

Reducción de las Emisiones de Metano Mediante Inspección y Mantenimiento Dirigido (I&MD)

Taller de Transferencia de Tecnología IAPG & US EPA

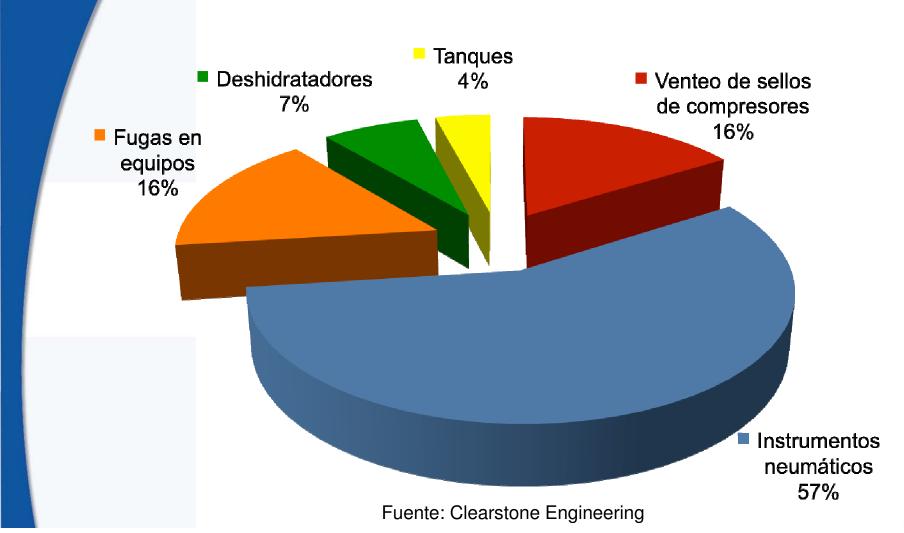
Noviembre 5, 2008 Buenos Aires, Argentina

Inspección y Mantenimiento Dirigido y Detección Infrarroja de Fugas: Agenda

- ¿Cuáles los son los equipos de detección de emisiones fugitivas?
- ¿Qué es la inspección y el mantenimiento dirigido (I&MD)?
- Detección infrarroja de fugas
- Experiencia de los Socios
- Discusión

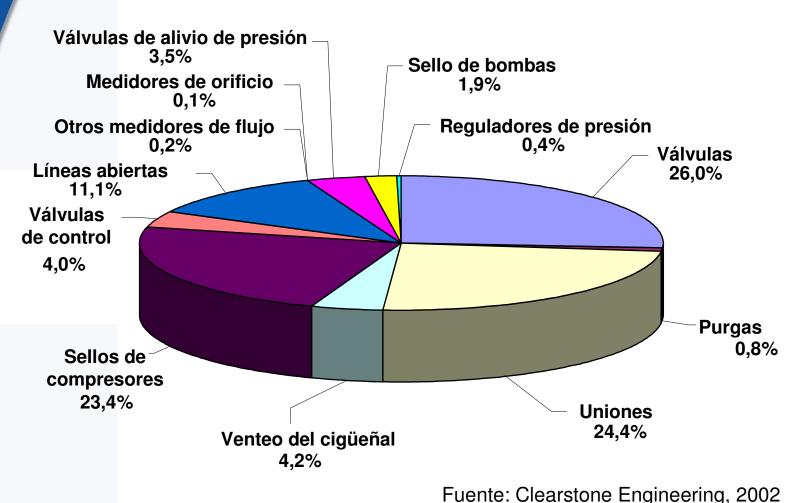
Características Importantes de las Fugas en Equipos

- Las emisiones fugitivas en equipos son la mayor fuente de emisiones de THC y CH₄ en las instalaciones de petróleo y gas
- La mayoría de estas emisiones provienen de pocas fugas grandes más que de muchas fugas pequeñas y medianas
- La reparación de las emisiones fugitivas es rentable en un 75 al 85% de los casos (frecuentemente el reembolso es <6 meses)
- Los componentes en servicio con gas fugan más que aquellos en servicio con líquido
- Los componentes en servicio con gas dulce tienden a fugar más que aquellos en servicio con gas ácido o gas odorizado
- El potencial de fuga tiende a incrementarse con el tiempo y el uso
- Los diversos componentes y aplicaciones del servicio tienen potenciales de fuga diferentes (p.ej., magnitud y probabilidad)
- Los componentes en servicio sometidos a vibración y a ciclos criogénicos o térmicos tienen un mayor potencial de fuga

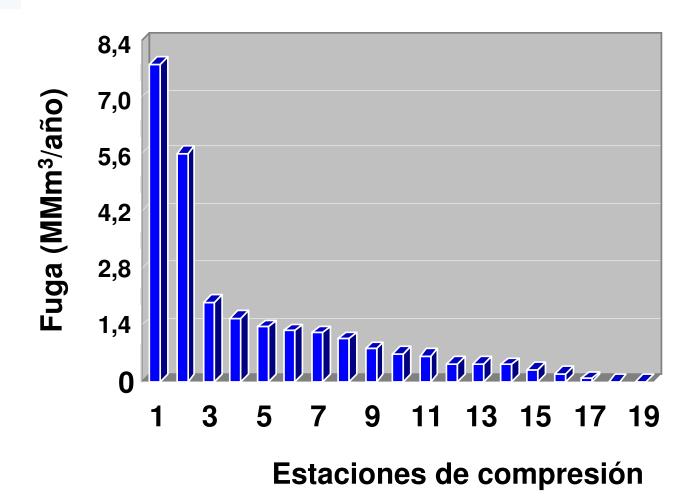

¿Por Qué se Presentan las Fugas Grandes?

 Las fugas grandes pasan desapercibidas porque se presentan en lugares de difícil acceso, de poco tránsito, en áreas congestionadas o ruidosas, o debido a que la cantidad fugada no es debidamente apreciada

 Las fugas grandes también se pueden presentar debido a aplicaciones severas /desgastantes, a altos costos, o a inconvenientes en las reparaciones



Emisiones de Metano en 76 Instalaciones de Producción


Distribución de las Pérdidas por **Tipo de Componente** (Procesamiento)

6

Fugas Medidas en Estaciones de Compresión

Fuente: Clearstone Engineering, 2002

Tendencias de Fuga en Diferentes Tipos de Instalaciones

Tipo de instalación	Instalación	Número de comp.	Frecuencia de fuga	Emisiones de todas las fuentes con fuga			Contribución a las emisiones THC		
		.,,,,,		THC	Metano	GEI	Valor	10 fuentes	5 fuentes
			[%]	10 ³ [m³/año]	[ton/año]	CO ₂ e [ton/año]	[US\$/año]	[%]	[%]
	GP-1	56 461	1.7	1 973	997	20 934	500 253	35	23
	GP-2	16 050	3.5	1 264	471	9 907	320 608	36	23
	GP-3	14 424	3,0	2 203	1 412	29 670	558 665	64	54 23
	GP-4	14 174	4.0	2 182	1 376	28 894	553 248	36	23
Planta de gas	GP-5	11 556	3,3	2 113	1 215	25 521	621 061	33	20
	GP-6	13 133	2.5	739	186	3 918	386 538	57	40
	GP-7	13 471	1,2	542	299	6 283	178 744	93	88
	GP-8	3 672	10,3	4 063	2 334	49 186	1 262 874	77	71
	GP-9	5 979	0.6	43	29	610	11 863	93	71
Total		148 920		15 123	8 320	174 923	4 393 854		
Promedio		16 547	2.5	1 680	924	19 436	488 206	54	43
	CS-1	608	5.1	198	110	2 312	61 572	90	66
	CS-2	4 626	1,1	166	98	2 053	49 184	83	71
Estaciones de compresión	CS-3	3 084	0,7	310	169	3 551	98 802	95	79
	CS-4	6 168	1.0	340	194	4 069	103 508	64	48
	CS-5	1 568	4,2	123	80	1 672	33 552	80	59
	CS-6	224	1,3	1	0	7	189	100	100
	CS-7	1 391	1,9	8	4	94	2 367	88	73
	CS-8	2 115	1,8	103	67	1 414	27 855	89	61
	CS-9	2 5 1 6	1/1	70	45	960	18 901	91	69
Total		22 300		1 317	767	16 131	395 928		
Promedio		2 478	1.5	146	85	1 792	43 992	83	64
Pozos	WS-1 to 3	1 474	0.2	2	1	18	501	100	100
	WS-4 to 8	1 617	1,5	1	1	13	351	88	66
	WS-9 to 12	1 797	0.4	2	1	30	585	100	99
Total		4 888		5	3	61	1 437		
Promedio		407	0,7	0	0	5	120	97	92

Fuente: Clearstone Engineering, 2004

¿Cuál Es la Práctica de Control Normal de Fuga?

- Realice una revisión de fugas (usando una prueba de espuma o un sensor de gas manual) en componentes de equipo cuando se instalen por primera vez, y después de la inspección y mantenimiento
- Posteriormente, las fugas se detectan mediante:
 - Inspectores de área o de edificio
 - Inspectores de personal
 - Indicadores de olor, audibles o visuales
- Las fugas sólo se arreglan si es fácil de hacerlo o si representan un problema obvio de seguridad
- Instalaciónes destechadas tienen menor atención que las techadas
- La prioridad después de un paro programado es reiniciar operaciones más que asegurar que todos los componentes afectados han sido inspeccionados por fugas

¿Qué Es la Inspección y Mantenimiento Dirigido?

Es un acercamiento factible y en marcha, para lograr reducciones significativamente rentables en las emisiones fugitivas del equipo

- Detecta las grandes fugas de manera eficiente
 - Enfoca los esfuerzos en las fuentes más comúnes de gandes fugas con una detección burda o menos frecuente de otros componentes
- Sólo se reparan los componentes que son rentables o que representan un problema de seguridad o ambiental
- Minimiza el potencial de grandes fugas y provee una detección temprana y reparación cuando estas ocurren

¿Cuáles son los beneficios de la I&MD?

- Periodo de retorno atractivo (frecuentemente <6 meses)
- Reducción de los costos de mantenimiento
- Reducción de los tiempos muertos
- Mejora de la eficiencia del proceso
- Ambiente laboral más seguro
- Ambiente más limpio
- Conservación de recursos

¿En Dónde Deberían Enfocarse los Esfuerzos de Monitoreo de Fugas?

Tabla 1. Estadística de muestras de fugas en instalaciones de transmisión.							
Fuente	Número de fuentes	Frecuencia de fuga	Emisiones promedio (kg/h/fuente)	Procentaje de la población del componente	Contribución a las emisiones totales (%)	Potencial de fuga relativo	
Estación o sistema de purga presurizado ⁶	219	59,8	3,41E+00	0,131	53,116	7616	
Sello de compresores – centrífugos	103	64,1	1,27E+00	0,062	9,310	2838	
Sellos de compresores— Reciprocantes ²	167	40,1	1,07E+00	0,100	12,764	2400	
Válvula de alivio de presión	612	31,2	1,62E-01	0,366	7,062	362	
Línea abierta	928	58,1	9,18E-02	0,555	6,070	205	
Medidor de orificio ⁷	185	22,7	4,86E-02	0,111	0,641	109	
Válvula de control ⁴	782	9	1,65E-02	0,468	0,919	37	
Regulador de presión	816	7	7,95E-03	0,488	0,462	18	
Válvula ⁹	17029	2,8	4,13E-03	10,190	5,011	9	
Unión ³	145829	0,9	4,47E-04	87,264	4,644	1	
Otro medidor de flujo ⁸	443	1,8	9,94E-06	0,265	0,000	0,02	

Fuente: Clearstone Engineering, 2007

¿Qué tan Frecuentemente Deberían Ser Monitoreados los Componentes?

Frecuencias sugeridas de monitoreo para componentes de equipo,							
presentadas por categoría y tipo de componente.							
Fuente Categoría	Tipo de Componente	Servicio	Aplicación	Frecuencia			
Equipo de procesamiento	Uniones y tapas	Todos		Inmediatamente después de cualquier ajuste y una vez cada 5 años			
		Todos	Ciclo térmico	Bi-anual			
		Todos	Vibración	Anual			
	Válvulas de control	Gas/Vapor/LPG		Anual.			
		Gas/Vapor/LPG	Ciclo térmico	Bi-anual.			
	Válvulas de bloqueo – vástago	Gas/Vapor/LPG	Todos	Anual			
	Válvulas de bloqueo, cuarto de vuelta	Gas/Vapor/LPG	Todos	Una vez cada 5 años			
	Sello de compresores	Todos	Todos	Mensual			
	Sellos de bombas	Todos	Todos	Trimestral			
	Válvulas de alivio de presión	Todos	Todos	Anual			
	Líneas abietas	Todos	Todos	Anual			
	Venteo de emergencia y sistemas de purgas ¹	Todos	Todos	Trimestral			
Sistemas de recolección	Escotilla de tanques	Todos	Todos	Mensual			
de vapores	Válvulas de seguridad de presión-vacío	Todos	Todos	Mensual			

Fuente: Clearstone Engineering, 2006

¿Cómo Se Implementa la I&MD?

REALICE una inpsección (línea base)

DETECTE y MIDA las fugas

ENFÓQUECE en las fugas puntuales

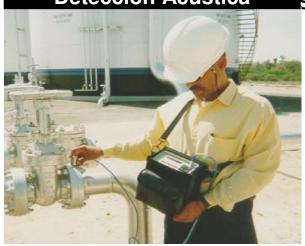
ESTIME los costos de reparación, repare de acuerdo a un critério de retorno de inversión

DESARROLLE un plan para futuras I&MD

REGISTRE los ahorros / REPORTELOS a Natural Gas

¿Cómo Implementa Usted la I&MD?

Detección – encuentre las fugas


- Detección con espuma de jabón
- Detección electrónica ("olfateador")
- Analizador de vapores tóxicos (TVA por sus siglas en inglés)
- Analizador de vapores orgánicos siglas en inglés)
- Detección ultrasónica
- Detección acústica de fugas
- Detección infrarroja de fugas

Analizador de Vapores Tóxicos (TVA)

Detección Acústica

¿Cómo Implementa Usted la I&MD?

- Evalúe las fugas detectadas mida los resultados
 - High Volume Sampler
 - Tecnologías de fin de tubo
 - Velocidad de desplazamiento
 - Rotámetros
 - Embolsado calibrado
 - Analizador de vapores tóxicos (factores de correlación)

Medición de fugas usando el High Volume Sampler

¿Cómo Implementa Usted la I&MD?

Resumen de las Técnicas de Detección y Medición					
Instrumento/Técnica	Efectividad	Costo de capital aproximado			
Solución de Jabón	**	\$			
Detector de Gas Electrónico	*	\$\$			
Detector Acústico / Ultrasónico	**	\$\$\$			
TVA (Detector de Ionización de Flama)	*	\$\$\$			
Embolsado Calibrado	*	\$\$			
High Volume Sampler	***	\$\$\$			
Mediciones de Flujo de Fin de Tubo	**	\$\$			
Tetección Infrarroja de Fugas	***	\$\$\$\$			
Fuente: EPA's Lessons Learned					

^{*} Detección/medición menos efectiva

^{\$ -} Costo de capital menor

^{***} Detección/medición más efectiva

Estimación de los Costos Globales de la Inspección de Fugas

- Costo de una inspección completa usando el high volume sampler (planta de proceso)
 - Entre US\$15.000 y US\$20.000 por planta de tamaño mediano
 - Regla de dedo: US\$1 por componente para una planta de procesamiento promedio
 - El costo por componente en sitios de producción remotos debería ser mayor a US\$1
- Reducción del 25 al 40% de los costos en una inspección de seguimiento
 - Se enfoca en las fuentes de fuga con más probabilidades (p.ej. Los compresores)

I&MD Mediante Detección Infrarroja

Detección en tiempo real de las fugas de metano

- Identificación más rápida de las fugas
- Detecta cientos de componentes en una hora
- Detecta áreas inaccesibles simplemente por observación

Detección Infrarroja de Fugas

Fuente: Leak Surveys Inc.

Detector Remoto de Fugas de Metano

Fuente: Heath Consultants

Detección Infrarroja de Fugas de Metano

Video de emisiones fugitivas detectadas por diversos dispositivos infrarrojos

¿Es Rentable la Recuperación?

Repare los Componentes Rentables						
Componente	Precio del gas¹ (US\$)	Costo estimado de reparación (US\$)	Retorno(me ses)			
Conexión de la válvula: cuerpo	8.428	200	0,3			
Unión: Línea de gas combustible	8.104	100	0,2			
Conexión roscada	6.964	10	0,1			
Carcaza de la flecha de compresor: Forros compuestos	5.100	2.000	4,8			
Línea abierta	4.640	60	0,2			
Sello de compresores	3.856	2.000	6,3			
Valvula de compuerta	3.152	60	0,3			
E cata II donata Barana'a Marada 00	000 (000 1000 1000 1000 1000 1000 1000	1 (-)	•			

Fuente: Hydrocarbon Processing, Mayo de 2002 (costos de reparación)

1 – Ajustado a un costo de gas de to US\$70,63

Lecciones Aprendidas I&MD

- Un programa éxitoso y rentable de I&MD requiere la medición de las fugas
- El high volume sampler es una herramienta efectiva para cuantificar las fugas e identificar las reparaciones rentables

Las líneas abiertas, los sellos de compresores, las válvulas

de purga, los arrancadores de motores y las válvulas de alivio de presión representan <3% de los componentes pero >60%

las emisiones de me

 El negocio de la detección de fugas ha cambiado dramáticamente con las nuevas tecnologías

Fuente: Chevron

Experiencia de los Socios - PEMEX

- Implementación de una inspección de fugas como parte del acuerdo de colaboración con la EPA de 2006 a la fecha
- Se inspeccionaron más de 3.000 componentes de forma aleatoria en 3 de los principales centros procesadores de gas al sur de México, usando olfateadores, cámaras infrarrojas y el Hi-Flow Sampler
- Identificación de tasas de fuga de hasta 62 Mm³/año en componentes individuales
- Potencial de reducción anual de emisiones de metano por 5,7 MMm³/año
- A un costo de US\$70,63/Mm³, los ahorros serían de US\$400.000 por año
- PEMEX implementa una I&MD

Fuente: M2M

Discusión

- Experiencia de la insdustria aplicando estas prácticas y tecnologías
- Limitación en la aplicación de estas prácticas y tecnologías
- Beneficios y costos actualizados