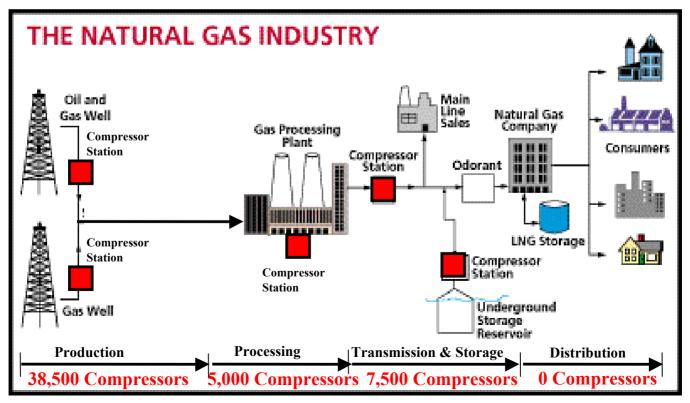


Methane Savings from Compressors

Lessons Learned from Natural Gas STAR

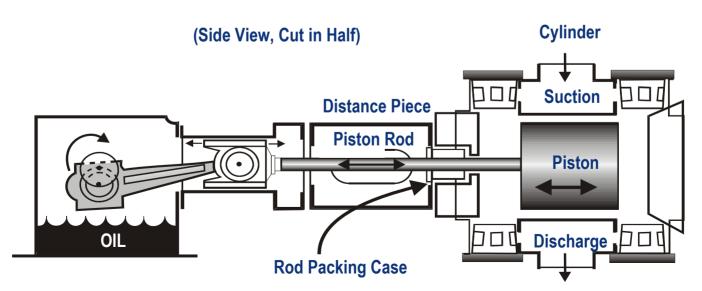
Producers Technology Transfer Workshop

Occidental Oil and Gas and EPA's Natural Gas STAR Program Midland, TX June 8, 2006

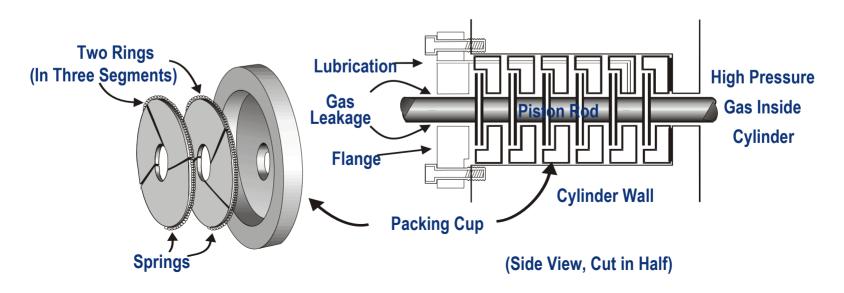

Compressors: Agenda

- Methane Losses from Reciprocating Compressors
- Methane Savings through Economic Rod Packing Replacement
- Is Rod Packing Replacement Profitable?
- Methane Losses from Centrifugal Compressors
- Methane Savings through Dry Seals
- Is Wet Seal Replacement Profitable?
- Discussion Questions

Compressor Methane Emissions What is the problem?


Methane emissions from the ~51,000 compressors in the natural gas industry account for 86 Bcf/year or about 24% of all methane emissions from the natural gas industry

Methane Losses from Reciprocating Compressors


- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hour)
 - Worn packing has been reported to leak up to 900 cf/hour

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Methane Losses from Rod Packing

Emission from Running Compressor	870	Mcf/year-packing
Emission from Idle/Pressurized Compressor	1270	Mcf/year-packing
Leakage from Packing Cup	690	Mcf/year-packing
Leakage from Distance Piece	300	Mcf/year-packing

Leakage from Rod Packing on Running Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (Mcf/yr)	612	554	1317	210

Leakage from Rod Packing on Idle/Pressurized Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (Mcf/yr)	614	N/A	1289	191

Source: Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations – PRCI/ GRI/ EPA

Methane Savings Through Economic Rod Packing Replacement

- Assess costs of replacements
 - A set of rings: \$ 500 to \$ 800 (with cups and case) \$1500 to \$2500
 Rods: \$1800 to \$10000
 - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs
 - Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements

Economic Replacement Threshold (scfh) =	= CR * DF * 1,000
Where:	(H * GP)
CR = Cost of replacement (\$) DF = Discount factor (%) @ interest i H = Hours of compressor operation per y GP = Gas price (\$/Mcf)	DF = $\frac{i(1+i)^n}{(1+i)^n-1}$

Is Rod Packing Replacement Profitable?

Periodically measure leakage increase

Rings Only

Rod and Rings

Rings: \$1,200 Rod: \$0

Rod:

Rings:

\$1,200 \$7,000

Gas:

\$7/Mcf

Gas:

\$7/Mcf

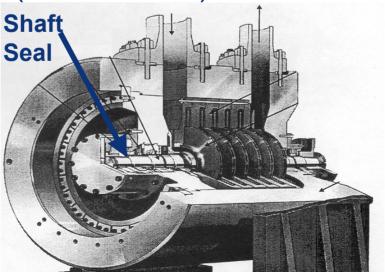
Operating:

8,000 hrs/yr

Operating:

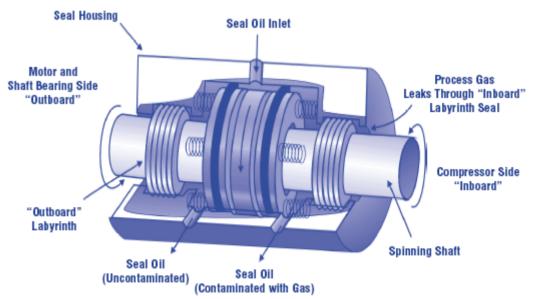
8,000 hrs/yr

Leak Reduction	
Expected	Payback
(scfh)	(yr)
46	0.5
24	1.0
12	2.0
9	3.0

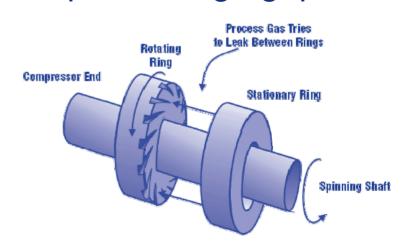

Leak Reduction	
Expected	Payback
(scfh)	(yr)
315	0.5
161	1.0
84	2.0
59	3.0

Based on 10% interest rate Mcf = thousand cubic feet, scfh = standard cubic feet per hour

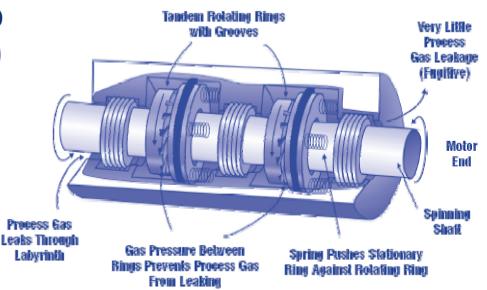
Methane Losses from Centrifugal Compressors


- Centrifugal compressor wet seals leak little gas at the seal face
 - Seal oil degassing may vent 40 to 200 cubic feet per minute (cf/minute) to the atmosphere
 - A Natural Gas STAR partner reported wet seal emissions of 75 Mcf/day (52 cf/minute)

Centrifugal Compressor Wet Seals


- High pressure seal oil circulates between rings around the compressor shaft
- Gas absorbs in the oil on the inboard side
- Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere

Natural Gas STAR Partners Reduce Emissions with Dry Seals


- Ory seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- At high rotation speed, gas is pumped between the seal rings creating a high pressure barrier to leakage
- Only very small amount of gas escapes through gap
- 4 2 seals often used in tandem
- Can operate for compressors up to 3,000 psig safely

Methane Savings through Dry Seals

- Ory seals typically leak at a rate of only 0.5 to 3 cf/minute
 - Significantly less than the 40 to 200 cf/minute emissions from wet seals
- Gas savings translate to approximately \$112,000 to \$651,000 at \$7/Mcf

Economics of Replacing Seals

Compare costs and savings for a 6-inch shaft beam compressor

	Dry Seal	Wet Seal
Cost Category	(\$)	(\$)
Implementation Costs ¹		
Seal costs (2 dry @ \$10,000/shaft-inch, w/testing)	\$120,000	
Seal costs (2 wet @ \$5,000/shaft-inch)		\$60,000
Other costs (engineering, equipment installation)	\$120,000	\$0
Total Implementation Costs	\$240,000	\$60,000
Annual O&M	\$10,000	\$73,000
Annual Methane Emissions (@ \$7/Mcf; 8,000 hr/yr)		
2 dry seals at a total of 6 scfm	\$20,160	
2 wet seals at a total of 100 scfm		\$336,000
Total Costs Over 5-Year Period	\$390,800	\$2,105,000
Total Dry Seal Savings Over 5 Years		
Savings	\$1,714,200	
Methane Emissions Reductions (Mcf; at 45,120 Mcf/yr)	225,600	

¹ Flowserve Corporation

Is Wet Seal Replacement Profitable?

- Replacing wet seals in a 6 inch shaft beam compressor operating 8,000 hours/year
 - Net Present Value = \$1,216,000
 - Assuming a 10% discount over 5 years
 - Internal Rate of Return = 171%
 - Payback Period = 7 months
 - Ranges from 4 to 15 months based on wet seal leakage rates between 40 and 200 cf/minute
- Economics are better for new installations
 - Vendors report that 90% of compressors sold to the natural gas industry are centrifugal with dry seals

Discussion Questions

- To what extent are you implementing these opportunities?
- Metal How could these opportunities be improved upon or altered for use in your operation?
- Can you suggest other methods for reducing emissions from compressors?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing these practices?