



## **Целенаправленное обследование и техническое обслуживание**

Технологии и Стратегия Снижения Выбросов Метана Семинар с Участием Независимых Российских Производителей

Нефти и Природного Газа

4 октября 2010 г., Москва, Россия Дейв Пикар





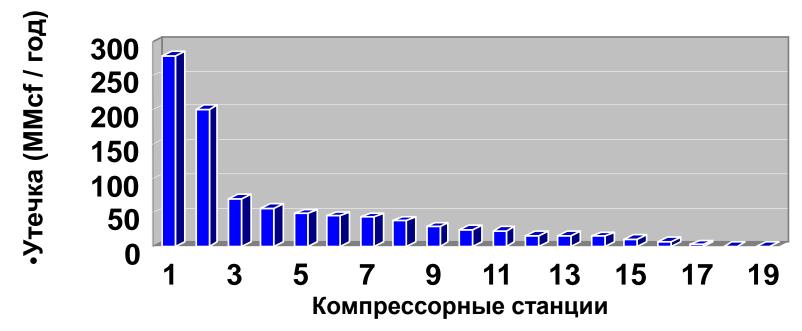






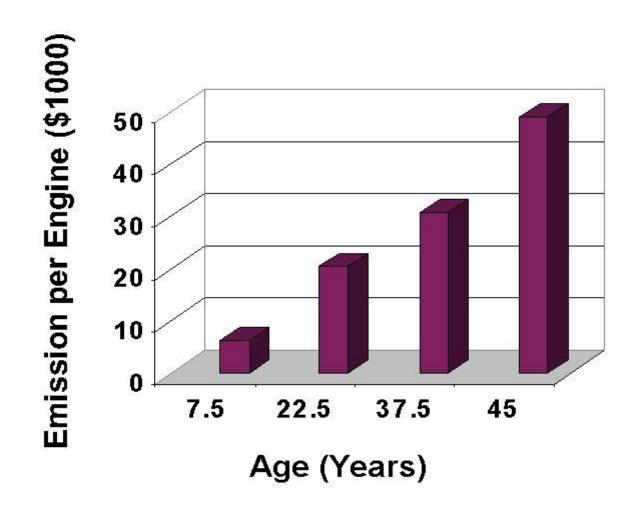


### Характеристики утечек


- Вносят существенный вклад в общий объем выбросов СН₄ на объектах газовой промышленности.
- Только несколько процентов компонентов в действительности дают утечку.
- Основной объем утечек, как правило, образуется от нескольких больших протечек.
- Различные компоненты имеют разные потенциалы утечек и изнашиваются с разной скоростью.
- Элементы в сернистых или одоризованных условиях эксплуатации, как правило, дают меньше утечек, чем в обессеренных или неодоризованных условиях.



## **Неорганизованные выбросы**




- Распределение вероятностей выбросов искажено
- Несколько источников ответственно за основную часть выбросов следует фокусировать усилия на этих источниках в первую очередь





# Наибольшей вероятности выбросов подвержено изношенное оборудование: среднее количество выбросов относительно возраста







#### Причины больших утечек

- Дефекты, неправильная установка, повреждения и прогрессирующее ухудшение.
- Применение в крайне тяжелых условиях/ с высокими требованиями в сочетании с высокой стоимостью или сложностью ремонта.
- Отсутствие утечки проверяется после проведения ремонтных работ.
- Пропущенные утечки возникают в труднодоступных местах, с малой нагрузкой, в переполненных или шумных участках.
- При отсутствии данных измерений необходима разработка рабочего плана действий.





### Что представляет собой нормальная практика?

- Выполнить проверку герметичности (с использованием пробы на образование пузырей или ручного газового датчика) на компонентах оборудования при начальной установке и после обследования и технического обслуживания.
- В последующем утечки обнаруживаются с помощью:
  - Дозиметров местности и зданий.
  - Индивидуальных дозиметров.
  - Обонятельных, звуковых или визуальных индикаторов.
- Утечки устраняются, если это легко сделать или они касаются вопросов безопасности.
- Автоматическому оборудованию уделяется меньше внимания, чем объектам с ручным управлением.
- Приоритет касательно цикла работы оборудования вернуть его интерактивно, а не обеспечить все бракованные детали проверкой на утечку.



### Нто такое Целенаправленное Обследование и Техническое Обслуживание (ЦОТО)



- Утечки могут быть значительно сокращены в результате применения программы систематической проверки и ремонта
- Программа Natural Gas STAR называет эту методику Целенаправленное Обследование и Техническое Обслуживание (ЦОТО)
  - Практическая программа для выявления и исправления утечек.
- Программа определения и устранения утечек там, где проведение ремонтных работ экономически выгодно
- Большой выбор технологий обнаружения утечек
- Предоставляет ценные данные об источниках утечек и их местонахождении
- Строго адаптирована к требованиям компании
- Экономически эффективная практика



**Камера инфракрасного обнаружения утечек** 





### Каковы преимущества?

- Рациональное использование ресурсов.
- Увеличение доходов.
- Рентабельность
- Повышенная надежность системы.
  - Сокращение времени простоя.
  - Потенциальное снижение эксплуатационных затрат за счет раннего обнаружения проблем.
- Более безопасное рабочее место.
- Улучшение экологических показателей.
- Признано лучшим в своем классе.





### Куда следует направить усилия?

| Пример статистики утечек для объектов транспорта газа |                         |                   |                                                      |                                             |                                   |                                              |
|-------------------------------------------------------|-------------------------|-------------------|------------------------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------------|
| Источник                                              | Число<br>источни<br>ков | Частота<br>утечек | Среднее<br>количество<br>выбросов<br>(кг/ч/источник) | Процент<br>содержан<br>ия<br>компонен<br>та | Вклад в общий объем выброс ов (%) | Относит<br>ельный<br>потенци<br>ал<br>утечек |
| Напорная станция или узел системы продувки            | 219                     | 59.8              | 3.41E+00                                             | 0.131                                       | 53.116                            | 7616                                         |
| Уплотнения компрессора -<br>центробежные              | 103                     | 64.1              | 1.27E+00                                             | 0.062                                       | 9.310                             | 2838                                         |
| Уплотнения компрессора - поршневые                    | 167                     | 40.1              | 1.07E+00                                             | 0.100                                       | 12.764                            | 2400                                         |
| Клапан сброса давления                                | 612                     | 31.2              | 1.62E-01                                             | 0.366                                       | 7.062                             | 362                                          |
| Линия передачи с<br>разомкнутым концом                | 928                     | 58.1              | 9.18E-02                                             | 0.555                                       | 6.070                             | 205                                          |
| Диафрагменный<br>расходомер                           | 185                     | 22.7              | 4.86E-02                                             | 0.111                                       | 0.641                             | 109                                          |
| Регулирующий клапан                                   | 782                     | 9                 | 1.65E-02                                             | 0.468                                       | 0.919                             | 37                                           |
| Регулятор давления                                    | 816                     | 7                 | 7.95E-03                                             | 0.488                                       | 0.462                             | 18                                           |
| Клапан                                                | 17029                   | 2.8               | 4.13E-03                                             | 10.190                                      | 5.011                             | 9                                            |
| Соединитель                                           | 145829                  | 0.9               | 4.47E-04                                             | 87.264                                      | 4.644                             | 1                                            |
| Другие расходомеры                                    | 443                     | 1.8               | 9.94E-06                                             | 0.265                                       | 0.000                             | 0.02                                         |



## Предлагаемая частота проведения мониторинга

|   | Предла          | Предлагаемая частота мониторинга утечек по конкретным компонентам |              |           |                             |  |  |
|---|-----------------|-------------------------------------------------------------------|--------------|-----------|-----------------------------|--|--|
|   | Категория       | Тип компонента                                                    | Эксплуатация | Применени | Частота                     |  |  |
|   | источника       |                                                                   | -            | е         |                             |  |  |
| Ì | Технологическое | Разъемы и покрытия                                                | Bce          |           | Немедленно после            |  |  |
| 1 | оборудование    |                                                                   |              |           | каких-либо                  |  |  |
| 1 |                 |                                                                   |              |           | регулировок и               |  |  |
|   |                 |                                                                   |              |           | каждые 5 лет в              |  |  |
|   |                 |                                                                   |              |           | последующем.                |  |  |
|   |                 | Регулирующие клапаны                                              | Газ/Пар/СПГ  |           | Ежегодно                    |  |  |
|   |                 | Блокировочные клапаны – выдвигающийся шпиндель                    | Газ/Пар/СПГ  | Bce       | Ежегодно.                   |  |  |
|   |                 | Блокировочные клапаны - поворот                                   | Газ/Пар/СПГ  | Bce       | Раз в 5 лет                 |  |  |
|   |                 | Уплотнения<br>компрессоров                                        | Bce          | Bce       | Ежеквартально.              |  |  |
|   |                 | Уплотнения насоса                                                 | Bce          | Bce       | Ежеквартально.              |  |  |
|   |                 | Предохранительные клапаны                                         | Bce          | Bce       | Ежегодно.                   |  |  |
|   |                 | Линии передачи с<br>разомкнутым концом                            | Bce          | Bce       | Ежегодно.                   |  |  |
| 1 |                 | Системы аварийной вентиляции и продувки                           | Bce          | Bce       | Ежеквартально.              |  |  |
| 1 | Системы сбора   | Люк резервуара                                                    | Bce          | Bce       | Ежеквартально.              |  |  |
| ľ | пара            | Предохранительные                                                 | Bce          | Bce       | Ежеквартально. <sup>9</sup> |  |  |





### Методы Обнаружения Утечек

- Обследование обнаружение утечек
  - Использование мыльных растворов
  - Электронная индикация (газоанализатор)
  - Анализаторы токсичных паров (TVA)
  - Анализаторы органических паров (OVA)
  - Ультразвуковое обнаружение утечек
  - Акустическое обнаружение утечек
  - Инфракрасное Обнаружение/
     Изображение









#### Как Вы измеряете утечки?

- Оценить найденные утечки провести измерения
  - Пробоотборник Большого Объёма
  - Анализатор Токсичных паров (TVA)
     (корреляционные факторы)
  - Ротаметры
  - Газосбросные Емкости
  - Инженерный Метод

Измерение утечек с использованием пробоотборника большого объёма









| Обзор Методов Обнаружения и Измерения                          |               |                                     |  |  |
|----------------------------------------------------------------|---------------|-------------------------------------|--|--|
| Прибор/Технология                                              | Эффективность | Примерные<br>Капитальные<br>Затраты |  |  |
| Мыльный Раствор                                                | **            | \$                                  |  |  |
| Электронный Газоанализатор                                     | *             | \$\$                                |  |  |
| Акустический Детектор/<br>Ультразвуковой Детектор              | **            | \$\$\$                              |  |  |
| Анализатор Токсичных Паров<br>(Пламенноионизационный Детектор) | *             | \$\$\$                              |  |  |
| Отбор в Газосбросные Емкости                                   | *             | \$\$                                |  |  |
| Пробоотборник Большого Объёма                                  | ***           | \$\$\$                              |  |  |
| Ротаметр                                                       | **            | \$\$                                |  |  |
| Инфракрасный Детектор                                          | ***           | \$\$\$                              |  |  |

<sup>\* -</sup> Наименее эффективные в обнаружении/измерении

<sup>\$ -</sup> Наименьшие капитальные затраты

<sup>\*\*\* -</sup> Наиболее эффективные в обнаружении/измерении

<sup>\$\$\$ -</sup> Наибольшие капитальные затраты



## Пример: Экономический Анализ ЦОТО на Компрессорных Станциях

| Ремонт Узлов с Наибольшей Экономической Эффективностью |                                               |                                        |                                 |  |
|--------------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------|--|
| Компонентные Узлы<br>Компрессора                       | Стоимость<br>Потерь Газа <sup>1</sup><br>(\$) | Расчетная<br>Стоимость<br>Ремонта (\$) | Период<br>Окупаемости<br>(мес.) |  |
| Конический Клапан: Седло<br>Клапана                    | 29 498                                        | 200                                    | 0,1                             |  |
| Муфта: Линия Топливного Газа                           | 28 364                                        | 100                                    | 0,1                             |  |
| Резьбовое Соединительное<br>Устройство                 | 24 374                                        | 10                                     | 0,0                             |  |
| Прокладка: Уплотнения Штока                            | 17 850                                        | 2 000                                  | 1,4                             |  |
| Патрубки Сброса                                        | 16 240                                        | 60                                     | 0,1                             |  |
| Уплотнение Компрессора -<br>Сальники                   | 13 496                                        | 2 000                                  | 1,8                             |  |
| Запорный Клапан                                        | 11 032                                        | 60                                     | 0,1                             |  |
| 1.0                                                    |                                               |                                        |                                 |  |

<sup>&</sup>lt;sup>1</sup>Стоимость газа \$7/тыс. фут.<sup>3</sup>

<sup>&</sup>lt;sup>2</sup>Источник: "Cost-effective emissions reductions through leak detection, repair". Hydrocarbon Processing, май 2002 г.



### Отраслевой Опыт - Targa Resources (Газоперерабатывающая Компания в США)

- Компания обследовала 23 169 комплектующих узлов на двух газоперерабатывающих предприятиях
- Выявлено 857 источников утечки (около 3,6%)
- Отремонтировано от 80 до 90% протекающих узлов
- Объём сэкономленного метана:
   5,6 миллионов м³/год
- Ежегодная экономия:
   \$1 386 000/год
   (при \$250/тыс. м³
   или \$7/тыс. фут.³)



Источник: Targa Resources



### Отраслевой Опыт – КурскГаз (Российская Газораспределительная Компания)

- Наняли компанию Heath Consultants для обследования 47 распределительных станций в ноябре 2005
  - Обследовали 1 007 комплектующих узлов
  - Выявили 94 утечки
- Используя пробоотборник большого объёма, подсчитали утечки в размере 900 000 м<sup>3</sup>/год
  - Первоначальное капиталовложение \$30 000
  - Доход от подтвержденных квот на выброс парниковых газов
- Основываясь на успехе, компания КурскГаз расширила анализ за пределы 47 изначальных станций и обследовала более 3 300 дополнительных комплектующих узлов





### Заключение: уроки усвоены

- Успешная, экономически эффективная программа ЦОТО требует проведения измерений утечек
- Пробоотборник большого объёма эффективное средство количественной оценки утечек и определения рентабельных ремонтных работ
- Относительное небольшое количество больших утечек служит источником основного объёма неорганизованных выбросов
- В области обнаружения утечек происходят существенные изменения благодаря новым технологиям, таким как инфракрасные камеры, которые облегчают и ускоряют ЦОТО





Natural Gas EPA POLLUTION PREVENTER

- Спутник Наблюдения за Парниковыми Газами (GOSAT):
  - Совместный проект JAXA (Японское Агенство по Исследованию Аэрокосмоса), МОЕ (Минстерство Окружающей Среды) и NIES (Национальный Институт по Изучению Окружающей Среды)
- Наблюдает за концентрациями ПГ с орбиты
  - Пассивная система наблюдения
    - Рассчитывает концентрацию газа по интенсивности отраженного солнечного излучения, которое поглощается ПГ
    - Широкий диапазон длин волн (от ближнего ИК до теплового ИК)
  - Запланированный запуск: начало 2009


#### Общее представление о системе определения утечек в газовых магистралях с использованием GOSAT

Этап-1: Спутниковое наблюдение утечек на газопроводе

Этап-2: Передача и анализ данных

Этап-3: Исследование наземной поверхности на основе результатов анализа

Этап-4: Уменьшение негативных эффектов







### Подведение итогов

- Вопросы?
- Дополнительная информация
  - http://www.epa.gov/gasstar/tools/recommended.
     html
  - http://www.capp.ca/getdoc.aspx?DocId=116116&DT=PDF
- Спасибо
- Дейв Пикар, Clearstone Engineering, Ltd
- dave.picard@clearstone.ca