Methane Savings from Compressors

Lessons Learned from the Natural Gas STAR Program

SGA Environmental Round Table Charlotte, North Carolina June 25 - 27, 2008

epa.gov/gasstar

1

2006 Transmission Sector Methane Emissions

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2006.* April, 2008. Available on the web at: <u>http://www.epa.gov/climatechange/emissions/usinventoryreport.html</u> Natural Gas STAR reductions data shown as published in the inventory.

Compressor Methane Emissions What is the problem?

Methane emissions from the ~51,500 compressors in the natural gas industry account for 89 Bcf/year or about 24% of all methane emissions from the natural gas industry

Methane Savings from Compressors: Agenda

- A Reciprocating Compressors
 - Methane Losses, Methane Savings, Industry Experience
- Centrifugal Compressors
 - Methane Losses, Methane Savings, Industry Experience
- A Reducing Emissions When Taking Compressors Offline
 - Methane Losses, Methane Savings, Industry Experience
- Discussion

Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hour)
 - Worn packing has been reported to leak up to 900 cf/hour

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Impediments to Proper Sealing

Ways packing case can leak

- Nose gasket (no crush)
- A Packing to rod (surface finish)
- A Packing to cup (lapped surface)
- A Packing to packing (dirt/lube)
- Cup to cup (out of tolerance)

What makes packing leak?

- Dirt or foreign matter (trash)
- Worn rod (.0015"/per inch dia.)
- Insufficient/too much lubrication
- Packing cup out of tolerance $(\leq 0.002")$
- Improper break-in on startup
- Liquids (dilutes oil)
- Incorrect packing installed (backward or wrong type/style)

Methane Losses from Rod Packing

Emission from Running Compressor	99	cf/hour-packing
Emission from Idle/Pressurized Compressor	145	cf/hour-packing
Leakage from Idle Compressor Packing Cup	79	cf/hour-packing
Leakage from Idle Compressor Distance Piece	34	cf/hour-packing

Leakage from Rod Packing on Running Compressors						
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon		
Leak Rate (cf/hour)	70	63	150	24		

Leakage from Rod Packing on Idle/Pressurized Compressors						
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon		
Leak Rate (cf/hour)	70	N/A	147	22		

PRCI/ GRI/ EPA. Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations

Steps to Determine Economic Replacement

- Measure rod packing leakage
 - When new packing installed after worn-in
 - A Periodically afterwards
- Otermine cost of packing replacement
- Calculate economic leak reduction
- Replace packing when leak reduction expected will pay back cost

Cost of Rod Packing Replacement

- Assess costs of replacements
 - A set of rings: (with cups and case)
 - A Rods:
 - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs

\$ 135	to	\$ 1,080
\$ 1,350	to	\$ 2,500
\$ 2,430	to	\$13,500

Source: CECO

Calculate Economic Leak Reduction

- Determine economic replacement threshold
 - A Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation

Economic Replacement Threshold (cf/hour) = Where:

- CR = Cost of replacement (\$)
- DF = Discount factor at interest *i* =
- H = Hours of compressor operation per year
- **GP** = **Gas price (\$/thousand cubic feet)**

$$DF = \frac{i(1+i)^n}{(1+i)^n - 1}$$

Economic Replacement Threshold

Example: Payback calculations for new rings and rod replacement

CR = \$1,620 for rings + \$9,450 for rod = \$11,070 H = 8,000 hours per year GP = \$7/Mcf

DF @ i = 10% and n = 1 year DF = $\frac{0.1(1+0.1)^1}{(1+0.1)^1 - 1} = \frac{0.1(1.1)}{1.1 - 1} = \frac{0.11}{0.1} = 1.1$

DF @ i = 10% and n = 2 years

$$\mathsf{DF} = \frac{0.1(1+0.1)^2}{(1+0.1)^2 - 1} = \frac{0.1(1.21)}{1.21 - 1} = \frac{0.121}{0.21} = 0.576$$

One year payback $ER = \frac{\$11,070 \times 1.1 \times 1,000}{\$8,000 \times \$7}$ = 217 scf per hour

Is Rod Packing Replacement Profitable?

- Replace packing when leak reduction expected will pay back cost
 - "leak reduction expected" is the difference between current leak rate and leak rate with new rings

Rings Only Rod and Rings			d Rings			
Rings: \$	1,620		Rings:	\$1 ,	,620	
Rod: \$	0		Rod:	\$9	,450	
Gas: \$	7/Mcf		Gas:	\$7	/Mcf	
Operating: 8	,000 hours/y	/ear	Operating:	8,0	000 hours/ye	ear
Leak Reduction]	Leak Reduction	on		
Expected	Payback		Expected		Payback	
(cf/hour)	(months)		(cf/hour)		(months)	
55	7		376		7	
29	12		197		13	
20	18]	137		18	
16	22		108		22	

Based on 10% interest rate Mcf = thousand cubic feet

Industry Experience – Northern Natural Gas

- Monitored emission at two locations
 - Init A leakage as high as 301 liters/min (640 cf/hour)
 - Init B leakage as high as 105 liters/min (220 cf/hour)
- Installed Low Emission Packing (LEP)
 - Testing is still in progress
 - After 3 months, leak rate shows zero leakage increase

Northern Natural Gas - Leakage Rates

Northern Natural Gas Packing Leakage Economic Replacement Point

- Approximate packing replacement cost is \$3,000 per compressor rod (parts/labor)
- Assuming gas at \$7/Mcf:
 - 1 cubic foot/minute = 28.3 liters/minute
 - 50 liters/minute/28.316 = 1.8 scf/minute
 - 1.8 x 60 minutes/hour= 108 scf/hr
 - 108 x 24/1000 = 2.6 Mcf/day

 - § 950 x \$7/Mcf = \$6,650 per year leakage
 - This replacement pays back in <6 months</p>

Low Emission Packing

- Low emission packing (LEP) overcomes low pressure to prevent leakage
- The side load eliminates clearance and maintains positive seal on cup face
- LEP is a static seal, not a dynamic seal. No pressure is required to activate the packing
- This design works in existing packing case with limited to no modifications required

LEP Packing Configuration

Orientation in Cup

Reasons to Use LEP

- Vpgrade is inexpensive
- Significant reduction of greenhouse gas are major benefit
- A Refining, petrochemical and air separation plants have used this design for many years to minimize fugitive emissions
- With gas at \$7/Mcf, packing case leakage should be identified and fixed.

Methane Savings from Compressors: Agenda

- Reciprocating Compressors
 - Methane Losses, Methane Savings, Industry Experience
- Centrifugal Compressors
 - **Methane Losses, Methane Savings, Industry Experience**
- Reducing Emissions When Taking Compressors Offline
 - Methane Losses, Methane Savings, Industry Experience
- Discussion

Methane Losses from Centrifugal Compressors

- Centrifugal compressor wet seals leak little gas at the seal face
 - Seal oil degassing may vent 40 to 200 cubic feet per <u>minute</u> (cf/minute) to the atmosphere
 - A Natural Gas STAR Partner reported wet seal emissions of 75 Mcf/day (52 cf/minute)

Centrifugal Compressor Wet Seals

- High pressure seal oil circulates between rings around the compressor shaft
- Oil absorbs the gas on the inboard side
- Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere

Natural Gas STAR Partners Reduce Emissions with Dry Seals

- Dry seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- Sealing at high rotation speed pump gas between the seal rings creating a high pressure barrier to leakage
- Only a very small volume of gas escapes through the gap
- Two seals are often used in tandem Compressor End
- Can operate for compressors up to 3,000 pounds per square inch gauge (psig) safely

Methane Savings through Dry Seals

- In the seale typically leak 0.5 to 3 cf/minute
 - Significantly less than the 40 to 200 cf/minute emissions from wet seals
- Gas savings translate to approximately \$112,000 to \$651,000 at \$7/Mcf

Economics of Replacing Seals

Compare costs and savings for a 6-inch shaft beam compressor

Cost Category	Dry Seal (\$)	Wet Seal
Implementation Costs ¹	(Ψ)	— (Ψ)
Seal costs (2 dry @ \$13,500/shaft-inch, with testing)	\$162,000	
Seal costs (2 wet @ \$6,750/shaft-inch)	· ·	\$81,000
Other costs (engineering, equipment installation)	\$162,000	\$0
Total implementation costs	\$324,000	\$81,000
Annual Operating and Maintenance	\$14,100	\$102,400
Annual Methane Emissions (@ \$7/Mcf; 8,000 hours/year)		
2 dry seals at a total of 6 cf/minute	\$20,160	
2 wet seals at a total of 100 cf/minute		\$336,000
Total Costs Over 5-Year Period	\$495,300	\$2,273,000
Total Dry Seal Savings Over 5 Years		
Savings	\$1,777,700	
Methane Emissions Reductions (Mcf; at 45,120 Mcf/year)	225,600	

¹ Flowserve Corporation (updated costs and savings)

Is Wet Seal Replacement Profitable?

- Replacing wet seals in a 6 inch shaft beam compressor operating 8,000 hours/year
 - Net present value = \$1,337,769
 - Assuming a 10% discount over 5 years
 - Internal rate of return = 129%
 - A Payback period = 10 months
 - A Ranges from 3 to 11 months based on wet seal leakage rates between 40 and 200 cf/minute
- Economics are better for new installations
 - Vendors report that 90% of compressors sold to the natural gas industry are centrifugal with dry seals

Industry Experience – PEMEX

- PEMEX had 46 compressors with wet seals at its PGPB production site
- Converted three to dry seals
 - Cost \$444,000/compressor
 - Saves 20,500 Mcf/compressor/year
 - Saves \$126,690/compressor/year in gas
- 3.5 year payback from gas savings alone
- Plans for future dry seal installations

Source: PEMEX

Finding More Opportunities

- A Partners are identifying other technologies and practices to reduce emissions
 - BP-Indonesia degasses wet seal oil to low pressure fuel gas, capturing emissions as fuel
 - A Reduces expensive implementation costs of replacing with dry seals
 - TransCanada has successfully conducted pilot studies on the use of an ejector to recover dry seal leakage

Source: TransCanada

TransCanada Experience: Gas-Gas Ejector

Compressor Package Components Winchell Lk

Source: TransCanada

Dry seal panel, continuous gas venting by design

Supersonic Gas-Gas Ejector for Capturing Low Pressure Vent gases

Gas-Gas Ejector for Dry Gas Seal Leak Capture

Conceptual flow diagram for use of Ejector by TransCanada. Ejector: Ludweg, EE, 1980.

Source: TransCanada

Supersonic Gas Injector

- Developed for capturing very low pressure vent gases and re-injection into a high pressure gas stream without the use of rotating machinery
- Savings
 - 4 MMcf/yr of gas savings from one compressor
 - Natural gas worth \$28,000/yr/unit @\$7/GJ
 - 6 GHG emissions
 - Sero operating cost

Methane Savings from Compressors: Agenda

- Reciprocating Compressors
 - Methane Losses, Methane Savings, Industry Experience
- Centrifugal Compressors
 - Methane Losses, Methane Savings, Industry Experience
- A Reducing Emissions When Taking Compressors Offline
 - Methane Losses, Methane Savings, Industry Experience
- Discussion

What is the Problem?

- Natural gas compressors cycled on- and off-line to match fluctuating gas demand
 - A Peak and base load compressors
- Standard practice is to blow down (depressurize) offline compressors
 - One blowdown vents 15 Mcf gas to atmosphere on average
- Isolation valves
 - Leak about 1.4 Mcf/hr on average through open blowdown vents

Basic Compressor Schematic

Methane Recovery - Option 1

- Keep off-line compressors pressurized
 - Requires no facility modifications
 - 6 Eliminates methane vents
 - Seal leak higher by 0.30 Mcf/hr
 - Reduces fugitive methane losses by 0.95 Mcf/hr (68%)

Methane Recovery - Option 2

- Route off-line compressor gas to fuel
 - Connect blowdown vent to fuel gas system
 - Off-line compressor equalizes to fuel gas pressure (100 to 150 pounds per square inch)
 - 6 Eliminates methane vents
 - Seal leak higher by 0.125 Mcf/hr
 - Reduces fugitive methane losses by 1.275 Mcf/hr (91%)

Methane Recovery - Option 3

- Keep pressurized and install a static seal
 - Automatic controller activates rod packing seal on shutdown and removes seal on startup
 - Closed blowdown valve leaks
 - Image: Eliminates leaks from off-line compressor seals
 - Reduces fugitive methane losses by 1.25 Mcf/hr (89%)

Methane Recovery Options

Methane savings comparison

Calculate Methane Emissions

- Blowdown losses = (# blowdowns) x (15 Mcf)¹
- Fugitive losses = (# offline hours) x (1.4 Mcf/hr)¹
- Total losses = blowdown + fugitive savings
- Sector State St
 - 4 2 blowdowns/yr x 15 Mcf
 - 1,752 offline hours x 1.4 Mcf/hr = 2,500 Mcf/yr

Calculate Costs

Option 1: Do not blow down

- No capital costs
- No O&M costs

Option 2: Route to fuel gas system

- Add pipes and valves connecting blowdown vent to fuel gas system
- Upgrade costs range from \$1,215 to \$2,160 per compressor

Calculate Costs

Option 3: Do not blow down and install static seal

- Seals cost \$675 per rod
- Seal controller costs \$1,350 per compressor
- Less cost-effective in conjunction with Option 2

Is Recovery Profitable?

Costs and Savings

	Option 1 Keep Pressurized	Option 2 Keep Pressurized and Tie to Fuel Gas	Option 3 Keep Pressurized and Install Static Seal		
Capital	None	\$ 1,688/compressor	\$ 4,050/compressor		
Off-line Leakag	je				
	225 Mcf/yr	63 Mcf/yr	75 Mcf/yr		
Baseload	\$ 1,575	\$ 441	\$ 525		
Peak Load	1,800 Mcf/yr \$ 12,600	500 Mcf/yr \$ 3,500	600 Mcf/yr \$ 4,200		
Note: Baseload scenario assumes compressor is off-line 500 hours/year; peak load scenario assumes					

compressor is off-line 4,000 hours/year. Gas cost is \$ 7.00/Mcf.

Economic Analysis

• **Peak** load options more economical due to more blowdowns and offline time

	Option 1 Keep Pressurized		Option 2 Keep Pressurized and Tie to Fuel Gas		Option 3 Keep Pressurized and Install Static Seal	
	Base	Peak	Base	Peak	Base	Peak
Net Gas Savings (Mcf/yr)	520	4,400	+207	+1,345	+150	+1,200
Dollar Savings/yr¹	\$ 3,640	\$ 30,800	\$ 1,449	\$ 9,415	\$ 1,050	\$ 8,400
Facilities Investment	0	0	\$ 1,680	\$ 1,680	\$ 4,050	\$ 4,050
Payback	Immediate	Immediate	1 yr	2 mons	4 yrs	6 mons
IRR ²	>100%	>100%	82%	560%	9%	207%
¹ Assuming value of gas is \$7.00/Mcf. ² 5 year life (not including appual Q&M costs)						

Lessons Learned

- Avoid depressuring whenever possible
 - Immediate benefits with no investment
- Educate field staff about benefits
- Identify compressor loads to conduct economic analysis
- Develop schedule for installing fuel gas routing systems
- A Record savings at each compressor

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits