

Leak Measurement Techniques

Methane to Markets Partnership Workshop

October 4, 2010, Moscow, Russia Dave Picard

Leak Detection – IR Cameras

- Advantages:
 - Easy and efficient to use (fast leak detection).
 - Real-time qualitative indication of leak rate.
 - Allows remote leak detection.

Leak Detection – IR Cameras

- Disadvantages:
 - Sees methane, VOCs and steam
 - Expensive (\$70,000 to \$120,000 US)
 - Not effective during rain, snow, sleet, drizzle or fog

Why Quantify Emission Rates?

- Justification for repair/control costs
- Prioritization and optimization of efforts?
- Objective performance monitoring
- Potential to generate marketable GHG credits and value avoided gas losses

Key Measurement Parameters:

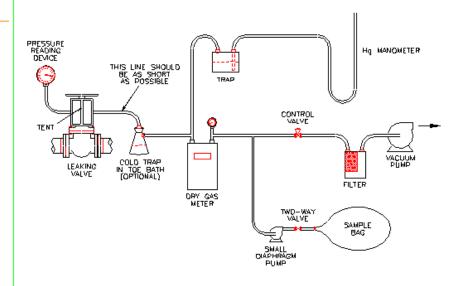
- Temperature
- Pressure
- CH₄ Concentration
- Volumetric Flow

Performance Requirements

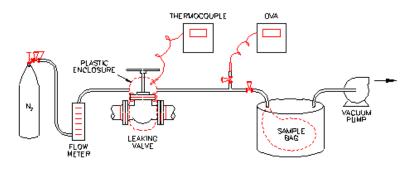
- Practical and safe to use in the field
- Reasonable cost
- Readily available
- Sufficient accuracy for economic evaluations (e.g., 25% or better)
- Greater accuracy for carbon credit projects (e.g., 15% or better)

Measurements at the Source

- Typical Applications:
- Equipment leaks, venting and flaring.
- Basic constraints:
- Requires easy or supplied access to source.
- Potential Issues:
- ✓ Safety concerns (H2S or relief events).
- ✓ Backpressure limitations.
- High or cold temperature surfaces.
- ✓ Fouling (e.g., condensing vapor or lube oil mist)

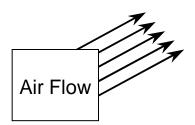

Measurements at the Source:

- Methods:
 - ✓ Bagging
 - Time consuming and costly to apply.
 - Applicable for small to moderate leak rates.
 - ✓ Hi-Flow Sampler
 - □ Convenient approach for smaller to medium sized leaks (e.g., 8 to 10 scfm or \$25,200 to \$31,500/y at \$6/mscf).
 - ✓ End-of-Pipe Capture & Measurement Techniques
 - Calibrated Bag
 - Full-flow flow meters.
 - Velocity Traverses
 - ✓ Inline Measurements
 - Velocity Traverses
 - Tracer Techniques



VACUUM METHOD

BLOW-THROUGH METHOD


HiFlow Sampler

Leaking Valve Stem

Instrument

Compressor Seal Vents:

- Causes of Emissions:
 - Seal wear.
- Typical Measurement Problems:
 - Potentially multiple leakage points:
 - Centrifugal:
 - Lube oil degassing reservoir.
 - Seal Vent
 - Reciprocating compressors:
 - Distance piece and packing case vents
 - Lube oil drain tank vent.
 - Crank case vent.
 - Potentially large flows.
 - Minimal tolerance to any back-pressure.
 - Fouling due to lube oil mist.

Compressor Seal Vents:

Typical Measurement Problems:

- Oily roof-tops and limited roof-top access.
- Lack of ports on vent lines.
- Possibly weather caps on vent outlets.

Measurement Approaches.

- Vane anemometers.
- Diaphragm meters or calibrated bags where some backpressure can be tolerated.
- Hi-Flow Sampler
- Quantitative remote sensing methods.
- Permanent Solutions:
 - Flow switches.
 - Rotameters.

Blowdown and Vent Systems:

- Causes of Emissions (During Passive Periods):
 - Purge gas.
 - Leakage past the seats of blowdown/relief valves (5 to 10% leak and 1 to 2% of these contribute over 75% of the emissions)
 - Blowdown or drain valves not fully closed
 - Compressor seals
- Typical Measurement Problems:
 - Potentially large flows
 - Difficulty accessing end of pipe
 - Limited or no suitable ports for insertion of velocity probes.

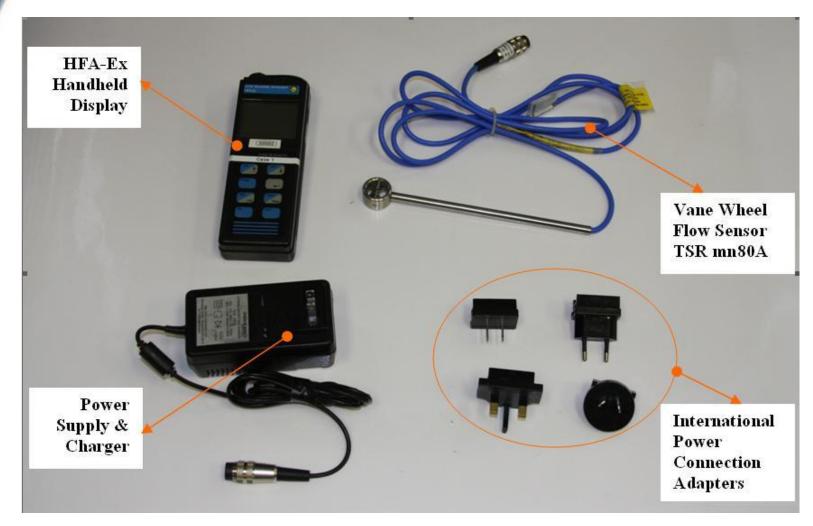
Blowdown and Vent Systems:

Typical Measurement Problems:

- Low flow velocities.
- Potentially wet or fouling environment inside pipe.
- Safety concerns (relief episodes).

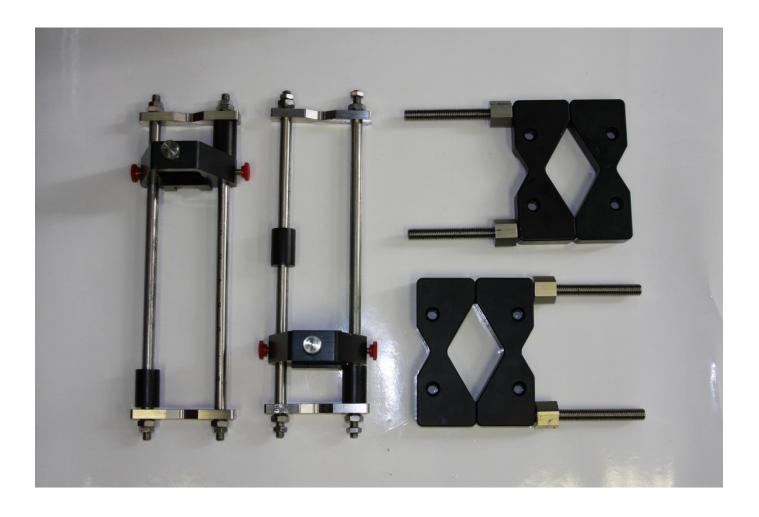
Measurement Approaches.

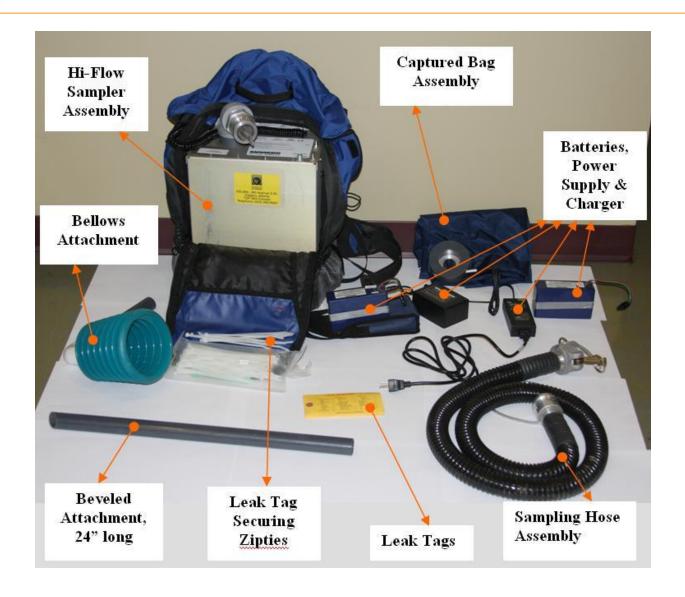
- Micro-tip vane and thermal dispersion anemometers.
- In-line tracer tests.
- Ultrasonic sensors (portable & online).
- Remote sensing methods.
- Permanent Solutions:
 - Ultrasonic transit-time flow meters.
 - Flow switches.



Vane Anemometer:

Pitot Tube





Hi-Flow Sampler

Conclusions on Leak Measurement:

- A selection of measurement techniques is needed.
- Instrumented solutions are the best choice for large potential emitters:
 - Compressor seals
 - ☐ Flare and vent systems
 - Metering of gas blanketing systems