

BP Experiences in Methane Emissions Mitigation

Turkmenistan Meeting

November 9, 2011 Farmington, New Mexico

Reid Smith BP

Senior GHG and Air Quality Advisor

Agenda

- Centrifugal Compressor Wet Seals
- Retrofitting/Installing Dry Seals
- Background of North Slope Study
- Overview of North Slope Operations
- Central Compressor Plant
- Sour Seal Oil Vapor Recovery System
- Early Results: BP Measurements of CCP
- Preliminary Results: Velocity Measurements
- Applicability/Benefits
- Conclusions and Next Steps
- Contact Information

Centrifugal Compressor Wet Seals

- High pressure seal oil circulates between rings around the compressor shaft
- Oil absorbs the gas on the inboard side
 - Little gas leaks through the oil seal
 - Seal oil degassing vents methane to the atmosphere
- Wet seals leak little gas at the seal face
- Most emissions are from seal oil degassing
- Seal oil degassing may vent 1.1 to 5.7 m³/minute
- One Natural Gas STAR
 Partner reported emissions as high as 2,124 m³/day

Source: PEMEX

Traditional Solution: Retrofitting/Installing Dry Seals

- Ory seals:
 - 0.8 to 5.1 m³/hour (0.01 to 0.08 m³/ minute) leak rate
 - Significantly less than the 1.1 to 5.7 m³/minute emissions from wet seals
- Very cost-effective option for new compressors
- Significant capital costs and downtime for retrofitting compressors
 - See Lessons Learned for more info
- Alternative exists for more cost-effective seal oil degassing and vapor recovery retrofit with less downtime

Dry seals keep gas from escaping while rotating with the shaft

Background of North Slope Study

- Natural Gas STAR learned of anecdotal information on this potential mitigation opportunity a few years back
 - Developed a theoretical example and presented to Natural Gas STAR Partners at workshops and in the Spring 2009 Newsletter
- In taking measurements, BP discovered their wet seal recovery system on centrifugal compressors at its North Slope facilities
 - BP's initial results showed recovery of >99% of seal oil gas that would be otherwise vented to atmosphere from degassing tank
- Led to BP and Natural Gas STAR collaboration on detailed measurement study of alternative wet seal capture mitigation opportunity
 - Recovery system that separates gas from the sour seal oil before being sent to the degassing tank
 - Recovered gas sent to various outlets: flare, low pressure fuel, turbine fuel
 ~273 psig (18.6 Bar), compressor suction
 - System leads to lower emissions from degassing tank vent (more details on following slide)

Overview of North Slope Operations

Central Compressor Plant (CCP)

- World's largest compressor station (~238 MMcm/day capacity)
- Receives residue gas from CGF, compresses to higher pressures, and sends to gas injection wellpads (~200 MMcm/day at 3,600 to 4,000 psig)
- ♦ 15 compressors (totaling 537,000 HP)
 - Nine low pressure (1st stage) compressors in parallel
 - Four high pressure (2nd stage) compressors in parallel
 - Two tandem compressors (1st and 2nd stages) in parallel
- Seal oil vapor recovery lines sent to flare or fuel gas (for compressor turbines, heaters, and blanket gas)

Sour Seal Oil Vapor Recovery System

NaturalGas

bp

Seal Oil Degassing Separator/System

Seal Oil Degassing Separators

Early Results: BP Measurements of CCP

- Table shows initial measurements taken by BP from a low- and highpressure compressor at CCP <u>before</u> study
- Used nitrogen as "tracer gas" to calculate methane and total hydrocarbon flow-rates
- Recovered Gas: 0.92 MMSCFD LP; 3.7 MMSCFD HP Turbine Fuel

	High-Pressure Compressor	Low-Pressure Compressor
Nitrogen Purge Rate (SCF/Hr)	33	25
Vent Analysis (mole%)		
Nitrogen	43.846	86.734
Methane	37.872	6.93
Total Hydrocarbon + CO2	56.1540	13.2660
Total Methane Flow (SCFM)	0.4751	0.0333
Total Process Gas Flow (SCFM)	0.7044	0.0637
Number of Seals	2	2
Total Methane Flow (SCFM/Seal)	0.2375	0.0166
Total Process Gas Flow (SCFM/Seal)	0.3522	0.0319
"Average" Total Gas/Seal (SCFM)	108	108
Control Percentage	0.997	1.000

Preliminary results: Velocity Measurements

- Table shows vane anemometer measurements taken prior to and during the study
- Full results of study are not yet final, but initial results from CCP measurements show generally consistent with BP's results from before the study

			CCB Valasi	ty Boodings	During	Ctudy						
			CCP Veloci		s - During		4.84%	4.84%	Mont	1		NO D
E 1116 -	O	0		# of Seals	\/	1 Min	1 Min	1 Min	Vent	£		N2 Purge
Facility	Compressor rag	Compressor description		per Tank	Vent size		Mean	Mean	Area ft2	fpm	scf/min	scf/min
000	16.40.4004	1 1 01 1 1	D : T ! ! !		in	m/s	m/s	m/s	0.000	00.0		
CCP	K-18-1801	1st Stage Injection comp		2	2	0.36	0.38	0.28	0.022	66.9	1.5	
l			Seal Oil Reservoir									
			Vent		4	0.35	0.34	0.37	0.087	69.5	6.1	
l		2nd Stage Injection										I
CCP	K-18-1809	comp	Degassing Tank Vent	2	2	0.42	0.4	0.2	0.022	66.9	1.5	
l			Seal Oil Reservoir									I
			Vent		4	0.6	0.57	0.81	0.087	129.9	11.3	
			Velocity I	Readings - F	Prior to St	udy						
	K-E3-	Main A (1st, 2nd, 3rd										
END	1510/20/30A	stages)	Degassing Tank Vent	6	2	0.86	0.8	0.48	0.022	140.4	3.1	
	K-E3-											I
END	1510/20/30A	second vent	Degassing Tank Vent	6	6	0.87	0.52	0.71	0.196	137.8	27.1	
											30.1	
	K-E3-	Main B (1st, 2nd, 3rd										
END	1510/20/30B		Degassing Tank Vent	6	2	3.84	3.5	3.15	0.022	688.1	15.0	
	K-E3-	J /	3 3									
END	1510/20/30B	second vent	Degassing Tank Vent	6	6	2.68	2.14	4.67	0.196	622.5	122.3	
LIND	1010/20/00B	occoria vent	Događanig rank vent		_	2.00	2.17	7.07	0.100	022.0	137.3	
		Booster B (1st & 2nd		-							137.3	
END	C-1501/02B		Degassing Tank Vent	2	2	0.64	0.42	0.67	0.022	113.5	2.5	
				2	2							
END	C-1501/02B	second vent	Degassing Tank Vent	2		0.54	0.39	0.46	0.021825	91.2	2.0	
											4.5	
LPC	K-52-1807	Reinjection Compressors		2	2	0.82	0.91	0.83	0.022	167.9	3.7	
	K-52-1808	Reinjection Compressors			2	1.44	1.73	1.6	0.022	312.9	6.8	
	K-42-1801	STV/IP Compressors	Degassing Tank Vent	2	2	0.82	0.93	1.06	0.022	184.3	4.0	
LPC	K-42-1801	Second vent	Degassing Tank Vent		4	0.96	0.58	0.52	0.087	135.1	11.8	
											15.8	
CCP	K-18-1801	1st Stage Injection comp	Degassing Tank Vent	2	2	0.3	0.33	0.32	0.022	62.3	1.4	
CCP	K-18-1802	1st Stage Injection comp	Degassing Tank Vent	2	2	0.54	0.56	0.45	0.022	101.7	2.2	
CCP	K-18-1803	1st Stage Injection comp	Degassing Tank Vent	2	2	0.45	0.15	0.19	0.022	51.8	1.1	
CCP	K-18-1804		Degassing Tank Vent	2	2	0.05	0.17	0.06	0.022	18.4	0.4	
	K-18-1805	1st Stage Injection comp		2	2	2.65	2.67	2.52	0.022	514.3	11.2	
	K-18-1806		Degassing Tank Vent	2	2	0.38	0.74	0.56	0.022	110.2	2.4	
CCP	K-18-1807	1st Stage Injection comp		2	2	0	0.04	0.22	0.022	17.1	0.4	
	K-18-1808	1st Stage Injection comp		2	2	0.2	0.09	0.09	0.022	24.9	0.5	
	K-18-1813		Degassing Tank Vent	2	2	0.54	0.64	0.65	0.022	120.0	2.6	\vdash
-	10-1010	2nd Stage Injection	Događaniy rank Vent			0.04	0.04	0.00	0.022	120.0	2.0	
CCP	K-18-1809	comp	Degassing Tank Vent	2	2	0.54	0.42	0.29	0.022	82.0	1.8	
CCP	17-10-1009		pegassing rank vent	- 4		0.54	0.42	0.29	0.022	02.0	1.0	\vdash
CCD	V 40 4040	2nd Stage Injection	Democring Tools Veet	2	2	4 47	0.40	0.34	0.000	129.2	1	
CCP	K-18-1810	comp	Degassing Tank Vent			1.17	0.46	0.34	0.022	129.2	2.8	\vdash
000	V 40 4044	2nd Stage Injection	Democratical Temporal				4.00	0.50	0.000	000 =	1.0	
CCP	K-18-1811	comp	Degassing Tank Vent	2	2	1.44	1.38	0.59	0.022	223.7	4.9	\vdash
		2nd Stage Injection									l	
CCP	K-18-1812	comp	Degassing Tank Vent	2	2	0.38	0.43	0.4	0.022	79.4	1.7	
		L										
	K-19-1802A/B	Booster #2	Degassing Tank Vent	2	3	0.26	0.31	0.93	0.049	98.4	4.8	igsquare
CGF	K-19-1802A/B	Second vent	Degassing Tank Vent		3	0.36	0.25	0.82	0.049	93.8	4.6	
											9.4	$oxed{oxed}$
CGF	K-19-1805	MI Compressor	Degassing Tank Vent	2	2	0.49	0.4	0.38	0.022	83.3	1.8	
CGF	K-19-1805	Second vent	Degassing Tank Vent		2	9.98	9.55	9.77	0.022	1922.1	42.0	
											43.8	
					_		_					

CCP Compressor Vent Measurement

Close-up

FLIR Camera Verification

Applicability/Benefits to Oil and Gas Companies

- Sased on the results of this study, this sour seal oil vapor recovery system could prove to be an economic alternative to dry seal retrofits on centrifugal compressors
 - Dry seals on new compressors are now more prevalent in industry—typically cheaper than wet seals
 - Dry seal retrofits on older compressors are still very high in cost;
 ~\$250,000 to \$1 million per compressor
 - Sour seal oil vapor recovery system on wet seals compressors much lower in capital cost, requires short duration compressor shutdown, or interruption in gas service
- Project characterization could provide companies with a way to both reduce methane emissions and utilize recovered gas <u>cost-effectively</u>

Applicability/Benefits

- Investment includes cost of:
 - Intermediate degassing drum ("sour seal oil trap")
 - New piping
 - Gas demister/filter
 - Pressure regulator for fuel gas line
- Project summary:
 - Less expensive capital costs compared to dry seals
 - Prevents most seal oil gas emissions from venting to atmosphere while also improving site efficiency
 - Positive cash flow after less than a month

PROJECT SUMMARY: CAPTURE AND USE OF SEAL OIL DEGASSING EMISSIONS							
Operating Requirements	Centrifugal compressor with seal oil system						
	Nearby use for low pressure fuel gas						
	New intermediate pressure flash drum, fuel filter, pressure regulator						
Capital & Installation Costs	\$22,000 ¹						
Annual Labor & Maintenance Costs	Minimal						
Methane saved	1.8 million m ³						
Gas Price per Mcm	\$105	\$175	\$250				
Value of Gas Saved	\$189,000	\$315,000	\$450,000				
Payback Period in Months	1.4	0.8	0.6				

¹Assuming a typical seal oil flow rate of 14.20 liters/minute (3.75 gallons/minute)

Conclusions and Next Steps

- Preliminary results are promising and indicate that sour seal oil vapor recovery from centrifugal compressors can be a viable project option for companies
- BP and Natural Gas STAR currently analyzing data obtained during study
- BP and Natural Gas STAR will continue to collaborate on this study to fully characterize the seal oil vapor recovery system seen on the North Slope
- Team to publish more detailed results of study in a future article

Contact Information

For further details, direct questions to:

Roger Fernandez

Natural Gas STAR

fernandez.roger@epa.gov

+1 (202) 343-9386

Reid Smith

BP

gordon-reid.smith@bp.com

+1 (281) 384-3583

Sandy Seastream

ICF International

sseastream@icfi.com

+1 (703) 218-2562