

Process Optimization Review

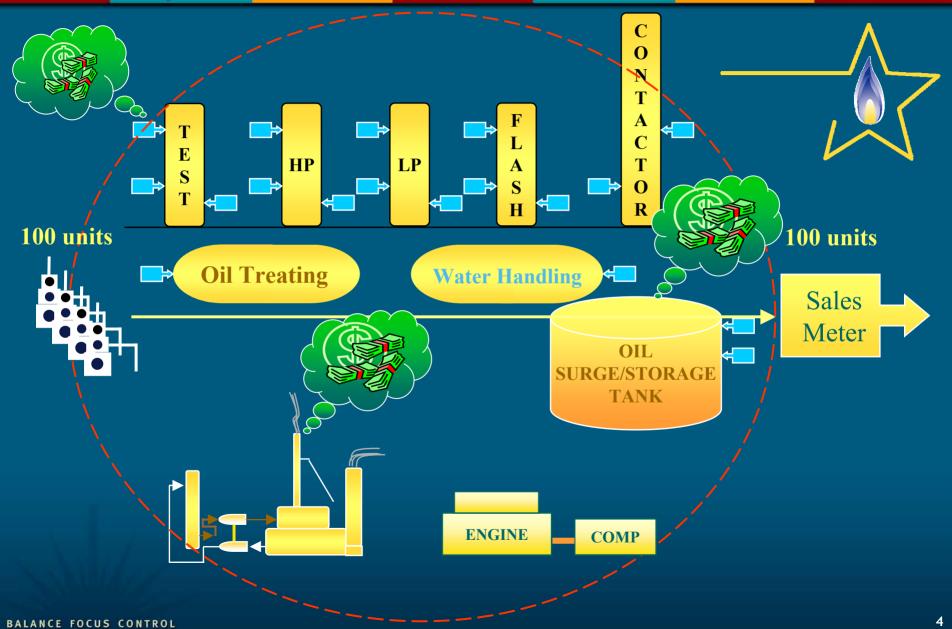
June 6, 2006

PRO-OP Concept

How can we get as much product, produced at the wellhead, to the sales meter?

 PRO-OP – a systematic approach to increase production efficiencies and profitability through evaluating process components whereby methane emissions are reduced on a cost effective basis.

Pro – Op.....the big picture

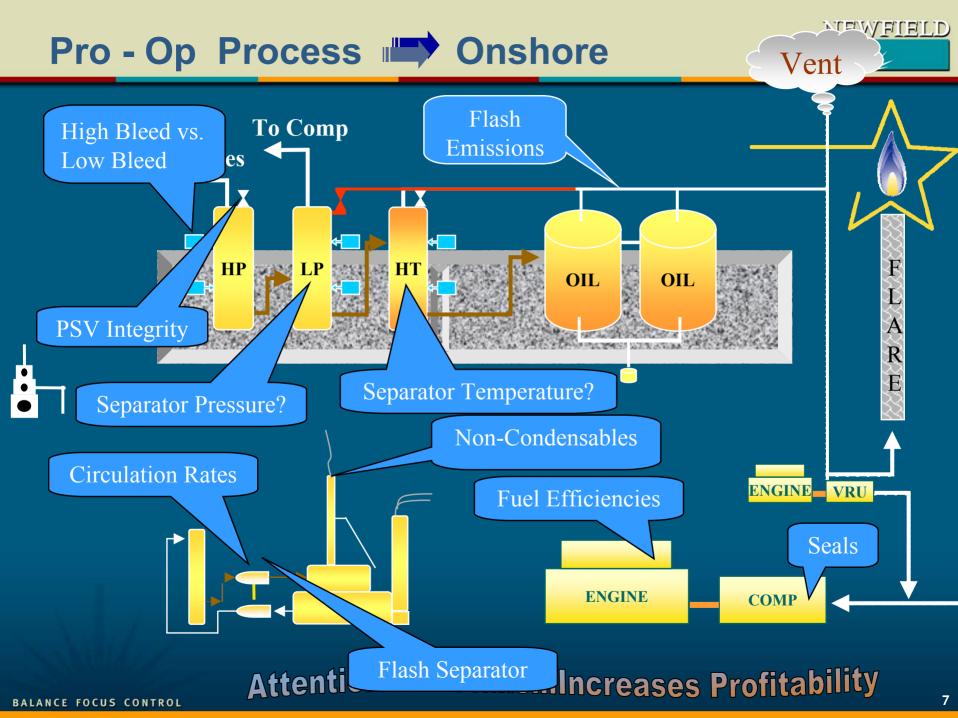

Build in optimization on the front end

Pro-Op

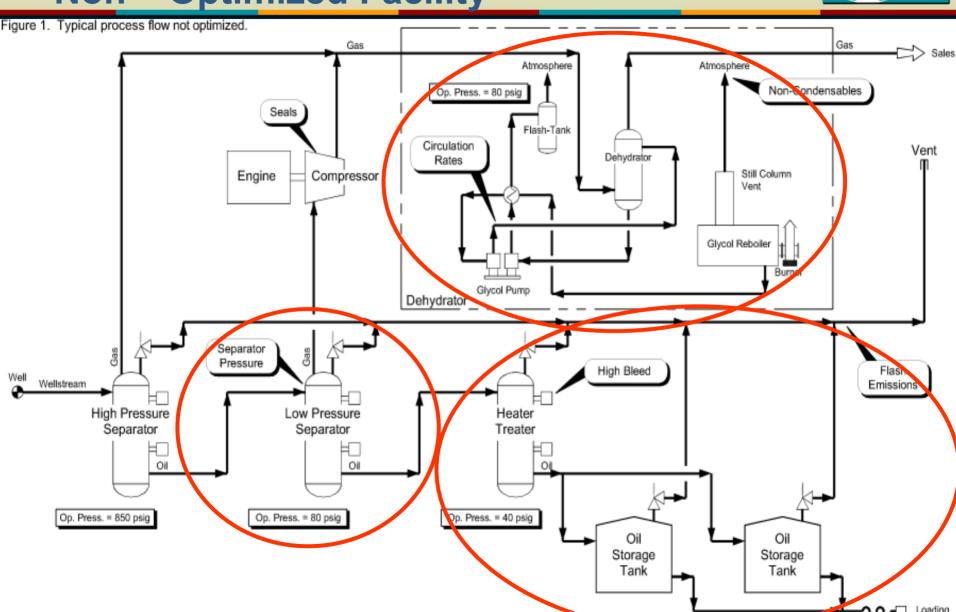
Process Optimization Review

Process

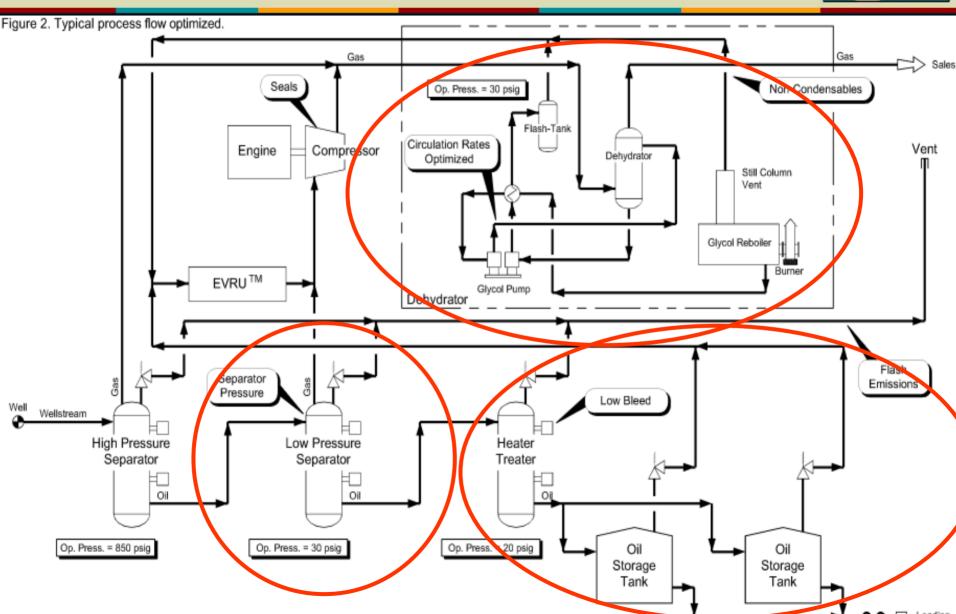
- Similar to a Process Hazards Review
- Follow process flow
- Identify opportunities


- Cost effectively eliminate emission source
- Cost effectively capture for sales
- Flare (destruction)

Optimization Techniques


Table 1- List of major optimization techniques for oil and gas production operations

operations	
Process	Optimization Technique to Reduce Venting Emissions
Pneumatics	Use low bleed pneumatics versus high bleed pneumatics
	2. Use compressed air
Pressure Relief System	Repair or replace leaking relief system components
Production Separators	Reduce operating pressure of separators just upstream of storage tanks
	2. Route flash gas to compressor for sales
Glycol Dehydration Units Still Column Vent	Install condenser, flare or vapor recovery system Optimize glycol circulation rates
Glycol Dehydration Unit	1. Route gas to fuel system
Flash Tanks	Install vapor recovery system or route compressor Burn gas in flare
	Repair components leaking into vent system
Flare and Vent Systems	Install vapor recovery to recover routine natural gas venting
Internal Combustion Engines	Maximize fuel efficiency with controls
Reciprocating Compressors	Replace worn compressor rod packing rings and rods
Centrifugal Compressors	Replace wet seals with dry seals in centrifugal compressors
Crude Oil Storage Tank	Install vapor recovery system to recover vent gases


Non – Optimized Facility

Optimization Techniques

Before and After Optimization

Table 3- Vent gas emissions and value before and after optimization

Process	Optimization Technique	Gas Recovered (MMBTU/Yr)	Optimization Costs First Year ^B (\$)	Recovered Product Value ^c (\$/year)	First Year Optimization Savings/Costs ^D (\$)
Pneumatics	Low bleed natural gas pneumatics controllers	1,900	-2,200	9,500	11,700
Glycol Dehydration Unit	Vent gas from still column and flash tank recovered by EVRU™	50		3,850	
Glycol Dehydration Unit	Flash tank gas routed to vapor recovery system	1,100	120,000	5,500	62,850
Heater Treater Flash	Vapor recovery by EVRU™	19,200		96,000	
Oil Storage Tanks	Vapor recovery by EVRU™	15,500	117 900	77,500	74.550
	Totals:	37,750	117,800	192,350	74,550

BALANCE FOCUS CONTROL 10

Optimization Techniques

Table 4-Total Vent gas and methane emissions before and after optimization

Process	Optimization Technique	Natural Gas Vented Not Optimized (MMSCF/yr)	Natural Gas Recovered by Optimization (MMSCF/yr)	Methane Only Emissions Not Optimized (MMSCF/yr)	Methane Recovered by Optimization (MMSCF/yr)
Pneumatics ^E	Low bleed natural gas pneumatics controllers	2	1.9	1.9	1.8
Glycol Dehydration Unit ^E	Vent gas from still column and flash tank recovered by EVRU™	1.2	1.2	1.1	1.1
Heater Treater Flash Gas ^F	Vapor recovery by EVRU™	8.4	8.4	5	5
Crude Oil Storage Tanks [©]	Vapor recovery by EVRU™	6.8	6.8	1.7	1.7
	Totals:	18.4	18.3	9.7	9.6

BALANCE FOCUS CONTROL 11

Conclusion

- Use PRO-OP on new facility designs
- Prepare optimization template
- Prepare and conduct field training
- Use PRO-Op on existing facilities
- Increase Profitability and report methane reductions to EPA Natural Gas Star Program