

Natural Gas Dehydrator Optimization

IAPG & US EPA Technology Transfer Workshop

November 5, 2008 Buenos Aires, Argentina

Natural Gas Dehydration: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

Methane Losses from Dehydrators

- Dehydrators and pumps account for:
 - 15% of methane emissions in the U.S. production, gathering, and boosting sectors (excl. offshore operations)

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2005.* April, 2007. Available on the web at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/ResourceCenterPublicationsGHGEmissions.html Natural Gas STAR reductions data shown as published in the inventory.

What is the Problem?

- Produced gas is saturated with water, which must be removed for gas transmission
- Glycol dehydrators are the most common equipment to remove water from gas
 - 2.000 estimated dehydration units in NG production, gathering, and boosting in Argentina
 - Most use Triethylene Glycol (TEG)
- Glycol dehydrators generate emissions
 - Methane, Volatile Organic Compounds (VOCs), Hazardous Air Pollutants (HAPs) from reboiler vent
 - Methane from pneumatic controllers

Source: www.prideofthehill.com

Basic Glycol Dehydrator System Process Diagram

Methane Recovery Options

- Optimize glycol circulation rates
- Flash tank separator (FTS) installation
- Electric pump installation
- Zero emission dehydrator
- Replace glycol unit with desiccant dehydrator
- Other opportunities

Optimizing Glycol Circulation Rate

- Gas pressure and flow at wellhead dehydrators generally declines over time
 - Glycol circulation rates are often set at a maximum circulation rate
- Glycol over-circulation results in more methane emissions without significant reduction in gas moisture content
 - Partners found circulation rates two to three times higher than necessary
 - Methane emissions are directly proportional to circulation
- Lessons Learned study: optimize circulation rates

Installing Flash Tank Separator (FTS)

- Methane that flashes from rich glycol in an energy-exchange pump plus bypass gas can be captured using an FTS
- Many units are <u>not</u> using an FTS

Source: API survey

FTS Methane Recovery

- Recovers about 90% of methane emissions
- Reduces VOCs by 10 to 90%
- Must have an outlet for low pressure gas
 - Fuel
 - Compressor suction
 - Vapor recovery unit

Low Capital Cost/Quick Payback

Flash Tank Costs

- U.S. EPA Lessons Learned study provides guidelines for scoping costs, savings and economics
- Capital and installation costs:
 - Capital costs range from US\$3.500 to US\$7.000 per flash tank
 - Installation costs range from US\$1.200 to US\$2.500 per flash tank
- Negligible Operational & Maintenance (O&M) costs

Electric Pump Eliminates Motive Gas

Is Recovery Profitable?

Three options for minimizing glycol dehydrator emissions

Option	Capital Costs (US\$)	Annual O&M Costs (US\$)	Emissions Savings (Mm³/year)	Payback Period ¹
Optimize Circulation Rate	Negligible	Negligible	11 to 1.116	Immediate
Install Flash Tank	6.500 to 18.800	Negligible	20 to 301	0,9 to 4,6 years
Install Electric Pump	1.400 to 13.000	165 to 4.300	10 to 1.019	< 1 year to several years

¹ Gas price of US\$70,63/Mm³

Overall Benefits

- Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs (fuel gas, glycol makeup)
- Reduced hazardous air pollutants (BTEX)
- Electric pump similar footprint as gas assist pump

Zero Emission Dehydrator

- Combines many emission saving technologies into one unit
 - Vapors in the still gas coming off of the glycol reboiler are condensed in a heat exchanger
 - Non-condensable skimmer gas is routed back to the reboiler for fuel use
 - Electric driven glycol circulation pumps used instead of energy-exchange pumps
 - Electric control valves replace gas pneumatics

Overall Benefits: Zero Emissions Dehydrator

- Reboiler vent condenser removes heavier hydrocarbons and water from non-condensables (mainly methane)
- The condensed liquid can be further separated into water and valuable gas liquid hydrocarbons
- Non-condensables (mostly methane) can be recovered as fuel or product
- By collecting the reboiler vent gas, methane (and VOC/HAP) emissions are greatly reduced
- Gas pneumatic control valve vents eliminated

Replace Glycol Unit with Desiccant Dehydrator

- Desiccant Dehydrator
 - Wet gasses pass through drying bed of desiccant tablets
 - Tablets absorb moisture from gas and dissolve
- Moisture removal depends on:
 - Type of desiccant (salt)
 - Gas temperature and pressure

Source: Van Air

Hygroscopic Salts	Typical T and P for Pipeline Spec	Cost	
Calcium chloride	<8°C @ 30 atm	Least expensive	
Lithium chloride	<16°C @ 17 atm	More expensive	

Desiccant Performance

 Desiccant performance at maximum pipeline moisture spec (112 grams water / Mm³)

Desiccant Dehydrator Scheme

Desiccant Dehydrator Savings: Gas Vented from Glycol Dehydrator

Example:

GV = ?

 $F = 28,32 \text{ Mm}^3/\text{day}$

 $W = 336-112 \text{ gr H}_2\text{O/Mm}^3$

R = 0.025 L/gr

OC = 150%

 $G = 0.022 \text{ m}^3/\text{L}$

Where:

GV= Gas vented annually (Mm³/year)

F = Gas flow rate (Mm³/day)

W = Inlet-outlet H₂O content (gr/Mm³)

R = Glycol/water ratio (rule of thumb)

OC = Percent over-circulation

G = Methane entrainment (rule of thumb)

Calculate:

GV = (F * W * R * OC * G * 365days/year)

1.000 m³/Mm³

 $GV = 1,95 \text{ Mm}^3/\text{year}$

Glycol Dehydrator Unit Source: GasTech

Desiccant Dehydrator Savings: Gas Vented from Pneumatic Controllers

Example:

GE = ?

PD = 4

EF = 3,57 Mm³/device/year

Where:

GE = Annual gas emissions (Mm³/year)

PD = Number of pneumatic devices per dehydrator

EF = Emission factor

(Mm³ natural gas leakage/ pneumatic devices per year)

Calculate:

GE = EF * PD

GE = **14,27 Mm³/year**

Source: norriseal.com

Norriseal Pneumatic Liquid Level Controller

Desiccant Dehydrator Savings: Fuel Gas for Glycol Dehydrator

- Gas fuel for glycol reboiler
 - 28 Mm³/day dehydrator
 - Removing 224 gr water/Mm³
 - Reboiler heat rate:313 kJ/L TEG
 - Heat content of natural gas: 38.265 kJ/m³
- Fuel requirement:
 - 0,48 Mm³/year

- Gas fuel for gas heater
 - 28 Mm³ dehydrator
 - Heat gas from 8°C to 16°C
 - Specific heat of natural gas: 1,843 kJ/kg-^oC
 - Density of natural gas:
 0,806 kg/m³
 - Efficiency: 70%
- Fuel requirement:

13,67 Mm³/year

Desiccant Dehydrator Savings: Gas Lost from Desiccant Dehydrator

Example:

GLD = ?

ID = 20 inch (0,508 m)

%G = 45%

 $P_1 = 1$ atm

 $P_2 = 31 \text{ atm}$

T = 7 days

Where:

GLD = Desiccant dehydrator gas loss (Mm³/year)

ID = Inside Diameter (m)

H = 76.75 inch (1,949 m) H = Vessel height by vendor specification (m)

%G = Percentage of gas volume in the vessel

 P_1 = Atmospheric pressure (atm)

 P_2 = Gas pressure (atm)

T = Time between refilling (days)

Calculate:

GLD =
$$H * ID^2 * \pi * P_2 * %G * 365 days/year$$

 $4 * P_1 * T * 1.000 m^3/Mm^3$

$$GLD = 0,28 \text{ Mm}^3/\text{year}$$

Desiccant Dehydrator Savings:

Gas vented from glycol dehydrator:

1,95 Mm³/year

Gas vented from pneumatic controls:

+ 14,27 Mm³/year

Gas burned in glycol reboiler:

+ 0,48 Mm³/year

Gas burned in gas heater:

+ 13,67 Mm³/year

Minus desiccant dehydrator vent:

- 0,28 Mm³/year

Total savings:

30,09 Mm³/year

Value of gas savings¹:

US\$2.126/year

Desiccant Dehydrator and Glycol Dehydrator Cost Comparison

Type of Costs and Savings	Desiccant (US\$/yr)	Glycol (US\$/yr)	
Implementation Costs			
Capital Costs Desiccant (includes the initial fill) Glycol Other costs (installation and engineering)	16.097 12.073	24.764 18.573	
Total Implementation Costs:	28.169	43.337	
Annual Operating and Maintenance Costs			
Desiccant Cost of desiccant refill US(\$1,50/pound) Cost of brine disposal Labor cost	2.556 14 1.040		
Glycol			
Cost of glycol refill (US\$4,50/gallon) Material and labor cost		206 3.054	
Total Annual Operation and Maintenance Costs:	3.610	3.260	

Based on 28 Mm³ per day natural gas operating at 30 atm and 8°C Installation costs assumed at 75% of the equipment cost

Desiccant Dehydrator Economics

- Payback= 8,9 years
 - Without potential carbon market benefits

Type of Costs						
and Savings	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Capital costs (US\$)	-28.169					
Avoided O&M						
costs (US\$)		3.260	3.260	3.260	3.260	3.260
O&M costs -						
Desiccant (US\$)		-3.610	-3.610	-3.610	-3.610	-3.610
Value of gas						
Saved 1(US\$)		2.126	2.126	2.126	2.126	2.126
Glycol dehy.						
salvage value ² (US\$)	12.382					
Total (US\$)	-15.787	1.776	1.776	1.776	1.776	1.776

¹ Gas price = US\$70,63/Mm³

² Salvage value estimated as 50% of glycol dehydrator capital cost

Industry Experiences

- One Partner installed flash tank separators on its glycol dehydrators
 - Recovers 98% of methane from glycol degassing
 - 34 to 47 Mm³/year reductions per dehydrator
 - US\$2.370 to US\$3.318/year¹ savings per dehydrator
- Another Partner routes gas from flash tank separator to fuel gas system
 - 248 Mm³/year reductions per dehydrator
 - US\$17.520/year¹ savings per dehydrator

Lessons Learned

- Optimizing glycol circulation rates increase gas savings, reduce emissions
 - Negligible cost and effort
- FTS reduces methane emissions by about 90 percent
 - Require a low pressure gas outlet
- Electric pumps reduce O&M costs, reduce emissions, increase efficiency
 - Require electrical power source
- Zero emission dehydrator can virtually eliminate emissions
 - Requires electrical power source
- Desiccant dehydrator reduce O&M costs and reduce emissions compared to glycol
- Miscellaneous other PROs can have big savings

Miscellaneous Other PROs

 Available in Spanish language at epa.gov/gasstar/tools/spanish/index.html

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits