Leak Detection & Measurement of Fugitive Methane Emissions

An EPA Best Management Practice for DI&M Programs

Milton W. Heath III Heath Consultants Incorporated Thursday, June 8, 2006 EPA Gas STAR Technology Transfer Workshop Midland, Texas

Leak Survey Methods

Leak Detection

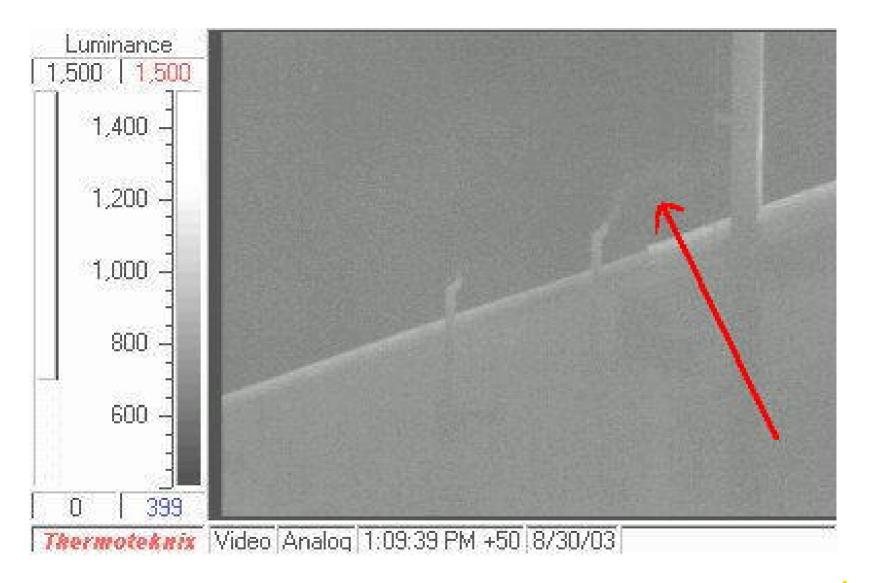
- Soap solution
- Flame Ionization
- Catalytic oxidation/thermal conductivity
- Ultrasonic
- LSI's Gas Imaging Camera, the "Hawk"
- New Heath RMLD
- Visual
- Tag and number leaks on standard components

3 Main Categories of Leaks

- Standardized Components
 - Flange, Union, Thread & Tube Fittings, valve caps, fuel injector valves, stem packing leaks etc...
- Compressor Seal Systems
 - Rod Packing Vent or Combined Distance Piece and Packing Vent, Wet or Dry Seal Vents on Turbines
- Blow Down Systems
 - Unit Valves, Blow Down Valves, Pressure Relief Valves, Power Gas Vent, Condensate Tanks, ESD Vents

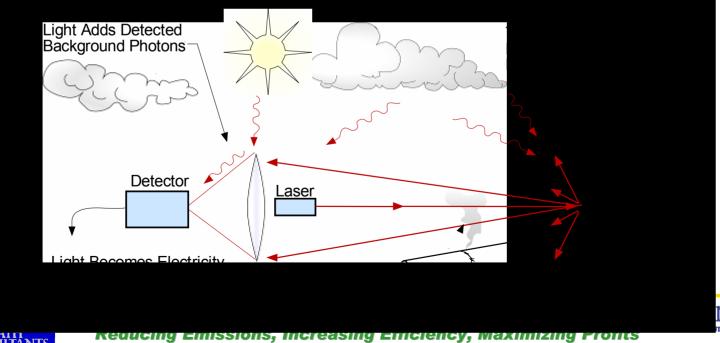

Screening & Tagging

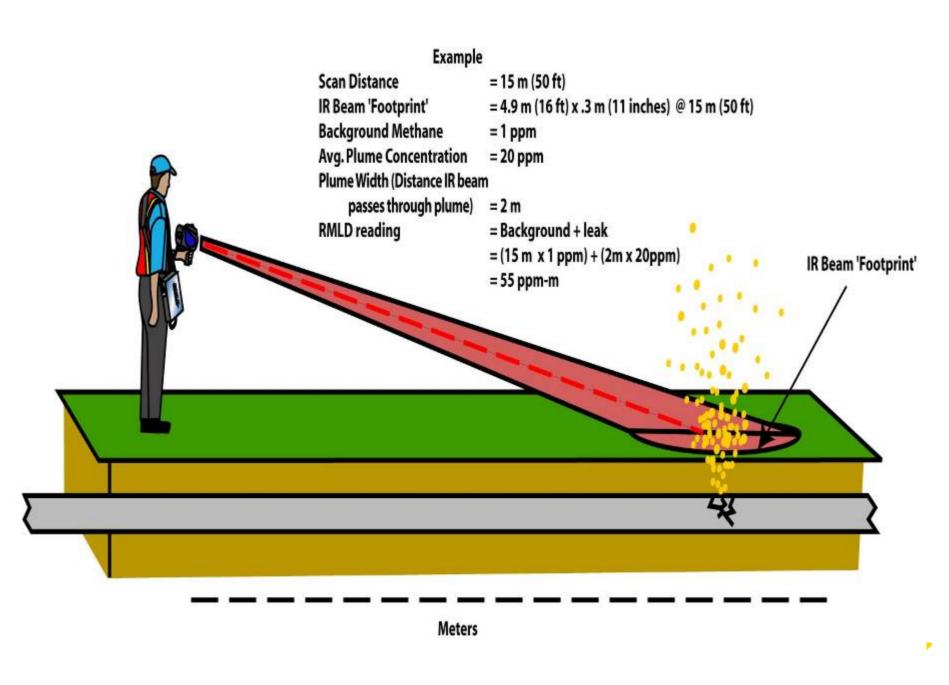
- Recommend the use of a reliable pumpdriven combustible gas indicator that can see down to 50 PPM.
- For Vented Components, recommend measuring as you go.
- For Standardized Components, recommend screening and tagging.



Remote Methane Leak Detection

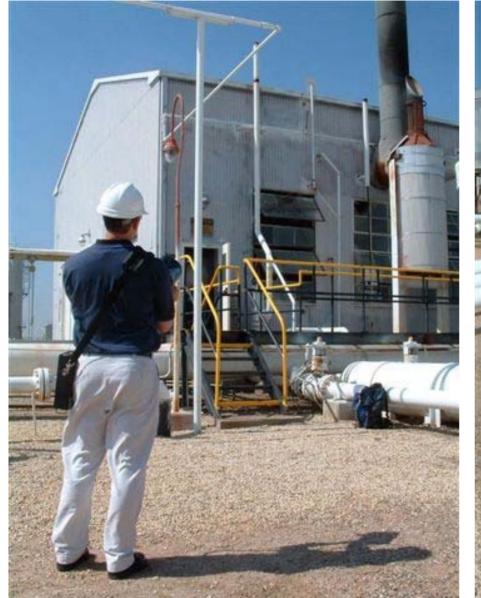
BASED ON TDLAS TECHNOLOGY


- Tunable Diode Laser Absorption Spectroscopy (TDLAS)
 - Every gas absorbs specific wavelengths (frequencies) of light
 - The RMLD laser beam emits a specific wavelength which is absorbed by methane
 - The amount of laser light absorbed is proportional to the total amount of gas in the path of the laser beam
 - Concentration is then expressed as parts-per-millionmetered, or "ppm-m"



TECHNICAL APPROACH

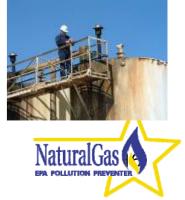
- Laser light beam is remotely projected on to a target (e.g., grass, wall, etc.)
- A fraction of the beam is scattered from the target surface and returned to the source
- Returned light is collected and focused onto a detector
- The presence of methane is encoded within the returned light
- Mothana roadings are displayed in nom m



Measuring Fugitive Methane Emissions

Leak Measurement

- Hi Flow Samplers
- Vent-Bag™
- Hot Wire Anemometer
- Rotameter



Measurement Methods

- For leaks up to 10 cfm Hi Flow Samp
 10 cfm @ \$5/Mcf = \$26,280
- For leaks 10 240 cfm Vent-Bag Method
 50 cfm @ \$5/Mcf = \$131,400
 100 cfm @ \$5/Mcf = \$262,800
- For leaks >180 cfm Anamometer

Hi Flow Sampler Applications

Advantages:

- Total Leak Capture
- Measures Leak Rate Directly
- Can Measure 30 components per hour
- Repair Decision Based on Leak Rate & Repair Costs

Hi Flow Sampler Technology

- Captures Entire Leak
 - Measures Flow Rate (F) and Concentration (sample)
 - Subtracts the background (back)
 Concentration
 - Leak Rate = F x (sample back)

Condensate Tank Leakage Identified Loses/Savings

Routine Monitoring of known culprits and plan for future DI&M

Partner Experience Leaking Actuator on Methanol Injector Pump. Leak Rate at 3.5 cfm or \$9,198/yr. Estimated repair <\$500.

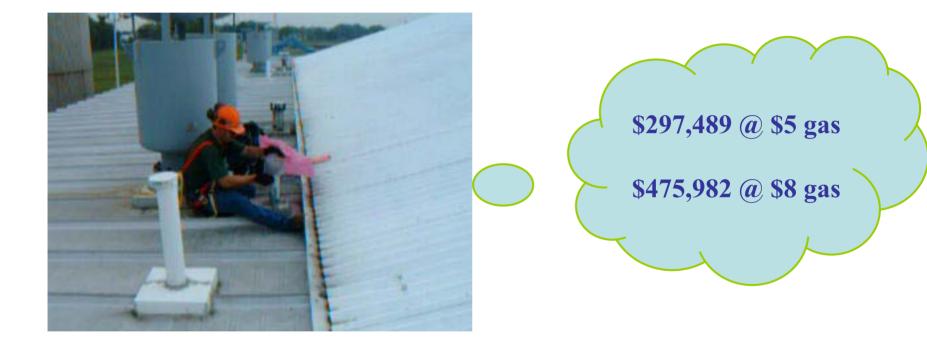
Partner Experience

Leaking Valve Actuator. Leak measured at 6.74 scfm or \$17,713/yr. Estimated to have been leaking at current leak rate for last three years or more. Successfully repaired next day and reduced to zero emissions.



Partner Experience Midwest Compressor Station September 2005

	Component Category	Leak Rate (scfh)	Leak Rate (Mcf/Yr) ^[1]	Leak Rate (\$/Yr) ^[2]
Leak Rate from Standard Components	Standard	390	3,415	\$20,492
Leak Rate from Compressor Packings [Units 1-5]	Rod Packing	12,585	63,869	\$383,216
Leak Rate from Blowdown System (Unit Valves/Blowdown Valves/Pressure Relief Valves)	Blow Down System	520	4,552	\$27,310
Total =		13,495	71,836	\$431,018.0 0



 $[\]frac{[2]}{Cost of Gas} = \frac{6}{Mcf}$

Partner Experience Midwest Packing Leak 75 CFM when Running 98 CFM when idle & pressurized

About Rod Packing Leakage

- Under best conditions leak rate can be expected at a minimum of 11.5 scfh
- Leakage can be reduced through proper monitoring and a cost effective schedule for replacing packing rings & piston rods.
- Step one is to monitor and record baseline packing leakage and piston rod wear.
- Establish a replacement threshold

Annual Station Monitoring Program

- Inspect significant leaks identified from recent survey and verify repairs remain intact.
- Inspect all critical components for new leakage
 - Compressor Packings
 - Unit Valves, Blowdown Valves, Dump Valves
- Spot check yard for leaks

