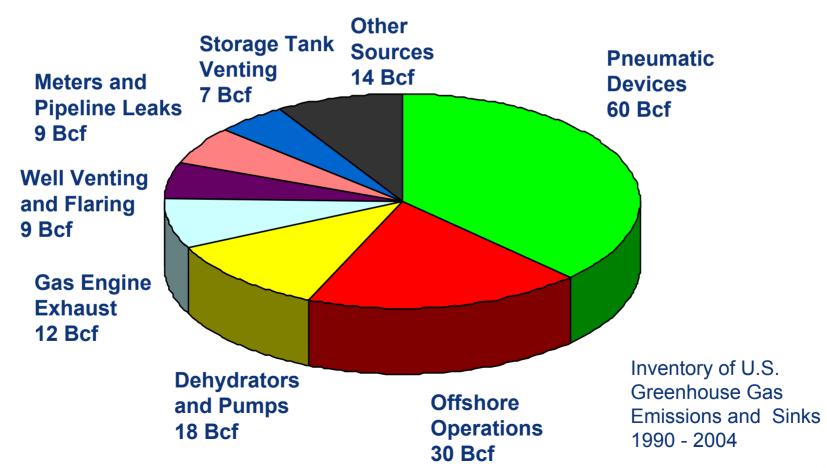


Pneumatic Devices

Lessons Learned from Natural Gas STAR

Producers Technology Transfer Workshop

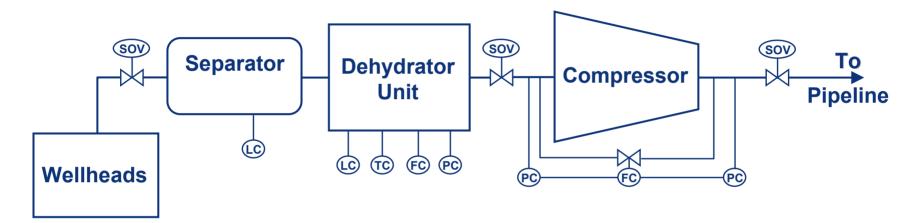
Occidental Oil and Gas and EPA's Natural Gas STAR Program Midland, TX June 8, 2006



Pneumatic Devices: Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion Questions

Methane Losses: Oil and Natural Gas Production



What is the Problem?

- Pneumatic devices are major source of methane emissions from the natural gas industry
- Pneumatic devices used throughout the natural gas industry
 - Over 400,000 in production sector¹
 - About 13,000 in processing sector¹
 - Over 85,000 in transmission sector¹

Location of Pneumatic Devices at Production Sites

SOV = Shut-off Valve (Unit Isolation)

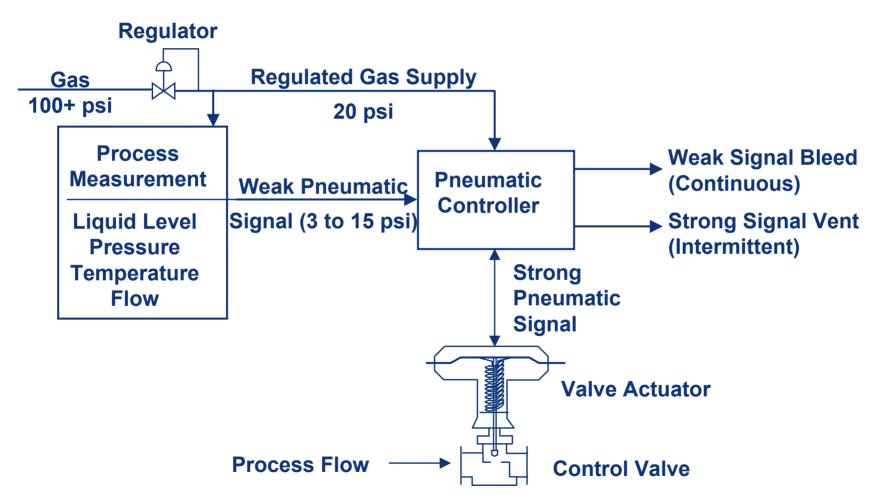
LC = Level Control (Separator, Contactor, Flash Tank Separator, TEG Regenerator)

TC = Temperature Control (Regenerator Fuel Gas)

FC = Flow Control (TEG Circulation, Compressor

Bypass)

PC = Pressure Control (FTS Pressure, Compressor Suction/Discharge)



Methane Emissions

- As part of normal operations, pneumatic devices release natural gas to atmosphere
- High-bleed devices bleed in excess of 6 cf/hour
 - Equates to >50 Mcf/year
 - Typical high-bleed pneumatic devices bleed an average of 140 Mcf/year
- Actual bleed rate is largely dependent on device's design

Pneumatic Device Schematic

Emissions from Pneumatic Devices

	Gas Industry ¹	Oil Industry ¹
Production	41.8 Bcf	17.8 Bcf
Processing	0.1 Bcf	
Transmission	10.7 Bcf	
Total	52.6 Bcf	17.8 Bcf
Total Gas/Oil		70.4 Bcf/yr

^{1 -} Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2004

How Can Methane Emissions be Recovered?

- Option 1: Replace high-bleed devices with low-bleed devices
- Option 2: Retrofit controller with bleed reduction kits
 - Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment
- Option 3: Maintenance aimed at reducing losses

Option 1: Replace High-Bleed Devices

- Most applicable to:
 - Controllers: liquid-level and pressure
 - Positioners and transducers
- Suggested action: evaluate replacements
 - Replace at end of device's economic life
 - Early replacement

Source: www.norriseal.com

Norriseal
Pneumatic Liquid
Level Controller

Fisher Electro-Pneumatic Transducer

Source: www.emersonprocess.com

Option 1: Cost to Replace High-Bleed Devices

- Costs vary with size
 - Typical costs range from \$700 to \$3,000 per device
 - Incremental costs of low-bleed devices are modest (\$150 to \$250)
 - 6 Gas savings often pay for replacement costs in short periods of time (2 to 8 months)

Option 2: Retrofit with Bleed Reduction Kits

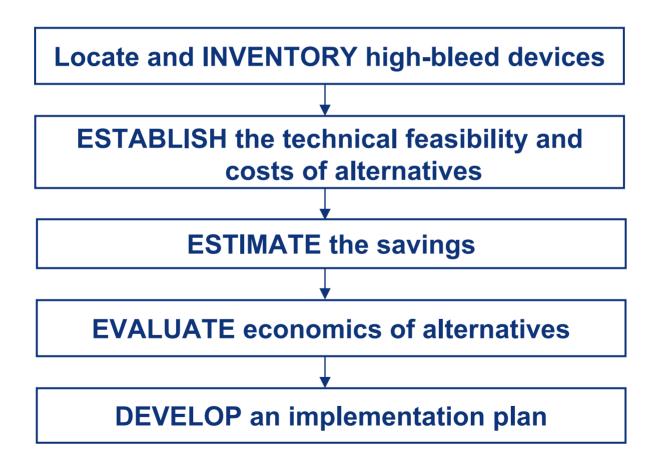
- Applicable to most high-bleed controllers
- Suggested action: evaluate cost-effectiveness as alternative to early replacement
- Retrofit kit costs ~ \$500
- Payback time ~ 9 months

Option 3: Maintenance to Reduce Losses

- Applies to all pneumatic devices
- Suggested action: add to routine maintenance procedures
 - Field survey of controllers
 - Where process allows, tune controllers to minimize bleed

Option 3: Maintenance to Reduce Losses (cont'd)

- Suggested action (cont'd)
 - Re-evaluate the need for pneumatic positioners
 - Repair/replace airset regulators
 - Reduce regulated gas supply pressure to minimum
 - Routine maintenance should include repairing/replacing leaking components
- Costs are low


Becker Single-Acting Valve Positioner

Source: www.bpe950.com

Five Steps for Reducing Methane Emissions from Pneumatic Devices

Suggested Analysis for Replacement

- Replacing high-bleed controllers at end of their economic life
 - End of economic life when major overhaul required
 - Determine incremental cost of low-bleed device over highbleed equivalent
 - Determine gas saved with low-bleed device using manufacturer specifications
 - Compare savings and cost
- Early replacement of high-bleed controllers
 - Compare gas savings of low-bleed device with full cost of replacement

Economics of Replacement

	Donlogo et	Early Replacements		
Implementation ¹	Replace at End of Life	Level Control	Pressure Control	
Cost (\$)	$150 - 250^2$	380	1,340	
Annual Gas Savings (Mcf)	50 – 200	166	228	
Annual Value of Saved Gas (\$) ³	350 – 1400	1162	1596	
IRR (%)	138 – 933	306	117	
Payback (months)	2 – 9	4	10	

- 1 All data based on partners' experiences. See *Lessons Learned* for more information
- 2 Range of incremental costs of low-bleed over high bleed equipment
- 3 Gas price is assumed to be \$7/Mcf

Suggested Analysis for Retrofit

- Retrofit of low-bleed kit
 - Compare savings of low-bleed device with cost of conversion kit
 - Retrofitting reduces emissions by average of 90%

Economics of Retrofit

	Retrofit ¹
Implementation Costs ²	\$500
Bleed rate reduction	
(Mcf/device/year)	219
Value of gas saved	
(\$/year) ³	1533
Payback (months)	4
IRR	306%

- 1 On high-bleed controllers
- 2 All data based on partners' experiences. See *Lessons Learned* for more information
- 3 Gas price is assumed to be \$7/Mcf

Suggested Analysis for Maintenance

- For maintenance aimed at reducing gas losses
 - Measure gas loss before and after procedure
 - Compare savings with labor (and parts) required for activity

Economics of Maintenance

	Reduce Supply Pressure	Repair & Retune	Change Settings	Remove Valve Positioners
Implementation Cost (\$) ¹	153	23	0	0
Gas Savings (Mcf/yr)	175	44	88	158
Value of gas saved (\$/yr)	1225	308	616	1106
Payback (months)	1.5	<1	<1	<1
IRR	801%			

- 1 All data based on partners' experiences. See *Lessons Learned* for more information.
- 2 Gas price is assumed to be \$7/Mcf.

Pneumatic Devices

- Factors affecting economics of replacement
 - Operating cost differential and capital costs
 - Estimated leak rate reduction per new device
 - Price of gas (\$/Mcf)

Lessons Learned

- Most high-bleed pneumatics can be replaced with lower bleed models
- Replacement options save the most gas and are often economic
- Retrofit kits are available and can be highly costeffective
- Maintenance is low-cost and reduces gas loss

Case Study – Marathon

- Surveyed 158 pneumatic devices at 50 production sites
- Malf of the controllers were low-bleed
- High-bleed devices included
 - 4 35 of 67 level controllers
 - 5 of 76 pressure controllers
 - 4 1 of 15 temperature controllers

Marathon Study: Hear It? Feel It? Replace It!

- Measured gas losses total 5.1 MMcf/year
- Level controllers account for 86% of losses
 - Losses averaged 7.6 cf/hour/device
 - Losses ranged up to 48 cf/hour/device (420 Mcf/year)
- Concluded that excessive losses can be heard or felt

Recommendations

- Evaluate all pneumatics to identify candidates for replacement and retrofit
- 6 Choose lower bleed models at change-out where feasible
- Identify candidates for early replacement and retrofits by doing economic analysis
- Improve maintenance
- Develop an implementation plan

Discussion Questions

- To what extent are you implementing these opportunities?
- Metal How could these opportunities be improved upon or altered for use in your operation?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing these practices?