
12.	hexachloroethane	, ND	NA	'NA	NA	ND	ND	ND	ND
13.	1,1-dichloroethane	► ND	NA	NA -	NA	. ND	ND	ND	NQ
14.	1,1,2-trichloroethane	ND	NA	NA	NA	ND -	ND	ND	ND
15.	1,1,2,2-tetrachloroethane	ND	NA	NA	NA	ND	ND .	NQ	ND
16.	chloroethane	ND	NA	NA	NA	ND	ND	ND	ND
17.	bis(chloromethyl) ether	ND	NA	· NA	. NA	ND .	ND	ND	ND
18.	bis(2-chloroethyl) ether	ND	- NA	NA	NA .	ND	ND	ND:	ND
19.	2-chloroethyl vinyl ether	ND	ÑA	NA	NA	ND	ND	NĎ	ND
20	2-chloronaphthalene	ND	NA	NA	NA	ND ·	ND	ND	ND
21.	2.4.6-trichlorophenol	, ND	· NA	NA	NA	ND	ND .	. ND	ND
22.	parachlorometa cresol '	ND	NA	NA	NA	ND	ND	ND	ND
23.	chloroform	ND	NA	NA	NA.	NQ	NT	ND	NQ
24.	2-chlorophenol	NQ	NA	· NA	NA	ND	· ND	ND	ND
25.	1.2-dichlorobenzene	ND	NA	NA ·	NA	ND	ND	ND	ND
26.	1.3-dichlorobenzene	ND	NA	NA	NA .	ND	ND	ND	, ND
27.	1,4-dichlorobenzene	NĎ	· NA	NA	NA	ND	ND	ND	ND
28.	3,3'-dichlorobenzidine	.ND	NA.	NA ·	NA	ND	ND	, ND	ND
29.	1.1-dichloroethylene	ND	NA NA	NA	NA	ND	ND	NQ	NQ
30.	1,2-trans-dichloroethylene	ND	NA NA	NA"	NA NA	ND	ND .	ND	ND
31.	2,4-dichlorophenol	ND	NA NA	NA NA	NA	ND	ND	ND	ND
32.	1,2-dichloropropane	ND	NA NA	NA NA	NA NA	ND	ND.	ND	ND
33.	1,2-dichloropropylene	ND	NA NA	NA NA	NA .	ND	ND	ND	ND
34.	2,4-dimethylphenol	ND ND	NA NA	NA NA	NA .	ND .	ND	NT	ND
		ND ND					ND		
35.	2,4-dinitrotoluene	ND ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND	RG ND:
36.	2,6-dinitrotoluene	ND ND	`NA NA	NA NA	NA NA	ND	ND	ND ND	ND.
37.	1,2-diphenylhydrazine								ND
38.	ethylbenzene	· ND	NA	NA '	NA	ND	ND	ИD	ND
39.	fluoranthene	ND	NA	NA	NA	ND	ND	NQ	ŔĠ
40.	4-chlorophenyl phenyl ether	ND	ŅĀ	NA	NA	ND	ND ·	ND	ND
41.	4-bromophenyl phenyl ether	ND	NA	NA	NA	ND	ND	· ND	ND
42.	bis(2-chloroisopropy1) ether	ND	NA	NA	NA	ND	ND	ND	ND
43.	bis(2-chloroethoxy) methane	ND	NA	NA	NA	ND	ND	ND	ND

	Pollutant	Extrusion Press Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	Alkaline Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or Grinding CCW	Dye Penetrant Testing Wastewater
44.	methylene chloride	RG	NA	NA	NA	NQ	NT	NT	NQ
45.	methyl chloride	ND	· NA	NA	NA.	ND	ND	ND	ND
46.	methyl bromide	ND	NA.	NA	NA.	ND .	ND	ND	ND
47.	bromoform	ND	NA	NA	NA.	ND	ND	ND	ND
48.	dichlorobromomethane	ND	NA	NA	NA	ND	ND	ND	ND
49.	trichlorofluoromethane	ND	NA	NA	NA.	ND	. ND	ND.	ND
50.	dichlorodifluoromethane	ND	NA	NA	NA	ND	ND	ND	ND
51.	chlorodibromomethane	ND	NA	NA	NA	ND	ND	ND	ND
52.	hexachlorobutadiene	ND	NA	NA	NA	ND	ND	ND	· ND
53.	hexachlorocyclopentadiene	ND	NA	NA	NA	ND	ND	ND	ND
54.	isophorone	ND	NA	NA	NA	ND	. ND	-ND	ND
55.	naphthalene	ND -	NA	NA NA	NA	ND	NT	NT	RG
56.	nitrobenzene	ND	NA	NA	NA	ND	ND	ND	NT
57.	2-nitrophenol	ND	ŃΑ	NA ·	NA	ND	ND	RG	ND
58.	4-nitrophenol	ND	NA	NA	NA	ND	ND	ND	ND
59.	2,4-dinitrophenol	ND	NA	NA	NA	ND	ND	ND	ND
60.	4,6-dinitro-o-cresol	ND	NA	NA	NA	ND	ND	ND	RG
61.	N-nitrosodimethylamine	ND	NA	NÀ	NA	ND	ND	ND	ND
62.	N-nitrosodiphenylamine	ND	NA	NA	NA	ND	ND	ND	RG
63.	N-nitrosodi-n-propylamine	ND .	NA	NA ·	NA	ND	ND	RG	ND
64.	pentachlorophenol	ND	NA	NA:	NA	ND	ND	ND	ND
65.	phenol.	RG .	NA	NA	NA	ΝĎ	ND	RG	NT
66.	bis(2-ethylhexyl) phthalate	,RG	NA	NA	NA	ND	ŔĠ	NT	RG
67.	butyl benzyl phthalate	RG	. NA	NA	NA	ND	ND	ND	ND
68.	di-n-butyl phthalate	RG	NA	NA	NA	ND	ND	NQ ·	ND
69.	di-n-octyl phthalate	RG	NA .	NA	NA	ND	ND	NQ	NQ
70.	diethyl phthalate	· RG	NA	ΝA	NA	ND	ND	ND .	ND
71.	dimethyl phthalate	. ND	NA ,	NA	NA	· ND	ND	ND	ND
72.	benzo(a)anthracene	RG	NA	NA	NA	ND	ND	ND	ND
73.	benzo(a)pyrene	ND	NA ,	NA	NA	ND	ND	ND	ND
74.	3,4-benzofluoranthene	ND	NA	NA	NA	ND	ND	ND	ND
75.	benzo(k)fluoranthene	ND	NA	NA	NA	ND	ИD	ND -	ND
76.	chrysene	RG	NA	NA	NA	ND	ND	ND	ND
77.	acenaphthylene	ND	NA	NA	NA	ND · ·	ND	ND	RG .
78.	anthracene	ND	NA	NA	NA.	ND	ND	NQ	RG
79.	benzo(ghi)perylene	, ND	NA	NA	NA	ND	ND	ND	ND "
80.	fluorene	ND	NA	NA	NA	ND	ND	ND	RG
81.	phenanthrene	ND	NA -	NA	NA	ND	ND	ND	RG
82.	dibenzo(a,h)anthracene	ND	NA .	NA	NA	ND	ND	ND	ΝĐ
83.	indeno(1,2,3-c,d)pyrene	ND	NA	NA	NA	ND	ND	ND	ИD
84.	pyrene	ND	NA	NA	NA	ND	ND	NQ	ИĎ
85.	tetrachloroethylene	RG	NA	NA	NA	NT	ND	ND	NQ
86.	toluene	RG	NA	NA	NA	ND	ND	ND	ИD

	Pollutant	Extrusion Press Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	Alkaline Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or Grinding CCW	Dye Penetrant Testing Wastewater
87.	trichloroethylene	, ND	NA	NA	NA	ND	ND	ND	ND
88.	vinyl chloride	" ND	NA	NA	NA	ND	ND	ND	ND
89.	aldrin	NA	NA	NA	NA	ND	NA	ND	ND
90.	dieldrin	NA	NA	NA	NA	ND	NA	ND	ND
91.	chlordane	NA	NA	NA	NA	ND	NA	ND	ND
92.	4,4'-DDT	NA ·	NA	NA	NA	ND	NA	ND	ND
93.	4,4'-DDE	NA	NA	NA	NA	· ND	NA	ND	ND
94.	4.4'-DDD	NA	NA	NA	NA	ND	NA	ND	ND
95.	alpha-endosulfan	NA	NA	NA	NA	ND	NA	ND	NQ
96.	beta-endosulfan	NA	· NA	NA	NA	ND	NA	ND	ND
97.	endosulfan sulfate	NA	NA	NA	NA	ND	NA	ND	ND
98.	endrin	NA	NA	NA	NA	ND	NA	ND	ND
99.	endrin aldehyde	NA	NA	NA .	NA	ND	NA	ND	ND
100.	heptachlor	NA	, NA	NA	NA	ND	NA	ND	ND
101.	heptachlor epoxide	NA	NA	NA	NA	ND	NA	ND	ND
102.	alpha-BHC	NA	NA	NA	NA	ND	NA	ND	ND
103.	beta-BHC	NA	NA	NA	NA	ND	NA	ND	ND
104.	gamma-BHC	NA	NA	NA	NA	ND	NA	ND	NQ
105.	delta-BHC	NA	NA	NA	NA	ND	NA	ND	ND
106.	PCB-1242	NA	. NA	NA	NA	ND	NA	ND	ND
107.	PCB-1254	NA	· NA	NA.	. NA	ND	NA	ND	ND
108.	PCB-1221	· NA	NA	. NA	NA	ND	NA	ND	ND
109.	PCB-1232	NA ·	: NA	NA	NA	ND	NA	ND	ND
110.	PCB-1248	NA	· NA	NA	NA	ND	NA	ND	ND
111.	PCB-1260	NA	NA	NA	NA	ND .	NA	ND	ND
112.	PCB-1016	NA	· NA	NA	NA	ND	· NA	ND	ND
113.	toxaphene	NA	NA	NA	NA	ND	NA	ND	ND
114.	antimony	NT	· ND ·	NT	NT	NT	ND	NT ·	ND
115.	arsenic	ND	ND	NT ·	NT	ND	ND	NT	ND
116.	asbestos	NA	NA	NA	NA	NA	NA	NA	[*] NA
117.	beryllium	NT	ND	NT	NT	NT*	ND	ND	ND
118.	cadmium	RG	RG	NT	NT	ND	RG	NT	ND
119.	chromium	RG	RG	RG	RG	RG	RG	RG	RG
120.	copper	RG	RG	SU	RG	NT	RG	RG	NT
121.	cyanide	NA	ND	ND	NA	ND	ND	RG	ND
122.	lead	RG	ND	RG	RG	SU	SU	RG	NT
123.	mercury	ND	NT	NT	ND	ND	· ND	NT	ND
124.	nicke1 nicke1	RG	RG	RG	RG	SU	RG	RG	RG
125.	selenium	ND	ND	ND	NT	ND	ND	ND	ND
126.	silver	RG	RG .	NT*	ŅT	NT	RG	ND	ND
127.	thallium	ND	ND	ND	NT	ND	ND	NT	ND.
128.	zinc	RG	RG	NT	ND	NT	RG	RG	RG
129.	2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)	NA	NA	, NA	NA ,	NA .	NA .	NA	NA

	Pollutant	WAPC Blowdown	Total Subcategory
1.	acenaphthene	ND	ND
2.	acrolein	ND	ND
3.	acrylonitrile	ND	ND
4.	benzene	ND	ND
5.	benzidine	ND	ND
6.	carbon tetrachloride	ND	ND
7.	chlorobenzene	ND	ND .
8.	1,2,4-trichlorobenzene	ND .	ND .
9.	hexachlorobenzene	ND	ND
10.	1,2-dichloroethane	ND	ND
11.	1,1,1-trichloroethane	. NT	SU
12.	hexachloroethane	ND	'ND
13.	1,1-dichloroethane	ND	NQ
14.	1,1,2-trichloroethane	ND	ND
15.	1,1,2,2-tetrachloroethane	ND	NQ
16.	chloroethane	ND	ND
17.	bis(chloromethyl) ether	ND	ND
18.	bis(2-chloroethyl) ether	ŅD .	ND
19.	2-chloroethyl vinyl ether	ND	ND
20.	2-chloronaphthalene	ND	ND
21.	2,4,6-trichlorophenol	ND .	ND
22.	parachlorometa cresol	ND	ND
23.	chloroform	ND	NT
24.	2-chlorophenol	ND	NQ
25.	1,2-dichlorobenzene	ND	ND -
26.	1,3-dichlorobenzene	ND	ND
27.	1,4-dichlorobenzene	ND	ND
28.	3,3′-dichlorobenzidine	ND ·	ND .
29.	1,1-dichloroethylene	ND	NQ
30.	1,2-trans-dichloroethylene	ND	ИО
31.	2,4-dichlorophenol	ND	ND
32.	1,2-dichloropropane	ND	ND
33.	1,2-dichloropropylene	ND	ND
34.	2,4-dimethylphenol	ND	NT*
35.	2,4-dinitrotoluene	ND.	SU
	2,6-dinitrotoluene	ND-	
37.	1,2-diphenylhydrazine	ND	ND
38.	ethylbenzene	ND	ND
39.	fluoranthene	ND	SU
40.	4-chlorophenyl phenyl ether	ND	ND
41.	4-bromophenyl phenyl ether	ND	ND
42.	bis(2-chloroisopropy1) ether	ND	. ND
43.	bis(2-chloroethoxy) methane	ND	ND

	Pollutant	WAPC Blowdown	Total Subcategory
44.	methylene chloride	NT	SU
45.	methyl chloride	ND	ND
46.	methyl bromide	ND	ND
47.	bromoform	ND	ND
48.	dichlorobromomethane	ND	ND
49.	trichlorofluoromethane	ND	ND
50.	dichlorodifluoromethane	ND	ND
51.	chlorodibromomethane	ND	ND
52.	hexachlorobutadiene	ND	ND
53.	hexachlorocyclopentadiene	ND	ND
54.	isophorone	ND .	ND
55.	naphthalene	ND	SU
56.	nitrobenzene	ND	NT*
57.	2-nitrophenol	ND	SU
58.	4-nitrophenol	ND	ND
59.	2,4-dinitrophenol	ND	ND
60.	4,6-dinitro-o-cresol	· ND	\$ U
61.	N-nitrosodimethylamine	ND	ND
62.	N-nitrosodiphenylamine	ND	SU
63.	N-nitrosodi-n-propylamine	ND	SU
64.	pentachlorophenol	ND .	ND .
65.	pheno1	ND	SU
66.	bis(2-ethylhexyl) phthalate	ND	SU
67.	butyl benzyl phthalate	ND	SU
68.	di-n-butyl phthalate	ND	SU
69.	di-n-octyl phthalate	ND	SU
70.	diethyl phthalate	-ND	SU
71.	dimethyl phthalate	ND	ND
72.	benzo(a)anthracene	ND	SU
73.	benzo(a)pyrene	ND.	ND
74.	3,4-benzofluoranthene	ND ND	. ND
75.	benzo(k)fluoranthene		ND SU
76.	chrysene	ND ND	
77.	acenaphthylene	ND ND	SU SU
78. 79.	anthracene benzo(ghi)perylene	ND	ND
	fluorene	ND	SU
	phenanthrene	ND	. SU
81. 82.	dibenzo(a,h)anthracene	ND ND	ND
83.	indeno(1,2,3-c,d)pyrene	ND ND	ND
84.	· · · · · · · · · · · · · · · · · · ·	ND ND	NQ
85.	pyrene tetrachloroethylene	ND	SU
-		ND	SU
86.	toluene	MD	30

Table VI-7 (Continued)

	· ·	WAPC	Total
	Pollutant	Blowdown	Subcategory
87.	trichloroethylene	ND	ND
88.	vinyl chloride	ND	ND
89.	aldrin	NA	ND
90.	dieldrin	NA	ND
91.	chlordane	NΆ	ND
92.	4,4'-DDT	NA	ND
93.	4,4'-DDE	NA	ИD
94.	4,4'-DDD	NA	. ND
95.	alpha-endosulfan	NA	NQ
96.	beta-endosulfan	NA	ND
97.	endosulfan sulfate	NA	ND
98.	endrin	NA	ND.
99.	endrin aldehyde	NA	ND
100.	heptachlor	NA	ND
101.	heptachlor epoxide	NA	ND
102.	alpha-BHC	NA	ND
103.	beta-BHC	NA	ND
104.	gamma-BHC	NA	NQ
105.	delta-BHC	NA	ND
106.	PCB-1242	NA	ND
107.	PCB-1254	NA · NA	ND
108.	PCB-1221	NA NA	. ND ND
109.	PCB-1232	NA NA	ND ND
110.	PCB-1248	. NA	ND
111.	PCB-1260	NA	ND
112.	PCB-1016	NA NA	ND
113. 114.	toxaphene	NT	NT*
115.	antimony arsenic	NT .	NT*
116.	asbestos	NA	NA
117.	beryllium	ND	NT*
118.	cadmium	ND	SU
119.	-chromium	NT.	: RG
120.	copper	NT	RG
121.	cyanide	ND	SU
122.	lead	RG	RG
123.	mercury	ND	NT*
124.	nickel	NT .	RG
125.	selenium	NT	NT '
126.	silver	·NT	RG
127.	thallium	NT	NT
128.	zinc	NT	RG
129.	2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)	NA	NA

PRIORITY POLLUTANT DISPOSITION REFRACTORY METALS FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

- Key: NA Not Analyzed
 - ND Never Detected
 - NQ Never Found Above Their Analytical Quantification
 - NT Detected Below Levels Achievable by Treatment
 - SU Detected in a Small Number of Sources
 - RG Considered for Regulation

Table VI-8

PRIORITY POLLUTANT DISPOSITION
TITANIUM FORMING SUBCATEGORY

						*
			Surface			Sawing or
			Trt.	Surface		Grinding Spent
		Rolling	Spent	Trt.	Tumbling	Emulsions and
	Pollutant	CCW	Baths	Rinsewater	Wastewater	Syn. Coolants
	•					
1.	acenaphthene	NA	NA NA	NA	NA	. ND
2.	acrolein	NA	NA	NA	NA	. ND
3.	acrylonitrile	NA	NA	NA	NA	ND
4.	benzene	NA	NA	NA	NA	ND
5.	benzidine	NA	ŅΑ	NA	NA	ND
6.	carbon tetrachloride	NA	NΑ	NA	NA ·	NT ·
7.	chlorobenzene	NA ·	. NA	NA	NA	ND .
8.	1,2,4-trichlorobenzene	NA	NA	NA NA	NA	. ND
9.	hexachlorobenzene	NA	. NA	NA	NA	: ND
10.	1,2-dichloroethane	NA	NA	NA	NA -	ND
11.	1,1,1-trichloroethane	NA	NA .	NA	NA	ND
12.	hexachloroethane	NA	~ NA	NA .	NA .	ND
13.	1,1-dichloroethane	NA	NA	NA	, NA	ND .
14.	1,1,2-trichloroethane	NA	NA	NA	· NA	, ND
15.	1,1,2,2-tetrachloroethane	NA	NA	·NA	NA	. ND
16.	chloroethane	NA	NA	NA	NA -	ND
17.	bis(chloromethyl) ether	NA	NA	NA	NA	ND
18.	bis(2-chloroethyl) ether	NA	NA	NA	NA	NÐ
19.	2-chloroethyl vinyl ether .	NA	NA	NA	NA	ND
20.	2-chloronaphthalene	NA	NA	NA	NA	ND
21.	2,4,6-trichlorophenol	NA	NA	NA	NA	ND
22.	parachlorometa cresol	NA	NA	NA	NA	ND
23.	chloroform	NA	NA	NA	NA	ND
24.	2-chlorophenol	NA	NA	NA	NA	ND
25.	1,2-dichlorobenzene	NA	NA	NA	NA -	ND
26.	1,3-dichlorobenzene	NA	NA	· NA	NA	ND
27.	1,4-dichlorobenzene	NA	NA	. NA	NA	ND
28.	3.3'-dichloropenzidine	NA	NA	NA	NA	ND
29.	1,1-dichloroethylene	NA	NA	NA	NA	ND
30.	1,2-trans-dichloroethylene	NA	NA	NA	NA	ND
31.	2,4-dichlorophenol	NA	NA	NA	NA	ND
32.	1,2-dichloropropane	NA	NA	NA	NA	ND
33.	1,2-dichloropropylene	NA	NA	NA	NA	ND
34.	2,4-dimethylphenol	NA	NA_	NA	NA	ND
35.	2,4-dinitrotoluene	NA	NA	NA	NA	ND
36.	2.6-dinitrotoluene	, NA	NA	NA	NA	ND
37.	1,2-diphenylhydrazine	NA NA	NA	NA	. NA	ND
38.	ethylbenzene	NA	NA	NA NA	' NA	ND
39.	fluoranthene	NA	NA	NA NA	. NA	ND
40.	4-chlorophenyl phenyl ether	NA	NA .	NA NA	NA NA	ND
41.	4-bromophenyl phenyl ether	NA NA	NA .	NA NA	NA	ND
42.	bis(2-chloroisopropyl) ether	NA NA	NA NA	NA NA	NA NA	ND
43.	bis(2-chloroethoxy) methane	NA NA	NA	NA NA	. NA	ND
	2.5(= 5/1/5/ 50 -1/6/j) motifule	1173	1171		****	110

Table VI-8 (Continued)

			Surface			Sawing or
			Trt.	Surface	.	Grinding Spent
		Rolling	Spent	Trt.	Tumbling	Emulsions and
	Pollutant	CCW	Baths	Rinsewater	Wastewater	Syn. Coolants
44.	methylene chloride	NA	NA	NA	NA	NT
45.	methyl chloride	NA	NA	NA	NA	ND
46.	methyl bromide	NA	NA	NA	NA	ND
47.	bromoform	NA	NA	NA	NA	ND
48.	dichlorobromomethane	NA	NA	NA	NA	ND
49.	trichlorofluoromethane	NA	NA	NA	NA	ND
50.	dichlorodiflüoromethane	NA	NA	NA	NA	ND
51.	chlorodibromomethane	NA	NA	NA	NA	ND
52.	hexachlorobutadiene	NA	NA	NA	NA	ND
53.	hexachlorocyclopentadiene	, NA	NA	NA	NA	ND
54.	isophorone	NA	. NA	NA	NA	ND
55.	naphthalene	NA	NA	NA	NA	ND
56.	nitrobenzene	NA	NA	NA	NA	ND
57.	2-nitrophenol	NA	NA	NA	NA	ND
58.	4-nitrophenol	NA	NA	NA	NA	ND
59.	2,4-dinitrophenol	NA	NA	NA	NA	ND
60.	4,6-dinitro-o-cresol	NA	NA	NA	NA	ND
61.	N-nitrosodimethy lamine	NA	·NA	NA	NA	ND
62.	N-nitrosodiphenylamine	NA	NA -	NA	NA	ND
63.	N-nitrosodi-n-propylamine	NA	NA	NA	NA	ND
64.	pentachlorophenol	NA	NA.	NA	NA	ND
65.	phenol	NA	NA .	NA NA	NA NA	ND
66.	bis(2-ethylhexyl) phthalate	NA	NA	NA NA	NA .	ND
67.	butyl benzyl phthalate	NA.	NA	NA NA	NA	ND
68.	di-n-butyl phthalate	NA NA	NA	NA NA	NA NA	ND
69.	di-n-octyl phthalate	NA	NA .	NA NA	NA NA	ND
70.	diethyl phthalate	NA - ···	NA ···	NA .	NA NA	ND
71.	dimethyl phthalate	NA NA	NA NA	NA NA	NA.	ND
72.	benzo(a)anthracene	NA NA	NA NA	NA NA	NA NA	ND
73.	benzo(a)pyrene	NA NA	NA	NA NA	NA NA	ND
74.	3,4-benzofluoranthene	NA NA	NA	NA NA	NA NA	ND
75.	benzo(k)fluoranthene	NA NA	NA NA	NA NA	NA NA	ND
76.	chrysene	NA NA	NA NA	NA NA	NA NA	ND
77.	acenaphthylene	NA NA	NA NA	NA NA	NA NA	ND
78.	anthracene	NA NA	NA.	NA .	NA NA	ND
79.	benzo(ghi)perylene	NA NA	NA NA	NA .	NA NA	ND
80.	fluorene	NA NA	· NA	NA	NA NA	ND
81.	phenanthrene	NA		NA NA		
			NA		NA -	110
82.	dibenzo(a,h)anthracene	NA NA	NA	NA	NA ·	ND
83.	indeno(1,2,3-c,d)pyrene	NA NA	NA	ŅA	NA	ND
84.	pyrene	NA	NA.	NA	NA	ND
85.	tetrachloroethylene	NA	NA	NA	NA	ND
86.	toluene	NA	NA	NA	NA	ND

	Pollutant	Rolling. CCW	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Tumbling Wastewater	Sawing or Grinding Spent Emulsions a nd Syn. Coolants
				NA.	NA	ND.
87.	trichloroethylene	NA	· NA	NA NA	NA NA	ND
88.	vinyl chloride	NA	NA			NA .
89.	aldrin	NA	NA	NA	NA	
90.	dieldrin	NA	NA .	NA	NA ·	NA ,
91.	chlordane -	NA	NA	NA	NA ·	NA
92.	4,4'-DDT	NA	NA	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA	NA	NA
94.	4,4'-DDD	NA	NA	NA	NA	· NA
95.	alpha-endosulfan	NA	NĄ	NA	NA .	NA
96.	beta-endosulfan	NA	NA	NA	NA	NA
97.	endosulfan sulfate	NA	NA.	NA	NA	NA
98.	endrin	NA	NA	NA NA	NA	NA '
99.	endrin aldehyde	NA	NA	NA	NA	NA
100.	heptachlor	NA	NA	NA	NA	NA
101.	heptachlor epoxide	· NA	NA	NA	. NA	NA .
102.	alpha-BHC	NA	NA	NA	NA	- NA
103.	beta-BHC	NA	NA	NA	NA	NA
104.	gamma-BHC	NA.	,NA	NA	NA	NA
105.	delta-BHC	NA	NA	NA	NA	- NA
106.	PCB-1242	NA	,NA	NA	NA	NA
107.	PCB-1254	NA	NA	NA	NA	NA
108.	PCB-1221	NA '	NA	NA	NA	NA
109.	PCB-1232	NA	NA	NA	NA	NA NA
110.	PCB-1248	NA -	NA	NA NA	NA NA	. NA
111.	PCB-1260	NA .	NA	NA NA	NA	NA NA
112.	PCB-1016	NA.	·NA	NA NA	NA NA	NA
113.	toxaphene	NA	NA	NA NA	NA ·	NA NA
114.	antimony	ND	NT	NT NT	NT	NT '
115.	arsenic	ND	RG	NT	ND	NT
		NA NA	· NA	NA NA	NA NA	NA
116.	asbestos	ND	NT	ND ND	ND	ND
117.	beryllium			SU	ND .	ND
118.	cadmium	ND	RG RG	RG.	RG	RG
119.	chromium	ND				
	copper	NT	- RG-	- RG	ND	
121.	cyanide	RG .	NA	NT	RG	RG
122.		'RG	RG	RG	RG	RG
123.	mercury	ND	ND	ND	NT	ND
124.	nickel	NT	RG	RG	RG	RG
125.	selenium	ND	NT	ND	ND	RG
126.	silver	ND	NT	NT	ND	NT
127.	thallium	ND	NT	ND	ND	NT
128.	zinc	ND	RG	RG ·	RG	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA	NA	NA	NA ⁻
	p-dioxin (TCDD)					

	Pollutant	WAPC Blowdown	Total Subcategory
1.	acenaphthene	114	
2.	acrolein	NA	ND
3.	acrylonitrile	NA	ND
4.	benzene	NA	ND
5.	benzidine	NA	ND
6.	carbon tetrachloride	NA	ND
7.	carbon tetraciijoride chlorobenzene	NA	NT
ŝ.		NA	ND
9.	1,2,4-trichlorobenzene	NA	ND
10.	hexachlorobenzene	NA	ND
11.	1,2-dichloroethane	NA	ND
12.	1,1,1-trichloroethane	NA	ИD
13.	hexachloroethane	NA	ND
14.	1,1-dichloroethane	NA	ND
	1,1,2-trichloroethane	NA	ND
15.	1,1,2,2-tetrachloroethane	NA	ND
16. 17.	chloroethane	NA	ND
	bis(chloromethyl) ether	NA	ND .
18.	bis(2-chloroethyl) ether	NA	ND
19.	2-chloroethyl vinyl ether	NA	ND
20.	2-chloronaphthalene	NA	ND
21.	2,4,6-trichlorophenol	NA	ND
	parachlorometa cresol	NA	ND
23.	chloroform	NA	ND
24.	2-chlorophenol	NA	ND
25.	1,2-dichlorobenzene	NA	ND
26.	1,3-dichlorobenzene	NA	ИD
27.	1,4-dichlorobenzene	NA	ND
28.	3,3'-dichlorobenzidine	NA	. ND
29.	1,1-dichloroethylene	NA	ND
30.	1,2-trans-dichloroethylene	NA .	ND .
31.	2,4-dichlorophenol	NA	ND
32.	1,2-dichloropropane	NA	ND
33.	1,2-dichloropropylene	NA	∙ND
34.	2,4-dimethylphenol	NA	ND
35.	2,4-dinitrotoluene	NA	ND
36.	2,6-dinitrotoluene	NA	ND
37.	1,2-diphenylhydrazine	NA	ИD
38.	ethylbenzene	NA	ND
39.	fluoranthene	NA	ND
40.	4-chlorophenyl phenyl ether	. NA	ИD
41.	4-bromophenyl phenyl ether	NA	ИD
42.	bis(2-chloroisopropyl) ether	NA	ИD
43.	bis(2-chloroethoxy) methane	- NA	ND

Table VI~8 (Continued)

	·	WAPC	Total
	Pollutant	Blowdown	Subcategory
44.	methylene chloride	NA ·	NT
45.	methyl chloride	NA	ND
46.	methyl bromide	NA	ND
47.	bromoform	NA	ND .
48.	dichlorobromomethane	NA	ND
49.	trichlorofluoromethane	NA	ND
50.	dichlorodifluoromethane	NA 1	ND
51.	chlorodibromomethane	NA	ND
52.	hexachlorobutadiene	NA	ND
53.	hexachlorocyclopentadiene	NA.	ND
54.	isophorone	NA	ND
55.	naphthalene .	ŊA	ND
56.	nitrobenzene	NA	ND
57.	2-nitrophenol	NA	ND
58.	4-nitrophenol	NA	ND
59.	2,4-dinitrophenol	. NA	ND
60.	4,6-dinitro-o-cresol	NA	ND
61.	N-nitrosodimethylamine	NA	ND
62.	N-nitrosodiphenylamine	NA	ND
63.	N-nitrosodi-n-propylamine	NA ·	ND
64.	pentachlorophenol	NA	ND
65.	phenol	NA	ND
66.	bis(2-ethylhexyl) phthalate	NA	ND
67.	butyl benzyl phthalate	NA	ND
68.	di-n-butyl phthalate	NA	ND
69.	di-n-octyl phthalate	NA	ND
70.	diethyl phthalate	· NA	ND
71.	dimethyl phthalate	NA	ND
72.	benzo(a)anthracene	NA	ND
73.	benzo(a)pyrene	NA	ND
74.	3,4-benzofluoranthene .	NA	ND
75.	benzo(k)fluoranthene	NA	ND
76.	chrysene	NA	ND
77.	acenaphthylene	NA	ND
78.	anthracene	NA	ND
79.	benzo(ghi)perylene	NA	ND
80.	fluorene	NA	ND
81.	phenanthrene	NA	ND
82.	dibenzo(a,h)anthracene	NA	ND
83.	indeno(1,2,3-c,d)pyrene	NA	ND
84.	pyrene	, NA	ND
85.	tetrachloroethylene	ŇΑ	ND
86.	toluene	NA	ND

		WAPC	Total
	Pollutant	Blowdown	Subcategory
87.	trichloroethylene	NA	ND
88.	vinyl chloride	NA	ND
89.	aldrin	NA	NA
90.	dieldrin	NA	NA
91.	chlordane	NA	NA
92.	4,4'- D DT	NA	NA
93.	4,4'-DDE	NA	NA
94.	4,4'-DDD	NA	NA
95.	alpha-endosulfan	NA	NA
96.	beta-endosulfan	NA	NA
97.	endosulfan sulfate	NA	NA
98.	endrin	NA	NA
99.	endrin aldehyde	NA	NA
100.	heptachlor .	NA	NA
101.	heptachlor epoxide	NA	NA
102.	alpha-BHC	NA	NA
103.	beta-BHC	NA	NA
104.	gamma-BHC	NA	NA
105.	delta-BHC	NA	NA
106.	PCB-1242	NA	NA
107.	PCB-1254	NA	NA
108.	PCB-1221	NA	NA
109.	PCB-1232	NA	NA
110.	PCB-1248	NA	NA
111.	PCB-1260	NA	NA
112.	PCB-1016	NA	NA
113.	toxaphene	NA	NA
114.	antimony	NT	NT*
115.	arsenic	NT	SU
116.	asbestos	NA	NA
117.	beryllium	ND	NT*
118.	cadmium	ND	SU
119.	chromium	RG	RG
120.	copper	. RG	RG
121.	cyanide	ND	RG
122.	lead	RG	RG
123.	mercury	ND	NT*
124.	nickel	RG	RG
125.	selenium	ND	SU
126.	silver	ND	NT
127.	thallium	ND	NT*
128.	zinu " " " " " " " " " " " " " " " " " " "	RG · · ·	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA NA	NA NA
123.	p-dioxin (TCDD)	, NA	NA .
	· · · · · · · · · · · · · · · · · · ·		

PRIORITY POLLUTANT DISPOSITION TITANIUM FORMING SUBCATEGORY

. *These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

Table VI-9
PRIORITY POLLUTANT DISPOSITION
URANIUM FORMING SUBCATEGORY

	Pollutant	Heat Trt. CCW	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Sawing or Grinding Spent Emulsions	Area Cleaning Wastewater	WAPC Blowdown	Drum Wash Water	Laundry Wastewater	Total Subcategory
1.	acenaphthene	NA	NA	NA	ND	ND	NA	NA	NA	ND
2.	acrolein	NA	NA	NA	ND	ND	NA	NA	NA	ND
3.	acrylonitrile	NA	NA	NA	ND	ND	NA	NA	NA	ND
4.	benzene	NA	NA	NA	ND	ND	NA	NA	NA	ND
5.	benzidine	NA	NA	NA	ND	ND	NA	NA	NA	ND
6.	carbon tetrachloride	NA	NA	NA	ND	ND	NA	NA	NA	ND
7.	chlorobenzene	NA	NA	NA	ND	ND	NA	NA	NA	ND
8.	1.2.4-trichlorobenzene	NA	NA	NA	ND	ND	NA	NA	NA	ДN
9.	hexachlorobenzene	NA	NA	NA	ND	ND	NA .	NA	NA	ND
10.	1,2-dichloroethane	NA	NA	NA	ND	ND	NA	NA	NA	ΩИ
11.	1,1,1-trichloroethane	NA	NA	NA	ND	ND	NA	NA	NA	ND
12.	hexach1oroethane	NA	NA	NA	ND	ND	NA	NA	NA	ND
13.	1,1-dichloroethane	NA	NA	NA	NĐ	ND	NA	NA	NA	ND
14.	1,1,2-trichloroethane	NA	NA	NA	ND	ND	NA	NA	NA	· NĐ
15.	. 1,1,2,2-tetrachloroethane	NA	NA	NA	· ND	ND	NA	NA	NA	ND
16.	chloroethane	NA	NA	NA	ND	ND	NA	NA	NA	ND
17.	bis(chloromethyl) ether	NA	NA	NA	ND	ND	· NA	NA	NA	ND
18.	bis(2-chloroethyl) ether	NA	NA	NA	ND	ND	NA	NA	NA	ND
19.	2-chloroethyl vinyl ether	NA	. NA	NA	ND	ND	NA	NA	NA	ND
20.	2-chloronaphthalene	NA	NA	NA	ND	ND	NA	NA	NA	МĎ
21.	2,4,6-trichlorophenol	NA	NA	NA	ND	ND	NA	NA	NA	ND
22.	parachlorometa cresol	NA -	NA	NA	ND	RG	NA	NA	NA	SU
23.	chloroform	NA	NA	NA	ND	ND	NA	NA	NA	ND
24.	2-chlorophenol	NA	NA	NA	ND	ND	NA	NA	NA	ND
25.	1,2-dichlorobenzene	NA	NA -	NA	ND	ND	NA	NA	NA	ND
26.	1,3-dichlorobenzene	NA	NA ·	NA	ND	ND	NA	NA	NA	ND
27.	1,4-dichlorobenzene	NA	NA	NA	ND	ИD	NA	NA	NA	ПD
28.	3,3'-dichlorobenzidine	NA.	NA	NA	ND	ND	NA	NA	NA	ND
29.	1,1-dichloroethylene	NA	NA	NA	ND	ND	. NA	NA	NA	ND ND
30.	1,2-trans-dichloroethylene	NA	NA	NA	ND	ND	NA	NA	NA	ND
31.	2,4-dichlorophenol	NA	NA	NA	ND	ND	NA	NA	NA	ND
32.	1,2-dichloropropane	NA	NA	NA	ND	ND	NA	NA	NA	ND
33.	1,2-dichloropropylene	NA	NA	NA	ND	ND	NA	NA	NA	ND
34.	2,4-dimethylphenol	NA	NA	NA	ND	ND	NA	NA	NA	ND
35.	2,4-dinitrotoluene	NA	NA	NA	ND	ND	NA	NA	NA	ND
36.	2,6-dinitrotoluene	NA	NA	NA	ND	ND	NA	NA	NA	ND
37.	1,2-diphenylhydrazine	NA	NA	NA	- ND	ND	NA	NA	NA	ND
38.	éthylbenzene	NA	NA	NA	ND	ND	, NA	NA .	NA	ND
39.	fluoranthene ·	NA	NA	NA	ND	ND	NA	NA	NA .	ND
40.	4-chlorophenyl phenyl ether	NA .	ŅĄ	NA .	ND	. ND	- NA	. NA -	NA:	ND
41.	4-bromophenyl phenyl ether	NA	NA	NA	ND	ND	NA	NA	NA	ND
42.	bis(2-chloroisopropyl) ether	NA	NA	NA	ND	ND	NA .	NA	NA	ND
43.	bis(2-chloroethoxy) methane	NA	NA	NA	ND	ND	NA	NA _	NA	ND

Table VI-9 (Continued)

			Surface		Sawing or		•			
		Heat	Trt.	Surface	Grinding	Area		Drum		
		Trt.	Spent	Trt.	Spent	Cleaning	WAPC	Wash	Laundry	Total
	Pollutant	CCW.	Baths	Rinsewater	Emulsions	Wastewater	Blowdown	Water	Wastewater	Subcategory
44.	methylene chloride	NA ·	NA	NA	ND	· ND	NA NA	NA	NA	ND
45.	methyl chloride	NA	NA	NA	ND	ND	- NA	NA	NA	ND
46.	methyl bromide	NA	NA	NA	ND	· ND	NA.	NA	NA ·	ND
47.	bromoform	NA	NA	NA	ND	ND	NA NA	NA	NA	· ND
48.	dichlorobromomethane	NA	NA	NĄ	ND ·	ND	NA	· NA	NA	ND
49.	trichlorofluoromethane	ŢΝΑ	NA:	NA	ND	ND	NA	·NA	· NA	ND
50.	dichlorodifluoromethane	· NA	NA.	NA	ND ·	ND	NA	NA	·NA	ND
51.	chlorodibromomethane	NA	NA	- NA	ND .	ND	NA	NA	NA	ND -
52.	hexachlorobutadiene	NA.	NA	-NA	· 'ND	ND	NA	· NA	NA	ND
53.	hexachlorocyclopentadiene	. ∍N A	NA	- ŅA	: ND	· · ND .	/ NA	NA.	NA	ND
54.	isophorone	· N A	NA	- NA	ND	, ND	NA	NA	NA	ND
55.	naphthalene	.NA	NA NA	NA ·	ND	· ND	, NA	, NA	NA	.ND
56.	nitrobenzene	,N A	NA	- NA	ND	⊷ ND	. NA	NA	NA	ND
57.	_2-nitrophenol	NA	NA	NA .	ND	ND	NA	NA	ŅA	ND
∍58.	4-nitrophenol	NA	NA	NA	ND	ND	NA	NA	NA	·ND
59.	2,4-dinitrophenol	NA	NA	NA	. ND	ND	NA	· NA	· NA	ЙD
60.	4,6-dinitro-o-cresol	NA	NA	NA	ND	ND	NA NA	NA	NA	, ND
61.	N-nitrosodimethylamine	NA	NA	NA	· ND	ND	NA	NA	NA	_•ND
62.	N-nitrosodiphenylamine	NA	, NA	NA	- ND	ND	NA	· NA	NA	:ND
63.	N-nitrosodi-n-propylamine	. N A	NA	NA	ND	ND	- NA	NA	NA '	ND
64.	pentachlorophenol	, NA	NA	NA	ND	ND	NA	NA	NA	ŊD
65.	phenol	NA	NA	NA	ND	. ND	NA	· NA	NA	. ND
66.	bis(2-ethylhexyl) phthalate	- N A	NA NA	NA ·	.ND	RG	NA	NA	- NA	, RG
67.	butyl benzyl phthalate	. N A	NA	NA	ŃD	ND	ŅA	NA	NA	ND
68.	di-n-butyl phthalate	NA ·	NA	NA	ND	МÐ	ΝA	ŅА	NA	ND
69.	di-n-octyl phthalate	NA	ΝÃ	NA ·	ŅD	· ND	NA	. NA	. NA	-ND
70.	diethyl phthalate	- NA	. NA	. NA	- ND	ND	NA	NA	NA	`ND
71.	dimethyl phthalate	. N A	, NA	NA	ND	ND .	NA	NΑ	NA	ΝD
.72.	benzo(a)anthracene	NA	NA	NA	, ND	ND	: NA	- NA	NA	ND
73.	benzo(a)pyrene	NA	"NA	NA	ND	ND	NA	NA	NA	ND
74.	3,4-benzofluoranthene	NA	, NA	NA	ND .	, ND	· NA	- NA	NA	ND .
7.5	benzo(k)fluoranthene	NA	NA	NA NA	ND .	ND	, NA	NA	NA	-ND
76.	chrysene	NA	N A	NA	ND.	ND	·····NA	NA	NA NA	· · · ND · · ·
77.	acenaphthylene	NA	, NA -	NA	ND	ND	NA	NA	NA	ND
78.	anthracene	NA	NA	· NA	ND	ND	NA	NA	NA	ND
79.	benzo(ghi)perylene	NΑ	NA	NĄ	ND	ND	NA	NA	NA	ND
80.	fluorene	NA	NA	NA	ND	, ND	NA	NA	NA	ND
81.	phenanthrene	NA	NA	NA	[°] RG	ND .	NA	NA	NA	SU
82.	dibenzo(a,h)anthracene	NA	NA	NA	ND	. ND	NA	NA	NA	ND
83.	indeno(1,2,3-c,d)pyrene	NA	NA	NA	ND .	ND	NA ·	NA	NA	ND
84.	pyrene	NA	NA	NA	ND	ND	NA	NA	NA	ND
85.	tetrachloroethylene	NA	NA	NA	ND	ND	NA	NA	NA	ND
86.	toluene	NA	NA	NA	ND	ND	NA	NA	NA	ND
	-									

	Pollutant	Heat Trt. CCW	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Sawing or Grinding Spent Emulsions	Area Cleaning Wastewater	WAPC Blowdown	Drum Wash Water	Laundry Wastewater	Total Subcategory
87.	trichloroethylene	NA	NA	NA	ND	ND	NA	NA	NA	ND
88.	vinyl chloride	NA	NA	NA	ND	ND	NA	NA	NA	ND
89.	aldrin	NA	NA	NA	NA	NA	NA	NA	NA	NA
90.	dieldrin	NA	NA	NA	NA	NA	NA	NA	NA	NA
91.	chlordane	NA	NA	NA	NA	NA	NA	NA	NA	NA
92.	4,4'-DDT	NA	NA	NA	NA	NA	NA	NA	NA	NA
93. 94.	4,4'-DDE	NA	NA	NA	NA	NA	NA	NA	NA	NA
95.	4,4'-DDD alpha-endosulfan	NA	NA	NA	NA	NA	NA	NA	NA	NA
96.	beta-endosulfan	NA NA	NA	NA	NA	NA	NA	ΝA	NA	NA
90. 97.	endosulfan sulfate	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA
98.	endosurran surrate endrin	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA
99.	endrin aldehyde	NA NA	NA NA	NA · NA	NA NA	NA NA	NA	NA	NA	NA
100.	heptachlor	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA
101.	heptachlor epoxide	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
102.	alpha-BHC	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
103.	beta-BHC	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
104.	gamma-BHC	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA .
105.	delta-BHC	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA .
106.	PCB-1242	NA .	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
107.	PCB-1254	NA	NA	NA	NA	' NA	NA NA	NA	NA NA	· NA
108.	PCB-1221	NA	NA	NA	NA NA	NA	NA.	NA	NA.	NA NA
109.	PCB-1232	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
110.	PCB-1248	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
111.	PCB-1260	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
112.	PCB-1016	NA	NA	NA	NA	NA	NA	NA	NA	NA
113.	toxaphene	NA	NA	NA	NA	NA	NA	NA	NA	NA
114.	antimony	NT	NT	ND	NT	NT	ND	ND	ND	NT
115.	arsenic	ND	ND	ND	ND	NT	ND	ND .	NT	NT
116.	asbestos	· NA	NA .	NA	NA	NA	NA	NA	NA	NA .
117.	beryllium	NT	RG	RG	NT	NT	NT	NT	NT	SU
118.	cadmium	ND .	RG	RG	RG	RG	ND	ND	ND	RG
119.	chromium	RG	RG	RG	RG	RG	ND	NT	ND	RG
120.	copper	RG	RG	RG	RG	RG .	NT	RG	· NT	RG
121.	cyanide	ND	NA	RG	NT	RG	ND	ND	ND	SU
122.	lead	RG	RG	RG	RG	RG	RG	RG	NT	RG
123.	mercury	ND	NT	ND	ND	ND	ND	ND	ND	NT
124.	nickel	RG	RG	RG	NT	RG	NT	ND	ND	RG
125.	selenium	ND	ND	NT	NT	NТ	ND	ND	ND	NT
126.	silver	NT	NT	ND	NT	NT	NT	ND .	, NT.	NT
	- thallium	NT	NT	ND	NT	ND	NT	ND	ND	NT
128.	zinc	NT	RG	RG	RG	RG	RG	RG	RG	RG
129.	2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)	NA	NA .	NA .	NA	NA	NA	NA	NA	NA

PRIORITY POLLUTANT DISPOSITION URANIUM FORMING SUBCATEGORY

Key: NA - Not Analyzed ND - Never Detected

NQ - Never Found Above Their Analytical Quantification
NT - Detected Below Levels Achievable by Treatment
SU - Detected in a Small Number of Sources
RG - Considered for Regulation

Table VI-10

		Surface Trt.	Alkaline Cleaning	Total
	Pollutant	Rinsewater	Rinsewater	Subcategory
1.	acenaphthene	. ND	NQ	NQ
2.	acrolein	ND ·	ND	ND
З.	acrylonitrile	NT	NT	NT
4.	benzene	NT	NT	NT
5.	benzidine	ND	ND	ND
6.	carbon tetrachloride	NT	NT	NT
7.	chlorobenzene	NQ	NQ	NQ
8.	1,2,4-trichlorobenzene	. ND	ND	. ND
9.	hexachlorobenzene	∵ ND	ND	ND
10.	1,2-dichloroethane	NQ	NQ	NQ
11.	1,1,1-trichloroethane	· ND	, NT	NT
12.	hexachloroethane	.∕ ND	ND	ND
13.	1,1-dichloroethane	NT	NT	NT
1.4.	1,1,2-trichloroethane	NQ	NQ	NQ
15.	1,1,2,2-tetrachloroethane	NT	, NT	NT
16.	chloroethane	ND	, ND	ND
17.	bis(chloromethyl) ether	ND	ND	ND
18.	bis(2-chloroethyl) ether	NT	NQ	NT
19.	2-chloroethyl vinyl ether	ND	ND	ND
20.	2-chloronaphthalene	ND	ND	. ND
21.	2,4,6-trichlorophenol	ND	ND	ND
22.	parachlorometa cresol	ND	ND -	ND
23.	chloroform	NT	NT	.NT
24.	2-chlorophenol	ND	. ND	ND
	1,2-dichlorobenzene	ND	, ND	ND
26.	1,3-dichlorobenzene	ND	ND	ND
27.	1,4-dichlorobenzene	ND	ND	ND
28.	3,3'-dichlorobenzidine	ND	ND	ND
29.	1,1-dichloroethylene	NT	NT	NT
30.	1,2-trans-dichloroethylene	. NT	NT	, NT
31.	2,4-dichlorophenol	ND	ND	ND
32.	1,2-dichloropropane	NQ	NT	NT
33.	1,2-dichloropropylene	NQ	NT	NT
34.	2,4-dimethylphenol	NT	ND	NT
35.	2,4-dinitrotoluene	ND	ND	ND
36.	2,6-dinitrotoluene	NT	NT	NT
37.	1,2-diphenylhydrazine	NQ	NQ	NQ
38.	ethy1benzene	NT	NT	NT
39.	fluoranthene	ND	NT	NT
40.	4-chlorophenyl phenyl ether	ND	ND	ND
41.	4-bromophenyl phenyl ether	ND	ND	ND
42.	bis(2-chloroisopropyl) ether	ND	ND	ND -
43.	bis(2-chloroethoxy) methane	NT	NT	NT

Pollutant	Surface Trt. Rinsewater	Alkaline Cleaning Rinsewater	Total Subcategory
44. methylene chloride	NT ND	NT ND	NT ND
45. methyl chloride	ND ND	NO NO	NQ
46. methyl bromide 47. bromoform	NT	NT	NT
47. bromoform 48. dichlorobromomethane	NT	NT .	NT
49. trichlorofluoromethane	ND	ND ND	ND
50. dichlorodifluoromethane	ND ND	ND	ND
51. chlorodibromomethane	RG	NT	RG
52. hexachlorobutadiene	ND	ND .	ND
53. hexachlorocyclopentadiene	. ND	ND	ND
54. isophorone	ND	ND .	ND .
55. naphthalene	NT	NT	NT .
56. nitrobenzene	ND	ND	ND
57. 2-nitrophenol	ND ·	ND	ND
58. 4-nitrophenol	ND	ND	ND
59. 2,4-dinitrophenol	ND	ND	ND
60. 4.6-dinitro-o-cresol	ND	ND	ND
61. N-nitrosodimethylamine	ND	ND	ND
62. N-nitrosodiphenylamine	ND	ND	ND
63. N-nitrosodi-n-propylamine	ND	ND	ND
64. pentachlorophenol	. ND	ND	ND
65. phenol	ND	ND	ND
66. bis(2-ethylhexyl) phthalate	NO	RG	RG
67. butyl benzyl phthalate	NT	NT	NT
68. di-n-butyl phthalate	RG .	ND	RG
69. di-n-octyl phthalate	ND	ND	ND
70. diethyl phthalate	NT	NT	NT
71. dimethyl phthalate	ND	ND	ND
72. benzo(a)anthracene	NT	NT	NT
73. benzo(a)pyrene	ND	ND	ND
74. 3.4-benzofluoranthene	ND	ND	ND
75. benzo(k)fluoranthene	ND	. ND	ND
76. chrysene	NT	ND	NT
77. acenaphthylene	ND	ND	ND
78. anthracene	NQ	NT	NT
79. benzo(ghi)perylene	. ND	ND	ND
80. fluorene	ND .	ND	ND
81. phenanthrene	NO ·	NT	NT
82. dibenzo(a,h)anthracene	ND	· ND	ND
B3: indeno(1,2,3-c,d)pyrene	ND	TS	TS
84. pyrene	ND	ND	ND
85. tetrachloroethylene	NT	NT	NT
86. toluene	NT	NT	NT

		Surface	Alkaline	
	Pollutant	Trt. Rinsewater	Cleaning Rinsewater	Total Subcategory
	Politicalic	Killsewater	Killsewater	Subcategory
87.	trichloroethylene	NT	NT	NT
88.	vinyl chloride	ND	NÐ	ND
89.	aldrin	NA	NA	NA
90.	dieldrin	NA	NA	NA
91.	chlordane	NA	NA	NA
92.	4,4'-DDT	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA
94.	4,4'-DDD	NA	NA-	NA
95.	alpha-endosulfan	NA	NA	NA
96.	beta-endosulfan	NA	NA	NA
97.	endosulfan sulfate	NA	NA	NA
98.	endrin	NA	NA	NA
99.	endrin aldehyde	NA	NA	NA
100.	heptachlor	NA	NA	NA
101.	heptachlor epoxide	NA	NA	NA
102.	alpha-BHC	NA	NA	NA
103.	beta-BHC	NA	NA	NA
104.	gamma-BHC	NA	NA	NA
105.	delta-BHC	NA	. NA	NA
106.	PCB-1242	NA	NA	NA
107.	PCB-1254	NA	· NA	NA .
108.	PCB-1221	NA	NA	NA
109.	PCB-1232	NA	NA	NA
110.	PCB-1248	· NA	NA	NA
111.	PCB-1260	NA	NA .	NA
112.	PCB-1016	NA	NA	NA
113.	toxaphene	, NA ,	NA,	NA
114.	antimony	ND	NÐ	ND
115.	arsenic	ND	ND	ND
116.	asbestos	NA	NA	NA
117.	bery1lium	, ND	ND	ND
118.	cadmium	ŅD	ND	ND
119.	chromium	RG	ND	RG
120.	copper	ND.	. ND	ND
121.	cyanide	ND	RG	RG
122.	lead	ND	ND	ND
123.	mercury	ND	ND	ND
124.	nickel	RG	ND .	RG
125.	selenium	ND	ND	ND
126.	silver	· ND	ND	ND
127.	thallium	ND	ND	ND
128.	zinc	RG .	RG	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA	NA
	p-dioxin (TCDD)		-	-

PRIORITY POLLUTANT DISPOSITION ZINC FORMING SUBCATEGORY

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

1301

Table VI-11

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

	Pollutant	Total Subcategor
1.	acenaphthene	ND
2.	acrolein	NT
З.	acrylonitrile	ND
4.	benzene	NQ
5.	benzidine	ND
6.	carbon tetrachloride	ND
7.	chlorobenzene	NQ
8.	1,2,4-trichlorobenzene	ND
9.	hexachlorobenzene	ND
10.	1,2-dichloroethane	ND
11.	1,1,1-trichloroethane	SU
12.	hexachloroethane	ND
13.	1,1-dichloroethane	NQ
14.	1,1,2-trichloroethane	ND
15.	1,1,2,2-tetrachloroethane	ND
16.	chloroethane	ND
17.	bis(chloromethyl) ether	ND
18.	bis(2-chloroethyl) ether	ND
19.	2-chloroethyl vinyl ether	ND
20.	2-chloronaphthalene	ND
21.	2,4,6-trichlorophenol	ND
22.	parachlorometa cresol	SU
23.	chloroform :	NT*
24.	2-chlorophenol	ND
25.	1,2-dichlorobenzene	·ND
26.	1,3-dichlorobenzene	ND
27.	1,4-dichlorobenzene	. ND
28.	3,3'-dichlorobenzidine	ND
29.	1,1-dichloroethylene	ND
30.	1,2-trans-dichloroethylene	ND
31.	2,4-dichlorophenol	ND
32.	1,2-dichloropropane	ND
33.	1,2-dichloropropylene	ND
34.	2,4-dimethylphenol	ND
35.	2,4-dinitrotoluene	ND
36.	2,6-dinitrotoluene	ND
37.	1,2-diphenylhydrazine	ND
38.	ėthy lbenzene	SU
39.	fluoranthene	ND
40.	4-chlorophenyl phenyl ether	ND
41.	4-bromophenyl phenyl ether	ND
42.	bis(2-chloroisopropyl) ether	ND
43.	bis(2-chloroethoxy) methane	ND

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

		(ULA)
	Pollutant	Subcategory
44.	methylene chloride	RG
45.	methyl chloride	ΝĎ
46.	methyl bromide	ИD
47.	bromoform	NÐ
48.	dichlorobromomethane	ИD
49.	trichlorofluoromethane	ND
50.	dichlorodifluoromethane	ND
51.	chlorodibromomethane	ΝĐ
52.	hexachlorobutadiene	ND
53.	hexachlorocyclopentadiene.	ŅD
54.	isophorone	ND
55.	naphthalene	ND
56.	nitrobenzene	ND
57.	2-nitrophenol	NQ
58.	4-nitrophenol	ND
59.	2,4-dinitrophenol	ND
60.	4,6-dinitro-o-cresol	ND
61.	N-nitrosodimethy lamine	ND
62.	N-nitrosodiphenylamine	ND
63.	N-nitrosodi-n-propylamine	ND
64.	pentachlorophenol	ND
65.	phenol	ND
66.	bis(2-ethylhexyl) phthalate	· ŞU
67.	butyl benzyl phthalate	ND NQ
68.	di-n-butyl phthalate	SU
69.	di-n-octyl phthalate	NQ
70.	diethyl phthalate	· ND
71.	dimethyl phthalate	ND
72.	benzo(a)anthracene	· ND
73.	benzo(a)pyrene	ND
74.	<pre>3,4-benzofluoranthene benzo(k)fluoranthene</pre>	ND
75.		ND
76.	chrysene	ND -
77.	acenaphthylene	NQ
78. 79.	anthracene. benzo(ghi)perylene	. ND
79. 80.	fluorene	ND
81.	phenanthrene	NQ
82.	dibenzo(a,h)anthracene	ND
83.	indeno(1,2,3-c,d)pyrene	ND
84.	pyrene	. ND
85.	tetrachloroethylene	NQ
86.	toluene	RG
٥U.	to racite	

Total

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

	Pollutant	Total Subcategor
87.	trichloroethylene	NQ
88.	vinyl chloride	ND
89.	aldrin	ND
90.	dieldrin	ND
91.	chlordane	ND
92.	4,4'-DDT	ND
93.	4,4'-DDE	ND
94. 95.	4,4'-DDD	ND
96.	alpha-endosulfan	ND
97.	beta-endosulfan	ND
98.	endosulfan sulfate endrin	ND
99.	endrin endrin aldehyde	ND
100.	heptachlor	ND
101.	heptachior epoxide	ND
102.	alpha-BHC	ND
103.	beta-BHC	ND
104.	gamma-BHC	ND
105.	delta-BHC	ND
106.	PCB-1242	ND
107.	PCB-1254	ND
108.	PCB-1221	ND
109.	PCB-1232	ND ND
110.	PCB-1248	ND
111.	PCB-1260	ND
112.	PCB-1016	ND
113.	toxaphene	ND ND
114.	antimony	SU
115.	arsenic	Su
116.	asbestos	NA
117.	beryllium	NT
118.	cadmium	SU
119.	chromium	RG
120.	copper	RG
121.	cyanide	RG
122.	lead	RG
123. 124.	mercury	NT*
	nickel	RG
125. 126.	selenium	NT
120.	silver thallium	ΝT
127.	zinc	SU
128.		RG
125.	2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)	NA
	•	

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment SU - Detected in a Small Number of Sources

RG - Considered for Regulation

Table VI-12

PRIORITY POLLUTANT DISPOSITION METAL POWDERS FORMING SUBCATEGORY

	Pollutant	MPP Wet Atomization Wastewater	Tumbling, Burnishing or Cleaning Wastewater	Sawing or Grinding Spent Emulsions	Steam Trt. WAPC	Total Subcategory
1.	acenaphthene	NA	ND	ND	ND	ND
2.	acrolein	NA	ND	ND	ND	ND
ā.	acrylonitrile	NA	ND	ND	ND	ND
4.	benzene	NA.	NT	ND	NT	NT*
5.	benzidine	NA	ND	ND	ND	ND
6.	carbon tetrachloride	NA	NT	NT	NT	NT
7.	chlorobenzene	NA	ND	ND	ND	ND
8.	1,2,4-trichlorobenzene	NA NA	ND	ND	ND	ND
9.	hexachlorobenzene	NA	ND	ND	ND	ND
10.	1,2-dichloroethane	NA NA	ND	ND	ND	ND
11:	1,1,1-trichloroethane	NA NA	RG	RG	NT	RG
12.	hexachloroethane	NA NA	ND	ND	ND	ND
13.	1.1-dichloroethane	NA.	ND	ND	ND	ND
14.	1,1,2-trichloroethane	NA NA	ND	ND	ИD	ND
15.	1,1,2,2-tetrachloroethane	NA	ND	ND	ND	ND
16.	chloroethane	NA .	ND	ND	ND ·	ND
17.	bis(chloromethyl) ether	NA:	ND	ND	NĎ	ND
18.	bis(2-chloroethy)) ether	NA .	ND	ND	ND	ND
19.	2-chloroethyl vinyl ether	NA NA	ND	ND	ND	ND
20.	2-chloronaphthalene	NA NA	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	NA NA	ND	ND	ND	ND
22.	parachlorometa cresol	NA NA	ND	ND	ND	ND
23.	chloroform	NA NA	ND	ND	ND	ND
24.	2-chlorophenol	NA NA	ND	ND	ND	ND
25.	1,2-dichlorobenzene	NA -	ND	ND	ND	·ND
26.	1.3-dichlorobenzene	· NA	ND ND	ND	ND -	· ND
27.	1,4-dichlorobenzene	. NA	ND	ND	ND	ND
28.	3,3'-dichlorobenzidine	NA NA	ND	ND	ND*	ND
29.	1.1-dichloroethylene	NA NA	ND	ND	ND	ND
30.	1,2-trans-dichloroethylene	NA NA	ND	ND	ND	ND
31.	2,4-dichlorophenol	NA	ND	ND	ND	ND
32.	1,2-dichloropropane	NA NA	ND	ND	ND	ND
33.	1,2-dichloropropylene	NA .	ND	ND	ND	ND
34.	2,4-dimethylphenol	· NA	ND	ND	ND	ND
35.	2,4-dinitrotoluene	NA	ND	ND	ND	ND ·
36.	2,6-dinitrotoluene	NA NA	ND	ND	ND	, ND
	1,2-diphenylhydrazine	NA.	ND	ND .	ИD	ND
38.	ethylbenzene'.	NA NA	ND	ND	ND	ND
39.	fluoranthene	NA NA	ND	ND	ND	ND
40.	4-chlocophenyl phenyl ether	NA NA	ND	ND	ND	ND
41.	4-bromophenyl phenyl ether	NA NA	ND	ND	ND	ND
42.	bis(2-ch)oroisopropyl) ether	NA NA	ND	ND	ND	ND
43.	bis(2-chloroethoxy) methane	NA .	ND	ND	ND	ND
75.	DISCE CHIOLOGUIOXY, methane	110	115	ND	115	112

PRIORITY POLLUTANT DISPOSITION METAL POWDERS FORMING SUBCATEGORY

				:		
			Tumbling,	Sawing or		
		MPP Wet	Burnishing	Grinding	Steam	
	•	Atomization	or Cleaning	Spent	Trt.	Total
	Pollutant	Wastewater	Wastewater	Emulsions	WAPC	Subcategory
			LIT+		ыт	NT+
44.	methylene chloride	· NA	NT*	ND	NŢ	NT*
45.	methyl chloride	NA NA	ND	· ND	ND	ND
46.	methyl bromide	NA	ND	ND -	ND	ND
47.	bromoform	NA	ND	ND	ND	ND
48.	dichlorobromomethane	NA	- ND	ND	ND	ND
49.	trichlorofluoromethane	NA	ND	ND	ND	ND
50.	dichlorodifluoromethane	NA	ND	ND	ND	- ND
51.	chlorodibromomethane	NA	·ND	ND	ND	ND
52.	hexachlorobutadiene	NA	ND	, ND	ND	· ND
53.	hexachlorocyclopentadiene	NA	, ND	ND .	ЙĎ	ND
54.	isophorone	NA	ND	ND	ND.	ND.
55.	naphthałene	NA	·ND	ND.	ND	ND
56.	nitrobenzene	NA	ND	ND	ND	ND
57.	2-nitrophenol	NA	ND	, ND	ND	ND
58.	4-nitrophenol	NA	·ND	ND	. ND	. ND
59,	2,4~dinitrophenol	NA	N [·] D	: ND	· ND	ND
60.	4,6-dinitro-o-cresol	NA ·	ND	· ND	, ND	ND
61.	N-nitrosodimethylamine	NA	ND	ND ·	ND	• ND
62.	N-nitrosodiphenylamine	NA .	ND	ND	ND	ND
63.	N-nitrosodi-n-propylamine	NA	∴ND	ND	ND	ND
64.	pentachlorophenol	NA	ND	ND	ND	ND
65.	phenol	· NA	ND	. ND	ND	· ND
66.	bis(2-ethylhexyl) phthalate	· NA	ND	ND	ND	ND
67.	butyl benzyl phthalate	NA	ND	ND	ND	ND
68.	di-n-butyl phthalate	NA	ND	: ND	ND	. ND
69.	di-n-octyl phthalate	NA	ND	ND	ND	ND
70.	diethyl phthalate	NA	ND	ND	ND	ND
71.	dimethyl phthalate	NA	ND	ND	ND	ND
72.	benzo(a)anthracene	'NA	ND	ND .	ND	. ND
73.	benzo(a)pyrene	NA	ND.	ND	· ND	ND
74.	3,4-benzofluoranthene	NA.	ND	ND	ND	ND
75.	benzo(k)fluoranthene	NA	ND	ND	ND	ND
76.	chrysene	NA	ND-	ND	ND	- ND
77.	acenaphthylene	NA	ND	ND	ND	ND
78.	anthracene	NA	ND .	. ND	ND	ND
79.	benzo(ghi)perylene	NA NA	ND	ND	· ND	· ND
80.	fluorene	NA NA	ND	ND	ND	ND
81.	phenanthrene	NA NA	ND ND	' ND	ИD	ND ND
82.	dibenzo(a,h)anthracene	NA NA	ND		ND ND	ND ND
83.		NA NA	ND	, ND	ND	ND ND
	indeno(1,2,3-c,d)pyrene			ND		–
84.	pyrene	NA	ND	ND	ИD	ND
85.	tetrachloroethylene	NA NA	ND NT*	ND	ND	ND NT*
86.	toluene	NA	NT*	Ти	NT	NT*

PRIORITY POLLUTANT DISPOSITION METAL POWDERS FORMING SUBCATEGORY

	Pollutant	MPP Wet Atomization Wastewater	Tumbling, Burnishing or Cleaning Wastewater	Sawing or Grinding Spent Emulsions	Steam Trt. WAPC	Total Subcategory
87.	trichloroethylene	NA	ND	ND	ND	ND
88.	vinyl chloride	NA.	ND	ND	ND	ND
89.	aldrin	NA	NA NA	NA NA	NA	NA NA
90.	dieldrin	NA	NA	NA NA	NA	NA NA
91.	chlordane	NA NA	NA NA	NA NA	NA NA	NA NA
92.	4,4'-DDT	NA NA	NA NA	NA NA	NA NA	
93.	4,4'-DDE	NA NA	NA NA	NA NA	NA NA	NA NA
94.	4,4'-DDD	NA	NA NA			NA
95.	alpha-endosulfan	NA NA	NA NA	NA ·	NA	NA
96.	beta-endosulfan	NA NA		NA	NA	NA
97.	endosulfan sulfate		NA	NA	NA	NA
98.	endrin	NA NA	NA	NA	NA	NA
99.	endrin aldehyde	NA .	NA	NA	NA	NA
100.		NA	NA	NA	NA	NA
101.	heptachlor	NA	NA	NA	NΑ	NA
	heptachlor epoxide	NA	NA	, NA	NA	NA
102.	alpha-BHC	NA	NΆ	NA	NA	NA
103.	beta-BHC	NA	NA	NA	NΑ	NA
104.	gamma-BHC	NA	NA	NA	NA	NA
105.	delta-BHC	NA	NA	NA	ŅΑ	NA
106.	PCB-1242	NA	NA	NA	NA	NA
107.	PCB-1254	NA	NA	NA	NA	NA
108.	PCB-1221	NA	NA	·NA	NA	NA
109.	PCB-1232	NA	NA	NA	NA	NA
110.	PCB-1248	NA	NA	NA	NA	NA
111.	PCB-1260	NA	NA	NA	NA	NA
112.	PCB-1016	NA	NA	NA	NA	NA
113.	toxaphene	NA	NA	NA	NA	NA
114.	antimony	NA	NT*	ND	ND	NT*
115.	arsenic	ND	NT*	ND	ND	NT*
116.	asbestos	NA	NA	NA	NA	NA
117.	beryllium	NA	ND	ND	ND	ND
118.	cadmium	ND	ND	ND	ND	ND
119.	chromium	RG	RG	RG	ND	RG
120.	соррег	RG	RG	RG	ND	RG
121.	cyanide	NT	RG	RG	RG	RG
122.	lead	SU	RG	RG .	ND	RG
123.	mercury	ND	ND	ND	ND	
124.	nickel	RG	RG			ND
125.	selenium	NA NA	ND	NT	ND	RG
126.	silver	NA NA	ND	ND	ND	ND
127.	thallium	NA NA	ND ND	ND	ND	ND
128.	zinc	RG	RG	NT	ND	NT
129.	2,3,7,8-tetrachlorodibenzo-	NA		RG	NТ	RG
	p-dioxin (TCDD)	IVA	- NA	. NA	NA	NA ···

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation