Wortman, Eric

From:	Wortman, Eric
Sent:	Thursday, August 31, 2017 2:06 PM
То:	Wortman, Eric
Subject:	Notice of Issuance of Title V Operating Permit on the Uintah and Ouray Indian Reservation

This is to notify you that the EPA has issued a final Clean Air Act (CAA) Title V operating permit for the XTO Energy Inc., Little Canyon Unit Compressor Station pursuant to the Title V Operating Permit Program at 40 CFR Part 71 (Part 71). The final Part 71 permit will be posted in PDF format on our website at: https://www.epa.gov/caa-permitting/caa-permits-issued-epa-region-8.

In accordance with the regulations at §71.11(i), the permit will be effective immediately on August 31, 2017. Within 30 days after a final permit decision has been issued, any person who filed comments on the draft permit or participated in the public hearing may petition the Environmental Appeals Board (EAB) to review any condition of the permit decision. Any person who failed to file comments or failed to participate in the public hearing on the draft permit may petition for administrative review only to the extent of the changes from the draft to the final permit decision or other new grounds that were not reasonably foreseeable during the public comment period on the draft permit. The 30-day period within which a person may request review under this section begins when we have fulfilled the notice requirements for the final permit decision. Motions to reconsider a final order by the EAB must be filed within 10 days after service of the final order. A petition to the EAB is under Section 307(b) of the CAA, a prerequisite to seeking judicial review of the final agency action. For purposes of judicial review, final agency action occurs when we issue or deny a final permit and agency review procedures are exhausted.

Thank you,

Eric Wortman

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency Telephone: (617) 918-1624 | Email: wortman.eric@epa.gov

Wortman, Eric

From:	Wortman, Eric
Sent:	Thursday, August 31, 2017 1:48 PM
То:	'timothy_hermann@xtoenergy.com'
Cc:	'Allison, Craig'; 'Minnie Grant'; 'Bruce Pargeets'
Subject:	Final Title V Operating Permit for XTO Energy - Little Canyon Unit Compressor Station
Attachments:	XTO Little Canyon Unit CS Final Initial Part 71 Permit V-UO-000016-2006.00.pdf

Mr. Hermann,

I have attached the final part 71 permit for the Little Canyon Unit Compressor Station issued pursuant to the Title V Operating Permit Program at 40 CFR Part 71 (Part 71). We will also be posting the final Part 71 permit in PDF format on our website at: <u>https://www.epa.gov/caa-permitting/caa-permits-issued-epa-region-8</u>.

In accordance with the regulations at §71.11(i)(2)(iii), the permit is effective immediately as of August 31, 2017. Please review each condition carefully and note any restrictions placed on this source. Procedures for appealing this permit can be found in 40 CFR 71.11(l). A petition to the Environmental Appeals Board (EAB) must be filed within 30 days of receipt of this final permit action.

Sincerely,

Eric Wortman

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency Telephone: (617) 918-1624 | Email: <u>wortman.eric@epa.gov</u>

Public Notice: Request For Comments

Draft Air Quality Permit to Operate for Federal Clean Air Act Title V to Control Air Pollutant Emissions from Little Canyon Unit Compressor Station on the Uintah & Ouray Indian Reservation

Public notice issued: June 23, 2017

Written comments due:

5 p.m., July 24, 2017

Where is the facility located?

Little Canyon Unit Compressor Station: Uintah & Ouray Indian Reservation Uintah County, Utah Section 36, Township 10 South, Range 20 East Latitude: 39.8969N Longitude: -109.6055W

What is being proposed?

The EPA proposes to issue a Clean Air Act (CAA), Title V Permit to Operate in accordance with 40 Code of Federal Register, Part 71, for the Little Canyon Unit Compressor Station, owned and operated by XTO Energy, Inc. on Indian country lands within the Uintah & Ouray Indian Reservation.

EPA issues CAA Title V operating permits in Indian country where EPA has not approved a tribe to implement the Title V operating permit program. The Ute Indian Tribe does not have an approved Title V operating permit program.

Air pollutant emissions come from equipment operating at the compressor station. The draft operating permit includes all CAA control requirements that apply to the facilities and associated equipment emitting air pollutants.

Permit number: Little Canyon Unit: V-UO-000016-2006.00

How can I review documents? What happens next?

You can review the draft CAA Title V Operating Permit, the application, and Statement of Basis at:

Uintah County Clerk's Office 147 East Main St #6 Vernal, Utah 84078

Ute Indian Tribe Energy and Minerals Department Office 988 South 7500 East, Annex Building Fort Duchesne, Utah 84026

U.S. EPA Region 8 Air Program Office (8P-AR) 1595 Wynkoop St. Denver, CO 80202 Phone: 303-312-6649

All documents will be available for review at the U.S. EPA Region 8 office Monday through Friday from 8:00 am to 4:00 pm (excluding Federal holidays).

Electronic copies of the draft Title V permits, Statement of Basis and all supporting materials may also be viewed at: <u>http://www.epa.gov/caa-</u> <u>permitting/caa-permit-public-</u> <u>comment-opportunities-region-8</u>

What are EPA's

responsibilities?

The U.S. EPA Region 8 Air Program is the regulatory agency that helps protect and preserve air quality on the Ute Indian Reservation.

One way the EPA does this is by issuing CAA Title V operating permits for major air emission sources that require air pollutant emissions control and monitoring. The purpose of this notice is to invite you to submit written comments on this proposed permit through the process detailed in this notice. The EPA will review and consider all comments received during the comment period.

Following this review, the EPA may issue the permit as drafted, issue the permits with revisions, or deny the permit.

Public Comment Period: The EPA will accept written comments on the draft Title V Operating Permits beginning: June 23, 2017 through

5 p.m. July 24, 2017.

Where can I send written comments?

The EPA accepts comments by mail and e-mail.

How can I make comments by e-mail?

To make comments via email, click on the name of the contact person at the website below.

U.S. EPA Region 8 Air Program Mail Code 8P-AR Tribal Permit Program 1595 Wynkoop Street Denver CO 80202 Phone: 800.227.8917

http://www.epa.gov/caapermitting/caa-permit-publiccomment-opportunities-

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 8 1595 Wynkoop Street Denver, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region8

JUN 12 2017

Ref: 8P-AR

Timothy Herman Manager of Mid Stream Operations XTO Energy, Inc. 810 Houston Street Fort Worth, Texas 76102

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED</u>

Re: Draft Part 71 Operating Permit for Little Canyon Unit Compressor Station, XTO Energy, Inc., Permit #V-UO-000016-2006.00

Dear Mr. Herman:

The U.S. Environmental Protection Agency Region 8 has completed its review of XTO Energy Inc.'s application for the Little Canyon Unit Compressor Station to obtain initial Clean Air Act Title V operating permits pursuant to the Title V Operating Permit Program at 40 CFR part 71 (Part 71). The EPA received the initial application on September 8, 2009.

Enclosed you will find the draft Part 71 operating permit and the corresponding Statement of Basis. The regulations at 40 CFR 71.11(d) require that an applicant, the public and affected states (as defined in 40 CFR 71.2) have the opportunity to submit written comments on any draft Part 71 operating permit. All written comments submitted within 30 calendar days after the public notice is published will be considered by the agency in making its final permit decision. Enclosed is a copy of the public notice which will be published on the EPA's website located at: <u>https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>, on June 23, 2017. The public comment period will end at 5:00 p.m. MDT on July 24, 2017.

The conditions contained in the permit will become effective and enforceable by the agency if the permit is issued final. If you are unable to accept any term or condition of the draft permit, please submit your written comments, along with the reason(s) for non-acceptance to:

Part 71 Permitting Lead U.S. EPA, Region 8 Air Program (8P-AR) 1595 Wynkoop Street Denver, Colorado 80202 If you have any questions concerning the enclosed draft permits or Statement of Basis, please contact Eric Wortman of my staff at (303) 312-6649.

Sincerely, -Aporales_ Monica

Monica Morales Director Air Program

Enclosures (2)

cc: Minnie Grant, Air Coordinator, Ute Indian Tribe Craig Allison, Environmental Health & Safety Advisor, XTO Energy, Inc. United States Environmental Protection Agency Region 8 Air Program 1595 Wynkoop Street Denver, Colorado 80202

Air Pollution Control Permit to Operate Title V Operating Permit Program at 40 CFR Part 71

In accordance with the provisions of Title V of the Clean Air Act (CAA) and the Title V Operating Permit Program at 40 CFR part 71 (Part 71) and applicable rules and regulations,

XTO Energy, Inc. Little Canyon Unit Compressor Station

is authorized to operate air emission units and to conduct other air pollutant emitting activities in accordance with the permit conditions listed in this permit.

This source is authorized to operate at the following location:

Uintah and Ouray Indian Reservation Latitude 39.8969N, Longitude 109.6055W Uintah County, Utah

Terms not otherwise defined in this permit have the meaning assigned to them in the referenced regulations. All terms and conditions of the permit are enforceable by the EPA and citizens under the CAA.

Monica Morales, Director Air Program U.S. EPA Region 8 PAGE INTENTIONALLY LEFT BLANK

Air Pollution Control Permit to Operate Title V Operating Permit Program at 40 CFR Part 71

XTO Energy, Inc. Little Canyon Unit Compressor Station

Permit Number: V-UO-000016-2006.00 Replaces Permit No.: N/A Issue Date: Effective Date: Expiration Date:

The permit number cited above should be referenced in future correspondence regarding this source.

 Table 1. Part 71 Permitting History

Date of Action	Permit Number	Type of Action	Description of Action
TBD	V-UO-000016-2006.00	Initial Permit	N/A

Table of Con	tents
--------------	-------

I.	FACILITY INFORMATION AND EMISSION UNIT IDENTIFICATION	1
	Facility Information Facility Emission Points	
	. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FROM IL AND NATURAL GAS PRODUCTION FACILITIES: 40 CFR PART 63, SUBPART HH.	
	APPLICABILITY	3
	GENERAL STANDARDS	
	GLYCOL DEHYDRATION UNIT PROCESS VENT STANDARDS	
	TEST METHODS, COMPLIANCE PROCEDURES, AND COMPLIANCE DETERMINATION REQUIREMENTS	
	INSPECTION AND MONITORING REQUIREMENTS	
	RECORDKEEPING REQUIREMENTS	
	REPORTING REQUIREMENTS	5
R	I. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR ECIPROCATING INTERNAL COMBUSTION ENGINES: 40 CFR PART 63, SUBPART ZZZ	5
	Applicability	E
	General Provisions	
	WORK, OPERATION AND MANAGEMENT PRACTICES	
	CONTINUOUS COMPLIANCE REQUIREMENTS.	
	RECORDREEPING REQUIREMENTS	
	REPORTING REQUIREMENTS	
т	V. FACILITY-WIDE REQUIREMENTS	
Ţ		
	RECORDKEEPING REQUIREMENTS	
	REPORTING REQUIREMENTS	8
V	. GENERAL PROVISIONS	10
	ANNUAL FEE PAYMENT	10
	ANNUAL EMISSIONS INVENTORY	12
	COMPLIANCE REQUIREMENTS	12
	DUTY TO PROVIDE AND SUPPLEMENT INFORMATION	14
	SUBMISSIONS	14
	SEVERABILITY CLAUSE	15
	PERMIT ACTIONS	15
	Administrative Permit Amendments	
	MINOR PERMIT MODIFICATIONS	
	SIGNIFICANT PERMIT MODIFICATIONS	
	REOPENING FOR CAUSE	
	PROPERTY RIGHTS	
	INSPECTION AND ENTRY	
	TRANSFER OF OWNERSHIP OR OPERATION	
	OFF PERMIT CHANGES	-
	Permit Expiration and Renewal	19

I. Facility Information and Emission Unit Identification

A. Facility Information

Parent Company Name:	XTO Energy, Inc.
Plant Operator & Name:	Little Canyon Unit Compressor Station
Plant Location:	Latitude 39.8969N, Longitude 109.6055W
Region:	8
State:	Utah
County:	Uintah
Reservation:	Uintah and Ouray Indian Reservation
Tribe:	Ute Indian Tribe
Responsible Official:	Manager of Midstream Operations – XTO Energy, Inc.
SIC Code:	1311 – Crude Petroleum and Natural Gas

Description:

Little Canyon Unit is a natural gas compressor station. Natural gas produced from area wells is sent to the compressor station through gathering flowlines. Once the gas enters the station, it flows through a separator to reduce water and condensable liquids content in the gas stream prior to entry into the compressors. The liquids produced from the on-site separator are then sent to two (2) 400-barrel condensate tanks (LCT-1 and LCT-2) operating at atmospheric pressure for storage prior to being hauled offsite by truck. Following the inlet separator, the gas is compressed with two (2) natural gas internal combustion engine driven compressors (LCC-3, and LCC-4) to higher pressure of approximately 700 psig. The high-pressure gas leaving the two-phase separator then passes into a triethylene glycol (TEG) natural gas dehydration system. The TEG natural gas dehydration system consists of a 25 MMscfd capacity natural gas TEG dehydration process still vent (LCD-1), a 0.55 MMBtu/hr natural gas-fired process heater and a TEG regenerator. The TEG natural gas dehydration system uses a BTEX system that captures vapors from the still vent and sends the vapors to a thermal oxidizer for destruction.

Following dehydration, the dry natural gas stream leaves the station via a metered sales pipeline. The station has on-site electrical power supplied by a Capstone natural-gas fired microturbine-driven generator (insignificant emission unit). In addition, the pneumatic control devices are operated by plant air supplied by the on-site electric-driven air compressor.

In addition, the LCU 2-6GX natural gas wellsite is located approximately 1,000 feet from Little Canyon Unit. Natural gas produced from the LCU 2-6GX wellsite flows into the common, Little Canyon Unit area gas gathering system. The LCU 2-6GX wellsite consists of a small (< 1 MMscfd) natural gas dehydration system with a 0.5 MMBtu/hr natural gas-fired

process heater, one (1) 300-barrel and one (1) 400-barrel condensate storage tanks, two (2) 0.25 MMBtu/hr process heaters, truck loading operations and one (1) 18 hp natural gas-fired pump engine.

B. Facility Emission Points

Table 2 -	Emiss	sion U	nits a	ind Ei	nissio	n Gene	rating	Activities
1 4010 2 -	LUUSS		mus a	ուս եւ	1113310		aung	

Unit ID	Description	Control Equipment
Caterpillar 3512 TALE; 810 hp* 4-Stroke Lean-Burn Reciprocating Internal Combustion Engine Natural Gas-Fired		Oxidation Catalyst (not enforceable)
	Serial No. 7NJ00735 Installed: 9/20/2016 Mfg*: 11/22/2000	
	Caterpillar 3516 LE; 1,260 hp* 4-Stroke Lean-Burn Reciprocating Internal Combustion Engine	
LCC-4	Natural Gas-Fired	Oxidation Catalyst
Lee	Serial No. 4EK03003 Installed: 3/28/2013 Mfg*: 8/30/2000	(not enforceable)
	Arrow C-96; 18 hp* 4-Stroke Rich-Burn Internal Combustion Pumping Engine	
LCU 2- 6GX PU	Natural Gas-Fired	None
	Serial No. 210024-C Installed: Pre-June 2006 Mfg*: 12/13/2003	
	25 MMscfd* Triethylene Glycol Dehydration Unit	
LCD-1	Serial No. Unknown Installed: 12/9/2005	Thermal Oxidizer
	0.2 MMscfd* Triethylene Glycol Dehydration Unit (LCU 2-6GX Wellsite)	None
LCU 2- 6GX D-1	Serial No. Unknown Installed: 2000	None
00AD-1	400 bbl* Condensate Storage Tanks	
LCT-1 LCT-2	Serial #: 8801801-3 Serial #: 8J01801-4 Installed: 9/15/2005	None
LCF-1	Fugitive Emissions	None

 LCF-1
 Fugitive Emissions
 None

 * Mfg = Manufactured; hp = horsepower; bbl = barrel; MMscfd = million standard cubic feet per day; MMBtu = million British thermal units.
 None

Table 3 – Insignificant Emission Units*

Description		
Capstone 65 kW Microturbine Genset (Little Canyon Unit)		
Condensate Truck Loading (Little Canyon Unit)		
0.550 MMBtu/hr* TEG Dehydration Unit Reboiler (Little Canyon Unit)		
0.500 MMBtu/hr* Tank Heater #1 (Little Canyon Unit)		
0.500 MMBtu/hr* Tank Heater #2 (Little Canyon Unit)		
0.250 MMBtu/hr* natural gas-fired separator heater (Little Canyon Unit)		
2 MMBtu/hr* heater for Thermal Oxidizer (Little Canyon Unit)		
Pipeline Pigging Operations (Little Canyon Unit)		
Compressor Blowdown Emissions (Little Canyon Unit)		
0.55 MMBtu/hr TEG Dehydration Unit Reboiler (LCU 2-6GX Wellsite)		
300 bbl* Condensate Storage Tank (LCU 2-6GX Wellsite)		
400 bbl* Condensate Storage Tank (LCU 2-6GX Wellsite)		
0.5 MMBtu/hr Tank Heater (LCU 2-6GX Wellsite)		

Description

0.25 MMBtu/hr Tank Heater (LCU 2-6GX Wellsite)

0.25 MMBtu/hr TEG Dehydration Unit Reboiler Heater (LCU 2-6GX Wellsite)

Condensate Truck Loading (LCU 2-6GX Wellsite)

Fugitive Emissions (LCU 2-6GX Wellsite)

*Insignificant emission units can change at the facility as long as the new or replacement units meet the criteria for insignificance, and XTO supplies information as required under 40 CFR part 71 and this permit. The insignificant emission unit status does not exempt these emission units from the requirements of any NSPS and MACT standards that may apply.

II. <u>National Emission Standards for Hazardous Air Pollutants From Oil and Natural</u> <u>Gas Production Facilities: 40 CFR Part 63, Subpart HH</u>

- **A. Applicability** [40 CFR 63.760]
- 1. 40 CFR part 63, subpart HH applies to the 25 MMscfd glycol dehydrator identified as LCD-1 in Table 2 of this permit. [63.760(b)(1)(i)]
- 2. Notwithstanding conditions in this permit, the Permittee shall comply with all applicable requirements of 40 CFR part 63, subpart HH.

B. General Standards [40 CFR 63.764]

- 1. The General Provisions at 40 CFR part 63, subpart A apply as specified in Table 2 of 40 CFR part 63, subpart HH. Notwithstanding conditions in this permit, the Permittee shall comply with all applicable requirements of 40 CFR part 63, subpart A.
- 2. All reports required under 40 CFR part 63, subpart A shall be sent to the EPA at the following address as listed in §63.13:

Director, Air and Toxics Technical Enforcement Program, 8ENF-AT Office of Enforcement, Compliance and Environmental Justice 1595 Wynkoop Street, Denver, Colorado 80202–1129

- 3. Except as specified in §63.764(e), the Permittee shall comply with the following requirements for the glycol dehydrator:
 - (a) The control requirements for glycol dehydrator process vents specified in §63.765;
 - (b) The monitoring requirements specified in §63.773; and
 - (c) The recordkeeping and reporting requirements specified in §63.774 and §63.775.
- 4. At all times the Permittee must operate and maintain any glycol dehydrator, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the EPA which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance procedures, review of operation and maintenance records and inspection of the unit.

C. Glycol Dehydration Unit Process Vent Standards [40 CFR 63.765]

The Permittee shall comply with the control equipment requirements as follows:

- 1. Except as specified in §63.765(c), the Permittee shall comply with the applicable requirements for controlling air emissions specified in §63.765(b);
- 2. For each closed-vent system, the Permittee shall comply with the closed-vent system requirements specified in §63.771(c);
- 3. For each control device, the Permittee shall comply with the applicable control device requirements specified in §63.771(d) or §63.771(f); and
- 4. For each process modification made to comply with glycol dehydrator process vent standards at §63.765(c)(2), the Permittee shall comply with the process modification standards specified in §63.771(e).

D. Test Methods, Compliance Procedures, and Compliance Determination Requirements [40 CFR 63.772]

The Permittee shall determine compliance with the requirements of 40 CFR part 63, subpart HH using the applicable test methods and compliance procedures specified in §63.772.

E. Inspection and Monitoring Requirements [40 CFR 63.773]

- 1. For each closed-vent system or cover required for the Permittee to comply with 40 CFR part 63, subpart HH, the Permittee shall comply with the inspection and monitoring requirements specified in §63.773(c).
- 2. For each control device required for the Permittee to comply with 40 CFR part 63, subpart HH, the Permittee shall comply with the inspection and monitoring requirements as specified in §63.773(b) or §63.773(d).
- F. Recordkeeping Requirements [40 CFR 63.774]
- 1. The recordkeeping provisions of 40 CFR part 63, subpart A, that apply and those that do not apply to the Permittee are listed in Table 2 of 40 CFR part 63, subpart HH.
- 2. The Permittee shall maintain the records specified in §§63.774(b), (c), (d), (e), (g) and (h).
- 3. Except as specified in §63.774(c), §63.774(d), and §63.774(f), the Permittee shall maintain the records specified in §63.774(b).
- 4. If compliance with the benzene emission limit specified in §63.765(b)(1)(ii) is elected, the Permittee shall document, to the Administrator's satisfaction, the items in §63.774(c).

- 5. For glycol dehydrators operating at the source that meet the exemption criteria in §63.764(e)(1)(i) or §63.764(e)(1)(ii), the Permittee shall maintain records as specified in §63.774(d). The Permittee shall maintain the records as specified in §63.774(d) for emission unit LCU 2-6GX D-1 as identified in Table 2 of this permit.
- 6. The Permittee shall keep records of the requirements of §63.774(e) when using a flare to comply with §63.771(d).
- 7. The Permittee shall maintain records, pursuant to §63.774(g), of the occurrence and duration of each malfunction of operation (*i.e.*, process equipment) or the air pollution control equipment and monitoring equipment. The Permittee shall maintain records of actions taken during periods of malfunction to minimize emissions in accordance with §63.764(j), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- The Permittee shall keep records of the requirements of §63.774(h) when using a control device whose model is tested under §63.772(h) to comply with §§63.771(d), (e)(3)(ii) and (f)(1).
- 9. The Permittee shall keep records, pursuant to §63.774(i), of the date the semi-annual maintenance inspection required under §63.773(b) is performed when using a control device whose model was tested under §63.772(h).

G. Reporting Requirements [40 CFR 63.775]

- 1. The reporting provisions of subpart A of this part, that apply and those that do not apply to the Permittee are listed in Table 2 of this subpart.
- 2. The Permittee shall submit the information specified in §63.775(b).
- 3. The Permittee shall submit Notification of Compliance Status Reports as specified in §63.775(d).
- 4. The Permittee shall submit Periodic Reports as specified in §63.775(e).
- 5. The Permittee shall submit notifications of process changes as specified in §63.775(f).
- 6. The Permittee shall comply with any applicable electronic reporting provisions specified at §63.775(g).

III. <u>National Emission Standards for Hazardous Air Pollutants for Reciprocating</u> <u>Internal Combustion Engines: 40 CFR Part 63, Subpart ZZZZ</u>

A. Applicability [40 CFR 63.6585]

40 CFR part 63, subpart ZZZZ applies to the following emission unit:

1. Arrow C-96 engine identified as LCU 2-6GX PU in Table 2 of this permit.

B. General Provisions [40 CFR 63.6665]

- 1. The General Provisions at 40 CFR part 63, subpart A apply as specified in Table 8 of 40 CFR part 63, subpart ZZZZ. Notwithstanding conditions in this permit, the Permittee shall comply with all applicable requirements of 40 CFR part 63, subpart A.
- 2. All reports required under 40 CFR part 63, subpart A shall be sent to the EPA at the following address as listed in §63.13:

Director, Air and Toxics Technical Enforcement Program, 8ENF–AT Office of Enforcement, Compliance and Environmental Justice 1595 Wynkoop Street, Denver, Colorado 80202–1129

C. Work, Operation and Management Practices

- 1. The permittee shall comply with the applicable 40 CFR part 63, subpart ZZZZ operating limitations and other requirements at all times. [40 CFR 63.6605(a)]
- 2. The permittee shall change the oil and filter and inspect and replace as necessary all spark plugs, hoses and belts every 1,440 hours of operation or annually, whichever comes first. [40 CFR 63.6603(a) and Table 2d of 40 CFR, subpart ZZZZ]
- The permittee shall have the option of utilizing an oil analysis program to extend the specified oil change requirement in Table 2d of 40 CFR part 63, subpart ZZZZ.
 [40 CFR 63.6625(j)]
- 4. The permittee shall operate and maintain the stationary RICE according to the manufacture's emission-related operation and maintenance instructions or the permittee may develop and follow the permittee's own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engines in a manner consistent with good air pollution control practices for minimizing emissions. [40 CFR 63.6640(a), 40 CFR 63.6625(e)(8), and Table 6 of 40 CFR 63, subpart ZZZZ]
- 5. During periods of startup the permittee must minimize the engine's time spent at idle and minimize the engine's time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes. [40 CFR 63.6603, 40 CFR 63.6625(h) and Table 2d of 40 CFR 63, subpart ZZZZ]
- 6. At all times, the permittee must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions to the levels required by 40 CFR part 63, subpart ZZZZ. The general duty to minimize emissions does not require the permittee to make any further efforts to reduce emissions if the required levels have been achieved. Determination of whether such operations and maintenance procedures are being used will be based on information available to the Administrator, which may include, but is not limited to, monitoring results, review

of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. [40 CFR 63.6605(b)]

D. Continuous Compliance Requirements

- The permittee shall demonstrate continuous compliance with the applicable operating limitations and other requirements in Table 2d according to the methods specified in Table 6 of 40 CFR part 63, subpart ZZZZ. [40 CFR 63.6605(a) and 40 CFR 63.6640(a)]
- 2. The permittee must report each instance in which an operating limit was not met. These instances are deviations from the operating limitations and must be reported according to the reporting requirements of §63.6650(f) and the Facility-Wide Reporting Requirements section of this permit. [40 CFR 63.6640(b)]
- 3. The permittee must also report each instance in which the requirements in Table 8 of 40 CFR part 63, subpart ZZZZ, were not met. [40 CFR 63.6640(e)]

E. Recordkeeping Requirements

- 1. The permittee must keep the following records to comply with the 40 CFR part 63, subpart ZZZZ operating limitations:
 - (a) A copy of each notification and report that was submitted to comply with 40 CFR part 63, subpart ZZZZ.
 - (b) Records of the occurrence and duration of each malfunction of operation (i.e. process equipment).
 - (c) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process to its normal or usual manner of operation.
 [40 CFR 63.6655(a)]
- The permittee must keep the records required in Table 6 of 40 CFR part 63, subpart ZZZZ to show continuous compliance with each operating limitation that applies. [40 CFR 63.6655(d)]
- The permittee must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that the stationary RICE is operated and maintained according to the manufacturer's or the permittee's own maintenance plan.
 [40 CFR 63.6655(d) and (e), and Table 6 of 40 CFR 63, subpart ZZZZ]
- 4. The permittee must keep each record in a form suitable and readily available for expeditious review, accessible in hard copy or electronic form for 5 years after the date

of each occurrence, measurement, maintenance, corrective action, report or record. [40 CFR 63.10(b)(1), 40 CFR 63.10(f), and 40 CFR 63.6660]

F. Reporting Requirements

The permittee must report all deviations as defined in 40 CFR 63, subpart ZZZZ in the semiannual monitoring report required under the Facility-Wide Reporting Requirements Section of this permit. [40 CFR 63.6650(f) and 40 CFR 63.6640(e)]

IV. <u>Facility-Wide Requirements</u> [40 CFR 71.6(a)(1)]

Conditions in this section of this permit apply to all emissions units located at the source, including any units not specifically listed in Table 2 and Table 3 of the Facility Emission Points section of this permit.

A. Recordkeeping Requirements [40 CFR 71.6(a)(3)(ii)]

The Permittee shall comply with the following generally applicable recordkeeping requirements:

- 1. If the Permittee determines that his or her stationary source that emits (or has the potential to emit, without considering controls) one or more hazardous air pollutants (HAPs) is not subject to a relevant standard or other requirement established under 40 CFR part 63, the Permittee shall keep a record of the applicability determination on site at the source for a period of 5 years after the determination, or until the source changes its operations to become an affected source, whichever comes first. The record of the applicability determination shall include an analysis (or other information) that demonstrates why the Permittee believes the source is unaffected (e.g., because the source is an area source). [40 CFR 63.10(b)(3)]
- 2. The permittee is the owner or operator of a glycol dehydration unit that is exempt from the control requirements under §63.764(e) (Unit LCU 2-6GX D-1). The permittee shall retain each determination used to demonstrate that actual flowrate of natural gas throughput is less than 85,000 scm/day (3,000,000 scf/day) or the actual average benzene emissions are below 1 tpy. [40 CFR 63.764(e)(1), 63.772(b)(2) and 63.774(d)(1)]
- 3. Records shall be kept of off permit changes, as required by the Off Permit Changes section of this permit.

B. Reporting Requirements [40 CFR 71.6(a)(3)(iii)]

1. The Permittee shall submit to the EPA all reports of any required monitoring under this permit semiannually. The first report shall cover the period from the effective date of this permit through December 31, 2017. Thereafter, the report shall be submitted semi-annually, by April 1st and October 1st of each year. The report due on April 1st shall cover the six-month period ending on the last day of December before the report is due. The report due on October 1st shall cover the six-month period ending on the last day of

June before the report is due. All instances of deviations from permit requirements shall be clearly identified in such reports. All required reports shall be certified by a responsible official consistent with the Submissions section of this permit.

To help Part 71 Permittees meet reporting responsibilities, the EPA has developed a form "SIXMON" for 6-month monitoring reports. The form may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

- 2. "Deviation" means any situation in which an emissions unit fails to meet a permit term or condition. A deviation is not always a violation. A deviation can be determined by observation or through review of data obtained from any testing, monitoring or recordkeeping established in accordance with §71.6(a)(3)(i) and (a)(3)(ii). For a situation lasting more than 24 hours which constitutes a deviation, each 24-hour period is considered a separate deviation. Included in the meaning of deviation are any of the following:
 - (a) A situation where emissions exceed an emission limitation or standard;
 - (b) A situation where process or emissions control device parameter values indicate that an emission limitation or standard has not been met; or
 - (c) A situation in which observations or data collected demonstrate noncompliance with an emission limitation or standard or any work practice or operating condition required by the permit.
- 3. The Permittee shall promptly report to the EPA deviations from permit requirements, including those attributable to upset conditions as defined in this permit, the probable cause of such deviations and any corrective actions or preventive measures taken. "Prompt" is defined as follows:
 - (a) Any definition of "prompt" or a specific time frame for reporting deviations provided in an underlying applicable requirement as identified in this permit.
 - (b) Where the underlying applicable requirement fails to address the time frame for reporting deviations, reports of deviations will be submitted based on the following schedule:
 - (i) For emissions of a HAP or a toxic air pollutant (as identified in the applicable regulation) that continue for more than an hour in excess of permit requirements, the report must be made within 24 hours of the occurrence.
 - (ii) For emissions of any regulated air pollutant, excluding a HAP or a toxic air pollutant that continues for more than 2 hours in excess of permit requirements, the report must be made within 48 hours.
 - (iii) For all other deviations from permit requirements, the report shall be submitted with the semi-annual monitoring report.
 - (c) If any of the conditions in (i) or (ii) of paragraph (b) above are met, the Permittee must notify the EPA by telephone (1-800-227-6312), facsimile (303-

312-6409), or by email to <u>r8airreportenforcement@epa.gov</u> based on the timetables listed above. [Notification must specify that this notification is a deviation report for a Part 71 permit]. A written notice, certified consistent with the Submissions section of this permit must be submitted within ten working days of the occurrence. All deviations reported under this section must also be identified in the 6-month report required under Condition 1 in this section of this permit.

[Explanatory note: To help Part 71 Permittees meet reporting responsibilities, the EPA has developed a form "PDR" for prompt deviation reporting. The form may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

V. <u>General Provisions</u>

A. Annual Fee Payment [40 CFR 71.9]

- 1. The Permittee shall pay an annual permit fee in accordance with the procedures outlined below.
- 2. The Permittee shall pay the annual permit fee each year no later than April 1st. The fee shall cover the previous calendar year.
- 3. The fee payment shall be in United States currency and shall be paid by money order, bank draft, certified check, corporate check or electronic funds transfer payable to the order of the U.S. Environmental Protection Agency.
- 4. The Permittee shall send fee payment and a completed fee filing form to:

For regular U.S. Postal Service mail	For non-U.S. Postal Service express mail (FedEx, Airborne, DHL and UPS)
U.S. Environmental Protection Agency FOIA and Miscellaneous Payments Cincinnati Finance Center	U.S. Bank Government Lockbox 979078 U.S. EPA FOIA & Misc. Payments
P.O. Box 979078 St. Louis, Missouri 63197-9000	1005 Convention Plaza SL-MO-C2-GL St. Louis, Missouri 63101

5. The Permittee shall send an updated fee calculation worksheet form and a photocopy of each fee payment check (or other confirmation of actual fee paid) submitted annually by the same deadline as required for fee payment to the address listed in the Submissions section of this permit.

[Explanatory note: The fee filing form "FF" and the fee calculation worksheet form "FEE" may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

- 6. Basis for calculating annual fee:
 - (a) The annual emissions fee shall be calculated by multiplying the total tons of actual emissions of all "regulated pollutants (for fee calculation)" emitted from the source by the presumptive emissions fee (in dollars per ton) in effect at the time of calculation:
 - (i) "Actual emissions" means the actual rate of emissions in tpy of any regulated pollutant (for fee calculation) emitted from a Part 71 source over the preceding calendar year. Actual emissions shall be calculated using each emissions unit's actual operating hours, production rates, inplace control equipment and types of materials processed, stored or combusted during the preceding calendar year.
 - (ii) Actual emissions shall be computed using methods required by the permit for determining compliance, such as monitoring or source testing data.
 - (iii) If actual emissions cannot be determined using the compliance methods in the permit, the Permittee shall use other federally recognized procedures.

[Explanatory note: The presumptive fee amount is revised each calendar year to account for inflation, and it is available from the EPA prior to the start of each calendar year.]

- (b) The annual emissions fee shall be increased by a GHG fee adjustment for any source that has initiated an activity listed in table at §71.9(c)(8) since the fee was last paid. The GHG fee adjustment shall be equal to the set fee provided in the table at §71.9(c)(8) for each activity that has been initiated since the fee was last paid.
- (c) The Permittee shall exclude the following emissions from the calculation of fees:
 - (i) The amount of actual emissions of each regulated pollutant (for fee calculation) that the source emits in excess of 4,000 tpy;
 - (ii) Actual emissions of any regulated pollutant (for fee calculation) already included in the fee calculation; and
 - (iii) The quantity of actual emissions (for fee calculation) of insignificant activities [defined in \$71.5(c)(11)(i)] or of insignificant emissions levels from emissions at the source identified in the Permittee's application pursuant to \$71.5(c)(11)(i).
- 7. Fee calculation worksheets shall be certified as to truth, accuracy, and completeness by a responsible official.

[Explanatory note: The fee calculation worksheet form already incorporates a section to help you meet this responsibility.]

The Permittee shall retain fee calculation worksheets and other emissions-related data used to determine fee payment for 5 years following submittal of fee payment.
 [Emission-related data include, for example, emissions-related forms provided by the

EPA and used by the Permittee for fee calculation purposes, emissions-related spreadsheets and emissions-related data, such as records of emissions monitoring data and related support information required to be kept in accordance with \$71.6(a)(3)(ii).]

- 9. Failure of the Permittee to pay fees in a timely manner shall subject the Permittee to assessment of penalties and interest in accordance with §71.9(l).
- 10. When notified by the EPA of underpayment of fees, the Permittee shall remit full payment within 30 days of receipt of notification.
- 11. A Permittee who thinks an EPA-assessed fee is in error and who wishes to challenge such fee, shall provide a written explanation of the alleged error to the EPA along with full payment of the EPA assessed fee.

B. Annual Emissions Inventory [40 CFR 71.9(h)(1) and (2)]

- 1. The Permittee shall submit an annual emissions report of its actual emissions for both criteria pollutants and regulated HAPs for this source for the preceding calendar year for fee assessment purposes. The annual emissions report shall be certified by a responsible official and shall be submitted each year to the EPA by April 1st.
- 2. The annual emissions report shall be submitted to the EPA at the address listed in the Submissions section of this permit.

[Explanatory note: An annual emissions report, required at the same time as the fee calculation worksheet by §71.9(h), has been incorporated into the fee calculation worksheet form as a convenience.]

- **C. Compliance Requirements** [40 CFR 71.6(a)(6), Section 113(a) and 113(e)(1) of the CAA, and 40 CFR 51.212, 52.12, 52.33, 60.11(g), 61.12]
- 1. Compliance with the Permit
 - (a) The Permittee must comply with all conditions of this Part 71 permit. Any permit noncompliance constitutes a violation of the CAA and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application.
 - (b) It shall not be a defense for a Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.
 - (c) For the purpose of submitting compliance certifications in accordance with §71.6(c)(5), or establishing whether or not a person has violated or is in violation of any requirement of this permit, nothing shall preclude the use, including the exclusive use, of any credible evidence or information, relevant to whether a source would have been in compliance with applicable requirements if the appropriate performance or compliance test or procedure had been performed.

- 2. Compliance Schedule [40 CFR 71.5(c)(8)(iii)]
 - (a) For applicable requirements with which the source is in compliance, the source will continue to comply with such requirements.
 - (b) For applicable requirements that will become effective during the permit term, the source shall meet such requirements on a timely basis.
- 3. Compliance Certifications [40 CFR 71.6(c)(5)]
 - (a) The Permittee shall submit to the EPA a certification of compliance with permit terms and conditions, including emission limitations, standards or work practices annually by April 1st, and shall cover the same 12-month period as the two (2) consecutive semi-annual monitoring reports.

[Explanatory note: To help Part 71 Permittees meet reporting responsibilities, the EPA has developed a reporting form for annual compliance certifications. The form may be found on the EPA's website at: <u>https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits</u>]

- (b) The compliance certification shall be certified as to truth, accuracy, and completeness by a responsible official consistent with §71.5(d).
- (c) The certification shall include the following:
 - (i) Identification of each permit term or condition that is the basis of the certification;
 - (ii) The identification of the method(s) or other means used for determining the compliance status of each term and condition during the certification period, and whether such methods or other means provide continuous or intermittent data. Such methods and other means shall include, at a minimum, the methods and means required in this permit. If necessary, the Permittee also shall identify any other material information that must be included in the certification to comply with section 113(c)(2) of the CAA, which prohibits knowingly making a false certification or omitting material information;
 - (iii) The status of compliance with each term and condition of the permit for the period covered by the certification based on the method or means designated in (ii) above. The certification shall identify each deviation and take it into account in the compliance certification;
 - (iv) Such other facts as the EPA may require to determine the compliance status of the source; and
 - (v) Whether compliance with each permit term was continuous or intermittent.

D. Duty to Provide and Supplement Information $[40 \ CEP \ 71 \ 6(a)(6)(y) \ 71 \ 5(a)(2) \ and \ 71 \ 5(b)]$

[40 CFR 71.6(a)(6)(v), 71.5(a)(3), and 71.5(b)]

- 1. The Permittee shall furnish to the EPA, within a reasonable time, any information that the EPA may request in writing to determine whether cause exists for modifying, revoking, and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the Permittee shall also furnish to the EPA copies of records that are required to be kept pursuant to the terms of the permit, including information claimed to be confidential. Information claimed to be confidential must be accompanied by a claim of confidentiality according to the provisions of 40 CFR part 2, subpart B.
- 2. The Permittee, upon becoming aware that any relevant facts were omitted or incorrect information was submitted in the permit application, shall promptly submit such supplementary facts or corrected information. In addition, a Permittee shall provide additional information as necessary to address any requirements that become applicable after the date a complete application is filed, but prior to release of a draft permit.
- **E.** Submissions [40 CFR 71.5(d), 71.6(c)(1) and 71.9(h)(2)]
- 1. Any document (application form, report, compliance certification, etc.) required to be submitted under this permit shall be certified by a responsible official as to truth, accuracy and completeness. Such certifications shall state that based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate and complete.

[Explanatory note: the EPA has developed a reporting form "CTAC" for certifying truth, accuracy and completeness of Part 71 submissions. The form may be found on the EPA's website at: https://www.epa.gov/title-v-operating-permits/epa-issued-operating-permits]

2. All fee calculation worksheets and applications for renewals and permit modifications shall be submitted to:

Part 71 Permit Contact, Air Program, 8P-AR U.S. Environmental Protection Agency, 1595 Wynkoop Street Denver, Colorado 80202

3. Except where otherwise specified, all reports, test data, monitoring data, notifications and compliance certifications shall be submitted to:

Director, Air Toxics and Technical Enforcement Program, 8ENF-AT U.S. Environmental Protection Agency, 1595 Wynkoop Street Denver, Colorado 80202

F. Severability Clause [40 CFR 71.6(a)(5)]

The provisions of this permit are severable, and in the event of any challenge to any portion of this permit, or if any portion is held invalid, the remaining permit conditions shall remain valid and in force.

G. Permit Actions [40 CFR 71.6(a)(6)(iii)]

This permit may be modified, revoked, reopened, and reissued or terminated for cause. The filing of a request by the Permittee for a permit modification, revocation and reissuance, or termination or of a notification of planned changes or anticipated noncompliance does not stay any permit condition.

H. Administrative Permit Amendments [40 CFR 71.7(d)]

The Permittee may request the use of administrative permit amendment procedures for a permit revision that:

- 1. Corrects typographical errors;
- 2. Identifies a change in the name, address or phone number of any person identified in the permit, or provides a similar minor administrative change at the source;
- 3. Requires more frequent monitoring or reporting by the Permittee;
- 4. Allows for a change in ownership or operational control of a source where the EPA determines that no other change in the permit is necessary, provided that a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee has been submitted to the EPA;
- 5. Incorporates into the Part 71 permit the requirements from preconstruction review permits authorized under an EPA-approved program, provided that such a program meets procedural requirements substantially equivalent to the requirements of §71.7 and §71.8 that would be applicable to the change if it were subject to review as a permit modification, and compliance requirements substantially equivalent to those contained in §71.6; or
- 6. Incorporates any other type of change which the EPA has determined to be similar to those listed in (1) through (5) above.

[Note to Permittee: If 1 through 5 above do not apply, please contact the EPA for a determination of similarity prior to submitting your request for an administrative permit amendment under this provision.]

I. Minor Permit Modifications [40 CFR 71.7(e)(1)]

- 1. The Permittee may request the use of minor permit modification procedures only for those modifications that:
 - (a) Do not violate any applicable requirement;

- (b) Do not involve significant changes to existing monitoring, reporting or recordkeeping requirements in the permit;
- (c) Do not require or change a case-by-case determination of an emission limitation or other standard, or a source-specific determination for temporary sources of ambient impacts or a visibility or increment analysis;
- (d) Do not seek to establish or change a permit term or condition for which there is no corresponding underlying applicable requirement and that the source has assumed to avoid an applicable requirement to which the source would otherwise be subject. Such terms and conditions include:
 - (i) A federally enforceable emissions cap assumed to avoid classification as a modification under any provision of Title I; and
 - (ii) An alternative emissions limit approved pursuant to regulations promulgated under Section 112(i)(5) of the CAA;
- (e) Are not modifications under any provision of Title I of the CAA; and
- (f) Are not required to be processed as a significant modification.
- 2. Notwithstanding the list of changes ineligible for minor permit modification procedures in 1 above, minor permit modification procedures may be used for permit modifications involving the use of economic incentives, marketable permits, emissions trading and other similar approaches, to the extent that such minor permit modification procedures are explicitly provided for in an applicable implementation plan or in applicable requirements promulgated by the EPA.
- 3. An application requesting the use of minor permit modification procedures shall meet the requirements of §71.5(c) and shall include the following:
 - (a) A description of the change, the emissions resulting from the change and any new applicable requirements that will apply if the change occurs;
 - (b) The source's suggested draft permit;
 - (c) Certification by a responsible official, consistent with §71.5(d), that the proposed modification meets the criteria for use of minor permit modification procedures and a request that such procedures be used; and
 - (d) Completed forms for the permitting authority to use to notify affected States as required under §71.8.
- 4. The source may make the change proposed in its minor permit modification application immediately after it files such application. After the source makes the change allowed by the preceding sentence, and until the permitting authority takes any of the actions authorized by §71.7(e)(1)(iv)(A) through (C), the source must comply with both the applicable requirements governing the change and the proposed permit terms and conditions. During this time, the source need not comply with the existing permit terms

and conditions it seeks to modify. However, if the source fails to comply with its proposed permit terms and conditions during this time, the existing permit terms and conditions it seeks to modify may be enforced against it.

5. The permit shield under §71.6(f) may not extend to minor permit modifications.

J. Significant Permit Modifications [40 CFR 71.7(e)(3), 71.8(d), and 71.5(a)(2)]

- 1. The Permittee must request the use of significant permit modification procedures for those modifications that:
 - (a) Do not qualify as minor permit modifications or as administrative amendments;
 - (b) Are significant changes in existing monitoring permit terms or conditions; or
 - (c) Are relaxations of reporting or recordkeeping permit terms or conditions.
- 2. Nothing herein shall be construed to preclude the Permittee from making changes consistent with Part 71 that would render existing permit compliance terms and conditions irrelevant.
- 3. Permittees must meet all requirements of Part 71 for applications, public participation, and review by affected states and tribes for significant permit modifications. For the application to be determined complete, the Permittee must supply all information that is required by §71.5(c) for permit issuance and renewal, but only that information that is related to the proposed change.

K. Reopening for Cause [40 CFR 71.7(f)]

The permit may be reopened and revised prior to expiration under any of the following circumstances:

- 1. Additional applicable requirements under the CAA become applicable to a major Part 71 source with a remaining permit term of three or more years. Such a reopening shall be completed no later than 18 months after promulgation of the applicable requirement. No such reopening is required if the effective date of the requirement is later than the date on which the permit is due to expire, unless the original permit or any of its terms and conditions have been extended pursuant to §71.7(c)(3);
- 2. Additional requirements (including excess emissions requirements) become applicable to an affected source under the acid rain program. Upon approval by the Administrator, excess emissions offset plans shall be deemed to be incorporated into the permit;
- 3. The EPA determines that the permit contains a material mistake or that inaccurate statements were made in establishing the emissions standards or other terms or conditions of the permit; or
- 4. The EPA determines that the permit must be revised or revoked to assure compliance with the applicable requirements.

L. Property Rights [40 CFR 71.6(a)(6)(iv)]

This permit does not convey any property rights of any sort, or any exclusive privilege.

M. Inspection and Entry [40 CFR 71.6(c)(2)]

- 1. Upon presentation of credentials and other documents as may be required by law, the Permittee shall allow the EPA or an authorized representative to perform the following:
- 2. Enter upon the Permittee's premises where a Part 71 source is located or emissionsrelated activity is conducted, or where records must be kept under the conditions of the permit;
- 3. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit;
- 4. Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices or operations regulated or required under the permit; and
- 5. As authorized by the CAA, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the permit or applicable requirements.

N. Transfer of Ownership or Operation [40 CFR 71.7(d)(1)(iv)]

A change in ownership or operational control of this source may be treated as an administrative permit amendment if the EPA determines no other change in this permit is necessary and provided that a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new Permittee has been submitted to the EPA.

O. Off Permit Changes [40 CFR 71.6(a)(12) and 40 CFR 71.6(a)(3)(ii)]

The Permittee is allowed to make certain changes without a permit revision, provided that the following requirements are met, and that all records required by this section are kept for a period of 5 years:

- 1. Each change is not addressed or prohibited by this permit;
- 2. Each change shall meet with all applicable requirements and shall not violate any existing permit term or condition;
- 3. Changes under this provision may not include changes subject to any requirement of 40 CFR parts 72 through 78 or modifications under any provision of Title I of the CAA;
- 4. The Permittee must provide contemporaneous written notice to the EPA of each change, except for changes that qualify as insignificant activities under §71.5(c)(11). The written notice must describe each change, the date of the change, any change in

emissions, pollutants emitted and any applicable requirements that would apply as a result of the change;

- 5. The permit shield does not apply to changes made under this provision;
- 6. The Permittee must keep a record describing all changes that result in emissions of any regulated air pollutant subject to any applicable requirement not otherwise regulated under this permit, and the emissions resulting from those changes;
- 7. The notice shall be kept on site and made available to the EPA on request, in accordance with the general recordkeeping provision of this permit; and
- 8. Submittal of the written notice required above shall not constitute a waiver, exemption or shield from applicability of any applicable standard or PSD permitting requirements under 40 CFR 52.21 that would be triggered by the change.
- **P. Permit Expiration and Renewal** [40 CFR 71.5(a)(1)(iii), 71.5(a)(2), 71.5(c)(5), 71.6(a)(11), 71.7(b), 71.7(c)(1), and 71.7(c)(3)]
- 1. This permit shall expire upon the earlier occurrence of the following events:
 - (a) Five years elapse from the date of issuance; or
 - (b) The source is issued a Part 70 or Part 71 permit under an EPA-approved or delegated permit program.
- 2. Expiration of this permit terminates the Permittee's right to operate unless a timely and complete permit renewal application has been submitted at least 6 months but not more than 18 months prior to the date of expiration of this permit.
- 3. If the Permittee submits a timely and complete permit application for renewal, consistent with §71.5(a)(2), but the EPA has failed to issue or deny the renewal permit, then all the terms and conditions of the permit, including any permit shield granted pursuant to §71.6(f) shall remain in effect until the renewal permit has been issued or denied.
- 4. The Permittee's failure to have a Part 71 permit is not a violation of this part until the EPA takes final action on the permit renewal application. This protection shall cease to apply if, subsequent to the completeness determination, the Permittee fails to submit any additional information identified as being needed to process the application by the deadline specified in writing by the EPA.
- 5. Renewal of this permit is subject to the same procedural requirements that apply to initial permit issuance, including those for public participation, affected State, and tribal review.
- 6. The application for renewal shall include the current permit number, description of permit revisions and off permit changes that occurred during the permit term, any applicable requirements that were promulgated and not incorporated into the permit during the permit term and other information required by the application form.

Air Pollution Control Federal Clean Air Act (CAA) Title V Permit to Operate Statement of Basis for Draft Permit No. V-UO-000016-2006.00

XTO Energy, Inc. Little Canyon Unit Compressor Station Uintah & Ouray Reservation Uintah County, Utah

I. <u>Facility Information</u>

A. Location

The Little Canyon Unit Compressor Station (Little Canyon Unit), owned and operated by XTO Energy, Inc. (XTO), is located on Indian country lands within the Uintah and Ouray Indian Reservation in northeastern Utah. The exact location is Latitude 39.8969N, Longitude 109.6055W. The mailing address is:

XTO Energy, Inc. 810 Houston Street Fort Worth, Texas 76102

B. Contacts

Facility Contact:

Craig Allison XTO Energy, Inc. 810 Houston Street Fort Worth, Texas 76102 Phone: (817) 885-2672

Responsible Official:

Timothy Herman, Manager of Mid Stream Operations XTO Energy 810 Houston Street Fort Worth, Texas 76102 Phone: (817) 885-2584

Tribal Contact:

Minnie Grant, Air Coordinator, Energy, Minerals and Air Ute Indian Tribe P.O. Box 70 Fort Duchesne, Utah 84026 Phone: (435) 725-4950

C. Description of Operations

Little Canyon Unit is a natural gas compressor station. Natural gas produced from area wells is sent to the compressor station through gathering flowlines. Once the gas enters the station, it flows through a separator in order to reduce water and condensable liquids content in the gas stream prior to entry into the compressors. The liquids produced from the on-site separator are then sent to two (2) 400-barrel condensate tanks (LCT-1 and LCT-2) operating at atmospheric

pressure for storage prior to being hauled offsite by truck. Following the inlet separator, the gas is compressed with two (2) natural gas internal combustion engine driven compressors (LCC-3, and LCC-4) to higher pressure of approximately 700 psig. The high-pressure gas leaving the two-phase separator then passes into a triethylene glycol (TEG) natural gas dehydration system. The TEG natural gas dehydration system consists of a 25 MMscfd capacity natural gas TEG dehydration process still vent (LCD-1), a 0.55 MMBtu/hr natural gas-fired process heater and a TEG regenerator. The TEG natural gas dehydration system uses a BTEX system that captures vapors from the still vent and sends the vapors to a thermal oxidizer for destruction.

Following dehydration, the dry natural gas stream leaves the station via a metered sales pipeline. The station has on-site electrical power supplied by a Capstone natural-gas fired microturbinedriven generator (insignificant emission unit). In addition, the pneumatic control devices are operated by plant air supplied by the on-site electric-driven air compressor.

In addition, the LCU 2-6GX natural gas wellsite is located approximately 1,000 feet from Little Canyon Unit. Natural gas produced from the LCU 2-6GX wellsite flows into the common, Little Canyon Unit area gas gathering system. The LCU 2-6GX wellsite consists of a small (< 1 MMscfd) natural gas dehydration system with a 0.5 MMBtu/hr natural gas-fired process heater, one (1) 300-barrel and one (1) 400-barrel condensate storage tanks, two (2) 0.25 MMBtu/hr process heaters, truck loading operations and one (1) 18 hp natural gas-fired pump engine.

D. Emission Points

The Title V Operating Permit Program at 40 CFR part 71 (Part 71) allows the Permittee to separately list in the permit application units or activities that qualify as "insignificant" based on potential emissions below 2 tons per year (tpy) for all regulated pollutants that are not listed as hazardous air pollutants (HAPs) under section 112(b) and below 1,000 lbs/year or the de minimis level established under section 112(g), whichever is lower for HAPs. However, the application may not omit information needed to determine the applicability of or to impose, any applicable requirement. Units and activities that qualify as "insignificant" for the purposes of the Part 71 application are in no way exempt from applicable requirements or any requirements of the Part 71 permit.

Tables 1 and 2 lists emission units and emission generating activities, including any air pollution control devices.

Unit ID	Description	Control Equipment
LCC-3	Caterpillar 3512 TALE; 810 hp* 4-Stroke Lean-Burn Reciprocating Internal Combustion Engine Natural Gas-Fired Serial No. 7NJ00735 Installed: 9/20/2016 Mfg*: 11/22/2000	Oxidation Catalyst (not enforceable)
LCC-4	Caterpillar 3516 LE; 1,260 hp*4-Stroke Lean-Burn Reciprocating Internal Combustion Engine Natural Gas-FiredSerial No. 4EK03003Installed: 3/28/2013 Mfg*: 8/30/2000	Oxidation Catalyst (not enforceable)

Table 1 – Emission Units and Emission Generating Activities

Unit ID	Description	Control Equipment
	Arrow C-96; 18 hp*	
	4-Stroke Rich-Burn Internal Combustion Pumping Engine Natural Gas-Fired	
LCU 2-6GX PU	Natural Gas-Filed	None
	Serial No. 210024-C Installed: Pre-June 2006	
	Mfg*: 12/13/2003	
	25 MMscfd* Triethylene Glycol Dehydration Unit	
		Thermal Oxidizer
LCD-1	Serial No. Unknown Installed: 12/9/2005	
	0.2 MMscfd* Triethylene Glycol Dehydration Unit (LCU 2-6GX	
	Wellsite)	None
LCU 2-6GX D-1	Social No. Unknown Installed: 2000	
LCU 2-00A D-1	Serial No. UnknownInstalled: 2000400 bbl* Condensate Storage Tanks	•
	400 001° Condensate Storage Fairks	
LCT-1	Serial #: 8801801-3 Installed: 9/15/2005	None
LCT-2	Serial #: 8J01801-4 Installed: 9/15/2005	
LCF-1	Fugitive Emissions	None

* Mfg = Manufactured; hp = horsepower; bbl = barrel; MMscfd = million standard cubic feet per day; MMBtu/hr = million British thermal units per hour

Table 2 – Insignificant Emission Units*

Description							
Capstone 65 kW Microturbine Genset (Little Canyon Unit)							
Condensate Truck Loading (Little Canyon Unit)							
0.550 MMBtu/hr* TEG Dehydration Unit Reboiler (Little Canyon Unit)							
0.500 MMBtu/hr* Tank Heater #1 (Little Canyon Unit)							
0.500 MMBtu/hr* Tank Heater #2 (Little Canyon Unit)							
0.250 MMBtu/hr* natural gas-fired separator heater (Little Canyon Unit)							
2 MMBtu/hr* heater for Thermal Oxidizer (Little Canyon Unit)							
Pipeline Pigging Operations (Little Canyon Unit)							
Compressor Blowdown Emissions (Little Canyon Unit)							
0.55 MMBtu/hr TEG Dehydration Unit Reboiler (LCU 2-6GX Wellsite)							
300 bbl* Condensate Storage Tank (LCU 2-6GX Wellsite)							
400 bbl* Condensate Storage Tank (LCU 2-6GX Wellsite)							
0.5 MMBtu/hr Tank Heater (LCU 2-6GX Wellsite)							
0.25 MMBtu/hr Tank Heater (LCU 2-6GX Wellsite)							
0.25 MMBtu/hr TEG Dehydration Unit Reboiler Heater (LCU 2-6GX Wellsite)							
Condensate Truck Loading (LCU 2-6GX Wellsite)							
Fugitive Emissions (LCU 2-6GX Wellsite)							

*Insignificant emission units can change at the facility as long as the new or replacement units meet the criteria for insignificance, and XTO supplies information as required under 40 CFR part 71 and this permit. The insignificant emission unit status does not exempt these emission units from the requirements of any NSPS and MACT standards that may apply.

E. Potential to Emit

Pursuant to 40 CFR 52.21, potential to emit (PTE) is defined as the maximum capacity of a stationary source to emit a pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the source to emit a pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored, or processed, shall be treated as part of its design <u>if</u> the limitation, or the effect it would have on emissions, is federally enforceable. Independently enforceable applicable requirements are considered enforceable to the extent that the source is in compliance with the standard. In addition, beneficial reductions in non-targeted pollutants resulting from compliance with an independently enforceable applicable requirement may be counted towards PTE provided the emission reduction of the non-targeted pollutant is enforceable as a practical matter

and compliance is being met. See the 1995 guidance memo signed by John Seitz, Director of the Office of Air Quality Planning and Standards titled, "Options for Limiting Potential to Emit of a Stationary Source under Section 112 and Title V of the Clean Air Act."

XTO reported the controlled emission unit-specific PTE in their Part 71 permit application. The controlled emissions in Table 3 are based on the legally and practically enforceable requirements set forth in this proposed permit.

	Regulated Air Pollutants (tpy)												
Unit ID	NO _x *	CO*	VOC*	PM*	SO ₂ *	CH ₂ O*	Total HAPs*	CO ₂ *	CH4* (as CO2e)	N2O* (as CO2e)	CO ₂ e*		
LCC-3	15.6	17.6	7.8	0.3	0.0	2.2	2.2	3,707.3	1.7	2.1	3,711.1		
LCC-4	25.9	30.3	12.9	0.5	0.0	3.6	3.6	5,900.3	2.8	3.3	5,906.4		
LCD-1	2.1	2.9	5.3	0.3	0.0	0.0	3.0	4,170.6	8.1	2.3	4,181.0		
LCT-1	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0		
LCT-2	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0		
LCF-1	0.0	0.0	3.9	0.0	0.0	0.0	0.1	0.0	593.2	0.0	593.2		
LCU 2- 6GX Pump Engine	2.1	0.9	0.0	0.0	0.0	0.0	0.0	112.7	5.89	0.0	118.6		
LCU 2- 6GX D-1	0.0	0.0	4.0	0.0	0.0	0.0	1.4	0.1	27.5	0.0	27.6		
IEUs	2.2	3.5	11.1	0.1	0.0	0.0	0.3	1,316.8	723.2	0.7	2,040.7		
TOTAL	47.9	55.2	48.6	1.2	0.0	5.8	11.0	15,095.0	1,385.0	8.4	16,488.4		

Table 3 – Potential-to-Emit with Legally and Practically Enforceable Controls

*NO_X = nitrogen oxide; CO = carbon monoxide; VOC = volatile organic compound; PM = particulate matter; SO₂ = sulfur dioxide; CH₂O = formaldehyde; HAP = hazardous air pollutant; CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = equivalent CO₂.

II. Applicable Requirement Review

The discussions in the following sections are based on the information provided by XTO in their Part 71 application, certified to be true and accurate by the Responsible Official of this facility.

A. 40 CFR 52.21: Prevention of Significant Deterioration

The Prevention of Significant Deterioration Permit Program at 40 CFR part 52 (PSD) is a preconstruction review requirement of the CAA that applies to proposed projects that are sufficiently large (in terms of emissions) to be a "major" stationary source or "major" modification of an existing stationary source. Source size is defined in terms of "potential to emit," which is its capability at maximum design capacity to emit a pollutant, except as constrained by existing legally and practically enforceable conditions applicable to the source. A new stationary source or a modification to an existing minor stationary source is major if the proposed project has the PTE of any pollutant regulated under 40 CFR part 52 in amounts equal to or exceeding specified major source thresholds, which are 100 tpy for 28 listed industrial source categories and 250 tpy for all other sources. PSD also applies to modifications at existing major sources that cause a "significant net emissions increase" at that source. Significance levels for each pollutant are defined in the PSD regulations at 40 CFR 52.21.

According to the emissions information provided by XTO in their Part 71 application, this facility is currently a minor source with respect to PSD as the PTE does not exceed the threshold of criteria pollutants regulated under PSD.

B. Source Determination

At 40 CFR 71.2, a major source is generally defined as any stationary source (or any group of stationary sources that are located on one or more contiguous or adjacent properties, are under common control of the same person (or persons under common control)), and belonging to a single major industrial grouping. On June 3, 2016, the EPA published a final rule clarifying when oil and natural gas sector equipment and activities must be deemed a single source when determining whether major source permitting programs (PSD and New Source Review preconstruction Permit Programs, and the Part 71 Permit Program) apply (81 FR 35622). By defining the term "adjacent," the rule specifies that equipment and activities in the oil and natural gas sector that are under common control will be considered part of the same source if they are located on the same surface site or on individual surface sites that share equipment and are within a quarter mile of each other.

According to information provided by XTO, the LCU 2-6GX wellsite and Little Canyon Unit are located within a quarter mile of each other and share equipment. Therefore, the EPA has determined that LCU 2-6GX wellsite is adjacent to Little Canyon Unit and thus part of the same stationary source. A more detailed source determination is included in the docket for this permit action.

C. 40 CFR Part 60, Subpart A: General Provisions

This subpart applies to the owner or operator of any stationary source which contains an affected facility, the construction or modification of which is commenced after the date of publication of any standard in 40 CFR part 60 (Part 60). The general provisions under subpart A apply to sources that are subject to the specific subparts of Part 60.

As explained below, Little Canyon Unit is not subject to any specific subparts of Part 60; therefore, the General Provisions of Part 60 do not apply.

D. 40 CFR Part 60, Subpart GG: Standards of Performance for Stationary Gas Turbines

This rule applies to stationary gas turbines, with a heat input at peak load equal to or greater than 10.7 gigajoules per hour (10 MMBtu/hr), that commenced construction, modification or reconstruction after October 3, 1977.

Based on the information provided by XTO in their Part 71 application, the stationary gas turbine located at Little Canyon Unit has a maximum heat input less than 10.7 gigajoules per hour; therefore, this rule does not apply. The maximum heat input for the Capstone Microturbine at the facility is 0.2 MMBtu/hr.

E. 40 CFR Part 60, Subpart Kb: Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for which Construction, Reconstruction, or Modification Commenced After July 23, 1984

This subpart establishes requirements for controlling VOC emissions from storage vessels with a capacity greater than or equal to 75 cubic meters that are used to store volatile organic liquids for which construction, reconstruction or modification commenced after July 23, 1984.

Based on the information provided by XTO in their Part 71 application, the condensate tanks (LCT-1, LCT-2, LCU 2-6GX Tank 1, and LCU 2-6GX Tank 2) at Little Canyon Unit and LCU 2-6GX wellsite are exempt from these requirements because they have a capacity of less than 10,000 bbls.

F. 40 CFR Part 60, Subpart KKK: Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plants for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011

This subpart establishes requirements for controlling fugitive VOC emissions from onshore natural gas processing plants. It applies to natural gas processing plants that commenced construction, reconstruction, or modification after January 20, 1984 and on or before August 23, 2011.

Based on the information provided by XTO in their Part 71 application, Little Canyon Unit is not a natural gas processing plant, therefore the facility is not subject to this subpart.

G. 40 CFR Part 60, Subpart LLL: Standards of Performance for SO₂ Emissions from Onshore Natural Gas Processing for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984, and on or Before August 23, 2011

This subpart applies to sweetening units and sulfur recovery units at onshore natural gas processing facilities. As defined in this subpart, sweetening units are process devices that separate hydrogen sulfide (H₂S) and CO₂ from a sour natural gas stream. Sulfur recovery units are defined as process devices that recover sulfur from the acid gas (consisting of H₂S and CO₂) removed by a sweetening unit.

Based on the information provided by XTO in their Part 71 application, neither sweetening nor sulfur recovery are performed at the facility. Therefore, Little Canyon Unit is not subject to this subpart.

H. 40 CFR Part 60, Subpart JJJJ: Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

This subpart establishes emission standards and compliance requirements for the control of emissions from stationary spark ignition internal combustion engines that commenced construction, modification, or reconstruction after June 12, 2006, and are manufactured on or after specified manufacture trigger dates. The manufacture trigger dates are based on the engine type, fuel used and maximum engine horsepower.

Based on the information provided by XTO in their Part 71 application, the engines operating at the facility were manufactured prior to the manufacture trigger dates in the rule (January 1, 2008 for engines LCU-3 and LCU-4, and July 1, 2008 for the Arrow C-96 pump engine). Therefore, this subpart does not apply.

I. 40 CFR Part 60, Subpart KKKK: Standards of Performance for Stationary Combustion Turbines

This subpart establishes emission standards and compliance schedules for the control of emissions from stationary combustion turbines that commenced construction, modification or

reconstruction after February 18, 2005. The rule applies to stationary combustion turbines with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour.

Based on the information provided by XTO in their Part 71 application, the stationary gas turbine located at Little Canyon has a maximum heat input less than 10.7 gigajoules per hour; therefore, this rule does not apply. The maximum heat input for the Capstone Microturbine at the facility is 0.2 MMBtu/hr.

J. 40 CFR Part 60, Subpart OOOO: Standards of Performance for Crude Oil and Natural Gas production, Transmission, and Distribution After August 23, 2011, and on or Before September 18, 2015

This subpart establishes emission standards for the control of VOC and SO₂ emissions from affected facilities that commence construction, modification, or reconstruction after August 23, 2011 and on or before September 18, 2015. Affected facilities include, but are not limited to well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels and sweetening units.

Based on the information provided by XTO in their Part 71 application, the current equipment at Little Canyon Unit and LCU 2-6GX wellsite that are affected facilities predates the applicability date for this subpart. Therefore, Little Canyon Unit and LCU 2-6GX wellsite are not subject to this subpart.

K. 40 CFR part 60, Subpart OOOOa: Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015

This subpart establishes emission standards for the control of VOC and SO₂ emissions from affected facilities that commence construction, modification or reconstruction after September 18, 2015. Affected facilities include, but are not limited to well completions, centrifugal compressors, reciprocating compressors, pneumatic controllers, storage vessels and sweetening units.

Based on the information provided by XTO in their Part 71 application, the current equipment at Little Canyon Unit and LCU 2-6GX wellsite that are affected facilities predate the applicability date for this subpart. Therefore, Little Canyon Unit and LCU 2-6GX wellsite are not subject to this subpart.

L. 40 CFR Part 63, Subpart A: National Emission Standards for Hazardous Air Pollutants for Source Categories, General Provisions.

The requirements of 40 CFR part 63, subpart A apply to sources that are subject to the specific subparts of 40 CFR part 63.

As explained below, Little Canyon Unit and LCU 2-6GX wellsite are subject to 40 CFR part 63, subpart HH, National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities and subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines; therefore, the General Provisions of 40 CFR part 63 apply.

M. 40 CFR Part 63, Subpart HH: National Emission Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities

This subpart establishes emission standards for the control of HAP emissions from affected units located at natural gas production facilities that process, upgrade or store natural gas prior to the point of custody transfer, or that process, upgrade or store natural gas prior to the point at which natural gas enters the natural gas transmission and storage source category or is delivered to a final end user. The affected units are glycol dehydration units, storage vessels with the potential for flash emissions (as defined in the rule) and the group of ancillary equipment and compressors intended to operate in volatile HAP service which are located at natural gas processing plants.

Based on the information provided by XTO in their Part 71 application, Little Canyon Unit and LCU 2-6GX wellsite do not operate any storage vessels with the potential for flash emissions (as defined in the rule). Uncontrolled emissions from dehydration unit LCD-1 exceed the major source thresholds for HAPs. Therefore, dehydration unit LCD-1 is subject to the major source requirements of this subpart.

As defined in §63.761, emissions from any oil and gas exploration or production well, and emissions from any pipeline compressor station shall not be aggregated with emissions from other similar units to determine whether such emission points are major sources. Therefore, the LCU 2-6GX wellsite is an area source under the rule and dehydration unit LCU 2-6GX D-1 is subject to the area source requirements of the rule. However, dehydration unit LCU 2-6GX D-1 meets the exemption criteria in §63.764(e) because according to the information provided by XTO in their Part 71 application the actual annual average flowrate of natural gas to the dehydration unit is less than 85 thousand standard cubic meters per day. XTO is subject to the recordkeeping requirements for the exemption criteria at §63.774(d)(1).

N. 40 CFR Part 63, Subpart YYYY: National Emission Standards for Hazardous Air Pollutants from Stationary Combustion Turbines.

This rule establishes national emission limitations and work practice standards for HAPs emitted from Stationary Combustion Turbines. The affected source includes the stationary combustion turbine located at a major source of HAP emissions.

As defined in §63.6090(b)(3), an existing, new or reconstructed stationary combustion turbine with a rated peak power output of less than 1.0 megawatt (MW) does not have to meet the requirements of this subpart. Based on the information provided by XTO in their Part 71 application, although Little Canyon Unit is a major source of HAP emissions, the 65 kw Capstone Microturbine Generator at the facility is exempt from the requirements of this subpart because according to XTO it has a peak power output of less than 1.0 MW. The maximum heat input for the Capstone Microturbine at the facility is 0.2 MMBtu/hr.

O. 40 CFR Part 63, Subpart ZZZZ (MACT ZZZZ): National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

This subpart establishes emission standards and operating limitations for the control of HAP emissions from spark ignition and compression ignition reciprocating internal combustion engines.

According to the regulations at §63.6585(b), a major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year,

except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site. Since the LCU 2-6GX wellsite and Little Canyon Unit are not located on the same surface site, the emissions from neither the wellsite nor the compressor station shall not be aggregated for the purposes of determining a major source of HAPs.

As defined in §63.6675, for production field facilities, only HAP emissions from glycol dehydration units, storage vessels with the potential for flash emissions, combustion turbines and reciprocating internal combustion engines shall be aggregated to determine whether such emission points are major sources. Based on the information provided by XTO in their Part 71 application, the reciprocating internal combustion engines (LCC-3 and LCC-4) at Little Canyon Unit are considered existing engines because they commenced construction prior to December 19, 2002. The regulations at §63.6590(b)(3)(ii) exempt existing engines greater than 500 hp at a major source of HAPs from the requirements of subpart ZZZZ. Therefore, there are no requirements for LCC-3 or LCC-4 in the Part 71 permit. Should XTO replace LCC-3 or LCC-4 with an engine subject to subpart ZZZZ, the off-permit changes provision of the permit will not apply and XTO will be required to submit an application for a modification to the Part 71 permit.

The Arrow C-96 pump engine at the LCU 2-6GX wellsite (LCU 2-6GX PU) is subject to the area source requirements of subpart ZZZZ.

P. 40 CFR Part 63, Subpart DDDDD (Boiler MACT): National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

This rule establishes national emission limitations and operating limitations for HAPs emitted from new and existing industrial boilers, institutional boilers, commercial boilers and process heaters that are located at major sources of HAPs. For the purposes of this subpart, a major source of HAPs is as defined in §63.2, except that for oil and natural gas production facilities, a major source of HAPs is as defined in §63.761. Boilers or process heaters that combust natural gas for fuel or have a maximum designed heat input capacity less than 10 MMBtu/hr are subject to work practice standards in lieu of emission limits. For the purposes of this subpart, an affected unit is an existing unit if it was constructed prior to June 4, 2010.

The dehydration unit reboiler and heaters at Little Canyon Unit meet the definition of process heaters in the rule. However, because Little Canyon Unit is subject to the major source requirements of 40 CFR part 63, subpart HH, EPA's "once in, always in" policy¹ allows XTO to account for the reductions of PTE achieved through compliance with previous MACT standards prior to the first compliance date of subsequent MACT standards. Based on the information provided by XTO in their Part 71 application, the PTE at Little Canyon Unit with federally enforceable controls was below major source thresholds for HAPs as of the first compliance date of this subpart (January 1, 2016 for existing process heaters and April 1, 2013 for new process heaters). Therefore, Little Canyon Unit does not meet the definition of a major source under the rule and this subpart does not apply. This subpart does not apply to LCU 2-6GX wellsite because it does not meet the definition of a major source under the rule.

¹ See EPA's May 16, 1995 guidance document titled "Potential to Emit for MACT Standards -- Guidance on Timing Issues"

Q. 40 CFR Part 63, Subpart JJJJJJ (Boiler MACT (for area sources)): National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial, and Institutional Boilers.

This rule establishes national emission standards and operating limitations for HAPs emitted from new and existing industrial boilers, institutional boilers, and commercial boilers that are fueled by coal, biomass, or oil and are located at area sources of HAPs. For the purposes of this subpart, an affected unit is an existing unit if it was constructed prior to June 4, 2010.

Based on the information provided by XTO in their Part 71 application, there are no industrial, commercial, or institutional boilers located at Little Canyon Unit or LCU 2-6GX wellsite as defined in the rule. Therefore, subpart JJJJJJ does not apply.

R. 40 CFR Part 64: Compliance Assurance Monitoring

Pursuant to requirements concerning enhanced monitoring and compliance certification under the CAA, the EPA promulgated regulations to implement compliance assurance monitoring (CAM) for major stationary sources of air pollution, for purposes of Title V permitting that are required to obtain operating permits under Part 71. The rule requires owners or operators of such sources to conduct monitoring that provide a reasonable assurance of compliance with applicable requirements under the CAA.

1. CAM Applicability

According to §64.2(a), CAM applies to <u>each</u> pollutant specific emission unit (PSEU) located at a major source which is required to obtain a Part 71 permit if the unit satisfies all of the following criteria:

- (a) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant other than an emissions limitation or standard that is exempt under §64.2(b)(1);
- (b) The unit uses a control device to achieve compliance with any such limit or standard; and
- (c) The unit has pre-control device emissions of the applicable regulated pollutant that are equal to or greater than 100 percent of the amount, in tpy, required for a source to be classified as a major Title V source.
- 2. CAM Plan Submittal Deadlines
 - (a) <u>Large pollutant-specific emissions units</u>. A CAM plan submittal for all PSEUs with the PTE (taking into account control devices) of any one regulated air pollutant in an amount equal to or greater than 100 percent of the amount, in tpy, required for a source to be classified as a major source, is due at the following times:
 - (i) On or after April 20, 1998, if by that date, a Part 71 application has either:
 - (A) Not been filed; or
 - (*B*) Not yet been determined to be complete.

- (ii) On or after April 20, 1998, if a Part 71 permit application for a significant modification is submitted with respect to those PSEUs for which the requested permit revision is applicable; or
- (iii) Upon application for a renewed Part 71 permit and a CAM plan has not yet been submitted with an initial or a significant modification application, as specified above.
- (b) <u>Other pollutant-specific emissions units</u>. A CAM Plan must be submitted for all PSEUs that are not large PSEUs, but are subject to this rule, upon application for a Part 71 renewal permit.

Based on the information provided by XTO in their Part 71 application, dehydration unit LCD-1 is a PSEU with pre-controlled emissions that equal or exceed 100 percent of VOC and HAP thresholds. However, LCD-1 is subject to the major source requirements of 40 CFR part 63, subpart HH and thus meets the exemption criteria of §64.2(b)(1). Since no other PSEUs at the facility have pre-controlled emissions that exceed or equal 100 percent of major source thresholds, Little Canyon Unit is not subject to CAM requirements.

S. 40 CFR Part 68: Chemical Accident Prevention Provisions.

This rule applies to stationary sources that manufacture, process, use, store or otherwise handle more than the threshold quantity of a regulated substance in a process. Regulated substances include 77 toxic and 63 flammable substances which are potentially present in the natural gas stream entering the facility and in the storage vessels located at the facility. The quantity of a regulated substance in a process is determined according to the procedures presented under §68.115. Sections 68.115(b)(1) and (2)(i) indicate that toxic and flammable substances in a mixture do not need to be considered when determining whether more than a threshold quantity is present at a stationary source if the concentration of the substance is below one percent by weight of the mixture. Section 68.115(b)(2)(iii) indicates that prior to entry into a natural gas processing plant, regulated substances in naturally occurring hydrocarbon mixtures need not be considered when determining whether more than a threshold quantity is present at a stationary source. Naturally occurring hydrocarbon mixtures include condensate, field gas, and produced water. Based on the updated information provided in XTO's application, Little Canyon Unit and LCU 2-6GX wellsite do not have regulated substances above the threshold quantities in this rule; and therefore, are not subject to the requirement to develop and submit a risk management plan.

T. 40 CFR Part 71: Emergency Provisions

In this draft initial Part 71 permit, the EPA is proposing to not include the "Emergency Provisions" contained in the regulations in 40 CFR part 71 applicable to federal operating permit programs. Specifically, in the regulations discussing the contents of Title V operating permits issued under the federal operating permits program, 40 CFR 71.6(g) provides that certain "emergency" events can constitute "an affirmative defense in an action brought for non-compliance" with certain emission limits contained in the permit, when certain conditions are met. However, nothing in the CAA or 40 CFR part 71 requires that these types of emergency provisions be included as conditions in operating permits issued by the EPA, and for the reasons discussed below, we are exercising our discretion not to include them in this draft initial Part 71 permit.

In 2014, a federal court ruled that the CAA does not authorize the EPA to create affirmative defense provisions applicable to certain enforcement actions. *See NRDC v. EPA*, 749 F.3d 1055

(D.C. Cir. 2014). The court ruled that Sections 113 and 304 of the CAA preclude the EPA from creating affirmative defense provisions in the Agency's regulations imposing HAP emission limits on sources. The court concluded that those affirmative defense provisions purported to alter the jurisdiction of federal courts generally provided in the CAA to assess liability and impose penalties for violations of emission limits in private civil enforcement cases, and that the CAA did not provide authority for the EPA to do so. Consistent with the reasoning in the *NRDC v. EPA* court decision, the EPA has determined that it is also not appropriate under the CAA to alter the jurisdiction of the federal courts through affirmative defenses provisions in its Title V regulations, such as those contained in the emergency provisions of 40 CFR 71.6(g), and that such provisions and the EPA's obligation to issue Title V permits consistent with the applicable requirements of the Act, it is no longer appropriate to propose to include permit conditions modeled on affirmative defenses such as those contained in the emergency provisions of 40 CFR 71.6(g) in operating permits issued by the EPA.

Although the EPA views the Part 71 emergency provisions as discretionary (i.e., neither the statute nor the regulations mandate their inclusion in Part 71 permits), the EPA is considering whether to make changes to the Part 71 Permit Program regulations in order to ensure the EPA's regulations are consistent with the recent D.C. Circuit decisions; and if so, how best to make those changes. Until that time, as part of the normal permitting process, it is appropriate for the EPA permitting authorities to rely on the discretionary nature of the existing emergency provisions to choose not to continue to include permit terms modeled on those provisions in Part 71 permits that we are issuing in the first instance or renewing. By doing so, we are not only fulfilling the EPA's obligation to issue Title V permits consistent with the applicable requirements of the Act, but we will also help ensure that permittee's do not continue to rely on permit provisions that have been found legally invalid.

Accordingly, in this draft initial Part 71 permit, the EPA is exercising its discretion to not include the "Emergency Provisions," in order to ensure the Part 71 permit is in compliance with the applicable requirements of the Act.

III. <u>EPA Authority</u>

Title V of the CAA requires that the EPA promulgate, administer, and enforce a federal operating permit program when a state does not submit an approvable program within the time frame set by Title V or does not adequately administer and enforce its EPA approved program. On July 1, 1996 (61 FR 34202), the EPA adopted regulations codified at 40 CFR part 71 setting forth the procedures and terms under which the agency would administer a federal operating permit program. These regulations were updated on February 19, 1999 (64 FR 8247) to incorporate the EPA's approach for issuing federal operating permits to stationary sources in Indian country.

As described in 40 CFR 71.4(a), the EPA will implement a Part 71 program in areas where a state, local or tribal agency has not developed an approved Part 70 program. Unlike states, tribes are not required to develop operating permits programs, though the EPA encourages tribes to do so. See, e.g., Indian Tribes: Air Quality Planning and Management (63 FR 7253, February 12, 1998) (also known as the "Tribal Authority Rule"). Therefore, within Indian country, the EPA will administer and enforce a Part 71 federal operating permit program for stationary sources until a tribe receives approval to administer their own operating permit program. The Ute Indian Tribe has not applied for or received approval to administer their own operating permit program,

so the EPA administers Part 71 within the exterior boundaries of the Uintah & Ouray Indian Reservation.

IV. <u>Use of All Credible Evidence</u>

Determinations of deviations, continuous or intermittent compliance status or violations of the permit are not limited to the testing or monitoring methods required by the underlying regulations or this permit; other credible evidence (including any evidence admissible under the Federal Rules of Evidence) must be considered by the Permittee and the EPA in such determinations.

V. <u>Public Participation</u>

A. Public Notice

As described in 40 CFR 71.11(a)(5), all Part 71 draft operating permits shall be publicly noticed and made available for public comment. The public notice of permit actions and public comment period is described in 40 CFR 71.11(d).

There will be a 30-day public comment period for actions pertaining to a draft permit. Notification will be given for this draft permit by providing notice to the permit applicant, the affected state(s), tribal and local air pollution control agencies, the city and county executives, and the state and federal land managers which have jurisdiction over the area where the source is located, as well as to all persons who have submitted a request to be included on the mailing list.

If you would like to be added to our mailing list to be informed of future Part 71 permit actions or other CAA permits issued in Indian country, please send an email using the link for the Region 8 CAA public comment opportunities provided at <u>https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>, or send your name and address to the contact listed below:

Part 71 Permitting Lead U.S. Environmental Protection Agency, Region 8 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202-1129

Public notice will be provided at <u>https://www.epa.gov/caa-permitting/caa-permit-public-</u> <u>comment-opportunities-region-8</u> giving opportunity for public comment on the draft permit and the opportunity to request a public hearing.

B. Opportunity to Comment

Members of the public are given an opportunity to review a copy of the draft permit prepared by the EPA, the application, this Statement of Basis for the draft permit and all supporting materials for the draft permit. Copies of these documents are available at:

Uintah County Clerk's Office 147 East Main St #6 Vernal, UT 84078

and

Ute Indian Tribe Energy and Minerals Department Office 988 South 7500 East, Annex Building Fort Duchesne, UT 84026 Contact: Minnie Grant, Air Coordinator, at (435) 725-4900 or <u>minnieg@utetribe.com</u>

and

U.S. Environmental Protection Agency, Region 8 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202-1129 Contact: Eric Wortman, Environmental Scientist, at (617) 918-1624 or <u>wortman.eric@epa.gov</u>

All documents are available for review at the Region 8 office Monday through Friday from 8:00 a.m. to 4:00 p.m. (excluding federal holidays). Electronic copies of the draft permit, statement of basis and supporting permit record may also be viewed at: <u>https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>.

Any interested person may submit written comments on the draft Part 71 operating permit during the public comment period to the Part 71 Permitting Lead at the address listed in Section A above, or by email using the instructions on the public comment opportunities web site address listed above. All comments will be considered and answered by the EPA in making the final decision on the permit. The EPA keeps a record of the commenters and of the issues raised during the public participation process.

Anyone, including the applicant, who believes any condition of the draft permit is inappropriate should raise all reasonable ascertainable issues and submit all arguments supporting their position by the close of the public comment period. Any supporting materials submitted must be included in full and may not be incorporated by reference, unless the material has already been submitted as part of the administrative record in the same proceeding or consists of state or federal statutes and regulations, EPA documents of general applicability or other generally available reference material.

The final permit will be a public record that can be obtained upon request. A statement of reasons for changes made to the draft permit and responses to comments received will be sent to all persons who comment on the draft permit. The final permit and response to comments document will also be available online at: <u>https://www.epa.gov/caa-permitting/caa-permits-issued-epa-region-8</u>. Anyone may request a copy of the final permit at any time by contacting the Tribal Air Permit Program at (800) 227–8917 or by sending an email to <u>r8airpermitting@epa.gov</u>.

C. Opportunity to Request a Hearing

A person may submit a written request for a public hearing to the Part 71 Permitting Lead, U.S. EPA Region 8, by stating the nature of the issues to be raised at the public hearing. Based on the number of hearing requests received, the EPA will hold a public hearing whenever it finds there is a significant degree of public interest in a draft operating permit. The EPA will provide public notice of the public hearing. If a public hearing is held, any person may submit oral or written statements and data concerning the draft permit.

D. Appeal of Permits

Within 30 days after the issuance of a final permit decision, any person who filed comments on the draft permit or participated in the public hearing may petition to the Environmental Appeals Board (EAB) to review any condition of the permit decision. Any person who failed to file comments or participate in the public hearing may petition for administrative review, only if the changes from the draft to the final permit decision or other new grounds were not reasonably foreseeable during the public comment period. The 30-day period to appeal a permit begins with the EPA's service of the notice of the final permit decision.

The petition to appeal a permit must include a statement of the reasons supporting the review, a demonstration that any issues were raised during the public comment period, a demonstration that it was impracticable to raise the objections within the public comment period, or that the grounds for such objections arose after such a period. When appropriate, the petition may include a showing that the condition in question is based on a finding of fact or conclusion of law which is clearly erroneous; or, an exercise of discretion, or an important policy consideration that the EAB should review.

The EAB will issue an order either granting or denying the petition for review, within a reasonable time following the filing of the petition. Public notice of the grant of review will establish a briefing schedule for the appeal and state that any interested person may file an amicus brief. Notice of denial of review will be sent only to the permit applicant and to the person requesting the review. To the extent review is denied, the conditions of the final permit decision become final agency action.

A motion to reconsider a final order shall be filed within ten days after the service of the final order. Every motion must set forth the matters claimed to have been erroneously decided and the nature of the alleged errors. Motions for reconsideration shall be directed to the Administrator rather than the EAB. A motion for reconsideration shall not stay the effective date of the final order unless it is specifically ordered by the EAB.

E. Petition to Reopen a Permit for Cause

Any interested person may petition the EPA to reopen a permit for cause, and the EPA may commence a permit reopening on its own initiative. The EPA will only revise, revoke and reissue or terminate a permit for the reasons specified in 40 CFR 71.7(f) or 71.6(a)(6)(i). All requests must be in writing and must contain facts or reasons supporting the request. If the EPA decides the request is not justified, it will send the requester a brief written response giving a reason for the decision. Denial of these requests is not subject to public notice, comment, or hearings. Denials can be informally appealed to the EAB by a letter briefly setting forth the relevant facts.

Smith, Claudia

From:	Wortman, Eric
Sent:	Thursday, June 22, 2017 2:06 PM
То:	mwilkins@co.uintah.ut.us
Subject:	Correction - Public Comment Period for Title V Permit on Uintah & Ouray Indian
	Reservation
Attachments:	Docket Transmittal Letter - Uintah Cty Clerk.pdf

Good afternoon Mr. Wilkins,

Please note that in the attached letter to you dated June 14, 2017, the end date of the public comment period was identified as June 24, 2017 in error. The actual end date of the public comment period is **July 24, 2017**. Please make the draft permit, Statement of Basis, permit application, and additional supporting information that were enclosed with the letter available for public inspection until the end of the public comment period.

Thank you.

Sincerely,

Eric Wortman Environmental Scientist U.S. Environmental Protection Agency 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202 (617) 918-1624

Smith, Claudia

From:	Wortman, Eric
Sent:	Thursday, June 22, 2017 2:14 PM
То:	Wortman, Eric
Subject:	Notice of Public Comment Period – Draft Title V Operating Permit on the Uintah &
	Ouray Indian Reservation

In accordance with 40 CFR 71.8 and 71.11(d)(2), the U.S. Environmental Protection Agency Region 8 is hereby providing notification to all affected states and tribes of the issuance of the draft title V federal operating permit for the following source located on the Uintah & Ouray Indian Reservation:

XTO Energy Inc. - Little Canyon Unit Compressor Station

Part 71 Permit Contact – Eric Wortman, (617) 918-1624

A copy of the draft permit and Statement of Basis may be obtained by contacting the Part 71 Permit Contact. The permit application and other supporting information pertinent to the permit decision are available for review at the following locations:

U.S. EPA Region 8	Uintah & Ouray Indian Tribe	Uintah County Clerk
Air Program (8P-AR)	Energy and Minerals Department Office	147 E. Main St., #6
1595 Wynkoop St.	988 South 7500 East, Annex Building	Vernal, UT 84078
Denver, CO 80202	Fort Duchesne, UT 84026	

Electronic copies of the draft permit, Statement of Basis, permit application, and additional supporting information may also be viewed online at: <u>http://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>.

In accordance with §71.11(d)(2), EPA Region 8 is providing a 30-day period from June 23, 2017 to July 24, 2017, for public comment on this draft permit. Comments must be received by 5 p.m. on July 24, 2017, to be considered in the issuance of the final permit. If a public hearing is held regarding this permit, you will be sent a copy of the public hearing notice at least 30 days in advance of the hearing date.

Please submit any written recommendations you may have concerning the terms and conditions of this permit to me by email or to the address listed above.

Sincerely,

Eric Wortman

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency Telephone: (617) 918-1624 | Email: wortman.eric@epa.gov

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 8 1595 Wynkoop Street Denver, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region8

JUN 12 2017

Ref: 8P-AR

Timothy Herman Manager of Mid Stream Operations XTO Energy, Inc. 810 Houston Street Fort Worth, Texas 76102

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED</u>

Re: Draft Part 71 Operating Permit for Little Canyon Unit Compressor Station, XTO Energy, Inc., Permit #V-UO-000016-2006.00

Dear Mr. Herman:

The U.S. Environmental Protection Agency Region 8 has completed its review of XTO Energy Inc.'s application for the Little Canyon Unit Compressor Station to obtain initial Clean Air Act Title V operating permits pursuant to the Title V Operating Permit Program at 40 CFR part 71 (Part 71). The EPA received the initial application on September 8, 2009.

Enclosed you will find the draft Part 71 operating permit and the corresponding Statement of Basis. The regulations at 40 CFR 71.11(d) require that an applicant, the public and affected states (as defined in 40 CFR 71.2) have the opportunity to submit written comments on any draft Part 71 operating permit. All written comments submitted within 30 calendar days after the public notice is published will be considered by the agency in making its final permit decision. Enclosed is a copy of the public notice which will be published on the EPA's website located at: <u>https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>, on June 23, 2017. The public comment period will end at 5:00 p.m. MDT on July 24, 2017.

The conditions contained in the permit will become effective and enforceable by the agency if the permit is issued final. If you are unable to accept any term or condition of the draft permit, please submit your written comments, along with the reason(s) for non-acceptance to:

Part 71 Permitting Lead U.S. EPA, Region 8 Air Program (8P-AR) 1595 Wynkoop Street Denver, Colorado 80202 If you have any questions concerning the enclosed draft permits or Statement of Basis, please contact Eric Wortman of my staff at (303) 312-6649.

Sincerely, -Aporales_ Monica

Monica Morales Director Air Program

Enclosures (2)

cc: Minnie Grant, Air Coordinator, Ute Indian Tribe Craig Allison, Environmental Health & Safety Advisor, XTO Energy, Inc.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 8 1595 Wynkoop Street Denver, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region8

JUN 1 4 2017

Ref: 8P-AR

Mr. Michael Wilkins Uintah County Clerk's Office 147 East Main St #6 Vernal, UT 84078

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED</u>

Dear Mr. Wilkins:

The U.S. Environmental Protection Agency (EPA) Region 8, will be issuing a public notice located at: <u>https://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u> regarding the availability of draft Clean Air Act Title V Permit to Operate (40 CFR part 71) for public inspection and comment for the following sources:

XTO Energy Inc. - Little Canyon Unit Compressor Station

The public comment period for this notice will end on July 24, 2017. Please make the enclosed draft permit, Statement of Basis, and permit application available for public inspection until the end of the public comment period.

Thank you for your assistance in this matter. Should you have any questions regarding our request you may contact me at (617) 918-1624.

Sincerely,

in Watur

Eric Wortman, Environmental Scientist Air Permitting, Monitoring, and Modeling Unit

Enclosure

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 8 1595 Wynkoop Street Denver, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region8

JUN 1 4 2017

Ref: 8P-AR

Ms. Minnie Grant Air Coordinator Ute Indian Tribe, Energy & Minerals Department P.O. Box 70 Ft. Duchesne, Utah 84026

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED</u>

Re: Transmittal of Draft Title V Permit to Operate on the Uintah & Ouray Indian Reservation

Dear Ms. Grant:

In accordance with 40 CFR 71.8 and 71.11(d)(2), the U.S. Environmental Protection Agency (EPA) Region 8 is hereby providing notification to all affected states and tribes of the issuance of the draft Clean Air Act Title V Permit to Operate for the following source located on Indian country lands within the Uintah & Ouray Indian Reservation:

XTO Energy Inc. - Little Canyon Unit Compressor Station

Region 8 is providing a 30-day period, from June 23, 2017 to July 24, 2017 for comment. Please make the enclosed draft permit, Statement of Basis, permit application, and additional supporting information available for public inspection until the end of the public comment period.

Electronic copies of the draft permits and Statement of Bases may also be viewed online at: <u>http://www.epa.gov/caa-permitting/caa-permit-public-comment-opportunities-region-8</u>.

We have also enclosed copies of a public notice bulletin. Please post this bulletin in locations that you see fit to broadly advertise this public comment period.

In addition to maintaining the docket in your tribal office, please submit any written recommendations you may have concerning the terms and conditions of the draft permits to me at the following address:

Eric Wortman US EPA Region 8 Air Program, 8P-AR 1595 Wynkoop Street Denver, CO 80202 (617) 918-1624 wortman.eric@epa.gov Should EPA not accept any or all of these recommendations, you will be notified in writing and will be provided with the reasons for not accepting them. Comments must be received by 5 p.m. on July 24, 2017, to be considered in the issuance of the final permits for these facilities. If a public hearing is held regarding these permits, you will be sent a copy of the public hearing notice at least 30 days in advance of the hearing date.

Sincerely,

Enstration

Eric Wortman, Environmental Scientist Air Permitting, Monitoring, and Modeling Unit

Enclosures

Cc: Bruce Pargeets, Director of Energy & Minerals Department, Ute Indian Tribe

Manzanares, Candice

- 1

From:	Allison, Craig <craig_allison@xtoenergy.com></craig_allison@xtoenergy.com>
Sent:	Friday, June 02, 2017 3:38 PM
То:	Wortman, Eric
Subject:	RE: Little Canyon Unit Engine PTE minor correction
Attachments:	XTO LCC-4 Cat 3516TALE GERP Spec Sheet-May-2017.pdf

Eric:

Regarding LCC-3 (Cat 3512 TALE – s/n 7NJ00735):

I think that you are referring to CO and not NOx. The engine is a Cat 3512 TALE. Attached is the corresponding spec sheet. The Cat manufacturer's spec sheet for this engine shows NOx of 2.0 g/hp-hr and the CO should be calculated at 2.25 g/hp-hr. You are correct that the CH2O factor should be 0.28 g/hp-hr therefore the CH2O tpy should be 2.2 tpy based on the max horsepower of 810. Please note that the max nameplate HP for a 3512 TALE is 810 HP and the max HP for a 3516 TALE is 1340 HP. I think that your calc for the CH2) was based on 1340 HP and not 810 HP.

Regarding LCC-4 (Cat 3516 TALE – s/n 4EK03003):

• The NOx calc for this unit should be based on 2.0 g/hp-hr and not 1.5 g/hp-hr. Attached is the updated Cat spec sheet for this unit. I will update the calcs and send them to you next week.

Thanks for pointing out these discrepancies.

Regards, Craig Allison EH&S Advisor Environmental Health & Safety Office: 817-885-2672 | Cell: 817-201-2379 | Fax: 817-885-1847 XTO ENERGY INC., an ExxonMobil subsidiary 810 Houston Street, Fort Worth, Texas 76102

-----Original Message-----From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Friday, June 02, 2017 11:32 AM To: Allison, Craig Subject: Little Canyon Unit Engine PTE minor correction

Craig,

I was double checking the PTE for the Little Canyon Unit and noticed some minor errors. This is extremely minor but thought I would note it to you since I will change it in the PTE table. We list the PTE in the Statement of Basis but not the actual permit, so it's not enforceable.

The NOx emission factor for LCC-3 should have been 2.25 g/hp-hr but XTO used 2.31 g/hp-hr, which is the emission factor for LCC-4. Also, the CH2O emission factor for LCC-3 should have been 0.28 g/hp-hr and not 0.22 g/hp-hr (this would result in PTE of 3.6 tpy vs. 2.9). For LCC-4, the NOx emission factor should have been 1.5 g/hp-hr and not 2.0 g/hp-hr.

Note that since LCC-3 and LCC-4 were both constructed prior to 12/19/2002, they are existing engines greater than 500 - hp and therefore have no requirements under ZZZ. The PTE is based on uncontrolled emission factors since the controls are voluntary now that the CD has expired. I attached the backup emission calcs as well as the mfr. spec sheets for the two engines from the application.

No need to do anything, but let me know if you disagree. It does not affect any applicability or major source status.

Eric 617-918-1624

.G3516 NON-CURRENT

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

XTO Little Canyon Unit - LCC-4 Compressor Engine

CATERPILLAR*

GAS COMPRESSION APPLICATION

ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER WATER INLET (°F): JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx): SET POINT TIMING:

1400 8 SCAC 90 210 TA JW+OC, AC EIS ASWC LOW EMISSION 2.0 29

RATING STRATEGY: RATING LEVEL: FUEL SYSTEM: SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): (See note 1) FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE("F): STANDARD RATED POWER:

STANDARD CONTINUOUS HPG IMPCO

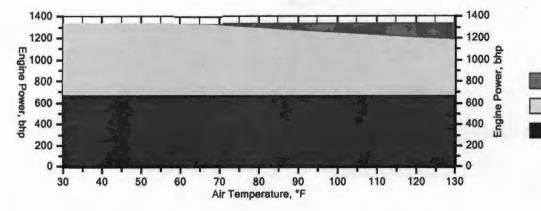
Field Gas 35.0-40.0 62.1 1027 5800 60 1340 bhp@1400rpm

			MAXIMUM RATING		TING AT I	
RATING	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOUT FAN)	(2)	bhp	1340	1339	1004	670
INLET AIR TEMPERATURE		°F	59	60	60	60
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(3)	Btu/bhp-hr	7651	7651	7840	8286
FUEL CONSUMPTION (HHV)	(3)	Btu/bhp-hr	8454	8455	8662	9156
AIR FLOW (@inlet air temp, 14.7 psia) (WET)	(4)(5)	ft3/min	2713	2714	2987	2028
AIR FLOW (WET)	(4)(5)	lb/hr	12423	12428	13677	9285
FUEL FLOW (60°F, 14.7 psia)		scfm	166	166	128	90
INLET MANIFOLD PRESSURE	(6)	in Hg(abs)	67.1	67.1	50.2	34.3
EXHAUST TEMPERATURE - ENGINE OUTLET	(7)	*F	896	896	889	896
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia) (WET)	(8)(5)	ft3/min	7653	7656	8224	5623
EXHAUST GAS MASS FLOW (WET)	(8)(5)	lb/hr	12917	12922	14057	9553
EMISSIONS DATA - ENGINE OUT						
NOx (as NO2)	(9)(10)	g/bhp-hr	2.00	2.00	4.24	4.61
co	(9)(10)	g/bhp-hr	2.34	2.35	3.95	4.60
THC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	2.54	2.54	3.73	3.84
NMHC (mol. wt. of 15.84)	(9)(10)	g/bhp-hr	0.66	0.66	0.97	1.00
NMNEHC (VOCs) (mol. wt. of 15.84)	(9)(10)(11)	g/bhp-hr	0.44	0.44	0.65	0.67
HCHO (Formaldehyde)	(9)(10)	g/bhp-hr	0.28	0.28	0.31	0.34
CO2	(9)(10)	g/bhp-hr	531	531	544	575
EXHAUST OXYGEN	(9)(12)	% DRY	8.0	8.0	7.6	6.7
HEAT REJECTION		in the second				
HEAT REJ. TO JACKET WATER (JW)	(13)	Btu/min	41446	41384	18357	17583
HEAT REJ. TO ATMOSPHERE	(13)	Btu/min	5313	5311	4426	3543
HEAT REJ. TO LUBE OIL (OC)	(13)	Btu/min	6553	6544	2903	2780
HEAT REJ. TO AFTERCOOLER (AC)	(13)(14)	Btu/min	12844	12844	12084	4954
COOLING SYSTEM SIZING CRITERIA						
TOTAL JACKET WATER CIRCUIT (JW+OC)	(14)	Btu/min	53455			
TOTAL AFTERCOOLER CIRCUIT (AC)	(14)(15)	Btu/min	13487			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria.						

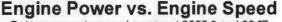
CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

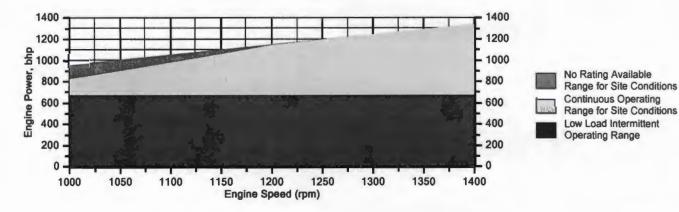
G3516 NON-CURRENT GAS COMPRESSION APPLICATION


GAS ENGINE SITE SPECIFIC TECHNICAL DATA

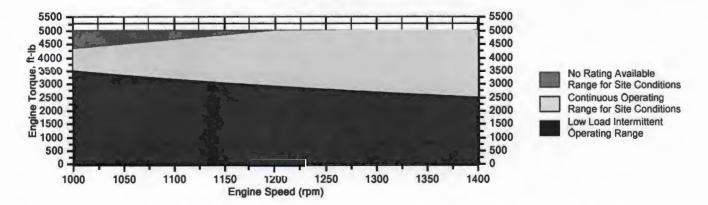
CATERPILLAR'


XTO Little Canyon Unit - LCC-4 Compressor Engine

Engine Power vs. Inlet Air Temperature


Data represents temperature sweep at 5800 ft and 1400 rpm

No Rating Available Range for Site Conditions Continuous Operating Range for Site Conditions Low Load Intermittent Operating Range



Data represents speed sweep at 5800 ft and 60 °F

Engine Torque vs. Engine Speed

Data represents speed sweep at 5800 ft and 60 °F

Note: At site conditions of 5800 ft and 60°F inlet air temp., constant torque can be maintained down to 1290 rpm. The minimum speed for backing at these conditions is 1000 rpm.

G3516

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR'

XTO Little Canyon Unit - LCC-4 Compressor Engine

NOTES

1. Fuel pressure range specified is to the engine fuel pressure regulator. Additional fuel train components should be considered in pressure and flow calculations.

2. Engine rating is with two engine driven water pumps. Tolerance is \pm 3% of full load.

- 3. Fuel consumption tolerance is ± 3.0% of full load data.
- 4. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 7. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 8. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.
- 9. Emissions data is at engine exhaust flange prior to any after treatment.

10. Emission values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Fuel methane number cannot vary more than ± 3. NOx values are set points and will vary with operating conditions. All other emission values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "Not to Exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. Part load data may require engine adjustment.

11. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

12. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

13. Heat rejection values are nominal. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for radiation, ± 20% for lube oil circuit, and ± 5% for aftercooler circuit.

14. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

15. Cooling system sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

Constituent	Abbrev	Mole %	Norm		
Water Vapor	H2O	2.5211	2.5211		3
Methane	CH4	86.6340	86.6340	Fuel Makeup:	Field Gas
Ethane	C2H6	4.9767	4.9767	Unit of Measure:	English
Propane	C3H8	3.5670	3.5670		5
Isobutane	iso-C4H1O	0.0000	0.0000	Calculated Fuel Properties	
Norbutane	nor-C4H1O	1.8211	1.8211		CO 1
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number:	62.1
Norpentane	nor-C5H12	0.4802	0.4802		
Hexane	C6H14	0.0000	0.0000	Lower Heating Value (Btu/scf):	1027
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf):	1135
Nitrogen	N2	0.0000	0.0000	WOBBE Index (Btu/scf):	1274
Carbon Dioxide	CO2	0.0000	0.0000		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	Not Applicable
Carbon Monoxide	CO	0.0000	0.0000		••
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	0%
Oxygen	02	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.997
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	10.68
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	16.43
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.650
Propylene	C3H6	0.0000	0.0000	Fuel Specific Heat Ratio (K):	1.297
TOTAL (Volume %)		100.0000	100.0000	ruei opecnic near Rallo (K).	1.297

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 8 1595 Wynkoop Street DENVER, CO 80202-1129

Phone 800-227-8917 http://www.epa.gov/region08

April 10, 2017

MEMORANDUM

SUBJECT: Source Determination Analysis for Little Canyon Unit Compressor Station

FROM: Eric Wortman, Permit Engineer, EPA Region 8 Air Program

TO: XTO Energy - Little Canyon Unit Compressor Station Initial Part 71 Permit File

The 8/2/16 revised definition of a major source at 40 CFR 71.2 (81 FR 35622) states that "For onshore activities belonging to Standard Industrial Classification (SIC) Major Group 13: Oil and Gas Extraction, pollutant emitting activities shall be considered adjacent if they are located on the same surface site; or if they are located on surface sites within a quarter mile of one another (measured from the center of the equipment on the surface site) and they share equipment." "Surface site" is given the same meaning as in 40 CFR 63.761, which defines a surface site as any combination of one or more graded pad sites, gravel pad sites, foundations, platforms, or the immediate physical location upon which equipment is physically affixed. "Shared equipment includes, but is not limited to, produced fluids storage tanks, phase separators, natural gas dehydrators or emissions control devices." The preamble explains that shared equipment generally means equipment "used to process or store the oil, natural gas or the byproducts of production." (see 81 FR 35624/2)

In the 3/14/2011 supplemental update to the initial part 71 permit application for the Little Canyon Unit Compressor Station (Little Canyon Unit CS), XTO Energy included emissions from the LCU 2-6GX wellsite. The LCU 2-6GX wellsite is located within a quarter mile of the Little Canyon Unit CS, but is not located on the same surface site. Emissions equipment at the LCU 2-6GX wellsite consists of a small 0.2 MMscfd dehydration unit, a well pumping unit engine, a 300 bbl condensate storage tank, a 400 bbl condensate storage tank, fugitive emissions, truck-loading emissions, and various natural gas-fired process heaters. Gas produced from the LCU 2-6GX wellsite enters a common gathering pipeline that flows into the Little Canyon Unit CS. Emission units at the Little Canyon Unit CS consists of two natural gas-fired reciprocating internal combustion engines, a 25 MMscfd dehydration unit, two 400 bbl condensate storage tanks, fugitive emissions, truck loading emissions, and various natural gas-fired process heaters. Both sites have the same two-digit SIC code, 13, and are under common control.

Based on the definition of "surface site" in 40 CFR 63.761 and the information in the 3/14/2011 supplemental update, the pollutant emitting activities at the LCU 2-6GX wellsite are not on the same gravel pad, or surface site, as the Little Canyon Unit CS, but the two surface sites are within a quarter mile of one another. The Little Canyon Unit CS and the LCU 2-6GX wellsite share the equipment located on the Little Canyon Unit CS surface site. The equipment at the Little Canyon Unit CS is used to process natural gas from the LCU 2-6GX wellsite because the natural gas produced at the wellsite must undergo compression and dehydration processes at the Little Canyon Unit CS in order to meet pipeline specifications prior to entering the discharge pipeline. Since these two surface sites "share equipment" under 40 CFR 71.2, pollutant emitting activities located at the two surface sites are adjacent to each other under the revised definition of a major source. Because these activities also share the same two-

digit SIC code and are under common control, they are thus considered part of the same major source as defined in part 71.

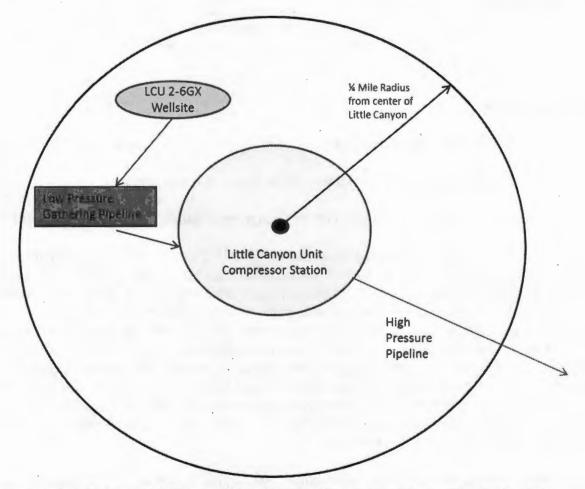


Figure 1. Flow Diagram of XTO Energy Natural Gas Production Operations – Uinta Basin, Utah Little Canyon Unit Compressor Station and LCU 2-6GX Wellsite

Okubo, Noreen

From:	Wortman, Eric
Sent:	Thursday, March 09, 2017 6:40 AM
То:	Okubo, Noreen
Cc:	Smith, Claudia
Subject:	FW: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00
Attachments:	2017 EPA XTO LCU Title V Info Request Response-3-8-2017.pdf

Hi Noreen,

Just a heads up that XTO is sending some information addressed to you for the 3 permit actions I'm working on. He is going to send me electronic copies, so all you need to do is file the info. in the appropriate permit files when it comes in.

Thanks,

Eric

From: Allison, Craig [mailto:Craig_Allison@xtoenergy.com]
Sent: Wednesday, March 08, 2017 5:28 PM
To: Wortman, Eric <Wortman.Eric@epa.gov>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric:

Attached is the XTO response for your request for information for the Little Canyon Compressor Station. The original is being sent to the EPA Region 8 Part 71 Permit Lead as you instructed.

I will be emailing you the responses to the RBU Dehy Site and the Tap-5 Compressor Station information requests tomorrow. I needed a little more time to research some of the data for these sites.

Please let me know if you have any additional questions.

Regards, Craig Allison EH&S Advisor Environmental Health & Safety Office: 817-885-2672 | Cell: 817-201-2379 | Fax: 817-885-1847 XTO ENERGY INC., an ExxonMobil subsidiary 810 Houston Street, Fort Worth, Texas 76102

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Tuesday, January 17, 2017 12:48 PM To: Allison, Craig Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Craig,

Here are the attachments from my initial email below on 11/16/16. I'm also attaching the corrected PTE table that Dustin sent back to me. As we discussed, I still need the commenced construction dates (as defined in ZZZZ) for LCC-3

and LCC-4 to determine applicable requirements for ZZZZ. I will also need the engine manufacture and installation dates for pump engine at the LCU 2-6GX Wellsite for JJJJ/ZZZZ applicability if we ultimately decide to include those emission units in the permit. Eventually I will need a hard copy update to the application (with Form CTAC) stating that LCC-1 and LCC-2 are not located at the facility and the date they were removed (or explanation that never installed for LCC-1).

I think that's it for Little Canyon for now. Thanks.

And the second second second

Eric 617-918-1624

From: Simpson, Dustin [mailto:Dustin_Simpson@xtoenergy.com] Sent: Tuesday, January 17, 2017 9:25 AM To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>; Allison, Craig <<u>Craig_Allison@xtoenergy.com</u>> Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

I am no longer in the air group as I have taken a new position with our Fort Worth Division. Could you please contact Craig Allison with any questions pertaining to the Part 71 permits?

Craig,

We purchased these engines when we made the acquisition. Is there someone that we can talk to that might have knowledge of the original set dates? Maybe the manufacturers?

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Tuesday, January 17, 2017 8:15 AM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

Were you able to find any more information on the commenced construction dates (under ZZZZ) for LCC-3 and LCC-4?

Eric

From: Wortman, Eric
Sent: Wednesday, December 21, 2016 4:47 PM
To: 'Simpson, Dustin' <<u>Dustin Simpson@xtoenergy.com</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

I will the initial commenced construction dates so that I can accurately determine applicability to MACT ZZZZ. After the holiday's fine, I just don't want to make any assumptions in the permit.

Thanks,

Eric

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com]
Sent: Wednesday, December 21, 2016 10:26 AM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

LCC-4 and LCC-3 were purchased via acquisition on 8-1-2007. That is the first time that it was in our ownership and the earliest date that I can find. They were both active at the time of purchase. Let me know if there is more information that you need. I could probably get more but a lot of people are out for the holidays.

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Friday, December 16, 2016 4:49 PM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

The manufacturer dates for engines are only needed to determine applicability to NSPS JJJJ. The definition of commenced construction is different for MACT ZZZ and is based on the date the engine is

initially constructed at the facility (in this case, the first facility it was constructed at since I'm assuming the relocation to Little Canyon does not meet the definition of reconstruction). MACT ZZZZ has different requirements for new and existing engines based off commenced construction date, and I need the initial commenced construction date to determine the applicable requirements of the rule. Give me a call if you want further explanation. Can you send me these dates for LCC-3 and LCC-4?

Thanks,

Eric 303-312-6649

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com]
Sent: Wednesday, December 14, 2016 11:23 AM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Please see responses below

Thanks.

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Friday, December 09, 2016 3:04 PM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

A few follow-up questions for you. Thanks - Eric

Just to clarify, can you confirm that you only want LCC-3 and LCC-4 included in the
permit at this time since LCC-1 and LCC-2 are no longer located at the facility? I will pull
them out of the tables. I'll continue processing the permit application but I'll need you
to submit an application update under CTAC explaining that LCC-1 and LCC-2 are no
longer located at the facility and provide and update emissions unit table with
supporting documentation (copy of crane receipt, work order for removal, or other

written explanation). You are correct. We could remove the LCC-1 and LCC-2 compressor engines.

- Is the capstone generator at Little Canyon 30 kW or 65 kW? 65kw
- Also, can you give me the commenced construction dates (initial installation at other facility) for engines LCC-3 and LCC-4 for MACT ZZZZ applicability. I am not sure what the initial installation at other facilities matters since the engines applicability is determined by manufacturer date. If you are concerned about remote versus non remote, the LCC-3 was a remote engine prior to being located on site. For major source engines the designation of remote or non-remote does not matter with reference to requirements.
- I'll have to look into the question of the LCU 2-6GX Wellsite a little further regarding shared equipment. The application states that the wellsite feeds into the common gathering pipeline and not directly into Little Canyon Unit. However, this common gathering pipeline is dependent upon Little Canyon Unit to move the gas further down the processing stream and eventually into a sales pipeline (i.e. the gas cannot be diverted to another compressor station if Little Canyon is not operation), correct? This is correct.

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com]
Sent: Tuesday, December 06, 2016 3:14 PM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Please see responses below. I will try to get to TAP 5 tomorrow. It might require me talking to the field a little more as I have not done any permitting action with it since I took over the area.

Thanks.

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorneyclient information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Wednesday, November 16, 2016 4:28 PM
To: Simpson, Dustin
Subject: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Dustin,

As we discussed on the phone, I'm the permit engineer for the pending Part 71 permit application for the Little Canyon Unit CS on the U&O Reservation. I've started reviewing the permit file and have a questions. Please take a look and send me your response by **December 2nd**.

- 1. I've attached a MS Word file with a draft emissions unit table for the facility. Please take a look and check that everything is accurate. Here are few specific questions I have regarding emission units at the facility.
 - a. Please confirm the dehydration unit throughput is 25 MMscfd. Some of the backup spreadsheets provided listed it as 40 MMscfd but I believe it should be 25. It is 25 MMSCFD
 - b. Is LCC-1 still at the facility or are there only 3 compressor engines? There are some discrepancies in the application updates over the years as to which unit ID goes with what engine. Please verify the make/model/serial number/installation date for <u>each</u> engine at the facility. I also need the manufacture dates for LCC-1 and LCC-3 (but verify dates for all engines) for JJJJ applicability or you may state they were all manufactured prior to the JJJJ applicability dates (actual dates are preferred).

LCC-1 – Not at the facility and was never set at the facility. Was in the application as a TBD engine originally that never got used.

LCC-2 – CAT G3516TA – Not at the facility any more – just moved it off when we replaced it with the CAT 3512 (LCC-3) below. Start date 7/1/2013, SN 4EK04246, MF Date 10/6/2004

LCC-3 – CAT G3512TA – Construction start date of 10-27-2016, Will run very soon. SN 7NJ00735. MF Date 11/22/2000

LCC-4 – CAT G3516TA - Start date 2/14/2008, SN 4EK03003, MF Date

2/19/2001

- 2. I've also attached a table of what I believe represents the PTE for the facility based off all the information in the application. Please look at the table and let me know if any is not accurate.
 - a. Some of the emissions tables in the 10/13/16 application update seem to reference equipment at Tap-5 CS, so let me know if anything in the table is not correct. The emissions are correct; the EPN should have LCC instead of T5. I included LCC-2 compressor because I did not know when it was going to be moved off site, but that has already occurred since the application submittal.
 - b. Please send the PTE of greenhouse gases for the emission units at the facility (see table). See attached table. I highlighted in red the emissions from the two engines that are no longer on location and removed them from the total emissions.
- 3. Note that I am NOT including the PTE or equipment for the LCU 2-6GX Wellsite <u>at this time</u>. Based on the information XTO included in the February 2011 application update, I'm wondering if this wellsite should be excluded based on the revised definition of a major source in 71.2. The recent rulemaking can be viewed here: <u>https://yosemite.epa.gov/opei/RuleGate.nsf/byRIN/2060-ASO6</u>. Please indicate in your response if the LCU 2-6GX Wellsite has "shared" equipment with the Little Canyon Unit CS and meets the definition of major source in 71.2 and should be included in the permit.

Oil and Gas Extraction, pollutant emitting activities shall be considered adjacent if they are located on the same surface site; or it they are located on surface sites that are located within 1/4 mile of one another (measured from the center of the equipment on the surface site) and they share equipment. Shared equipment includes, but is not limited to, produced fluids storage tanks, phase separators, natural gas dehydrators or emissions control devices. Surface site, as used in the introductory text of this definition, has the same meaning as in 40 CFR 63.761.

Looking at the rule above I would say yes as a conservative guess. The facilities do not share any equipment. Gas processed from the well pad location is sent to the compressor station where the gas is compressed, dehydrated, and sold. The LCU compressor station can run without the LCU 2-6GX well pad running, but the LCU 2-6GX cannot run without the compressor station operating as it would have nowhere to send the gas. How would the EPA interpret this. I would hate to go one way or the other and be incorrect.

Thanks,

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8 1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: <u>wortman.eric@epa.gov</u>

٠

•

Manzanares, Candice

From:	Allison, Craig <craig_allison@xtoenergy.com></craig_allison@xtoenergy.com>
Sent:	Wednesday, March 08, 2017 3:28 PM
То:	Wortman, Eric
Subject:	RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00
Attachments:	2017 EPA XTO LCU Title V Info Request Response-3-8-2017.pdf

Eric:

٦.

Attached is the XTO response for your request for information for the Little Canyon Compressor Station. The original is being sent to the EPA Region 8 Part 71 Permit Lead as you instructed.

I will be emailing you the responses to the RBU Dehy Site and the Tap-5 Compressor Station information requests tomorrow. I needed a little more time to research some of the data for these sites.

Please let me know if you have any additional questions.

Regards, **Craig Allison EH&S Advisor Environmental Health & Safety** Office: 817-885-2672 | Cell: 817-201-2379 | Fax: 817-885-1847 **XTO ENERGY INC.**, an ExxonMobil subsidiary 810 Houston Street, Fort Worth, Texas 76102

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Tuesday, January 17, 2017 12:48 PM To: Allison, Craig Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Craig,

Here are the attachments from my initial email below on 11/16/16. I'm also attaching the corrected PTE table that Dustin sent back to me. As we discussed, I still need the commenced construction dates (as defined in ZZZZ) for LCC-3 and LCC-4 to determine applicable requirements for ZZZZ. I will also need the engine manufacture and installation dates for pump engine at the LCU 2-6GX Wellsite for JJJJ/ZZZZ applicability if we ultimately decide to include those emission units in the permit. Eventually I will need a hard copy update to the application (with Form CTAC) stating that LCC-1 and LCC-2 are not located at the facility and the date they were removed (or explanation that never installed for LCC-1).

I think that's it for Little Canyon for now. Thanks.

Eric 617-918-1624

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com]
Sent: Tuesday, January 17, 2017 9:25 AM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>; Allison, Craig <<u>Craig</u> Allison@xtoenergy.com>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

I am no longer in the air group as I have taken a new position with our Fort Worth Division. Could you please contact Craig Allison with any questions pertaining to the Part 71 permits?

Craig,

We purchased these engines when we made the acquisition. Is there someone that we can talk to that might have knowledge of the original set dates? Maybe the manufacturers?

Thanks.

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Tuesday, January 17, 2017 8:15 AM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

Were you able to find any more information on the commenced construction dates (under ZZZZ) for LCC-3 and LCC-4?

Eric

From: Wortman, Eric
Sent: Wednesday, December 21, 2016 4:47 PM
To: 'Simpson, Dustin' <<u>Dustin_Simpson@xtoenergy.com</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

I will the initial commenced construction dates so that I can accurately determine applicability to MACT ZZZZ. After the holiday's fine, I just don't want to make any assumptions in the permit.

Thanks,

Eric

1

From: Simpson, Dustin [mailto:Dustin_Simpson@xtoenergy.com]
Sent: Wednesday, December 21, 2016 10:26 AM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

LCC-4 and LCC-3 were purchased via acquisition on 8-1-2007. That is the first time that it was in our ownership and the earliest date that I can find. They were both active at the time of purchase. Let me know if there is more information that you need. I could probably get more but a lot of people are out for the holidays.

Thanks,

2

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Friday, December 16, 2016 4:49 PM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

The manufacturer dates for engines are only needed to determine applicability to NSPS JJJJ. The definition of commenced construction is different for MACT ZZZZ and is based on the date the engine is initially constructed at the facility (in this case, the first facility it was constructed at since I'm assuming the relocation to Little Canyon does not meet the definition of reconstruction). MACT ZZZZ has different requirements for new and existing engines based off commenced construction date, and I need the initial commenced construction date to determine the applicable requirements of the rule. Give me a call if you want further explanation. Can you send me these dates for LCC-3 and LCC-4?

Thanks,

Eric 303-312-6649

From: Simpson, Dustin Imailto: Dustin Simpson@xtoenergy.com]Sent: Wednesday, December 14, 2016 11:23 AMTo: Wortman, Eric < Wortman.Erc@epa.gov>Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Please see responses below

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

ų,

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Friday, December 09, 2016 3:04 PM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

A few follow-up questions for you. Thanks - Eric

- Just to clarify, can you confirm that you only want LCC-3 and LCC-4 included in the permit at this time since LCC-1 and LCC-2 are no longer located at the facility? I will pull them out of the tables. I'll continue processing the permit application but I'll need you to submit an application update under CTAC explaining that LCC-1 and LCC-2 are no longer located at the facility and provide and update emissions unit table with supporting documentation (copy of crane receipt, work order for removal, or other written explanation). You are correct. We could remove the LCC-1 and LCC-2 compressor engines.
- Is the capstone generator at Little Canyon 30 kW or 65 kW? 65kw
- Also, can you give me the commenced construction dates (initial installation at other facility) for engines LCC-3 and LCC-4 for MACT ZZZZ applicability. I am not sure what the initial installation at other facilities matters since the engines applicability is determined by manufacturer date. If you are concerned about remote versus non remote, the LCC-3 was a remote engine prior to being located on site. For major source engines the designation of remote or non-remote does not matter with reference to requirements.
- I'll have to look into the question of the LCU 2-6GX Wellsite a little further regarding shared equipment. The application states that the wellsite feeds into the common gathering pipeline and not directly into Little Canyon Unit. However, this common gathering pipeline is dependent upon Little Canyon Unit to move the gas further down

the processing stream and eventually into a sales pipeline (i.e. the gas cannot be diverted to another compressor station if Little Canyon is not operation), correct? This is correct.

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com]
Sent: Tuesday, December 06, 2016 3:14 PM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Ę.

Please see responses below. I will try to get to TAP 5 tomorrow. It might require me talking to the field a little more as I have not done any permitting action with it since I took over the area.

Thanks.

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorneyclient information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Wednesday, November 16, 2016 4:28 PM
To: Simpson, Dustin
Subject: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Dustin,

As we discussed on the phone, I'm the permit engineer for the pending Part 71 permit application for the Little Canyon Unit CS on the U&O Reservation. I've started reviewing the permit file and have a questions. Please take a look and send me your response by **December 2nd**.

- 1. I've attached a MS Word file with a draft emissions unit table for the facility. Please take a look and check that everything is accurate. Here are few specific questions I have regarding emission units at the facility.
 - a. Please confirm the dehydration unit throughput is 25 MMscfd. Some of the backup spreadsheets provided listed it as 40 MMscfd but I believe it should be 25. It is 25 MMSCFD
 - b. Is LCC-1 still at the facility or are there only 3 compressor engines? There are some discrepancies in the application updates over the years as to which unit ID goes with what engine. Please verify the

make/model/serial number/installation date for <u>each</u> engine at the facility. I also need the manufacture dates for LCC-1 and LCC-3 (but verify dates for all engines) for JJJJ applicability or you may state they were all manufactured prior to the JJJJ applicability dates (actual dates are preferred).

LCC-1 - Not at the facility and was never set at the facility. Was in the application as a TBD engine originally that never got used.

LCC-2 - CAT G3516TA - Not at the facility any more - just moved it off when we replaced it with the CAT 3512 (LCC-3) below. Start date 7/1/2013, SN 4EK04246, MF Date 10/6/2004

LCC-3 – CAT G3512TA – Construction start date of 10-27-2016, Will run very soon. SN 7NJ00735. MF Date 11/22/2000

LCC-4 – CAT G3516TA - Start date 2/14/2008, SN 4EK03003, MF Date

2/19/2001

- 2. I've also attached a table of what I believe represents the PTE for the facility based off all the information in the application. Please look at the table and let me know if any is not accurate.
 - a. Some of the emissions tables in the 10/13/16 application update seem to reference equipment at Tap-5 CS, so let me know if anything in the table is not correct. The emissions are correct; the EPN should have LCC instead of T5. I included LCC-2 compressor because I did not know when it was going to be moved off site, but that has already occurred since the application submittal.
 - b. Please send the PTE of greenhouse gases for the emission units at the facility (see table). See attached table. I highlighted in red the emissions from the two engines that are no longer on location and removed them from the total emissions.
- 3. Note that I am NOT including the PTE or equipment for the LCU 2-6GX Wellsite at this time. Based on the information XTO included in the February 2011 application update, I'm wondering if this wellsite should be excluded based on the revised definition of a major source in 71.2. The recent rulemaking can be viewed here: <u>https://yosemite.epa.gov/opei/RuleGate.nsf/byRIN/2060-AS06</u>. Please indicate in your response if the LCU 2-6GX Wellsite has "shared" equipment with the Little Canyon Unit CS and meets the definition of major source in 71.2 and should be included in the permit.

Oil and Gas Extraction, pollutant emitting activities shall be considered adjacent if they are located on the same surface site; or it they are located on surface sites that are located within 1/4 mile of one another (measured from the center of the equipment on the surface site) and they share equipment. Shared equipment includes, but is not limited to, produced fluids storage tanks, phase separators, natural gas dehydrators or emissions control devices. Surface site, as used in the introductory text of this definition, has the same meaning as in 40 CFR 63.761.

Looking at the rule above I would say yes as a conservative guess. The facilities do not share any equipment. Gas processed from the well pad location is sent to the compressor station where the gas is compressed, dehydrated, and sold. The LCU compressor station can run without the

LCU 2-6GX well pad running, but the LCU 2-6GX cannot run without the compressor station operating as it would have nowhere to send the gas. How would the EPA interpret this. I would hate to go one way or the other and be incorrect.

Thanks,

ą.

3

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8 1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: <u>wortman.eric@epa.gov</u> .

XTO Energy Inc. 810 Houston Street Fort Worth, TX 76102-6298 (817) 870-2800 (817) 870-1671 Fax

March 8, 2017

RECEIVED MAR 1 4 2017

XTO Energy Inc. Little Canyon Compressor Station EPA Title V – Part 71 Permit Application Supplemental Information Draft Permit #V-UO-000016-2006.00 Uintah County, UT

US Certified Mail No: 7016 2140 0000 8377 2611

Part 71 Permit Lead U.S. EPA – Region 8 1595 Wynkoop Street, Mail Code 8P-AR Denver, CO 80202

To Whom It May Concern:

XTO Energy, Inc. (XTO) hereby submits the accompanying information pursuant to the U.S. EPA's request for supplemental information for the XTO Energy Inc. Little Canyon Compressor Station located in Uintah County, Utah. The attached information is certified by the Responsible Official for the XTO Energy Inc. Little Canyon Compressor Station using the completed EPA CTAC form.

Should you have any questions regarding this submittal, please feel free to contact me by phone at 817-885-2672 or by email at craig_allison@xtoenergy.com.

Sincerely,

Craig Allison EH&S Advisor XTO Energy Inc

18

WCA/encl

. .

XTO Uintah Basin Title V Applications – 2016 / 2017 EPA Information Request 3/8/2017

LITTLE CANYON UNIT COMPRESSOR STATION EPA QUESTIONS:

- A. Written documentation (submitted under CTAC) that LCC-1 and LCC-2 were permanently shut down and are no longer at the facility.
 - a. For LCC-1 the initial startup date for the last engine (S/N 4EK05034) that was there (as LCC-1) was on 6/21/2012.
 - b. Engine LCC-1 (S/N 4EK05034) was permanently removed from Little Canyon Compressor Station on or about 7/29/2013 and was sent to Tap-5 Compressor Station as engine T5C-2. Attached is a startup notice for this unit showing that engine s/n 4EK05034 was started up as T5C-2 on 9/13/2013.
 - c. Engine LCC-2 was operating as s/n 4EK04246 and was started up at the Little Canyon Compressor Station on 4/4/2013 and operated as LCC-2 until it was permanently shut down on 11/2/2016. LCC-2 was permanently removed from the Little Canyon Compressor Station on 12/19/2016. Refer to the attached crane ticket for documentation of the permanent removal of LCC-2 (s/n 4EK04246).
- B. I will need a hard copy update to the application (with Form CTAC) stating that LCC-1 and LCC-2 are not located at the facility and the date they were removed (or explanation that never installed for LCC-1). Refer to Paragraph A above for the detailed explanation. The attached CTAC form certifies the information contained within this response.
- C. PTE for CO2e for emission units at LCU 2-6X wellsite (see attached spreadsheet). I just need it for the Dehydrator and Pump engine, not necessary for the other IEUs. Refer to the attached calculations for the emissions backup. I added the CO2e emissions to your spreadsheet in RED.
- D. Engine manufacturer and construction (order) dates for the Arrow C96 Pump engine at LCU 2-6X wellsite. I need this to determine JJJJ / ZZZZ applicability, you may indicate "pre-2002" if it's an older unit and it's difficult to obtain an exact date as long as I can determine applicability to the engine regs (Mfr before 7/1/2008 for JJJJ and constructed prior to 6/12/2006 for existing at area source under ZZZZ). The Arrow C-96 engine has a serial no. of 210024-C and a manufacture date of 12/13/2003. It was constructed prior to 6/12/2006, so it would be an area source for JJJJ applicability.
- E. Please provide an installation date for the 2 tanks at the LCU 2-6X wellsite or verify they were constructed prior to 8/23/2011 (for OOOO applicability).
 - a. Tank-1: s/n 1674 constr./mfg. date 4/1/2009.
 - b. Tank-2: s/n 8J26601-05 (GX1070) constr./mfg. date 1/10/2007.
- F. Verify the manufacture date for LCC-4. Dustin sent me a date of 2/19/2001 but the inspection report dated July 29, 2015 lists 8/30/2000 for the same serial number (4EK03003). Note that Dustin sent me the mfr. date for LCC-3 already.
 - a. The correct manufacture date for LCC-4 (s/n 4EK03003) is 8/30/2000. The attached correspondence with the EPA dated 4/19/2013 shows that the LCC-4 engine manufacture date was corrected from 2/19/2001 to 8/30/2000.
 - b. The correct manufacture date for Caterpillar G3512TALE engine LCC-3 (s/n 7NJ00735) is 11/22/2000.
- G. A FORM-EUD for the dehy and pump engine at LCU 2-6X wellsite since they are not IEUs (include serial number and install dates if you have them). See attached. The install date for the Arrow C-96 engine is 4/15/2009 and the dehydrator was onsite since XTO bought the location from Dominion in 2007.
- H. I still need the commenced construction dates (as defined in ZZZZ) for LCC-3 and LCC-4 to determine applicable requirements for ZZZZ. A query of the attached Caterpillar's engine records database provides ship dates for both engines (LCC-3 and LCC-4), confirming that these engines were ordered and shipped to the customer, as follows:
 - a. LCC-3 (s/n 7NJ00735) mfg date 11/22/2000, and customer ship date 12/1/2000.
 - b. LCC-4 (s/n 4EK03003) mfg date 8/30/2000, and customer ship date 9/8/2000.

,

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 70 or 71 permit).

A. Responsible Official
Name: (Last) <u>Hermann</u> (First) <u>Timothy</u> (MI) <u>L</u>
Title XTO Energy Inc Manager of MSO Western Division Operations
Street or P.O. Box 810 Houston St.
City Fort Worth State TX ZIP 76102 -
Telephone (817) 885-0313 Ext Facsimile (817) 870 - 8441
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official).
I certify under penalty of law that this document and all attachments were prepared under my supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete.
Name (typed) Timothy L. Hermann Date: 7 17 2017

.

September 16, 2013

Notice of Startup Tap 5 Compressor Station (T5C-2) 40 CFR 63, Subpart ZZZZ XTO Energy Inc. – Uintah County, UT

USPS Certified Mail: 7012 3460 0000 8027 3595

Alexis North EPA Region 8 Mail Code 8ENF-AT 1595 Wynkoop Street Denver, CO 80202-1129

T5C-2 S/N 4EK\$5\$34

Dear Ms. Alexis North:

XTO Energy Inc. (XTO) respectfully submits a notice of startup under 40 CFR 63.9(b)(4), National Emissions Standards for Hazardous Air Pollutants (NESHAPS). This letters serves to notify the EPA that XTO installed and started up a reciprocating internal combustion engine (RICE) at its Tap 5 Compressor Station location in Uintah County, Utah on September 13, 2013. Please refer to the attachment for details on the engine.

Should you have any questions, please feel free to contact me at 817-885-1249 or via e-mail at Rykki_Tepe@xtoenergy.com.

, 2

Sincerely,

Rylki Tepe

Rykki Tepe Environmental Engineer XTO Energy Inc.

, • Bc: Damien Jones Cole Anderson Wayne Sutt

•

• .

File Room - Utah\Roosevelt\Agency Correspondence

File Name: W:\EHS\Environmental\Air\Utah\Uintah County\Correspondence\Agency Correspondence\RT201300916 EPA Notice of Startup for T5C-2.doc

, .

XTO ENERGY, INC. UINTAH COUNTY, UT NESHAP ZZZZ NOTIFICATION

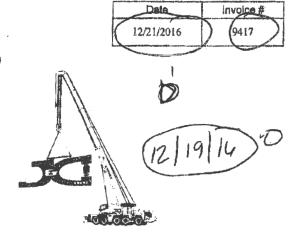
. `

.

Location	Permit	County	Lat. / Long.	Make	Family	Model	Unit S.N.	Manufacture Date	Max HP	Catalyst	Fuel
Tap 5 Compressor Station (T5C-2)	Not Issued	Uintah	39.9750760 / -109.6360850	Caterpillar	G3500	G3516TALE	4EK05034	3/21/2006	1340 @ 1400 rpm	Oxidation	Nat gas/fiely

, [•]

LCC-2 Kemoval V: 34909


J&C Enterprises, Inc.

715 East 500 South P.O.Box 1096 Vernal, UT 84078 Received

JAN OS 2016

Roosevelt MSO

Bill To
XTO Energy-Midstream Operations
133 East 1000 North
Roosevelt, UT 84066

Invoice

AFE #	P.O. No.	Work Ticket Date	Well Nam	e	Work Ticket #
1603257	Code: 211.249	12/21/2016	703313		1238
Quantity		Description		Rate	Amount
	1 Bid For Crane Service to 7 Bucket Truck	o Load Out Compressor			
scw					
V	1000-				
	211.240	1	- Andrewski - A		
	Remon	s/n JEK	-2 04246		
es or nof), is paid in osch, am sent. To case of default in any any action at law, or in equity y the purchassor in part payme	d until such full payment has been made of the payments provided for, the seller of the part of the purchaser of such re- ent for said property. The repossessing is	is shall remain in the seller until the full purch the property must not be removed from its o r may reposses itself of the above monitoned estantion of said property, nor for the paym itself by the seller of the property as above pr	rigiaal destination; mosph upon seller's I property wherever founds, and shall not ent of any money or moneys, which have ovided does not release the purchaser from	Total	
th due, or coming due, and th the full purchase price, or to grees to pay 2% per month (2 dness.	te seller reserves the right to either hold resell it, and hold the purchaser for any 24% annually) on accounts over 30 days	the property, for the benefit of the purchaser difference between the original and the result and such reasonable costs, orpenses and atte	to be delivered upon the prior. mey's fees as may be incurred in collecting		10 Pay

Statement of

,

,

LCC-2 Removal

5	
(435)789-8370	

J&C Enterprises Inc. P.O. Box 1096 Vernal, UT 84078 email jandcinc@ubtanet.com

N§

WORK TICKET

1238

Permit No	Date 12/19 20 16
Lease No.	Well No. 7033/3
Collect From XTO Midshoom	AFE 1603257
Address	Code 211.249

HRS.	DESCRIPTION OF EQUIPMENT	RATE	CHARGES
	240 Ton Crane OPerator 3 Loads & Canterweight Pickup w/ Tools Buck & Took	2	
	OPerstar		
	3 loads of Canterweight		
	Fickup w/ Tools		
7	Bicket Track		
	ASBID		
		.,	
	·		
Permit	Truck No.	TOTAL TO COLLECT	
Romarke			

Load out 3516 @ LCU Compresser station Remarks:

By Car auguor Driver (Shown name in full) (Shown name in full) € 12

XTO Energy Inc. 810 Houston Street Fort Worth, TX 76102-6298 (817) 870-2800 (817) 870-1671 Fax

March 1, 2017

Notice of Startup and Initial Notification Little Canyon Compressor Station 40 CFR 63, Subpart ZZZZ XTO Energy Inc. – Uintah County, UT

USPS Certified No: 7016 2140 0000 8377 1669

EPA Region 8 Air and Toxics Enforcement Mail Code 8ENF-AT 1595 Wynkoop Street Denver, CO 80202-1129

To Whom It May Concern:

XTO Energy Inc. (XTO) respectfully submits a notification of startup pursuant to 40 CFR 63.9(b)(5), National Emissions Standards for Hazardous Air Pollutants (NESHAP). This letter serves to notify the EPA that XTO has installed and started up a reciprocating internal combustion engine (RICE) at the Little Canyon Compressor Station location in Uintah County, Utah. The Start-up of the Caterpillar 3512TALE compressor engine (s/n 7NJ00735) occurred on February 16, 2017. This engine replaced the LCC-2 Caterpillar 3516TALE (s/n 4EK04246) compressor engine which was permanently shut-down on November 2, 2016 and was removed from the LCU Compressor Station on December 19, 2016. Please refer to the attachments for the information pursuant to the initial notification requirement 40 CFR 63.9(b)(2), as well as details on the new engine. Also attached is a signed U.S. EPA CTAC form.

Should you have any questions, please feel free to contact me at 817-885-2672 or via e-mail at craig_allison@xtoenergy.com.

Sincerely,

Craig Allison EH&S Advisor XTO Energy Inc.

WCA/encl

• • •

NESHAP ZZZZ NOTIFICATION

٠,

.

-

Table 1 - XTO Energy In	c LCU Compressor Statio	n - Engine Change Notification

Location	Engine Status	Permit	County	Lat. / Long.	Make	Family	Model	Unit S.N.	Manufacture Date	Max HP	Displ.	Catalyst	Fuel
Little Canyon Compressor Station (LCU-3)	Startup Date 2/16/2017	Not Issued	Uintah Utah	39 8972220 / -109 6059960	Caterpillar	G3500	G3512TALE	/NJ00735	11/22/2000	810 @ 1200 rpm	51.8L	Oxidation	Nat gas/field
Little Canyon Compressor Station (LCU-2)	Shutdown 11/2/2016 / Removal Date 12/19/2016	Not Issued	Uintah, Utah	39 8972220 / -109.6059960	Caterpillar	G3500	G3516TALE	4EK04246	10/6/2004	1340 @ 1400 rpm	64L	Oxidation	Nat gas/field

, * *,

Little Canyon	ID	Emissions Units	NO _x *	CO*	VOC*	PM*	SO ₂ *	CH ₂ O*	Total	CO ₂ *	CH4*	N ₂ O* (as	CO ₂ e*
PTE			X		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				HAPs*		CO ₂ e)	CO ₂ e)	
	LCC-3	Cat. 3512	15.6	18.1	7.8	0.3	0.0	1.7	1.7	3707.3	1.7	2.1	3711.1
	LCC-4	Cat. 3516	25.9	29.9	12.9	0.5	0.0	2.9	2.8	5900.3	2.8	3.3	5906.4
	LCD-1 &												
	LCTO-1	Dehy w/Thermal Oxidizer	2.1	2.9	5.3	0.3	0.0	0.0	3.0	4170.6	8.1	2.3	4181.0
	LCT-1	Tank 1	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0
	LCT-2	Tank 2	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0
	LCF-1	Fugitives	0.0	0.0	3.9	0.0	0.0	0.0	0.1	0.0	593.2	0.0	593.2
	LCU 2-6X												
	D-1	Dehydration Unit	0.0	0.0	4.0	0.0	0.0	0.0	1.4	0.1	27.5	0.0	27.6
	LCU 2-6X	Amour COC Dump Engine 18	2.1	0.9									
1	Engine	Arrow C96 Pump Engine - 18 hp	2.1	0.9	0.0	0.0	0.0	0.0	0.0	112.7	5.89	0.0	118.6
		Capstone 65 kW Microturbine											
	LCG-1	Genset	0.1	1.7	0.0	0.0	0.0	0.0	0.0	394.5	0.2	0.2	394.9
	-	Condensate Truck Loading	0.0	0.0	2.0	0.0	0.0	0.0	0.1	0.0	57.2	0.0	57.2
		0.550 MMBtu/hr* Glycol											
	-	Dehydrator Reboiler	0.3	0.2	0.0	0.0	0.0	0.0	0.0	281.8	0.1	0.2	282.1
		0.500 MMBtu/hr* Tank											
	-	Heater #1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	256.2	0.1	0.1	256.4
		0.500 MMBtu/hr* Tank											
	-	Heater #2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	256.2	0.1	0.1	256.4
		0.250 MMBtu/hr* natural gas-											
	-	fired separator heater	0.1	0.1	0.0	0.0	0.0	0.0	0.0	128.1	0.1	0.1	128.2
		2 MMBtu/hr* heater for											
ts	-	Thermal Oxidizer	1.0	0.8	0.1	0.1	0.0	0.0	0.0	Inc	luded in LC	CD-1 & LCT	0-1
Uni	-	Pipeline Pigging Operations	0.0	0.0	< 0.1	0.0	0.0	0.0	0.0	0.0	4.1	0.0	4.1
ion		Compressor Blowdown											
iiss	-	Emissions	0.0	0.0	3.0	0.0	0.0	0.0	0.1	0.0	661.3	0.0	661.3
tEn	-	LCU 2-6x Tanks 1 and 2	0.0	0.0	4.0	0.0	0.0	0.0	0.0	-			-
ican	-	LCU 2-6X Truck Loading	0.0	0.0	0.1	0.0	0.0	0.0	0.0	-	-	-	-
Insignificant Emission Units	-	LCU 2-6X Fugitives	0.0	0.0	1.9	0.0	0.0	0.0	0.1	-	-	-	-
Insi	-	LCU 2-6X Heaters (3)	0.5	0.5	0.0	0.0	0.0	0.0	0.0	-	-	-	-
Fac	ility-Wide PT	E (federally enforceable)											
rati	my-wide r'it	- (reactany choreable)	47.9	55.3	48.6	1.2	0.0	4.6	9.7	15207.7	1418.3	8.5	16634.4

Little Canyon Unit Compressor Station PTE Table. Revised 3-7-17

. .

Dehy GHG Emissions

Source	Component	GWP	Loading Rate (Ib/hr)	Operating Hours	GHG Emissions (lbs/hr)	GHG Emissions (TPY)	GHG Emissions (TPY-CO _{2e})
Flash Tank	CH ₄	25	0.194	8760	0.194	0.84972	21.243
Flash Tank	CO ₂	1	0.00562	8760	0.00562	0.0246156	0.0246156
Regen Overhead	CH ₄	25	0.0567	8760	0.0567	0.248346	6.20865
Regen Overhead	CO ₂	1	0.0212	8760	0.0212	0.092856	0.092856

TOTAL	CH ₄	1.098
TOTAL	CO ₂	0.117
TOTAL	CO _{2e}	27.569

. .

Page: 1

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: LCU 2-6GX TEG Dehydration System - 2017 PTE

File Name: W:¥EHS¥Environmental¥Air¥Areas of Operation¥Utah¥_MSO¥Little Canyon Unit Compressor Station (LCU)¥Title V¥LCU TV EPA Info Request¥LCU PTE LCU 2-6GX Emissions Dehy.ddf

Date: March 06, 2017

,

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0567	1.361	0.2483
Ethane	0.0270	0.649	0.1185
Propane	0.0365	0.875	0.1597
Isobutane	0.0184	0.442	0.0807
n-Butane	0.0308	0.739	0.1349
Isopentane	0.0207	0.496	0.0906
n-Pentane	0.0207	0.496	0.0905
n-Hexane	0.0204	0.489	0.0893
Cyclohexane	0.0430	1.033	0.1885
Other Hexanes	0.0239	0.573	0.1046
Heptanes	0.0487	1.169	0.2134
Methylcyclohexane	0.0757	1.816	0.3315
2, 2, 4-Trimethylpentane	0.0018	0.043	0.0078
Benzene	0.1654	3.971	0.7247
Toluene	0.2279	5.469	0.9981
Xylenes	0.0690	1.656	0.3022
C8+ Heavies	0.0833	1.999	0.3649
Total Emissions	0.9699	23. 278	4. 2482
Total Hydrocarbon Emissions	0.9699	23.278	4.2482
Total VOC Emissions	0.8862	21.268	3.8814
Total HAP Emissions	0.4845	11.628	2.1222
Total BTEX Emissions	0.4623	11.096	2.0250

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1941	4.659	0.8503
Ethane	0.0270	0.648	0.1183
Propane	0.0150	0.361	0.0659
Isobutane	0.0050	0.120	0.0219
n-Butane	0.0063	0.152	0.0277
Isopentane	0.0037	0.088	0.0161
n-Pentane	0.0029	0.070	0.0128
n-Hexane	0.0016	0.038	0.0070
Cyclohexane	0.0009	0.022	0.0039
Other Hexanes	0.0025	0.059	0.0108
Heptanes	0.0019	0.045	0.0082
Methylcycloĥexane	0.0012	0.029	0.0053
2,2,4-Trimethylpentane	0.0001	0.003	0.0006
Benzene	0.0004	0.010	0.0018
Toluene	0.0004	0.009	0.0016
Xylenes	<0.0001	0.001	0.0002
C8+ Heavies	0.0003	0.007	0.0013

1.0986 tpy CH4 X ZS gmp

= 27.465 tpy Core = 27.5

• , .

Total	Emissions	0.2634	6.321	Page: 2 1.1536
	Emissions Emissions	$\begin{array}{c} 0.\ 2634 \\ 0.\ 0422 \\ 0.\ 0026 \\ 0.\ 0008 \end{array}$	$\begin{array}{c} 6.\ 321 \\ 1.\ 013 \\ 0.\ 061 \\ 0.\ 020 \end{array}$	1. 1536 0. 1850 0. 0112 0. 0036

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

.

Component	lbs/hr	lbs/day	tons/yr
Methane	0.2508	6.020	1.0986
Ethane	0.0541	1.298	0.2368
Propane	0.0515	1.236	0.2256
Isobutane	0.0234	0.562	0.1026
n-Butane	0.0371	0.891	0.1626
Isopentane	0.0244	0.584	0.1067
n-Pentane	0.0236	0.566	0.1033
n-Hexane	0.0220	0.528	0.0963
Cyclohexane	0.0439	1.055	0.1925
Other Hexanes	0.0263	0.632	0.1154
Heptanes	0.0506	1.214	0.2215
Methylcyclohexane	0.0769	1.845	0.3368
2,2,4-Trimethylpentane	0.0019	0.046	0.0084
Benzene	0.1659	3.981	0.7265
Toluene	0.2283	5.478	0.9998
Xylenes	0.0690	1.657	0.3024
C8+ Heavies	0.0836	2.006	0.3661
Total Emissions	1.2333	29. 599	5. 4017
Total Hydrocarbon Emissions	1.2333	29.599	5. 4017
Total VOC Emissions	0.9284	22.281	4.0663
Total HAP Emissions	0.4871	11.690	2.1334
Total BTEX Emissions	0.4632	11.116	2.0280

*

Page: 7	
---------	--

-

Water Carbon Dioxide Nitrogen	9. 39e+001 5. 81e+000 6. 70e-003 4. 08e-004 6. 26e-002	2. 33e+001 2. 68e-002 1. 64e-003
Propane Isobutane	1.35e-002 1.29e-002 5.85e-003 9.27e-003 6.11e-003	5.15e-002 2.34e-002 3.71e-002
n-Hexane Cyclohexane Other Hexanes		2.21e-002 4.54e-002 2.66e-002
Toluene		1.96e-003 1.75e-001 2.48e-001
C8+ Heavies Total Components		9.50e-002 4.01e+002

FLASH TANK OFF GAS STREAM

`

•

Temperature: 120.00 deg. F Pressure: 49.70 psia Flow Rate: 5.30e+000 scfh		
Component	Conc. (vol%)	Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	4. 81e-001 9. 14e-001 3. 28e-001 8. 66e+001 6. 43e+000	5.62e-003 1.28e-003 1.94e-001
Isobutane n-Butane Isopentane	2. 44e+000 6. 16e-001 7. 78e-001 3. 64e-001 2. 89e-001	5.00e-003 6.31e-003 3.67e-003
Cyclohexane Other Hexanes	2.05e-001 1.33e-001	8.98e-004 2.47e-003 1.86e-003
Toluene	3.84e-002 2.87e-002 2.88e-003	4. 19e-004 3. 69e-004 4. 28e-005
Total Components	100.00	2.71e~001

Temperature: 120.00 deg. F Flow Rate: 7.15e-001 gpm

.

Component	Conc. (wt%)	Loading (1b/hr)
Water Carbon Dioxide Nitrogen	9. 39e+001 5. 81e+000 5. 30e-003 8. 76e-005 1. 42e-002	2. 33e+001 2. 12e-002 3. 51e-004
Propane Isobutane	6.76e-003 9.11e-003 4.60e-003 7.69e-003 5.20e-003	3.65e-002 1.84e-002 3.08e-002
n-Hexane Cyclohexane Other Hexanes		2.05e-002 4.45e-002 2.41e-002
Toluene		1.82e-003 1.74e-001 2.47e-001
C8+ Heavies	2.37e-002	9.47e-002
Total Components	100.00	4.00e+002

REGENERATOR OVERHEADS STREAM

Pressure:	212.00 deg. 14.70 psia 3.75e+002 scfh	F		
	Component		Conc. (vol%)	Loading (lb/hr)
	Carbon Diox Nitro Metha	ide gen ane	1.27e-003 3.58e-001	
	Isobut n-But Isopent	ane ane ane	3.21e-002 5.36e-002 2.90e-002	3.65e-002 1.84e-002 3.08e-002 2.07e-002 2.07e-002
	Cyclohex Other Hexa	ane nes nes	5.17e-002 2.80e-002 4.92e-002	4.87e-002
2, 2,	Tolu	ene ene	2.14e-001 2.50e-001	1.79e-003 1.65e-001 2.28e-001 6.90e-002

Page: 9

C8+ Heavies 4.95e-002 8.33e-002 Total Components 100.00 1.85e+001

•

•

Internal Combustion Engine Uncontrolled Emission Calculations

Company:	XTO Energy Inc.
Facility Name:	LCU 2-6GX
Facility Location:	Utah, Uintah County
Source Name:	
Serial Number:	210024-C
Emission Point:	Arrow C-96

Engine Manufacturer	Arrow				
Engine Model	C-96				
Engine Manufacture Date	12/13/03				
Engine Cycle Type/Combustion	4-stroke / rich burn	HP			
Manufacturer Horsepower Rating	18	HP			
Site Horsepower Rating	18	HP			
Altitude	6,000	feet			
Ambient Inlet Air Temp	60	degrees F			
Fuel Consumption (BSFC)	13000	Btu/(hp-hr)			
Heat Rating	0.234	MMBtu/hr			
Heating Value	1000	Btu/Scf			
Fuel usage annual	2.05	MMScf/yr			
Fuel usage per hour	234	Scf/hr			
Operating Hours	8760	hrs/yr			

Is Engine Applicable to JJJJ?	No
Manufacturer's Spec Sheet?	Yes

Sheet Spec Sheet JJJ.						Emission Rate			
	Manufacturer's Spec Sheet	Manufacturer's Spec Sheet	Emission Limit JJJJ (g/hp-hr)	Emission Limit JJJJ (Ib/MMBtu)	Emission Factor AP-42 (Ib/MMBtu)	Emission Factor Used In Calc (Ib/MMBtu)	Emission Factor Reference	(lb/hr)	(TPY)
NOx	11.87	2.013			2.21	2.013	1	0.47	2.06
co	5.05	0.856			3.72	0.856	1	0.20	0.88
VOC/NMHC	0.142	0.024			0.0296	0.024	1	0.01	0.02
PM ₁₀					0.0095	0.0095	2	0.00	0.01
Hazardous Air Pollutants									
Acetaldehyde					0.00279	0.00279	2	0.0007	0.0029
Acrolein					0.00263	0.00263	2	0.0006	0.0027
Benzene					0.00158	0.00158	2	0.0004	0.0016
Formaldehyde					0.0205	0.0205	2	0.0048	0.0210
GHG Emissions							Total HAPs	0.0064	0.0282
CO ₂					110	110	2	25.7400	112.7412
CH4					0.23	0.23	2	0.0538	0.2357
Emission Factor Reference							Total GHG	25.7938	112.9769

1 - Emission Factors provided by Manufacturer
 2 - AP-42 Table 3.2-3 for stationary IC sources; July 2000
 3 - 40 CFR 60, Subpart JJJJ New Source Performance Standards for Internal Combustion Engines Emission Limits

	CALCULATION FORMULAS	
lb/MMBtu =	(g/hp-hr)*(393 hp-hr/MMBtu) / (453.6 g/lb)	
lb/hr =	(g/hp-hr)*(manufacturer-rated hp) / (453.6 g/lb)	
tpy =	(lb/hr)*(8760 hr/yr) / (2000 lb/ton)	
Fuel Usage (MMscf/yr) =	(Scf/btu)*(btu/{hp-hr})*(manufacturer-rated hp)*(24 hr/day)*(365 day/yr)*(MMScf/10 ⁶ Scf)	
Heat Rating (MMbtu/hr) =	(manufacturer rated horsepower)*(Btu/(hp-hr)) / (453.6 g/lb)	

Table 1: AP-42 Emission Factors, July 2000

Engine Cycle Type / Combustion	NOx (Ib/MMBtu) 90 - 105% Load	CO (Ib/MMBtu) 90 - 105% Load	VOC (Ib/MMBtu)	PM10 (Ib/MMBtu)	Acetaldehyde (lb/MMBtu)	Acrolein (Ib/MMBtu)	Benzene (Ib/MMBtu)	Formaldehyde (Ib/MMBtu)
2-stroke / lean burn	3.17	0.386	0.12	0.0384	0.00776	0.00778	0.00194	0.0552
4-stroke / lean burn	4.08	0.317	0.118	0.0000771	0.00836	0.00514	0.00044	0.0528
4-stroke / rich burn	2.21	3.72	0.0296	0.0095	0.00279	0.00263	0.00158	0.0205

Engine Cycle Type / Combustion	CO ₂ (Ib/MMBtu)	CH₄ (Ib/MMBtu)
2-stroke / lean burn	110	1.45
4-stroke / lean burn	110	1.25
4-stroke / rich burn	110	0.23

April 9th, 2013

Little Canyon Compressor Station (LCU-4) Manufacturer Date Correction 40 CFR 63, Subpart ZZZZ XTO Energy Inc. – Uintah County, UT

USPS Certified No: 7008 1830 0001 0476 5967

Alexis North EPA Region 8 Mail Code 8ENF-AT 1595 Wynkoop Street Denver, CO 80202-1129

Dear Ms. Alexis North:

On March 29th 2013, XTO Energy, Inc. (XTO) submitted a Notification of Startup under 40 CFR 63.9, National Emissions Standards for Hazardous Air Pollutants (NESHAPS) for the Little Canyon Compressor Station Compressor #4 (LCU-4). The manufacturer date of the engine submitted in the March 29th, 2013 Notification of Startup was incorrect. XTO requests that the EPA please update their records with the correct manufacturer date. Please see the attachment for the details on the new engine which includes the new manufacturer date.

Should you have any questions, please feel free to contact me at 817-885-1249 or via e-mail at Rykki_Tepe@xtoenergy.com.

Sincerely,

Siftany Sciacea

Tiffany Sciacca Administrative Assistant XTO Energy Inc.

Bc: Roosevelt NGO William Payne

•

.

File Room - Utah\Roosevelt\Agency Correspondence

File Name: W:\EHS\Environmental\Air\Utah\Uintah County\Correspondence\Agency Correspondence\LCU Engine Swing\RT20130410 EPA Notice of Startup for LCU-4 Cat 3516TALE - Correct MFD.doc

NESHAP ZZZZ NOTIFICATION

The second se

١.

*

Location	Permit	County	Lat. / Long.	Make	Family	Model	Unit S.N.	Manufacture Date	Max HP	Displ.	Catalyst	Fuel
Little Canyon Compressor Station (LCU-4)	Not Issued	Uintah	39.6972220 / -109.6059960	Caterpillar	G3500	G3516TALE	4EK03003	8/30/2000	1340 @ 1400 rpm	64L	Oxidation	Nat gas/field

March 29, 2013

Notice of Startup Little Canyon Compressor Station 40 CFR 63, Subpart ZZZZ XTO Energy Inc. – Uintah County, UT

USPS Certified No: 7010 0290 0000 3136 9425

Alexis North EPA Region 8 Mail Code 8ENF-AT 1595 Wynkoop Street Denver, CO 80202-1129

Dear Ms. Alexis North:

XTO Energy Inc. (XTO) respectfully submits a notification of startup under 40 CFR 63.9, National Emissions Standards for Hazardous Air Pollutants (NESHAPS). This letters serves to notify the EPA that XTO has installed and started up a reciprocating internal combustion engine (RICE) at the Little Canyon Compressor Station location in Uintah County, Utah. Start-up of the Caterpillar 3516TALE compressor engine occurred on March 28th, 2013. This engine replaced a like-kind Caterpillar 3516TALE compressor engine. Please see the attachment for the details on the new engine.

Should you have any questions, please feel free to contact me at 817-885-1249 or via e-mail at Rykki_Tepe@xtoenergy.com.

Sincerely,

Rykki Tepe

Rykki Tepe Environmental Engineer XTO Energy Inc.

Bc: Roosevelt NGO William Payne

File Room - Utah\Roosevelt\Agency Correspondence

File Name: W:\EHS\Environmental\Air\Utah\Uintah County\Correspondence\Agency Correspondence\LCU Engine Swing\RT20130329 EPA Notice of Startup for LCU-4 Cat 3516TALE.doc

Incorrect.

.

.

NESHAP ZZZZ NOTIFICATION

Location	Permit	County	Lat. / Long.	Make	Family	Model	Unit S.N.	Manufacture Date	Max HP	Displ.	Catalyst	Fuel
Little Canyon Compressor Station (LCU-4)	Not Issued	Uintah	39.8972220 / -109.6059960	Caterpillar	G3500	G3516TALE	4EK03003	2/19/2001	/1340 @ 1400 rpm	64L	Oxidation	Nat gas/field

* ; *

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information

Emissions unit ID _LCU 2-06GX PU_____ Description_Arrow C-96 Engine_____

SIC Code (4-digit) _1311_____ SCC Code _2310021700____

B. Emissions Unit Description

Primary usePumping Unit Engine Temporary SourceYes _XNo
ManufacturerArrow Model NoC-96
Serial Number210024-C Installation Date4_/_15_/_2009
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural-Gas Wellhead Pumping Unit Engine
Boiler horsepower rating18 Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bedPulverized, dry bed
Actual Heat Input0.234MM BTU/hr Max. Design Heat InputMM BTU/hr

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)____

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1,000 BTU/scf

2

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage			
	Usage	Hourly	Annual		
Natural Gas	2.05 mmscf	234 scf	2.05 mmscf		

E. Associated Air Pollution Control Equipment

Emissions unit ID	Device type
Air pollutant(s) Controlled	Manufacturer
Model No	Serial No
Installation date//	Control efficiency (%)
Efficiency estimation method	

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)6 Inside stack diameter (ft)0.2	
Stack temp (°F) _1300 Design stack flow rate (ACFM) _139	
Actual stack flow rate (ACFM)139 Velocity (ft/sec)74	

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID _LCU 2-06GX PU_____

B. Identification and Quantification of Emissions

For each emissions unit identified above, list each regulated air pollutant or other pollutant for which the source is major, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. See instructions concerning GHGs. Values should be reported to the nearest tenth (0.1) of a ton for yearly values or tenth (0.1) of a pound for hourly values.

Actual	Potent	tial to Emit	
Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
	0.47	2.1	
	0.20	0.88	
	0.01	0.02	
	0.001	0.003	75070
	0.001	0.003	107028
	0.005	0.021	50000
	Annual Emissions	Actual Annual Emissions (tons/yr)Potent Hourly (lb/hr)0.470.470.200.010.0010.001	Annual Emissions (tons/yr) Hourly (lb/hr) Annual (tons/yr) 0.47 2.1 0.20 0.88 0.01 0.02 0.001 0.003 0.001 0.003

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)

A. General Information

Emissions unit ID _LCU 2-06GX D-1__ Description ____Natural Gas Dehydrator_____

SIC Code (4-digit) __1311_____ SCC Code __311000227_____

B. Emissions Unit Description

anufacturerPESCO	Model NoCOMBO PUD
erial NoN/A	Installation date//_2007
aw materialsWET NATURAL GAS	······································
nished productsDRY NATURAL GAS	
porary source: _xNoYes	

C. Activity or Production Rates

Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	0.01 MMSCF	87.6 MMSCF
Maximum rate	0.083 MMSCF	730 MMSCF

D. Associated Air Pollution Control Equipment

Emissions unit ID	Device Type
Manufacturer	Model No
Serial No	Installation date//
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method

E. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (This is not common)).								
Stack height (ft)8 Inside stack diameter (ft)0.2								
Stack temp (F)300 Design stack flow rate (ACFM)								
Actual stack flow rate (ACFM) Velocity (ft/sec)								

INSTRUCTIONS FOR EUD-3 EMISSIONS UNIT DESCRIPTION FOR PROCESS SOURCES

This form is designed to describe emissions units for processes for which forms EUD-1 or EUD-2 are not appropriate. For example, sources such as rock crushers and asphalt batch plants. This form will help you to collect and organize technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit.

Section A - The emissions unit ID should be consistent with the one used in section I of form **GIS**. Enter the four-digit SIC code for the unit, which may be different form that used for the facility as a whole. In addition, complete the Source Classification Code (SCC), if known or available, but this is not mandatory.

Section B - There may be other information that the permitting authority will need to know that is not specifically requested on the forms and that should be included on attachments. Such information would include information needed to adequately identify the emissions unit and to determine its applicable requirements.

Section C - The amount of raw materials that are processed and/or the number of activities performed are values that are typically multiplied by emissions factors to calculate PTE and actual emissions.

Section D - Identify and describe any associated air pollution control device. Attach copies of correspondence from the vendor documenting these values, if available, or indicate how these values were otherwise determined (e.g., AP-42).

Section E - Complete this section only if ambient impact assessment is an applicable requirement or the facility is a temporary source. This is not common.

.

Federal Operating Permit Program (40 CFR Part 71) EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID _LCU 2-06GX D-1_____

B. Identification and Quantification of Emissions

For each emissions unit identified above, list each regulated air pollutant or other pollutant for which the source is major, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. See instructions concerning GHGs. Values should be reported to the nearest tenth (0.1) of a ton for yearly values or tenth (0.1) of a pound for hourly values.

		Emission Rate	95	
	Actual	Potentia	al to Emit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC		0.94	4.1	
BENZENE		0.17	0.73	71432
TOLUENE		0.23	1.0	108883
XYLENE		0.07	0.3	1330207
N-HEXANE		0.022	0.10	110543

,

~

		O Metric	Retriev	e Cross Ref.	L
			Advene	ed Search	Affilia
			Advanc	ed Search	Securi
er Reference number and select Reference select Advanced Search on the right).	description above				Securi
actory Spec Re Rated					
Note: Helpful hint, a	yellow tab means	the data is id	lentical be	tween the containe	rs Factory Spec, Re
Engine Test Order Inv. w/E		ical Data	Gasket Kit		Component Data
<u>0K0815</u> <u>4EK0</u>	<u>13003</u> <u>4E</u> F	<u><03003</u>	<u>1054176</u>	<u>0K0815</u>	<u>4EK03003</u>
Darfarmanas Data Emissio	na Data Saca	Compara	Toot Spaa	Suctome Data	
	Tested Date: 06Sep2 Plant: Lafayette	2000		nipped Date: 08Sep2 ell Number: 510	000
Test Element	Eng Updates	Test \	/alue	Test Spec Value	Measure
Spec Number		0K0815		0K0815	
rrangement Number		1054176		1054176	
CORR FL PWR		1,341		1,356	НР
Speed		1,402		1,400	RPM
CORR FL FUEL RATE		164,994.4		163,024.5	BTU/MIN
		7,380			
CSFC		7,380		7,315	BTU/HP-H
		194		7,315 192	BTU/HP-H F
acket Water Temp					
acket Water Temp N SCAC H2O		194		192	F
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure		194 129 38.58 34.08		192 129 38.15 34.08	F F PSIA PSIA
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen		194 129 38.58		192 129 38.15 34.08 8.4	F F PSIA PSIA %
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen NOX Level		194 129 38.58 34.08 8.3		192 129 38.15 34.08 8.4 230	F F PSIA PSIA % PPM
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen NOx Level EL Oil Press		194 129 38.58 34.08 8.3 54		192 129 38.15 34.08 8.4 230 56	F F PSIA PSIA % PPM PSI
acket Water Temp N SCAC H2O Compressor Out Pressure Inlet Manifold Pressure Excess Oxygen NOx Level FL Oil Press High Speed		194 129 38.58 34.08 8.3 54 1,402		192 129 38.15 34.08 8.4 230 56 1,400	F PSIA PSIA % PPM PSI RPM
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen IOx Level IOx Level IO II Press Iigh Speed Diff Fuel Pressure High		194 129 38.58 34.08 8.3 54 1,402 0.30		192 129 38.15 34.08 8.4 230 56 1,400 0.22	F PSIA PSIA % PPM PSI RPM PSI PSI
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen NOX Level C Oil Press High Speed Diff Fuel Pressure High Low Idle Speed		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000	F PSIA PSIA % PPM PSI RPM PSI RPM PSI RPM
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen IOX Level IOX Level IOI Press ligh Speed Diff Fuel Pressure High IOW Idle Speed IOW Idle Oil Pressure		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI RPM PSI RPM PSI RPM PSI
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen NOX Level Coll Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55	F F PSIA PSIA % PPM PSI RPM PSI PSI PSIA
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen HOx Level Coll Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Evel Pressure Ev		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00	F PSIA PSIA % PPM PSI RPM PSI RPM PSI RPM PSI RPM PSI RPM DEG
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen IOX Level IC Oil Press Idgh Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Idle Oil		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI RPM PSI RPM PSI DEG hp
acket Water Temp N SCAC H2O Compressor Out Pressure nelt Manifold Pressure Excess Oxygen IOX Level IOX Level IOI Press Iigh Speed Off Fuel Pressure High Low Idle Speed IIGH Pressure IIGH Press IIGH		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00	F F PSIA PSIA % PPM PSI RPM PSIA DEG hp RPM
acket Water Temp N SCAC H2O Compressor Out Pressure Inlet Manifold Pressure Excess Oxygen IOX Level I Oil Press Iigh Speed Diff Fuel Pressure High I Ow Idle Speed I Ow Idle Oil Pressure I OW Idle OI Pressure		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI RPM PSI RPM PSI HG
acket Water Temp N SCAC H2O Compressor Out Pressure Inlet Manifold Pressure Excess Oxygen IOX Level ID Oil Press Igh Speed Diff Fuel Pressure High Iow Idle Speed Iow Idle Oil Pressure Iuel Pressure Iuel Pressure Inning BTDC Idvertised Power Idvertised Speed Idjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending)		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSIA DEG hp HG BTU/MIN
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen IOX Level Coll Press High Speed Diff Fuel Pressure High ow Idle Speed ow Idle Oil Pressure Fuel Pressure Fuel Pressure Fuel Pressure Fining BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending)		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI RPM PSI RPM PSI PSIA DEG hp RPM HG BTU/MIN GAL/HR
acket Water Temp N SCAC H2O Compressor Out Pressure Inlet Manifold Pressure Excess Oxygen IOX Level L Oil Press ligh Speed Diff Fuel Pressure High ow Idle Speed ow Idle Oil Pressure uel Pressure Timing BTDC Indvertised Power Indvertised Speed Idvertised Fuel Rate - Gas (Gas Blending) Corrected Fuel Rate - Diesel (Gas Blending)		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSIA DEG hp RPM HG BTU/MIN GAL/HR MM3/ST
CSFC lacket Water Temp lN SCAC H2O Compressor Out Pressure inlet Manifold Pressure Excess Oxygen NOX Level L Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Rate - Gas (Gas Blending) Corrected Fuel Rate - Diesel (Gas Blending) Fuel Load Fueling (Gas Blending) Corr Fuel Load Power (Gas Blending) Corr Fuel Load Power (Gas Blending)		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI PSIA DEG hp RPM HG BTU/MIN GAL/HR MM3/ST %
acket Water Temp N SCAC H2O Compressor Out Pressure Inlet Manifold Pressure Excess Oxygen IOX Level Coll Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Fuel Pressure Fuel Pressure Fuel Pressure Coll Pressure C		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI PSIA DEG hp RPM HG BTU/MIN GAL/HR MM3/ST % HP
acket Water Temp N SCAC H2O Compressor Out Pressure Inlet Manifold Pressure Excess Oxygen NOX Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure High Low Idle Oil Pressure Fuel Pressure Fuel Pressure Corrected Fuel Rate - Gas (Gas Blending) Corrected Fuel Rate - Diesel (Gas Blending) Fuel Load Fueling (Gas Blending) Corr Full Load Power (Gas Blending) Fuel Load Speed (Gas Blending)		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI PSIA DEG hp RPM HG BTU/MIN GAL/HR MM3/ST %
acket Water Temp N SCAC H2O Compressor Out Pressure nlet Manifold Pressure Excess Oxygen NOx Level FL Oil Press High Speed Oiff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure		194 129 38.58 34.08 8.3 54 1,402 0.30 1,000 54		192 129 38.15 34.08 8.4 230 56 1,400 0.22 1,000 55 33.00 1,340	F F PSIA PSIA % PPM PSI RPM PSI RPM PSI PSI PSI PSI PSI BTU/MIN GAL/HR MM3/ST % HP RPM

•

Y

"

			 English Metric 	Retrieve	e Cross Ref.	
						4.00011
				Advanc	ed Search	Affiliati
er Reference number and select Reference select Advanced Search on the right).	ence description ab	ove				
Factory Spec ReRated						
Note: Helpful hi	nt, a yellow tab m	ieans th	ne data is io	lentical be	tween the container	rs Factory Spec, Re R
	. w/Eng Breakdown 7NJ00735		cal Data 00735	Gasket Ki 4P8328	<u>Par Dyno</u> <u>2T5894</u>	Component Data 7NJ00735
	nissions Data		Compare	Test Spec	Systems Data	
IGINE TEST [7NJ00735]					For Help Desk	MARCH 07, 20 Phone Numbers <u>Click</u>
Sales Model: 3512					For help Desk	none munders Click
Built Date: 22Nov2000	Tested Date: 2	7Nov20	00	Sh	hipped Date: 01Dec2	000
Tested: B	Plant: Lafayett	е		C	ell Number: 509	
Test Element	Eng Upda	tes	Test V	/alue	Test Spec Value	Measure
Spec Number			2T5894		2T5894	
Arrangement Number			4P8328		4P8328	
CORR FL PWR			809		810	HP
Speed			1,199		1,200	RPM
CORR FL FUEL RATE			97,192.5		98,525.6	BTU/MIN
CSFC			7,207		7,298	BTU/HP-H
Jacket Water Temp			192		192	F
IN SCAC H2O			127		127	F
Compressor Out Pressure			33.94		34.52	PSIA
Inlat Manifold Dransure						
			29.73		30.02	PSIA
Excess Oxygen			8.3		30.02 8.3	%
Excess Oxygen NOx Level			8.3 40,589		30.02 8.3 310	% PPM
Excess Oxygen NOx Level FL Oil Press			8.3 40,589 61		30.02 8.3 310 60	% PPM PSI
Excess Oxygen NOx Level FL Oil Press High Speed			8.3 40,589 61 1,250		30.02 8.3 310 60 1,248	% PPM PSI RPM
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High			8.3 40,589 61 1,250 0.19		30.02 8.3 310 60 1,248 0.22	% PPM PSI RPM PSI
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed			8.3 40,589 61 1,250 0.19 900		30.02 8.3 310 60 1,248 0.22 900	% PPM PSI RPM PSI RPM
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22	% PPM PSI RPM PSI RPM PSI
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure			8.3 40,589 61 1,250 0.19 900		30.02 8.3 310 60 1,248 0.22 900 59	% PPM PSI RPM PSI RPM PSI RPM PSI PSI PSI PSIA
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00	% PPM PSI RPM PSI RPM PSI PSI DEG
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI RPM PSI RPM DEG hp
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00	% PPM PSI RPM PSI RPM PSI PSIA DEG hp RPM
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending)			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI PSI PSI PSI PSI PSIA DEG hp RPM HG
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI PSI PSIA DEG hp RPM HG BTU/MIN
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI PSI PSIA DEG hp RPM HG BTU/MIN GAL/HR
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending Corrected Fuel Rate - Diesel (Gas Blending)			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI RPM PSI DEG hp RPM HG BTU/MIN GAL/HR MM3/ST
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending Corrected Fuel Rate - Diesel (Gas Blend Full Load Fueling (Gas Blending) Gas Substitution Ratio (Gas Blending)			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI RPM PSI PSIA DEG hp RPM HG BTU/MIN GAL/HR %
Inlet Manifold Pressure Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending Corrected Fuel Rate - Diesel (Gas Blending) Gas Substitution Ratio (Gas Blending) Corr Full Load Power (Gas Blending) Eull Load Speed (Gas Blending)			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI RPM PSIA DEG hp RPM HG BTU/MIN GAL/HR MM3/ST % HP
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending Corrected Fuel Rate - Diesel (Gas Blending) Gas Substitution Ratio (Gas Blending) Corr Full Load Power (Gas Blending) Full Load Speed (Gas Blending)			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI RPM PSI PSI RPM DEG hp RPM HG BTU/MIN GAL/HR MM3/ST % HP RPM
Excess Oxygen NOx Level FL Oil Press High Speed Diff Fuel Pressure High Low Idle Speed Low Idle Oil Pressure Fuel Pressure Timing BTDC Advertised Power Advertised Power Advertised Speed Adjusted Boost (Gas Blending) Corrected Fuel Rate - Gas (Gas Blending Corrected Fuel Rate - Diesel (Gas Blend Full Load Fueling (Gas Blending) Gas Substitution Ratio (Gas Blending) Corr Full Load Power (Gas Blending)			8.3 40,589 61 1,250 0.19 900 59		30.02 8.3 310 60 1,248 0.22 900 59 33.00 810	% PPM PSI RPM PSI RPM PSIA DEG hp RPM HG BTU/MIN GAL/HR MM3/ST % HP

4

,

-

Manzanares, Candice

From:Wortman, EricSent:Tuesday, February 14, 2017 3:10 PMTo:'Allison, Craig'Subject:Info. Request for Little Canyon Part 71 Permit (Draft Permit #V-UO-000016-2006.00)Attachments:PTE table for Little Canyon from XTO 2-14-16.xlsx

Hi Craig,

Here are the remaining items I still need to continue drafting the Part 71 permit for Little Canyon. Please send over by March 3rd and let me know if you have questions. Thanks, Eric

- Written documentation (submitted under CTAC) that LCC-1 and LCC-2 were permanently shut down and are no longer at the facility.
- PTE for CO2e for emission units at LCU 2-6X wellsite (see attached spreadsheet). I just need it for the Dehydrator and Pump engine, not necessary for the other IEUs.
- Engine manufacturer and construction (order) dates for the Arrow C96 Pump engine at LCU 2-6X wellsite. I need
 this to determine JJJJ / ZZZZ applicability, you may indicate "pre-2002" if it's an older unit and it's difficult to
 obtain an exact date as long as I can determine applicability to the engine regs (Mfr before 7/1/2008 for JJJJ and
 constructed prior to 6/12/2006 for existing at area source under ZZZZ).
- Please provide an installation date for the 2 tanks at the LCU 2-6X wellsite or verify they were constructed prior to 8/23/2011 (for OOOO applicability).
- Verify the manufacture date for LCC-4. Dustin sent me a date of 2/19/2001 but the inspection report dated July 29, 2015 lists 8/30/2000 for the same serial number (4EK03003). Note that Dustin sent me the mfr. date for LCC-3 already.
- A FORM-EUD for the dehy and pump engine at LCU 2-6X wellsite since they are not IEUs (include serial number and install dates if you have them).

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency Telephone: (617) 918-1624 Email: <u>wortman.eric@epa.gov</u>

Little		E-lair - Halts	NOA	001	NOOT				Total		CH4*	N ₂ O*	CO ₂ e*
PTE	ID	Emissions Units	NO _X *	CO*	VOC*	PM*	SO2*	CH ₂ O*	HAPs*	CO3*	(as CO ₂ e)	(as CO2e)	CU ₂ e.
	LCC-3	Cat. 3512	15.6	18.1	7.8	0.3	0.0	1.7	1.7	3707.3	1.7	2.1	3711.1
	LCC-4	Cat. 3516	25.9	29.9	12.9	0.5	0.0	2.9	2.8	5900.3	2.8	3.3	5906.4
	LCD-1 & LCTO-1	Dehy w/Thermal Oxidizer	2.1	2.9	5.3	0.3	0.0	0.0	3.0	4170.6	8.1	2.3	4181.0
	LCT-1	Tank 1	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0
	LCT-2	Tank 2	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0
	LCT-2 LCF-1	Fugitives	0.0	0.0	3.9	0.0	0.0	0.0	0.1	0.0	593.2	0.0	593.2
	LCU 2-6X D		0.0	0.0	5.7	0.0	0.0	0.0	0.1	. * AG	575.2	0.0	575.L
	1	Dehydration Unit	0.0	0.0	4.0	0.0	0.0	0.0	1.4				
	LCU 2-6X Pump Engine	Arrow C96 Pump Engine - 18 hp	2.1	0.9	0.0	0.0	0.0	0.0	0.0				
	LCG-1	Capstone 65 kW Microturbine Genset	0.1	1.7	0.0	0.0	0.0	0.0	0.0	394.5	0.2	0.2	394.9
		Condensate Truck Loading	0.0	0.0	2.0	0.0	0.0	0.0	0.1	0.0	57.2	0.0	57.2
	-	0.550 MMBtu/hr* Glycol Dehydrator Reboiler	0.3	0.2	0.0	0.0	0.0	0.0	0.0	281.8	0.1	0.2	282.
	-	0.500 MMBtu/hr* Tank Heater #1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	256.2	. 0.1	0.1	256.4
		0.500 MMBtu/hr* Tank Heater #2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	256.2	0.1	0.1	256.4
		0.250 MMBtu/hr* natural gas- fired separator heater	0.1	0.1	0.0	0.0	0.0	0.0	0.0	128.1	0.1	0.1	128.
5		2 MMBtu/hr* heater for Thermal Oxidizer	1.0	0.8	0.1	0.1	0.0	0.0	0.0	Inc	luded in L	CD-1 & LCT	0-1
Insignificant Emission Units	-	Pipeline Pigging Operations Compressor Blowdown	0.0	0.0	< 0.1	0.0	0.0	0.0	0.0	0.0	4.1	0.0	4.1
issi	-	Emissions	0.0	0.0	3.0	0.0	0.0	0.0	0.1	0.0	661.3	0.0	661.
t Em		LCU 2-6x Tanks 1 and 2	0.0	0.0	4.0	0.0	0.0	0.0	0.0			-	-
can		LCU 2-6X Truck Loading	0.0	0.0	0.1	0.0	0.0	0.0	0.0		-		-
gnifi		LCU 2-6X Fugitives	0.0	0.0	1.9	0.0	0.0	0.0	0.1	-	-		-
Insi	-	LCU 2-6X Heaters (3)	0.5	0.5	0.0	0.0	0.0	0.0	0.0	-	-		
Fac	cility-Wide PT	E (federally enforceable)	47.9	55,3	48.6	1.2	0.0	4.6	9.7	15094.9	1384.9	8.5	16488

Little Canyon Unit Compressor Station PTE Table. Revised 2-14-16

Manzanares, Candice

From:	Simpson, Dustin <dustin_simpson@xtoenergy.com></dustin_simpson@xtoenergy.com>
Sent:	Tuesday, January 17, 2017 7:25 AM
То:	Wortman, Eric; Allison, Craig
Subject:	RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

I am no longer in the air group as I have taken a new position with our Fort Worth Division. Could you please contact Craig Allison with any questions pertaining to the Part 71 permits?

Craig,

We purchased these engines when we made the acquisition. Is there someone that we can talk to that might have knowledge of the original set dates? Maybe the manufacturers?

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Tuesday, January 17, 2017 8:15 AM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

Were you able to find any more information on the commenced construction dates (under ZZZZ) for LCC-3 and LCC-4?

Eric

From: Wortman, Eric
Sent: Wednesday, December 21, 2016 4:47 PM
To: 'Simpson, Dustin' < Dustin Simpson@xtoenergy.com
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00</pre>

Hi Dustin,

I will the initial commenced construction dates so that I can accurately determine applicability to MACT ZZZZ. After the holiday's fine, I just don't want to make any assumptions in the permit.

Thanks,

Eric

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com]
Sent: Wednesday, December 21, 2016 10:26 AM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

LCC-4 and LCC-3 were purchased via acquisition on 8-1-2007. That is the first time that it was in our ownership and the earliest date that I can find. They were both active at the time of purchase. Let me know if there is more information that you need. I could probably get more but a lot of people are out for the holidays.

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Friday, December 16, 2016 4:49 PM To: Simpson, Dustin Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

The manufacturer dates for engines are only needed to determine applicability to NSPS JJJJ. The definition of commenced construction is different for MACT ZZZZ and is based on the date the engine is initially constructed at the facility (in this case, the first facility it was constructed at since I'm assuming the relocation to Little Canyon does not meet the definition of reconstruction). MACT ZZZZ has different requirements for new and existing engines based off commenced construction date, and I need the initial commenced construction date to determine the applicable requirements of the rule. Give me a call if you want further explanation. Can you send me these dates for LCC-3 and LCC-4?

Thanks,

Eric 303-312-6649 From: Simpson, Dustin [mailto:Dustin_Simpson@xtoenergy.com]
Sent: Wednesday, December 14, 2016 11:23 AM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Please see responses below

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | <u>dustin_simpson@xtoenergy.com</u>

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Friday, December 09, 2016 3:04 PM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

A few follow-up questions for you. Thanks - Eric

- Just to clarify, can you confirm that you only want LCC-3 and LCC-4 included in the permit at this time since LCC-1 and LCC-2 are no longer located at the facility? I will pull them out of the tables. I'll continue processing the permit application but I'll need you to submit an application update under CTAC explaining that LCC-1 and LCC-2 are no longer located at the facility and provide and update emissions unit table with supporting documentation (copy of crane receipt, work order for removal, or other written explanation). You are correct. We could remove the LCC-1 and LCC-2 compressor engines.
- Is the capstone generator at Little Canyon 30 kW or 65 kW? 65kw
- Also, can you give me the commenced construction dates (initial installation at other facility) for engines LCC-3 and LCC-4 for MACT ZZZZ applicability. I am not sure what the initial installation at other facilities matters since the engines applicability is determined by manufacturer date. If you are concerned about remote versus non remote, the LCC-3 was a remote engine prior to being located on site. For major source engines the designation of remote or non-remote does not matter with reference to requirements.
- I'll have to look into the question of the LCU 2-6GX Wellsite a little further regarding shared equipment. The application states that the wellsite feeds into the common

gathering pipeline and not directly into Little Canyon Unit. However, this common gathering pipeline is dependent upon Little Canyon Unit to move the gas further down the processing stream and eventually into a sales pipeline (i.e. the gas cannot be diverted to another compressor station if Little Canyon is not operation), correct? This is correct.

From: Simpson, Dustin [mailto:Dustin_Simpson@xtoenergy.com]
Sent: Tuesday, December 06, 2016 3:14 PM
To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>>
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Please see responses below. I will try to get to TAP 5 tomorrow. It might require me talking to the field a little more as I have not done any permitting action with it since I took over the area.

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorneyclient information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Wednesday, November 16, 2016 4:28 PM
To: Simpson, Dustin
Subject: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Dustin,

As we discussed on the phone, I'm the permit engineer for the pending Part 71 permit application for the Little Canyon Unit CS on the U&O Reservation. I've started reviewing the permit file and have a questions. Please take a look and send me your response by **December 2nd.**

- 1. I've attached a MS Word file with a draft emissions unit table for the facility. Please take a look and check that everything is accurate. Here are few specific questions I have regarding emission units at the facility.
 - a. Please confirm the dehydration unit throughput is 25 MMscfd. Some of the backup spreadsheets provided listed it as 40 MMscfd but I believe it should be 25. It is 25 MMSCFD
 - b. Is LCC-1 still at the facility or are there only 3 compressor engines? There are some discrepancies in the application updates over the years as to which unit ID goes with what engine. Please verify the make/model/serial number/installation date for <u>each</u> engine at the

facility. I also need the manufacture dates for LCC-1 and LCC-3 (but verify dates for all engines) for JJJJ applicability or you may state they were all manufactured prior to the JJJJ applicability dates (actual dates are preferred).

LCC-1 – Not at the facility and was never set at the facility. Was in the application as a TBD engine originally that never got used.

LCC-2 – CAT G3516TA – Not at the facility any more – just moved it off when we replaced it with the CAT 3512 (LCC-3) below. Start date 7/1/2013, SN 4EK04246, MF Date 10/6/2004

LCC-3 – CAT G3512TA – Construction start date of 10-27-2016, Will run very soon. SN 7NJ00735. MF Date 11/22/2000

LCC-4 – CAT G3516TA - Start date 2/14/2008, SN 4EK03003, MF Date 2/19/2001

- 2. I've also attached a table of what I believe represents the PTE for the facility based off all the information in the application. Please look at the table and let me know if any is not accurate.
 - a. Some of the emissions tables in the 10/13/16 application update seem to reference equipment at Tap-5 CS, so let me know if anything in the table is not correct. The emissions are correct; the EPN should have LCC instead of T5. I included LCC-2 compressor because I did not know when it was going to be moved off site, but that has already occurred since the application submittal.
 - b. Please send the PTE of greenhouse gases for the emission units at the facility (see table). See attached table. I highlighted in red the emissions from the two engines that are no longer on location and removed them from the total emissions.
- 3. Note that I am NOT including the PTE or equipment for the LCU 2-6GX Wellsite at this time. Based on the information XTO included in the February 2011 application update, I'm wondering if this wellsite should be excluded based on the revised definition of a major source in 71.2. The recent rulemaking can be viewed here: https://yosemite.epa.gov/opei/RuleGate.nsf/byRIN/2060-AS06. Please indicate in your response if the LCU 2-6GX Wellsite has "shared" equipment with the Little Canyon Unit CS and meets the definition of major source in 71.2 and should be included in the permit.

Oil and Gas Extraction, pollutant emitting activities shall be considered adjacent if they are located on the same surface site; or if they are located on surface sites that are located within 1/4 mile of one another (measured from the center of the equipment on the surface site) and they share equipment. Shared equipment includes, but is not limited to, produced fluids storage tanks, phase separators, natural gas dehydrators or emissions control devices. Surface site, as used in the introductory text of this definition, has the same meaning as in 40 CFR 63.761.

Looking at the rule above I would say yes as a conservative guess. The facilities do not share any equipment. Gas processed from the well pad location is sent to the compressor station where the gas is compressed, dehydrated, and sold. The LCU compressor station can run without the LCU 2-6GX well pad running, but the LCU 2-6GX cannot run without the compressor station operating as it would have nowhere to send the gas. How would the EPA interpret this. I would hate to go one way or the other and be incorrect.

Thanks,

.

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8 1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: <u>wortman.eric@epa.gov</u>

Wortman, Eric

From:	Simpson, Dustin <dustin_simpson@xtoenergy.com></dustin_simpson@xtoenergy.com>
Sent:	Wednesday, December 14, 2016 11:23 AM
То:	Wortman, Eric
Subject:	RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Please see responses below

Thanks.

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov]
Sent: Friday, December 09, 2016 3:04 PM
To: Simpson, Dustin
Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

A few follow-up questions for you. Thanks - Eric

- Just to clarify, can you confirm that you only want LCC-3 and LCC-4 included in the permit at this time since LCC-1 and LCC-2 are no longer located at the facility? I will pull them out of the tables. I'll continue processing the permit application but I'll need you to submit an application update under CTAC explaining that LCC-1 and LCC-2 are no longer located at the facility and provide and update emissions unit table with supporting documentation (copy of crane receipt, work order for removal, or other written explanation). You are correct. We could remove the LCC-1 and LCC-2 compressor engines.
- Is the capstone generator at Little Canyon 30 kW or 65 kW? 65kw
- Also, can you give me the commenced construction dates (initial installation at other facility) for engines LCC-3 and LCC-4 for MACT ZZZZ applicability. 1 am not sure what the initial installation at other facilities matters since the engines applicability is determined by manufacturer date. If you are concerned about remote versus non remote, the LCC-3 was a remote engine prior to being located on site. For major source engines the designation of remote or non-remote does not matter with reference to requirements.

 I'll have to look into the question of the LCU 2-6GX Wellsite a little further regarding shared equipment. The application states that the wellsite feeds into the common gathering pipeline and not directly into Little Canyon Unit. However, this common gathering pipeline is dependent upon Little Canyon Unit to move the gas further down the processing stream and eventually into a sales pipeline (i.e. the gas cannot be diverted to another compressor station if Little Canyon is not operation), correct? This is correct.

From: Simpson, Dustin [mailto:Dustin Simpson@xtoenergy.com] Sent: Tuesday, December 06, 2016 3:14 PM To: Wortman, Eric <<u>Wortman.Eric@epa.gov</u>> Subject: RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Eric,

Please see responses below. I will try to get to TAP 5 tomorrow. It might require me talking to the field a little more as I have not done any permitting action with it since I took over the area.

Thanks,

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin_simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

From: Wortman, Eric [mailto:Wortman.Eric@epa.gov] Sent: Wednesday, November 16, 2016 4:28 PM To: Simpson, Dustin Subject: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Dustin,

As we discussed on the phone, I'm the permit engineer for the pending Part 71 permit application for the Little Canyon Unit CS on the U&O Reservation. I've started reviewing the permit file and have a questions. Please take a look and send me your response by **December 2nd**.

- I've attached a MS Word file with a draft emissions unit table for the facility. Please take a look and check that everything is accurate. Here are few specific questions I have regarding emission units at the facility.
 - Please confirm the dehydration unit throughput is 25 MMscfd. Some of the backup spreadsheets provided listed it as 40 MMscfd but I believe it should be 25. It is 25 MMSCFD

b. Is LCC-1 still at the facility or are there only 3 compressor engines? There are some discrepancies in the application updates over the years as to which unit ID goes with what engine. Please verify the make/model/serial number/installation date for <u>each</u> engine at the facility. I also need the manufacture dates for LCC-1 and LCC-3 (but verify dates for all engines) for JJJJ applicability or you may state they were all manufactured prior to the JJJJ applicability dates (actual dates are preferred).

LCC-1 – Not at the facility and was never set at the facility. Was in the application as a TBD engine originally that never got used.

LCC-2 – CAT G3516TA – Not at the facility any more – just moved it off when we replaced it with the CAT 3512 (LCC-3) below. Start date 7/1/2013, SN 4EK04246, MF Date 10/6/2004

LCC-3 – CAT G3512TA – Construction start date of 10-27-2016, Will run very soon. SN 7NJ00735. MF Date 11/22/2000

LCC-4 – CAT G3516TA - Start date 2/14/2008, SN 4EK03003, MF Date 2/19/2001

- 2. I've also attached a table of what I believe represents the PTE for the facility based off all the information in the application. Please look at the table and let me know if any is not accurate.
 - a. Some of the emissions tables in the 10/13/16 application update seem to reference equipment at Tap-5 CS, so let me know if anything in the table is not correct. The emissions are correct; the EPN should have LCC instead of T5. I included LCC-2 compressor because I did not know when it was going to be moved off site, but that has already occurred since the application submittal.
 - b. Please send the PTE of greenhouse gases for the emission units at the facility (see table). See attached table. I highlighted in red the emissions from the two engines that are no longer on location and removed them from the total emissions.
- Note that I am NOT including the PTE or equipment for the LCU 2-6GX Wellsite at this time. Based on the information XTO included in the February 2011 application update, I'm wondering if this wellsite should be excluded based on the revised definition of a major source in 71.2. The recent rulemaking can be viewed

here: <u>https://yosemite.epa.gov/opei/RuleGate.nsf/byRIN/2060-AS06</u>. Please indicate in your response if the LCU 2-6GX Wellsite has "shared" equipment with the Little Canyon Unit CS and meets the definition of major source in 71.2 and should be included in the permit.

Oil and Gas Extraction, pollutant emitting activities shall be considered adjacent if they are located on the same surface site; or if they are located on surface sites that are located within 1/4 mile of one another (measured from the center of the equipment on the surface site) and they share equipment. Shared equipment includes, but is not limited to, produced fluids storage tanks, phase separators, natural gas dehydrators or emissions control devices. Surface site, as used in the introductory text of this definition, has the same meaning as in 40 CFR 63.761.

Looking at the rule above I would say yes as a conservative guess. The facilities do not share any equipment. Gas processed from the well pad location is sent to the compressor station where the gas is compressed, dehydrated, and sold. The LCU compressor station can run without the LCU 2-6GX well pad running, but the LCU 2-6GX cannot run without the compressor station operating as it would have nowhere to send the gas. How would the EPA interpret this. I would hate to go one way or the other and be incorrect.

Thanks,

Eric

FRIP

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8 1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: <u>wortman.eric@epa.gov</u>

Little									Total		CH₄*	N_2O*	
Canyon PTE	ID	Emissions Units	NO _X *	CO*	VOC*	PM*	SO ₂ *	CH ₂ O*	HAPs*	CO ₂ *	(as _ <u>COr</u> e)	(as <u>CO2c)</u>	CO ₂ e*
	LCC-1	Cat. 3516	25.9	29.9	12.9	0.5	0.0	2.9	2.8	5900.3	2.8	3.3	5906.4
[LCC-2	Cat. 3516	25.9	29.9	12.9	0.5	0.0	2.9	2.8	5900.3	2.8	3.3	5906.4
[LCC-3	Cat. 3512	15.6	18.1	7.8	0.3	0.0	1.7	1.7	3707.3	1.7	2.1	3711.
Emission Units	LCC-4	Cat. 3516	25.9	29.9	12.9	0.5	0.0	2.9	2.8	5900.3	2.8	3.3	5906.
	LCD-1 & LCTO-1	Deby w/Thermal Oxidizer	2.1	2.9	5.3	0.3	0.0	0.0	3.0	4170.6	8.1	2.3	4181.
R I	LCT-1	Tank I	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0
ssi	LCT-2	Tank 2	0.0	0.0	1.8	0.0	0.0	0.0	0.2	0.0	28.0	0.0	28.0
E I	LCF-1	Fugitives	0.0	0.0	3.9	0.0	0.0	0.0	0.1	0.0	593.2	0.0	593.2
		Capstone 30 kW Microturbine						· · · · ·					
	LCG-1	Genset	0.1	1.7	0.0	0.0	0.0	0.0	0.0	394.S	0.2	0.2	394.
	-	Condensate Truck Loading	0.0	0.0	2.0	0.0	0.0	0.0	0.1	0.0	57.2	0.0	\$7.2
	-	0.550 MMBtu/hr* Glycol Dehydrator Reboiler	0.3	0.2	0.0	0.0	0.0	0.0	0.0	281.8	0.1	0.2	282.
	-	0.500 MMBtu/hr* Tank Heater #1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	256.2	0.1	0.1	256.
Units		0.500 MMBtu/hr* Tank Heater #2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	256.2	0.1	0.1	256.
ssion	-	0.250 MMBtu/hr* natural gas- fired separator heater	0.1	0.1	0.0	0.0	0.0	0.0	0.0	128.1	0.1	0.1	128.
Insignificant Emission Units	-	2 MMBtu/hr* heater for Thermal Oxidizer	1.0	0.8	0.1	0.1	0.0	0.0	0.0	inc	luded in L(D-1 & LCT	0-1
fice	-	Pipeline Pigging Operations	0.0	0.0	< 0.1	0.0	0.0	0.0	0.0	0.0	4.1	0.0	4.1
Insigni	-	Compressor Blowdown Emissions	0.0	0.0	3.0	0.0	0.0	0.0	0.1	0.0	661.3	0.0	661.
Faci	lity-Wide PT	E (federally enforceable)	45.3	53.9	38.6	1.2	0.0	4.6	8.2	15094.9	1384.9	8.5	1648

· . . - •

Wortman, Eric

From:Wortman, EricSent:Friday, November 18, 2016 10:10 AMTo:'dustin_simpson@xtoenergy.com'Subject:RE: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Hi Dustin,

Also looking for confirmation on the rating for the Capstone Generator at the site. Is it 30kW or 65 kW?

Thanks,

Eric

From: Wortman, Eric
Sent: Wednesday, November 16, 2016 3:28 PM
To: 'dustin_simpson@xtoenergy.com' <dustin_simpson@xtoenergy.com>
Subject: Part 71 Permit for Little Canyon Unit CS - Draft Permit #V-UO-000016-2006.00

Dustin,

As we discussed on the phone, I'm the permit engineer for the pending Part 71 permit application for the Little Canyon Unit CS on the U&O Reservation. I've started reviewing the permit file and have a questions. Please take a look and send me your response by **December 2nd**.

- 1. I've attached a MS Word file with a draft emissions unit table for the facility. Please take a look and check that everything is accurate. Here are few specific questions I have regarding emission units at the facility.
 - a. Please confirm the dehydration unit throughput is 25 MMscfd. Some of the backup spreadsheets provided listed it as 40 MMscfd but I believe it should be 25.
 - b. Is LCC-1 still at the facility or are there only 3 compressor engines? There are some discrepancies in the application updates over the years as to which unit ID goes with what engine. Please verify the make/model/serial number/installation date for <u>each</u> engine at the facility. I also need the manufacture dates for LCC-1 and LCC-3 (but verify dates for all engines) for JJJJ applicability or you may state they were all manufactured prior to the JJJJ applicability dates (actual dates are preferred).
- 2. I've also attached a table of what I believe represents the PTE for the facility based off all the information in the application. Please look at the table and let me know if any is not accurate.
 - a. Some of the emissions tables in the 10/13/16 application update seem to reference equipment at Tap-5 CS, so let me know if anything in the table is not correct.
 - b. Please send the PTE of greenhouse gases for the emission units at the facility (see table)
- 3. Note that I am NOT including the PTE or equipment for the LCU 2-6GX Wellsite <u>at this time</u>. Based on the information XTO included in the February 2011 application update, I'm wondering it this wellsite should be excluded based on the revised definition of a major source in 71.2. The recent rulemaking can be viewed here: <u>https://yosemite.epa.gov/opei/RuleGate.nsf/byRIN/2060-AS06</u>. Please indicate in your response if the LCU 2-6GX Wellsite has "shared" equipment with the Little Canyon Unit CS and meets the definition of major source in 71.2 and should be included in the permit.

Thanks,

Eric

Eric Wortman | Environmental Scientist U.S. Environmental Protection Agency – Region 8 1595 Wynkoop Street (8P-AR), Denver, Colorado 80202 Telephone: (303) 312-6649 Email: <u>wortman.eric@epa.gov</u>

Wortman, Eric

From: Sent: To: Cc: Subject: Smith, Claudia Wednesday, October 19, 2016 11:09 AM Simpson, Dustin Wortman, Eric; Okubo, Noreen RE: Little Canyon Unit

Dustin,

If the change results in an emissions decrease and you already submitted an amendment to the Part 71 application to reflect the change, you should be good to go to make the replacement.

If you have any further questions, please contact Eric Wortman, who is assigned to this permit action. Eric is copied on this email or can be reached at 303-312-6649.

Thanks,

Claudia

From: Simpson, Dustin [mailto:Dustin_Simpson@xtoenergy.com] Sent: Tuesday, October 18, 2016 2:22 PM To: Smith, Claudia <Smith.Claudia@epa.gov> Subject: FW: Little Canyon Unit

Claudia,

XTO Energy Inc. (XTO) is currently operating the Little Canyon Unit Compressor Station in Uintah County on tribal lands. This facility originally operated under the consent decree prior to the expiration. XTO submitted a permit application for a Part 71 permit in 2009 for the facility, but has yet to receive an actual permit. We are looking at removing one of the compressor engines on site and replacing it with a smaller engine that will equate to an overall reduction of emissions at the facility. We recently filed an amendment to the application to account for the change to a smaller engine. XTO would like confirmation that this is the correct action to take prior to starting the smaller engine up at location. If you have any questions with regards to this e-mail, please contact me at dustin simpson@xtoenergy.com or by phone at 817-885-2845.

Thanks.

Dustin Simpson

XTO ENERGY INC., an ExxonMobil subsidiary Dustin Simpson | 810 Houston Street PTR4 | Fort Worth, TX 76102 | ph: 817.885.2845 | fax: 817.885.1847 | dustin simpson@xtoenergy.com

The information in this transmission is confidential and may also contain privileged attorney-client information or work product. The information is intended for the use of the individual or entity to whom it is addressed. If you are not the intended recipient, your are notified any use, dissemination, distribution, or copying of this

communication is strictly prohibited. If you received this communication in error, please notify us immediately by e-mail or by telephone.

XTO Energy Inc. 810 Houston Street Fort Worth, TX 76102-6298 (817) 870-2800 (817) 870-1671 Fax

October 5, 2016

Update to LCC-2 and LCC-3 Engines Little Canyon Unit Compressor Station Uintah County, UT

Certified Mail Receipt Number: 7009 0820 00002 1746 0655

Air Program – US EPA Region 8 Part 71 – Permitting Monitoring, Modeling Unit 1595 Wynkoop St. (8P-AR) Denver, CO 80202-1129

10-000016

To Whom It May Concern:

XTO Energy Inc. is submitting this update to the Title V application for the Little Canyon Unit Compressor Station includes changes to 2 engines located at the Little Canyon Unit Compressor Station.

- LCU Compressor #2 (LCC-2) Caterpillar 3516LE, S/N: 4EK04246 will be idled in place once (LCC-3) compressor is operational. This engine is still included in the facility calculations since it will still be on location even though it will not be operational.
- LCU Compressor #3 (LCC-3) Caterpillar 3512 TALE, S/N: JNJ00735 is being added to this location. This is actually a step down from the previously application which included a CAT 3516LE as TBD.

Included in the application update is a CTAC form, an emission unit description for fuel combustion sources (LCC-3), facility process flow diagrams, federal regulations determinations, facility map, up to date emission calculations, and supporting documentation. The LCC-3 unit's calculations are highlighted in yellow.

If you have any further questions about this updated application, please contact me at <u>dustin_simpson@xtoenergy.com</u> or 817-885-2845.

Sincerely,

Dustin Simpson Environmental Advisor XTO Energy Inc.

Certified Mail Receipt Number: 7009 0820 00002 1746 0662

Cc: Ms. Alexis North U.S. EPA Region 8 – Enforcement Division 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202-1129

OMB No. 2060-0336, Approval Expires 05/31/2019

Federal Operating Permit Program (40 CFR Part 71) CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official
Name: (Last) _Hermann (First) _Timothy (MI)
TitleManager Mid Streams Operations, XTO MSO Western Division
Street or P.O. Box810 Houston Street
CityFort Worth StateTX ZIP _761026298
Telephone (817) 885 - 2584 Ext Facsimile ()
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official)
responsible official) I certify under penalty of law, based on information and belief formed after reasonable inquiry, the statements and information contained in these documents are true, accurate and complete.
responsible official) I certify under penalty of law, based on information and belief formed after reasonable inquiry, the statements and information contained in these documents are true, accurate

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information

Emissions unit ID _LCC-2	Description CAT 3512 TALE Engine

SIC Code (4-digit) __1311____ SCC Code __311000203____

B. Emissions Unit Description

Primary useNatural Gas Compression Temporary SourceYes _XNo
ManufacturerCaterpillar Model No3512 TALE
Serial Number7NJ00735 Installation Date_09_/_20_/_2016
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural Gas Compressor Engine
Boiler horsepower rating810 hp Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry
Actual Heat Input7.24MM BTU/hr Max. Design Heat Input7.24MM BTU/hr

C. Fuel Data

Primary fuel type(s)____Natural Gas_____ Standby fuel type(s)_____

Describe each fuel you expected to use during the term of the permit.

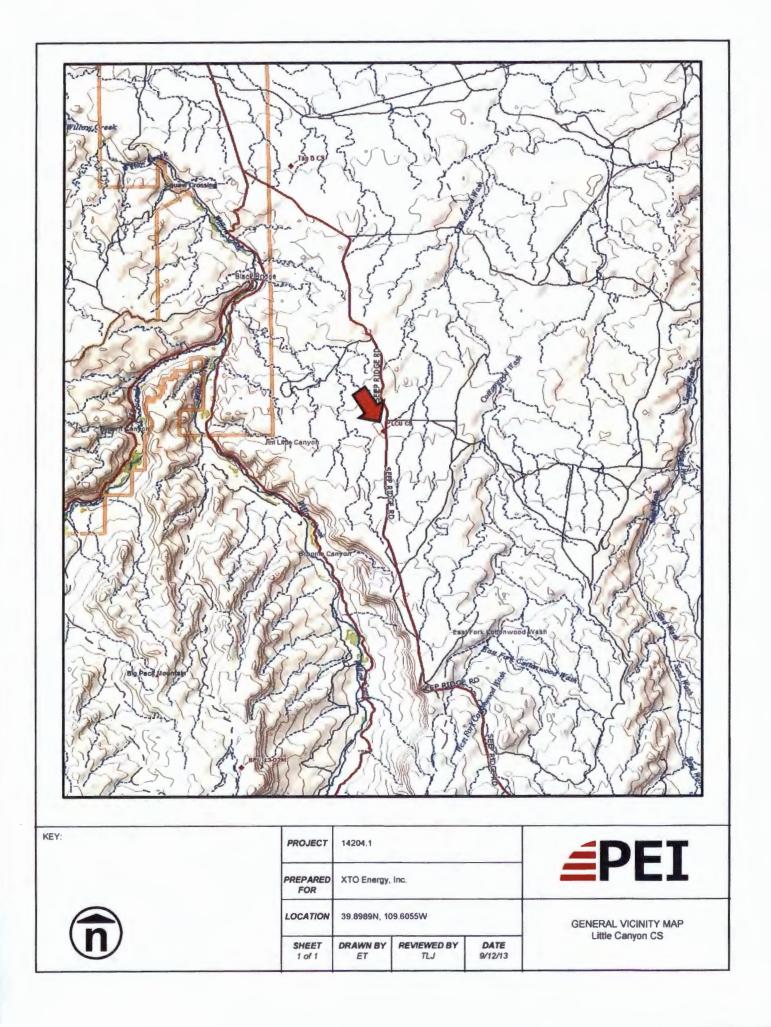
Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1110.9 btu/cf

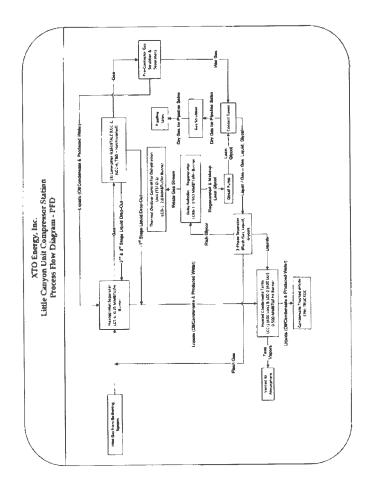
2

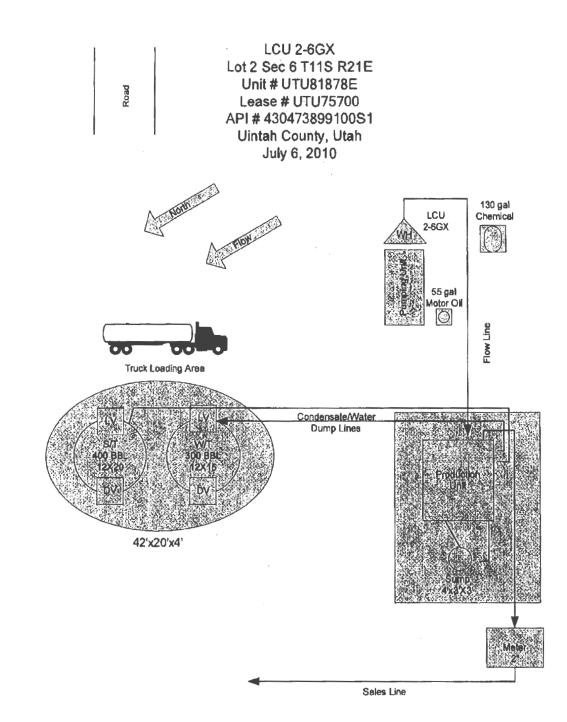
D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage			
	Usage	Hourly	Annual		
Natural Gas	57.057 MMSCF	6.51 MSCF/hr	57.067 MMSCF		

E. Associated Air Pollution Control Equipment


Emissions unit ID_LCC-3 Device typeOxidation Catalyst
Air pollutant(s) Controlled_VOC,HCHO and CO_ ManufacturerEmeraChem
Model No.EC-OX-PX-RO-2350-0000-3500 Serial NoN/A
Installation date_07/01/2013 Control efficiency (%) 94.1% CO, 71.3% VOC, 86.6% HCHO
Efficiency estimation methodManufacturer Specifications


F. Ambient Impact Assessment


This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp (°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

.

The site facility plan is located at XTO Energy Inc. 978 N. Crescent RD. Roosevelt, Utah 84066 Office hours are 7:00 to 4:00 PM Mon-Fri

General sealing of valves Production Phase: Oil tank drain valve is sealed closed. Oil tank load valve is sealed closed. Sales Phase: Oil tank drain valve is sealed closed. Oil tank load valve is sealed closed. Drain Phase: Oil tank drain valve is open. Oil tank loed valve is sealed closed

XTO Energy, Inc.

LCU Compressor Station

Federal Rule Applicability Determinations

	Federal Regulations						
NATIONAL EM	IISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP): MACT STANDARDS						
40 CFR 63 Subpart HH	The LCU Compressor Station (TEG dehydration unit uncontrolled) is a major source for HAP emissions because Individual HAPS are more than 10 TPY & Total Combined HAPs are more than 25 TPY. A reduction of 95 percent is required by Subpart HH; therefore this reduced is federally enforceable and reduces the Potential-to-Emit (PTE).						
41 CFR 63 Subpart HIHH	The LCU Compressor Station is not a natrual gas transmission and storage facility.						
40 CFR 63 Subpart EEEE	Per 40 CFR 63.2334(c), Organic liquid distribution operations do not include the activities and equipment, including product loading racks, used to process, store, or transfer organic liquids at oil and natural gas production field facilities.						
40 CFR 63 Subpart ZZZZ	The LCU Compressor Station does have Reciprocating Engines, therefore this regulation is applicable. XTO will comply with the required Subpart ZZZZ applicable designations.						
	NEW SOURCE PREFORMANCE STANDARDS (NSPS)						
40 CFR 60 Subpart Ka/Kb	The storage tanks at the LCU Compressor Station are below the 40,000 gallon applicablity threshold limit.						
40 CFR 60 Subpart KKK	The LCU Compressor Station is not subject to VOC leak detection since the product recovered is stabilized condensate.						
40 CFR 60 Subpart LLL	The LCU Compressor Station's design capacity is less than 2 LT/D of H2S in the acid gas stream (Expressed as Sulfur), thus only required to comply with 40 CFR Subpart 60.647.						
40 CFR 60 Subpart JJJJ	The LCU Compressor Station does not have any Reciprocating Engines constructed, modified, or reconstructed after the applicability dates specified in Subpart JJJJ; therefore this regulation is not applicable.						
40 CFR 60 Subpart IIII	Since the LCU Compressor Station does not have any Diesel Engines, this regulation is not applicable.						
40 CFR 60 Subpart GG or KKKK	Since the LCU Compressor Station does not have any Turbines greater than 10 MMBTU/HR , these regulations are not applicable.						
40 CFR 60 Subpart OOOO	Since the LCU Compressor Station was constructed prior to August 23, 2011, this regulation is not applicable.						
	COMPLIANCE ASSURANCE MONITORING (CAM) RULE						
40 CFR 64	The CAM Rule requires monitoring for certain emission units at major sources. Though the glycol dehydrator has uncontrolled emissions greater than the HAP major source threshold, the CAM rule does not apply to sources subject to Sections 111 (NSPS) or 112 (NESHAP) of the Clean Air Act (CAA). Therefore, the provisions of the CAM rule do not apply.						

XTO Energy, Inc.

Little Canyon Unit Compressor Station

Facility Emission Summary - Potential to Emit (PTE)

<u></u>	Emi	ssions Summ	ary Table - A	All Sources P	TE			
Source / Unit Desciption	Emission Point	Emission Unit	NOx	СО	Total VOC (Includes Total HAPs)	SO ₂	PM _{10 & 25}	HAPs
Caterpillar G3512 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-3	LCC-3	15.6	18.1	7.8	0.0	0.3	1.7
Caterpillar G3516 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-2	LCC-2	25.9	29.9	12.9	0.0	0.5	2.8
Caterpillar G3516 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-4	LCC-4	25.9	29.9	12.9	0.0	0.5	2.8
Fugitive Emissions	LCF-1	LCF-1	-	-	3.9	-	-	0.1
40 MMSCFD Glycol Dehydrator (controlled by thermal oxidizer)	LCD-1	LCD-1	-	-	-	-	-	-
Thermal Oxidizer Emissions ¹	LCTO-1	LCTO-1	2.1	2.9	5.3	0.0	0.3	3.0
LCU 2-6GX Wellsite	LCU 2-6GX	LCU 2-6GX	2.9	1.5	20.5	0.0	0.0	6.4
Condensate Storage Tank: 400 bbls	LCT-1	LCT-1	-	-	1.8	-	-	0.2
Condensate Storage Tank: 400 bbls	LCT-2	LCT-2	-	-	1.8	-	-	0.2
Fruck Loading: Oil/Condensate	TRUCKOC	TRUCKOC	-	-	2.0	-	-	0.1
Heaters	See Heater Table	LCHTR	1.6	1.4	0.1	0.0	0.1	0.0
Pigging Emissions	LCP-1	LCP-1	-	-	0.0	-	-	0.0
MSS - Compressor Engine Blowdowns	ENGINEBD	ENGINEBD	-	-	3.0	-	-	0.1
Genset Capstone C65NG	LCG-1	LCG-1	0.1	1.7	0.0	0.0	0.0	0.0
			NOx	со	Total VOC (Includes Total HAPs)	SO ₂	PM _{10 & 2.5}	HAPs
TOTAL EMISSIONS (TPY)		F	74.2	85.3	(Includes Total HAPs)	0.1	1.8	17.6

XTO Energy, Inc.

Little Canyon Unit Compressor Station

Facility Emission Summary - Uncontrolled

Emissions Summary Table - All Sources Uncontrolled								
Source / Unit Desciption	Emission Point	Emission Unit ID	NOx	со	Total VOC (Includes Total HAPs)	SO ₂	PM10 & 2.5	HAPs
Caterpillar G3512 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-3	LCC-3	15.6	18.1	7.8	0.0	0.3	1.7
Caterpillar G3516 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-2	LCC-2	25.9	29.9	12.9	0.0	0.5	2.8
Caterpillar G3516 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-4	LCC-4	25.9	29.9	12.9	0.0	0.5	2.8
Fugitive Emissions	LCF-1	LCF-1		-	3.9	-	-	0.1
40 MMSCFD Glycol Dehydrator (controlled by thermal oxidizer)	T5D-1	T5D-1	-	-	131.4	-	-	61.3
Thermal Oxidizer Emissions	T5TO-1	T5TO-1	2.1	2.9	0.3	0.0	0.3	0.0
RBU 11-02F Wellsite	RBU 11-02F	RBU 11-02F	2.9	1.5	20.5	0.0	0.0	6.4
Condensate Storage Tank: 400 bbls	LCT-1	LCT-1	-	-	1.8	-	-	0.2
Condensate Storage Tank: 400 bbls	LCT-2	LCT-2		-	1.8	-	-	0.2
Truck Loading: Oil/Condensate	TRUCKOC	TRUCKOC	-	-	2.0	-		0.1
Heaters	See Heater Table	LCHTR	1.6	1.4	0.1	0.0	0.1	0.0
Pigging Emissions	T5P-1	T5P-1	-	-	0.0	-	-	0.0
MSS - Compressor Engine Blowdowns	ENGINEBD	ENGINEBD	-	-	3.0	-	-	0.1
Genset Capstone C65NG	LCG-1	LCG-1	0.1	1.7	0.0	0.0	0.0	0.0
					Total VOC			
TOTAL EMISSIONS (TPY)			NOx	CO	(Includes Total HAPs)	SO ₂	PM _{10 & 2.5}	HAPs
			74.2	85.3	198.6	0.1	1.8	76.0

emit.

.

Little Canyon Unit Compressor Station

		AIR CONTAMINANT DATA			
	EMI	SSION POINT	COMPONENT OR AIR		AMINANT ON RATE
EMISSION POINT	EMISSION UNIT ID	SOURCE/UNIT DESCRIPTION	CONTAMINANT NAME	LBS/HR	TONS/YR
LCT-1	LCT-1	Condensate Storage Tank: 400 bbls	VOC (Includes HAPs)	0.4	1.8
LC1-1	LCI-I	Condensate Storage Talik. 400 0015	HAPs	0.0	0.2
LCT-2	LCT-2	Condensate Storage Tank: 400 bbls	VOC (Includes HAPs)	0.4	1.8
LC1-2		Contendute Storage Talax 100 0010	HAPs	0.0	0.2
TRUCKOC	TRUCKOC	Truck Loading: Oil/Condensate	VOC (Includes HAPs)	33.2	2.0
IRUCROC	INDEROE	Truck Loading. On/ Condensate	HAPs	0.0	0.1
LCF-1	LCF-1	Fugitive Emissions	VOC (Includes HAPs)	1.3	3.9
LCI-1	LCI-I	I UBLIVE LINSSICIS	HAPs	0.0	0.1
			NOx	0.4	1.6
			СО	0.3	1.4
See Heater Table	LCHTR	Reboiler & Heater Emissions Summary	'∛OC (Includes HAPs)	0.0	0.1
See Heater Table	Lemk	Reconer & Freater Enussions Summary	PM _{10 & 2.5}	0.0	0.1
			SO ₂	0.0	0.0
			HAPs	0.0	0.0
LCD-1	LCD-1	Dehydration Still Column (Emissions shown here are illustrative only as vapors are routed to	VOC (Includes HAPs)	8.4	36.7
	LEDI	T5TO-1.)	HAPs	1.0	4.2

.

Little Canyon Unit Compressor Station

		AIR CONTAMINANT DATA			
	EMIS	SSION POINT	COMPONENT OR AIR		CAMINANT ON RATE
EMISSION POINT	EMISSION UNIT ID	SOURCE/UNIT DESCRIPTION	CONTAMINANT NAME	LBS/HR	TONS/YR
			NOx	0.5	2.1
			СО	0.7	2.9
LCTO-1	LCTO-1	Thermal Oxidizer Emissions Summary	VOC (Includes HAPs)	1.2	5.3
			PM _{10 & 2.5}	0.1	0.3
			SO ₂	0.0	0.0
			HAPs	0.7	3.0
LCP-1	LCP-1	Pigging Emissions	VOC (Includes HAPs)	1.3	0.0
		I IEEMIG EIMUSIONS	HAPs	0.0	0.0
ENGINEBD	ENGINEBD	Maintenance, Startup, Shutdown (MSS): Engine	VOC (Includes HAPs)	12.1	3.0
ENGINEDE	ENGINEED	Blowdowns	HAPs	0.2	0.1
			NOx	3.6	15.6
			СО	4.1	18.1
LCC-3	LCC-3	Caterpillar G3512 TALE Compressor Engine	VOC (Includes HCHO)	1.8	7.8
		(Controlled by Oxidation Catalyst)	PM _{10 & 2.5}	0.1	0.3
			SO ₂	0.0	0.0
			НСНО	0.4	1.7

Little Canyon Unit Compressor Station

		AIR CONTAMINANT DATA			
	EMIS	SSION POINT	COMPONENT OR AIR		AMINANT ON RATE
EMISSION POINT	EMISSION UNIT ID	SOURCE / UNIT DESCRIPTION	CONTAMINANT NAME	LBS/HR	TONS/YR
			NOx	5.9	25.9
			СО	6.8	29.9
LCC-2	LCC-2	Caterpillar G3516 TALE Compressor Engine	VOC (Includes HCHO)	3.0	12.9
LCC-2		(Controlled by Oxidation Catalyst)	PM _{10 & 2.5}	0.1	0.5
			SO ₂	0.0	0.0
			НСНО	0.6	2.8
			NOx	5.9	25.9
			СО	6.8	29.9
LCC-4	LCC-4	Caterpillar G3516 TALE Compressor Engine	VOC (Includes HCHO)	3.0	12.9
LCCA	Leca	(Controlled by Oxidation Catalyst)	PM _{10 & 2.5}	0.1	0.5
			SO ₂	0.0	0.0
			НСНО	0.6	2.8
			NOx	0.0	0.1
			СО	0.4	1.7
LCG-1	LCG-1	Genset Capstone C65NG	VOC (Includes HCHO)	0.0	0.0
LCO-1	100-1	Gener capsione costro	PM _{10 & 2.5}	0.0	0.0
			SO ₂	0.0	0.0
			НСНО	0.0	0.0

Little Canyon Unit Compressor Station

		AIR CONTAMINANT DATA			
	EMIS	SSION POINT	COMPONENT OR AIR		AMINANT ON RATE
EMISSION POINT	EMISSION UNIT ID	SOURCE/UNIT DESCRIPTION	CONTAMINANT NAME	LBS/HR	TONS/YR
			NOx	0.7	2.9
			СО	0.3	1.5
RBU 11-02F	RBU 11-02F	RBU 11-02F Combined Emission Summary	voc (Includes HAPs)	37.7	20.5
KDU 11-021	KDU 11-021	KDO 11-021 COMDINED EMUSSION SUMMARY	PM _{10 & 2.5}	0.0	0.0
			SO ₂	0.0	0.0
			HAPs	3.7	6.4

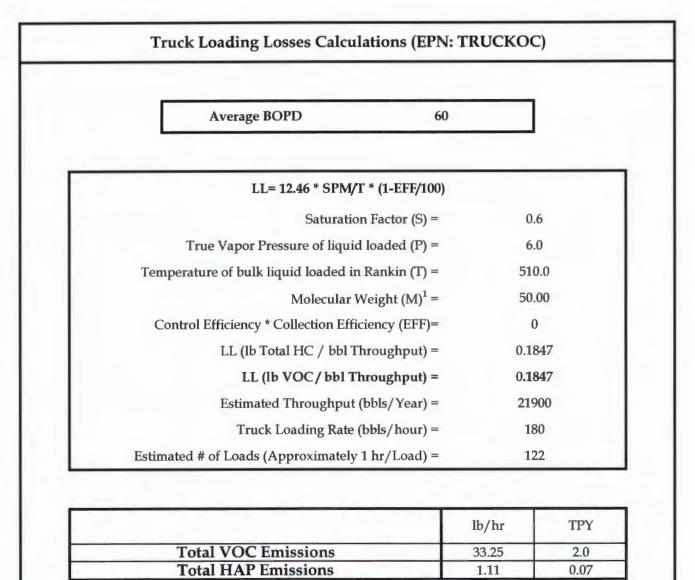
XTO Energy, Inc. Little Canyon Unit Compressor Station Compressor Engine and Generators

	_									_	Criteria and	d Regulated	Pollutants	_											
							[ata (See Note e, BLM, and / g/h			AP-42		_		1	byhr			_			197		
Source / Unit Description	Emission Unit ID	Yearly Operating Hours	Rated HP	Heating Value Btu/scf	Fuel Consumption MMbtu/hp-hr	Heat Rating MMbtu/hr	Puel Usage MMact/yr	NOx	coi	VOCt	нсно	60,	PMIDALD	NOx	00	VOC*	нсно	80,	PMMAID	NOx	co	VOC*	нсно	80,	PMusa
Caterpillar G3512 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-3	8760	810	1110.9	0.0009733	7.24	57.06	2.00	2.00	1.00	0.22	0.000588	0.00991	3.57	3.57	1.79	0.39	0.00	0.07	15.64	15.64	7.82	1.72	0.02	0.31
Cataspillas G3516 TALF Compressor Engine (Controlled by Oxidation Catalyst)	LCC-2	8760	1340	1110.9	0.008594	11.52	90.81	2.00	2.00	1.00	0.22	0.000588	0.00991	5.91	5.91	2.95	0.65	0.01	0.11	25.88	25.88	12.94	2.85	0.03	0.50
Catarphilar G3816 TALE Compressor Engine (Controlled by Oxidation Catalyst)	LCC-4	8760	1340	1110.9	0.008594	11.52	90.81	2.00	2.00	1.00	0.22	0.000566	0.00991	5.91	5.91	2.95	0.65	0.01	0.11	25.88	25.88	12.94	2.85	0.03	0.50
Genant Capatone Cil/ING	LCG-1	8760	87	1110.9	0.0088	0.77	6.04	0.16	2.04	0.03	0.04	0.000588	0.00991	0.03	0.39	0.01	0.01	0.00	0.01	0.13	1.71	0.03	0.03	0.00	0.03
TE 1: NO _X limit is based on Consent De TE 2: VOC emissions are based on HCI								icture specific	itions). Additio	nally, this most	NSPS JJJJ VOC	limits as required	.							NOx	C0	voc	нсно	90 ₁	THus
TE 3: Engine break-in/ maintenance pe	iod anumed t	o he 200 hours	/ angine.	Emission Date	is represented as w	vest case emissi	on opec from the	engine. See 1	Note 2 for VOC	and HCHO est	insions.					Total Emissions	Per Polletani (T	20		67.53	69.11	33.72	7.48	6.05	1.38

XTO Energy, Inc. Little Canyon Unit Compressor Station Compressor Engine and Generators

										(Criteria an	d Regulated I	ollutants												
												0													
							[2 Factors					ib	yħr						ру		
Source / Unit Description	Emission Unit ID	Yearly Operating Hours	Rated HP	Heating Value Btu/scf		Heat Rating MMbtu/hr		Benzene	Toluene	B-Benzene	Xylene	Acetaldehyde	Acrolein	Benzene	Toluene	E-Benzene	Xylene	Acetaldehyde	Acrolein	Benzene	Toluene	E-Benzene	Xylene	Acetaldehyde	Acrole
aterpillar G3512 TATE Compressor Engine (Controlled by Oxidation Catalyst)	ECC-3	8760	810	1110.90	0.008933	7.24	57.06	4.40E-04	4.08E-04	3.97E-05	1.84E-04	8.36E-03	5.14E-03	0.003	0.003	0.000	0.001	0.060	0.037	0.014	0.013	0.001	0,006	0.265	0.163
aterpillar G3516-LALE Compressor Engine (Controlled by Oxidation Catalyst)	1.00-2	8760	1340	1110.90	0.008594	11.52	90.81	4.40E-04	4.081-04	3.97E-05	1.84E-04	8.36E-03	5.14E-03	0.005	0.005	0.000	0.002	0.096	0.059	0.022	0.021	0.002	0.009	0.422	0.25
aterpillar G3516 TALL Compressor Engine (Controlled by Oxidation Catalyst)	LCC-4	8760	1340	1110.90	0.008594	11.52	90.81	4.40E-04	4.08E-04	3.97E-05	1.84E-04	8.36E-03	5.14E-03	0.005	0.005	0.000	0.002	0.0%	0.059	0.022	0.021	0.002	0.009	0.422	0.25
Gennet Capitone C65NG	LCG-1	8760	87	1110.90	0.008800	0.77	6.04	4.40E-04	4.08E-04	3.97E-05	1.84E-04	8.36E-03	5.14E-03	0.000	0.000	0.000	0.000	0.006	0.004	0.001	0.001	0.000	0.001	0.028	0.017
															т	otal Emissions I	'er Pollutant ((TPY)		Benzene	Toluene	E-Benzene	Xylene	Acetaldehyde	Acrol
																				0.06	0.06	0.01	0.03	1.14	0.7

XTO Energy, Inc. Little Canyon Unit Compressor Station Compressor Engine and Generators


												gulated Pollu													
										Crit	eria and Re	guiateu i ono	itants												
								Emissio	n Data - Manu	ifacturer Speci	if ications ¹	AP-42 F					b/hr						ру		
Source / Unit Description	Emission Unit ID	Yearly Operating Hours	Rated HP	Heating Value Btu/scf	Fuel Consumption MMbtw/hp-hr ¹	Heat Rating MMbtu/hr	Fuel Usage MMscf/yr	NO ₁	со	voc	нсно	SO ₂	PM10 & 2.5	NOx	со	VOC*	нсно	SO ₂	PM10 & 2.5	NOx	со	VOC+	нсно	\$O ₂	PM10 & 2.
Caterpillar G3512 TALE Compressor Engine (Controlled by Oxidation Catalyst)	J.C3	8760	810	1110 9	0.008933	7.23573	57.05733621	2.00	2.31	1.00	0.22	0.000588	0.00991	3.57	4.13	1,74	0.39	0.00	0.07	15.64	18.07	7.82	1.72	0.02	0.31
Caterpillar G3516 TALE Compressor Engine (Uncontrolled)	LC-2	8760	1340	1110.9	0.008594	11.52	90.81	2.00	2.31	1.00	0.22	0.000588	0.00991	5.9]	6.82	2.95	0.65	0.01	0.11	25.8 8	29.89	12.44	2.85	0.03	0.50
Caterpillar G3516 TALE Compressor Engine (Uncontrolled)	1.004	8760	1.340	1110.9	0.008594	11.52	90.81	2.00	2.31	1.00	0.22	0.000588	0.00991	5.91	6.82	2.95	0.65	0.01	0.11	25.88	29.89	12.94	2.85	0.0.3	0.50
Gensel Capsione C65NG	ECG-1	8760	87	1110.9	0.0088	0.77	6.04	0.16	2.04	0.03	0.04	0.000588	0.00991	0.03	0.39	0.01	0.01	0.00	0.01	0.13	1.71	0.03	0.03	0.00	0.03
NOTE 1: Fuel Consumption and Emissions	s Data are bass	ed on manulas	turer spec	CILL ALIONS WORM								us Pollutants				Total Emissions	Per Pollutant (1	Πh)		NOx 67.53	CO 79,50	VOC 33.72	НСНО 7.45	SO ₂ 0.08	PM10 4 1
NOTE 1: Fuel Consumption and Emissions	5 Data are base	ed on manufax	turer spec	CIR AUONS WORK							Hazardo					Tota) Emissions	Per Pollutant (1	חי)		<u> </u>	<u> </u>				PM110 4 12
NOTE 1: Fuel Consumption and Emissions	s Data are base	ed on manufax	turer spec	CIR ALIONS WORK				[AP-							Per Pollutant (T	חי)		<u> </u>	<u> </u>	33.72			
NOTE 1: Fuel Consumption and Emissions Source / Unit Description	Emission Unit ID	Yearly Operating Hours	Rated		Feel Consumption		Fuel Usage		Toluene	AP-	Hazardo 42 Factors		Acrolein	Benzene	Toluene			Acetaldehyde	Acrolein	<u> </u>	<u> </u>	33.72	7.45		1.35
	Emission	Yearly Operating	Rated	Heating	Fuel Consumption	Heat Rating	Fuel Usage		Toluene 4.089-04	AP-4	Hazardo 12 Factors MMBtu	us Pollutants		Benzene	1		b/hr		Acrolein 0.037	67.53	79.50	33.72	7.45	0.08	1.35 Acrolei
Source / Unit Description Caterpillur G3512 TALE Compressor Engine	Emission Unit ID	Yearly Operating Hours	Rated	Heating Value Btu/scf 1130.40	Feel Consumption MMBtw/hp-hr ¹	Heat Rating MMbtyhr	Fuel Usage MMacKyr	Benzene		AP-1 lb/ E-Benzene	Hazardo 42 Factors MMBtu Xylene	us Pollutants Acetaldehyde	Acrolein		Toluene	E-Benzene	b/hr Xylene	Acetaldehyde		67.53 Benzene	79.56 Toluene	33.72 E-Benzene	7.45 tpy Xylene	0.08 Acetaldehyde	1.35 Acrole: 0.103
Source / Unit Description Caterpillar G3512 TALE Compressor Engine (Controlled Pocialation Catalyst) Caterpillar G3510 TALE Compressor	Emission Unit ID 1./1 3	Yearly Operating Hours 8760	Rated HP 810	Heating Value Bto/scf 1110.90	Feel Consumption MMBtw/hp-hr ³ 0.008913	Heat Rating MMbhyhr 7 24	Fuel Usage MMscQyr 57.06	Benzene 4.401-(14	4.08F-04	AP-1 1b/ E-Benzene 1.971-05	Hazardo 82 Factors MMBhu Xylene 1.84F-04	us Pollutants Acetaldehyde 8.3et-03	Acrolein 5.14F-03	0.003	Toluene 0.003	E-Benzene	b/hr Xylene 0.001	Acetaldehyde 0.050	0.037	67.53 Benzene 0.014	79.50 Toluene 0.013	33.72 E-Benzene 0.001	7.45 tpy Xylene 0.006	0.08 Acetaldehyde 0.265	1.35 Acrole 0.163 0.254
Source / Unit Description Caterpillar G3512 TALE Compressor Engine (Controlled by Oxiaalian Gatatyst) Caterpillar G3510 TALE Compressor Engine (Uncontrolled) Caterpillar G3510 TALE Compressor	Emission Unit ID 1.003 1.002	Yearly Operating Hours 8760 8760	Rated HP 810	Heating Value Bto/scf 1110.90	Feel Consumption MMBtw/hp-hr ¹ 0.008913 0.008594	Heat Rating MMbhyhr 7 24 11.52	Fuel Usage MMac(/yr 57.06 90.81	Benzene 4.401-04 4.401-04	4.08F-04 4.08F-04	AP- Ib/ E-Benzene 1.97E-05	Hazardo 82 Factors MMBhu Xylene 1.841-04	Acetaldehyde 8.36F-03 8.36F-03	Acrolein 5.14F 03 5.14F 03	0.003	Toluene 0.003 0.005	E-Benzene 0.000	b/hr Xylene 0.001 0.002	Acetaldehyde	0.037	e7.53 Benzene 0.014 0.022	79.50 Toluene 0.013 0.021	33.72 E-Benzene 0.001 0.002	7.45 199 Xylene 0.006 0.009	0.08 Acetaldehyde 0.2n5 0.422	1.35 Acrole 0.163 0.259
Source / Unit Description Caterpillar G3512 TALE Compressor Engine (Controlled by Oxidation Catalyst) Caterpillar G3516 TALE Compressor Engine (Uncontrolled) Caterpillar G3516 TALE Compressor Engine (Uncontrolled)	Emission Unit ID 1x°C 3 1x°C 2 1x°C 4 1x°C 4 1x°C 4	Yearly Operating Hours 8760 8760 8760 8760	Rated HP 810 1340 87	Heating Value Btu/scf 1110.40 1110.40 1110.40 1110.40	Fuel Consumption MMBtq/hp-hr ³ 0.008/94 0.008/94 0.008/94 0.008/94	Heat Rating MMbhy/hr 7 24 11.52 11.52 0.77	Fuel Usage MMscQyr 57.05 90.81 90.81 5.04	Benzene 4.401-04 4.401-04 4.401-04 4.401-04	4.08F-04 4.08F-04 4.08E-04 4.08E-04	AP-1 lb/ E-Benzene 1.971-05 1.971-05 3.971-05 3.971-05	Hazardo 82 Factors MMBtu Xylene 1.84E-04 1.84E-04 1.84E-04	Acetaldehyde 8.3eE-03 8.3eE-03 8.3eE-03 8.3eE-03	Acrolein 5.14E-03 5.14E-03 5.14E-03 5.14E-03	0.003 0.005 0.005 0.000	Toluene 0.003 0.005 0.000	E-Benzene 0.000 0.000	b/hr Xylene 0.001 0.002 0.002	Acetaldehyde 0.060 0.0% 0.0%	0.017	07.53 Benzene 0.014 0.022 0.022 0.001	78.56 Toluene 0.013 0.021 0.021 0.001	33.72 E-Benzene 0.001 0.002 0.002 0.000	7.45 199 Xylene 0.006 0.009 0.009	0.08 Acetaldehyde 0.205 0.422 0.422 0.422	1.35 Acrolei 0.103 0.259 0.259 0.017
Source / Unit Description Caterpillar G3512 TALE Compressor Engine (Controll-04 y Ordailan Catalysi) Caterpillar G3510 TALE Compressor Engine (Uncontrolled) Caterpillar G3510 TALE Compressor Engine (Uncontrolled) Genet Capatone C68NG	Emission Unit ID 1x°C 3 1x°C 2 1x°C 4 1x°C 4 1x°C 4	Yearly Operating Hours 8760 8760 8760 8760	Rated HP 810 1340 87	Heating Value Btu/scf 1110.40 1110.40 1110.40 1110.40	Fuel Consumption MMBtq/hp-hr ³ 0.008/94 0.008/94 0.008/94 0.008/94	Heat Rating MMbhy/hr 7 24 11.52 11.52 0.77	Fuel Usage MMscQyr 57.05 90.81 90.81 5.04	Benzene 4.401-04 4.401-04 4.401-04 4.401-04	4.08F-04 4.08F-04 4.08E-04 4.08E-04	AP-1 lb/ E-Benzene 1.971-05 1.971-05 3.971-05 3.971-05	Hazardo 82 Factors MMBtu Xylene 1.84E-04 1.84E-04 1.84E-04	Acetaldehyde 8.3eE-03 8.3eE-03 8.3eE-03 8.3eE-03	Acrolein 5.14E-03 5.14E-03 5.14E-03 5.14E-03	0.003 0.005 0.005 0.000	Toluene 0.003 0.005 0.000 0.000	E-Benzene 0.000 0.000 0.000	b/hr Xylene 0.001 0.002 0.002	Acetaldehyde 0.050 0.056 0.056 0.006	0.017	0.014 0.022 0.022	78.56 Toluene 0.013 0.021 0.021	33.72 E-Benzene 0.001 0.002 0.002	7.45 1297 Xylene 0.006 0.009	0.08 Acetaldehyde 0.205 0.422 0.422	0.163 0.259 0.017

XTO Energy, Inc. Little Canyon Unit Compressor Station Oil/Condensate Storage Tanks

Average BOPD	Number of Oil Tanks	Emissions Controlled (Yes/No)	Control Type (Flare, VRU, etc
60	2	No	N/A
3.66	lb/hr tpy	0.09	lb/hr tpy
Uncontrolle 0.84	ed VOC Emissions	Uncontrolled H 0.09	AP Emissions
	сру	0.00	<u></u>
	otal Uncontrolled Emissio	ns - Emission Rates Per T	ank
Uncontroll	ed VOC Emissions	Uncontrolled H	AP Emissions
0.42	lb/hr	0.04	lb/hr
1.83	tpy	0.19	tpy

Little Canyon Unit Compressor Station

Truck Loading Losses - Oil/Condensate

NOTE 1: Molecular Weight is AP-42 Table 7.1-2 using Crude Oil RVP 5. For conservative emissions estimates the loading temperature is assumed to 50°F

Little Canyon Unit Compressor Station

Total Thermal Oxidizer Emissions - All Sources Combined

					1								1	
	Sum Davidia	EPN	N	Ox	0	20		l VOC Fotal HAPs)	s	02	PM,	10 & 2.5	Total	HAPs
	Source Desciption	Ern	lb/hr	ТРҮ	lb/hr	ТРУ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
The	rmal Oxidizer Emissions ¹	LCTO-1	0.49	2.14	0.67	2.94	1.21	5.28	0.000	0.000	0.06	0.27	0.69	3.01

Little Canyon Unit Compressor Station

Dehy Still Column - Emission Summary

Emission Component	Uncontrolled	l Still Column	Controlled S	Still Column
Landoson Component	lb/hr	TPY	lb/hr	TPY
Propane	1.054	4.618	0.053	0.231
H ₂ S	0.000	0.000	0.000	0.000
Iso-Butane	0.539	2.361	0.027	0.118
N-Butane	0.983	4.307	0.049	0.215
Iso-Pentane	0.486	2.130	0.024	0.106
N-Pentane	0.484	2.119	0.024	0.106
Methylcyclopentane	0.000	0.000	0.000	0.000
n-Hexane	0.323	1.413	0.016	0.071
Hexane +	0.405	1.776	0.020	0.089
2,2,4-Trimethylpentane	0.018	0.080	0.001	0.004
Methycyclohexane	0.954	4.177	0.048	0.209
Benzene	2.098	9.189	0.105	0.459
Cyclohexane	0.583	2.555	0.029	0.128
Heptanes	0.654	2.864	0.033	0.143
Toluene	4.087	17.901	0.204	0.895
Ethylbenzene	0.000	0.000	0.000	0.000
Xylenes	7.226	31.649	0.361	1.582
Octanes+	2.851	12.489	0.143	0.624

TOTAL EMISSION SUMMARY	UNCONT	ROLLED	CONTR	OLLED
Emission Component	lb/hr	ТРҮ	lb/hr	ТРҮ
NMNEVOC (Includes TOTAL HAPs)	22.75	99.63	1.14	4.98
TOTAL HAPs	13.73	60.15	0.69	3.01

*Uncontrolled Emissions Based off of Gri-GlyCalc Output

*Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1-TO Eff) * (1-Condenser Eff) *Thermal Oxidizer Reduction = 95%

Still Column Emissions represented above are included in the Thermal Oxidizer Summary Emissions

Little Canyon Unit Compressor Station

Dehy Flash Tank - Emission Summary

	Uncontrolle	d Elash Taali	Controlled	Flash Tank
Emission Component	Uncontrolle	d Flash Tank	Controlled	Flash Lank
*	lb/hr	TPY	lb/hr	TPY
Propane	2.965	12.986	2.965	12.986
H ₂ S	0.000	0.000	0.000	0.000
Iso-Butane	0.980	4.292	0.980	4.292
N-Butane	1.352	5.922	1.352	5.922
Iso-Pentane	0.573	2.508	0.573	2.508
N-Pentane	0.453	1.982	0.453	1.982
Methylcyclopentane	0.000	0.000	0.000	0.000
n-Hexane	0.163	0.712	0.163	0.712
Hexane +	0.271	1.188	0.271	1.188
2,2,4-Trimethylpentane	0.009	0.039	0.009	0.039
Methycyclohexane	0.090	0.396	0.090	0.396
Benzene	0.036	0.156	0.036	0.156
Cyclohexane	0.072	0.315	0.072	0.315
Heptanes	0.156	0.684	0.156	0.684
Foluene	0.043	0.190	0.043	0.190
Ethylbenzene	0.000	0.000	0.000	0.000
Xylenes	0.030	0.131	0.030	0.131
Octanes+	0.058	0.255	0.058	0.255

TOTAL EMISSION SUMMARY	UNCON'	TROLLED	CONTR	ROLLED
Emission Component	lb/hr	ТРҮ	lb/hr	TPY
NMNEVOC (Includes TOTAL HAPs)	7.25	31.76	7.250	31.757
TOTAL HAPs	0.27	1.19	0.272	1.189

*Uncontrolled Emissions Based off of Gri-GlyCalc Output

*Controlled Emissions Were Calculated by the Following: Uncontrolled Emissions * (1- Reduction Eff)

* Closed Loop System - Reduction = 100%

Little Canyon Unit Compressor Station

Thermal Oxidizer - Products of Combustion

		1	AP-4	2 Emissions F	actors						
				lb/MMBTU			lb/hr			tpy	
EPN	Operating Hours	MMBTU/Hr ¹	NOx	со	PM10&25	NOx	СО	PM _{10 & 2.5}	NOx	со	PM _{10 & 2.5}
T5TO-1	8760	8.14	0.0600	0.0824	0.0075	0.488	0.671	0.061	2.139	2.937	0.267

Little Canyon Unit Compressor Station

Thermal Oxidizer - Pilot Gas

		nission Unit ID: LCTO-1)
Pilot Fuel	38400	SCF/Day
Pilot Fuel	1600	SCF/Hour (100% Safety Factor)
Duration	8760	Hours/Year
Vented	No	(Yes/No)
Flared	Yes	(Yes/No)
Heating Value	1110.9	BTU/SCF

Component	Total Quantity Vented from the TO (lb/day)	Total Quantity Emitted from the TO (lb/day)	Hourly Emission Rate (lb/hr)	Annualized Emission Rate (TPY)
Total VOCs	0.000	1.661	0.069	0.303
Total HAPs	0.000	0.034	0.001	0.006
Sulfur Dioxide	0.000	0.000	0.000	0.000
Hydrogen Sulfide	0.000	0.000	0.000	0.000
Propane	0.000	0.853	0.036	0.156
Iso-Butane	0.000	0.229	0.010	0.042
N-Butane	0.000	0.272	0.011	0.050
Iso-Pentane	0.000	0.111	0.005	0.020
N-Pentane	0.000	0.077	0.003	0.014
n-Hexane	0.000	0.023	0.001	0.004
Hexanes	0.000	0.041	0.002	0.007
Benzene	0.000	0.003	0.000	0.001
Cyclohexane	0.000	0.007	0.000	0.001
Heptanes	0.000	0.017	0.001	0.003
Toluene	0.000	0.004	0.000	0.001
Ethylbenzene	0.000	0.000	0.000	0.000
Xylenes	0.000	0.004	0.000	0.001
Octanes	0.000	0.011	0.000	0.002
Nonanes	0.000	0.000	0.000	0.000
Decanes+	0.000	0.000	0.000	0.000

XTO Energy, Inc.	
Little Canyon Unit Compressor Station	
Reboiler & Heater Burner Calculations	

					(Criteria a	and Reg	lated P	ollutants										
							AP-42 Factor	\$											
							Ib/MMSCF					lb/hr					фу		
Source Description	EPN	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	NOx	со	voc	SO ₂	PM _{10 & 2 5}	NOx	со	VOC	SO2	PM _{10 & 25}	NOx	со	voc	SO ₂	PM _{10 & 25}
Condensate Tank Emissions	LCT-1	1110.90	8760	0.250	100	84	5.5	0.6	7.6	0.028	0.024	0.002	0.000	0.002	0.123	0.103	0.007	0.001	0.009
Condensate Tank Emissions	LCT-2	1110.90	8760	0.250	100	84	5.5	06	7.6	0 028	0.024	0 002	0.000	0.002	0.123	0.103	0.007	0.001	0 009
Thermal Oxidizer Heater / Burner	LCD-1	1110 90	8760	2.000	100	84	55	0.6	7.6	0.225	0 189	0.012	0 001	0.017	0.986	0 826	0.054	0.006	0 075
Separator Heater	LCS-1	1110.90	8760	0 250	100	84	5.5	0.6	76	0 028	0.024	0 002	0.000	0.002	0 123	0 103	0 007	0 001	0.009
Dehydrator Reboiler	LCRB-1	1110 90	8760	0.550	100	84	5 5	0.6	76	0.062	0 052	0.003	0 000	0 005	0 271	0.228	0.015	0 002	0 021
*:	Source: AP-42 Table 1.4	-1, 1.4-2, & 1.4-3													NOx	со	VOC	SO2	PM10 # 25
	Burners - 80% Efficiency	,											Tota	il (tpy)	1,63	1.37	0.09	0.01	0.12

хто	Energy,	Inc.
-----	---------	------

Little Canyon Unit Compressor Station

Reboiler & Heater Burner Calculations

					H	Hazardo	us Air Po	ollutants	(HAPs)										_
							AP-42 Factors					lb/hr					фу		
Source Description	Emission Point Source (EPN)	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene	Toluene	N-Hexane	нсно	Diclorobenz	Benzene	Toluene	N-Hexane	нсно	Diclorobenz.	Benzene	Toluene	N-Hexane	нсно	Dicloroberz
Condensate Tank #1 Heater	T5TH-1	1110.9	8760	0.250	0.0021	0.0034	1.8	0 0750	0.0012	0.000001	0.000001	0.000506	0.000021	0.000000	0.000003	0.000004	0.002218	0.000092	0.000001
Condensate Tank #2 Heater	T5TH-2	1110 9	8760	0.250	0.0021	0.0034	1.8	0.0750	0.0012	0.000001	0.000001	0.000506	0.000021	0.000000	0.000003	0.000004	0.002218	0.000092	0.000001
Thermal Oxidizer Heater / Burner	TSTOH-1	1110.9	8760	2.000	0.0021	0 0034	18	0 0750	0 0012	0 000005	0.000008	0 004051	0.000169	0.000003	0.000021	0.000034	0 017742	0 000739	0.000012
Separator Heater	T5SH-1	1110 9	8760	0 250	0 0021	0.0034	1.8	0 0750	0.0012	0.000001	0 000001	0.000506	0 000021	0 000000	0 000003	0 000004	0.002218	0.000092	0 000001
Dehydrator Reboiler	LCR8-1	1110.9	8760	0 550	0.0021	0 0034	18	0 0750	0 0012	0 000001	0.000002	0 001114	0.000046	0.000001	0.00006	0 000009	0 004879	0 000203	0 000003

*Source: AP-42 Table 1.4-1, 1.4-2, & 1.4-3

*Burners - 80% Efficiency

Total Individual HAPS (tpy)	Benzene	Toluene	Hexane	нсно	Diclorobenz
Total individual mar 3 (tpy)	0.00	0.00	0.03	0.00	0.00

Total Combined HAPS (tpy) 0.03

XTO Energy, Inc. Little Canyon Unit Compressor Station Fugitive Emissions

		Estimated				Emis	sions
Component Type	Service	Components Count	Hours	Factors	Total VOC Weight %	lb/year	tons/year
	Gas/Vapor	450	8760	0.00992000	9.22%	3606.1056	1.8031
	Light Oil	100	8760	0.00550000	37.41%	1802.5069	0.9013
Valves	Heavy Oil	0	8760	0.00001900	37.41%	0.0000	0.0000
	Water/Light Oil	50	8760	0.00021600	37.41%	35.3947	0.0177
	Gas/Vapor	6	8760	0.00529000	9.22%	25.6402	0.0128
	Light Oil	3	8760	0.02866000	37.41%	281.7810	0.1409
Pumps	Heavy Oil	0	8760	0.00113000	37.41%	0.0000	0.0000
	Water/Light Oil	3	8760	0.00005300	37.41%	0.5211	0.0003
	Gas/Vapor	1200	8760	0.00086000	9.22%	833.6696	0.4168
171	Light Oil	75	8760	0.00024300	37.41%	59.7285	0.0299
Flanges	Heavy Oil	0	8760	0.0000086	37.41%	0.0000	0.0000
	Water/Light Oil	50	8760	0.00000620	37.41%	1.0160	0.0005
	Gas/Vapor	15	8760	0.00441000	9.22%	53.4373	0.0267
Open-ended	the second se	0	8760	0.00309000	37.41%	0.0000	0.0000
Lines	Heavy Oil	0	8760	0.00030900	37.41%	0.0000	0.0000
	Water/Light Oil	5	8760	0.00055000	37.41%	9.0125	0.0045
	Gas/Vapor	250	8760	0.00044000	9.22%	88.8601	0.0444
<i>c</i>	Light Oil	0	8760	0.00046300	37.41%	0.0000	0.0000
Connectors	Heavy Oil	0	8760	0.00001700	37.41%	0.0000	0.0000
	Water/Light Oil	50	8760	0.00024300	37.41%	39.8190	0.0199
	Gas/Vapor	30	8760	0.01940000	9.22%	470.1509	0.2351
0.1 1	Light Oil	0	8760	0.01650000	37.41%	0.0000	0.0000
Other ¹ :	Heavy Oil	0	8760	0.00006800	37.41%	0.0000	0.0000
	Water/Light Oil	5	8760	0.03090000	37.41%	506.3406	0.2532

	lb/hr	lb/year	TPY
Total VOC Emissions ²	1.34	11720.98	3.91
HAPs ²	0.03	241.76	0.12

NOTE 1: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents NOTE 2: A safety factor of 50% is applied to the VOC and HAPs Fugitive Emissions

Little Canyon Unit Compressor Station

Fuel Gas Analysis (Little Cyn. Pre Dehy - 6/15/2012)

	Conversion of Mole		,	
Component	Mole %	MW	Mole % *MW	Weight %
Carbon Dioxide	0.3477	44.01	0.153	0.008
Nitrogen	0.3648	28.01	0.102	0.006
Hydrogen Sulfide	0.0000	34.02	0.000	0.000
Helium	0.0000	4.00	0.000	0.000
Methane	90.7292	16.04	14.555	0.805
Ethane	5.3537	30.07	1.610	0.089
Propane	1.9415	44.10	0.856	0.047
lso-Butane	0.3949	58.11	0.229	0.013
N-Butane	0.4703	58.12	0.273	0.015
so-Pentane	0.1549	72.14	0.112	0.006
N-Pentane	0.1077	72.14	0.078	0.004
Methylcyclopentane	0.0000	86.00	0.000	0.000
n-Hexane	0.0263	86.05	0.023	0.001
Hexane +	0.0486	84.05	0.041	0.002
2,4-Dimethylpentane	0.0000	96.00	0.000	0.000
Methycyclohexane	0.0096	96.00	0.009	0.001
Benzene	0.0039	78.37	0.003	0.000
Cyclohexane	0.0087	84.07	0.007	0.000
Heptanes	0.0185	93.22	0.017	0.001
Toluene	0.0044	92.01	0.004	0.000
Ethylbenzene	0.0000	111.47	0.000	0.000
Xylenes	0.0041	99.52	0.004	0.000
Octanes+	0.0100	111.77	0.011	0.001
Nonanes+	0.0000	125.12	0.000	0.000
Decanes+	0.0000	116.11	0.000	0.000
Total	100.00	-	18.09	1.000

Molecular Weight	18.09	
Relative Density	0.6262	
Gross WET BTU	1110.90	
NMHC	3.2778	18.122%
VOCs (NMNEHC)	1.6680	9.222%
HAPs	0.0338	0.19%
H2S Mole Fraction	0.0000	0.000%
Total HC	17.8326	98.589%
THC:VOC Ratio	9.3537	9.354%

Little Canyon Unit Compressor Station

Liquid Flash Analysis to Estimate Fugitive Oil Emissions

				-
Component	Mole %	MW	Mole % * MW	Weight %
Carbon Dioxide	1.7490	44.01	0.7698	3.007%
Nitrogen	3.5120	28.01	0.9838	3.843%
Hydrogen Sulfide	0.0000	34.02	0.0000	0.000%
Helium	0.0000	4.00	0.0000	0.000%
Methane	68.2760	16.04	10.9529	42.784%
Ethane	11.0290	30.07	3.3163	12.954%
Propane	5.9630	44.10	2.6297	10.272%
Iso-Butane	1.6260	58.12	0.9450	3.691%
N-Butane	2.3750	58.12	1.3804	5.392%
Iso-Pentane	1.2770	72.15	0.9214	3.599%
N-Pentane	1.3020	72.15	0.9394	3.670%
Methylcyclopentane	0.0000	86.00	0.0000	0.000%
n-Hexane	0.0000	86.18	0.0000	0.000%
Hexanes	1.1100	86.16	0.9564	3.736%
2,2,4-Trimethylpentane	0.0000	114.24	0.0000	0.000%
Methycyclohexane	0.0000	96.00	0.0000	0.000%
Benzene	0.1820	78.11	0.1422	0.555%
Cyclohexane	0.0000	84.51	0.0000	0.000%
Heptanes	0.9260	100.20	0.9279	3.624%
Toluene	0.1850	92.13	0.1704	0.666%
Ethylbenzene	0.0030	106.17	0.0032	0.012%
Xylenes	0.0040	106.17	0.0042	0.017%
Octanes+	0.4420	114.23	0.5049	1.972%
Nonanes+	0.0410	128.28	0.0526	0.205%
Decanes+	0.0000	223.02	0.0000	0.000%
Total	100.00		25.60	100.000%

Molecular Weight	25.60	
NMHC	12.8938	50.366%
VOCs (NMNEHC)	9.5776	37.412%
HAPs	0.3200	1.25%
H2S Mole Fraction	0.0000	0.000%
Total HC	23.8467	93.150%
THC:VOC Ratio	40.1632	40.163%

* Analysis taken from Tap 5 analysis dated December 10, 2012

Little Canyon Unit Compressor Station

Pigging Emissions

Pig Launcher &	Reciever Information	
Volume of the Pipeline	88.36	ft ³
Volume of Gas in Pipeline Under Pressure ¹	388.89	Standard ft ³
Pipeline Pressure	50	psig
Pipeline Pressure	64.7	psia
Pipeline / Atmospheric Temperature	80	°F
Pipeline / Atmospheric Temperature	540	°R
Gas Compo	sition Information	
Atmospheric Pressure	14.7	Psia
Universal Gas Constant (R)	10.73	ft ³ psi/°R lb-mol
Molecular Weight	18.09	lb/lb-mole
Compressibility Factor	0.9976	Z
VOC Weight Percent	9.22%	Percent
HAP Weight Percent	0.19%	Percent
Ending Gas Density $(\rho_2)^2$	0.0460	lb/ft ³
Starting Gas Density $(\rho_1)^3$	0.2025	lb/ft ³
Density (PTOTAL) ⁴	0.1565	lb/ft³
Emissio	n Calculations	
Density (ptotal)	0.1565	lb/ft ³
Estimated Max Amount of Gas Vented ⁵	13.82	lbs/Event
Estimated Number of Pig Launching & Receiving	24	Events/Year
Estimated Total Amount of Gas Released	331.79	lbs/Year
Estimated Total Amount of Gas Released	0.17	Tons/Year
Estimated	Total Emissions	and the second
	30.60	lbs/Year
Total VOC Emissions (Includes Total HAPs)	1.27	lbs/event ¹
(mentato some arts of	0.02	Tons/Year
	0.62	lbs/Year
Total HAPs Emissions	0.03	lbs/event ¹
	0.00	Tons/Year
Calculation	on Methodology	
$^1 \text{Ideal Gas Law}$ - Constant Temp: (V1 * P1) / P2	$^{2}\rho_{1}=(P_{1}*MW)/R*T_{1}*Z$	$^{3}\rho_{2}=(P_{2}*MW)/R*T_{2}*$

Little Canyon Unit Compressor Station

SSM - Compressor Blowdowns

	Total Quantity	2800	(SCF/Blowdown)	
1	Estimated Number of Blowdowns	500	(Blowdowns/Year)	
	Flared	No	(Yes/No)	
	Lower Heating Value	1110.90	(BTU)	
	Estimated Quantity	Total Estimated Quantity	Hourly Emission Rate	Annualized Emission Rat
Component	Estimated Quantity Blowndown (lbs)	Total Estimated Quantity Emitted (lbs)	Hourly Emission Rate (lb/blowdown)	Annualized Emission Rate (TPY)
Component Total VOCs (Includes Total HAPs)	Blowndown	Emitted		Annualized Emission Rate (TPY) 3.030
Total VOCs	Blowndown (lbs)	Emitted (lbs)	(lb/blowdown)	(TPY)

Little Canyon Unit Compressor Station

LCU 2-6GX Wellsite Summary - All Sources Combined

· · · · · · · · · · · · · · · · · · ·						1							
	EPN	N	Ox	c	O		l VOC Fotal HAPs)	S	O ₂	PM	0 & 2.5	Total	HAPs
Source Description	EPN	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
LCU 2-6GX Wellsite Heaters	LCU 2-6GX	0.11	0.49	0.09	0.41	0.01	0.03	0.001	0.003	0.01	0.04	0.002	0.01
LCU 2-6GX Wellsite Fugitive Emissions	LCU 2-6GX	-	-	-	-	0.34	1.48	-	-	-	-	0.01	0.06
LCU 2-6GX Wellsite Condensate Tank Emissions	LCU 2-6GX	-	-	u	-	1.41	6.19	-	-		-	0.11	0.47
LCU 2-6GX Wellsite Condensate Truck Loading Emissions	LCU 2-6GX	-	-	-	-	33.25	0.88	-		-	Ŧ	2.28	0.06
LCU 2-6CX Wellsite TEG Dehydrator Emissions	LCU 2-6GX	-	-	-	-	2.72	11.92	-	-		-	1.34	5.85
LCU 2-6GX Wellsite Pumping Unit (Arrow C-96 Pre-July 2008)	LCU 2-6GX	0.56	2.45	0.24	1.04	0.00	0.02		-	0.002	0.009	0.006	0.000
Total LCU 2-6GX Emissions for Wellsite	LCU 2-6GX	0.67	2.95	0.33	1.46	37.73	20.51	0.001	0.003	0.01	0.05	3.74	6.45

Little Canyon Unit Compressor Station

LCU 2-6GX Dehy Still Column Emissions

Emission Component	Uncontrolled	l Still Column	Controlled S	Still Column
Linusion component	lb/hr	TPY	lb/hr	TPY
Propane	0.106	0.463	NA	NA
H ₂ S	0.000	0.000	NA	NA
Iso-Butane	0.049	0.213	NA	NA
N-Butane	0.079	0.344	NA	NA
Iso-Pentane	0.050	0.220	NA	NA
N-Pentane	0.050	0.220	NA	NA
Methylcyclopentane	0.000	0.000	NA	NA
n-Hexane	0.047	0.207	NA	NA
Hexane +	0.053	0.231	NA	NA
2,2,4-Trimethylpentane	0.004	0.017	NA	NA
Methycyclohexane	0.152	0.665	NA	NA
Benzene	0.204	0.895	NA	NA
Cyclohexane	0.084	0.368	NA	NA
Heptanes	0.141	0.618	NA	NA
Toluene	0.386	1.691	NA	NA
Ethylbenzene	0.048	0.211	NA	NA
Xylenes	0.650	2.846	NA	NA
Octanes+	0.618	2.706	NA	NA

TOTAL EMISSION SUMMARY	UNCON	TROLLED	CONTR	ROLLED
Emission Component	lb/hr	TPY	lb/hr	TPY
NMNEVOC (Includes TOTAL HAPs)	2.72	11.92	NA	NA
TOTAL HAPs	1.34	5.85	NA	NA

*Uncontrolled Emissions Based off of Gri-GlyCalc Output

Little Canyon Unit Compressor Station

LCU 2-6GX Wellsite - Reboiler & Heater Burner Calculations

						Criteri	a and R	egulated	Pollutan	ts					81			83 0
			[AP-42 Factor	°\$				lb/hr					tру		
ËPN	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	NOx	со	voc	SO2	PM10&25	NOx	со	VOC	SO ₂	PM10&25	NOx	со	voc	\$O₂	PM _{10 & 21}
LCU 2-6GX Wellsite TK-1	1110.90	8760	0.250	100	84	5.5	0.6	7.6	0 028	0 024	0.002	0.000	0 002	0 123	0.103	0.007	0.001	0.009
LCU 2-6GX Wellsite TK-2	1110 90	8760	0.250	100	84	5.5	06	7.6	0 028	0 024	0.002	0.000	0.002	0.123	0 103	0.007	0.001	0 009
CU 2-6GX Wellsite Dehy Reboiler	1110.90	8760	0.500	100	84	5 5	0.6	76	0 056	0.047	0.003	0.000	0 004	0.246	0.207	0 014	0 001	0 019
Source: AP-42 Table 1.4-1,	1.4-2, & 1.4-3											Tota	il (tpy)	NOx	со	voc	SO2	PM10&25
Burners - 80% Efficiency														0.493	0.414	0.027	0.003	0.037

Little Canyon Unit Compressor Station

LCU 2-6GX Wellsite - Reboiler & Heater Burner Calculations

						Hazar	dous Ai	r Pollutan	ts (HAP	s)								
						AP-42 Factor	s				ib/hr					tpy		
EPN	Fuel Gas (BTU/SCF)	Operating Hours	Burner Rating (MMBTU/Hr)	Benzene	Toluene	N-Hexane	нсно	Diclorobenz.	Benzene	Toluene	N-Hexane	нсно	Diclorobenz.	Benzene	Toluene	N-Hexane	нсно	[)iclorobenz
LCU 2-6GX Wellsite TK-1	1110.9	8760	0.250	0.0021	0.0034	1.8	0.0750	0.0012	0.000001	0.000001	0.000506	0 000021	0.000000	0.000003	0.000004	0.002218	0.000092	0.000001
LCU 2-6GX Wellsite TK-2	1110 9	8760	0.250	0.0021	0 0034	1.8	0.0750	0 0012	0.000001	0.000001	0.000506	0.000021	0.000000	0.000003	0.000004	0.002218	0.000092	0.000001
CU 2-6GX Wellsite Dehy Reboiler	1110.9	8760	0 500	0.0021	0.0034	18	0.0750	0.0012	0 000001	0 000002	0 001013	0 000042	0 000001	0.000005	0 000008	0 004436	0.000185	0 000003
···-																		
Source: AP-42 Table 1.4-1,	1.4-2, & 1.4-3										Total	ndividual HA	PS (tpy)	Benzene	Toluene	Hexane	нсно	Dicioroben
Burners - 80% Efficiency														0.000010	0.000017	0.008871	0.000370	0.000006
												Combined HA		0.00927	1			

XTO Energy, Inc. Little Canyon Unit Compressor Station LCU 2-6GX Wellsite - Fugitive Emissions

a		Estimated			TANG	Emis	sions
Component Type	Service	Components Count	Hours	Factors	Total VOC Weight %	lb/year	tons/year
	Gas/Vapor	75	8760	0.00992000	9.22%	601.0176	0.3005
Valves	Light Oil	10	8760	0.00550000	40.38%	194.5275	0.0973
valves	Heavy Oil	0	8760	0.00001900	40.38%	0.0000	0.0000
	Water/Light Oil	3	8760	0.00021600	40.38%	2.2919	0.0011
	Gas/Vapor	3	8760	0.00529000	9.22%	12.8201	0.0064
Dumme	Light Oil	1	8760	0.02866000	40.38%	101.3665	0.0507
Pumps	Heavy Oil	0	8760	0.00113000	40.38%	0.0000	0.0000
	Water/Light Oil	0	8760	0.00005300	40.38%	0.0000	0.0000
	Gas/Vapor	150	8760	0.00086000	9.22%	104.2087	0.0521
Flowers	Light Oil	15	8760	0.00024300	40.38%	12.8919	0.0064
Flanges	Heavy Oil	0	8760	0.00000086	40.38%	0.0000	0.0000
	Water/Light Oil	10	8760	0.00000620	40.38%	0.2193	0.0001
	Gas/Vapor	0	8760	0.00441000	9.22%	0.0000	0.0000
Open-ended	Light Oil	0	8760	0.00309000	40.38%	0.0000	0.0000
Lines	Heavy Oil	0	8760	0.00030900	40.38%	0.0000	0.0000
	Water/Light Oil	0	8760	0.00055000	40.38%	0.0000	0.0000
	Gas/Vapor	10	8760	0.00044000	9.22%	3.5544	0.0018
Companyation	Light Oil	10	8760	0.00046300	40.38%	16.3757	0.0082
Connectors	Heavy Oil	0	8760	0.00001700	40.38%	0.0000	0.0000
	Water/Light Oil	10	8760	0.00024300	40.38%	8.5946	0.0043
	Gas/Vapor	5	8760	0.01940000	9.22%	78.3585	0.0392
Other:	Light Oil	5	8760	0.01650000	40.38%	291.7912	0.1459
Other:	Heavy Oil	0	8760	0.00006800	40.38%	0.0000	0.0000
	Water/Light Oil	5	8760	0.03090000	40.38%	546.4453	0.2732
	[11-01-2	U. 6	70%	I
	Total V	OC Emissions		lb/hr	lb/year	ТРҮ	
				0.338	2961.695	1.481	
		HAPs		0.014	122.123	0.061	

NOTE 1: Compressors, relief valves, process drains, diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents NOTE 2: A safety factor of 50% is applied to the VOC and HAPs Fugitive Emissions

XTO Energy, Inc. Little Canyon Unit Compressor Station LCU 2-6GX Wellsite - Tanks - Flashing, Working, & Breathing

Average BOPD	Number of Condensate Tanks	Emissions Controlled (Yes/No)	Control Type (Flare, VRU, et
26	2	No	N/A
VOC	Total Emissions - A	All Tanks <u>Combined¹</u> HAP En	nissions
1.41	lb/hr	0.11	lb/hr
6.19	tpy	0.47	tpy

Little Canyon Unit Compressor Station

LCU 2-6GX Wellsite - Truck Loading Losses - Condensate

Average BOPD 26		
LL= 12.46 * SPM/T * (1-EFF/100)		
Saturation Factor (S) =	0.6	•
True Vapor Pressure of liquid loaded (P) =	6.0)
Temperature of bulk liquid loaded in Rankin (T) =	510)
Molecular Weight $(M)^1 =$	50.0	0
Control Efficiency * Collection Efficiency (EFF)=	0	
LL (lb Total HC / bbl Throughput) =	0.184	47
LL (lb VOC / bbl Throughput) =	0.184	47
Estimated Throughput (bbls/Year) =	949	0
Truck Loading Rate (bbls/hour) =	180)
Estimated # of Loads (Approximately 1 hr/Load) =	53	
	lb/hr	TPY
Total VOC Emissions	33.25	0.88

XTO Energy, Inc. Little Canyon Unit Compressor Station LCU 2-6GX Wellsite - Pumping Unit Emissions

Emission Calculations - Pumping Unit (EPN: LCU 2-6GX Wellsite)																
									1							
						Manufacturer's Dat	•	AP-42 Factors								
						g/hp-hr		lb/MMBtu		lb	/lu			tI	y	
Unit Description	EPN	Yearly Operating Hours	Rated HP	MMbtu/hp-hr (HHV)	NOx	со	VOC*	PM _{10 & 2.5}	NOx	со	VOC*	PM10 & 25	NOx	со	VOC*	PM _{10 & 2.5}
LCU 2-6GX Wellsite Pumping Unit (Arrow C-96 Pre-July 2008)	PU	8760	21.4	0.0095	11.87	5.05	0.09	0.00991	0.56	0.24	0.00	0.00	2.45	1.04	0.02	0,01
* The guaranteed emission ra	ate prov	ided by the ma	nufactu	rer and used in	these calculati	ions is for total l	hydrocarbons.				k					
* The guaranteed emission rate provided by the manufacturer and used in these calculations is for total hydrocarbons.																
									Тс	otal Emissions F	Per Pollutant (T	PY)	2.45	1.04	0.02	0.01
									Tc	otal Emissions F	Per Pollutant (T)	РҮ)	2.45	1.04	0.02	0.01
							Factors		To			PY)	2.45			0.01
			1				Factors IMBtu				Per Pollutant (T)	PY)	2.45		0.02 29	0.01
Unit Description	EPN	Yeearly Operating Hours	Rated HP	MMbtu/hp-hr (HHV)	Benzene			Acrolein	To			Acrolein	2.45 Benzene			0.01 Acrolein
Unit Description LCU 2-6GX Wellsite Pumping Unit (Arrow C-96 Pre-July 2008)	epn Pu		Rated HP 21.4	MMbtu/hp-hr (HHV) 0.0095	Benzene 1.58E-4/3	Ib/M	IMBtu	Acrolein 2.63E-03		łb	/hr			t1	2у	
LCU 2-6GX Wellsite Pumping Unit		Hours	HP	(HHV)		lb/M Acetaldehyde	НСНО		Benzene	ih Acetaldehyde	yhr HCHO	Acrolein	Benzene	tı Acetaldehyde	уу НСНО	Acrolein
LCU 2-6GX Wellsite Pumping Unit		Hours	HP	(HHV)		lb/M Acetaldehyde	НСНО		Benzene 0.00	łł Acetaldehyde 0.00	/hr НСНО 0.00	Acrolein 0.00	Benzene	tı Acetaldehyde	уу НСНО	Acrolein
LCU 2-6GX Wellsite Pumping Unit		Hours	HP	(HHV)		lb/M Acetaldehyde	НСНО		Benzene 0.00	ih Acetaldehyde	/hr НСНО 0.00	Acrolein 0.00	Benzene 0.00	h Acetaldehyde 0.00	у НСНО 0.02	Acrolein 0.00

Little Canyon Unit Compressor Station

Liquid Flash Analysis to Estimate Fugitive Oil Emissions

Component	Mole %	MW	Mole % * MW	Weight %			
Carbon Dioxide	0.4200	44.01	0.1849	0.688%			
Nitrogen	0.0000	28.01	0.0000	0.000%			
Hydrogen Sulfide	0.0000	34.02	0.0000	0.000%			
Helium	0.0000	4.00	0.0000	0.000%			
Methane	59.5270	16.04	9.5493	35.558%			
Ethane	20.8800	30.07	6.2783	23.378%			
Propane	9.8260	44.10	4.3333	16.136%			
Iso-Butane	2.3010	58.12	1.3373	4.980%			
N-Butane	2.8290	58.12	1.6442	6.122%			
Iso-Pentane	1.1180	72.15	0.8066	3.004%			
N-Pentane	0.9100	72.15	0.6566	2.445%			
Methylcyclopentane	0.0000	86.00	0.0000	0.000%			
n-Hexane	0.0000	86.18	0.0000	0.000%			
Hexanes	0.5340	86.16	0.4601	1.713%			
2,2,4-Trimethylpentane	0.0000	114.24	0.0000	0.000%			
Methycyclohexane	0.0000	96.00	0.0000	0.000%			
Benzene	0.4800	78.11	0.3749	1.396%			
Cyclohexane	0.0000	84.51	0.0000	0.000%			
Heptanes	0.3750	100.20	0.3758	1.399%			
Toluene	0.2630	92.13	0.2423	0.902%			
Ethylbenzene	0.0110	106.17	0.0117	0.043%			
Xylenes	0.1080	106.17	0.1147	0.427%			
Octanes+	0.3430	114.23	0.3918	1.459%			
Nonanes+	0.0730	128.28	0.0936	0.349%			
Decanes+	0.0000	223.02	0.0000	0.000%			
Total	100.00	-	26.86	100.000%			

Molecular Weight	26.86	
NMHC	17.1212	63.753%
VOCs (NMNEHC)	10.8429	40.375%
HAPs	0.7436	2.77%
H2S Mole Fraction	0.0000	0.000%
Total HC	26.6705	99.312%
THC:VOC Ratio	40.6550	40.655%

* Analysis taken from RBU 18-10 E analysis dated December 10, 2012

G3512 NON-CURRENT GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA

CATERPILLAR[®]

ENGINE SPEED (rpm):	1200	RATING STRATEGY:	STANDARD
COMPRESSION RATIO:	8	RATING LEVEL:	CONTINUOUS
AFTERCOOLER TYPE:	SCAC	FUEL SYSTEM:	HPG IMPCO
		SITE CONDITIONS:	
AFTERCOOLER WATER INLET (*F):	130		Eld One
JACKET WATER OUTLET (*F):	210	FUEL:	Field Gas
ASPIRATION:	TA	FUEL PRESSURE RANGE(psig): (See note 1)	35.0-40.0
COOLING SYSTEM:	JW+OC, AC	FUEL METHANE NUMBER:	62.1
CONTROL SYSTEM:	EIS	FUEL LHV (Btu/scf):	1027
EXHAUST MANIFOLD:	ASWC	ALTITUDE(ft):	500
COMBUSTION:	LOW EMISSION	MAXIMUM INLET AIR TEMPERATURE(*F):	77
NOx EMISSION LEVEL (g/bhp-hr NOx):	2.0	STANDARD RATED POWER:	810 bhp@1200rpm
SET POINT TIMING:	27		

				MAXIMUM RATING		TING AT N	
RATING	1	NOTES	LOAD	100%	100%	75%	50%
ENGINE POWER (WITHOU	T FAN)	(2)	bhp	810	810	607	405
INLET AIR TEMPERATURE			°F	77	77	77	77
ENGINE DATA			a constant and	1.1.1.1.			
FUEL CONSUMPTION (LHV)		(3)	Btu/bhp-hr	7545	7545	7742	8085
FUEL CONSUMPTION (HHV)		(3)	Btu/bhp-hr	8337	8337	8554	8933
AIR FLOW (@inlet air temp, 14.7 psia)	(WET)	(4)(5)	ft3/min	1679	1679	1218	832
AIR FLOW	(WET)	(4)(5)	1b/hr	7446	7446	5399	3690
FUEL FLOW (60°F, 14.7 psia)	1		scfm	99	99	76	53
INLET MANIFOLD PRESSURE		(6)	in Hg(abs)	60.2	60.2	45.4	32.0
EXHAUST TEMPERATURE - ENGINE OUTLET		(7)	°F	842	842	827	818
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(8)(5)	ft3/min	4406	4406	3171	2154
EXHAUST GAS MASS FLOW	(WET)	(8)(5)	lb/hr	7740	7740	5625	3848
EMISSIONS DATA - ENGINE OUT							
NOx (as NO2)		(9)(10)	g/bhp-hr	2.00	2.00	3,30	3.30
co		(9)(10)	g/bhp-hr	2.25	2.25	2.53	2.67
THC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	2.71	2.71	2.45	2.80
NMHC (mol. wt. of 15.84)		(9)(10)	g/bhp-hr	0.70	0.70	0.63	0.73
NMNEHC (VOCs) (mol. wt. of 15.84)	(9	9)(10)(11)	g/bhp-hr	0.47	0.47	0.43	0.49
HCHO (Formaldehyde)		(9)(10)	g/bhp-hr	0.28	0.28	0.31	0.34
CO2		(9)(10)	g/bhp-hr	523	523	537	561
EXHAUST OXYGEN		(9)(12)	% DRY	7.9	7.9	7.1	6.8
HEAT REJECTION							
HEAT REJ. TO JACKET WATER (JW)		(13)	Btu/min	27455	27455	23482	18006
HEAT REJ. TO ATMOSPHERE		(13)	Btu/min	3643	3643	3036	2429
HEAT REJ. TO LUBE OIL (OC)		(13)	Btu/min	4341	4341	3713	2847
HEAT REJ. TO AFTERCOOLER (AC)		(13)(14)	Btu/min	4512	4512	2742	758
COOLING SYSTEM SIZING CRITERIA							
TOTAL JACKET WATER CIRCUIT (JW+OC)		(14)	Btu/min	35410			
TOTAL AFTERCOOLER CIRCUIT (AC)		(14)(15)	Btu/min	4738			
A cooling system safety factor of 0% has been added to the cooling system sizing criteria							

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

EmeraChem IC Engine Catalyst Quote

Date: Customer Name: Project Name: Application Engineer:			RJM	ann			
Application Engineer:			Cater				
rippiloadioit engineerit			Steve	Hess		4.0	
	Engine Ope		٦	F -		Engine Exhaust Flow Ra 801	ite F
Engine Make	Cater 3512		-		igine Exhaust Temperature yst Operating Temperature		
Engine Model Fuel Type	N		-	Catal	Exhaust Gas Flow Rate		s
Engine Horsepower	81		bhp		Exhaust Gas Flow Rate		a
Engine Speed	1,2	00	rpm		Exhaust Gas Flow Rate]"
Operating Hours	87	60	hr/year		Gas Oxygen Concentration		
Combustion Cycle - 2 vs 4 cycle	4		-	Exhaus	t Gas Water Concentration	11.0%	
Lean Burn / Rich Burn	lea						
		•	rolled Emission	ns CH2O			
o/bbp.br	NOx	CO 1.6	0.47		1		
g/bhp-hr g/hr		1,296	381	┟─────	4		
lb/hr		2.86	0.84				
tons/year		12.51	3.68]		
MW		28.00	44.00				
scfh		39	7		4		
mg/Nm3 ppmv (wet; actual O2)		241	71		4		
ppmv (dry; actual O2)		203	43		1		
ppmv (dry; 15% O2)		66	12		1		
			Requirement	01100	-		
g/bhp-hr	NOx	CO 1.6	0.47	CH2O	Г		
g/br		1,296	381		4		
lb/hr		2.86	0.84		1		
tons/year		12.51	3.68		1		
MW		28.00	44.00]		
scfh		39	7				
mg/Nm3		241	71		-		
ppmv (wet; actual O2) ppmv (dry; actual O2)		203	<u>38</u> 43		-		
ppmv (dry; 15% O2)		66	12		4		
			E Requirement	l			
_	NOx	co	NMNEHC	CH20	7		
L	0.00	0.0	0.0				
	NOx	CO	r Chosen Mode NMNEHC	CH2O	GHSV		
resulting g/BHP-hr		0.09	0.14]	01101		
DRE		94.1	71.3	86.6	216,388]	
Catalyst Part Number:	Catalyst In	nformation PX-RO-2350-0	000-3500	 1	Housing Supplier:	using and Silencer Inform Other	mat
Catalyst Part Number: Catalyst Type:		idation		J	Housing Part Number		-
Warranty (years)		3	-		Silencer Grade		-
Catalyst Formulation		rmax	1		Silencer Attenuation		
New Install or Replacement		cement]		Inlet Flange Size		
Catalyst Shape	Ro	und			Outlet Flange Size		
Number of Catalyst Elements		1			Materia]
Modificaitons:		Bonnet	4		Trunio».		
CPSI		00	4		sing Design Pressure Drop		
Depth		.5	inches	Sile	ncer Design Pressure Drog	the second se	-
Diameter	23.	500	inches		Total Pressure Drop	4.9	
Cataluat Values	0.	88	ft ³ (total)				
Catalyst Volume Space Velocity		,388	1/hr				
Maximum Pressure Drop		2.0	in. H ₂ O				
		.9	in. H2O				

G3516 LE

CATERPILLAR'

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE - THP 5 Compressor #1 (T5C-1)

}	ENGINE SPEED (rpm): COMPRESSION RATIO:	1400 8:1	FUEL SYSTEM:	HPG IMPCO
′	AFTERCOOLER WATER INLET (*F): JACKET WATER OUTLET (*F):	130 210	<u>SITE CONDITIONS:</u> FUEL:	Field Gas
	COOLING SYSTEM: IGNITION SYSTEM:	JW+OC, AC	FUEL PRESSURE RANGE(ps)g): FUEL METHANE NUMBER:	35.0-40.0 52.2
	EXHAUST MANIFOLD:	ASWC Low Emission	FUEL LHV (Btu/scf): ALTITUDE(ft):	1027 5800
	COMBUSTION: NOx EMISSION LEVEL (g/bhp-hr NOx):	1.5	MAXIMUM INLET AIR TEMPERATURE(F): 55
	SET POINT TIMING:	27.4	NAMEPLATE RATING:	1340 bhp@1400rpm

						×.
	1944					
IENGINE POWER	(1)	bhp	1340	1260	945	670
INLET AIR TEMPERATURE		*F	32	55	55	55
FUEL CONSUMPTION (LHV)	(2)	Blu/bhp-hr	7722	7778	8055	8518
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8532	8594	8901	9412
AIR FLOW	(3)(4)	lb/hr	12692	11944	9030	6604
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	2662	2894	2036	1489
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	70.0	66.5	52.3	39.3
EXHAUST STACK TEMPERATURE	(8)	*F	907	907	908	911
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	7882	7419	5620	4126
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	13190	12415	9396	6879
		,				
NOx (as NO2)	(8)	g/bhp-hr	1.50	1.50	1.50	1.50
ço	(8)	g/bhp-hr	2.31	2.34	2.45	2.61
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	2.43	2.45	2.56	2.72
NMHC (mol. wl. of 15.84)	(8)	g/bhp-hr	0.63	0.64	0.66	0.71
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.42	0.43	0.45	0.47
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.22	0.22	0.23	0.24
CO2	(8)	g/bhp-hr	509	51 1	522	545
EXHAUST OXYGEN	(10)	% DRY	7.9	7.8	1.7	7.6
بالمقصصية بإيرار ويهير الاستخابات الرابات التاري						
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	43666	42171	35699	29897
HEAT REJ. TO ATMOSPHERE	(11)	Blu/min	5313	5102	4269	3543
HEAT REJ, TO LUBE OIL (OC)	(11)	Btu/min	6512	6289	5324	4459
HEAT REJ. TO AFTERCOOLER (AC)	(11)(12)	Btu/min	9473	9473	5270	2111

i de la companya de l			
TOTAL JACKET WATER CIRCUIT (JW+OC)	(12)	Btu/min	55848
TOTAL AFTERCOOLER CIRCUIT (AC)	(12)(13)	8tu/min	9946
A cooling system safety factor of 0% has been added to the her	at exchang	er sizing criteria	R.

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fust, site silflude and site inlet air temperature. 100% rating is in maximum inlet air temperature is the maximum engine capability for the specified but is talle afflude and maximum site inlet air temperature. Max, rating is the maximum capability for the specified fuel at site afflude adduced latel at itemperature. Lowest load pdnk is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For noise information consult page three.

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: LCU TEG Dehydration System File Name: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor_Dehy and Tank Models\LCU LCD-1 PTE.ddf Date: September 18, 2013 DESCRIPTION: _____ Description: 25 mmmscfd Gas Analysis - 06/15/2012 45015 Kimray Glycol Pump Glycol Still to TOx Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 79.00 ccs 475.00 psig 79.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) Carbon Dioxide 0.3477 Nitrogen 0.3648 Methane 90.7292 Ethane 5.3537 Propane 1.9415
 Isobutane
 0.3949

 n-Butane
 0.4703

 Isopentane
 0.1549

 n-Pentane
 0.1077

 n-Hexane
 0.0263
 Cyclohexane 0.0087 Other Hexanes 0.0486 Heptanes 0.0185 Methylcyclohexane 0.0096 4-Trimethylpentane 0.0012 2,2,4-Trimethylpentane 0.0012
 Benzene
 0.0039

 Toluene
 0.0044

 Xylenes
 0.0041

 C8+ Heavies
 0.0100
 DRY GAS: Flow Rate: 25.0 MMSCF/day Water Content: 7.0 lbs. H2O/ 7.0 lbs. H20/MMSCF LEAN GLYCOL: Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm

.

Page: 2 Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.032 acfm gas/gpm glycol FLASH TANK: Flash Control: Recycle/recompression Temperature: 120.0 deg. F Pressure: 70.0 psig REGENERATOR OVERHEADS CONTROL DEVICE: Control Device: Combustion Device Destruction Efficiency: 95.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 55.0 deg. F

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: LCU TEG Dehydration System

File Name: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor_Dehy and Tank Models/LCU LCD-1 PTE.ddf Date: September 18, 2013

CONTROLLED	REGENERATOR	EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0558	1.265	0.2444
Ethane	0.0351		0.1536
Propane	0.0527		0.2309
Isobutane	0.0270		0.1181
n-Butane	0.0492		0.2153
Isopentane	0.0243	0.583	0.1065
n-Pentane	0.0242	0.581	0.1060
n-Hexane	0.0161	0.387	0.0707
Cyclohexane	0.0292	0.700	0.1278
Other Hexanes	0.0203	0.487	0.0888
Heptanes	0.0327	0.785	0.8951
Methylcyclohexane	0.0477	1.144	
2,2,4-Trimethylpentane	0.0009	0.022	
Benzene	0.1049	2.518	
Toluene	0.2044	4.905	
Xylenes	0.3613	8.671	1.5825
C8+ Heavies	0.1426	3.422	0.6245
Total Emissions	1.2282	29.477	5.3796
Total Hydrocarbon Emissions	1.2282		5.3796
Total VOC Emissions	1.1374		4.9816
Total HAP Emissions	0.6876		3.0117
Total BTEX Emissions	0.6706		2.9370

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.1158	26.779	4.8872
Ethane	0.7015	16.836	3.0726
Ргорале	1.0543	25.304	4.6180
Isobutane	0.5391	12.939	2.3614
n-Butane	0.9833	23.599	4,3069
Isopentane	0.4862	11.669	2,1297
n-Pentane	0.4838	11.612	2.1191
n-Hexane	0.3227	7.745	1.4135
Cyclohexane	0.5835	14.003	2.5556
Other Hexanes	0.4055	9.731	1.7759
Heptanes	0.6539	15.693	2.8639
Methylcyclohexane	0.9537	22.888	4.1771
2,2,4-Trimethylpentane	0.0183	0.439	0.0802
Benzene	2.0981	50.355	9.1897
Toluene	4.0872	98.093	17.9019
Xylenes	7.2258	173.420	31.6492
C8+ Heavies	2.8516	68.437	12.4898
Total Emissions	24.5643	589.543	107.5916

Total Hydrocarbon	Emissions	24,5643	589.543	Page: 2 107.5916
Total VOC	Emissions	22.7470	545.928	99.6319
Total HAP	Emissions	13.7522	330.052	60.2345
Total BTEX	Emissions	13.4112	321.868	58.7409

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	24.5463	589.110	107.5127
Ethane	4.2115	101.077	18.4465
Propane	2.9650	71.160	12.9867
Isobutane	0.9800	23.519	4.2923
n-Butane	1.3521	32.451	5.9223
Isopentane	0.5726	13.742	2.5078
n-Pentane	0.4526	10.862	1.9823
n-Kexane	0.1626	3.903	0.7123
Cyclohexane	0.0720	1.728	0.3153
Other Hexanes	0.2713	6.512	1.1885
Heptanes	0.1562	3.749	0.6841
Methylcyclohexane	0.0904	2.169	0.3958
2,2,4-Trimethylpentane	0.0088	0.211	0.0386
Benzene	0.0357	0.857	0.1564
Toluene	0.0433	1.040	0.1899
Xylenes	0.0299	0.719	0.1312
C8+ Heavies	0.0582	1.397	0.2550
Total Emissions	36.0086	864.206	157.7176
Total Hydrocarbon Emissions	36.0086		157.7176
Total VOC Emissions	7.2508		31.7585
Total HAP Emissions	0.2804		1.2282
Total BTEX Emissions	0.1090		0.4774

-

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0558	1.339	0.2444
Ethane	0.0351	0.842	0.1536
Propane	0.0527	1.265	0.2309
Isobutane	0.0270	0.647	0.1181
n-Butane	0.0492	1.180	0.2153
Isopentane	0.0243	0.583	0.1065
n-Pentane	0.0242	0.581	0.1060
n-Hexane	0.0161	0.387	0.0707
Cyclohexane	0.0292	0.700	0.1278
Other Hexanes	0.0203	0.487	0.0888
Heptanes	0.0327	0.785	0.1432
Methylcyclohexane	0.0477	1.144	0.2089
2,2,4-Trimethylpentane	0.0009	0.022	0.0040
Benzene	0.1049	2.518	0.4595
Toluene	0.2044	4.905	0.8951

			Page: 3
Xylenes	0.3613	8.671	1.5825
C8+ Heavies	0.1426	3.422	0.6245
Total Emissions	1.2282	29.477	5,3796
Total Hydrocarbon Emissions	1.2282	29.477	5.3796
Total VOC Emissions	1.1374	27.296	4.9816
Total HAP Emissions	0.6876	16.503	3.0117
Total BTEX Emissions	0.6706	16.093	2.9370

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: LCU TEG Dehydration System File Name: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor_Dehy and Tank Models\LCU LCD-1 PTE.ddf Date: September 18, 2013

DESCRIPTION:

Description: 25 mmmscfd Gas Analysis - 06/15/2012 45015 Kimray Glycol Pump Glycol Still to TOx

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0558	1.339	0.2444
Ethane	0.0351		
Propane	0.0527		0.2309
Isobutane	0.0270	0.647	0.1181
n-Butane	0.0492	1,180	0.2153
Isopentane	0.0243	0.583	0.1065
n-Pentane	0.0242	0.581	0.1060
n-Hexane	0.0161	0.387	0.0707
Cyclohexane	0.0292	0.700	0.1278
Other Hexanes	0.0203	0.487	0.0888
Heptanes	0.0327	0.785	0.1432
Methylcyclohexane	0.0477	1.144	0.2089
2,2,4-Trimethylpentane	0.0009		0.0040
Benzene	0.1049	2.518	0.4595
Toluene	0.2044	4.905	0.8951
Xylenes	0 3613	8.671	1.5825
C8+ Heavies	0.1426	3,422	0.6245
Total Emissions	1.2282	29.477	5.3796
Total Hydrocarbon Emissions	1.2282	29.477	5.3796
Total VOC Emissions	1.1374	27.296	4.9816
Total HAP Emissions	0.6876	16.503	3.0117
Total BTEX Emissions	0.6706	16.093	2.9370

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	1.1158	26.779	4.8872
Ethane	0.7015	16.836	3.0726
Propane	1.0543	25.304	4.6180
Isobutane	0.5391	12.939	2.3614
n-Butane	0.9833	23.599	4.3069
Isopentane	0.4862	11.669	2.1297
n-Pentane	0.4838	11.612	2.1191
n-Hexane	0.3227	7.745	1.4135

Cyclohexane Other Hexanes	0.5835 0.4055	14.003 9.731	Page: 2 2.5556 1.7759
Heptanes	0.6539	15.693	2.8639
Methylcyclohexane	0.9537	22.888	4.1771
2,2,4-Trimethylpentane	0.0183	0.439	0.0802
Benzene	2.0981	50.355	9.1897
Toluene	4.0872	98.093	17.9019
Xylenes	7.2258	173.420	31.6492
C8+ Heavies	2.8516	68.437	12.4898
Total Emissions	24.5643	589.543	107.5916
Total Hydrocarbon Emissions	24.5643	589.543	107.5916
Total VOC Emissions	22.7470	545.928	99.6319
Total HAP Emissions	13.7522	330.052	60.2345
Total BTEX Emissions	13.4112	321.868	58.7409

FLASH GAS EMISSIONS

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Propane	4.2115 2.9650 0.9800	71.160	18.4465 12.9867 4.2923
n-Pentane	0.0720	10.862 3.903	0.7123
	0.1562 0.0904 0.0088 0.0357 0.0433	2.169	0.0386
Xylenes C8+ Heavies	0.0299 0.0582	0.719 1.397	
Total Emissions	36.0086	864.206	157.7176
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	7.2508 0.2804	6.730	31.75 85 1.2282

COMBINED REGENERATOR VENT/FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0558	1.339	0.2444
Ethane	0.0351	0.842	0.1536
Propane	0.0527	1.265	0.2309

Isobutane n-Butane	0.0270 0.0492		Page: 3 0.1181 0.2153
Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	0.0243 0.0242 0.0161 0.0292 0.0203	0.700	0.1065 0.1060 0.0707 0.1278 0.0888
Heptanes Methylcyclohexane 2,2,4-Trimethylpentane Benzene Toluene	0.0327 0.0477 0.0009 0.1049 0.2044	1.144 0.022	
Xylenes C8+ Heavies Total Emissions	0.3613 0.1426	8.671 3.422 	0.6245
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	1.2282 1.1374 0.6876 0.6706	29.477 27.296	5.3796

COMBINED REGENERATOR VENT/FLASH GAS EMISSION CONTROL REPORT:

 w = - = = = = = = = = = =	

Component	Uncontrolled tons/yr	Controlled tons/yr	<pre>% Reduction</pre>
Methane Ethane Propane Isobutane n-Butane	21.5191 17.6047	0.2444 0.1536 0.2309 0.1181 0.2153	99.78 99.29 98.69 98.23 97.89
Isopentane	4.6375	0.1065	97.70
n-Pentane	4.1015	0.1060	97.42
n-Hexane	2.1257	0.0707	96.68
Cyclohexane	2.8709	0.1278	95.55
Other Hexanes	2.9644	0.0888	97.00
Heptanes	3.5481	0.1432	95.96
Methylcyclohexane	4.5729	0.2089	95.43
2,2,4-Trimethylpentane	0.1188	0.0040	96.62
Benzene	9.3461	0.4595	95.08
Toluene	18.0918	0.8951	95.05
Xylenes	31.7804	1.5825	95.02
C8+ Heavies	12.7448	0.6245	95.10
Total Emissions	265.3092	5.3796	97.97
Total Hydrocarbon Emissions	265.3092	5.3796	97.97
Total VOC Emissions	131.3903	4.9816	96.21
Total HAP Emissions	61.4628	3.0117	95.10
Total BTEX Emissions	59.2183	2.9370	95.04

EQUIPMENT REPORTS:

		Page :	4
COMBUSTION DEVICE			_
			-
Ambient Temperatu:	re: 55.0	0 deg. F	
Excess Oxyg Combustion Efficien	en: 5.0	U 35 0 %	
Supplemental Fuel Requirement	nt: 1.15e-00	1 MM BTU/hr	
Component	Emitted	Destroyed	
Methane	5.00% 5.00%	95.00%	
Ecnane Propape	5.00%	95.00% 95.00%	
Isobutane	5.00%	95.00%	
n-Butane	5.00%	95.00%	
Isopentane	5.00%	95.00%	
n-Pentane	5.00%	95.00%	
n-Hexane	5.00%	95.00%	
Cyclohexane	5.00%	95.00%	
Other Hexanes	5.00%	95.00%	
Heptanes Methylcyclohexane	5.00%	95.00%	
Methylcyclohexane	5.00%	95.00%	
2,2,4-Trimethylpentane Benzene	5.00%	95.00%	
Toluene	5.00%	95.00%	
C8+ Heavies	5.00% 5.00%	95.00%	
ABSORBER			
			-
NOTE: Because the Calculated Absorber	Stages was 1	below the minimum	
allowed, GRI-GLYCalc has set the number	er of Absorbe		
and has calculated a revised Dry Gas I	Dew Point.		
Calculated Absorber Stage	es: 1.25	5	
Calculated Dry Gas Dew Poir	nt: 2.32	2 lbs. H2O/MMSCF	
Temperatu	re: 79.0	dea. F	
Pressu	re: 79.0 re: 475.0) psig	
Drv Gas Flow Rat	te: 25.0000) MMSCF/day	
Glycol Losses with Dry Ga			
Wet Gas Water Conter Calculated Wet Cas Water Conter		=	
Calculated Wet Gas Water Conter Calculated Lean Glycol Recirc. Rati	io: 8.2	gal/lb H20	
		-	
Component	Remaining in Dry Gas	Absorbed in Glycol	
Water Carbon Dioxide	4.22% 99.72%	95.78%	
Nitrogen		0.28% 0.02%	
Methane		0.02%	
Ethane	99.94%		
Propane	99.88%	0.12%	
Isobutane	99.81%	0.19%	
n-Butane	99.74%		
Isopentane	99.70%	0.30%	
n-Pentane	99.61%	0.39%	
n-Hexane	99.27%	0.73%	
Cyclohexane	96.79%	3.21%	
Other Hexanes	99.46%	0.54%	

		Page:	5
Heptanes	98.46%	1.54%	
Methylcyclohexane	96.01%	3,99%	
2,2,4-Trimethylpentane	99.33%	0.67%	
Benzene	74.54%	25.46%	
Toluene	62.95%	37.05%	
Xylenes	39.35%	60.65%	
C8+ Heavies	93.83%	6.17%	

FLASH TANK

Flash Control: Recycle/recompression Flash Temperature: 120.0 deg. F Flash Pressure: 70.0 psig

~

Component	Left in Glycol	Removed in Flash Gas
Water	99.96%	0.048
Carbon Dioxide	36.12%	63.888
Nitrogen	4.26%	95.748
Methane	4.35%	95.658
Ethane	14.28%	85.728
Propane	26.23%	73.77%
Isobutane	35.49%	64.51%
n-Butane	42.10%	57.90%
Isopentane	46.16%	53.84%
n-Pentane	51.88%	48.12%
n-Hexane	66.65%	33.35%
Cyclohexane	89.36%	10.64%
Other Hexanes	60.28%	39.72%
Heptanes	80.81%	19.19%
Methylcyclohexane	91.69%	8.31%
2,2,4-Trimethylpentane	67.97%	32.03%
Benzene	98.41%	1.59%
Toluene	99.03%	0.97%
Xylenes	99.64%	0.36%
C8+ Heavies	98.24%	1.76%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	53.58%	46.42%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.94%	99.06%
n-Pentane	0.86%	99.14%
n-Hexane	0.70%	99.30%
Cyclohexane	3.53%	96.47%
Other Hexanes	1.53%	98.47%

		Page:
Heptanes	0.60%	99.40%
Methylcycloĥexane	4.31%	95.69%
2,2,4-Trimethylpentane	2.06%	97.94%
Benzene	5.07%	94.93%
Toluene	7.97%	92.03%
Xylenes	12.94%	87.06%
C8+ Heavies	12.15%	87.85%

6

STREAM REPORTS:

WET GAS STREAM

WE I	GAS SINGAM					
	Temperature: Pressure: Flow Rate:	79.00 deg 489.70 psi 1.04e+006 scf	.F a n			
		Component		Conc. (vol%)	Loading (lb/hr)	
		Carbon Die Nit: Mei	oxide rogen thane	1.16e-001 3.47e-001 3.64e-001 9.06e+001 5.35e+000	5.73e+001 4.20e+002 2.81e+002 4.00e+004	
		Isobi n-Bi Isopei	utane utane ntane	1.94e+000 3.94e-001 4.70e-001 1.55e-001 1.08e-001	6.30e+002 7.51e+002 3.07e+002	
		Cyclohe Other He	exane kanes tanes	2.63e-002 8.69e-003 4.85e-002 1.85e-002 9.59e-003	2.01e+001 1.15e+002 5.09e+001	
	2,2,	То. Ху	nzene luene lenes	1.20e-003 3.90e-003 4.39e-003 4.10e-003 9.99e-003	8.37e+000 1.11e+001 1.20e+001	
		Total Compon	nents	100.00	4.98e+004	

DRY GAS STREAM	
Temperature: 79.00 deg. F Pressure: 489.70 psia Flow Rate: 1.04e+006 scfh	
Component	Conc. Loading (vol%) (lb/hr)
Carbon Dioxid Nitroge Methan	r 4.88e-003 2.41e+000 e 3.47e-001 4.19e+002 n 3.65e-001 2.81e+002 e 9.07e+001 4.00e+004 e 5.35e+000 4.42e+003

Propane 1.94e+000 2.35e+003

Isobutane 3.94e-001 6.29e+002 n-Butane 4.69e-001 7.49e+002 Isopentane 1.54e-001 3.06e+002 n-Pentane 1.07e-001 2.13e+002 Cyclohexane 8.42e-003 1.95e+001 Other Hexanes 4.84e-002 1.14e+002 Heptanes 1.82e-002 5.01e+001 Methylcyclohexane 9.22e-003 2.49e+001 2,2,4-Trimethylpentane 1.19e-003 3.74e+000 Benzene 2.91e-003 6.24e+000 Toluene 2.77e-003 7.01e+000 Xylenes 1.61e-003 4.70e+000 C8+ Heavies 9.39e-003 4.39e+001 Total Components 100.00 4.97e+004

LEAN GLYCOL STREAM

)

Temperature: 79.00 deg. F Flow Rate: 7.50e+000 gpm		
Component	Conc. (wt%)	(lb/hr)
	9.85e+001	
	1.50e+000	
Carbon Dioxide		
	1.19e-013	
Methane	5.40e-018	2.28e-016
Ethane	3.16e-008	1.33e-006
	2.81e-009	
	8.68e-010	
	1.16e-009	
Isopentane	1.09e-004	4.59e-003
n-Pentane	9.95e-005	4.20e-003
n-Hexane	5.43e-005	2.29e-003
Cyclohexane		
Other Hexanes		
Heptanes	9.36e-005	3.95e-003
Methylcyclohexane	1.02e-003	4.30e-002
2,2,4-Trimethylpentane		
	2.66e-003	
	8.39e-003	
Xylenes	2.55e-002	1.07e+000
C8+ Heavies		3.94e-001
Total Components		4.22e+003
H GLYCOL AND PUMP GAS STREAM		
Temperature: 79.00 deg. F Pressure: 489.70 psia Flow Rate: 7.74e+000 gpm NOTE: Stream has more than one p	hase	

Component	Conc.	Loading
-	(wt%)	(lb/hr)
TEG	9.58e+001	4.15e+003

Page: 7

Water 2.73e+000 1.18e+002 Carbon Dioxide 3.13e-002 1.36e+000 Nitrogen 4.22e-003 1.83e-001 Methane 5.92e-001 2.57e+001 Ethane 1.13e-001 4.91e+000 Propane 9.27e-002 4.02e+000 Isobutane 3.50e-002 1.52e+000 n-Butane 5.39e-002 2.34e+000 Isopentane 2.45e-002 1.06e+000 n-Pentane 2.17e-002 9.41e-001 n-Hexane 1.12e-002 4.88e-001 Cyclohexane 1.56e-002 6.77e-001 Other Hexanes 1.58e-002 6.83e-001 Heptanes 1.88e-002 8.14e-001 Methylcyclohexane 2.51e-002 1.09e+000 2,2,4-Trimethylpentane 6.34e-004 2.75e-002 Benzene 5.18e-002 2.25e+000 Toluene 1.03e-001 4.48e+000 Xylenes 1.92e-001 8.33e+000 C8+ Heavies 7.62e-002 3.30e+000 - - - - -Total Components 100.00 4.34e+003 FLASH TANK OFF GAS STREAM

_____ Temperature: 120.00 deg. F 84.70 psia Pressure: Flow Rate: 6.94e+002 scfh Conc. Component Loading (vol%) (lb/hr) Water 1.31e-001 4.31e-002 Carbon Dioxide 1.08e+000 8.66e-001 Nitrogen 3.42e-001 1.75e-001 Methane 8.36e+001 2.45e+001 Ethane 7.65e+000 4.21e+000 Propane 3.67e+000 2.96e+000 Isobutane 9.21e-001 9.80e-001 n-Butane 1.27e+000 1.35e+000 Isopentane 4.34e-001 5.73e-001 n-Pentane 3.43e-001 4.53e-001 n-Hexane 1.03e-001 1.63e-001 Cyclohexane 4.67e-002 7.20e-002 Other Hexanes 1.72e-001 2.71e-001 Heptanes 8.52e-002 1.56e-001 Methylcyclohexane 5.03e-002 9.04e-002 2,2,4-Trimethylpentane 4.21e-003 8.81e-003 Benzene 2.50e-002 3.57e-002 Toluene 2.57e-002 4.33e-002 Xylenes 1.54e-002 2.99e-002 C8+ Heavies 1.87e-002 5.82e-002 -----------Total Components 100.00 3.71e+001

FLASH TANK GLYCOL STREAM Temperature: 120.00 deg. F Flow Rate: 7.66e+000 gpm

1

Page: 8

Loading (lb/hr) Conc. Component (wt%) -----TEG 9.66e+001 4.15e+003 Water 2.75e+000 1.18e+002 Carbon Dioxide 1.14e-002 4.90e-001 Nitrogen 1.81e-004 7.78e-003 Methane 2.60e-002 1.12e+000 Ethane 1.63e-002 7.02e-001 Propane 2.45e-002 1.05e+000 Isobutane 1.25e-002 5.39e-001 n-Butane 2.29e-002 9.83e-001 Isopentane 1.14e-002 4.91e-001 n-Pentane 1.14e-002 4.88e-001 n-Hexane 7.56e-003 3.25e-001 Cyclohexane 1.41e-002 6.05e-001 Other Hexanes 9.58e-003 4.12e-001 Heptanes 1.53e-002 6.58e-001 Methylcyclohexane 2.32e-002 9.97e-001 2,2,4-Trimethylpentane 4.35e-004 1.87e-002 Benzene 5.14e-002 2.21e+000 Toluene 1.03e-001 4.44e+000 Xylenes 1.93e-001 8.30e+000 C8+ Heavies 7.55e-002 3.25e+000 Total Components 100.00 4.30e+003

FLASH GAS EMISSIONS

Control Method: Recycle/recompression Control Efficiency: 100.00

Note: Flash Gas Emissions are zero with the Recycle/recompression control option.

REGENERATOR OVERHEADS STREAM

Carbon Dioxide 3.27e-001 4.90e-001 Nitrogen 8.17e-003 7.78e-003 Methane 2.05e+000 1.12e+000 Ethane 6.86e-001 7.02e-001 Propane 7.03e-001 1.05e+000 Isobutane 2.73e-001 5.39e-001 n-Butane 4.98e-001 9.83e-001 Isopentane 1.98e-001 4.86e-001 n-Pentane 1.97e-001 4.84e-001 n-Hexane 1.10e-001 3.23e-001 Cyclohexane 2.04e-001 5.83e-001 Other Hexanes 1.38e-001 4.05e-001				<i></i>
(vol%) (lb/hr) Water 8.95e+001 5.48e+001 Carbon Dioxide 3.27e-001 4.90e-001 Nitrogen 8.17e-003 7.78e-003 Methane 2.05e+000 1.12e+000 Ethane 6.86e-001 7.02e-001 Propane 7.03e-001 1.05e+000 Isobutane 2.73e-001 5.39e-001 n-Butane 4.98e-001 9.83e-001 Isopentane 1.98e-001 4.86e-001 n-Pentane 1.97e-001 4.84e-001 n-Hexane 1.10e-001 3.23e-001 Cyclohexane 2.04e-001 5.83e-001 Other Hexanes 1.38e-001 4.05e-001 Heptanes 1.92e-001 6.54e-001	Pressure:	14.70 psia		
Nitrogen 8.17e-003 7.78e-003 Methane 2.05e+000 1.12e+000 Ethane 6.86e-001 7.02e-001 Propane 7.03e-001 1.05e+000 Isobutane 2.73e-001 5.39e-001 n-Butane 4.98e-001 9.83e-001 Isopentane 1.98e-001 4.86e-001 n-Pentane 1.97e-001 4.84e-001 n-Hexane 1.10e-001 3.23e-001 Cyclohexane 2.04e-001 5.83e-001 Other Hexanes 1.38e-001 4.05e-001 Heptanes 1.92e-001 6.54e-001		Component		
Isobutane 2.73e-001 5.39e-001 n-Butane 4.98e-001 9.83e-001 Isopentane 1.98e-001 4.86e-001 n-Pentane 1.97e-001 4.84e-001 n-Hexane 1.10e-001 3.23e-001 Cyclohexane 2.04e-001 5.83e-001 Other Hexanes 1.38e-001 4.05e-001 Heptanes 1.92e-001 6.54e-001		Carbon Dioxide Nitrogen Methane Ethane	3.27e-001 8.17e-003 2.05e+000 6.86e-001	4.90e-001 7.78e-003 1.12e+000 7.02e-001
Cyclohexane 2.04e-001 5.83e-001 Other Hexanes 1.38e-001 4.05e-001 Heptanes 1.92e-001 6.54e-001		Isobutane n-Butane Isopentane	2.73e-001 4.98e-001 1.98e-001	5.39e-001 9.83e-001 4.86e-001
		Cyclohexane Other Hexanes Heptanes	2.04e-001 1.38e-001 1.92e-001	5.83e-001 4.05e-001 6.54e-001

2,2,4-Trimethylpentane 4.71e-0	
Benzene 7.90e-0	01 2.10e+000
Toluene 1.30e+0	00 4.09e+000
Xylenes 2.00e+0	000 7.23e+000
C8+ Heavies 4.92e-0	01 2.85e+000
Total Components 100.	00 7.99e+001

COMBUSTION DEVICE OFF GAS STREAM Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 6.53e+000 scfh Component Conc. Loading (vol%) (lb/hr)

Ethane Propane Isobutane	2.02e+001 6.78e+000 6.95e+000 2.69e+000 4.91e+000	3.51e-002 5.27e-002 2.70e-002
	1.95e+000 1.09e+000 2.01e+000	2.42e-002 1.61e-002 2.92e-002
Methylcycloĥexane 2,2,4-Trimethylpentane Benzene		4.77e-002 9.15e-004 1.05e-001
Xylenes C8+ Heavies Total Components		1.43e-001

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901

(307) 352-7292

LIMS ID: Analysis Date/Time: Analyst Initials: Instrument ID: Data File: Date Sampled:	N/A 6/15/2012 ABK Instrument 1 QPC65.D 6/12/2012	1:58 PM	Description: Field: ML#: GC Method:	Little Cyn. Pre Dehy Little Cyn. XTO /Summit Gas Quesbtex	
Component	Mol%)	Wt9	6 LV%	
Methane	90.7292		80.4456	86.0180	
Ethane	5.3537		8.8973	8.0302	
Propane	1.9415		4.7317	2.9941	
Isobutane	0.3949		1.2684	0.7229	
n-Butane	0.4703		1.5106	0.8298	
Neopentane	0.0055		0.0220	0.0118	
Isopentane	0.1494		0.5958	0.3061	
n-Pentane	0.1077		0.4293	0.2182	
2,2-Dimethylbutane	0.0042		0.0201	0.0099	
2,3-Dimethylbutane	0.0083		0.0397	0.0191	
2-Methylpentane	0.0238		0.1134	0.0553	
3-Methylpentane	0.0123		0.0584	0.0280	
n-Hexane	0.0263		0.1252	0.0605	
Heptanes	0.0463		0.2410	0.1021	
Octanes	0.0063		0.0409	0.0181	
Nonanes	0.0068		0.0428	0.0172	
Decanes plus	0.0010		0.0075	0.0033	
Nitrogen	0.3648		0.5647	0.2238	
Carbon Dioxide	0.3477		0.8456	0.3316	
Oxygen	0.0000		0.0000	0.0000	
Hydrogen Sulfide	0.0000		0.0000	0.0000	
Total	100.0000		100.0000	100.0000	
Global Properties	4440.0	Units	DTI VOOF -1 O		
Gross BTU/Real CF	1110.9			0°F and 14.73 psia	
Sat. Gross BTU/Real CF	1092.8 0.9974		BIU/SCF at ou	0°F and14.73 psia	
Gas Compressibility (Z) Specific Gravity	0.6262		air=1		
Avg Molecular Weight	18.095		gm/mole		
Propane GPM	0.532093		gal/MCF		
Butane GPM	0.276785		gal/MCF		
Gasoline GPM	0.145455		gal/MCF		
26# Gasoline GPM	0.294298		gal/MCF		
Total GPM	2.487160		gal/MCF		
Base Mol%	99.805		%v/v		
Sample Temperature:	79		°F		
Sample Pressure:	475		psig		
H2SLength of Stain Tube	e N/A		ppm		

Component	Mol%	Wt%	LV%
Benzene	0.0039	0.0168	0.0061
Toluene	0.0044	0.0222	0.0082
Ethylbenzene	0.0000	0.0000	0.0000
M&P Xylene	0.0041	0.0240	0.0088
O-Xylene	0.0000	0.0000	0.0000
2,2,4-Trimethylpentane	0.0012	0.0075	0.0033
Cyclopentane	0.0000	0.0000	0.0000
Cyclohexane	0.0087	0.0403	0.0165
Methylcyclohexane	0.0096	0.0523	0.0217
Description:	Little Cyn. Pre Dehy		

GRI GlyCalc Information

Component	Mol%	Wt%	LV%
Carbon Dioxide	0.3477	0.8456	0.3316
Hydrogen Sulfide	0.0000	0.0000	0.0000
Nitrogen	0.3648	0.5647	0.2238
Methane	90.7292	80.4456	86.0180
Ethane	5.3537	8.8973	8.0302
Propane	1.9415	4.7317	2.9941
Isobutane	0.3949	1.2684	0.7229
n-Butane	0.4703	1.5106	0.8298
Isopentane	0.1549	0.6178	0.3179
n-Pentane	0.1077	0.4293	0.2182
Cyclopentane	0.0000	0.0000	0.0000
n-Hexane	0.0263	0.1252	0.0605
Cyclohexane	0.0087	0.0403	0.0165
Other Hexanes	0.0486	0.2316	0.1123
Heptanes	0.0185	0.1019	0.0463
Methylcyclohexane	0.0096	0.0523	0.0217
2,2,4 Trimethylpentane	0.0012	0.0075	0.0033
Benzene	0.0039	0.0168	0.0061
Toluene	0.0044	0.0222	0.0082
Ethylbenzene	0.0000	0.0000	0.0000
Xylenes	0.0041	0.0240	0.0088
C8+ Heavies	0.0100	0.0672	0.0298
Subtotal	100.0000	100.0000	100.0000
Oxygen	0.0000	0.0000	0.0000
Total	100.0000	100.0000	100.0000

2013.09.18

	roject Setup I		*					
*******	*********	**********	***************************************					
Project	File	: C:\Us	: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor_Dehy and Tank Models\Little					
Flowsheet Selection Calculation Method Control Efficiency Known Separator Stream		: Oil T	ank with Separator					
		: RVP D	istillation					
		: 100.0	: 100.0%					
		n : Low P						
Entering	g Air Composit	ion : No						
Filed Na	emo	· XTO P	nergy, Inc Little Canyon Compressor Station PTE					
Well Nam			PD (30 BOPD/Tank)					
Date		: 2013.						
*******	***********	**********	******					
* Da	ata Input		*					
*******	************	**********	***************************************					
Separato	or Pressure	: 25.00	[psig]					
-	or Temperature							
	Pressure	: 11.83						
	Temperature	: 70.00						
C10+ 5G		: 0.836						
C10+ MW		: 259.0						
- Low F	Pressure Oil -							
No.	Component		01 %					
1	H2S		.0000					
2	02		.0000					
3	CO2		.0300					
4	N2		-0080					
5	C1		. 4200					
6	C2	-	. 4090					
7	C3		.8670					
8	i-C4		.6120					
9	n-C4		.3330					
10	1-05		.9360					
11	n-C5		.6100					
12	C6		.7410					
13	C7		.3530					
14	CB		.5150					
15	C9		.0330					
16	C10+		.6020					
17	Benzene		.3940					
18	Toluene		.4950					
19	E-Benzene		.2670					
20	Xylenes		.5140					
21	n-C6		.7340					
22	224Trimethy		.1270					
		-						
			1/dav1					
-								
			nsial					
Producti Days of API Grav	ion Rate Annual Operat:	: 60 [bb] ion : 365 [c : 58.8	l/day] days/year]					

* Ca	Iculation Res	lts	*					
Item		controlled						
		and from 1	[lb/hr]					
		con/yr] .250	0.057					

		al HC	4.587	1.047					
		в, C2+	3.094	0.706					
V	OC	s, C3+	2.441	0,557					
U	nc	ontrolled Recover	-	Ive en l					
		Vapor	327.9700 x1E-3						
		HC Vapor GOR	316.9000 x1E-3 5.47	[SCF/bb1]					
		GOR	5.4/	[BCE/DD1]					
_	-	Emission Composit	ion						
		Component	Uncontrolled						
		-	[ton/yr]	[1b/hr]					
1		H25	0.000	0.000					
2		02	0.000	0.000					
3		CO2	0.146	0.033					
4		N2	0.056	0.013					
5		C1	1.492	0.341					
6		C2 C3	0.653	0.149					
8		i-C4	0.584	0.133 0.048					
9		n-C4	0.322	0.074					
		i-C5	0.225	0.051					
	1	n-C5	0.222	0.051					
1	2	C6	0.100	0.023					
1	3	C7	0.325	0.074					
1	4	CB	0.182	0.042					
	5	C9	0.022	0.005					
	6	C10+	0.000	0.000					
	7	Benzene	0.034	0.008					
	8 9	Toluene E-Benzene	0.043 0.001	0.010 0.000					
	9		0.001	0.000					
	ĩ	-	0.167	0.038					
	2		0.002	0.000					
		Total	4.789	1.093					
		Total	4.789	1.093					
		Stream Data							
				LP Oil	Flash Oil	Sale Oil	Flash Gas	W68 Gas	Total Emissions
N	ο.	Stream Data Component	MM	LP Oil mol %	Flash Oil mol %	Sale Oil mol %	Flash Gas mol %	W4S Gas mol %	Total Emissions mol %
N 1	ο.	Stream Data Component H2S	MW 34.80	LP 011 mol % 0.0000	Flash Oil mol % 0.0000	Sale Oil mol % 0.0000	Flash Gas mol % 0.0000	W48 Gas mol % 0.0000	Total Emissions mol % 0.0000
N 1 2	ο.	Stream Data Component H2S O2	MW 34.80 32.00	LP Oil mol % 0.0000 0.0000	Flash Oil mol % 0.0000 0.0000	Sale Oil mol % 0.0000 0.0000	Flash Gas mol % 0.0000 0.0000	W&S Gas mol % 0.0000 0.0000	Total Emissions mol % 0.0000 0.0000
N 1 2 3	ο.	Stream Data Component H2S O2 CO2	MW 34.80 32.00 44.01	LP 011 mol % 0.0000 0.0000 0.0300	Flash Oil mol % 0.0000 0.0000 0.0249	Sale Oil mol % 0.0000 0.0000 0.0170	Flash Gas mol % 0.0000 0.0000 2.0001	W48 Gas mol % 0.0000 0.0000 2.1659	Total Emissions mol % 0.0000 0.0000 2.0976
N 1 2	ο.	Stream Data Component H2S O2	MW 34.80 32.00 44.01 28.01	LP Oil mol % 0.0000 0.0000	Flash Oil mol % 0.0000 0.0000 0.0249 0.0027	Sale Cil mol % 0.0000 0.0000 0.0170 0.0000	Flash Gas mol % 0.0000 0.0000 2.0001 2.0713	W68 Gas mol % 0.0000 0.0000 2.1659 0.7196	Total Emissions mol % 0.0000 0.0000 2.0976 1.2762
N 1 2 3 4	ο.	Stream Data Component H2S 02 CO2 N2	MW 34.80 32.00 44.01	LP Cil mol % 0.0000 0.0000 0.0300 0.0300 0.0080	Flash Oil mol % 0.0000 0.0000 0.0249	Sale Oil mol % 0.0000 0.0000 0.0170	Flash Gas mol % 0.0000 0.0000 2.0001	W48 Gas mol % 0.0000 0.0000 2.1659	Total Emissions mol % 0.0000 0.0000 2.0976
N 1 2 3 4 5	ο.	Stream Data Component H2S O2 CO2 N2 C1	MW 34.80 32.00 44.01 28.01 16.04	LP 011 mol % 0.0000 0.0000 0.0300 0.0080 0.4200	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733	Total Emissions mol % 0.0000 0.0000 2.0976 1.2762 58.9048
N 1 2 3 4 5 6	ο.	Stream Data Component H2S O2 CO2 N2 C1 C2	MW 34.80 32.00 44.01 28.01 16.04 30.07	LP 011 mol % 0.0000 0.0000 0.0300 0.0300 0.080 0.4200 0.4290	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037	W48 Gas mol % 0.0000 0.0000 2.1659 0.7196 59.2733 13.8617	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555
N 1 2 3 4 5 6 7 8 9	0.	Stream Data Component H2S 02 C02 C02 N2 C1 C2 C3 i-C4 n-C4	MW 34.00 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12	LP 011 mol % 0.0000 0.0300 0.0300 0.4200 0.4200 0.4090 0.8670 0.6120 1.3330	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707	W48 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046
N 1 2 3 4 5 6 7 8 9 1	0.	Stream Data Component H2S 02 C02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5	MW 34.00 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15	LP 011 mol % 0.0000 0.0300 0.4200 0.4200 0.4090 0.8670 0.6120 1.3330 1.9360	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.8476 0.6076 1.3274 1.9359	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358	Flash Gas mol % 0.0000 2.0001 2.001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709
N 1 2 3 4 5 6 7 8 9 1 1	o. 0 1	Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.8670 0.6120 1.3330 1.9360 2.6100	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516
N 1 2 3 4 5 6 7 8 9 1 1	0. 1 2	Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.8670 0.6120 1.3330 1.9360 2.6100 2.7410	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527
N 1 2 3 4 5 6 7 8 9 1 1 1 1	0. 0 1 2 3	Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 96.16 100.20	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4200 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530	Flash Oil mol % 0.0000 0.0249 0.027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210
N 1 2 3 4 5 6 7 8 9 1 1 1 1 1	0. 0 1 2 3 4	Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23	LP 011 mol % 0.0000 0.0300 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150	Flash Oil mol % 0.0000 0.0249 0.027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 2.7461 2.3.4079 36.6067	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406
N 1 2 3 4 5 6 7 7 8 9 1 1 1 1 1 1	0 1 2 3 4 5	Stream Data Component 02 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 86.16 100.20 114.23 128.28	LP 011 mol % 0.0000 0.0300 0.0300 0.4200 0.4200 0.4200 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330	Flash Oil mol % 0.0000 0.0249 0.027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119
N 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1	0 1 2 3 4 5	Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23	LP 011 mol % 0.0000 0.0300 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150	Flash Oil mol % 0.0000 0.0249 0.027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 2.7461 2.3.4079 36.6067	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406
N 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1	0 1 2 3 4 5 6 7	Stream Data Component H2S 02 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07	LP 011 mol % 0.0000 0.0300 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000
N 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1	0 1 2 3 4 5 6 7 8	Stream Data Component H2S 02 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 96.16 100.20 114.23 128.28 259.07 78.11	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 1.1018 4.6310 1.4011	Flash Gas mol % 0.0000 2.0001 2.001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718
N 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 2	0 1 2 3 4 5 6 7 8 9 0	Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 C6 C7 C6 C7 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 78.11 92.13 106.17 106.17	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4200 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715 0.2977 0.0047 0.0079	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0 1	Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 78.11 92.13 106.17 106.17 86.18	LP 011 mol % 0.0000 0.0300 0.0300 0.4200 0.4200 0.4200 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140 5.7340	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153 5.7457	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172 5.7624	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715 0.2977 0.0047 0.0079 1.2253	W48 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079 1.2259	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079 1.2256
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0	Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 C6 C7 C6 C7 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 78.11 92.13 106.17 106.17	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4200 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715 0.2977 0.0047 0.0079	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0 1	Stream Data Component H2S 02 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 78.11 92.13 106.17 106.17 86.18	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140 5.7340 0.1270	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153 5.7457 0.1273	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172 5.7624 0.1277	Flash Gas mol % 0.0000 2.0001 2.0011 3.001 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715 0.2977 0.0047 0.0079 1.2253 0.0092	W48 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079 1.2259 0.0092	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079 1.2256 0.0092
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0 1	Stream Data Component H2S 02 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 76.11 92.13 106.17 106.17 86.18 114.24	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140 5.7340 0.1270	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153 5.7457 0.1273	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172 5.7624 0.1277 108.53	Flash Gas mol % 0.0000 2.0001 2.001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.2715 0.2977 0.0047 0.0079 1.2253 0.0092	W48 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079 1.2259 0.0092	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079 1.2256 0.0092
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0 1	Stream Data Component H2S 02 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 76.11 92.13 106.17 106.17 86.18 114.24	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140 5.7340 0.1270	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153 5.7457 0.1273	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172 5.7624 0.1277	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715 0.2977 0.0047 0.0079 1.2253 0.0092	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079 1.2259 0.0092	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3613 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2716 0.2980 0.0047 0.0079 1.2256 0.0092
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0 1	Stream Data Component H2S 02 CC02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rati	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 76.11 92.13 106.17 106.17 86.18 114.24	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140 5.7340 0.1270	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153 5.7457 0.1273	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172 5.7624 0.1277 108.53	Flash Gas mol % 0.0000 2.0001 2.001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.2715 0.2977 0.0047 0.0079 1.2253 0.0092	W48 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079 1.2259 0.0092	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079 1.2256 0.0092
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0 1	Stream Data Component H2S O2 CO2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rati Heating Value	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 78.11 92.13 106.17 106.17 106.17 86.18 114.24 0 (BTU/SCF] [Gas/Air]	LP 011 mol % 0.0000 0.0000 0.0300 0.4200 0.4200 0.4090 0.6120 1.3330 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140 5.7340 0.1270	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153 5.7457 0.1273	Sale Oil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172 5.7624 0.1277 108.53	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715 0.2977 0.0047 0.0079 1.2253 0.0092 30.36 0.0026 1687.54	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079 1.2259 0.0092 30.30 0.0037 1702.39	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079 1.2256 0.0092 30.32 0.0063 1696.27
N 12334556778991111111111111111111222	0 1 2 3 4 5 6 7 8 9 0 1	Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rati Heating Value Gas Gravity	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 259.07 78.11 92.13 106.17 106.17 86.18 114.24 (Gas/Air] F [psia}	LP 011 mol % 0.0000 0.0300 0.4200 0.4200 0.4200 0.6120 1.3330 1.9360 2.6100 2.7410 23.3530 36.5150 11.0330 4.6020 1.3940 5.4950 0.2670 0.5140 5.7340 0.1270 108.04 1.0000	Flash Oil mol % 0.0000 0.0249 0.0027 0.2701 0.3749 0.8476 0.6076 1.3274 1.9359 2.6117 2.7461 23.4079 36.6067 11.0612 4.6139 1.3969 5.5084 0.2677 0.5153 5.7457 0.1273 108.24 0.9974	Sale Cil mol % 0.0000 0.0170 0.0000 0.0514 0.3249 0.8196 0.6013 1.3193 1.9358 2.6141 2.7535 23.4868 36.7386 11.1018 4.6310 1.4011 5.5278 0.2687 0.5172 5.7624 0.1277 108.53 0.9937	Flash Gas mol % 0.0000 2.0001 2.0713 58.3784 13.6037 8.3707 2.3133 3.5033 1.9705 1.9512 0.7525 2.1205 1.0403 0.1080 0.0000 0.2715 0.2977 0.0047 0.0079 1.2253 0.0092 30.36 0.0026 1687.54	W68 Gas mol % 0.0000 2.1659 0.7196 59.2733 13.8617 8.3887 2.3147 3.5054 1.9711 1.9520 0.7529 2.1214 1.0408 0.1146 0.0000 0.2719 0.2982 0.0047 0.0079 1.2259 0.0092 30.30 0.0037 1702.39	Total Emissions mol % 0.0000 2.0976 1.2762 58.9048 13.7555 8.3813 2.3141 3.5046 1.9709 1.9516 0.7527 2.1210 1.0406 0.1119 0.0000 0.2718 0.2980 0.0047 0.0079 1.2256 0.0092 30.32 0.0063 1696.27

,

Spec. Gravity @ 100F 0.675 0.675 0.676

SPL, Inc. 2440 Chambers Street Suite A Venus, TX 76084 817-539-2168 (O) 817-539-2170 (F)

Certificate of Analysis :

12120198-002A

Rykki Tepe

810 Houston Street

Fort Worth, Texas 76102

5/8/2013

For:

Report Date:

Company:	Unitah County
Well:	Tap 5 CDP
Field:	Unitah County
Sample of:	Condensate ;Spot
Conditions:	40 F @ 25 psig
Sampled by:	J.Petree
Sample date:	12/10/2012
Sample Point:	Separator
Remarks:	

MW Analysis: (GPA 2103M) Mol. % Wt. % Sp. Gravity L.V. % 0.008 28.013 0.002 0.002 Nitrogen 0.8094 Methane 0.420 16.043 0.063 0.3000 0.155 **Carbon Dioxide** 0.030 44.010 0.012 0.8180 0.011 0.238 30.070 0.115 0.3562 Ethane 0.409 0.867 44.097 0.357 0.5070 0.520 Propane 0.332 0.436 Iso-butane 0.612 58.123 0.5629 N-butane 1.333 58.123 0.724 0.5840 0.915 **Iso-pentane** 1.936 72,150 1.304 0.6244 1.543 N-pentane 2.610 72.150 1.759 0.6311 2.059 i-Hexanes 2.741 86.177 2.224 0.6795 2.479 n-Hexane 5.734 86.059 4.587 0.6640 5.104 2,2,4 trimethylpentane 114.231 0.135 0.6967 0.143 0.127 Benzene 1.394 78.114 1.017 0.8846 0.848 94.829 20.876 0.7244 21.475 Heptanes 23.353 0.8719 4.002 Toluene 5.495 92.141 4.729 36.813 Octanes 36.515 106.289 36.973 0.7548 0.224 E-benzene 0.267 106,167 0.265 0.8718 0.432 M-,O-,P-xylene 0.514 106.167 0.510 0.8731 12.769 Nonanes 11.033 123.784 12.882 0.7516 0.8366 9.832 **Decanes Plus** 4.602 259.067 11.134 100.000 100.000 100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.7388	0.8366
Api Gravity at 60 °F	60.026	37.629
Molecular Weight	107.078	259.067
Pounds per Gallon (in Vacuum)	6.160	6.975
Pounds per Gallon (in Air)	6.153	6.968
Cu. Ft. Vapor per Gallon @ 14.65 psia	21.762	10.250

Daulli D Lun Ju.

Southern Petroleum Laboratories, Inc.

CERTIFICATE OF ANALYSIS 2012120198-001A

Customer: Attn:	XTO Energy Rykki Tepe	Report Date:	05/08/13
	810 Houston Street Fort Worth, TX 76102	PO / Ref. No.:	
Company:		Sample Of:	Oil
Producer:	XTO Energy XTO Energy	Sample Date/Time:	12/10/2012
Well :	Tap 5 CDP	Sample Psig & Temp:	25 psig @ 40 °F
API #:	Tap 5 CDP	Sampled By:	J.P.
Sample Point:	Heater Treater Unitah County	Cylinder # :	01190
Comments:	Staged Flash from 39.7 psi @ 40 to	0 psi @ 60°F	

Analytical Data

Par	ameters	Results	Units	Method	Lab Tech.	Date Analyzed
Shri	nkage Factor	0.9997		Shrink-EOS	DDO	05/08/13
Flas	h Factor	0.7011	Cu.Ft./STBbl.	Shrink-EOS	DDO	05/08/13
		0.4787	Cu.Ft. Methane/	STBbl.		
		0.0123	Cu.Ft. CO2/STE	Bbl.		

Double To Confe.

Hydrocarbon Laboratory Manager

CERTIFICATE OF ANALYSIS 2012120198-001A

Customer: Attn:	XTO Energy Rykki Tepe		Re	port Date:	05/08/13
A	810 Houston Str	eet	PO	/ Ref. No.:	
	Fort Worth, TX 7		10		
		0102			
Company:	XTO Energy		Sample Of	f:	Oil
Field:	XTO Energy		Sample Da	ate/Time:	12/10/12
Well:	Tap 5 CDP		Sample Ps	sig & Temp:	25 psig @ 40 °F
API #:			Sampled E	By:	J.P.
Sample Point:	Heater Treater		Cylinder #		01190
Comments:	EOS Flash Gas	Composition	-		
	Staged Flash fro	m 39.7 psi @ 40 l	to 0 psi @ 60°F		
		MOL %	WEIGHT %	<u>GPM's @ 14</u>	. <u>73</u>
NITROG	EN	3.512	3.852		_
CO2		1.749	3.015		
METHAN	NE	68.276	42.889		
ETHANE	_	11.029	12.986	4.14	-
PROPA		5.963	10.296	2.176	
I-BUTAN		1.626	3.700	0.499	
N-BUTA		2.375	5.404	0.75	
I-PENTA		1.277 1.302	3.607 3.677	0.350 0.36	
HEXANE		1.110	3.677	0.30	
BENZEN		0.182	0.558	0.060	
HEPTAN		0.926	3.504	0.202	
TOLUEN		0.185	0.666	0.05	
OCTANE		0.442	1.940	0.087	7
E-BENZI	ENE	0.003	0.012	0.00	1
m,o,&p->		0.004	0.017	0.00	
NONAN		0.041	0.203	0.007	
DECANE		0.000	0.000	0.000	—
	TOTALS	100.000	100.000	8.979	5
CALCULATED VA	LUES	······································	-		
			-		
	RY BTU AT 14.73			25.8	
	ET BTU AT 14.73 /E DENSITY	131A, 60 DEG.F		100.9 8884	
	ESSIBILITY FACT	OR		9459	
		~	<u>C2+</u>	<u>C5</u>	+
GPM's (@ 14.73 psia, 60 [Deg.F	8.979	1.40	
· · · · · · · · · · · · · · · · · · ·	- • •	-			

CERTIFICATE OF ANALYSIS 2012120198-001A

Customer: Attn:	XTO Energy Rykki Tepe		Repo	ort Date:	05/08/13
Aun.	810 Houston Stre	t		Ref. No.:	
			PO /	Nel. NO	
	Fort Worth, TX 76	5102			
Company:	XTO Energy		Sample Of:		Oil
Field:	XTO Energy		Sample Date	e/Time:	12/10/12
Well:	Tap 5 CDP		Sample Psig	& Temp:	25 psig @ 40 °F
API #:	·		Sampled By	-	J.P.
Sample Point:	Heater Treater		Cylinder # :		01190
Comments:	EOS Liquid Resid	lue Composition	-,		
00111101100	Staged Flash from	-	o () psi @ 60°F		
· · · · · · · · · · · · · · · · · · ·	ologou i looi i loi	po g to			
		<u>MOL %</u>	WEIGHT %	<u>LV%</u>	4
NITROG	EN	0.005	0.001	0.003	
CO2		0.029	0.012	0.010	
METHA		0.366	0.054	0.129	
ETHANE		0.401	0.111	0.223	
PROPA		0.863	0.350	0.497	
I-BUTAN		0.611	0.327	0.401	
N-BUTA		1.332	0.712	0.907	
I-PENTA		1.937	1.284	1.470	
N-PENT		2.611	1.732	1.967	
HEXANE	_	8.481	6.594	7.106	
BENZEN		1.395	1.002	0.813	
HEPTAN		23.498	20.880	21.694	
TOLUEN		5.499	4.658	3.821	
OCTANE E-BENZI	-	36.544 0.267	37.686 0.261	38.245 0.214	
m,o,&p-2		0.207	0.502	0.214	
NONANI		11.042	12.866	12.758	
DECANE		4.606	10.969	9.335	
DECANE	TOTALS	100.000	100.000	100.000	
	TOTALO		100.000	100.000	
CALCULATED VA	LUES		TOTAL	C10+	
Molecular Weight			108.774	218.083	•
BTU / Lb.			19,931	13,442	
BTU / Gal.			119,159	99,588	
Cu. Ft. / Gal. At 14			20.810	12.862	
Lbs. / Gal. (Absolu			5.979	7.409	
Lbs. / Gal. (Weigh Specific Gravity a			5.971 0.7171	7,399 0.8886	
API Gravity at 60°			65.8	27.7	
	•				

Rykki Tepe 810 Houston Street Fort Worth, Texas 76102

Station Name:Tap 5 CDPStation Location: Unitah CountySample Point:SeparatorCylinder No:Tin Can

Certificate of Analysis

Number: 3040-12120198-003A

Venus Laboratory 2440 Chambers Street, Suite A Venus, TX 76084

Spot

Jan. 08, 2013

Sampled By:J. PetreeSample Of:CondensateSample Date:12/10/2012Sample Conditions: 40 °F

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Reid Vapor Pressure @ 100°F	ASTM D-323	5.6	psia	TF	01/04/2013
API Gravity @ 60° F		58.8	° API	TF	01/04/2013
API Specific Gravity @ 60° F		0.7436	° API	TF	01/04/2013

Page: 1 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: LCU 2-6GX TEG Dehydrator File Name: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor\ Dehy and Tank Models\LCU 2-6GX Dehy PTE.ddf Date: September 12, 2013 DESCRIPTION: Description: 1.5 mmscfd Kimray 4015 pump - 0.667 gph LCU 5-12H gas analysis Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 60.00 deg. F Pressure: 75.00 psig Wet Gas Water Content: Saturated Component Conc. (vol 욱) _____ Carbon Dioxide 0.6896 Nitrogen 0.4261 Methane 88.9238 Ethane 6.1972 Propane 2.1341
 Isobutane
 0.4426

 n-Butane
 0.5157

 Isopentane
 0.2060

 n-Pentane
 0.1547

 n-Hexane
 0.0565
 Cyclohexane 0.0251 Other Hexanes 0.0884 Heptanes 0.0581 Methylcyclohexane 0.0263 4-Trimethylpentane 0.0030 2,2,4-Trimethylpentane 0.0030 Benzene 0.0074
 Benzene
 0.0074

 Toluene
 0.0072

 Ethylbenzene
 0.0005

 Xylenes
 0.0056

 C8+ Heavies
 0.0321
 DRY GAS: Flow Rate: 1.5 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF Flow Rate: 1.5 MMSCF/day LEAN GLYCOL:

Glycol Type:	TEG			
Water Content:		1.5	wt≹	H20
Flow Rate:		0.7	gpm	

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.030 acfm gas/gpm glycol

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: LCU 2-6GX TEG Dehydrator File Name: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor_Dehy and Tank Models\LCU 2-6GX Dehy PTE.ddf Date: September 12, 2013

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.3873	9.294	1.6962
Ethane	0.1045	2.508	0.4577
	0.1058	2.539	
Propane			
Isobutane	0.0487	1.170	0.2134
n-Butane	0.0785	1.885	0.3440
Isopentane	0.0503	1.207	0.2203
n-Pentane	0.0502	1.204	0.2197
n-Hexane	0.0473	1.136	0.2072
Cyclohexane	0.0841	2.018	0.3683
Other Hexanes	0.0527	1.264	0.2307
ounce incrance	0.002/	1.201	V1230/
Heptanes	0.1411	3,386	0.6180
Methylcyclohexane	0.1518	3.644	0.6651
2,2,4-Trimethylpentane	0.0038	0.090	0.0165
Benzene	0.2044	4.906	0.8954
Toluene	0.3861	9.266	1.6911
Totuene	0.5001	9.200	1.0911
Ethylbenzene	0.0481	1.154	0.2106
Xylenes	0.6498	15.596	2.8462
C8+ Heavies	0.6179	14.829	2.7063
COT INCOVICE	0.01/5	14.025	2.7005
Total Emissions	3.2124	77.097	14.0702
Total Hydrocarbon Emissions	3.2124	77.097	14.0702
Total VOC Emissions	2.7206	65.295	11.9163
Total HAP Emissions	1.3395	32.148	5.8670
Total BTEX Emissions	1.2884	30.922	5.6433

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: LCU 2-6GX TEG Dehydrator File Name: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor_Dehy and Tank Models\LCU 2-6GX Dehy PTE.ddf Date: September 12, 2013

DESCRIPTION:

Description: 1.5 mmscfd Kimray 4015 pump - 0.667 gph LCU 5-12H gas analysis

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0,3873	9.294	1.6962
Ethane	0.1045	2.508	0.4577
Propane	0.1058	2.539	0.4634
Isobutane	0.0487	1.170	0.2134
n-Butane	0.0785	1.885	0.3440
Isopentane	0.0503	1.207	0.2203
n-Pentane	0.0502	1.204	0.2197
n-Hexane	0.0473	1.136	0.2072
Cyclohexane	0.0841	2.018	0.3683
Other Hexanes	0.0527	1,264	0.2307
Heptanes	0.1411	3.386	0.6180
Methylcyclohexane	0.1518	3.644	0.6651
2,2,4-Trimethylpentane	0.0038	0.090	0.0165
Benzene	0.2044	4.906	0.8954
Toluene	0.3861	9.266	1.6911
Ethylbenzene	0.0481	1.154	0.2106
Xylenes	0.6498	15.596	2.8462
C8+ Heavies	0.6179	14.829	2.7063
Total Emissions	3.2124	77.097	14.0702
Total Hydrocarbon Emissions	3.2124	77.097	14.0702
Total VOC Emissions	2.7206		11.9163
Total HAP Emissions	1.3395	32.148	5.8670
Total BTEX Emissions	1.2884	30.922	5.6433

EQUIPMENT REPORTS:

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 6.97	lbs. H2O/MMSCF
Temperature: Pressure:		deg. F psig
Dry Gas Flow Rate: Glycol Losses with Dry Gas:		MMSČF/day
Wet Gas Water Content:	Saturated	,
Calculated Wet Gas Water Content: Calculated Lean Glycol Recirc. Ratio:		lbs. H2O/MMSCF gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.98%	95.02%
Carbon Dioxide	99.90%	0.10%
Nitrogen	100.00%	0.00%
Methane	100.00%	0.00%
Ethane	99.98%	0.02%
Propane	99.94%	0.06%
Isobutane	99.90%	0.10%
n-Butane	99.85%	0.15%
Isopentane	99.81%	0.19%
n-Pentane	99.74%	0.26%
n-Hexane	99.42%	0.58%
Cyclohexane	97.60%	2.40%
Other Hexanes	99.59%	0.41%
Heptanes	98.54%	1.46%
Methylcyclohexane	96.44%	3.56%
2,2,4-Trimethylpentane	99.35%	0.65%
Benzene	78.55%	21.45%
Toluene	64.69%	35.31%
Ethylbenzene	45.02%	54.98%
Xylenes	33.67%	66.33%
C8+ Heavies	93.15%	6.85%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water Carbon Dioxide Nitrogen Methane Ethane	40.398 0.008 0.008 0.008 0.008	59.61% 100.00% 100.00% 100.00% 100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 0.47% 0.48%	100.00% 100.00% 100.00% 99.53% 99.52%
n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	0.49% 3.18% 0.97% 0.50% 3.99%	99.51% 96.82% 99.03% 99.50% 96.01%
2,2,4-Trimethylpentane	1.47%	98.53%

		Page :	3
Benzene	5.00%	95.00%	
Toluene	7.90%	92.10%	
Ethylbenzene	10.40%	89.60%	
Xylenes	12.90%	87.10%	
C8+ Heavies	12.00%	88.00%	

STREAM REPORTS: _____ WET GAS STREAM Temperature: 60.00 deg. F Pressure: 89.70 psia Flow Rate: 6.27e+004 scfh Component Conc. Loading (vol%) (lb/hr) Water 2.94e-001 8.74e+000 Carbon Dioxide 6.88e-001 5.00e+001 Nitrogen 4.25e-001 1.97e+001 Methane 8.87e+001 2.35e+003 Ethane 6.18e+000 3.07e+002 Propane 2.13e+000 1.55e+002 Isobutane 4.41e-001 4.24e+001 n-Butane 5.14e-001 4.94e+001 Isopentane 2.05e-001 2.45e+001 n-Pentane 1.54e-001 1.84e+001 n-Hexane 5.63e-002 8.02e+000 Cyclohexane 2.50e-002 3.48e+000 Other Hexanes 8.81e-002 1.26e+001 Heptanes 5.79e-002 9.59e+000 Methylcyclohexane 2.62e-002 4.25e+000 2,2,4-Trimethylpentane 2.99e-003 5.65e-001 Benzene 7.38e-003 9.52e-001 Toluene 7.18e-003 1.09e+000 Ethylbenzene 4.99e-004 8.75e-002 Xylenes 5.58e-003 9.80e-001 C8+ Heavies 3.20e-002 9.01e+000 Total Components 100.00 3.08e+003

DRY GAS STREAM

Temperature: 60.00 deg. F Pressure: 89.70 psia Flow Rate: 6.25e+004 scfh Component Conc. Loading (vol%) (lb/hr) Water 1.47e-002 4.36e-001 Carbon Dioxide 6.89e-001 5.00e+001 Nitrogen 4.26e-001 1.97e+001 Methane 8.89e+001 2.35e+003 Ethane 6.20e+000 3.07e+002 Propane 2.13e+000 1.55e+002

Isobutane 4.42e-001 4.23e+001 n-Butane 5.15e-001 4.93e+001 Isopentane 2.06e-001 2.44e+001 n-Pentane 1.54e-001 1.83e+001 n-Hexane 5.62e-002 7.98e+000 Cyclohexane 2.45e-002 3.40e+000 Other Hexanes 8.80e-002 1.25e+001 Heptanes 5.73e-002 9.45e+000 Methylcyclohexane 2.54e-002 4.10e+000 2,2,4-Trimethylpentane 2.98e-003 5.61e-001 Benzene 5.81e-003 7.48e-001 Toluene 4.66e-003 7.07e-001 Ethylbenzene 2.25e-004 3.94e-002 Xylenes 1.89e-003 3.30e-001 C8+ Heavies 2.99e-002 8.39e+000 _____ Total Components 100.00 3.06e+003

LEAN GLYCOL STREAM

Temperature: Flow Rate:	60.00 deg. F 6.66e-001 gpm		
	Component	(wt%)	Loading (lb/hr)
	TEG	9.84e+001	
	Water	1.50e+000	5.63e+000
	Carbon Dioxide		
		2.45e-014	
	Methane	1.02e-018	3.81e-018
	Ethane	8.64e-009	3.24e-008
	Propane	9.52e-010	3.57e-009
	Isobutane	3.50e-010	1.31e-009
	n-Butane	4.81e-010	1.81e-009
	Isopentane	6.35e-005	2.38e-004
	n-Pentane	6.43e-005	2.41e-004
	n-Hexane	6.21e-005	2.33e-004
	Cyclohexane	7.37e-004	2.77e-003
	Other Hexanes	1.38e-004	5.17e-004
	Heptanes	1.87e-004	7.03e-004
	Methylcyclohexane	1.68e-003	6.31e-003
2,2,	4-Trimethylpentane		
		2.87e-003	
	Toluene	8.83e-003	3.31e-002
	Ethylbenzene	1.49e-003	5.58e-003
		2.57e-002	
	C8+ Heavies	2.25e-002	8.43e-002
	Total Components	100.00	3.75e+002

RICH GLYCOL AND PUMP GAS STREAM Temperature: 60.00 deg. F Pressure: 89.70 psia Flow Rate: 6.90e-001 gpm NOTE: Stream has more than one phase.

Component Conc. Loading

Page: 4

	(wt%)	(lb/hr)
Water Carbon Dioxide Nitrogen	9.55e+001 3.61e+000 1.44e-002 8.33e-004 1.00e-001	1.39e+001 5.55e-002 3.22e-003
Propane Isobutane	2.70e-002 2.74e-002 1.26e-002 2.03e-002 1.31e-002	1.06e-001 4.87e-002 7.85e-002
n-Hexane Cyclohexane Other Hexanes		4.75e-002 8.68e-002 5.32e-002
	9.88e-004 5.57e-002 1.08e-001	3.82e-003 2.15e-001 4.19e-001
C8+ Heavies		7.02e-001
Total Components	100.00	3.87e+002

REGENERATOR OVERHEADS STREAM

essure: 14.70 psia bw Rate: 1.97e+002 scfh Component Conc. Loading (vol%) (lb/hr) Water 8.90e+001 8.31e+000 Carbon Dioxide 2.43e-001 5.55e-002 Nitrogen 2.22e-002 3.22e-003 Methane 4.66e+000 3.87e-001 Ethane 6.70e-001 1.04e-001
Water 8.90e+001 8.31e+000 Carbon Dioxide 2.43e-001 5.55e-002 Nitrogen 2.22e-002 3.22e-003 Methane 4.66e+000 3.87e-001
Carbon Dioxide 2.43e-001 5.55e-002 Nitrogen 2.22e-002 3.22e-003 Methane 4.66e+000 3.87e-001
Nitrogen 2.22e-002 3.22e-003 Methane 4.66e+000 3.87e-001
Methane 4.66e+000 3.87e-001
Ethane 6.70e-001 1.04e-001
Propane 4.63e-001 1.06e-001
Isobutane 1.62e-001 4.87e-002
n-Butane 2.61e-001 7.85e-002
Isopentane 1.34e-001 5.03e-002
n-Pentane 1.34e-001 5.02e-002
n-Hexane 1.06e-001 4.73e-002
Cyclohexane 1.93e-001 B.41e-002
Other Hexanes 1.18e-001 5.27e-002
Heptanes 2.72e-001 1.41e-001
Methylcyclohexane 2.98e-001 1.52e-001
2,2,4-Trimethylpentane 6.35e-003 3.76e-003
Benzene 5.05e-001 2.04e-001
Toluene 8.08e-001 3.86e-001
Ethylbenzene 8.74e-002 4.81e-002
Xylenes 1.18e+000 6.50e-001
C8+ Heavies 7.00e-001 6.18e-001
Total Components 100.00 1.16e+001

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901

(307) 352-7292

LIMS ID: Analysis Date/Time: Analyst Initials: Instrument ID: Data File: Date Sampled:	N/A 2/3/2009 AST Instrument 1 QPC81.D 1/28/2009	3:43 PM	Description: Field: ML#: GC Method:	LCU 5-1 LCU XTO/RS Quesbte	0572RF	
Component	Mol%		Wt%			LV%
Methane	88.9238		76.7043		83.4814	
Ethane	6.1972		10.0195		9.2044	
Propane	2.1341		5.0599		3.2590	
Isobutane	0.4426		1.3832		0.8024	
n-Butane	0.5157		1.6116		0.9011	
Neopentane	0.0065		0.0251		0.0138	
Isopentane	0.1995		0.7738		0.4046	
n-Pentane	0.1547		0.6001		0.3105	
2,2-Dimethylbutane	0.0070		0.0324		0.0162	
2,3-Dimethylbutane	0.0143		0.0661		0.0324	
2-Methylpentane	0.0433		0.2006		0.0996	
3-Methylpentane	0.0238		0.1104		0.0539	
n-Hexane	0.0565		0.2616		0.1286	
Heptanes	0.1271		0.6322		0.2741	
Octanes	0.0190		0.1173		0.0526	
Nonanes	0.0156		0.1007		0.0429	
Decanes plus	0.0036		0.0276		0.0123	
Nitrogen	0.4261		0.6418		0.2589	
Carbon Dioxide	0.6896		1.6318		0.6513	
Oxygen	0.0000		0.0000		0.0000	
Hydrogen Sulfide	0.0000		0.0000		0.0000	
Total	100.0000		100.0000		100.0000	
Global Properties		Units				
Gross BTU/Real CF	1128.7		BTU/SCF at 60)°F and14	1.73 psia	
Sat.Gross BTU/Real CF	1110.0		BTU/SCF at 60)°F and14	1.73 psia	
Gas Compressibility (Z)	0.9973					
Specific Gravity	0.6435		air=1			
Avg Molecular Weight	18.599		gm/mole			
Proparte GPM	0.586726		gal/MCF			
Butane GPM	0.306682		gal/MCF			
Gasoline GPM	0.241561		gal/MCF			
26# Gasoline GPM	0.405649		gal/MCF			
Total GPM	1.13683.6		gal/MCF			
Base Mol%	99.739		%v/v			
Sample Temperature:	28		°F			
Sample Pressure:	309		psig			
Reviewed By:						

Component	Mol%	Wt%	LV%
Benzene	0.0074	0.0309	0.0114
Toluene	0.0072	0.0354	0.0133
Ethylbenzene	0.0005	0.0031	0.0012
M&P Xylene	0.0046	0.0261	0.0098
O-Xylene	0.0010	0.0058	0.0022
2,2,4-Trimethylpentane	0.0030	0.0181	0.0082
Cyclopentane	0.0000	0.0000	0.0000
Cyclohexane	0.0251	0.1138	0.0474
Methylcyclohexane	0.0263	0.1390	0.0587
Description:	LCU 5-12H		

GRI GlyCalc Information

Component	Mol%	Wt%	LV%
Carbon Dioxide	0.6896	1.6318	0.6513
Hydrogen Sulfide	0.0000	0.0000	0.0000
Nitrogen	0.4261	0.6418	0.2589
Methane	88.9238	76.7043	83.4814
Ethane	6.1972	10.0195	9.2044
Propane	2.1341	5.0599	3.2590
Isobutane	0.4426	1.3832	0.8024
n-Butane	0.5157	1.6116	0.9011
Isopentane	0.2060	0.7989	0.4184
n-Pentane	0.1547	0.6001	0.3105
Cyclopentane	0.0000	0.0000	0.0000
n-Hexane	0.0565	0.2616	0.1286
Cyclohexane	0.0251	0.1138	0.0474
Other Hexanes	0.0884	0.4095	0.2021
Heptanes	0.0581	0.2950	0.1351
Methylcyclohexane	0.0263	0.1390	0.0587
2,2,4 Trimethylpentane	0.0030	0.0181	0.0082
Benzene	0.0074	0.0309	0.0114
Toluene	0.0072	0.0354	0.0133
Ethylbenzene	0.0005	0.0031	0.0012
Xylenes	0.0056	0.0319	0.0120
C8+ Heavies	0.0321	0.2106	0.0946
Subtotal	100.0000	100.0000	100.0000
Oxygen	0.0000	0.0000	0.0000
Total	100.0000	100.0000	100.0000

	ject Setup Infor	

Project F	'ile	: C:\Users\ETullos\Desktop\Work\142 - XTO\LCU Syn Minor\ Dehy and Tank Models\LCU 2-6
Flowsheet	8election	: Oil Tank with Separator
Calculati		: RVP Distillation
Control E	fficiency	: 100.0%
		: Low Pressure Oil
Entering	Air Composition	: No
Filed Nam	6	: LCU 2-6GX Tanks
Well Name		: Use RBU 18-10E Analysis
Date		: 2013.08.30

	a Input	*

Senarator	Pressure	
Ambient P	Temperature ressure	: 11.83[psia]
	emperature	: 70.00[F]
C10+ SG		: 0.7868
C10+ MW		: 140.674
Low Pr	essure Oil	
No.	Component	mol %
1	925	0.0000
2	02	0.000
3	C02	0.0130
4	N2	0.0000
5	C1	1.1910
6	C2	1.0710
7	C3	1.5480
в	1-C4	0.8540
9	n-C4	1.4980
10	i-C5	1.5370
11	n-C5	1.6350
12	C6	1.1490
13	C7	7.9510
14	C8	23.5920
15	C9	16.1210
16	C10+	21.0870
17	Benzené	2.7160
18	Toluene	5.5540
19	E-Benzene	0.7440
20	Xylenes	9.4610
21	n-C6	2.2780
22	224Trimethylp	0.0000
Sales (011	
Production		: 26[bb1/day]
Days of A		: 365 [days/year]
API Gravi		: 55.9
Reid Vapor	r Pressure	: 6.20[psia]
+ Calo	culation Results	***************************************

Emissio	-	
Item	Uncont	trolled Uncontrolled
	[ton/]	(Ib/hr]
	s 0.310	0.071

	:al HC :s, C2+	7.974 5.970	1.021 1.363						
	cs, C3+	4.124	0.942						
	.8, 03+	4.124	0.342						
Unc	Uncontrolled Recovery Info.								
	Vapor	538.8300 x1E-3	[MSCFD]						
	HC Vapor	536.6800 x1E-3	[MSCFD]						
	GOR	20.72	[SCF/bb	1]					
	Emission Composi								
No	Component	Uncontrolled	Uncontr						
	1100	[ton/yr]	[1b/hr] 0.000						
1 2	H2S 02	0.000 0.000	0.000						
∡ 3	C02	0.046	0.011						
4	N2	0.000	0.000						
5	C1	2.004	0.458						
6	C2	1.046	0.421						
7	C3	1.607	0.367						
8	1-C4	0.501	0.114						
9	n-C4	0.617	0.141						
10	i-C5	0.313	0.071						
11	n-C5	0.244	0.056						
12	C6	0.069	0.016						
13 14	C7 C8	0.184 0.196	0.042						
15	C9	0.051	0.012						
16	c10+	0.026	0.006						
17	Benzene	0.099	0.023						
18	Toluene	0.066	0.015						
19	E-Benzene	0.003	0.001						
20		0.037	0.008						
21	n-C6	0.109	0.025						
22	224Trimethy1p	0.000	0.000						
	Total	8.018	1.031						
	Stream Data								
	Component	MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emissions	
	•		mol %	mol %	mol %	mol %	mol %	mol %	
1	H2S	34.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
2	02	32.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
3	CO2	44.01	0.0130	0.0048	0.0039	0.3993	0.4035	0.3997	
4	N2	28.01	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
5 6	C1 C2	16.04 30.07	1.0710	0.1996 0.5943	0.0808	48.1509 23.6499	48.0894 23.7012	48.1445 23.6553	
7	C3	44.10	1.5480	1.2841	1.2524	14.0490	14.0467	14.0479	
8	i-C4	58.12	0.8540	0.8019	0.7956	3.3210	3.3204	3.3217	
9	n-C4	58.12	1.4980	1.4432	1.4366	4.0946	4.0937	4.0945	
10	i-C5	72.15	1.5370	1.5342	1.5338	1.6718	1.6711	1.6717	
	n-C5	72.15	1.6350	1.6420	1.6429	1.3015	1.3012	1.3014	
12		86.16	1.1490	1.1665	1.1686	0.3181	0.3180	0.3181	
13		100.20	7.9510	8.1034	8.1217	0.7305	0.7302	0.7304	
14 15		114.23 128.20	23.5920		24.1337 16.4984	0.6819	0.6816 0.1703	0.6019 0.1612	
	C10+	140.67	21.0870		21.5840	0.0703	0.0703	0.0703	
17		78.11	2.7160	2.7630	2.7687	0.4885	0.4891	0.4085	
18		92.13	5.5540	5.6654	5.6788	0.2773	0.2776	0.2773	
19		106.17	0.7440	0.7595	0.7613	0.0121	0.0121	0.0121	
	Xylenes	106.17	9.4610	9.6579	9.6015	0.1340	0.1342	0.1340	
21		86.18	2.2780	2.3158	2.3203	0.4894	0.4893	0.4094	
22	224Trimethylp	114.24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	MN		109.32	110.98	111.17	30.91	30.92	30.91	
	Stream Mole Rati	Lo	1.0000	0.9793	0.9769	0.0207	0.0024	0.0231	
	Heating Value	[BTU/SCF]				1791.78	1792.60	1791.86	
	Gas Gravity	[Gas/Air]				1.07	1.07	1.07	
	Bubble Pt. 0 100		50.65	15.27	11.06				
	RVP @ 100F	[psia]	14.60	7.41	6.64				

Spec. Gravity @ 100F 0.715 0.718 0.718

+ ---

Rykki Tepe 810 Houston Street Fort Worth, Texas 76102

Station Name: RBU 18-10E Station Number: RS0686RF Station Location: Unitah County Sample Point: Separator Certificate of Analysis Number: 3040-12120196-004A Venus Laboratory 2440 Chambers Street, Suite A Venus, TX 76084

Jan. 09, 2013

Sampled By:J. PetreeSample Of:CondensateSpotSample Date:12/10/2012Sample Conditions: 60 °FCylinder No:Tin Can

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Reid Vapor Pressure @ 100°F	ASTM D-323	6.2	psia	TF	01/02/2013
API Gravity @ 60° F		55.91	° API	TF	01/02/2013
API Specific Gravity @ 60° F		0.7551	° API	TF	01/02/2013

SPL, Inc. 2440 Chambers Street Suite A Venus, TX 76084 817-539-2168 (O) 817-539-2170 (F)

Certificate of Analysis :

12120196-003A

For:

Report Date:

Rykki Tepe

Company:	Unitah County
Well:	RBU 18-10E
Field:	Unitah County
Sample of:	Condensate ;Spot
Conditions:	60 F @ 190 psig
Sampled by:	J.Petree
Sample date:	12/10/2012
Sample Point:	Separator
Remarks:	

810 Houston Street Fort Worth, Texas 76102

1/9/2013

Analysis: (GPA 2103M) Mol. % MW Wt. % Sp. Gravity L.V. % Nitrogen 0.000 28.013 0.000 0.8094 0.000 Methane 0.3000 1.191 16.043 0.175 0.443 **Carbon Dioxide** 0.013 44.010 0.005 0.8180 0.005 30.070 0.295 0.3562 Ethane 1.071 0.628 Propane 1.548 44.097 0.625 0.5070 0.935 Iso-butane 0.854 58.123 0.455 0.5629 0.613 1.036 N-butane 1.498 58.123 0.798 0.5840 1.234 **Iso-pentane** 1.537 72.150 1.016 0.6244 N-pentane 1.635 72.150 1.081 0.6311 1.299 i-Hexanes 1.149 86.177 0.913 0.6795 1.042 n-Hexane 2.278 86.013 1.787 0.6640 2.044 2,2,4 trimethylpentane 0.000 114.231 0.000 0.6967 0.000 2.716 78.114 1.943 0.8846 1.661 Benzene Heptanes 7.951 91.795 7.026 0.7419 7.511 Toluene 5.554 92.141 4.688 0.8719 4.066 Octanes 23.592 106.667 23.789 0.7693 24.016 0.744 106.167 0.723 0.8718 0.627 E-benzene M-,O-,P-xylene 9.461 106.167 9.201 0.8731 8.001 18.308 18.637 Nonanes 16.121 117.072 0.7855 **Decanes Plus** 21.087 0.7868 26.202 140.674 27.172 100.000 100.000 100.000

Calculated Values	Total Sample	Decanes Plus
Specific Gravity at 60 °F	0.7586	0.7868
Api Gravity at 60 °F	55.020	48.354
Molecular Weight	109.170	140.674
Pounds per Gallon (in Vacuum)	6.325	6.559
Pounds per Gallon (in Air)	6.318	6.552
Cu. Ft. Vapor per Gallon @ 14.65 psia	21.917	17.750

Daulli D. L.m. Jr.

Southern Petroleum Laboratories, Inc.

CERTIFICATE OF ANALYSIS 2012120196-003A

Customer:	XTO Energy	Report Date:	01/23/13
Attn:	Rykki Tepe		
	810 Houston Street	PO / Ref. No.:	
	Fort Worth, TX 76102		

Company:	Unitah County	Sample Of:	Oil
Producer:	XTO Energy	Sample Date/Time:	12/10/2012
Well :	RBU 18-10E	Sample Psig & Temp:	190 psig @ 60 °F
API #:		Sampled By:	J.P.
Sample Point:	Heater Treater	Cylinder # :	1393

Comments: Staged Flash from 204.7 psi @ 60°F to 0 psi @ 60°F

Analytical Data

					Lab	Date
Para	ameters	Results	Units	Method	Tech.	Analyzed
Shrin	kage Factor	0.9937		Shrink-EOS	DDO	01/23/13
Flash	Factor	12.253	Cu.Ft./STBbl.	Shrink-EOS	DDO	01/23/13
		7.2937	Cu.Ft. Methane/	STBbl.		
		0.0515	Cu.Ft. CO2/STE	Bbl.		

Double Dougle.

Hydrocarbon Laboratory Manager

CERTIFICATE OF ANALYSIS 2012120196-003A

Customer: Attn:	XTO Energy Rykki Tepe		Report	t Date:	01/23/13
	810 Houston Street Fort Worth, TX 76102		PO / R	ef. No.:	
Company: Field: Well: API #: Sample Point:	Unitah County XTO Energy RBU 18-10E Heater Treater	9 9 9	Sample Of: Sample Date/ Sample Psig & Sampled By: Cylinder # :		Oil 12/10/12 190 psig @ 60 °F J.P. 1393
Comments:	EOS Flash Gas Comp Staged Flash from 204		0.0 nsi @ 60°F		
NITROG CO2 METHAN	EN (0.000 0.420	EIGHT % G 0.000 0.690 35.597	PM's @ 14.	<u>73</u>
ETHANE PROPAN I-BUTAN	E 20	0.880 9.826 2.301	23.403 16.152 4.985	7.849 3.586 0.707	
N-BUTA 1-PENTA N-PENTA HEXANE	NE ANE	2.829 1.118 0.910 0.534	6.129 3.007 2.446 1.684	0.902 0.307 0.252 0.130	
BENZEN HEPTAN TOLUEN	IES	0.480 0.375 0.263	1.397 1.353 0.904	0.172 0.082 0.079	

1.436

0.045

0.428

0.345

0.001

100.000

-

0.067

0.003 0.028

0.013

0.000

14.177

REAL DRY BTU AT 14.73 PSIA, 60 DEG.F	1585.2	
REAL WET BTU AT 14.73 PSIA, 60 DEG.F	1557.6	
RELATIVE DENSITY	0.9331	
COMPRESSIBILITY FACTOR	0.99350	
	<u>C2+</u>	<u>C5+</u>
GPM's @ 14.73 psia, 60 Deg.F	14.177	1.134

0.343

0.011

0.108

0.073

0.000

100.000

OCTANES

NONANES

CALCULATED VALUES

E-BENZENE

m,o,&p-XYLENE

DECANES PLUS

TOTALS

CERTIFICATE OF ANALYSIS 2012120196-003A

Customer: Attn:	XTO Energy Rykki Tepe		Repo	rt Date:	01/23/13
	810 Houston Stre	et	PO / F	Ref. No.:	
	Fort Worth, TX 76				
Company:	Unitah County		Sample Of:		Oil
Field:	XTO Energy		Sample Date	/Time:	12/10/12
Well:	RBU 18-10E		Sample Psig		190 psig @ 60 °F
API #:			Sampled By:	-	J.P.
Sample Point:	Heater Treater		Cylinder # :		1393
Comments:	EOS Liquid Resid	lua Compositio	-		1555
Comments.	-				
	Staged Flash Iron	n 204.7 psi @ 0	60°F to 0 psi @ 60°F		
		MOL %	WEIGHT %	LV%	
NITROG	EN	0.000	0.000	0.000	
CO2		0.007	0.003	0.003	
METHAN	NE	0.389	0.056	0.139	
ETHANE		0.799	0.216	0.452	
PROPA	NE	1.434	0.569	0.840	
I-BUTAN	IE	0.834	0.436	0.556	
N-BUTA		1.480	0.773	1. 024	
I-PENTA		1.543	1.001	1.191	
N-PENT		1.645	1.067	1.260	
HEXANE		3.467	2.636	2.954	
BENZEN		2.747	1.929	1.629	
HEPTAN		8.055	7.000	7.562	
TOLUEN		5.627	4.661	3.975	
OCTANE		23.912	24.117	25.446	
E-BENZI		0.754	0.720	0.614	
m,o,&p-2		9.590	9.154	7.713	
NONANE	-	16.342	18.623	19.200 25.444	
DECANE	TOTALS	21.377	27.038	100.000	•
	TOTALS	100.000	100.000	100.000	
CALCULATED VA	LUES		TOTAL	C10+	
Molecular Weight			111.219	135.623	
BTU / Lb.			20,600	21,615	
BTU / Gal.			128,050	144,729	
Cu. Ft. / Gal. At 14			21.160	18.692	
Lbs. / Gal. (Absola			6.216	6.696	
Lbs. / Gal. (Weigh Specific Gravity a			6.208 0.7 4 56	6.687 0.8031	
API Gravity at 60°	, ,		58.3	44.7	
the starting at our	•		- 2 · 2		

April 7, 2014

Alternate Designated Representative EPA Region 8 Operations 40 CFR Part 71, 40 CFR Part 63

Via USPS Certified Mail: 7013 2630 0001 2576 9242

Mr. Eric Wortman Office of Partnership & Regulatory Assistance EPA Region 8 (AP-AR) 1595 Wynkoop Street Denver, CO 80202-1129

To Whom It May Concern:

XTO Energy, Inc. (XTO) respectfully submits an Alternative Designated Responsible Official for 40 CFR 71 and 40 CFR 63. XTO confirms that the individuals listed in the table below meet the definition of Responsible Official stated in 40 CFR 63.2 and 40 CFR 71.2.

Designated Responsible Official	Alternate Designated Responsible Official
Mr. Kenneth S. Rose	Timothy Hermann
Sr. Vice President of Midstream Operations	Manager of Midstream Operations
810 Houston Street	810 Houston Street
Fort Worth, TX 76102	Fort Worth, TX 76102
817-885-1623 - Office	817-885-2584 - Office
RO Designation began 01/01/2012	Alt. RO Designation begins 04/07/2014

As stated in 40 CFR 63.2 and 40 CFR 71.2, Responsible Official is considered the following for a corporation such as XTO:

- (1) For a corporation: A president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy or decisionmaking functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities and either:
 - (i) The facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars);
 - (ii) The delegation of authority to such representative is approved in advance by the Administrator.

Should you have any questions, please feel free to contact me at 817-885-1249 or via e-mail at Rykki_Tepe@xtoenergy.com.

Sincerely,

KUKKI TERE Rykki Tepe

Rykki Tepe Environmental Engineer XTO Energy Inc.

Ms. Alexis North (Via USPS Certified Mail: 7013 2630 0001 2576 9259) Enforcement and Compliance EPA Region 8 (AP-AR) 1595 Wynkoop Street Denver, CO 80202-1129

Bc:

XTO EFEIR THE STO HIGS BARGE COUNTY ASER TO TELE STORE (817) 870-2800 • Fax: (817) 885-1671 An ExconMobil Subsidiary 6PR 2014

Wortman, Eric

From: Sent: To: Subject: Patefield, Scott Thursday, March 20, 2014 9:38 AM Wortman, Eric FW: Uintah County, UT - Leak Detection and Monitoring

fyi

From: Patefield, Scott Sent: Thursday, January 24, 2013 2:05 PM To: Tepe, Rykki Subject: Re: Uintah County, UT - Leak Detection and Monitoring

Hi Rykki,

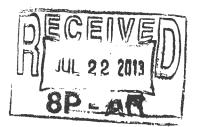
As we discussed on the telephone, if a source is no longer considered an onshore natural gas processing plant, the LDAR requirements of 40CFR60, subpart KKK would no longer apply. The consent decree identifies the Kings Canyon, TAP-4 and TAP-5 Facilities as onshore natural gas processing facilities. If the equipment rendering any of these facilities as a natural gas processing plant is removed (in this case, the dew point skids) and there are no other processes at any given facility that would subject them to the natural gas processing plant requirements, then they would no longer be subject to the NSPS, subpart KKK.

The requirements of MACT HH, MACT ZZZZ and the Consent Decree are independent of a facility's applicability to NSPS KKK, so the requirements of each would still apply even if the facility is no longer subject to the requirements of NSPS KKK.

I hope this helps, please feel free to contact me if you have any further questions or comments.

Thanks,

Scott Patefield, Environmental Scientist Office of Enforcement, Compliance & Environmental Justice EPA Region 8 1595 Wynkoop Street (8ENF-AT) Denver, CO 80202-1129 Phone: (303) 312-6248 Email: patefield.scott@epa.gov


From:	"Tepe, Rykki" < <u>Rykki_Tepe@xtoenergy.com</u> >
To:	Scott Patefield/R8/USEPA/US@EPA,
Date:	01/22/2013 01:43 PM
Subject:	Uintah County, UT - Leak Detection and Monitoring

Hi Scott: As mentioned in the phone call, I am trying to determine whether we can eliminate our Leak Detection Monitoring for our Uintah County Facilities. In an Oct.31, 2011 Semi-Annual LDAR Report it was noted in the cover letter that because we were no longer considered a gas processing plant we would no longer be submitting LDAR Reports. We have continued to perform the leak detection surveys, and would like to eliminate them if not required. However, before eliminating I would like to ensure we are meeting EPA's expectations and that you agree with us. My areas that I have been reviewing in which we previously had applicable leak detection standards are MACT HH, NSPS ZZZZ, and our Consent Decree. We currently perform leak detection at any compressor station in Uintah County, UT where we have a dehydration unit – which includes Riverbend Dehy, Wild Horse Bench, Tap 5, River bend 11-18F, and Riverbend 9-17E, and LCU – Compressor Stations. Could you possibly offer me guidance on how we should move forward, and ensure we're still in compliance?

Feel free to call me if you have questions. Thanks!

Rykki R. Tepe Environmental Engineer XTO Energy, Inc. 810 Houston Street, Fort Worth TX, 76102 Office: 817-885-1249 Cell: 817-253-2986 Fax:817-885-1847 Email: <u>Rykki_Tepe@xtoenergy.com</u>

July 19, 2013

Via USPS Certified Mail: 7008 1830 0001 0477 2835

U.S. EPA, Region 8 – Air Program 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202

RE: Change of Ownership – Title V Permits Previous Owner/Operator: Summit Gas Gathering, LLC New Owner/Operator: XTO Energy, Inc. Federal Tax ID 75-2347769

To Whom It May Concern:

Summit Gas Gathering, LLC has been dissolved and starting July 1, 2013, XTO Energy, Inc. assumed the role of owner/operator for Summit Gas Gathering, LLC. Kings Canyon Compressor Station was previously a Title V facility, and is currently registered as a True Minor NSR Registration (8/26/2010). Tap 4 Compressor Station was shut in and decommissioned (2/17/2012).

The following lists the active Title V facilities that require the change in owner/operator to XTO Energy, Inc.

- Little Canyon Unit Compressor Station
- River Bend Dehydration Site & Accompanying Well sites
- Tap 5 Compressor Station

If you have any questions or need any additional information to process these registration changes, please feel free to contact me at 817.885.1249 or by email at rykki_tepe@xtoenergy.com.

Sincerely,

Rykin Tepe

Rykki Tepe Environmental Engineer XTO Energy, Inc.

Cc: Mr. Eric Wortman (Via USPS Certified Mail: 7008 1830 0001 0477 2859) Office of Partnerships & Regulatory Assistance 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202

> Ms. Alexis North (Via USPS Certified Mail: 7008 1830 0001 0477 2842) US EPA Region 8, Enforcement & Compliance 1595 Wynkoop Street Denver, Colorado 80202

X

OMB No. 2060-0336, Approval Expires 06/30/2015 Federal Operating Permit Program (40 CFR Part 71)
GENERAL INFORMATION AND SUMMARY (GIS)
A. Mailing Address and Contact Information
Facility nameLittle Canyon Unit Compressor Station
Mailing address: Street or P.O. Box810 Houston Street, Petro-4
CityFort Worth StateTX ZIP76102
Contact person:Rykki Tepe TitleEnvironmental Engineer
Telephone (817)8851249 Ext
Facsimile (817) 885 2986
B. Facility Location
Temporary source? Yes X_No Plant site location 39.896944, -109.605556
CityRoosevelt State_UT CountyUintah EPA Region_8
Is the facility located within:
Indian lands? _X Indian AirshedYESNO OCS waters?YES _X_NO
Non-attainment area?YES _X_NO If yes, for what air pollutants?N/A
Within 50 miles of affected State? _X_YES NO If yes, What State(s)?Colorado
C. Owner
NameXTO Energy, Inc Street/P.O. Box810 Houston Street, Petro-4
CityFort Worth StateTXZIP76102
Telephone (_817_)8851249 Ext
D. Operator
NameXTO Energy, Inc Street/P.O. Box _810 Houston Street, Petro-4
CityFort Worth StateTX ZIP _76102
Telephone (817)8851249 Ext

E. Application Type

Mark only one permit application type and answer the supplementary question appropriate for the type marked.
Initial Permit Renewal Significant Mod Minor Permit Mod(MPM)
Group Processing, MPMX Administrative Amendment
For initial permits, when did operations commence?/_N/A/
For permit renewal, what is the expiration date of current permit?/_N/A/

F. Applicable Requirement Summary

Mark all types of applicable requirements that apply.				
SIP	FIP/TIP	PSD	Non-attainment NSR	
Minor source NSR	Section 111	Phase I acid rair	Phase II acid rain	
Stratospheric ozone	OCS regulations	_X_ NESHAP	Sec. 112(d) MACT	
Sec. 112(g) MACT	Early reduction of HAP	Sec 112(j) MAC	T RMP [Sec.112(r)]	
Tank Vessel requirements, sec. 183(f)) Section 129 Standards/Requirement				
Consumer / comm products, ' 183(e) NAAQS, increments or visibility (temp. sources)				
Has a risk management plan been registered? YES X_NO Regulatory agency				
Phase II acid rain application submitted?YES _X_NO If yes, Permitting authority				

G. Source-Wide PTE Restrictions and Generic Applicable Requirements

Cite and describe any emissions-limiting requirements and/or facility-wide "generic" applicable requirements.

None	

H. Process Description

List processes, products, and SIC codes for the facility.

Process	Products	SIC
Natural Gas Production	Natural Gas	1311

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
	No Changes Administrative Amendment – Owner/Operator Change

J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

No Changes Administrative Amendment - Owner/Operator Change					
NOx tons/yr VOC tons/yr SO2tons/yr					
PM-10 tons/yr CO tons/yr Lead tons/yr					
Total HAPtons/yr					
Single HAP emitted in the greatest amount PTE tons/yr					
Total of regulated pollutants (for fee calculation), Sec. F, line 5 of form FEE tons/yr					
K. Existing Federally-Enforceable Permits					
Permit number(s)None – Pending Permit Permit type Permitting authority					
Permit number(s) Permit type _Consent Decree_ Permitting authority _EPA					
L. Emission Unit(s) Covered by General Permits					
Emission unit(s) subject to general permit					
Check one: Application made Coverage granted					
General permit identifier Expiration Date//					
M. Cross-referenced Information					
Does this application cross-reference information?YES _X_NO (If yes, see instructions)					

INSTRUCTIONS FOLLOW

 CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official					
Name: (Last)Rose (First)Kenneth (MI) S					
TitleSR VP Midstream Operations					
Street or P.O. Box810 Houston Street					
CityFort Worth State TX ZIP 76102 6298					
Telephone (817)8851623 Ext Facsimile (817)885 2683					
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official)					
I certify under penalty of law, based on information and belief formed after reasonable inquiry, the statements and information contained in these documents are true, accurate and complete.					
Name (signed) KSRose					
Name (typed)Kenneth S. Rose Date:7 /18 / _2013					

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298

Via FedEx Standard Overnight Mail: 7936 6773 5419

Mr. Eric Wortman Air Program – US EPA Region 8 Part 71 – Permitting Monitoring, Modeling Unit 1595 Wynkoop St. (8P-AR) Denver, CO 80202-1129

Dear Mr. Wortman:

.,

١

Summit Gas Gathering, LLC (SGG) respectfully submits the attached update to the Title V Permit Application to include changes to 2 existing engines located at the Little Canyon Unit Compressor Station.

- LCU Compressor #1 (LCC-1) Caterpillar 3516LE, S/N: 4EK04570 will be replaced on June 18, 2012 with a like-kind replacement engine, Caterpillar 3516LE, S/N: 4EK05034. SGG has updated the Title V Permit Application to include the new serial number and catalyst information of the engine. No other updates were made to the application.
- LCU Compressor #3 (LCC-3) Caterpillar 3516LE, S/N: 4EK04875 was removed on January 24, 2012. SGG has updated the application to include "TBD" (to be determined) in certain portions of the application. This will provide flexibility to add an engine to this site at a later date. SGG will notify the EPA, Region 8 accordingly when this occurs.

No other updates were made to the Title V Permit Application. Should you have any questions, please feel free to contact me at 817-885-2845 or via e-mail at Clare_Hoang@xtoenergy.com.

Sincerely,

Clare Hoang Environmental Engineer XTO Energy Inc.

Via FedEx Standard Overnight Mail: 7984 9827 8192

Cc: Ms. Alexis North U.S. EPA Region 8 – Enforcement Division 1595 Wynkoop Street (8P-AR) Denver, Colorado 80202-1129 June 12, 2012

Update to LCC-1 and LCC-3 Engines Little Canyon Unit Compressor Station Permit # V-OU-0016-06.00 Uintah County, UT

CERA Logency OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)					
A. General Information					
Emissions unit IDLCC-1 DescriptionCaterpillar 3516 LE engine SIC Code (4-digit)1311 SCC Code _311000203					
B. Emissions Unit Description					
Primary useNatural Gas Compression Temporary SourceYes _xNo ManufacturerCaterpillar Model No3516LE Serial Number4EK05034 Installation Date05/18/2012 Boiler Type:Industrial boilerProcess burnerElectric utility boiler Other (describe)Natural gas compressor engine Boiler horsepower rating1260hp Boiler steam flow (lb/hr) Type of Fuel-Burning Equipment (coal burning only): Hand firedSpreader stokerUnderfeed stokerOverfeed stoker Traveling grateShaking gratePulverized, wet bedPulverized, dry bed					
Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr					

:

...

- 2

à

.

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)__----

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage	
		Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf
· · · · · · · · · · · · · · · · · · ·			

E. Associated Air Pollution Control Equipment

Emissions unit ID__LCC-1___ Device type__Oxidation Catalyst_____ Air pollutant(s) Controlled_ HCHO and CO__ Manufacturer_Miratech_____ Model No.__IQ 26 12 L1 Serial No.__ 1Q 1468_____ Installation date__10_/_01_/_2005_ Control efficiency (%) _<=14 ppmvd @ 15%O2 for CH2O_ Efficiency estimation method___Manufacturer Specifications______

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

1

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

SEPA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71)				
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)				
A. General Information				
Emissions unit IDLCC-2 DescriptionCaterpillar 3516LE engine				
SIC Code (4-digit) _1311 SCC Code_311000203				
B. Emissions Unit Description				
Primary useNatural Gas Compression Temporary SourceYes _XNo				
ManufacturerCaterpillar Model No3516LE				
Serial Number4EK02344 Installation Date_TBD				
Boiler Type: Industrial boiler Process burner Electric utility boiler				
Other (describe)Natural Gas Compressor Engine				
Boiler horsepower rating1260 hp Boiler steam flow (lb/hr)				
Type of Fuel-Burning Equipment (coal burning only):				
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker				
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed				
Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr				

.*

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)___NA_____

5

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage	
		Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

E. Associated Air Pollution Control Equipment

Emissions unit ID_LCC-2 Device typeOxidation Catalyst		
Air pollutant(s) Controlled_ HCHO and CO ManufacturerEMIT		
Model NoEA 3050-1200-D Serial No. 2007-7-1202 / 089-010		
Installation date03/29_/_2010 Control efficiency (%)_<=14 ppmvd @ 15%O2 for CH2O_		
Efficiency estimation method Manufacturer Specifications		

٦

5

<u>_</u>+

.

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

GERA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71)
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)
A. General Information
Emissions unit IDLCC-3 DescriptionCaterpillar 3516LE engine
SIC Code (4-digit) _1311 SCC Code _311000203
B. Emissions Unit Description
Primary useNatural Gas Compression Temporary SourceYes _XNo
ManufacturerCaterpillar Model No3516LE
Serial NumberTBD Installation Date_TBD
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural Gas Compressor Engine
Boiler horsepower rating1260 hp Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr

~

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)___NA_____

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage	
		Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

E. Associated Air Pollution Control Equipment

Emissions unit ID_LCC-3 Device typeOxidation Catalyst			
Air pollutant(s) Controlled_ HCHO and CO ManufacturerTBD			
Model NoTBD Serial NoTBD			
Installation date// Control efficiency (%)_<=14 ppmvd @ 15%O2 for CH2O_			
Efficiency estimation method Manufacturer Specifications			

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

GIS

OMB No. 2060-0336, Approval Expires 04/30/2012			
Federal Operating Permit Program (40 CFR Part 71)			
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)			
A. General Information			
Emissions unit IDLCC-4 Description Caterpillar 3516LE engine			
SIC Code (4-digit)1311 SCC Code311000203			
B. Emissions Unit Description			
Primary use Natural Gas Compression Temporary SourceYes _XNo			
ManufacturerCaterpillar Model No3516LE			
Serial Number4EK02067 Installation Date8_ / _12_ / _2010			
Boiler Type: Industrial boiler Process burner Electric utility boiler			
Other (describe)Natural gas Compressor Engine			
Boiler horsepower rating1260 HP Boiler steam flow (lb/hr)			
Type of Fuel-Burning Equipment (coal burning only):			
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker			
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed			
Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr			

_

C. Fuel Data

Primary fuel type(s)_____ Standby fuel type(s)_____

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Type Annual Actual Usage	Maximum Usage	
		Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

E. Associated Air Pollution Control Equipment

Emissions unit IDLCC-4 Device	e typeOxidation catalyst
Air pollutant(s) ControlledHCHO and CO	ManufacturerEMIT
Model NoEA-3050-1200-D	Serial No2007-Z-1220 / 089-009
Installation date_3_/_29_/_2010 Control eff Efficiency estimation methodManufacturer	iciency (%) _<= 14 ppmvd@15%O2 for CH2O s Specifications

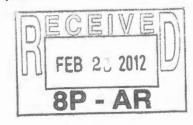
G. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298


(817) 870-2800 (off)

February 17, 2012

Responsible Official Notification of Change 40 CFR Part 71 and 40 CFR Part 63 Uintah County, UT

Via FedEx 2Day: 7932 4251 8563

Mr. Eric Wortman U.S. EPA Region 8 Office of Partnerships & Regulatory Assistance 1595 Wynkoop Denver, CO 80202

Dear Mr. Wortman:

Due to recent internal reorganization, Summit Gas Gathering, LLC (SGG), respectfully submits a Responsible Official Notification of Change for all sources in Uintah County, UT subject to 40 CFR 71 and 40 CFR 63. These sources include, but are not limited to, the following:

- Kings Canyon Unit Compressor Station 40 CFR 71 Permit # V-OU-0019-07.00
- TAP-4 Compressor Station 40 CFR 71 Permit # V-OU-0017-07.00
- TAP-5 Compressor Station 40 CFR 71 Permit # V-OU-0018-07.00
- Little Canyon Unit Compressor Station 40 CFR 71 Permit # Pending Issuance
- River Bend Dehydrator Site & Accompanying Wellsites 40 CFR 71 Permit # Pending Issuance

SGG confirms that the individuals listed in the table below meet the definition of Responsible Official stated in 40 CFR 63.2 and 40 CFR 71.2.

Current Designated Responsible Official	New Designated Responsible Official
Mr. Nick Dungey	Mr. Kenneth S. Rose
Chairman of the Board and President	Vice President of Natural Gas Operations
810 Houston Street	810 Houston Street
Fort Worth, TX 76102	Fort Worth, TX 76102
817-885-2440 - Office	817-870-2800 - Office
RO Designation ends March 16, 2012	RO Designation begins March 17, 2012

As stated in 40 CFR 63.2 and 40 CFR 71.2, Responsible Official is considered the following for a corporation such as SGG:

(1) For a corporation: A president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities and either:

(i) The facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars); or

Summit Gas Gathering, LLC 810 Houston Street

Ft. Worth, TX 76102-6298

(817) 870-2800 (off)

(ii) The delegation of authority to such representative is approved in advance by the Administrator.

Attached is the completed CTAC form signed by the current designated Responsible Official for the operations of the Title V, 40 CFR Part 71 and 40 CFR Part 63 facilities referenced in this request.

Should you have any questions, please feel free to contact me at 817-885-2845 or via e-mail at Clare_Hoang@xtoenergy.com.

Sincerely,

Clare Hoang Environmental Engineer XTO Energy Inc.

Cc: Via FedEx 2 Day Mail: 7932 4252 2875 Mr. Josh Rickard Office of Enforcement and Compliance 1595 Wynkoop Street Denver, Colorado 80202 DA United States Environmental Protection

Agency

Federal Operating Permit Program (40 CFR Part 71)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit). This certification is also being used to certify documents and reports submitted as part of the Consent Decree for U.S. Civil Action No. 2:09-CV-00331-SA.

A. Responsible Official	
Name: (Last) Dungey	(First) Nick (MI)
Title Senior Vice President of Nat	tural Gas Operations - XTO Energy
Street or P.O. Box 810 Houston St.	
City Fort Worth	State ZIP
Telephone (817) 885-2440 Ext.	Facsimile (817) 870 - 8441
	Completeness (to be signed by the responsible officia stated in Paragraph 52 of the E.P.A. Consent Decree)
gather and evaluate the information submit who manage the system, or those persons	nent and all attachments were prepared under my esigned to assure that qualified personnel properly tted. Based on my inquiry of the person or persons directly responsible for gathering the information, the knowledge and belief, true, accurate and complete.

EPA Form 5900-02

1

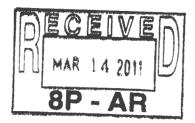
ъ

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 8

1595 Wynkoop Street DENVER, CO 80202-1129 Phone 800-227-8917 http://www.epa.gov/region08

July 28, 2011

MEMORANDUM


- SUBJECT: Summit Gas Gathering (XTO Energy) Uinta Basin Operations
- FROM: Eric Wortman, Permit Engineer, EPA Region 8 Air Program
- TO: Initial Title V Permit Files for the Tap-4 Compressor Station; Tap-5 Compressor Station, Little Canyon Unit Compressor Station, and Riverbend Dehydration Site.

On May 25, 2011, the EPA requested additional information from Summit Gas Gathering to perform a source determination analysis on oil and natural gas production facilities located in the Uintah Basin. Summit Gas Gathering submitted additional information on July 28, 2011. At this time, a single source determination has not been made by the Agency and therefore these documents are not included in this permit docket regarding this permit action. Please refer to FRED ID# 89164 "Summit Gas Gathering (XTO Energy), Multiple U&O Facilities – Source Determination Analysis" to review these submittals and other correspondence regarding the penang analysis.

J . . .

March 10, 2011

Mr. Eric Wortman Air Program - US EPA Region 8 Part 71 - Permitting, Monitoring and Modeling Unit 1595 Wynkoop St. (8P-AR) Denver, CO 80202-1129

Sent Via Fedex Tracking No. 0201 7945 1865 2127

RE: XTO Energy

Tap-4 Compressor Station - Uintah County, Utah – Part 71 Permit # V-OU-0017-07.00 Tap-5 Compressor Station - Uintah County, Utah – Part 71 Permit # V-OU-0018-07.00 Little Canyon Unit Compressor Station – Uintah County, Utah – Part 71 Permit Pending Part 71 Permit Application Modifications

Dear Mr. Wortman:

Summit Gas Gathering, LLC, hereby submits the accompanying information related to Title V - Part 71 Permit Applications for the following facilities:

- Tap-4 Compressor Station located in Uintah County, Utah Application Update
- Tap-5 Compressor Station located in Uintah County, Utah Application Update
- Little Canyon Unit Compressor Station located in Uintah County, Utah Application Update

The operational changes applicable to the Tap-5 and Little Canyon Stations are detailed in separate application update packages attached to this letter. The changes reflect updates to the equipment that was originally represented in the applications. In addition, as discussed, the Tap-4 Compressor Station is currently scheduled to be permanently shut down from June of 2011 through July of 2011. No exact date for the Tap-4 shutdown can currently be set due to the varying construction project planning schedules. However, with regard to the current permit application, only minor equipment changes were made to this location. The minor equipment changes to the Tap-4 permit application are detailed in the accompanying attachment. Please let me know how you want to proceed with the Tap-4 application.

If you should have any questions or require additional information, please feel free to contact me via email at <u>craig_allison@xtoenergy.com</u> or at (817) 885-2672.

Sincerely, Summit Gas Gathering, LLC / XTO Energy

Craig Allison EH&S Advisor

- Encl: Tap-5 and Little Canyon Unit Updated Part 71 Applications Tap-4 – Part 71 Minor Application Revisions Certification of Truth, Accuracy, and Completeness (CTAC)
- Ce: Mr. Josh Rickard, U.S. EPA Region 8 Enforcement Division (w/o attachments) Damien Jones, XTO – SGG Roosevelt NGO Office

EPA United States Environmental Protection

Federal Operating Permit Program (40 CFR Part 71)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit). This certification is also being used to certify documents and reports submitted as part of the Consent Decree for U.S. Civil Action No. 2:09-CV-00331-SA.

A. Responsible Official				
Name: (Last) <u>Dungey</u> (First) <u>Nick</u> (MI) <u>J</u>				
Title Senior Vice President of Natural Gas Operations - XTO Energy				
Street or P.O. Box 810 Houston St.				
City Fort Worth State TX ZIP 76102 -				
Telephone (817) 885-2440 Ext Facsimile (817) 870 - 8441				
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official and includes the certification language as stated in Paragraph 52 of the E.P.A. Consent Decree)				
I certify under penalty of law that this document and all attachments were prepared under my supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or these persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate and complete.				
Name (signed) <u>Nick Dungey</u> Date: <u>3 / 7 / 2011</u>				

Little Canyon Unit Compressor Station – Application Update Information – February 2011

The following updates are being made to the last Part 71 Application:

- Add one (1) additional Caterpillar 3516LE engine to the station on August 12, 2010. This engine is represented as Unit # LCC-4 and has a serial number of 4EK02067. A total of four natural-gas fired combustion engines are located at the LCU Compressor Station.
- The original engine unit # LCC-2 (serial # 4EK04571) was removed from the site on November 19, 2010. This replacement engine (serial # 4EK02344) is being removed from the Tap-4 Compressor Station in June of 2011and will be relocated to the Little Canyon Compressor Station as Unit # LCC-2.
- Add pipeline and compressor blowdown venting and compressor starter emissions to the insignificant emission source list.
- Potentially include the emissions from the LCU 2-6GX wellsite, which is located approximately 1,000 feet from the LCU Compressor Station. The gas from the LCU 2-6GX well flows into the gathering system that ultimately flows into the LCU Compressor Station, however, the well is not located on the same location or pad location as the LCU Compressor Station. The potential emissions from this wellsite are attached to this information update.
- Change to official owner / operator name to XTO Energy from Summit Gas Gathering, LLC.
- As a result of the changes stated in this application update, no regulatory applicability changes are applicable to the original submittal.

SGG Little Canyon Unit (LCU) Compressor Station Process Description – Update February 2011

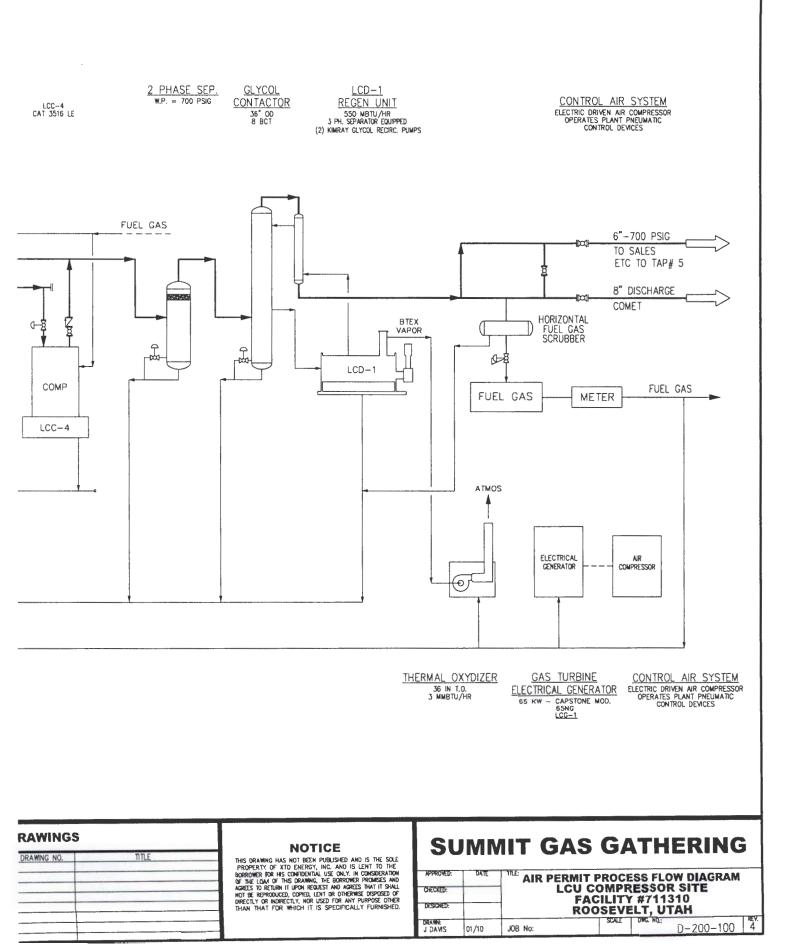
The LCU Facility is a natural gas compressor station consisting of the following equipment:

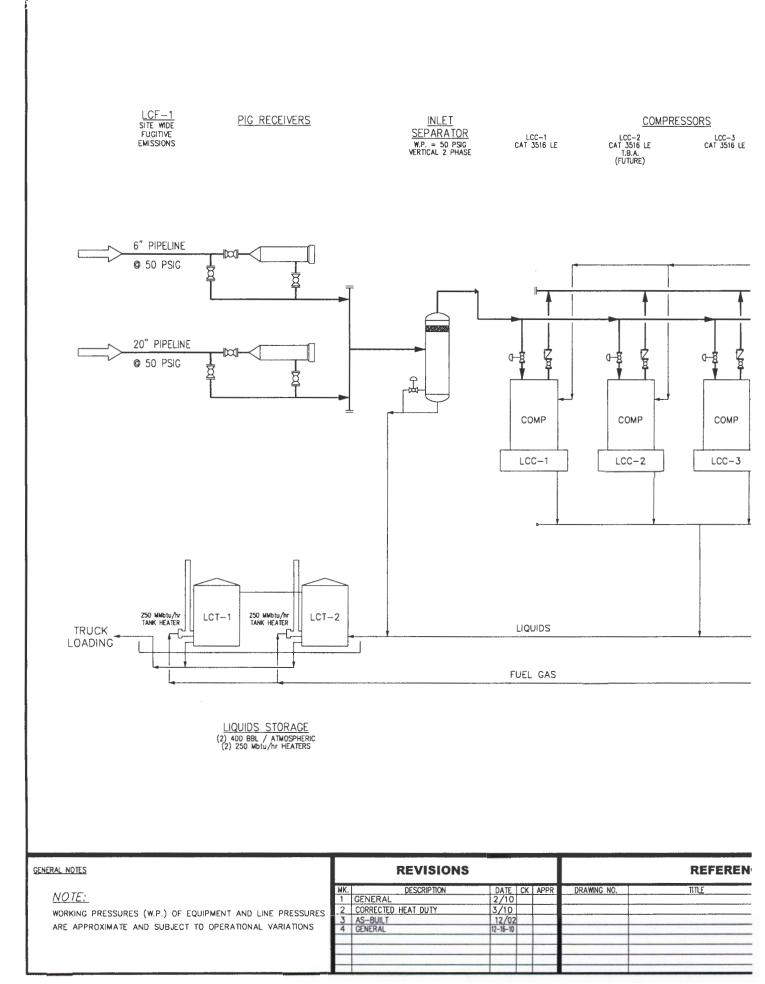
- One (1) inlet two-phase gas scrubber (separator) operating at an approximate line pressure of 50 psig and a 0.25 mmBTU/hr natural gas-fired heater.
- Four (4) Caterpillar G3516TALE compressor engines (LCC-1, LCC-2, LCC-3, and LCC-4).
- One (1) compressor discharge two-phase gas scrubber (separator) operating at an approximate line pressure of 700 psig.
- One (1) 30 kW Capstone natural-gas fired microturbine driven generator (LCG-1).
- Two (2) 400-barrel slop-tanks (LCT-1 and LCT-2) each with a 0.5 mmBTU/hr tank heater,
- One (1) natural gas dehydrator with (LCD-1):
 - o A maximum natural gas process flow of 25 mmscfd natural gas, and
 - One (1) 0.55 mmBTU/hr TEG reboiler heater
 - One BTEX emissions control system consisting of a Thermal Oxidizer with a 3.0 mmBTU/hr burner.

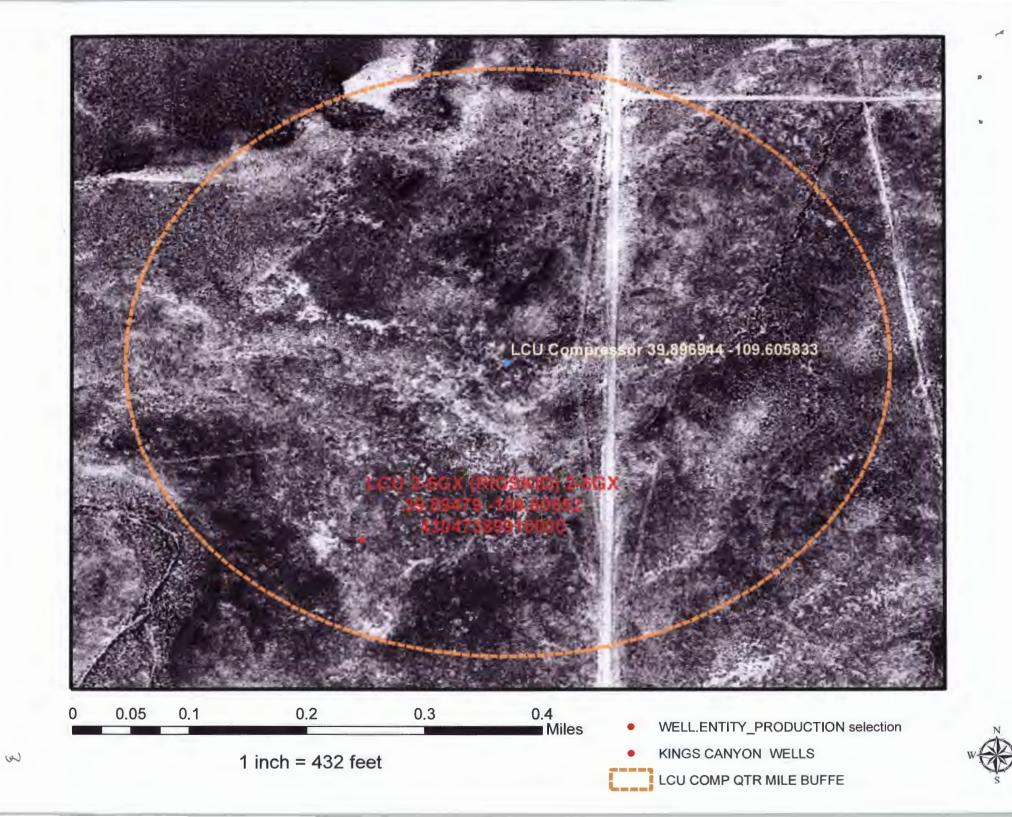
The basic process flow at the facility is as follows:

J.

3


Ę


Natural gas produced from area wells is sent to the compressor station through gathering flowlines. Once the gas enters the station, it flows through a separator (scrubber) in order to reduce water and condensable liquids content in the gas stream prior to entry into the compressors. The liquids produced from the on-site scrubbers are then sent to the 400-barrel onsite slop tanks (LCT-1 and LCT-2) for storage prior to being hauled offsite. Following the inlet scrubber, the gas is compressed with three (3) natural gas internal combustion engine driven compressors (LCC-1, LCC-2, LCC-3, and LCC-4) up to a higher pressure (approx 700 psig). The higher pressure gas then passes through a discharge scrubber (separator) prior to entry into TEG natural gas dehydrator water removal system. The TEG natural gas dehydrator water removal system consists of one (1) 25 mmscfd natural gas TEG dehydrator (LCD-1) with one (1) 0.55 mmBTU/hr TEG process heater with regenerator emissions controlled by a Thermal Oxidizer. The natural gas dehydrator utilizes a BTEX emissions control system that captures vapors from the still vent and sends the vapors to a Thermal Oxidizer for destruction. Following dehydration the natural gas stream leaves the station via a metered sales pipeline. The station has on-site electrical power supplied by one (1) Capstone natural-gas fired microturbine-driven generator (LCG-1). In addition, the pneumatic control devices are operated by plant air supplied by the onsite electric-driven air compressor.


In addition, the LCU 2-6GX natural gas wellsite is located approximately 1,000 feet from the LCU Compressor Station. This wellsite is not on the same site pad as the LCU Compressor Station. In addition, the gas produced from the LCU 2-6GX wellsite flows into the common, Little Canyon Unit area gas gathering system and does not flow directly into the LCU Compressor Station. The LCU 2-6GX wellsite consists of one (1) natural gas well producing a maximum of 0.2 mmscfd of natural gas and a maximum of 26 barrels of condensate / water liquids per day, one (1) natural-gas dehydrator that is designed to handle less than 1 mmscfd of gas throughput, one (1) 300-barrel atmospheric storage tank, one (1) 400-barrel atmospheric storage tank, two (2) 250 mbtu/hr gas-fired process heaters, one (1) 500 mbtu/hr process heater, a produced liquids truck loading pipeline, and one (1) well pumping unit engine consisting of an 18-horsepower natural gas fired Arrow C-96 pump engine.

I

سرم آ اگ ع

Ę	P. EPA	United States Environmental Protection Agency					
		Agency	OMB No.	2060-03	336, Approv	al Expires (09/30/2010
	Federal Operati	ng Permit Program (40 CFR	Part 71)				
	GENERAL INFO	ORMATION AND SUMMARY	Y (GIS)				
١.	Mailing Address a	and Contact Information					
	Facility name	Little Canyon Unit Compressor	Station				
	Mailing address:	Street or P.O. Box810 Hous	ton St				
	CityFt. Worth)	StateT	x z	IP76102		

Contact person: ___Craig Allison_____ Title __EH&S Advisor_____

Telephone (_817__) __885___ - __2672___ Ext. ____

Facsimile (___817__) ___885____ - ___2683_____

B. Facility Location

١.

.

٩

Temporary source?Yes _XNo Plant site location _Lat. 39°53'49"N, Long. 109°36'20"W
CityRoosevelt StateUT County _Uintah EPA Region8
Is the facility located within:
Indian lands? _X_YESNO OCS waters?YES _XNO
Non-attainment area?YES _XNO If yes, for what air pollutants?
Within 50 miles of affected State? _X_YES NO If yes, What State(s)? _Colorado

C. Owner

Name _XTO Energy Street/P.O. Box810 Houston St
CityFt. Worth State_TX ZIP_76102
Telephone (817)8852672 Ext
D. Operator
NameXTO Energy Street/P.O. Box810 Houston St
CityFt. Worth StateTX ZIP76102
Telephone (_817_) _8852672 Ext

٤

."

8

<u>y</u>____

H. Process Description

List processes, products, and SIC codes for the facility.

Process	Products	SIC
Natural Gas Production	Natural Gas	1311

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
LCC-1	Caterpillar Model 3516LE compressor engine 1260 site-rated horsepower
LCC-2	Caterpillar Model 3516LE compressor engine 1260 site-rated horsepower
LCC-3	Caterpillar Model 3516LE compressor engine 1260 site-rated horsepower
LCC-4	Caterpillar Model 3516LE compressor engine 1260 site-rated horsepower
LCD-1	25 MMscfd Glycol dehydrator controlled by a thermal oxidizer
LCF-1	Fugitive Emissions
LCG-1	Capstone 30 kW Microturbine Genset
LCT-1	One (1) 400-bbl slop tank #1
LCT-2	One (1) 400-bbl slop tank #2

r .-8 e

J. Facility Emissions Summary

GIS

۹.

Enter potential to emit (PTE) for the facility as a whole for each air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

NOx73.8 tons/yr VOC15	3.2 tons/yr SC	020.1 tons/yr				
PM-100.1 tons/yr CO11	4.2 tons/yr L	ead0.0 tons/yr				
Total HAP43.8 tons/yr						
Single HAP emitted in the greatest amoun	Single HAP emitted in the greatest amountXylene PTE _12.9 tons/yr					
Total of regulated pollutants (for fee calcul	ation), Sec. F, line 5 of	form FEE tons/yr				
K. Existing Federally-Enforceable Permits						
Permit number(s)	Permit type	Permitting authority				
Permit number(s)	Permit type	Permitting authority				
L. Emission Unit(s) Covered by General Per	nits					
Emission unit(s) subject to general permit						
Check one: Application made	Coverage grante	ed				
General permit identifier		Expiration Date//				
M. Cross-referenced Information						
Does this application cross-reference infor	mation?YES	NO (If yes, see instructions)				

r -T E st

GERA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010
Federal Operating Permit Program (40 CFR Part 71)
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)
A. General Information
Emissions unit IDLCC-2 DescriptionCaterpillar 3516LE engine
SIC Code (4-digit) _1311 SCC Code_311000203
B. Emissions Unit Description
Primary useNatural Gas Compression Temporary SourceYes _XNo
ManufacturerCaterpillar Model No3516LE
Serial Number4EK02344 Installation Date_TBD
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural Gas Compressor Engine
Boiler horsepower rating1260 hp Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr

*

1

·

A

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)___NA_____

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage	
		Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

E. Associated Air Pollution Control Equipment

Emissions unit ID_LCC-2 Device typeOxidation Catalyst
Air pollutant(s) Controlled_ HCHO and CO ManufacturerEMIT
Model NoEA 3050-1200-D Serial No. 2007-7-1202 / 089-010
Installation date03/29_/_2010_ Control efficiency (%)_<=14 ppmvd @ 15%O2 for CH2O_
Efficiency estimation method Manufacturer Specifications

ş

.

٩

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

÷

·

SEPA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010
Federal Operating Permit Program (40 CFR Part 71)
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)
A. General Information
Emissions unit IDLCC-3 DescriptionCaterpillar 3516LE engine SIC Code (4-digit) _1311 SCC Code _311000203
510 00de (4-digit) _1011 000 00de_011000200
B. Emissions Unit Description
Primary useNatural Gas Compression Temporary SourceYes _XNo
ManufacturerCaterpillar Model No3516LE
Serial Number4EK04875 Installation Date_5/23/2008
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural Gas Compressor Engine
Boiler horsepower rating1260 hp Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr

f

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)___NA_____

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage		
	Usage	Hourly	Annual	
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf	

E. Associated Air Pollution Control Equipment

Emissions unit ID_LCC-3 Device typeOxidation Catalyst
Air pollutant(s) Controlled_ HCHO and CO ManufacturerGT Exhaust
Model No201V0-3-0-4112-1-30449 Serial No. 95199-A
Installation date09/01_/_2008 Control efficiency (%) <=14 ppmvd @ 15%O2 for CH2O_
Efficiency estimation method Manufacturer Specifications

y , 4 p

1

·

GIŚ

٩

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

.

\$

SEPA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 04/30/2012
Federal Operating Permit Program (40 CFR Part 71)
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)
A. General Information
Emissions unit IDLCC-4 Description Caterpillar 3516LE engine
SIC Code (4-digit)1311 SCC Code311000203
B. Emissions Unit Description
Primary use Natural Gas Compression Temporary SourceYes _XNo
ManufacturerCaterpillar Model No3516LE
Serial Number 4EK02067 Installation Date 8/_12/_2010
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural gas Compressor Engine
Boiler horsepower rating1260 HP Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr

• . .

C. Fuel Data

Primary fuel type(s)_____ Standby fuel type(s)_____

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage	
	Usage	Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

E. Associated Air Pollution Control Equipment

Emissions unit IDLCC-4 Device	ypeOxidation catalyst
Air pollutant(s) ControlledHCHO and CO	ManufacturerEMIT
Model NoEA-3050-1200-D	Serial No2007-Z-1220 / 089-009
Installation date_3_/_29_/_2010 Control effic	iency (%) _<= 14 ppmvd@15%O2 for CH2O
Efficiency estimation methodManufacturer's	Specifications

G. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

Control OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71)
Federal Operating Permit Program (40 CFR Part 71)
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)
A. General Information
Emissions unit IDLCG-1 Description_Capstone 30 kW Microturbine
SIC Code (4-digit)1311 SCC Code_311000203
B. Emissions Unit Description
Primary usePower Generation Temporary SourceYes _xNo
ManufacturerCapstone Model NoC30NG
Serial NumberUnknown Installation Date2/18/2010
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural Gas fueled Microturbine
Boiler horsepower rating30 kW Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat Input0.4MM BTU/hr Max. Design Heat Input0.4MM BTU/hr

GIS

`

C. Fuel Data

Primary fuel type(s)___Natural Gas____ Standby fuel type(s)__----

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Max	Maximum Usage	
	Usage	Hourly	Annual	
Natural Gas	3.44 MMscf	0.4 Mscf	3.44 MMscf	

E. Associated Air Pollution Control Equipment

Emissions unit IDNone Device type
Air pollutant(s) Controlled Manufacturer
Model No Serial No
Installation date Control efficiency (%)
Efficiency estimation method

ŗ 7 4 .

GIŚ

ţ

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

• •

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

INSIGNIFICANT EMISSIONS (IE)

List each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

r the exempt Number	Description of Activities or Emissions Units	RAP, except HAP	HAP
1	Truck loading (Condensate)	Х	Х
1	550 MBtu/hr Glycol Dehydrator Reboiler	X	X
1	500 MBtu/hr heater for slop tank #1	X	x
1	250 MBtu/hr heater for separator	Х	Х
1	500 MBtu/hr heater for slop tank #2	X	Х
1	2,000 MBtu/hr heater for Thermal Oxidizer	X	X
1	Capstone Microturbine Genset (LCG-1)	Х	Х
1	Pipeline Pigging Emissions	X	X
1	Compressor Blowdown Emissions	X	X
1	Engine Startup Emissions	Х	X

;

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

POTENTIAL TO EMIT (PTE)

For each unit with emissions that count towards applicability, list the emissions unit ID and the PTE for the air pollutants listed below and sum them up to show totals for the facility. You may find it helpful to complete form **EMISS** before completing this form. Show other pollutants not listed that are present in major amounts at the facility on attachment in a similar fashion. You may round values to the nearest tenth of a ton. Also report facility totals in section **J** of form **GIS**.

Emissions Unit ID	Regulated Air Pollutants and Pollutants for which the Source is Major (tons/yr)						
	NOx	VOC	SO2	P M 10	со	Lead	HAP
LCC-1	18.23	5.23	0.03	0.0	28.4	0.0	3.3
LCC-2	18.23	5.23	0.03	0.0	28.4	0.0	3.3
LCC-3	18.23	5.23	0.03	0.0	28.4	0.0	3.3
LCC-4	18.23	5.23	0.03	0.0	28.4	0.0	3.3
LCD-1	0.24	109.1	0.0	0.0	0.2	0.0	28.6
LCF-1	0.0	4.0	0.0	0.0	0.0	0.0	0.2
LCG-1	0.1	0.03	0.0	0.0	0.2	0.0	0.0
LCT-1	0.22	9.4	0.0	0.0	0.2	0.0	0.9
LCT-2	0.22	9.4	0.0	0.0	0.2	0.0	0.9
FACILITY TOTALS	73.8	153.2	0.1	0.0	114.2	0.0	43.8

•

t

·

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID __LCC-2____

B. Identification and Quantification of Emissions

First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

		Emission Rates		
	Actual	Potential to E	mit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOX		4.2	18.2	
СО		6.5	28.4	
VOC		1.2	5.2	
Acetaldehyde		0.1	0.4	75070
Acrolein		0.1	0.2	107028
Formaldehyde		0.6	2.7	50000

. r • .

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID ___LCC-4____

B. Identification and Quantification of Emissions

First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

		Emission Rates		
	Actual	Potential to E	mit	_
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx		4.2	18.2	
СО		6.5	28.4	
VOC		1.2	5.2	
Acetaldehyde		0.1	0.4	75070
Acrolein		0.1	0.2	107028
Formaldehyde		0.6	2.7	50000

March 2011	XTO Uin	ta - Little	e Canyor	n Unit - U	ncontro	lled PT	E Emiss	ions S	ummar	y	1		
						EMI	SSIONS T	OTALS					
Equipment Name	EQ ID #	N	Ox	c	0		/0C	PM/I	PM10	so	02	Total	HAPs
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tp
Compressor Engine #1	LCC-1	4.16	18.23	6.49	28.44	1.19	5.23	0.001	0.003	0.01	0.025	0.75	3.
Compressor Engine #2	LCC-2	4.16	18.23	6.49	28.44	1.19	5.23	0.001	0.003	0.01	0.025	0.75	3.
Compressor Engine #3	LCC-3	4.16	18.23	6.49	28.44	1.19	5.23	0.001	0.003	0.01	0.025	0.75	3.
Compressor Engine #4	LCC-3	4.16	18.23	6.49	28.44	1.19	5.23	0.001	0.003	0.01	0.025	0.75	3.
TEG Dehy #1 Reboiler Heater	LCU Dehy	0.055	0.241	0.046	0.202	0.003	0.013	0.004	0.018	0.000	0.001	0.001	0.
TEG Dehydrator #1 Regenerator	LCD-1					24.912	109.121					6.536	28
Equipment Leaks	LCF-1					0.902	3.952					0.037	0.
Tank Heaters		0.100	0.438	0.084	0.368	0.006	0.024	0.008	0.033	0.001	0.003	0.002	0.
Fuel Cleanup Heater		0.025	0.110	0.021	0.092	0.001	0.006	0.002	0.008	0.000	0.001	0.0005	0.
Slop Tanks (Two - 400 bbl each)						4.296	18.826					0.398	1.
Condensate Truck Loading						0.066	0.288						
Generator #1 - Capstone C30NG Microturbine	LCG-1	0.000	0.084	0.000	0.223	0.000	0.029	0.000	0.000			0.000	0.0
Totals		16.832	73.808	26.128	114.665	34.960	153.168	0.017	0.073	0.024	0.103	9.986	43.

		1	-		•		EMISSIO	NS TOTAL	S			-
nent Description	EQUIP ID	Run hours / yr	CH20 tpy	Benzene tpy	Toluene tpy	Ethylbenzene tpy	Xylene tpy	Hexane	2,2,4 TMP tpy	Acetaldehyde tpy	Acrolein tpy	TOTAL HAPs tpy
CAT 3516	LCC-1	8760	2.67	0.02	0.017	0.017	0.008		- +7	0.35	0.21	3.30
CAT 3516	LCC-2	8760	2.67	0.02	0.017	0.017	0.008			0.35	0.21	3.30
CAT 3516	LCC-3	8760	2.67	0.02	0.017	0.017	0.008			0.35	0.21	3.30
CAT 3516	LCC-4	8760	2.67	0.02	0.017	0.017	0.008			0.35	0.21	3.30
ombustion - 1.5 mmbtu/hr burner	LCU Dehy	8760						0.004				0.005
Column and Flash Tank - 25 mscfd max	LCD-1	8760		11.252	0.632	0.909	12.731	2.941	0.162			28.63
onditioning Unit Heater		8760						0.002				0.002
wide Fugitives	LCF-1	8760		0.018	0.015		0.006	0.122				0.16
aters - 2 X .5 MMBTU each		8760						0.008			-	0.01
ol Atm storage tanks	80689; 80690	8760		0.194	0.454	0.010	0.102	0.852	0.134			1.75
Aicroturbine - 30KWe	LCG-1	8760		0.000	0.000	0.000	0.000			0.000	0.000	0.000
	19 4 A Maria		10.697	11.538	1.169	0.987	12.870	3 929	0.296	1.397	0.859	43 742

, *

March - 2011		
Equipment	Name	
Compressor E	ngine #1	
Compressor E	ngine #2	
Compressor E	ngine #3	
Compressor E	ngine #4	
TEG Dehy #1 Reb	oiler Heater	TEG R
TEG Dehydrator #1	Regenerator	TEG Reb
Fuel Cleanup	Heater	Fue
Equipment	Leaks	
Tank Hea	ters	Storage
Slop Tar	iks	2
Generato		Ca

·

		2	KTO Little Car	nyon Compres	sor Station	1 - Uncontro	olled Engin	e Emissio	ns				
												 	•
IOx Calcu	dette me											 	
IUX Calcu	liations											 	
1D #	Emission Points	Engine	Manufacturer's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method					•
			g/bhp-hr	(hp)	(lb/hr)		(tpy)					 	
LCC-1	Comp Eng 1	Caterpillar 3516	1.50	1260	4,163	4.38	18.234	Manufacturer's	Data				
LCC-2	Comp Eng 2	Caterpillar 3516	1.50	1260	4.163	4.38	18.234	Manufacturer's				 	
LCC-3	Comp Eng 3	Caterpillar 3516	1.50	1260	4,163	4.38	18.234	Manufacturers				 	
LCC-4	Comp Eng 4	Caterpillar 3516	1.50	1260	4.163	4.38	18.234	Manufacturer's				 	_
LUCA	Comp Eng 4	Caterpillar 3516	1.50	1200	4.103	4.50	10.234	Manuacturers	Data			 	
				Total	16.652	lb/hr							
					72.936	tpy							
00.0.1												 	
CO Calcul	ations		Manufacturer's			Conversion to	Uncontrolled		Catalyst	Controlled	Controlled	 	
ID #	Emission Points	Engine	Data	Horsepower	Emissions	tpy	Emissions	Method	Efficiency	Emissions	Emissions		
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)	 	_
LCC-1	Comp Eng 1	Caterpillar 3516	2.34	1260	6.494	4.38	28.445	Mfg's Data	. 0	28.44	6.49	 	
			2.34	1260					0	28.44	6.49	 	
LCC-2	Comp Eng 2	Caterpillar 3516			6.494	4.38	28.445	Mfg's Data	-			 	
LCC-3	Comp Eng 3	Caterpillar 3516	2.34	1260	6.494	4.38	28.445	Mfg's Data	0	28.44	6.49	 	
LCC-4	Comp Eng 4	Caterpillar 3516	2.34	1260	6.494	4.38	28.445	Mfg's Data	0	28.44	6.49	 	
				Total	25.977	lb/hr							
				Controlled	113.78	tpy						 	
/OC Calci	lations	NMNEHC										 	
ou valu	14(10)10					Conversion to	Uncontrolled		Catalyst	Controlled	Controlled	 	
ID #	Emission Points	Engine	Mfg's Data	Horsepower	Emissions	tpy	Emissions	Method	Efficiency	Emissions	Emissions		
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)	 	
LCC-1	Comp Eng 1	Caterpillar 3516	0.43	1260	1.19	4.38	5.227	Mfg's Data	0	5.23	1.19	 	
LCC-2	Comp Eng 2	Caterpillar 3516	0:43	1260	1.19	4.38	5.227	Mfg's Data	0	5.23	1.19	 	
LCC-3	Comp Eng 3	Caterpillar 3516	0.43	1260	1.19	4.38	5.227	Mfg's Data	0	5.23	1.19	 	
LCC-4	Comp Eng 4	Caterpillar 3516	0.43	1260	1.19	4.38	5.227	Mfg's Data	0	5.23	1.19	 	
LUUM	Comp Eng 4	Caterpiller 5516	0.40	1200	1.13	Total	4.77	lb/hr	0	0.20	1.10	 	
						Controlled	20.91	tpy		-			
	++											 	

LCC-1 Con LCC-2 Con LCC-3 Con	ssion Points	PM = PM10 Engine	AP-42 PM Factor (Ib/MMBTU)	Fuel Consumption										
LCC-1 Con LCC-2 Con LCC-3 Con	omp Eng 1	Engine		Fuel Consumption										
LCC-2 Con LCC-3 Con			(Ib/MMBTLD				PM Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method		
LCC-2 Con LCC-3 Con				(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		 	•
LCC-2 Con LCC-3 Con		Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1260	0.00074	4.38	0.003	AP-42		
LCC-3 Con		Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1260	0.00074	4.38	0.003	AP-42		
LCC-4 Con	mp Eng 3	Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	4.38	0.003	AP-42		
	omp Eng 4	Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	4.38	0.003	AP-42	 	
								Total	0.003	lb/hr				
								Controlled	0.013	tpy			 	-
ormaldehyde C	Calculation	5											 	
ID# Emiss	ssion Points	Engine	Mfg's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions			
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)		 	
LCC-1 Con	omp Eng 1	Caterpillar 3516	0.22	1260	0.611	4.38	2.674	Mfg's Data	0	2.67	0.61		 	
	omp Eng 2	Caterpillar 3516	0.22	1260	0.611	4.38	2.674	Mfg's Data	0	2.67	0.61			
LCC-3 Con	omp Eng 3	Caterpillar 3516	0.22	1260	0.611	4.38	2.674	Mfg's Data	0	2.67	0.61			
LCC-4 Con	omp Eng 4	Caterpillar 3516	0.22	1260	0.611	4.38	2.674	Mfg's Data	0	2.67	0.61		 	
								Total	2.44	lb/hr				
								Controlled	10.70	tpy				

, °

. . • •

,

			XTO Little Ca	nyon Compres	sor Station	- Unconti	rolled Engin	e Emission	IS						
Benzene (Calculations														
ID #	Emission Points	Engine	Benzene AP-42 Factor	Fuel Consumption			Benzene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
		A 1 11 1510						1000		1.00	0.010	10.10		0.010	0.0042
LCC-1	Comp Eng 1	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42	0	0.018	
LCC-2	Comp Eng 2	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42	0	0.018	0.0042
LCC-3	Comp Eng 3	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42	0	0.018	0.0042
LCC-4	Comp Eng 4	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42	0	0.018	0.0042
								Total	0.017	lb/hr					
								Controlled	0.074	tpy					
Toluene C	alculations														
ID#	Emission Points	Engine	Toluene AP-42 Factor	Fuel Consumption			Toluene Emissions	Horsepower	Emissions	Conversion to toy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled
10 #	Cilliasion + Olinas	Ligine	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)	to toy	(tpy)	HIGHIOG	%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	0	0.017	0.0039
LCC-2	Comp Eng 2	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	0	0.017	0.0039
LCC-3	Comp Eng 3	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	0	0.017	0.0039
LCC-4	Comp Eng 4	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	0	0.017	0.0039
							1	Total	0.016	lb/hr					
								Controlled	0.068	tpy					
Ethylbenz	ene Calculation	S					-							-	
ID #	Emission Points	Engine	Ethylbenzene AP- 42 Factor	Fuel Consumption			Ethylbenzene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions
2.00			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.0004	4.38	0.002	AP-42	0	0.0017	0.0004
LCC-2	Comp Eng 2	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.0004	4.38	0.002	AP-42	0	0.0017	0.0004
LCC-3	Comp Eng 3	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.0004	4.38	0.002	AP-42	0	0.0017	0.0004
LCC-4	Comp Eng 4	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.0004	4.38	0.002	AP-42	0	0.0017	0.0004
								Total	0.002	lb/hr					
								Controlled	0.007	tpy					

. •

ć 1 . .

)	KTO Little Ca	nyon Compres	sor Station	- Uncont	olled Engine	e Emission	IS						
(ylene Ca	lculations														
ID#	Emission Points	Engine	Xylene AP-42 Factor	Fuel Consumption			Xylene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	0	0.008	0.0018
LCC-2	Comp Eng 2	Caterpillar 3516	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	0	0.008	0.0018
LCC-3	Comp Eng 3	Caterpillar 3516	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	0	0.008	0.0018
LCC-4	Comp Eng 4	Caterpillar 3516	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	0	0.008	0.0018
								Total	0.007	lb/hr					
								Controlled	0.031	tpy					
SO2 Calci	ulations														
ID #	Emission Points	Engine	SO2 AP-42 Factor	Fuel Consumption			SO2 Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method			
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)				
LCC-1	Comp Eng 1	Caterpillar 3516	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42	-		
LCC-2	Comp Eng 2	Caterpillar 3516	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42			
LCC-3	Comp Eng 3	Caterpillar 3516	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42			
LCC-4	Comp Eng 4	Caterpillar 3516	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42			
								Total	0.022	lb/hr					
									0.098	tpy					

. -

	[ATO LILLIC OA	nyon Compres	Sor Olderon	oncont	oncu Engin	Ennooror		1					
Acetaldeh	yde Calculation	5													
ID #	Emission Points	Engine	Acetaldehyde AP 42 Factor	Fuel Consumption			Acetaldehyde Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlle Emission
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	0	0.349	0.0797
LCC-2	Comp Eng 2	Caterpillar 3516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	0	0.349	0.0797
LCC-3	Comp Eng 3	Caterpillar 3516	. 0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	0	0.349	0.0797
LCC-4	Comp Eng 4	Caterpillar 3516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	0	0.349	0.0797
								Total	0.319	lb/hr					
								Controlled	1.397	tpy					
Acrolein C	alculations														
ID #	Emission Points	Engine	Acrolein AP-42 Factor	Fuel Consumption			Acrolein Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	0	0.215	0.0490
LCC-2	Comp Eng 2	Caterpillar 3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	0	0.215	0.0490
LCC-3	Comp Eng 3	Caterpillar 3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	0	0.215	0.0490
LCC-4	Comp Eng 4	Caterpillar 3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	0	0.215	0.0490
								Total	0.196	lb/hr					
								Controlled	0.859	tpy					

. •

• • •

,

.

	ATO LILLIe Ca	nyon Compre	SSUI Static	n - control	led Engine	LIIIISSIOII	3		T			
_			· · · · · · · · · · · · · · · · · · ·									
_												
	Manufacturer's			Conversion to							1	
	Data	Horsepower	Emissions	tpy	Emissions	Method						
	g/bhp-hr	(hp)	(lb/hr)		(tpy)	· ·						
16	1.50	1260	4.163	4.38	18.234	Manufacturer's	Data					
16	1.50	1260	4.163	4.38	18.234	Manufacturer's	a supervised on the set of a set of the set					
16	1.50	1260	4.163	4.38	18.234	Manufacturer's	and a summer set of the state o					
16	1.50	1260	4.163	4.38	18.234	Manufacturer's	A second second second diversity of the second se	+		1		
				1	and a set more asset as a damage of the standard o				1			
		Total	16.652	lb/hr								
	1		72.936	tpy		1						
			12.000	(2)		1						
								1				
	Manufacturer's			Conversion to	Uncontrolled		Catalyst	Controlled	Controlled			
	Data	Horsepower	Emissions	tpy	Emissions	Method	Efficiency	Emissions	Emissions			
	g/bhp-hr	(hp)	(lb/hr)	(4)	(tpy)	Incarod	%	(tpy)	(lb/hr)			a triana antica tan in tanàn
	group m	(1)()	(157117)						(ionit)			
16	2.34	1260	6.494	4.38	28.445	Mfg's Data	79	5.97	1.36			
16	2.34	1260	6.494	4.38	28.445	Mfg's Data	79	5.97	1.36			
16	2.34	1260	6.494	4.38	28.445	Mfg's Data	79	5.97	1.36			
16	2.34	1260	6.494	4.38	28.445	Mfg's Data	79	5.97	1.36		1	
		Total	5.455	lb/hr								
		Controlled	23.89	tpy								ana y ny ana fanalo la faile.
				÷,						1	1	
				Conversion to	Uncontrolled		Catalyst	Controlled	Controlled	1		
	Mfg's Data	Horsepower	Emissions	tpy	Emissions	Method	Efficiency	Emissions	Emissions	1		
	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)			
_]	
16	0.43	1260	1.19	4.38	5.227	Mfg's Data	22	4.08	0.93		-	
16	0.43	1260	1.19	4.38	5.227	Mfg's Data	22	4.08	0.93			
16	0.43	1260	1.19	4.38	5.227	Mfg's Data	22	4.08	0.93			
16	0.43	1260	1.19	4.38	5.227	Mfg's Data	22	4.08	0.93			
				Total	3.72	lb/hr						
				Controlled	16.31	tpy						

. . .

·

	1
	· · · · · · · · · · · · · · · · · · ·
NOx Calcu	lations
ID #	Emission Points
LCC-1	
LCC-1	Comp Eng 1 Comp Eng 2
LCC-2	Comp Eng 3
LCC-4	Comp Eng 3 Comp Eng 3
100-4	Comp Eng 3
	· · · · · · · · · · · · · · · · · · ·
CO Calcul	ations
1D #	Emission Points
LCC-1	Comp Eng 1
LCC-2	Comp Eng 2
LCC-3	Comp Eng 3
LCC-4	Comp Eng 3
VOC Calci	latione
VOC Calci	
	_
ID #	Emission Points
ID #	Emission Points
ID #	Emission Points
LCC-1	Comp Eng 1
LCC-1 LCC-2	Comp Eng 2
LCC-1 LCC-2 LCC-3	Comp Eng 1 Comp Eng 2 Comp Eng 3
LCC-1 LCC-2	Comp Eng 1 Comp Eng 2
LCC-1 LCC-2 LCC-3	Comp Eng 1 Comp Eng 2 Comp Eng 3
LCC-1 LCC-2 LCC-3	Comp Eng 1 Comp Eng 2 Comp Eng 3

								+				
	AP-42 PM Factor	Fuel Consumption			PM Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	1	
	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)	· · · · · · · · · · · · · · · · · · ·	1	
516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1260	0.00074	4.38	0.003	AP-42	1	
516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1260	0.00074	4.38	0.003	AP-42	1	
516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1260	0.00074	4.38	0.003	AP-42		
516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1260	0.00074	4.38	0.003	AP-42		
						Total	0.003	lb/hr				1
						Controlled	0.013	tpy			1	
	Mfg's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method	Catalyst Efficiency	Controlled	Controlled	• • • • • • • • • • • • • • • • • • •	1	
	g/bhp-hr	(hp)	(lb/hr)	47	(tpy)		%	(tpy)	(lb/hr)			
516	0.23	1260	0.638	4.38	2.796	Mfg's Data	76	0.67	0.15			+
516	0.23	1260	0.638	4.38	2.796	Mfg's Data	76	0.67	0.15			1
516	0.23	1260	0.638	4.38	2.796	Mfg's Data	76	0.67	0.15			
516	0.23	1260	0.638	4.38	2.796	Mfg's Data	76	0.67	0.15			
			:			Total	0.61	lb/hr				
		and the second				Controlled	2.68	tpy				

ations	PM =
Emission Points	E
Comp Eng 1	Cater
Comp Eng 2	Cater
Comp Eng 3	Cater
Comp Eng 3	Caten
nyde Calculatio	ns
Emission Points	6
Comp Eng 1	Cater
Comp Eng 2	Cater
Comp Eng 3	Cater
Comp Eng 3	Cater
	Emission Points Comp Eng 1 Comp Eng 2 Comp Eng 3 Comp Eng 3 Comp Eng 3 Emission Points Comp Eng 1 Comp Eng 2 Comp Eng 3

. .

	Benzene AP-42 Factor	Fuel Consumption			Benzene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions
	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42	22	0.014	0.0033
516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42	22	0.014	0.0033
		0.007571	the same and the							AP-42 AP-42		0.014	0.0033
16	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42 AP-42	22	0.014	0.0033
516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1260	0.0042	4.38	0.018	AP-42	22	0.014	0.0033
					1	Total	0.013	lb/hr					1
						Controlled	0.057	tpy				1	
						·							
	Toluene AP-42 Factor	Fuel Consumption			Toluene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled
	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)	io ipy	(tpy)	Wiethod	%	(tpy)	(lb/hr)
	0.000.000	0.007574	0.000075.00	100.004	0.001	1000				10.10		0.010	0.0000
516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	22	0.013	0.0030
16	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	22	0.013	0.0030
516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	22	0.013	0.0030
516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1260	0.004	4.38	0.017	AP-42	22	0.013	0.0030
				4		Total	0.012	lb/hr				1	
						Controlled	0.053	tpy					
	Ethylbenzene AP-42 Factor	Fuel Consumption			Ethylbenzene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions
	(lb/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.000	4.38	0.002	AP-42	22	0.0013	0.0003
516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.000	4.38	0.002	AP-42	22	0.0013	0.0003
516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.000	4.38	0.002	AP-42	22	0.0013	0.0003
516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1260	0.000	4.38	0.002	AP-42	22	0.0013	0.0003
						Total	0.001	lb/hr					
					1	Controlled	0.005	tpy	•				

Benzene C	alculations
ID#	Emission Points
LCC-1 LCC-2 LCC-3 LCC-4	Comp Eng 1 Comp Eng 2 Comp Eng 3 Comp Eng 3
	alculations
1D#	Emission Points
LCC-1 LCC-2 LCC-3 LCC-4	Comp Eng 1 Comp Eng 2 Comp Eng 3 Comp Eng 3
	······································
Ethylbenze	ene Calculation
ID#	Emission Points
LCC-1 LCC-2 LCC-3 LCC-4	Comp Eng 1 Comp Eng 2 Comp Eng 3 Comp Eng 3

·

		anyon Compre							,				·····
			· · · · · · · · · · · · · · · · · · ·						∲				
	Xylene AP-42 Factor	Fuel Consumption			Xylene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled
	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
16	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	22	0.006	0.0014
16	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	22	0.006	0.0014
16	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	22	0.006	0.0014
16	0.000184	0.007571	1.39306E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	22	0.006	0.0014
-						Total	0.005	lb/hr	· · · · · · · · · · · · ·				1
	i					Controlled	0.024	tpy					1
	SO2 AP-42				- +			Conversion	· · · · · · · · · · · · · · · · · · ·				
	Factor	Fuel Consumption	1		SO2 Emissions	Horsepower	Emissions	to tpy	Emissions	Method			
	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)				
16	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42			
16	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42			
16	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42			
16	0.000588	0.007571	4.45175E-06	100.0%	0.0020	1260	0.006	4.38	0.025	AP-42			
	i					Total	0.022	lb/hr	1				
	· ······		,			1	0.098	tpy	+				

Xylene Ca	Iculations
ID#	Emission Poin
LCC-1 LCC-2 LCC-3 LCC-4 SO2 Calcu	Comp Eng 1 Comp Eng 2 Comp Eng 3 Comp Eng 3
ID#	Emission Foin
LCC-1 LCC-2 LCC-3 LCC-4	Comp Eng 1 Comp Eng 2 Comp Eng 3 Comp Eng 3

			1			1		1					1
	Acetaldehyde	Fuel Consumption		-	Acetaldehyde Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions
	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	22	0.272	0.0622
516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	22	0.272	0.0622
516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	22	0.272	0.0622
3516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1260	0.080	4.38	0.349	AP-42	22	0.272	0.0622
						Total	0.249	lb/hr				,	4
			1			Controlled	1.090	tpy				1	
	Acrolein AP-42				Acrolein			Conversion			Catalyst	Controlled	Controlled
	Factor	Fuel Consumption			Emissions	Horsepower	Emissions	to tpy	Emissions	Method	Efficiency	Emissions	Emissions
	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	22	0.168	0.0382
3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	22	0.168	0.0382
516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	22	0.168	0.0382
516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1260	0.049	4.38	0.215	AP-42	22	0.168	0.0382
						Total	0.153	lb/hr					
	1					Controlled	0.670	tpy					

	yde Calculat
ID #	Emission Poi
LCC-1	Comp Eng
LCC-2	Comp Eng
LCC-3	Comp Eng
LCC-4	Comp Eng
Acrolein (Calculations
Acrolein (
ID #	Emission Poi
ID #	Emission Poi
ID #	Emission Poi

Г

AP-42 Factors taken from Tabl

·

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

ENGINE SPEED (rpm):	1400	FUEL SYSTEM:	HPG IMPCO
COMPRESSION RATIO:	8:1	WITH AIR	FUEL RATIO CONTROL
AFTERCOOLER WATER INLET (°F):	130	SITE CONDITIONS:	
JACKET WATER OUTLET (°F):	210	FUEL:	Field Gas
COOLING SYSTEM:	JW+OC, AC	FUEL PRESSURE RANGE(psig):	35.0-40.0
IGNITION SYSTEM:	ADEM3	FUEL METHANE NUMBER:	62.2
EXHAUST MANIFOLD:	ASWC	FUEL LHV (Btu/scf):	1027
COMBUSTION:	Low Emission	ALTITUDE(ft):	5800
NOx EMISSION LEVEL (g/bhp-hr NOx):	1.5	MAXIMUM INLET AIR TEMPERATURE(°F):	55
SET POINT TIMING:	27.4	NAMEPLATE RATING:	1340 bhp@1400rpm
			MAXIMUM INLET AIR
		RATING	PERATINE

			RATING	TEMPERATURE		
RATING	NOTES	LOAD	100%	100%	75%	53%
ENGINE POWER	(1)	bhp	1340	1260	945	670
INLET AIR TEMPERATURE		°F	32	55	55	55

ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7722	7778	8055	8518
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8532	8594	8901	9412
AIR FLOW	(3)(4)	lb/hr	12692	11944	9030	6604
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)	scfm	2862	2694	2036	1489
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	70.0	66.5	52.3	39.3
EXHAUST STACK TEMPERATURE	(6)	°F	907	907	908	911
EXHAUST GAS FLOW (@ stack temp, 14.5 psia)	(7)(4)	ft3/min	7882	7419	5620	4126
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	13190	12415	9396	6879

EMISSIONS DATA						
NOx (as NO2)	(8)	g/bhp-hr	1.50	1.50	1.50	1.50
CO	(8)	g/bhp-hr	2.31	2.34	2.45	2.61
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	2.43	2.45	2.56	2.72
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.63	0.64	0.66	0.71
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.42	0.43	0.45	0.47
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.22	0.22	0.23	0.24
CO2	(8)	g/bhp-hr	509	511	522	545
EXHAUST OXYGEN	(10)	% DRY	7.9	7.8	7.7	7.6

HEAT REJECTION						
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	43666	42171	35699	29897
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	5313	5102	4269	3543
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	6512	6289	5324	4459
HEAT REJ. TO AFTERCOOLER (AC)	(11)(12)	Btu/min	9473	9473	5270	2111

TOTAL JACKET WATER CIRCUIT (JW+OC)	(12)	Btu/min	55848
TOTAL AFTERCOOLER CIRCUIT (AC)	(12)(13)	Btu/min	9946

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine cepability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

• • •

,

LCC-2/L.cc-4

QUOTE: 04080904B

Expires: May 8, 2009

EMIT Technologies, Inc 6820 Corporation Parkway Suite A Fort Worth, TX 76126 307.673.0883 Office 307.673.0886 Fax bosborn@emittechnologies.com

PREPARED FOR:

١

Mr. Craig Allison хто

Sent via email

A. INFORMATION PROVIDED BY CATERPILLAR

Engine:	G3516 LE
DIM Sheet:	DM5155
Compression Ratio:	8.0:1
RPM:	1400
Horsepower:	1340
Fuel:	Natural Gas
Piping size:	12"
Annual Operating Hours:	8760
Exhaust Flow:	7685 CFM
Exhaust Temperature:	855 °F
Allowable Engine Backpressure:	27" WC
Emission Data	

LIIII33IOII	Data
NO _x :	

NO _x :	1.50	g/bhp-hr
CO:	1.90	g/bhp-hr
THC:	3.10	g/bhp-hr
NMHC:	0.46	g/bhp-hr
HCHO:	N/A	g/bhp-hr
Oxygen:	8.30	%

B. POST CATALYST EMISSIONS TO BE ACHIEVED BY EMISSION CONTROL EQUIPMENT

NO _x :	Unaffected by Oxidation Catalyst
CO:	>93% reduction
VOC:	>76% reduction

C. CONTROL EQUIPMENT

Model Catalyst Type

CATALYTIC CONVERTER/SILENCER UNIT

Model	EA-3050Z-1212F-D1XEE
Catalyst Type	Oxidation, Precious group metals
Manufacturer	EMIT Technologies, Inc.
Element Size	30.5" x 3.5"
Catalyst Elements	1
Housing Type	Dual Bed
Catalyst Installation	Accessible Housing
Construction .	10 ga Steel
Sample Ports	6 (0.5" NPT)
Inlet Connections	12" flat face flange
Outlet Connections	12" flat face flange
Configuration	Assume End In / End Out

•

, ,

•

1

.

CATALYTIC SILENCER SIZING PROGRAM

LCC 3

GT EXHAUST SYSTEMS, INC. 4121 NW 37 Street Lincoln, NE 68524 402-323-7272 Fax 402-323-7270

CUSTOMER: EXTERRAN

3-WAY OR OXIDATION OXIDATION

SERIES (2100,4100,5100 - 8100)

NUMBER OF ELEMENTS = **

5/25/2005

PROJECT: XTO

QUOTATION I.D.: DATE: 2/9/2009

DESCRIPTION: CAT 3518TALE, 1400RPM, 1340HP, 854TEMP

SELECT OXIDATION CATALYST SIZE

INCH OUTLET PRESSURE DROP CALCULATED WITH A 12

PERFORMANCE DATA INPUT AND CALCULATIONS

1	NPUT DATA	ř		CALCULATE	D
FLOW: ACFM or SCFM 70/14.7 or NCuM/Min32/14.7 or LB/MIN or LB/HR S.G.	13301		ACFM SCFM 7014.7 NCuWMIn32/14.7 LB/MIN LB/HR S.G.	7404.36 2986.54 221.68 13301.00 0.99102	
or M.W.	28.7	* SEE	M.W.	28.700	
TGAS*F	854	NOTE	TGAS®R	1314	
PGAS PSIG]	PGAS PSIA	14.700	
PATM PSIA	<u>14.7</u>]	OUTLET, SQ.FT.	0.785	
OUTLET SIZE, IN	12]	OUTLET VEL, FT/MIN	9427.5	
FUEL, (GAS, or DIESEL)	GAS]	VEL HEAD, IN H 20	2.21	
BODY STYLE (201 OR 501)	201]	SCFH 32/14.7	166344	(FOR CAT CONV SPACE VEL CALC)
MAX. BODY CAPACITY or R **	3				

* NOTE: 27 5 MW TYP FOR RICH BURN EXHAUST GAS; 28.7 MW TYP, FOR LEAN BURN GAS OR DIESEL

4100

2

** MAX, BODY CAPACITY - For modular enter number of elements and half elements as 1, 2, 4, 6, etc.

For the small round (6",8",10",12",14",or 16") ENTER R IN C-30 AND THE DIAMETER SELECTED IN C-31. *** NUMBER ELEMENTS For modular enter the number of full and half elements as 1, 1.5, 2, 2.5, 3, 3.5, up to entered Max. Body Capacity.

For small round (6",8",10",12",14",or 16") ENTER "1" AND ENTER THE DIAMETER OF IN C-31

GT CATALYTIC	CONVERTER MO	DEL NUMBER:	201	vo	-	3 -	200	+	4112
CALCULATED PRESSURE	<u>E DROP</u> = <u>6.71</u>	INCHES H2O, C	ALCULAT	ED SPA	CE VE	LOCI	<u>TY</u> =		123318
WITH LEAN BURN GAS ENGINE,	MIN. OXIDATION	RATES ARE:	<u>95</u>	<u>% CO &</u>	HCHO), Al	Ð	<u>80</u>	% NMNEHC

VOC WILL BE STATED AS NMNEHC FOR THIS APPLICATION

BASED ON STATED EXH. FLOW & TEMPERATURE	NOX	<u>CO</u>	HCHO	NMHC Note 1	NMNEHC Nate 1
AND THE FOLLOWING EMISSIONS OUT OF ENGINE:	1.500	1.890	0.250	0.460	0.310
WE WARRANT EMISSIONS OUT OF CONVERTER NOT EXCEED:	1.500	0.397	0.055	0.230	0.077
UNITS:	gm/bhp-hr	gm/bhp-hr	gm/bhp-hr	gm/bhp-hr	gm/bhp-hr

Note 1: NMHC. NMNEHC & LESS THAN 50% Saturated.

Note 2: Oxidation Catalyst on Diesel or Lean Gas Cannot Reduce NOx

PERFORMANCE WARRANTY CONTINGENT UPON CONVERTER INSTALLATION ON A PROPERLY MAINTAINED ENGINE EXCESSIVE OIL CONSUMPTION AND/OR FUEL CONSUMPTION MAY MASK OR POISON THE CATALYST AND REDUCE DESTRUCTION ENGINE LUBE OIL MUST BE OF A TYPE RECOMMENDED FOR CATALYTIC CONVERTER SERVICE. ELEMENT(S) WILL REQUIRE PERIODIC CLEANING. FREQUENCY WILL DEPEND ON LEVEL OF CONTAMINANTS IN THE EXHAUST GAS CERTAIN CONTAMINANTS SUCH AS HEAVY METAL IN FUEL AND LUBE OIL WILL POSION THE CATALYST AND VOID THE WARANTY

· · ·

*

Station:	LCU - Pipeline Blow	down Emissions ever	nts			
Quantity Released in	Std. cubic ft (SCF)	8905	only enter cf, do not enter			
Total Duration in hrs	2	80	(Sixty individual one-hour	events for the year)		T
Flare		10	(Yes/No)			
Vented		yes	(Yes/No)			
						-
	Estimated Quantity Vented	Estimated Quantity Emitted from Flared	Total Estimated Quantity Emitted	Emissions	Emissions	
Component	(lbs)	(lbs)	(lbs)	(lb/hr)	(tons/yr)	
0 1 11 11		0.000	0.000	0.000		-
Carbon Monoxide		0.000	0.000	0.000		-
Nitric Oxide		0.000	0.000	0.000		-
Nitric Dioxide	00.450	0.000	0.000	0.000	0.000	-
VOCs	39.453	0.000	39.453	0.658	0.020	_
Sulfur Dioxide	0.000	0.000	0.000	0.000	0.000	
Carbon Dioxide	3.375	0.000	3.375	0.056	0.002	-
Nitrogen	2.896	0.000	2.896	0.048	0.001	-
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	-
Helium	0.000	0.000	0.000	0.000	0.000	-
Methane	336.647	0.000	336.647	5.611	0.168	_
Ethane	34.385	0.000	34.385	0.573	0.017	_
Propane	18.861	0.000	18.861	0.314	0.009	
Iso-Butane	4.960	0.000	4.960	0.083	0.002	_
N-Butane	6.147	0.000	6.147	0.102	0.003	
Iso-Pentane	2.770	0.000	2.770	0.046	0.001	
N-Pentane	2.071	0.000	2.071	0.035	0.001	
Methylcyclopentane	0.000	0.000	0.000	0.000	0.000	
n-Hexane	0.862	0.000	0.862	0.014	0.000	
Hexane +	1.389	0.000	1.389	0.023	0.001	
2,4-Dimethylpentane	0.000	0.000	0.000	0.000	0.000	
Methycyclohexane	0.479	0.000	0.479	0.008	0.000	
Benzene	0.128	0.000	0.128	0.002	0.000	
Cyclohexane	0.377	0.000	0.377	0.006	0.000	
n-Heptane	0.804	0.000	0.804	0.013	0.000	
Toluene	0.128	0.000	0.128	0.002	0.000	
Ethylbenzene	0.007	0.000	0.007	0.000	0.000	
Xylenes	0.071	0.000	0.071	0.001	0.000	
Octanes+	0.392	0.000	0.392	0.007	0.000	
Nonanes+	0.003	0.000	0.003	0.000	0.000	
Decanes+	0.003	0.000	0.003	0.000	0.000	

. •

,

PIG RECEIVER EMISSIONS

YEAR: 2010 Company: XTO Energy Facility Name: LCU Compressor Station Facility Location: Uinta County, Utah Based on max 20" Pipeline scenario

GAS COMPONENT (Wet Gas)	MOLECULAR WEIGHT (Ib/Ib-mole)	Weight Fraction	COMPONENT FLOW RATE (Mscf)	COMPONENT FLOW RATE (Ib/yr)	COMPONENT FLOW RATE (tons/yr)	
Methane	16.043	0.773	6.883	290.972	0.145]
Ethane	30.07	0.092	0.821	65.088	0.033	
Propane	44.097	0.044	0.395	45.898	0.023	VOC
i-Butane	58.123	0.013	0.114	17.397	0.009	
n-Butane	58.123	0.014	0.128	19.678	0.010	
i-Pentane	72.15	0.008	0.070	13.341	0.007	
n-Pentane	72.15	0.006	0.051	9.716	0.005	
Hexanes	86.177	0.011	0.100	22.717	0.011	
Heptanes	100.204	0.005	0.049	12.815	0.006	
Octanes	114.231	0.001	0.007	2.174	0.001	
Nonanes	128.258	0.000	0.000	0.000	0.000	
Decanes +	142.285	0.000	0.000	0.000	0.000	
Benzene	78.12	0.001	0.010	1.996	0.001	
Toluene	92.13	0.002	0.016	3.922	0.002	
Ethylbenzene	106.16	0.000	0.001	0.224	0.000	
Xylenes	106.16	0.010	0.087	24.313	0.012	
n-Hexane	86.177	0.003	0.029	6.602	0.003	
Helium	4.003	0.000	0.000	0.000	0.000	
Nitrogen	28.013	0.006	0.050	3.696	0.002	
Carbon Dioxide	44.01	0.014	0.129	14.942	0.007	
Oxygen	32	0.000	0.000	0.000	0.000	
Hydrogen Sulfide	34.08	0.000	0.000	0.000	0.000]
VOC SUBTOTAL		0.119	1.057	180.792	0.090	
HAP SUBTOTAL		0.016	0.143	37.057	0.019	1
TOTAL		1.004	8.940	555.490	0.278	1

	Receiver #2	Receiver #1	PIG SPECIFICATIONS
units			FIG SPECIFICATIONS
feet	-	5.236	Pig Section Circumference (feet) :
inches	-	20.000	Pig Section Diameter (inches) :
feet	-	1.667	Pig Section Diameter (feet) :
feet	-	10.0	Pig Section Length (feet) :
actual ft ³	-	21.817	Pig Section Receiver Volume :
lb/ft ²	-	100	Average Pipeline Pressure :
scf/event	-	148.412	Pig Volume corrected for Std Conditions(14.7 psia) :
per year	-	60	Number of activities :
	-	1	Number of receivers :
per year	-	60	Total events :
scf/yr	0.000	8904.741	Total Annual Release Volume (per section) :
	Mscf/year	8.905	Total Volume :

Pipeline Pressure provided by client

Wet Gas composition used for calculations

Emissions (tpy) = Volume released (Mscf/yr) x Weight Fraction x 1000 (scf/Mscf) x 1/379.45 (lb-mol/scf) x MW (lb/mol) / 2000 (lb/ton)

Little Canyon Compressor Station

•,

4

Blowdown Calculations for four Compressor / engine packages	8	
Number of Blowdown Events Per Month =	40	events/month
Total Blowdown Volume per Event* =	1778	scf/event
Total Annual Volume of Gas Released due to Blowdown Events =	853.44 853,440.00	Mscf/yr scf./yr
* Volume taken from calc sheet attached here.		
Gas Starter Emissions Calculations		
For four compressor / engine packages.		
Number of Blowdown Events Per Month =	40	events/month
Total Blowdown Volume per Event* =	1560	scf/event

Total Annual Volume of Gas Released due to Blowdown Events = 748.80 Mscf/yr 748,800.00 scf/yr * Volume taken from calc sheet attached here at 90 psig and 1.56 mscf per event

for the T121B/T121D Performance Curve Chart.

Total Estimated Startup / Shutdown emissions:

1602.24 Mscf/yr 1,602,240.00 scf/yr

• ,

•

Station:	LCU - Compressor I	Blowdown Emissions	events			
Quantity Released in S	Std. oubic ft (SCE)	853440	only enter cf, do not enter	mcf or mmcf		
Total Duration in hrs		240	(40 individual half-hour ev		a = 240	
Flare		no	(Yes/No)	ents occurring each mor		
Vented		Ves	(Yes/No)			
Vented		100	(Tearito)			
Component	Estimated Quantity Vented (Ibs)	Estimated Quantity Emitted from Flared (Ibs)	Total Estimated Quantity Emitted (lbs)	Emissions (Ib/hr)	Emissions (tons/yr)	
Carbon Monoxide		0.000	0.000	0.000		
Nitric Oxide		0.000	0.000	0.000		
Nitric Dioxide		0.000	0.000	0.000		
VOCs	3781.067	0.000	3781.067	15.754	1.891	
Sulfur Dioxide	0.000	0.000	0.000	0.000	0.000	
Carbon Dioxide	323.480	0.000	323.480	1.348	0.162	
Nitrogen	277.589	0.000	277.589	1.157	0.139	
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	
Helium	0.000	0.000	0.000	0.000	0.000	
Methane	32263.712	0.000	32263.712	134.432	16.132	
Ethane	3295.364	0.000	3295.364	13.731	1.648	
Propane	1807.591	0.000	1807.591	7.532	0.904	
Iso-Butane	475.339	0.000	475.339	1.981	0.238	
N-Butane	589.133	0.000	589.133	2.455	0.295	
Iso-Pentane	265.463	0.000	265.463	1.106	0.133	
N-Pentane	198.499	0.000	198.499	0.827	0.099	
Methylcyclopentane	0.000	0.000	0.000	0.000	0.000	
n-Hexane	82.650	0.000	82.650	0.344	0.041	
Hexane +	133.117	0.000	133.117	0.555	0.067	
2,4-Dimethylpentane	0.000	0.000	0.000	0.000	0.000	
Methycyclohexane	45.918	0.000	45.918	0.191	0.023	
Benzene	12.263	0.000	12.263	0.051	0.006	
Cyclohexane	36.086	0.000	36.086	0.150	0.018	
n-Heptane	77.061	0.000	77.061	0.321	0.039	
Toluene	12.224	0.000	12.224	0.051	0.006	
Ethylbenzene	0.704	0.000	0.704	0.003	0.000	
Xylenes	6.807	0.000	6.807	0.028	0.003	
Octanes+	37.614	0.000	37.614	0.157	0.019	
Nonanes+	0.283	0.000	0.283	0.001	0.000	
Decanes+	0.314	0.000	0.314	0.001	0.000	

· • .

,

Station:	LCU - Engine Starte	r Emissions events				
Quantity Released in S	Std. cubic ft (SCE)	748800	only enter cf, do not enter	mcf or mmcf		
Total Duration in hrs		240	(40 individual half-hour ev		th for 12 months = 240)	
Flare		no	(Yes/No)	onto occurring outon mor		-
Vented		VES	(Yes/No)			
Component	Estimated Quantity Vented (Ibs)	Estimated Quantity Emitted from Flared (Ibs)	Total Estimated Quantity Emitted (Ibs)	Emissions (Ib/hr)	Emissions (tons/yr)	
Carbon Monoxide	and the second se	0.000	0.000	0.000		
Nitric Oxide		0.000	0.000	0.000		
Nitric Dioxide		0.000	0.000	0.000		
VOCs	3317.471	0.000	3317.471	13.823	1.659	
Sulfur Dioxide	0.000	0.000	0.000	0.000	0.000	
Carbon Dioxide	283.818	0.000	283.818	1.183	0.142	and the first firs
Nitrogen	243.554	0.000	243.554	1.015	0.122	
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	
Helium	0.000	0.000	0.000	0.000	0.000	
Methane	28307.869	0.000	28307.869	117.949	14.154	
Ethane	2891.320	0.000	2891.320	12.047	1.446	
Propane	1585.963	0.000	1585.963	6.608	0.793	
so-Butane	417.058	0.000	417.058	1.738	0.209	
N-Butane	516.900	0.000	516.900	2.154	0.258	
so-Pentane	232.914	0.000	232.914	0.970	0.116	
N-Pentane	174.161	0.000	174.161	0.726	0.087	
Methylcyclopentane	0.000	0.000	0.000	0.000	0.000	
n-Hexane	72.517	0.000	72.517	0.302	0.036	
Hexane +	116.795	0.000	116.795	0.487	0.058	
2,4-Dimethylpentane	0.000	0.000	0.000	0.000	0.000	
Vethycyclohexane	40.288	0.000	40.288	0.168	0.020	
Benzene	10.760	0.000	10.760	0.045	0.005	
Cyclohexane	31.661	0.000	31.661	0.132	0.016	
n-Heptane	67.613	0.000	67.613	0.282	0.034	
Toluene	10.725	0.000	10.725	0.045	0.005	
Ethylbenzene	0.618	0.000	0.618	0.003	0.000	
(ylenes	5.972	0.000	5.972	0.025	0.003	
Octanes+	33.002	0.000	33.002	0.138	0.017	
Nonanes+	0.249	0.000	0.249	0.001	0.000	
Decanes+	0.276	0.000	0.276	0.001	0.000	

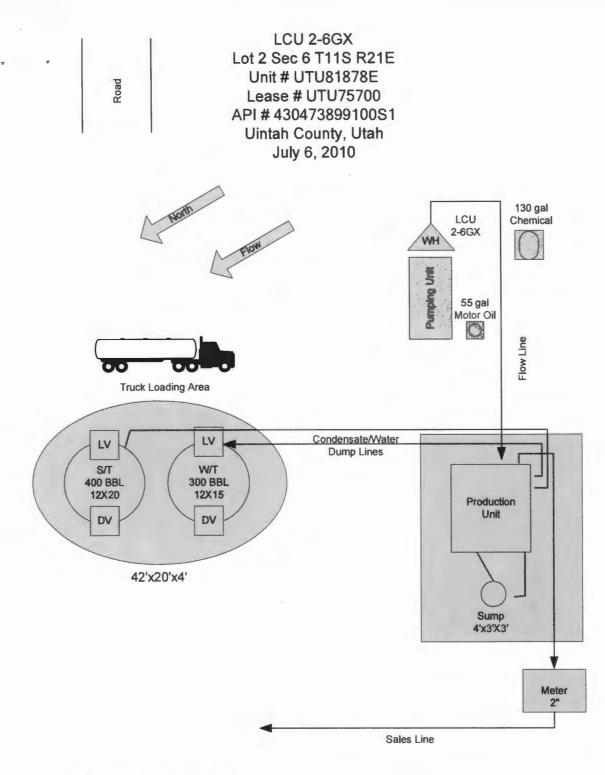
r T T

Gas Analysis Conversion of Mole Percent to Weight Percent

Specific Gravity Gross BTU

۰.

Molecular Weight	18.0370	
NMHC	3.1956	17.7171%
VOCs (NMNEHC)	1.7075	9.467%
HAPs	0.0518	


			Mole % *	
Component	Mole %	MW	MW	Weight %
Carbon Dioxide	0.3320	44	0.1461	0.810%
Nitrogen	0.4477	28	0.1254	0.695%
Hydrogen Sulfide	0.0000	34	0.0000	0.000%
Helium	0.0000	4	0.0000	0.000%
Methane	91.0621	16	14.5699	80.778%
Ethane	4.9605	30	1.4882	8.251%
Propane	1.8552	44	0.8163	4.526%
Iso-Butane	0.3701	58	0.2147	1.190%
N-Butane	0.4587	58	0.2660	1.475%
Iso-Pentane	0.1665	72	0.1199	0.665%
N-Pentane	0.1245	72	0.0896	0.497%
Methylcyclopentane	0.0000	86	0.0000	0.000%
n-Hexane	0.0434	86	0.0373	0.207%
Hexane +	0.0699	86	0.0601	0.333%
2,4-Dimethylpentane	0.0000	100	0.0000	0.000%
Methycyclohexane	0.0216	96	0.0207	0.115%
Benzene	0.0071	78	0.0055	0.031%
Cyclohexane	0.0194	84	0.0163	0.090%
n-Heptane	0.0348	100	0.0348	0.193%
Toluene	0.0060	92	0.0055	0.031%
Ethylbenzene	0.0003	106	0.0003	0.002%
Xylenes	0.0029	106	0.0031	0.017%
Octanes+	0.0149	114	0.0170	0.094%
Nonanes+	0.0001	128	0.0001	0.001%
Decanes+	0.0001	142	0.0001	0.001%

Total

99.9978

· .

r

The site facility plan is located at XTO Energy Inc. 978 N. Crescent RD. Roosevelt, Utah 84066 Office hours are 7:00 to 4:00 PM Mon-Fri

1

General sealing of valves

Production Phase: Oil tank drain valve is sealed closed. Oil tank load valve is sealed closed. Sales Phase: Oil tank drain valve is sealed closed. Oil tank load valve is sealed closed. Drain Phase: Oil tank drain valve is open. Oil tank load valve is sealed closed

•

1

.

LCU 2-6GX WELLSITE UNCONTROLLED POTENTIAL TO EMIT SUMMARY

Company: Summit Gas Gathering Facility Name: LCU 2-6GX Wellsite Facility Location: Uintah County, Utah

	NC	Dx	C	0	V	oc	PI	M ₁₀	HA	HAPs	
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	
Wellsite Condensate Truck Loading	-	-	-	-	0.02	0.08	-	-	-	-	
Wellsite heaters	0.12	0.53	0.10	0.45	0.01	0.05	0.01	0.04	0.00	0.0004	
0.20 MMscfd dehydrator - LCU 2-6GX D-1	-	-	-	-	0.90	3.95	-	-	0.31	1.36	
Fugitive Emissions - LCU 2-6GX F-1	-	-	-	-	0.44	1.93	-	-	0.02	0.07	
Wellsite Pumping Unit Engine - LCU 2-6GX	0.47	2.06	0.20	0.88	0.01	0.02				0.02	
Total Storage Tank Emissions	-	-	-	-	0.92	4.05	-	-	0.00	0.00	
Totals	0.59	2.60	0.30	1.33	2.30	10.09	0.01	0.04	0.33	1.45	

^{*}Dehy HAP emissions include n-Hexane and 2,2,4 - Trimethylpentane (TMP)

	Benz	ene	Tolu	iene	Ethylb	enzene	Xylene		N-Hexane	
Source	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Wellsite Condensate Truck Loading	-	-	-	-	-	-	-	-	-	-
Wellsite heaters	-	-	-	-	-	-	-	-	-	-
0.20 MMscfd dehydrator - LCU 2-6GX D-1	0.06	0.28	0.10	0.43	0.01	0.04	0.12	0.51	0.02	0.09
Fugitive Emissions - LCU 2-6GX F-1	0.00	0.001	0.00	0.002	0.00	0.0001	0.00	0.001	0.00	0.01
Total Storage Tank Emissions	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.000	0.00	0.002
Totals	0.06	0.28	0.10	0.43	0.01	0.04	0.12	0.51	0.02	0.10

.

	2,2,4	2,2,4 TMP		dehyde
Source	lb/hr	ton/yr	lb/hr	ton/yr
Wellsite Condensate Truck Loading	-	-	-	-
Wellsite heaters	-	-	0.00	0.0004
0.20 MMscfd dehydrator - LCU 2-6GX D-1	0.00	0.01	-	-
Fugitive Emissions - LCU 2-6GX F-1	0.00	0.00	-	-
Wellsite Pumping Unit Engine - LCU 2-6GX	-	-	0.00	0.02
Total Storage Tank Emissions	0.00	0.00	-	-
Totals	0.00	0.01	0.00	0.02

. r . *

POTENTIAL UNCONTROLLED EMISSIONS

-

. •

Company: Summit Gas Gathering Facility Name: LCU 2-6GX Wellsite Facility Location: Uintah County, Utah

Unit: TEG Dehydrator at LCU 2-6GX wellsite

Rating: 0.2 MMscf/day total; 4015 Pump at maximum glycol pump rate

Unit	Gas Flow								Total	Total
Description	Rate	VOCs	Benzene	Toluene	Ethylbenzene	Xylenes	N-Hexane	224-TMP	HAPs	BTEX
	(MMscf/day)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)	(tons/yr)
Dehy w/4015 pump	0.20	3.9509	0.2789	0.4320	0.0424	0.5080	0.0915	0.0074	1.3602	1.2613
TOTAL		3.951	0.279	0.432	0.042	0.508	0.092	0.007	1.360	1.261

Page: 1

GRI-GLYCalc VERSION 4.0 - EMISSIONS SUMMARY

Case Name: XTO Roosevelt - Uinta LCU 2-6GX Wellhead Dehy Calcs File Name: Y:\Utah\Title V Air\LCU Title V App\EPA Info Response Feb 2011\Uinta LCU 2-6GX wellhead dehy.ddf Date: March 10, 2011

UNCONTROLLED REGENERATOR EMISSIONS

٠.

,

1

\$

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1623	3.895	0.1983
Ethane	0.0449	1.079	
Propane	0.0453	1.087	
Isobutane	0.0211	0.506	
n-Butane	0.0341	0.817	
Isopentane	0.0220	0.527	0.0963
n-Pentane	0.0220	0.527	0.0962
n-Hexane	0.0209	0.502	0.0915 -
Cyclohexane	0.0369	0.887	0.1618
Other Hexanes	0.0233	0.558	0.1019
Heptanes	0.0626	1.502	0.2742
Methylcyclohexane	0.0658	1.580	0.2884
2,2,4-Trimethylpentane	0.0017	0.041	0.0074
Benzene	0.0637	1.528	0.2789
Toluene	0.0986	2.367	0.4320
Ethylbenzene	0.0097	0.232	0.0424
Xylenes	0.1160	2.784	0.5080 •
C8+ Heavies	0.2585	6.203	1.1320
Total Emissions	1.1093	26.622	4.8585
Total Hydrocarbon Emissions	1.1093	26.622	4.8585
Total VOC Emissions	0.9020	21.649	3.9509
Total HAP Emissions	0.3106	7.453	1.3602
Total BTEX Emissions	0.2880	6.911	1.2613

, GRI-GLYCalc VERSION 4.0 - SUMMARY OF IN	Page: 1
Case Name: XTO Roosevelt - Uinta LCU 2-	
DESCRIPTION:	
Description: Uinta LCU 2-6GX 0.2mm Case - Operating 8760 Kimray 4015 - 20spm Use LCU 5-12H Gas Anal	hrs / yr
Annual Hours of Operation: 8760.	0 hours/yr
WET GAS:	
Temperature: 60.00 deg. F Pressure: 60.00 psig Wet Gas Water Content	: Saturated
L	Conc. (vol %)
Carbon Dioxide Nitrogen Methane Ethane Propane	0.4261 88.9238
Isobutane n-Butane Isopentane n-Pentane n-Hexane	0.5157 0.2060 0.1547
Cyclohexane Other Hexanes Heptanes Methylcyclohexane 2,2,4-Trimethylpentane	0.0251 0.0884 0.0581 0.0263 0.0030
Benzene Toluene Ethylbenzene Xylenes C8+ Heavies	0.0074 0.0072 0.0005 0.0056 0.0321
DRY GAS:	
Flow Rate:	0.2 MMSCF/day

Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

•,

*

· · ·

ar i

Page: 2

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 0.3 gpm

PUMP:

1

•

.

•

Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.030 acfm gas/gpm glycol • • ,

1

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: XTO Roosevelt - Uinta LCU 2-6GX Wellhead Dehy Calcs File Name: Y:\Utah\Title V Air\LCU Title V App\EPA Info Response Feb 2011\Uinta LCU 2-6GX wellhead dehy.ddf Date: March 10, 2011

DESCRIPTION:

۴.,

•

Description: Uinta LCU 2-6GX 0.2 mmscf wellhead dehy Case - Operating 8760 hrs / yr Kimray 4015 - 20 spm Use LCU 5-12H Gas Analysis

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.1623	3.895	0.7108
Ethane	0.0449	1.079	0.1968
Propane	0.0453	1.087	0.1983
Isobutane	0.0211	0.506	0.0924
n-Butane	0.0341	0.817	0.1492
Isopentane	0.0220	0.527	0.0963
n-Pentane	0.0220	0.527	0.0962
n-Hexane	0.0209	0.502	0.0915
Cyclohexane	0.0369	0.887	0.1618
Other Hexanes	0.0233	0.558	0.1019
Heptanes	0.0626	1.502	0.2742
Methylcyclohexane	0.0658	1.580	0.2884
2,2,4-Trimethylpentane	0.0017	0.041	0.0074
Benzene	0.0637	1.528	0.2789
Toluene	0.0986	2.367	0.4320
Ethylbenzene	0.0097	0.232	0.0424
Xylenes	0.1160	2.784	0.5080
C8+ Heavies	0.2585	6.203	1.1320
Total Emissions	1.1093	26.622	4.8585
Total Hydrocarbon Emissions	1.1093	26.622	4.8585
Total VOC Emissions	0.9020	21.649	3.9509
Total HAP Emissions	0.3106	7.453	1.3602
Total BTEX Emissions	0.2880	6.911	1.2613

EQUIPMENT REPORTS:

÷

, ABSORBER

.

۴.

2

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages:	1.25	
Calculated Dry Gas Dew Point:	5.76	lbs. H2O/MMSCF
Temperature:	60.0	deg. F
Pressure:		psig
Dry Gas Flow Rate:		MMSCF/day
Glycol Losses with Dry Gas:	0.0002	lb/hr
Wet Gas Water Content:	Saturated	
Calculated Wet Gas Water Content:	166.60	lbs. H2O/MMSCF
Calculated Lean Glycol Recirc. Ratio:	15.21	gal/lb H2O

Component	Remaining in Dry Gas	
Water	3.44%	96.56%
Carbon Dioxide	99.68%	0.32%
Nitrogen	99.98%	0.02%
Methane	99.98%	0.02%
Ethane	99.93%	0.07%
Propane	99.82%	0.18%
Isobutane	99.66%	0.34%
n-Butane	99.52%	0.48%
Isopentane	99.36%	0.64%
n-Pentane	99.14%	0.86%
n-Hexane	98.08%	1.92%
Cyclohexane	92.08%	7.92%
Other Hexanes	98.65%	1.35%
Heptanes	95.14%	4.86%
Methylcyclohexane	88.44%	11.56%
2,2,4-Trimethylpentane	97.79%	2.21%
Benzene	49.91%	50.09%
Toluene	32.38%	67.62%
Ethylbenzene	17.02%	82.98%
Xylenes	11.27%	88.73%
C8+ Heavies	78.52%	21.48%

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	68.06%	31.94%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%

. * -*

		Page:
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.47%	99.53%
n-Pentane	0.48%	99.52%
n-Hexane	0.49%	99.51%
Cyclohexane	3.19%	96.81%
Other Hexanes	0.97%	99.03%
Heptanes	0.50%	99.50%
Methylcyclohexane	3.99%	96.01%
2,2,4-Trimethylpentane	1.48%	98.52%
Benzene	5.00%	95.00%
Toluene	7.90%	92.10%
Ethylbenzene	10.40%	89.60%
Xylenes	12.90%	87.10%
C8+ Heavies	12.00%	88.00%

STREAM REPORTS:

•.

ж. ¹

.

WET GAS STREAM

GAS SIRLAM		
Temperature: 60.00 deg. F Pressure: 74.70 psia Flow Rate: 8.37e+003 scfh		
Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	3.51e-001 6.87e-001 4.25e-001 8.86e+001 6.18e+000	6.67e+000 2.62e+000 3.13e+002
Isobutane n-Butane Isopentane	2.13e+000 4.41e-001 5.14e-001 2.05e-001 1.54e-001	5.65e+000 6.59e+000 3.27e+000
Cyclohexane Other Hexanes	8.81e-002 5.79e-002	4.64e-001 1.67e+000 1.28e+000
Toluene Ethylbenzene	7.37e-003 7.17e-003	1.27e-001 1.46e-001 1.17e-002
C8+ Heavies	3.20e-002	1.20e+000
Total Components	100.00	4.10e+002

52

.

4

. .

$\mathbb{T}_{\text{ampoind}} = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$		
Temperature: 60.00 deg. F Pressure: 74.70 psia		
Flow Rate: 8.33e+003 scfh		
Component	Conc.	Loading
	(vol%)	(lb/hr)
Water	1.21e-002	4.80e-002
Carbon Dioxide		
Nitrogen	4.26e-001	2.62e+000
	8.90e+001	
Ethane	6.20e+000	4.09e+001
Propane	2.13e+000	2.06e+001
	4.41e-001	
n-Butane	5.13e-001	6.56e+000
Isopentane	2.05e-001	3.25e+000
n-Pentane	1.53e-001	2.43e+000
n-Hexane	5.54e-002	1.05e+000
Cyclohexane	2.31e-002	4.27e-001
Other Hexanes		
	5.53e-002	
Methylcyclohexane	2.33e-002	5.02e-001
2,2,4-Trimethylpentane	2.94e-003	7.36e-002
Benzene	3.70e-003	6.34e-002
Toluene	2.33e-003	4.72e-002
Ethylbenzene	8.51e-005	1.98e-003
Xylenes	6.31e-004	1.47e-002
C8+ Heavies	2.52e-002	9.44e-001
Total Components	100.00	4.08e+002

LEAN GLYCOL STREAM

•.

s. 7

2

60.00 deg. F 3.40e-001 gpm		
Component		Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.85e+001 1.50e+000 1.11e-012 2.08e-014 8.55e-019	2.87e+000 2.13e-012 3.99e-014
Propane Isobutane	7.43e-009 8.04e-010 2.99e-010 4.11e-010 5.46e-005	1.54e-009 5.71e-010 7.85e-010
	5.54e-005 5.39e-005	

Cyclohexane 6.35e-004 1.22e-003 Other Hexanes 1.20e-004 2.29e-004 Heptanes 1.63e-004 3.12e-004 Methylcyclohexane 1.43e-003 2.73e-003 2,2,4-Trimethylpentane 1.32e-005 2.53e-003 Benzene 1.75e-003 3.35e-003 Toluene 4.42e-003 8.46e-003 Ethylbenzene 5.87e-004 1.12e-003 Xylenes 8.98e-003 1.72e-002 C8+ Heavies 1.84e-002 3.52e-002 Total Components 100.00 1.91e+002

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 60.00 deg. F Pressure: 74.70 psia Flow Rate: 3.45e-001 gpm NOTE: Stream has more than one phase. Conc. Loading (wt%) (lb/hr) Component TEG 9.72e+001 1.88e+002 Water 2.18e+000 4.22e+000 Carbon Dioxide 1.22e-002 2.37e-002 Nitrogen 6.97e-004 1.35e-003 Methane 8.38e-002 1.62e-001 Ethane 2.32e-002 4.49e-002 Propane 2.34e-002 4.53e-002 Isobutane 1.09e-002 2.11e-002 n-Butane 1.76e-002 3.41e-002 Isopentane 1.14e-002 2.21e-002 n-Pentane 1.14e-002 2.21e-002 n-Hexane 1.08e-002 2.10e-002 Cyclohexane 1.97e-002 3.82e-002 Other Hexanes 1.21e-002 2.35e-002 Heptanes 3.25e-002 6.29e-002 Methylcyclohexane 3.54e-002 6.86e-002 2,2,4-Trimethylpentane 8.84e-004 1.71e-003 Benzene 3.46e-002 6.70e-002 Toluene 5.53e-002 1.07e-001 Ethylbenzene 5.58e-003 1.08e-002 Xylenes 6.87e-002 1.33e-001 C8+ Heavies 1.52e-001 2.94e-001 _____ Total Components 100.00 1.94e+002

REGENERATOR OVERHEADS STREAM

Temperature:	212.00	deg.	F
Pressure:	14.70	psia	
Flow Rate:	3.66e+001	scfh	

• • •

*

• 1		
Component	Conc. (vol%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen Methane Ethane	7.76e+001 5.59e-001 5.00e-002 1.05e+001 1.55e+000	2.37e-002
Isobutane	1.07e+000 3.77e-001 6.08e-001 3.16e-001 3.16e-001	2.11e-002 3.41e-002
n-Hexane Cyclohexane Other Hexanes Heptanes Methylcyclohexane	2.52e-001 4.55e-001 2.80e-001 6.48e-001 6.96e-001	3.69e-002 2.33e-002 6.26e-002
	1.53e-002 8.46e-001 1.11e+000 9.46e-002 1.13e+000	6.37e-002 9.86e-002 9.69e-003
C8+ Heavies		
Total Components	100.00	2.48e+000

ه ۰

.

*

QUESTAR APPLIED TECHNOLOGY

1210 D. Street, Rock Springs, Wyoming 82901

(307) 352-7292

LIMS ID: Analysis Date/Time: Analyst Initials: Instrument ID: Data File: Date Sampled:	N/A 2/3/2009 AST Instrument 1 QPC81.D 1/28/2009	3:43 PM	Description: Field: ML#: GC Method:	LCU 5-12H LCU XTO/RS0572RF Quesbtex	
Component	Mol%	6	Wt	%	LV%
Methane	88.9238		76.7043	83.4814	
Ethane	6.1972		10.0195	9.2044	
Propane	2.1341		5.0599	3.2590	
Isobutane	0.4426		1.3832	0.8024	
n-Butane	0.5157		1.6116	0.9011	
Neopentane	0.0065		0.0251	0.0138	
Isopentane	0.1995		0.7738	0.4046	
n-Pentane	0.1547		0.6001	0.3105	
2,2-Dimethylbutane	0.0070		0.0324	0.0162	
2,3-Dimethylbutane	0.0143		0.0661	0.0324	
2-Methylpentane	0.0433		0.2006	0.0996	
3-Methylpentane	0.0238		0.1104	0.0539	
n-Hexane	0.0565		0.2616	0.1286	
Heptanes	0.1271		0.6322	0.2741	
Octanes	0.0190		0.1173	0.0526	
Nonanes	0.0156		0.1007	0.0429	
Decanes plus	0.0036		0.0276	0.0123	
Nitrogen	0.4261		0.6418	0.2589	
Carbon Dioxide	0.6896		1.6318	0.6513	
Oxygen	0.0000		0.0000	0.0000	
Hydrogen Sulfide	0.0000		0.0000	0.0000	
Total	100.0000		100.0000	100.0000)
Global Properties		Units			
Gross BTU/Real CF	1128.7	-Chickey -	BTU/SCF at 6	0°F and14.73 psia	
Sat.Gross BTU/Real CF	1110.0			0°F and 14.73 psia	
Gas Compressibility (Z)	0.9973				
Specific Gravity	0.6435		air=1		
Avg Molecular Weight	18.599		gm/mole		
Propane GPM	0.586726		gal/MCF		
Butane GPM	0.306682		gal/MCF		
Gasoline GPM	0.241561		gal/MCF		
26# Gasoline GPM	0.405649		gal/MCF		
Total GPM	1.136836		gal/MCF		
Base Mol%	99.739		%v/v		
Sample Temperature:	28		°F		
Sample Pressure:	309		psig		
Poviewod By:					

Reviewed By:

•

4

.

Component	Mol%	Wt%	LV%
Benzene	0.0074	0.0309	0.0114
Toluene	0.0072	0.0354	0.0133
Ethylbenzene	0.0005	0.0031	0.0012
M&P Xylene	0.0046	0.0261	0.0098
O-Xylene	0.0010	0.0058	0.0022
2,2,4-Trimethylpentane	0.0030	0.0181	0.0082
Cyclopentane	0.0000	0.0000	0.0000
Cyclohexane	0.0251	0.1138	0.0474
Methylcyclohexane	0.0263	0.1390	0.0587
Description:	LCU 5-12H		

GRI GtyCalc Information

Component	Mol%	Wt%	LV%
Carbon Dioxide	0.6896	1.6318	0.6513
Hydrogen Sulfide	0.0000	0.0000	0.0000
Nitrogen	0.4261	0.6418	0.2589
Methane	88.9238	76.7043	83.4814
Ethane	6.1972	10.0195	9.2044
Propane	2.1341	5.0599	3.2590
Isobutane	0.4426	1.3832	0.8024
n-Butane	0.5157	1.6116	0.9011
Isopentane	0.2060	0.7989	0.4184
n-Pentane	0.1547	0.6001	0.3105
Cyclopentane	0.0000	0.0000	0.0000
n-Hexane	0.0565	0.2616	0.1286
Cyclohexane	0.0251	0.1138	0.0474
Other Hexanes	0.0884	0.4095	0.2021
Heptanes	0.0581	0.2950	0.1351
Methylcyclohexane	0.0263	0.1390	0.0587
2,2,4 Trimethylpentane	0.0030	0.0181	0.0082
Benzene	0.0074	0.0309	0.0114
Toluene	0.0072	0.0354	0.0133
Ethylbenzene	0.0005	0.0031	0.0012
Xylenes	0.0056	0.0319	0.0120
C8+ Heavies	0.0321	0.2106	0.0946
Subtotal	100.0000	100.0000	100.0000
Oxygen	0.0000	0.0000	0.0000
Total	100.0000	100.0000	100.0000

57

*

STOCK TANK WORKING AND BREATHING EMISSIONS

.

٠.

.

.

Company: XTO Energy Facility Name: LCU 2-6GX Facility Location: Uintah County, Utah

TANK	FLASH	WORKING	BREATHING	VOC	TOTAL
DESCRIPTION	LOSSES	LOSSES	LOSSES	LOSSES	LOSSES
	(lbs/yr)	(lbs/yr)	(Ibs/yr)	(Ibs/yr)	(tons/yr)
300-bbl storage tank LCU 2-6GX	133.00	1062.00	2919.16	4114.16	2.057
400-bbl storage tank LCU 2-6GX	133.00	1062.00	2786.62	3981.62	1.991
TOTAL	266.00	2124.00	5705.78	8095.78	4.05

EPA TANKS 4.09D used to calculate emissions; please see attached documentation. Max 13 bopd production rate per tank which includes produced water and oil.

. . • ٠

WELLSITE FLASH TANK EMISSIONS

ء د

1

Company: Summit Gas Gathering Facility Name: LCU 2-6GX Facility Location: Uintah County, Utah

GAS	MOLECULAR	MOLE	RELATIVE	WEIGHT	COMPONENT	COMPONENT	COMPONENT
COMPONENT	WEIGHT	PERCENT	MOLE WEIGHT	PERCENT	FLOW RATE	FLOW RATE	FLOW RATE
	(lb/lb-mole)		(lb/lb-mole)		(Mscf/day)	(lb/hr)	(tons/yr)
Methane	16.043	80.988	12.99290484	66.20039834	0.0890868	0.156923276	0.687323947
Ethane	30.07	4.3231	1.29995617	6.623431583	0.00475541	0.015700367	0.068767609
Propane	44.097	2.2277	0.982348869	5.00518454	0.00245047	0.011864429	0.051966201
i-Butane	58.123	0.5979	0.347517417	1.770642648	0.00065769	0.004197181	0.018383652
n-Butane	58.123	0.8373	0.486663879	2.479610452	0.00092103	0.005877738	0.025744492
i-Pentane	72.15	0.2836	0.2046174	1.042550034	0.00031196	0.00247129	0.010824249
n-Pentane	72.15	0.2394	0.1727271	0.880065156	0.00026334	0.002086131	0.009137254
Hexanes	86.177	0.0883	0.076094291	0.38770948	0.00009713	0.000919037	0.004025384
Heptanes	100.204	0.0056	0.005611424	0.028590874	0.00000616	6.77726E-05	0.000296844
Octanes	114.231	0.0522	0.059628582	0.30381473	0.00005742	0.000720171	0.003154349
Nonanes	128.258	0.045	0.0577161	0.294070407	0.0000495	0.000697073	0.003053178
Decanes +	142.285	0.0391	0.055633435	0.28345898	0.00004301	0.000671919	0.002943006
Benzene	78.12	0.0054	0.00421848	0.021493658	0.00000594	5.09492E-05	0.000223157
Toluene	92.13	0.0074	0.00681762	0.034736586	0.0000814	8.23406E-05	0.000360652
Ethylbenzene	106.16	0.0026	0.00276016	0.014063344	0.0000286	3.33361E-05	0.000146012
Xylenes	106.16	0.007	0.0074312	0.037862849	0.000077	8.97512E-05	0.00039311
n-Hexane	86.177	0.035	0.03016195	0.153678729	0.0000385	0.000364284	0.001595565
Helium	4.003	0	0	0	0	0	0
Nitrogen	28.013	9.4886	2.658041518	13.54303825	0.01043746	0.032102797	0.140610249
Carbon Dioxide	44.01	0.3994	0.17577594	0.895599359	0.00043934	0.002122954	0.009298537
Oxygen	32	0	0	0	0	0	0
Hydrogen Sulfide	34.08	0	0	0	0	0	0
VOC SUBTOTAL		4.4735	2.499947907	12.73753247	0.00492085	0.030193403	0.132247106
HAP SUBTOTAL		0.0574	0.05138941	0.261835167	0.00006314	0.000620661	0.002718497
TOTAL		99.6726	19.62662638	100	0.10963986	0.237042797	1.038247449

Gas Vented: Days of Operation: 0.11 Mscf/day 365 days/year 26 barrels of Oil/Produced Water per day 3.9659 Gas to Oil Ratio in Cubic Feet Gas to Barrel of Oil/Water

Calculated emissions are combined for two tanks based on the combined total throughput.

See attached flash gas analysis for nearby well LCU 5-12H, including gas to oil ratio, API Gravity and Reid Vapor Pressure

, , . •

CAPROCK LABORATORIES, INC.

3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 (432)689-7252, CAPROCKLAB.COM

COMPANY: Hybon SAMPLE ID.: As Noted JOB NUMBER:1010042DATE RECEIVED:October 04, 2010DATE REPORTED:October 20, 2010REPORTED TO:BUTCH GIDNEY

SUMMARY OF SINGLE STAGE SEPARATOR FLASH ANALYSIS

SAMPLE IDENTIFICATION	River Bend	Little Canyon	Little Canyon	Little Canyon	Little Canyon	
	Dehy	6-12H	5-12H	4-12H	Comp Station	
SAMPLE TYPE	PRESSURIZED H2O	PRESSURIZED H2O	PRESSURIZED H2O	PRESSURIZED H2O	GLYCOL	
LAB NUMBER	10100042HYB07	10100042HYB08	10100042HYB09	10100042HYB10	10100042HYB11	
GRAVITY, API HYDROMETER						
GRAVITY, SPECIFIC 60/60F	1.0467	1.0224	1.0274	1.0574	1.1535	
LIVE CRUDE OIL						
GAS:OIL RATIO, CU FT GAS/BBL OIL	2744.056*	3.5438*	3.9659*	1.6286*	58.4303*	

* Gas:Water Ratio, Cu Ft Gas/Bbl Water

Methods: API GRAVITY - ASTM D287 GAS OIL RATIO - SINGLE STAGE FLASH Sample: CONDENSATE/PRODUCED WATER

mo Analyst: James L. Pritchard, Lab Manager

· · ·

-

a.

CAPROCK LABORATORIES, INC. 3312 BANKHEAD HIGHWAY MIDLAND, TEXAS 79701 (432)689-7252, CAPROCKLAB.COM

٢.

. •

.

SAMPLE ID:	HYBON FLASH GAS		JOB #: SAMPLE #:	1010042 1010042HYB09EA
	SPOT		DATE ON:	20101004
STATION: SAMPLE PRESS.,psig:	LITTLE CANY	JN 5-12H	TIME ON: SAMPLED BY:	CLIENT
GAS TEMP. F:			CYLINDER #:	N/A
	20101012		OT LATER LITY	
ANALYSIS COMMENTS:				
CO	MPOSITIONAL		- NATURAL GAS	
COMPONENT	MOLE %	WEIGHT %	CALCULATED PARAM	METERS
HYDROGEN SULFIDE	0.0000	0.0000	TOTAL ANALYS	IS SUMMARY
NITROGEN	9.4886	13.2433		00.0708
OXYGEN	0.0000	0.0000	AVE MOLE WT	20.0708
	80.9880	64.7314	SP GRAV, 60F/60	0.3656 255.6
	0.3994 4.3231	0.8758	API GRAVITY REL DENS, AIR=1	0.6930
ETHANE PROPANE	2.2277	6.4766 4.8943	VAPOR PRESS PSIA	
ISO-BUTANE	0.5979	4.0943	VAPUR FRESS FSIA	4005.15
N-BUTANE	0.8373	2.4247	C6+ SUMMARY	
ISO-PENTANE	0.2836	1.0195		
N-PENTANE (C-5)	0.2394	0.8606	AVE MOLE WT	122.1327
2,2 DIMETHYL BUTANE	0.0014	0.0060	SP GRAV, 60F/60	0.7411
CYCLOPENTANE	0.0175	0.0611	API GRAVITY	59.4
2-METHYLPENTANE	0.0239	0.1026	LBS/GAL	5.930
3-METHYLPENTANE	0.0198	0.0850	REL DENS, AIR=1	4.2168
N-HEXANE (C-6)	0.0350	0.1503	VAPOR PRESS PSIA	2.11
METHYLCYCLOPENTANES	0.0549	0.2302		
BENZENE	0.0054	0.0210	BTEX SUMMARY	
CYCLOHEXANE	0.0420	0.1761		
2-METHYLHEXANE	0.0047	0.0235	WT % BENZENE	0.0210
3-METHYLHEXANE	0.0076	0.0379	WT % TOLUENE	0.0340
DIMETHYLCYCLOPENTANES	0.0315	0.1541	WT % E BENZENE	0.0138
HEPTANES	0.0056	0.0280	WT % XYLENES	0.0370
N-HEPTANE (C-7)	0.0147	0.0734		
METHYLCYCLOHEXANE	0.0340	0.1629		
TOLUENE	0.0074	0.0340		
2,2,4 TRIMETHYLPENTANE	0.0005	0.0028	\cap	1 1.
OCTANES	0.0522	0.2971	ANALVET	St. 1
N-OCTANE (C-8) ETHYL BENZENE	0.0148	0.0842	ANALYST AMES I	PRITCHARD,
P-M-XYLENE	0.0026 0.0050	0.0138 0.0264		MANAGER
O-XYLENE	0.0020	0.0204		
NONANES	0.0450	0.2876		
N-NONANE (C-9)	0.0077	0.0492		
DECANES	0.0391	0.2772		
N-DECANE (C-10)	0.0069	0.0489		
UNDECANES	0.0288	0.2243		
N-UNDECANE (C-11)	0.0064	0.0498		
DODECANE PLUS	0.0986	1.0244		
TOTAL	100.0000	100.0000		

.` 6 •

,

.

.

. *

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	LCU 2-6GX Condensate / Water Tank Salt Lake City Utah XTO SGG Vertical Fixed Roof Tank LCU 2-6GX 300 bbl Condensate / Water Tank 2011 PTE Emissions Estimate - combined produced oil and water - 13 bpd
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Ne: Thiroughput(gal/yr): Is Tank Heated (y/n):	15.00 12.00 8.00 10,152.36 19,63 199,290.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1.00 0.17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.33 0.75

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

• * ъ

,

....

ч.

. *

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

LCU 2-6GX Condensate / Water Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Mixture/Component	Month	Tem	iily Liquid S perature (d Min.	urf. eg F) Max.	Liquid Buik Temp (deg F)	Vapo Avg.	r Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations
Crude oil (RVP 5)	All	100.00	70.00	120.00	100.00	5.9684	3.4893		50.0000			207.00	Option 4: RVP=5

•

.

.

.

•

. *

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

LCU 2-6GX Condensate / Water Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
Standing Losses (Ib):	2,919.1557
Vapor Space Volume (cu ft):	829.3805
Vapor Density (lb/cu ft):	0.0497
Vapor Space Expansion Factor:	0.6443
Vented Vapor Saturation Factor:	0.3012
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	829.3805
Tank Diameter (ft):	12.0000
Vapor Space Outage (ft):	7.3333
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.3333
Roof Outage (Cone Roof)	0.000
Roof Outage (ft):	0.3333
Roof Height (ft):	1.0000
Roof Slope (ft/ft):	0.1700
Shell Radius (ft):	6.0000
Vapor Density Vapor Density (lb/cu ft):	0.0497
Vapor Molecular Weight (lb/lb-mole):	50,0000
Vapor Pressure at Daily Average Liquid	00,0000
Surface Temperature (psia):	5.9684
Daily Avg. Liquid Surface Temp. (deg. R):	559,6700
Daily Average Ambient Temp. (deg. F):	51.9625
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	559.6700
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,452.1184
/apor Space Expansion Factor	0.6442
Vapor Space Expansion Factor:	0.6443
Daily Vapor Temperature Range (deg. R):	50.0000 4.7874
Daily Vapor Pressure Range (psia):	
Breather Vent Press. Setting Range(psia):	1.0830
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	5.9684
Vapor Pressure at Daily Minimum Liquid	0.9004
Surface Temperature (psia):	3.4893
Vapor Pressure at Daily Maximum Liquid	3.4093
Surface Temperature (psia):	8,2767
Daily Avg. Liquid Surface Temp. (deg R):	559.6700
Daily Min. Liquid Surface Temp. (deg R):	529.6700
Daily Min. Liquid Surface Temp. (deg R). Daily Max. Liquid Surface Temp. (deg R):	579.6700
Daily Ambient Temp. Range (deg. R):	23.3583
	23.000
/ented Vapor Saturation Factor Vented Vapor Saturation Factor:	0.3012
Vapor Pressure at Daily Average Liquid:	0.3012
Surface Temperature (psia):	5.9684
Vapor Space Outage (ft):	7.3333
Norking Losses (Ib):	1,061.9982
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	5.9684

file://C:\Program Files\Tanks409d\summarydisplay.htm

'

TANKS 4.0 Report

.

.

Annual Net Throughput (gal/yr.):	199,290.0000
Annual Turnovers:	19.6299
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	10,152.3555
Maximum Liquid Height (ft):	12.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500

Total Losses (Ib):

3,981.1539

۰. ۵

.'

.

Emissions Report for: Annual

LCU 2-6GX Condensate / Water Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Crude oil (RVP 5)	1,062.00	2,919.16	3,981.15

٠

. •

. + •

.

۲

. •

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	LCU 2-6GX 400 bbl Condensate / Water Tank Salt Lake City Utah XTO SGG Vertical Fixed Roof Tank LCU 2-6GX 400 bbl Condensate / Water Tank 2011 PTE Emissions Estimate - combined produced oil and water - 13 bpd
Tank Dimensions Shell Height (ft): Diameter (ft): Licuid Height (ft) : Aig, Liquid Height (ft): Volurne (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 17.00 14.00 14,382.50 13.86 199,290.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1.00 0.17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.33 0.75

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12.64 psia)

•

,

.

,

e

٠

. •

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

LCU 2-6GX 400 bbl Condensate / Water Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Moi.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	100.00	70.00	120.00	110.00	5.9684	3.4893	8.2767	50.0000			207.00	Option 4: RVP=5

÷

.

٠

1

4

.

• •

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

LCU 2-6GX 400 bbl Condensate / Water Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

Vapor Space Volume (cu ft): 716 2831 Tank Diameter (ft): 12 0000 Vapor Space Outage (ft): 6 3333 Tank Shell Height (ft): 20 0000 Average Liquid Height (ft): 14 0000 Roof Outage (ft): 0 3333 Roof Outage (ft): 0 3000 Roof Slope (ft/ft): 0 1700 Shell Radius (ft): 0 0497 Vapor Density Vapor Density Vapor Density (lb/cu ft): 0 0497 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Surface Temperature (psia): 59 6700 Daily Average Ambient Temp. (deg. R): 51 9625 Ideal Gas Constant R (psia cuft / (b-mol-deg R)): 10.731 Liquid Buk Temperature (deg. R): 569 6700 Daily Average Expansion Factor 0 6443 Vapor Space Expansion Factor 0 6443 Daily Vapor Temperature (psia): 1.452.1184 Vapor	0	0 700 0 00
Vapor Density (Ib/cu ft): 0.0497 Vapor Space Expansion Factor: 0.6443 Vented Vapor Space Volume: Vapor Space Volume (cu ft): 716.2831 Tank Diameter (ft): 12.0000 Vapor Space Outage (ft): 6.3333 Tank Shell Height (ft): 14.0000 Roof Outage (ft): 0.3333 Roof Height (ft): 0.0497 Yapor Density Vapor Density Vapor Density (Ib/cu ft): 0.0497 Vapor Molecular Weight (Ib/Ib-mole): 50.0000 Vapor Pressure at Daily Average Liquid 59.6700 Daily Average Ambient Temp. (deg. R): 51.9625 Ideal Gas Constant R (psia cuft / (Ib-mol-deg R)): 10.731 Liquid Bulk Temperature (deg. R): 559.6700 Tank Paint Solar Absorptance (Roof): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Tank Paint Solar Absorptance (Roof		
Vapor Space Expansion Factor: 0.6443 Vented Vapor Saturation Factor: 0.3330 'ank Vapor Space Volume: 716 2831 Vapor Space Volume (cu ft): 716 2831 Tank Diameter (ft): 12 0000 Vapor Space Outage (ft): 6.3333 Tank Shell Height (ft): 14 0000 Average Liquid Height (ft): 0.3333 Roof Outage (Cone Roof) 0.3333 Roof Outage (ft): 0.3000 Yapor Density 0.1700 Yapor Density (b/cu ft): 0.0497 Vapor Molecular Weight (Ib/Ib-mole): 50 0000 Vapor Pressure at Daily Average Liquid Sufface Temperature (psia): Sufface Temperature (psia): 1.9625 Ideal Gas Constant R (psia cuft (Ib-mol-deg R)): (psia cuft (Ib-mol-deg R)): 10.731 Liquid Buk Temperature (Roof):		
Vented Vapor Saturation Factor: 0.3330 ank Vapor Space Volume: 716 2831 Tank Diameter (ft): 12 0000 Average Liquid Height (ft): 6.3333 Tank Shell Height (ft): 10 0000 Average Liquid Height (ft): 0.3333 toof Outage (ft): 0.3433 toof Outage (ft): 0.3433 toof Outage (ft): 0.3433 toof Outage (ft): 0.497 Vapor Pressure at Daily Average Liquid Suface Temperature (deg, R):		
ank Vapor Space Volume: 716 2831 Vapor Space Voluge (cu ft): 716 2831 Tank Diameter (ft): 12 0000 Vapor Space Outage (ft): 6 3333 Tank Shell Height (ft): 14 0000 Roof Outage (ft): 0 3333 toof Outage (ft): 0 0333 toof Outage (ft): 0 0497 Roof Fight (ft): 0 0497 Vapor Density 0 0497 Vapor Molecular Weight (lb/lb-mole): 50 0000 Vapor Pressure at Daily Average Liquid 59 6700 Surface Temperature (psia): 59 6700 Daily Average Ambient Temp. (deg. R): 519 625 Ideal Gas Constant R (pia cuft / (lb-mol-deg R)): 10.731 Liquid Buik Temperature (bse), 0.50000 5400 Tank Paint Solar Absorptance (Roof): 0.5400 5400 Tank Paint Solar Absorptance (Roof): 0.5400 59640 Daily Vapor Pressure Range (psia): 4.7874 596700		
Vapor Space Volume (cu ft): 716 2831 Tank Diameter (ft): 12 0000 Avarage Liquid Height (ft): 6 3333 Tank Shell Height (ft): 0 3033 Roof Outage (ft): 0 3333 Roof Height (ft): 0 1000 Shell Radius (ft): 0 0497 Vapor Density 0 0497 Vapor Density (Ib/cu ft): 0 0497 Vapor Molecular Weight (Ib/Ib-mole): 50 0000 Vapor Perssure at Daily Average Liquid 559 6700 Surface Temperature (psia): 51 9625 Daily Average Ambient Temp. (deg. R): 559 6700 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Average Liquid 59 Vapor Space Expansion Factor: 0 6443 Vapor Pressure at Daily Average Liquid 59 Surface Temperature (psia): 4.7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor	vented vapor Saturation Factor.	0.3330
Tank Diameter (ft): 12 0000 Vapor Space Outage (ft): 6.3333 Tank Shell Height (ft): 20 0000 Average Liquid Height (ft): 14 0000 Roof Outage (ft): 0.3333 toof Outage (ft): 0.3333 koof Outage (ft): 0.3333 toof Outage (ft): 0.3333 koof Outage (ft): 0.3333 koof Outage (ft): 0.0497 Shell Radius (ft): 0.0497 Vapor Density 0.0497 Vapor Density (Ib/cu ft): 0.0497 Vapor Molecular Weight (Ib/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 59.6700 Surface Temperature (psia): 5.9684 Daily Average Ambient Temp. (deg. R): 51 9625 Ideal Gas Constant R (pia cuft / (Ib-mol-deg R)): 10.731 Liquid Bulk Temperature (bse, R): 10.5400 734 Tank Paint Solar Absorptance (Roof): 0.5400 5400 Tank Paint Solar Absorptance (Roof): 0.5400 59.6700 Daily Vapor Pressure Range (psia): 4.7874 59.6700 Daily Vapor Pressure at Daily Average Liquid 5.9684	Tank Vapor Space Volume:	740 0004
Vapor Space Outage (ft): 6 3333 Tank Shell Height (ft): 20 0000 Average Liquid Height (ft): 14 0000 Roof Outage (Cone Roof) 0 3333 Roof Outage (Cone Roof) 0 3333 Roof Outage (Th): 0 3333 Roof Height (Th): 0 1000 Roof Jourage (Th): 0 1000 Shell Radius (Th): 0 0497 Vapor Density (b/cu ft): 0 0497 Vapor Density (b/cu ft): 0 0497 Vapor Pressure at Daily Average Liquid 500000 Vapor Pressure at Daily Average Liquid 59684 Surface Temperature (psia): 596700 Daily Average Ambient Temp. (deg. R): 559 6700 Tank Paint Solar Absorptance (Shell): 0 5400 Daily Average Expansion Factor 0 6443 Yapor Pressure Ange (deg. R): 50 0000 Daily Vapor Temperature Range (deg. R): 50 0000 Daily Vapor Pressure at Daily Average Liqui		
Tank Shell Height (ft): 20 0000 Average Liquid Height (ft): 14 0000 Roof Outage (ft): 0.3333 Roof Outage (Cone Roof) 0.3333 Roof Height (ft): 0.3333 Roof Outage (I): 0.3333 Roof Height (ft): 0.3333 Roof Height (ft): 0.4700 Yapor Density 0.4700 Vapor Density (b/cu ft): 0.497 Vapor Pressure at Daily Average Liquid 50.0000 Surface Temperature (psia): 5.9684 Daily Average Ambient Temp. (deg. R): 5.96700 Daily Average Ambient Temp. (deg. R): 5.1.9625 Ideal Gas Constant R (psia cuft / (b-mol-deg R)): 10.731 Liquid Bulk Temperature (psia): 0.5400 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Vapor Temperature (Shell): 0.5400 Daily Vapor Temperature (gsia): 1.452.1184 /apor Space Expansion Factor Vapor Space Expansion Factor Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Surface Temperature (psia): 1.0830 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):		
Average Liquid Height (ft): 14 0000 Roof Outage (ft): 0.3333 toof Outage (ft): 0.0333 Roof Fleight (ft): 0.1700 Shell Radius (ft): 0.0497 Vapor Density 0.0497 Vapor Density (Ib/cu ft): 0.0497 Vapor Pressure at Daily Average Liquid 50.0000 Surface Temperature (psia): 5.9684 Daily Average Ambient Temp. (deg. R): 51 9625 Ideal Gas Constant R (psia cuft / (Ib-mol-deg R)): 10.731 Liquid Bulk Temperature (deg. R): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation 5 Factor (Btu/sqft day): 1.452.1184 'apor Space Expansion Factor 0.6443 Daily Vapor Pressure Range (psia): 4.7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Minimum Liquid Surface Temperature		
Roof Öutage (ft): 0.3333 Roof Outage (Cone Roof) 0.3333 Roof Outage (R): 0.3333 Roof Outage (R): 0.3333 Roof Outage (R): 0.3333 Roof Height (R): 0.3333 Roof Slope (R): 0.0497 Shell Radius (R): 0.0497 Vapor Density (b/cu ft): 0.0497 Vapor Molecular Weight (b/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 59684 Surface Temperature (psia): 5.9684 Daily Avg Liquid Surface Temp (deg, R): 51.9625 Ideal Gas Constant R (psia cuft (lb-mol-deg R)): 10.731 Liquid Bulk Temperature (deg, R): 569.6700 1.04701 Tank Paint Solar Absorptance (Shell): 0.5400 0.5400 Daily Ayor Tams Paint Solar Absorptance (Roof): 0.5400 0.5400 Daily Total Solar Insulation Factor (Btu/sqft day): 1,452.1184 'apor Space Expansion Factor 0.6443 0.0000 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 1.0830 Vapor Pressure at Daily Maximum Liquid<		
Roof Outage (Cone Roof) 0.3333 Roof Height (ft): 0.3333 Roof Height (ft): 1.0000 Roof Slope (ft/ft): 0.1700 Shell Radius (ft): 0.0000 /apor Density Vapor Density (b/cu ft): 0.0497 Vapor Pressure at Daily Average Liquid 5.9684 Daily Aver Temperature (psia): 5.9684 Daily Average Ambient Temp. (deg. R): 5.1.9625 Ideal Gas Constant R (psia cuft / (b-mol-deg R)): 10.731 Liquid Bulk Temperature (bsia): 0.5400 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation 5.962700 Factor (Btu/sqft day): 1,452.1184 /apor Space Expansion Factor Vapor Space Expansion Factor: 0.6443 Vapor Pressure at Daily Average Liquid 5.9684 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 1.0830 4.7874 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 5.96700 Daily Max. Liquid Surface Temp. (deg R): 5.99 6700 Daily Max. Li		
Roof Oufage (ft); 0.3333 Roof Height (ft); 1.0000 Shell Radius (ft); 0.1700 Shell Radius (ft); 0.0497 Vapor Density (b/cu ft); 0.0497 Vapor Molecular Weight (b/lb-mole); 50.0000 Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia); 5.9684 Daily Average Ambient Temp. (deg. R); 559.6700 Daily Average Ambient Temp. (deg. R); 10.731 Liquid Bulk Temperature (deg. R); 569.6700 Tank Paint Solar Absorptance (Shell); 0.5400 Daily Average Ambient Temp. (deg. R); 569.6700 Tank Paint Solar Absorptance (Roof); 0.5400 Daily Total Solar Insulation Factor (Btu/sqft day); Factor (Btu/sqft day); 1,452.1184 /apor Space Expansion Factor 0.6443 Vapor Pressure at Daily Average Liquid Surface Temperature (psia); Surface Temperature (psia); 1.0830 Vapor Pressure at Daily Average Liquid Surface Temperature (psia); Surface Temperature (psia); 8.2767 Daily Apor Temperature (psia); 8.2767	Roor Outage (II).	0.3333
Roof Height (ħ): 1.0000 Roof Slope (ft/ħ): 0.1700 Shell Radius (ħ): 6.0000 /apor Density Vapor Density (b/cu ft): 0.0497 Vapor Molecular Weight (b/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 5.9684 Daily Aver Temperature (psia): 5.9684 Daily Average Ambient Temp. (deg. R): 5.968700 Daily Average Ambient Temp. (deg. R): 5.1.9625 Ideal Gas Constant R (psia cuft / (b-mol-deg R)): 10.731 Liquid Bulk Temperature (bsia): 0.5400 7.869.6700 Tank Paint Solar Absorptance (Shell): 0.5400 7.860.6700 Tank Paint Solar Absorptance (Shell): 0.5400 7.800 Daily Votal Solar Absorptance (Shell): 0.5400 7.800 Daily Total Solar Insulation Factor (Btu/sqft day): 1.452.1184 /apor Space Expansion Factor Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 1.0830 7.9684 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Minimum Liqu	Roof Outage (Cone Roof)	
Roof Slope (ft/ft): 0.1700 Shell Radius (ft): 6.0000 /apor Density 0.0497 Vapor Density (lb/tb-mole): 50.0000 /apor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 5.9684 Daily Average Ambient Temp. (deg. R): 559.6700 Daily Average Ambient Temp. (deg. R): 559.6700 Daily Average Ambient Temp. (deg. R): 10.731 Liquid Bulk Temperature (deg. R): 659.6700 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation 542.1184 /apor Space Expansion Factor 06443 Vapor Pressure Range (psia): 4.7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 8.2767 Daily Vapor Pressure at Daily Maximum Liquid 5.299.6700 Surface Temperature (psia): 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 5.299.6700 Daily Max. Liquid Surface Temp. (deg R): 5.299.6700 Daily Avg. Liquid Surface Temp. (deg R):		
Shell Radius (ft): 6.0000 /apor Density Vapor Density (lb/Lou ft): 0.0497 Vapor Molecular Weight (lb/Ib-mole): 50.0000 Vapor Pressure at Daily Average Liquid 5.9684 Daily Average Ambient Temp. (deg. R): 5.958 6700 Daily Average Ambient Temp. (deg. R): 51.9625 Ideal Gas Constant R 10.731 Liquid Sulf ace Temperature (deg. R): 569 6700 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Average Expansion Factor 0.6443 Yapor Temperature Range (deg. R): 50.0000 Daily Apor Temperature Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 0.6443 Vapor Pressure Range (pisia): 4.7874 Breather Vent Press Setting Range(pisia): 1.0830 Vapor Pressure at Daily Average Liquid Surface Temperature (pisia): Surface Temperature (pisia): 8.2767 Daily May. Liquid Surface Temp. (deg R): 559.6700 Daily May. Liquid Surface Temp. (deg R): 529.6700 Daily May. Liquid Surface Temp. (deg R): 529.6700 Daily Maximum Liquid Surface Temperature (pisia): 8.2767 Daily		
/apor Density Vapor Density (lb/cu ft): 0.0497 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 59684 Daily Average Temperature (psia): 59684 Daily Average Ambient Temp. (deg. R): 559 6700 Daily Average Ambient Temp. (deg. R): 559 6700 Daily Average Ambient Temp. (deg. R): 51 9625 Ideal Gas Constant R 10.731 Liquid Bulk Temperature (deg. R): 0.5400 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation Factor (Btu/sqft day): Factor (Btu/sqft day): 1,452.1184 /apor Space Expansion Factor Vapor Space Expansion Factor: Vapor Pressure at Daily Average Liquid 50.0000 Daily Vapor Temperature (psia): 1.0830 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Surface Temperature (psia): 5.96700 Daily Max. Liquid Surface Temp. (deg R): 559 6700 Daily Ava		
Vapor Denšity (Ib/cu ft): 0.0497 Vapor Molecular Weight (Ib/Ib-mole): 50.0000 Vapor Pressure at Daily Average Liquid 59684 Daily Avg. Liquid Surface Temp (deg. R): 59.650 Daily Avg. Liquid Surface Temp (deg. R): 51.9625 Ideal Gas Constant R 10.731 Liquid Bulk Temperature (deg. R): 569.6700 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Average Expansion Factor 0.6443 Vapor Pressure Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Pressure at Daily Average Liquid 59.6700 Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid 529.6700 Daily Mayo Liquid Surface Temp. (deg R): 529.6700 Daily Mayo Liquid Surface Temp. (deg R): 529.6700 Daily May. Liquid Surface Temp. (deg R): 529.6700 Daily Mayor Pressure at Daily Maximum Liquid 529.6700	Shell Radius (ft):	6.0000
Vapor Molecular Weight (Ib/Ib-mole): 50.0000 Vapor Pressure at Daily Average Liquid 59684 Daily Average Liquid Surface Temp (deg, R): 596700 Daily Average Ambient Temp. (deg, R): 51.9625 Ideal Gas Constant R (psia cuft / (b-mol-deg R)): 10.731 Liquid Bulk Temperature (deg, R): 569.6700 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Votal Solar Insulation Factor (Btu/sqft day): 1,452.1184 /apor Space Expansion Factor Vapor Space Expansion Factor: 0.6443 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 1.0830 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 1.0830 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 5.96700 Daily Max. Liquid Surface Temp. (deg R): 559.6700 0.3330 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 5.96700 Daily Max. Liquid Surface Temp. (deg R): 559.6700 0.3330 Vapor Pressure at Daily Maximum Liquid </td <td>Vapor Density</td> <td></td>	Vapor Density	
Vajor Pressure at Daily Äverage Liquid Surface Temperature (pisa): 5.9684 Daily Ave; Liquid Surface Temp (deg, R): 559 6700 Daily Ave; Liquid Surface Temp. (deg, R): 51.9625 Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.731 Liquid Bulk Temperature (deg, R): 569 6700 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Yotal Solar Absorptance (Roof): 0.5400 Daily Vapit Total Solar Insulation 1.452.1184 Factor (Btu/sqft day): 1.452.1184 /apor Space Expansion Factor 0.6443 Daily Vapor Temperature Range (deg, R): 50.0000 Daily Vapor Temperature Range (pisa): 1.0830 Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 3.4693 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): Surface Temperature (psia): 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 559 6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily		
Surface Temperature (psia): 5.9684 Daily Avg. Liquid Surface Temp. (deg. R): 559.6700 Daily Average Ambient Temp. (deg. R): 51.9625 Ideal Gas Constant R 10.731 Liquid Bulk Temperature (deg. R): 569.6700 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Average Expansion Factor 0.6443 Yapor Space Expansion Factor 0.6443 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Pressure at Daily Average Liquid 50.6644 Surface Temperature (psia): 1.0830 Vapor Pressure at Daily Maximum Liquid 50.0000 Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid 529.6700 Daily May. Liquid Surface Temp. (deg R): 529.6700 Daily May. Liquid Surface Temp. (deg R): 529.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Avg. Liquid Surface Temp. (deg R): 529.6700		50.0000
Daily Avg. Liquid: Surface Temp. (deg. R): 559 6700 Daily Average Ambient Temp. (deg. F): 51 9625 Ideal Gas Constant R 10.731 Liquid Bulk Temperature (deg. R): 569 6700 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation 569 6700 Factor (Btu/sqft day): 1,452.1184 /apor Space Expansion Factor Vapor Space Expansion Factor: 0.6443 Vapor Space Expansion Factor 0.6443 0.0000 Daily Vapor Temperature Range (deg. R): 1.0830 0.0000 Daily Vapor Temssure at Daily Average Liquid 5.9684 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Minimum Liquid 3.4893 Vapor Pressure at Daily Maximum Liquid 5.96700 Daily Max. Liquid Surface Temp. (deg R): 5.59,6700 Daily Avg. Liquid Surface Temp. (deg R): 5.59,6700 Daily Ambient Temp. Range (deg. R): 5.9684 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 5.9684 5.96700 Daily Avg. Liquid Surface Temp.		
Daily Average Ambient Temp. (deg. F): 51.9625 Ideal Gas Constant R 10.731 Liquid Buk Temperature (deg. R): 569.6700 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation 569.6700 Factor (Btu/sqft day): 1.452.1184 /apor Space Expansion Factor 0.6443 Vapor Space Expansion Factor: 0.6443 Vapor Pressure Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Temperature Range (deg. R): 5.9684 Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid 5.9684 Surface Temperature (psia): 8.2767 Daily Vap, Liquid Surface Temp. (deg R): 559.6700 Daily May. Liquid Surface Temp. (deg R): 529.6700 Daily May. Liquid Surface Temp. (deg R): 529.6700 Daily Maxi. Liquid Surface Temp. (deg R): 529.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Average Liquid 579.6700 Daily Average Liquid 59.684 Vapor Pressure at Daily Av		
Ideal Gas Constant R (psia cuft / (lb-mol-deg R)): 10.731 Liquid Bulk Temperature (deg R): 569 6700 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Absorptance (Roof): 0.5400 Daily Total Solar Absorptance (Roof): 0.5400 Daily Total Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation Factor (Btu/sqft day): Factor (Btu/sqft day): 1,452.1184 /apor Space Expansion Factor 0.6443 Daily Vapor Temperature Range (psia): 4.7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Surface Temperature (psia): 5.29.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Ambient Temp. Range (deg. R): 529.6700 <tr< td=""><td></td><td></td></tr<>		
(psia cuft / (b-mol-deg R)): 10.731 Liquid Bulk Temperature (deg R): 569 6700 Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation 569 6700 Factor (Btu/sqft day): 1,452.1184 'apor Space Expansion Factor Vapor Space Expansion Factor: 0.6443 Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Temsure Range (psia): 1.0830 Breather Vent Press. Setting Range(psia): 1.0830 Yapor Space Expansion Factor: 5.9684 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 5.96700 Daily Mun. Liquid Surface Temp. (deg R): 559 6700 529 6700 Daily Avg. Liquid Surface Temp. (deg R): 579 6700 529 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 529 6700 Daily Ambient Temp. Range (deg. R): 23.3583 59684 Vapor Saturation Factor		51.9625
Liquid Buik Temperature (dég. R): 569 6700 Tank Paint Solar Absorptance (Shell): 0.5400 Daily Total Solar Insulation Factor (Btu/sqft day): 1,452.1184 /apor Space Expansion Factor Vapor Space Expansion Factor: 06443 Daily Vapor Temperature Range (deg. R): 50 0000 Daily Vapor Temperature Range (deg. R): 50 0000 Daily Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 3,4893 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 8,2767 Daily Vap, Liquid Surface Temp. (deg R): 529 6700 Daily Avg. Liquid Surface Temp. (deg R): 529 6700 Daily Avg. Liquid Surface Temp. (deg R): 529 6700 Daily Avg. Liquid Surface Temp. (deg R): 529 6700 Daily Min. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 529 6700 Daily Ambient Temp. Range (deg. R): 53838 /ented Vapor Saturation Factor Vented Vapor Saturation Factor Vapor Space Outage (t): 6,3333 Vapor Majoculage (t): 6,3333 Vorking Losses (lb): 1,061 9982 Vapor Molecular Weight (lb/lb-mole): 50 0000		40 704
Tank Paint Solar Absorptance (Shell): 0.5400 Tank Paint Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation 1,452,1184 Factor (Btu/sqft day): 1,452,1184 /apor Space Expansion Factor 0.6443 Daily Total Solar Insulation 0.6443 Daily Vapor Temperature Range (deg. R): 0.6443 Daily Vapor Pressure Range (psia): 4.7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): Surface Temperature (psia): 8.2767 Daily Vayo, Liquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Ambient Temp. Range (deg. R): 23.3583 fented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Surface Temperature (psia): 5.9664 Vapor Space Outage (ft): 6.3333 Vapar Pressure at Daily Average Liquid: </td <td></td> <td></td>		
Tank Paint Solar Absorptance (Roof): 0.5400 Daily Total Solar Insulation 1,452.1184 Factor (Btu/sqft day): 1,452.1184 (apor Space Expansion Factor 0.6443 Daily Vapor Temperature Range (deg. R): 0.6400 Daily Vapor Tenssure Range (psia): 1.0830 Vapor Space Expansion Factor: 0.6443 Daily Vapor Temserature Range (deg. R): 1.0830 Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Minimum Liquid 3.4893 Vapor Pressure at Daily Miximum Liquid 3.4893 Vapor Pressure at Daily Maximum Liquid 5.96700 Daily Avg. Liquid Surface Temp. (deg R): 5.59.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Max. Liquid Surface Temp. (deg R): 5.9684 Vapor Pseure at Daily Average Liquid: 5.9684 Vapor Space Suturation Factor 0.3330 Vapor Pseure at Daily Average Liquid: 5.9684 Vapor Space Outage (t): 6.3333 Vapor Space Outage (t): 6.3333 Va		
Daily Total Solar Insulation 1,452.1184 Factor (Btu/sqft day): 1,452.1184 (apor Space Expansion Factor 0 6443 Daily Vapor Temperature Range (deg. R): 50 0000 Daily Vapor Tressure Range (psia): 4.7874 Breather Vent Press Setting Range(psia): 1.0830 Vapor Space Expansion Factor: 0 6443 Breather Vent Press Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 59684 Surface Temperature (psia): 59684 Vapor Pressure at Daily Maximum Liquid 3.4893 Surface Temperature (psia): 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 559 6700 Daily Max. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 529 6700 Daily Avg. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 529 6700 Daily Ambient Temp. Range (deg. R): 23.3583 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 59684<		
Factor (Btu/sqft day): 1,452.1184 /apor Space Expansion Factor 0 6443 Daily Vapor Temperature Range (deg. R): 50 0000 Daily Vapor Pressure Range (psia): 4 7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 59684 Vapor Pressure at Daily Maximum Liquid 59684 Vapor Pressure at Daily Maximum Liquid 3.4893 Vapor Pressure at Daily Maximum Liquid 82767 Daily Vapo. Liquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Ambient Temp. Range (deg. R). 23.3583 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid 59.6644 Vapor Pressure at Daily Average Liquid 59.6644 Vapor Space Outage (ft): 6.33333 Vented Vapor Saturation Factor: 0.3330 Vapor Space Outage (ft): 5.96644 Vapor Pressure at Daily Average Liquid 5.96644		0.0400
Vapor Space Expansion Factor: 0 6443 Daily Vapor Temperature Range (deg. R): 50 0000 Daily Vapor Pressure Range (psia): 4 7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 59684 Vapor Pressure at Daily Maximum Liquid 5.9684 Vapor Pressure at Daily Maximum Liquid 3.4893 Surface Temperature (psia): 5.96700 Daily Vapor I.iquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Ambient Temp. Range (deg. R): 23.3583 fented Vapor Saturation Factor 0.3330 Vapor Space Outage (ft): 6.3333 Vapor Space Outage (ft): 6.3333 Vapor Pressure at Daily Average Liquid 50.0000		1,452.1184
Vapor Space Expansion Factor: 0 6443 Daily Vapor Temperature Range (deg. R): 50 0000 Daily Vapor Pressure Range (psia): 4 7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 59684 Vapor Pressure at Daily Maximum Liquid 5.9684 Vapor Pressure at Daily Maximum Liquid 3.4893 Surface Temperature (psia): 5.96700 Daily Vapor I.iquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Ambient Temp. Range (deg. R): 23.3583 fented Vapor Saturation Factor 0.3330 Vapor Space Outage (ft): 6.3333 Vapor Space Outage (ft): 6.3333 Vapor Pressure at Daily Average Liquid 50.0000	Apor Space Expansion Factor	
Daily Vapor Temperature Range (deg. R): 50.0000 Daily Vapor Pressure Range (psia): 4.7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Maximum Liquid 3.4893 Surface Temperature (psia): 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Ambient Temp. Range (deg. R): 23.3583 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Vapor Space Outage (tt): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000		0.6443
Daily Vapor Pressure Range (psia): 4.7874 Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 5.9684 Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Minimum Liquid 3.4893 Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid 8.2767 Surface Temperature (psia): 8.2767 Daily Aver. Liquid Surface Temp. (deg R): 529.6700 Daily Mm. Liquid Surface Temp. (deg R): 529.6700 Daily Mm. Liquid Surface Temp. (deg R): 529.6700 Daily Mms. Liquid Surface Temp. (deg R): 23.3583 fented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Surface Temperature (psia): 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1.061.9882 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		
Breather Vent Press. Setting Range(psia): 1.0830 Vapor Pressure at Daily Average Liquid 59684 Vapor Pressure at Daily Minimum Liquid 5 Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Minimum Liquid 3.4893 Vapor Pressure at Daily Minimum Liquid 82767 Daily Avg. Liquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Ambient Temp. Range (deg. R): 23.3583 Yented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 59.6644 Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Average Liquid: 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1.061.9882 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		
Vapor Pressure at Daily Average Liquid Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Minimum Liquid 3.4893 Vapor Pressure at Daily Minimum Liquid 3.4893 Vapor Pressure at Daily Maximum Liquid 3.4893 Vapor Pressure at Daily Maximum Liquid 3.4893 Surface Temperature (psia): 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Ambient Temp. Range (deg. R): 23.3583 tented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Surface Temperature (psia): 5.9684 Vapor Space Outage (tt): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		
Surface Temperature (psia): 5.9684 Vapor Pressure at Daily Minimum Liquid 3.4893 Vapor Pressure at Daily Maximum Liquid 3.4893 Vapor Pressure at Daily Maximum Liquid 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 559.6700 Daily Max. Liquid Surface Temp. (deg R): 529.6700 Daily Max. Liquid Surface Temp. (deg R): 579.6700 Daily Max. Liquid Surface Temp. (deg R): 23.3583 Yented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 59.684 Surface Temperature (psia): 5.9684 Vapor Saturation Factor 0.3330 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1.061.9882 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		
Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 559.6700 Daily Min. Liquid Surface Temp. (deg R): 529.6700 Daily Min. Liquid Surface Temp. (deg R): 579.6700 Daily Max. Liquid Surface Temp. (deg R): 23.3583 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1,061.9882 Vapor Molecular Weight (lb/lb-mole): 50.0000	Surface Temperature (psia):	5.9684
Surface Temperature (psia): 3.4893 Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia): 8.2767 Daily Avg. Liquid Surface Temp. (deg R): 559 6700 Daily Max. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Max. Liquid Surface Temp. (deg R): 23.3583 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 59684 Vapor Space Outage (tt): 6.3333 Vorking Losses (lb): 1,061 9982 Vapor Molecular Weight (lb/lb-mole): 50 0000 Vapor Pressure at Daily Average Liquid 50 0000		
Surface Temperature (psia): 8 2767 Daily Avg. Liquid Surface Temp. (deg R): 559,6700 Daily Min. Liquid Surface Temp. (deg R): 529,6700 Daily Min. Liquid Surface Temp. (deg R): 579,6700 Daily Max. Liquid Surface Temp. (deg R): 0.3330 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 59,664 Surface Temperature (psia): 5,9664 Vapor Space Outage (ft): 6,3333 Vorking Losses (lb): 1,061,9882 Vapor Molecular Weight (lb/lb-mole): 50,0000 Vapor Pressure at Daily Average Liquid 50,0000		3.4893
Daily Avg. Liquid Surface Temp. (deg R): 559 6700 Daily Min. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Max. Liquid Surface Temp. (deg R): 23.3583 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Surface Temperature (psia): 5.9684 Vapor Space Outage (tt): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		
Daily Min. Liquid Surface Temp. (deg R): 529 6700 Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Ambient Temp. Range (deg R): 23.3583 Vented Vapor Saturation Factor 23.350 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1,061.9882 Vapor Molecular Weight (lb/lb-mole): 50.0000		
Daily Max. Liquid Surface Temp. (deg R): 579 6700 Daily Ambient Temp. Range (deg. R): 23 3583 Vented Vapor Saturation Factor 0 3330 Vapor Pressure at Daily Average Liquid: 0 3330 Surface Temperature (psia): 5 9664 Vapor Space Outage (ft): 6 3333 Vorking Losses (lb): 1,061 9982 Vapor Molecular Weight (lb/lb-mole): 50 0000 Vapor Pressure at Daily Average Liquid 50 0000		
Daily Ambient Temp. Range (deg. R): 23.3583 Yented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Surface Temperature (psia): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		
Vented Vapor Saturation Factor 0.3330 Vented Vapor Saturation Factor 0.3330 Vapor Pressure at Daily Average Liquid: 5.9684 Surface Temperature (psia): 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		
Vented Vapor Saturation Factor: 0.3330 Vapor Pressure at Daily Average Liquid: 59684 Surface Temperature (psia): 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000	Daily Ambient Temp. Range (deg. R):	23.3583
Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000	Vented Vapor Saturation Factor	
Surface Temperature (psia): 5.9684 Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid 50.0000		0.3330
Vapor Space Outage (ft): 6.3333 Vorking Losses (lb): 1,061.9982 Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid	Vapor Pressure at Daily Average Liquid:	
Vorking Losses (Ib): Vapor Molecular Weight (Ib/Ib-mole): 50.0000 Vapor Pressure at Daily Average Liquid		
Vapor Molecular Weight (Ib/Ib-mole): 50.0000 Vapor Pressure at Daily Average Liquid	Vapor Space Outage (ft):	6.3333
Vapor Molecular Weight (lb/lb-mole): 50.0000 Vapor Pressure at Daily Average Liquid	Norking Losses (Ib):	1,061.9982
Vapor Pressure at Daily Average Liquid	Vapor Molecular Weight (lb/lb-mole):	50.0000
Surface Temperature (psia): 5.9684	Vapor Pressure at Daily Average Liquid	
	Surface Temperature (psia):	5.9684

file://C:\Program Files\Tanks409d\summarydisplay.htm

۰ م ۱

• ',

TANKS 4.0 Report

٠

8

Annual Net Throughput (gal/yr.):	199,290.0000
Annual Turnovers:	13.8564
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	14,382.5036
Maximum Liquid Height (ft):	17.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500

Total Losses (Ib):

3,848.6145

• *, *,

.

·

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

LCU 2-6GX 400 bbl Condensate / Water Tank - Vertical Fixed Roof Tank Salt Lake City, Utah

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Crude oil (RVP 5)	1,062.00	2,786.62	3,848.61		

.

...

• •

LCU 2-6GX WELLSITE NATURAL GAS FUELED HEATER EMISSIONS

...

Company: Summit Gas Gathering Facility Name: LCU 2-6GX Wellsite Facility Location: Uintah County, Utah

	HEATER	HEATER	FUEL	HOURS OF	FUEL	N	Юx	C	0
SOURCE DESCRIPTION	SIZE (MBtu/hr)	EFFICIENCY	HEAT VALUE (Btu/scf)	OPERATION (hrs/year)	USAGE (MMscf/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)	EF AP-42 ¹ Ib/MMscf	EMISSIONS (tons/yr)
LCU 2-6GX 400 bbl Tank #1 Heater	500	0.8	1106	8760	4.950	100.0	0.27	84.0	0.23
LCU 2-6GX 300 bbl Tank #2 Heater	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
LCU 2-6GX Dehy Reboiler Heater	250	0.8	1106	8760	2.475	100.0	0.13	84.0	0.11
				TOTALS	9.900		0.530		0.450

	Т	TOC		PM		Formaldehyde	
SOURCE	EF AP-42 ²	EMISSIONS	EMISSIONS	EF AP-42 ²	EMISSIONS	EF AP-42 ³	EMISSIONS
DESCRIPTION	lb/MMscf	(tons/yr)	(tons/yr)	lb/MMscf	(tons/yr)	lb/MMscf	(tons/yr)
LCU 2-6GX 400 bbl Tank #1 Heater	11.0	0.03	0.03	7.6	0.02	7.50E-02	0.0002
LCU 2-6GX 300 bbl Tank #2 Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
LCU 2-6GX Dehy Reboiler Heater	11.0	0.01	0.01	7.6	0.01	7.50E-02	0.0001
	TOTALS	0.05	0.05		0.04		0.00

Criteria emissions rounded to the nearest 1/100 of a ton, VOC/HAP rounded to 1/1000 of a ton.

EF AP-42¹ = emission factor from AP-42 Table 1.4-1, Small Boilers <100 MMbtu/hr (EPA 7/98), Standard = 1,020 Btu/scf

 $EF AP-42^2$ = emission factor from AP-42 Table 1.4-2 (EPA 7/98)

4 \sim EF AP-42³ = emission factor from AP-42 Table 1.4-2 (EPA 7/98) Fuel Consumption (MMsc/yr) = <u>Heater Size (MBtu/hr) * 1,000 (Btu/MBtu) * Hours of Operation (hrs/yr)</u> Fuel Heat Value (Btu/scf) * 1,000,000 (scf/MMscf) * Heater Efficiency

NOx/CO/TOC Emissions (tons/yr) = AP-42 EF (lbs/MMscf) * Fuel Consumption (MMscf/yr) * (Fuel Heat Value/ Standard Fuel Heat Value) / 2,000 (lbs/ton) -Standard Fuel Heat Value, Natural Gas (AP-42, 7/98, p1.4-5) = 1,020 Btu/scf

VOC emissions assumed equal to TOC emissions

¢

Þ

WELLSITE UNCONTROLLED CONDENSATE TRUCK LOADING EMISSIONS

1.1

Æ

Company: Summit Gas Gathering Facility Name: LCU 2-6GX Facility Location: Uintah County, Utah

 \sim

AP - 42, Chapter 5.2

$L_L = 12.46 \times S \times P \times M / T$ Emissions = $L_L *$ Throughput

TABLE 1. Emission factors are calculated utilizing AP-42 equations and data from EPA TANKS 4.09 LL is converted to tpy VOC emissions per barrel of production per day: LL (lbs

L_L = Loading Loss Emission Factor (lbs VOC/1000 gal Loaded)

- S = Saturation Factor (0.6 For Submerged Loading Dedicated Service)
- P = True Vapor Pressure of the Loaded Liquid (psi)
- M = Vapor Molecular Weight of the Loaded Liquid (lbs/lbmol)
- T = Temperature of Loaded Liquid (°R)

		STRE SER	RING TO THE						WARDS MANY A CONTRACT ON A CONTRACT OF		
Truck Loading	12.46	0.6	1.25	22.59	511.68	0.4126	0.0004	0.0173	3.16E-03	26.00	0.0822

.

. .

.

#

.

4

Compressor Engine Emissions - Uncontrolled

۰.

•7

Company: XTO Facility Name: LCU 2-6GX Facility Location: Uintah County, Utah

EMISSION POINTS: Arrow C-96 (Pre-Jul 2008)

Engine Make/Model	Arrow C	C-96 (Pre-Jul 2008)	
Site Horsepower Rating	18	hp derated from 21.4	Arrow engine derate + 3% for every 1,000' above 1,500'
Altitude	6,000	feet	Derate factor = 13.5%
Ambient Inlet Air Temp	55	degrees F	
Fuel Consumption (BSFC)	9500	Btu/(hp-hr)	
Heat Rating	0.171	MMBtu/hr	
Heating Value	1000	Btu/Scf	
Fuel usage annual	1.50	MMScf/yr	
Fuel usage per hour	171	Scf/hr	
Operating Hours	8760	hrs/yr	

				Emission Rate		Emission Factor	
Pollutant	Emission Factor		(lb/hr)	(lb/hr) (lb/yr) (tpy)		Reference	
NOx	11.87	g/hp-hr	0.47	4,126	2.06	[1]	Ī
CO	5.05	g/hp-hr	0.20	1,755	0.88	[1]	
VOC/NMHC	0.14	g/hp-hr	0.01	49	0.02	[1]]
							AP-42 Emission Factors
PM ₁₀	0.041	g/hp-hr	0.0016	14	0.0071	[2]	9.50E-03 lb/MMBtu
Hazardous Air Pollutants							
Acetaldehyde	0.0120	g/hp-hr	0.0005	4.18	0.0021	[2]	2.79E-03 lb/MMBtu
Acrolein	0.0113	g/hp-hr	0.0004	3.94	0.0020	[2]	2.63E-03 lb/MMBtu
Benzene	0.0068	g/hp-hr	0.0003	2.37	0.0012	[2]	1.58E-03 lb/MMBtu
Formaldehyde	0.0883	g/hp-hr	0.004	31	0.02	[2]	2.05E-02 lb/MMBtu
		Total HAPS	0.0047	41	0.02		

[1] Emission Factors provided by Manufacturer

[2] AP-42 Table 3.2-3 for stationary IC sources; July 2000, 4-stroke rich burn

	CALCULATION FORMULAS
g/(hp-hr) =	(lb/MMBtu/hr)*(453.6 g/lb) / (site-rated hp)
lb/hr =	(g/hp-hr)*(site-rated hp) / (453.6 g/lb)
ipy =	(lb/hr)*(8760 hr/yr) / (2000 lb/ton)
Fuel Usage (MMscf/yr) =	(Scf/btu)*(btu/{hp-hr})*(site-rated hp)*(24 hr/day)*(365 day/yr)*(MMScf/10 ⁶ SCf)
Heat Rating (MMbtu/hr) =	(site rated horsepower)*(Btu/(hp-hr)) / (453.6 g/lb)

٩.

-

	Company:	Summit Gas G	athering				
	Facility Name:	LCU 2-6GX					
Fac	cility Location:	Uintah County,	Utah				
		Estimated Components	Hours of	Factors*	%NMNEVOC	Emł	ssions
		Count	Operation	lb/hr/component	Weight	lb/year	tons/year
Valves							
	Gas/Vapor	75	8760	0.00992000	11.00%	716.91840	0.3584
	Light Oil	10	8760	0.00550000	100.00%	481.80000	0.2409
	Heavy Oil		8760	0.00001900	100.00%	0.00000	0.0000
	Water/Light Oil	3	8760	0.00021600	100.00%	5.67648	0.0028
Pumps	Orablance	3	8760	0.00500000	44.000	45.00000	0.0070
	Gas/Vapor			0.00529000	11.00%	15.29233	0.0076
	Light Oil	1	8760	0.02866000	100.00%	251.06160	0.1255
	Heavy Oil		8760 8760	0.00113000	100.00%	0.00000	0.0000
Flances	Water/Light Oil		8760	0.00005300	100.00%	0.00000	0.0000
Flanges	Gas/Vapor	150	8760	0.00086000	11.00%	124.30440	0.0621
	Light Oil	150	8760	0.00024300	100.00%	31.93020	0.0159
		10	8760	0.00024300	100.00%	0.00000	
	Heavy Oil Water/Light Oil	10	8760	0.00000820	100.00%	0.54312	0.0000
Open-ended		10	0/00	0.00000020	100.00%	0.04512	0.0002
Open-ended	Gas/Vapor		8760	0.00441000	11.00%	0.00000	0.0000
			8760	0.00309000	100.00%	0.00000	0.0000
	Light Oil		8760	0.00030900	100.00%	0.00000	0.0000
	Heavy Oil Water/Light Oil		8760	0.00055000	100.00%	0.00000	0.0000
Connectors	vaster/Light Oil		0/00	0.00055000	100.00%	0.0000	0.000
Connectors	Gas/Vapor	10	8760	0.00044000	11.00%	4.23984	0.0021
	Light Oil	10	8760	0.00046300	100.00%	40.55880	0.0202
	Heavy Oil	10	8760	0.00001700	100.00%	0.00000	0.0000
	Water/Light Oil	10	8760	0.00024300	100.00%	21,28680	0.0106
	Water/Light On	10	0100	0.00024000	100.00 %	21.20000	0.0100
Other: Com	pressors, relief val	ives, process drain	s, diaphragms,	dump arms, hatches, i	nstruments, meters, polished rod	is, and vents	
	Gas/Vapor	5	8760	0.01940000	11.00%	93.46920	0.0467
	Light Oil	5	8760	0.01650000	100.00%	722.70000	0.3613
	Heavy Oil		8760	0.0006800	100.00%	0.00000	
	Water/Light Oil	5	8760	0.03090000	100.00%	1353.42000	0.6767
*NOTE - emi	ssion factors based	on Table 2-4 of U.S.	EPA's 1995 Pro	tocol for Equipment Lea	k Emission Estimates.		
	-					Total in tons/year	1.9
						Total in Lb/hr	0.4
	Fugitive HAP I	Emissions Total	s - Gas/Vapo	r			1
		wt% in gas		Total VOC wt %	Total Gas Fugitive VOC tpy	Total tpy for HAP	Total Ib/hr for HAP
	Benzene	0.0309%		11.00%	0.48	0.001	0.000
	Toluene	0.0354%		11.00%	0.48	0.002	0.000
	Xylene	0.0319%		11.00%	0.48	0.001	0.000
	n-Hexane	0.2616%		11.00%	0.48	0.011	0.003
	E-benzene	0.0031%		11.00%	0.48	0.000	0.000
					TOTAL Fugitive HAP's	0.016	0.004
	1	1			I OTAL FUGILIYE HAP'S	0.010	0.004

**

.

Re: CBI information for permit dockets Craig_Allison to: Eric Wortman 04/05/2010 02:38 PM Cc: Aaron_Tucker Show Details

Eric:

Regarding the process drawings for the LCU, KCU, Tap-4, and Tap-5 permit applications, this information is not considered by XTO to be Confidential Business Information.

Please note that the privacy statements made on the drawings are blanket, standard language directed to XTO contractors, but do not apply to the information submitted to the EPA in this case.

Let me know if you need anything else.

Thanks, Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

Wortman.Eric@epamail.epa.gov

03/29/2010 01:40 PM

To craig_allison@xtoenergy.com cc Subject CBI information for permit dockets

Good afternoon Craig,

I noticed the following text was included at the bottom of the 4 process flow diagrams you sent me for the Uintah facilities:

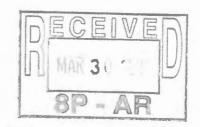
"This drawing has not been published and is the sole property of XTO Energy, Inc. and is lent to the borrower for his confidential use only. In consideration of the load of this drawing, the borrower promises and agrees to return it upon request and agrees that it shall not be reproduced, copied, lent or otherwise disposed of directly or indirectly, nor used for any purpose other than that for which it is specifically furnished." EPA's files are available for public for review through the FOIA process. Please clarify if the 4 process flow diagrams need to be filed separately as "Confidential Business Information" or CBI.

Thank you,

Eric

Eric Wortman Environmental Scientist Air Permitting, Monitoring and Modeling Unit Office of Partnerships & Regulatory Assistance EPA Region 8 1595 Wynkoop Street (8P-AR) Denver, CO 80202-1129

Phone: (303) 312-6649 Fax: (303) 312-6064 wortman.eric@epa.gov


Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298

(817) 870-2800 (office)

March 25, 2010

Mr. Eric Wortman Air Program - US EPA Region 8 Part 71 - Permitting, Monitoring and Modeling Unit 1595 Wynkoop St. (8P-AR) Denver, CO 80202-1129

Certified Mail Return Receipt No. 7009 0080 0000 4062 6532

RE: Summit Gas Gathering, LLC Tap-4 Compressor Station - Uintah County, Utah – Part 71 Permit # V-OU-0017-07.00 Tap-5 Compressor Station - Uintah County, Utah - Part 71 Permit # V-OU-0018-07.00 Kings Canyon Unit Compressor Station - Uintah County, Utah - Part 71 Permit # V-OU-0019-07.00 Little Canyon Unit Compressor Station - Uintah County, Utah - Part 71 Permit Pending Part 71 Permit Application Modifications – Supplemental Information

Dear Mr. Wortman:

Per your request, Summit Gas Gathering, LLC, hereby submits the accompanying supplemental information related to Title V - Part 71 Permit Applications for the following facilities:

- Tap-4 Compressor Station located in Uintah County, Utah Application Update
- Tap-5 Compressor Station located in Uintah County, Utah Application Update
- Kings Canyon Unit Compressor Station located in Uintah County, Utah Application Update
- Little Canyon Unit Compressor Station located in Uintah County, Utah Initial **Application** Update

The attached summary of items that were requested by e-mail from EPA Region 8 provides details of Summit Gas Gathering's response to each item requested. In addition, please find the attached, signed CTAC form covering the items submitted with this response letter.

If you should have any questions or require additional information, please feel free to contact me via e-mail at craig allison@xtoenergy.com or at (817) 885-2672.


Sincerely, **XTO Energy**

Craig Allison

EH&S Advisor

Encl:

л. — **4**

PEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official	
Name: (Last) Dungey	(First) (MI)
Title Chairman of the Board a	and President – Summit Gas Gathering, LLC
Street or P.O. Box 810 Houston St	t
City Fort Worth	State TX ZIP 76102
Telephone (817) 885-2440 Ext.	Facsimile (817) 870 - 8441
B. Certification of Truth, Accuracy a official)	and Completeness (to be signed by the responsible

Supplemental Items Requested via E-mail by EPA Region 8 for the Summit Gas Gathering Tap-4, Tap-5, Kings Canyon, and Little Canyon Part 71 Applications

• Add T4G-1 (Tap-4 Generator #1) to the insignificant emissions list - see attached info.

T

- Revise Kings Canyon condensate storage tank (KCT-1) size from 300 barrels to 400 barrels and add the Barton 1-26 Well condensate production tank see attached info.
- Revise Tap-5 condensate storage tank (T5T-1) from 300 barrels to 400 barrels see attached info:
- Provide a description and timeline for the Tap-4 generator engine changeout to Capstone Microturbine:

T4G-1 (the Cat 3412LE generator engine) was experiencing mechanical problems and was permanently shut down on October 15, 2009 and permanently replaced by a Capstone microturbine on February 18, 2010.

- Provide an update of emissions for the Capstone microturbine at LCU to remove Particulate Matter (this was an error in the original application) see attached.
- Attached are updated process flow drawings for all sites (please disregard your previous versions Rev 1's and use the attached drawings these are Rev2:

- Update the Thermal Oxidizer VOC destruction efficiency to greater than or equal to 95% for all sites - see attached.
- Need CAM rule applicability determination from EPA Region 8 for all sites EPA to send via e-mail.
- Provide a list of engines and order dates sent via e-mail on 3/18/10
- Provide driving directions to each location sent via e-mail on 3/18/10
- Provide safety and site visitation requirements for each site sent via e-mail on 3/18/10
- Provide a signed CTAC form to cover equipment and emissions mods see attached.
- Re-calculate the 2009 LCU emissions using engine site-rated horsepower instead of nameplate and take credit into account in 2010 Title V EI and fee submittal - to be submitted 1st week in April with 2009 fees.
- Describe the Kings Canyon Barton 1-26 wellsite dehy removal (date and reason for equipment removal):

The dehydrator serving the Barton 1-26 well was removed from service on January 5, 2009. The reason that the dehydrator was removed from service is because the gas was routed from the well to the Kings Canyon dehydrators. The Barton 1-26 well sits in the middle of the Kings Canyon compressor Station, so the proximity made it feasible to eliminate the Barton 1-26 dehydrator and utilize the Kings Canyon dehydrators.

9

.

Supplemental Items Requested via E-mail by EPA Region 8 for the Summit Gas Gathering Tap-4, Tap-5, Kings Canyon, and Little Canyon Part 71 Applications

Description of removal of Hydrocarbon dewpoint skid for the Kings Canyon sites:

The hydrocarbon dewpoint skid at the Kings Canyon Facility was permanently shut down in January 17, 2010 with the official HCDP equipment isolation from service occurring on March 5, 2010 and on March 18, 2010. The permanent shutdown of the HCDP process was due to the elimination of requirement to control the hydrocarbon dewpoint of the sales gas being dischsrged from the facility. The revised regulatory applicability summary is attached stating that 40 CFR 60, Subpart KKK is no longer applicable to the location because the site is no longer considered a gas processing plant. In addition, a separate applicability summary is attached for Tap-4 and Tap-5 (no changes were made to the applicability for these locations).

EDF

KCU Title V Reg applicability summary March_2010.pdf

.

LITTLE CANYON UNIT (LCU) SUPPLEMENTAL INFORMATION

۰ د

, ,

CEPA United States Environmental Protection
OMB No. 2060-0336, Approval Expires 09/30/2010
Federal Operating Permit Program (40 CFR Part 71)
EMISSION UNIT DESCRIPTION FOR PROCESS SOURCES (EUD-3)
A. General Information
Emissions unit IDLCD-1 Description25 MMscfd Glycol Dehydrator
SIC Code (4-digit) _1311 SCC Code
B. Emissions Unit Description
Primary use or equipment typeGas Dehydration
ManufacturerNatco Model No61440005
Serial NoTBD Installation date _12/_09/_2005_
Raw materialsWet Natural Gas
Finished productsDry Natural Gas
Temporary source: _XNoYes

C. Activity or Production Rates

Activity or Production Rate	Amount/Hour	Amount/Year
Actual Rate	500 Mscf	4,417 MMscf
Maximum rate	1.04 MMscf	9,125 MMscf

D. Associated Air Pollution Control Equipment

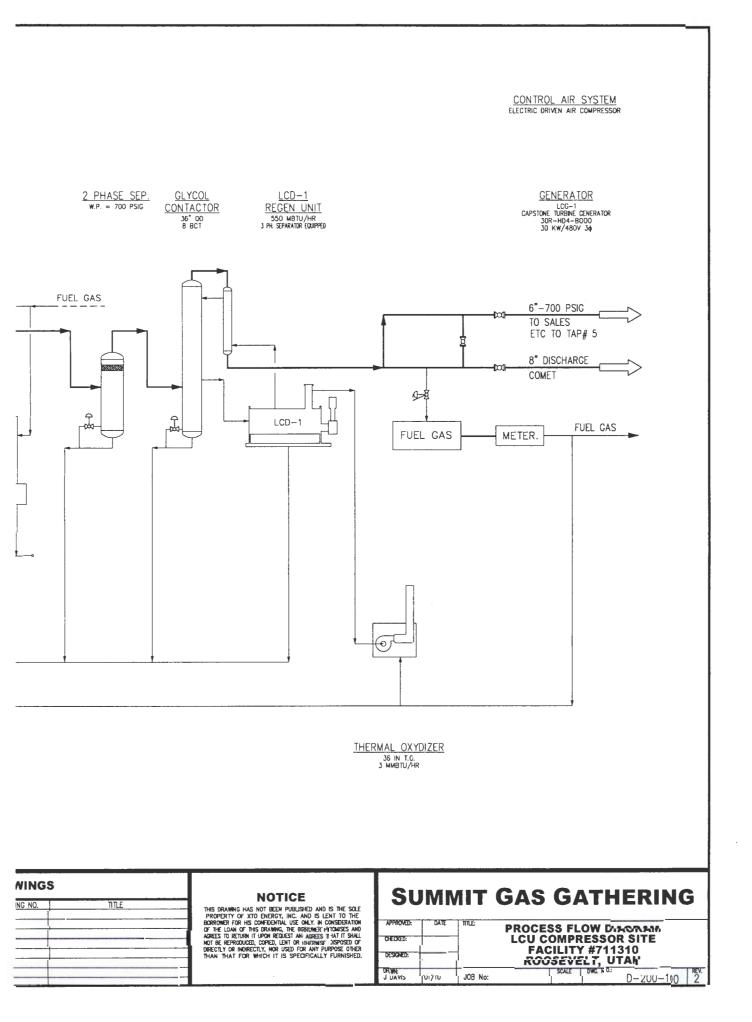
Emissions unit IDLCD-1 Device TypeThermal Oxidizer
Manufacturer Industrial Refractory Services Model No 36 inch TO with TJ0200HV burner
Serial NoTBD Installation date Late winter/early spring 2009
Control efficiency (%)>95 Capture efficiency (%)
Air pollutant(s) controlled VOCs & HAPs Efficiency estimation methodManu. Specs

•

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

POTENTIAL TO EMIT (PTE)


For each unit with emissions that count towards applicability, list the emissions unit ID and the PTE for the air pollutants listed below and sum them up to show totals for the facility. You may find it helpful to complete form **EMISS** before completing this form. Show other pollutants not listed that are present in major amounts at the facility on attachment in a similar fashion. You may round values to the nearest tenth of a ton. Also report facility totals in section **J** of form **GIS**.

Emissions Unit ID	Regulated Air Pollutants and Pollutants for which the Source is Major (tons/yr)							
	NOx	VOC	SO2	PM10	со	Lead	HAP	
LCC-1	18.23	5.23	0.0	0.0	28.4	0.0	3.3	
LCC-2	18.23	5.23	0.0	0.0	28.4	0.0	3.3	
LCC-3	18.23	5.23	0.0	0.0	28.4	0.0	3.3	
LCD-1	0.0	109.1	0.0	0.0	0.0	0.0	28.6	
LCF-1	0.0	4.0	0.0	0.0	0.0	0.0	0.2	
LCG-1	0.1	0.03	0.0	0.0	0.2	0.0	0.0	
LCT-1	0.0	9.4	0.0	0.0	0.0	0.0	0.9	
LCT-2	0.0	9.4	0.0	0.0	0.0	0.0	0.9	
FACILITY TOTALS	55.6	148.3	0.0	0.0	86.2	0.0	40.5	

· · · ·

· · · ·

.

INLET SEPARATOR W.P. = 50 PSIG COMPRESSORS PIG RECEIVERS LCC-1 CAT 3516 LE LCC-2 CAT 3516 LE 6" PIPELINE -IDOUT-1 \langle Г 0 50 PSIG ġ 夏 20" PIPELINE 1 Not Ż 0-B 0-8 0 50 PSIG ġ 喜 T COMP COMP LCC-1 LCC-2 LCT-1 LCT-2 LIQUIDS TRUCK FUEL GAS LCT-1 & LCT-2 LIQUIDS STORAGE (2) 400 BBL 500,000 BTU/HR (HEATERS)

GENERAL NOTES	RE	VISIONS				REFEREN
NOTE: WORKING PRESSURES (W.P.) OF EQUIPMENT AND LINE PRESSURES ARE APPROXIMATE AND SUBJECT TO OPERATIONAL VARIATIONS	MK. DE 1 GENERAL 2 CORRECTED HEA	2	ATE CK /10 /10	APPR	DRAWING NO.	ITLE

Summit Gas Gathering TV Permit Info Request - Little Canyon Craig_Allison to: Eric Wortman 01/22/2010 07:18 PM Show Details

Eric:

8

Related to SGG Little Canyon Unit See attached-

Regards, Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

.

Summit Gas Gathering TV Permit Info Request - General Info Craig_Allison to: Eric Wortman 01/22/2010 07:19 PM Show Details

Eric:

In response to your questions, (except for the regulatory applicability) the following attached information is applicable to all four (4) SGG Part 71 applications:

- Dehy Information:
- Thermal Oxidizer (Dehy BTEX emissions control information):
- Driving Directions:
- Federal Regulatory Applicability for Tap-4, Tap-5, and Kings Canyon:
- Pipeline Pigging Procedures
- EPA tanks 4.09 Lube Oil tank calculations

Regards, Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

.

Re: P71 Permit Applications Request for Add'l Information - SGG LCU, KCU, Tap-4, Tap-5 Eric Wortman to: Craig_Allison 01/06/2010 09:16 AM

Craig,

Thank you for the update. Submitting the process flow diagrams by Feb. 26th is okay.

Eric

Eric Wortman Environmental Scientist Air Permitting, Monitoring and Modeling Unit Office of Partnerships & Regulatory Assistance EPA Region 8 1595 Wynkoop Street (8P-AR) Denver, CO 80202-1129

Phone: (303) 312-6649 Fax: (303) 312-6064 wortman.eric@epa.gov

 Craig_Allison
 Eric: XTO is working on the response to your inf...
 01/05/2010 02:12:41 PM

 From:
 Craig_Allison@xtoenergy.com
 01/05/2010 02:12:41 PM

 To:
 Eric Wortman/R8/USEPA/US@EPA
 01/05/2010 02:12 PM

 Cc:
 Aaron_Tucker@xtoenergy.com
 01/05/2010 02:12 PM

 Date:
 01/05/2010 02:12 PM
 Subject:
 Re: P71 Permit Applications Request for Add'I Information - SGG LCU, KCU, Tap-4, Tap-5

Eric:

XTO is working on the response to your info request. We should have most of the info to you by January 22, 2010, however, the Process Flow Diagrams are being done by a contractor and will take some additional time. XTO is requesting an extension through February 26, 2010 to complete the PFD's and associated process descriptions that correlate to the PFD's.

Except for the process flow info, I will forward you remainder of the information by January 22, 2010.

Regards, Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

Craig Allison/FTW/CTOC	To Wortman.Eric@epamail.epa.gov
11/19/2009 10:14 AM	cc Subject Re: P71 Permit Applications Request for Add'I Information - SGG LCU, KCU, Tap-4, Tap-5 Link

Eric:

I received your request and will be working on the response. I will let you know if I have any questions.

Regards, Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

Wortman.Eric@epamail.epa.gov

To Craig_Allison@xtoenergy.com

CC

11/18/2009 08:28 AM

Subject P71 Permit Applications Request for Add'I Information - SGG LCU, KCU, Tap-4, Tap-5

Dear Craig,

EPA has reviewed your applications for Title V Operating Permits for the following four facilities located on the Uintah & Ouray Indian Reservation in Uintah County, Utah: Little Canyon Unit Compressor Station, Kings Canyon Unit Compressor Station, Tap-4 Compressor Station, and Tap-5 Compressor Station. As we discussed in our conversation on 11/6, EPA is requesting additional information in order to further evaluate the applications as specified in 40 CFR 71.5(a)(2).

At this time, EPA is requesting additional information be provided from SGG for each of the 4 facilities by January 22, 2010. Please refer to the attached documents for the requested information for each facility.

Please feel free to contact myself at the number below or Kathy Paser at 303-312-6526 if you have any questions.

Thank you.

Sincerely,

Eric Wortman

(See attached file: Summit Gas Gathering - Kings Canyon CS Additional Info. Request V-OU-0019-07.00.pdf)(See attached file: Summit Gas Gathering - Little Canyon CS Additional Info. Request V-OU-0016-06.00.pdf)(See attached file: Summit Gas Gathering - TAP-4 CS Additional Info. Request V-OU-0017-07.00.pdf)(See attached file: Summit Gas Gathering - Tap-5 CS Additional Info. Request V-OU-0018-07.00.pdf)

Eric Wortman Environmental Scientist Air Permitting, Monitoring and Modeling Unit Office of Partnerships & Regulatory Assistance EPA Region 8 1595 Wynkoop Street (8P-AR) Denver, CO 80202-1129

Phone: (303) 312-6649 Fax: (303) 312-6064 wortman.eric@epa.gov[attachment "Summit Gas Gathering - Kings Canyon CS Additional Info. Request V-OU-0019 -07.00.pdf" deleted by Craig Allison/FTW/CTOC] [attachment "Summit Gas Gathering - Little Canyon CS Additional Info. Request V-OU-0016 -06.00.pdf" deleted by Craig Allison/FTW/CTOC] [attachment "Summit Gas Gathering - TAP-4 CS Additional Info. Request V-OU-0017-07.00 .pdf" deleted by Craig Allison/FTW/CTOC] [attachment "Summit Gas Gathering - Tap-5 CS Additional Info. Request V-OU-0018-07.00 .pdf" deleted by Craig Allison/FTW/CTOC]

.

P71 Permit Applications Request for Add'I Information - SGG LCU, KCU, Tap-4, Tap-5 Eric Wortman to: Craig_Allison

11/18/2009 07:27 AM

Dear Craig,

EPA has reviewed your applications for Title V Operating Permits for the following four facilities located on the Uintah & Ouray Indian Reservation in Uintah County, Utah: Little Canyon Unit Compressor Station, Kings Canyon Unit Compressor Station, Tap-4 Compressor Station, and Tap-5 Compressor Station. As we discussed in our conversation on 11/6, EPA is requesting additional information in order to further evaluate the applications as specified in 40 CFR 71.5(a)(2).

At this time, EPA is requesting additional information be provided from SGG for each of the 4 facilities by January 22, 2010. Please refer to the attached documents for the requested information for each facility.

Please feel free to contact myself at the number below or Kathy Paser at 303-312-6526 if you have any questions.

Thank you.

Sincerely,

Eric Wortman

Summit Gas Gathering - Kings Canyon CS Additional Info. Request V-0U-0019-07.00.pdf
Summit Gas Gathering - Little Canyon CS Additional Info. Request V-0U-0016-06.00.pdf
Summit Gas Gathering - TAP-4 CS Additional Info. Request V-0U-0017-07.00.pdf
Summit Gas Gathering - Tap-5 CS Additional Info. Request V-01-0018-07 00 pdf

Eric Wortman **Environmental Scientist** Air Permitting, Monitoring and Modeling Unit Office of Partnerships & Regulatory Assistance **EPA Region 8** 1595 Wynkoop Street (8P-AR) Denver, CO 80202-1129

Phone: (303) 312-6649 Fax: (303) 312-6064 wortman.eric@epa.gov

Summit Gas Gathering Little Canyon Unit Compressor Station Additional Information Request Permit # V-OU-0016-06.00

. . . .

Please note that 40 CFR 71.5(c) specifies the standard required information for an operating permit application, which includes calculations on which the required emissions information for all regulated pollutants is based, as well as other information related to the emissions of air pollutants sufficient to verify which requirements are applicable to the source.

EPA is seeking the following additional information to assist our permit engineers in understanding your operations, evaluating the compliance status of the operations at this facility, and developing a comprehensive permit.

- 1. Please provide a process flow diagram. Include the following information on or with the diagram:
 - a) Identify all emission units (including insignificant units and non-emitting) using emission unit I.D.s from the application.
 - b) List the operational characteristics of each emission unit (i.e., pressures, temperatures, gas compositions, etc.); and.
 - c) Identify raw material and product streams within the plant site.
- 2. Please provide a description of operations for the facility.
- Please recalculate and submit emissions for the following storage tank emission units:
 1) LCT-1 and 2) LCT-2:
 - a) EPA is requesting emissions estimates/calculations for working, standing, and breathing losses, using EPA Tanks 4.0. SGG used E&P Tank V2 for the initial application, which is acceptable software for calculating flashing emissions only. EPA Tanks 4.0 is a free online calculation model which is quick to use and can be found at: <u>http://www.epa.gov/ttn/chief/efpac/efsoftware.html</u>. Please include documentation of the input criteria and output data from the model run.
- 4. Please provide a detailed description of the function and primary purpose of each of the process heaters identified in the application.
- 5. Provide the current manufacturer's design specification for the glycol dehydrators. Include in the specifications the maximum glycol recirculation pump rate and maximum gas throughput;
- 6. Provide the current manufacturer's design specifications for the control equipment for dehydrator LCD-1. Include in the specifications the manufacturer's benzene, toluene, ethyl benzene, and xylene (BTEX) removal efficiency estimations.
- 7. Please identify and describe in detail any pigging or other gas pipeline clean-out operations conducted at the site. Include in the description the location of the

operations, schedules for the last twelve months, process flow diagrams, equipment lists at each operation (i.e., pour-back lines, vessels, separators, heater-treaters, tanks, etc...) and throughput for each pigging or pipeline clean-out operation.

- 6. Please provide driving directions to the facility.
- 7. Please provide <u>your</u> review of all applicable and potentially applicable requirements as they may or may not apply to your facility <u>now</u>. For requirements that do not apply, state why. Requirements that apply or potentially apply to this facility include, but may not be limited to:

40 CFR 52 - Prevention of Significant Deterioration 40 CFR 60 - Standards of Performance for New Stationary Sources Subpart Db - Industrial, Commercial, Institutional Steam Generating Units Subpart Dc - Small Industrial, Commercial, Institutional Steam Generating Units Subpart K - Petroleum Liquid Storage Vessels Subpart Ka - Petroleum Liquid Storage Vessels Subpart Kb – VOC (including petroleum liquid) Storage Vessels Subpart KKK - Equipment Leaks from Onshore Natural Gas Processing Facilities Subpart LLL - SO₂ Emissions from Onshore Natural Gas Processing Facilities Subpart IIII- Stationary Compression Ignition Internal Combustion Engines Subpart JJJJ- Stationary Spark Ignition Internal Combustion Engines 40 CFR 61 - National Emission Standards for Hazardous Air Pollutants Subpart V – Equipment Leaks (Fugitive Emission Sources) 40 CFR 63 - National Emission Standards for Hazardous Air Pollutants Subpart HH - Oil and Natural Gas Production Subpart HHH – Oil and Natural Gas Storage and Distribution Subpart IIII- Stationary Compression Ignition Internal Combustion Engines Subpart JJJJ- Stationary Spark Ignition Internal Combustion Engines Subpart ZZZZ – Reciprocating Internal Combustion Engines (RICE) Subpart EEEE – Organic Liquids Distribution (non-gasoline) 40 CFR 64 – Compliance Assurance Monitoring (CAM) 40 CFR 68 - Chemical Accident Prevention 40 CFR 82 - Stratospheric Ozone and Climate Protection

Please be advised that if we determine that additional information is necessary to evaluate the application or to take final action on the application, we may request such information in writing and set a reasonable deadline for a response. [See 40 CFR 71.5(a)(2)]

					O Uinta Der	iyurators					
Station Name (Title V sites highlighted yellow)	Source #	**Contactor Size (in.)	*Flash Sep	Regen Rating (Mbtu/hr)	Emission Controls	Still VentControl Device Efficiency	24 IN or 30 IN Thermal Oxidizer	Kimray Glycol Pump	Pump Capacity (gal/hr)	Pump Capacity (gal/min)	Max Volume @ 850 psig (MMcfd)
	T4D-1	20	Yes	375	ТО	99%	24 IN T O	4015	40	0.67	7.4
Tap 4	T4D-2	36	Yes	500	то	99%	24 IN TO	4015	40	0.67	26
Tap 5	T5D-1	42	Yes	500	то	99%	30 IN TO	21015	210	3.5	40
	KCD-2	30	Yes	230	то	99%	24 IN TO	4015	40	0.67	18
Kings Canyon	KCD-1	24	Yes	250	то	99%	24 IN TO	9015	90	1.5	10.75
Little Canyon	LCD-1	36	Yes	550	то	99%	36 IN TO	45015	450	7.5	25

XTO Uinta Dehydrators

40 CFR 52.21: PSD applicability- § 52.21 Prevention of significant deterioration of air quality.

(b) Definitions. For the purposes of this section: (1)(i) Major stationary source means:

(b) Notwithstanding the stationary source size specified in paragraph (b)(1)(i) of this section, any stationary source which emits, or has the potential to emit, 250 tons per year or more of a regulated NSR pollutant; or

Does not apply because, based on the PTE calculations for this source, the emissions are less than 250 tpy.

Subpart Db - § 60.40b Applicability and delegation of authority.

(a) The affected facility to which this subpart applies is each steam generating unit that commences construction, modification, or reconstruction after June 19, 1984, and that has a heat input capacity from fuels combusted in the steam generating unit of greater than 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr)).

Does not apply because there are no heaters greater than 100 MMBtu/hr at this site.

Subpart Dc - § 60.40c Applicability and delegation of authority.

(a) Except as provided in paragraphs (d), (e), (f), and (g) of this section, the affected facility to which this subpart applies is each steam generating unit for which construction, modification, or reconstruction is commenced after June 9, 1989 and that has a maximum design heat input capacity of 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr)) or less, but greater than or equal to 2.9 MW (10 MMBtu/hr).

Does not apply because there are no heaters greater than or equal to 10 MMBtu/hr at this site.

Subpart K - § 60.110 Applicability and designation of affected facility.

(b) This subpart does not apply to storage vessels for petroleum or condensate stored, processed, and/or treated at a drilling and production facility prior to custody transfer.

Does not apply because the onsite tanks store condensate prior to custody transfer.

Subpart Ka - § 60.110a Applicability and designation of affected facility.

(b) Each petroleum liquid storage vessel with a capacity of less than 1,589,873 liters (420,000 gallons) used for petroleum or condensate stored, processed, or treated prior to custody transfer is not an affected facility and, therefore, is exempt from the requirements of this subpart.

Does not apply because the onsite tanks store condensate prior to custody transfer and have capacities less than 420,000 gallons.

r. .

Subpart Kb - § 60.110b Applicability and designation of affected facility.

(d) This subpart does not apply to the following:

(4) Vessels with a design capacity less than or equal to 1,589.874 m³ used for petroleum or condensate stored, processed, or treated prior to custody transfer.

Does not apply because the onsite tanks store condensate prior to custody transfer and have capacities less than 420,000 gallons.

Subpart KKK—Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plants. –

§ 60.630 Applicability and designation of affected facility.

(e) A compressor station, dehydration unit, sweetening unit, underground storage tank, field gas gathering system, or liquefied natural gas unit is covered by this subpart if it is located at an onshore natural gas processing plant. If the unit is not located at the plant site, then it is exempt from the provisions of this subpart.

§ 60.631 Definitions.

Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both.

This regulation does not apply to this site because the facility is not a natural gas processing plant.

Subpart LLL—Standards of Performance for Onshore Natural Gas Processing: SO_2 Emissions

§ 60.640 Applicability and designation of affected facilities.

(a) The provisions of this subpart are applicable to the following affected facilities that process natural gas: each sweetening unit, and each sweetening unit followed by a sulfur recovery unit.

§ 60.641 Definitions.

Sweetening unit means a process device that separates the H₂S and CO₂contents from the sour natural gas stream.

Does not apply because this facility does not have any natural gas sweetening units.

Subpart IIII—Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

§ 60.4200 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary compression ignition (CI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (3) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

Does not apply because this facility does not have any stationary compression ignition (CI) internal combustion engines (ICE).

Subpart JJJJ—Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

§ 60.4230 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (5) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

(4) Owners and operators of stationary SI ICE that commence construction after June 12, 2006, where the stationary SI ICE are manufactured:

(i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);

NONE.

• • • •

(ii) on or after January 1, 2008, for lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP;

NONE.

(iii) on or after July 1, 2008, for engines with a maximum engine power less than 500 HP; or

NONE.

(iv) on or after January 1, 2009, for emergency engines with a maximum engine power greater than 19 KW (25 HP).

NONE.

Does not apply because this facility does not have any engines that meet the manufacture dates applicable to 40 CFR 60.4230.

1 ¹ 1

40 CFR 61 - National Emission Standards for Hazardous Air Pollutants Applicability.

§ 61.01 Lists of pollutants and applicability of part 61.

(a) The following list presents the substances that, pursuant to section 112 of the Act, have been designated as hazardous air pollutants. The Federal Register citations and dates refer to the publication in which the listing decision was originally published.

Benzene (42 FR 29332; June 8, 1977)

Does not apply because, based on the station inlet extended gas analysis and the GlyCalc regenerator overhead stream composition for Benzene, the facility does not operate in VHAP service for Benzene.

Subpart V—National Emission Standard for Equipment Leaks (Fugitive Emission Sources)

§ 61.240 Applicability and designation of sources.

(a) The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart.

In VHAP service means that a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight a volatile hazardous air pollutant (VHAP) as determined according to the provisions of §61.245(d). The provisions of §61.245(d) also specify how to determine that a piece of equipment is not in VHAP service.

Does not apply because, based on the station inlet extended gas analysis and the GlyCalc regenerator overhead stream composition for Benzene, the facility does not operate in VHAP service for Benzene.

Subpart HH—National Emission Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities

§ 63.760 Applicability and designation of affected source.

(a) This subpart applies to the owners and operators of the emission points, specified in paragraph (b) of this section that are located at oil and natural gas production facilities that meet the specified criteria in paragraphs (a)(1) and either (a)(2) or (a)(3) of this section.

(1) Facilities that are major or area sources of hazardous air pollutants (HAP) as defined in §63.761.

YES.

(2) Facilities that process, upgrade, or store hydrocarbon liquids prior to the point of custody transfer.

YES.

(3) Facilities that process, upgrade, or store natural gas prior to the point at which natural gas enters the natural gas transmission and storage source category or is delivered to a final end user.

YES.

(b) The affected sources for major sources are listed in paragraph (b)(1) of this section and for area sources in paragraph (b)(2) of this section.

(1) For major sources, the affected source shall comprise each emission point located at a facility that meets the criteria specified in paragraph (a) of this section and listed in paragraphs (b)(1)(i) through (b)(1)(iv) of this section.

(i) Each glycol dehydration unit;

• •

This requirement is applicable.

(ii) Each storage vessel with the potential for flash emissions;

Storage vessel with the potential for flash emissions means any storage vessel that contains a hydrocarbon liquid with a stock tank GOR equal to or greater than 0.31 cubic meters per liter and an API gravity equal to or greater than 40 degrees and an actual annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters per day. Flash emissions occur when dissolved hydrocarbons in the fluid evolve from solution when the fluid pressure is reduced.

Does not apply because the onsite storage vessels do not have an annual average hydrocarbon liquid throughput equal to or greater than 79,500 liters (500 barrels) per day.

(iii) The group of all ancillary equipment, except compressors, intended to operate in volatile hazardous air pollutant service (as defined in §63.761), which are located at natural gas processing plants; and

Does not apply because, based on the station inlet extended gas analysis and the GlyCalc regenerator overhead stream composition for Benzene, the facility does not operate in VHAP service for Benzene.

(iv) Compressors intended to operate in volatile hazardous air pollutant service (as defined in §63.761), which are located at natural gas processing plants.

Does not apply because based on the station inlet extended gas analysis and the GlyCalc regenerator overhead stream composition for Benzene, the facility does not operate in VHAP service for Benzene.

1 . L . A.

Subpart HHH—National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities

§ 63.1270 Applicability and designation of affected source.

(a) This subpart applies to owners and operators of natural gas transmission and storage facilities that transport or store natural gas prior to entering the pipeline to a local distribution company or to a final end user (if there is no local distribution company), and that are major sources of hazardous air pollutants (HAP) emissions as defined in §63.1271.

Natural gas transmission means the pipelines used for the long distance transport of natural gas (excluding processing). Specific equipment used in natural gas transmission includes the land, mains, valves, meters, boosters, regulators, storage vessels, dehydrators, compressors, and their driving units and appurtenances, and equipment used for transporting gas from a production plant, delivery point of purchased gas, gathering system, storage area, or other wholesale source of gas to one or more distribution area(s).

Facility means any grouping of equipment where natural gas is processed, compressed, or stored prior to entering a pipeline to a local distribution company or (if there is no local distribution company) to a final end user. Examples of a facility for this source category are: an underground natural gas storage operation; or a natural gas compressor station that receives natural gas via pipeline, from an underground natural gas storage operation, or from a natural gas processing plant.

This facility is not a natural gas transmission and storage facility and does not supply gas to a local distribution company or to a final end user.

Subpart ZZZZ—National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

§ 63.6580 What is the purpose of subpart ZZZZ?

Subpart ZZZZ establishes national emission limitations and operating limitations for hazardous air pollutants (HAP) emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations and operating limitations.

YES – the facility is designated as a major source site based on stipulations in the applicable Federal Consent Decree.

§ 63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

This requirement is applicable because stationary RICE's are operated at the facility.

Subpart EEEE—National Emission Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline)

§ 63.2330 What is the purpose of this subpart?

This subpart establishes national emission limitations, operating limits, and work practice standards for organic hazardous air pollutants (HAP) emitted from organic liquids distribution (OLD) (non-gasoline) operations at major sources of HAP emissions. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations, operating limits, and work practice standards.

§ 63.2334 Am I subject to this subpart?

(a) Except as provided for in paragraphs (b) and (c) of this section, you are subject to this subpart if you own or operate an OLD operation that is located at, or is part of, a major source of HAP emissions. An OLD operation may occupy an entire plant site or be collocated with other industrial (*e.g.*, manufacturing) operations at the same plant site.

(c) Organic liquid distribution operations do not include the activities and equipment, including product loading racks, used to process, store, or transfer organic liquids at facilities listed in paragraph (c) (1) and (2) of this section.

(1) Oil and natural gas production field facilities, as the term "facility" is defined in §63.761 of subpart HH.

This regulation is not applicable because the facility meets the exemption requirements as stated in 40 CFR 63.2334 (c) (1).

40 CFR 64: Compliance Assurance Monitoring (CAM) applicability -

§ 64.2 Applicability.

(a) General applicability. Except for backup utility units that are exempt under paragraph (b)(2) of this section, the requirements of this part shall apply to a pollutant-specific emissions unit at a major source that is required to obtain a part 70 or 71 permit if the unit satisfies **all** of the following criteria:

(1) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant (or a surrogate thereof), other than an emission limitation or standard that is exempt under paragraph (b)(1) of this section;

YES.

1

(2) The unit uses a control device to achieve compliance with any such emission limitation or standard; and

YES.

(3) The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source. For purposes of this paragraph, "potential pre-control device emissions" shall have the same meaning as "potential to emit," as defined in §64.1, except that emission reductions achieved by the applicable control device shall not be taken into account.

YES.

1 . . 1

(b) Exemptions —(1) Exempt emission limitations or standards. The requirements of this part shall not apply to any of the following emission limitations or standards:

(vi) Emission limitations or standards for which a part 70 or 71 permit specifies a continuous compliance determination method, as defined in §64.1. The exemption provided in this paragraph (b)(1)(vi) shall not apply if the applicable compliance method includes an assumed control device emission reduction factor that could be affected by the actual operation and maintenance of the control device (such as a surface coating line controlled by an incinerator for which continuous compliance is determined by calculating emissions on the basis of coating records and an assumed control device efficiency factor based on an initial performance test; in this example, this part would apply to the control device and capture system, but not to the remaining elements of the coating line, such as raw material usage).

Continuous compliance determination method means a method, specified by the applicable standard or an applicable permit condition, which:

(1) Is used to determine compliance with an emission limitation or standard on a continuous basis, consistent with the averaging period established for the emission limitation or standard; and

(2) Provides data either in units of the standard or correlated directly with the compliance limit.

This regulation is not applicable because the emission sources at this facility are subject to continuous parametric monitoring under both 40 CFR 63, Subpart HH which is applicable to control devices for the natural gas dehydrators and under 40 CFR 63, Subpart ZZZZ for RICE's. The CPMS systems serve the function of continuous compliance determination method as stated in 40 CFR 64.2 (b)(1)(vi).

40 CFR 68 - CHEMICAL ACCIDENT PREVENTION PROVISIONS Applicability - § 68.10 Applicability.

(a) An owner or operator of a stationary source that has more than a threshold quantity of a regulated substance in a process, as determined under §68.115, shall comply with the requirements of this part...

This regulation is not applicable because an applicability determination was completed by U.S. EPA Region 8 on January 14, 2009 stating that, based on the criteria stated in the determination, the facility is exempt from 40 CFR 68 requirements. Refer to a copy of the attached U.S. EPA Region 8 letter dated January 14, 2009 for your reference.

40 CFR 82 – Stratospheric Ozone and Climate Protection Applicability

This regulation is not applicable because the facility does not maintain Class I and II controlled substance systems as defined by 40 CFR 82.

40 CFR 98 - Mandatory Greenhouse Gas Reporting

§ 98.1 Purpose and scope.

(a) This part establishes mandatory greenhouse gas (GHG) reporting requirements for owners and operators of certain facilities that directly emit GHG as well as for certain fossil fuel suppliers and industrial GHG suppliers. For suppliers, the GHGs reported are the quantity that would be emitted from combustion or use of the products supplied.

98.2 Who must report?

(a) The GHG reporting requirements and related monitoring, recordkeeping, and reporting requirements of this part apply to the owners and operators of any facility that is located in the United States and that meets the requirements of either paragraph (a)(1), (a)(2), or (a)(3) of this section; and any supplier that meets the requirements of paragraph (a)(4) of this section:

(3) A facility that in any calendar year starting in 2010 meets all three of the conditions listed in this paragraph (a)(3). For these facilities, the annual GHG report must cover emissions from stationary fuel combustion sources only.

(i) The facility does not meet the requirements of either paragraph (a)(1) or (a)(2) of this section.

Facility does not meet either (a)(1) or (a)(2).

(ii) The aggregate maximum rated heat input capacity of the stationary fuel combustion units at the facility is 30 mmBtu/hr or greater.

Aggregate stationary fuel combustion sources are less than 30 mmBtu/hr.

(iii) The facility emits 25,000 metric tons CO₂e or more per year in combined emissions from all stationary fuel combustion sources.

Combined sources at the facility do not emit 25,000 metric tons of CO2e or more per year.

2300 South Main Street Fort Worth, Texas 76110 (817)924-9991 www.irsvc.com

June 9, 2009

Damien Jones

LCD-1

XTO Energy Roosevelt Field Office

133 East 1000 North Roosevelt, Utah 84066

Commissioning Certificate

This certificate confirms the successful Commissioning and Operation for the Thermal Oxidizer at the location listed below.

Location:	Roosevelt Field, Utah
Site:	Little Canyon
Serial Number:	28187
Commissioning Date:	04/02/09
Operating Range:	1400 - 1800 °F
Heating Set Point:	1450 °F
Cooling Set Point:	1500 °F
DRE %:	≥99.0%

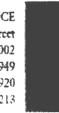
Mike Riddell V.P. Sales Thermal Oxidizer Division

4. · · · ·

Source Emissions Testing Report for Industrial Refractory Services, Inc.

Thermal Oxidizer Emissions Testing Roosevelt Gas Field Uintah County, Utah

Report prepared for: Mr. Mike Riddell Industrial Refractory Services, Inc. 2300 S Main Street Fort Worth, TX 76110


Test Date: April 30, 2009

APT Project: IRS9169

Report prepared by:

Peter Knell Technical Writer

DENVER OFFICE 5530 Marshall Street Arvada, CO 80002 (303) 420-5949 FAX (303) 420-5920 (800) 268-6213

Table of Contents

•

. .

1. Introduction	1
2. Methods	2
3. Test Program Summary	2
4. Test Method Details	3
5. Test Results Summary	5
6. Conclusions	8

Tables

Table 1.1 : Contact Personnel	1
Table 1.2 : Testing Program Summary	2
Table 3.1 : Sampling and Analytical Methods Summary	3
Table 5.1 : Test Results Summary, TO Emissions	6

.

Appendices

Testing Parameters and Sample Calculations	Appendix 1
Field Data	Appendix 2
Laboratory Data	Appendix 3
Calibration Data	Appendix 4
Schematics	Appendix 5

1. Introduction

Air Pollution Testing (APT) was contracted by Industrial Refractory Services, Inc. to conduct a series of source emissions tests at the Roosevelt Gas Field facility located near Vernal, Uintah County, Utah.

The purpose of the testing program was to determine the concentrations and mass emission rates of nitrogen oxides (NO_x), carbon monoxide (CO) and volatile organic compounds (VOC) from the exhaust stack of one (1) thermal oxidizer (TO) in service at the site. The TO unit is used to control the effluent emissions of various facility processes. Concurrent stack gas velocity and volumetric flow, oxygen (O₂), carbon dioxide (CO₂) and moisture (H₂O) measurements were conducted to determine pollutant mass emission rates. The exhaust VOC data was compared with inlet VOC data, taken from GRI Gly-Calc software, to determine the system VOC destruction removal efficiency.

The testing program is demonstrating the emissions characteristics of the TO exhaust gas for comparison with manufacturer estimated emissions factors.

Industrial Refractory Servic Emissions Testing Program	ces, Inc. : Roosevelt Gas Field n Contact Personnel	
Name, Title	Company. Address	Phone, FAX
Mr. Mike Riddell	Industrial Refractory Services, Inc. 2300 S Main Street Fort Worth, TX-76110	817-924-9991, 817-924-9533
Mr. Norm Erikson, Environmental Scientist	Utah Division of Air Quality 1950 West North Temple Salt Lake City, Utah 84114	801-536-4063, 801-536-4099
Mr. Chris Keefe, Operations Director	Air Pollution Testing, Inc. 5530 Marshall Street Arvada, Colorado 80002	303-420-5949 ext. 24 , 303-420-5920 fax

Personnel involved in the test program are provided in Table 1.1 below. Unit identification and information as well as applicable emissions limits are provided in Table 1.2.

Table 1.1: Emissions Testing Program Contact Personnel

APT Project IRS9169 Test Report- Rocsevelt Gas Field

Industrial Refractory Servic Source Identification Summ	es, Inc. : Roosevelt Gas Field ary
Unit Description	Emission Parameters
(1) Thermal Oxidizer	VOC DRE 95%

Table 1.2: Testing Program Summary

2. Methods

APT tested in accordance with the following United States Environmental Protection Agency (EPA) source emissions test methods, referenced in <u>40 CFR Part 60, Appendix</u> <u>A</u> and <u>40 CFR Part 63, Appendix A</u>.

Method 1 – Sample and Velocity Traverses for Stationary Sources

Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate

Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

Method 4 – Determination of Moisture Content in Stack Gases

Method 7E – Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)

Method 10 – Determination of Carbon Monoxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)

Method 18 - Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

Method 25A – Determination of Total Gaseous Organic Concentration using a Flame Ionization Analyzer

3. Test Program Summary

APT provided all necessary equipment and labor for the determination of the emission parameters detailed in Table 3.1. On-site gas analyzers housed in a mobile analytical trailer were used to determine exhaust emission concentrations of O_2 , NO_X , CO and NMEOC. Concurrent with each gas sampling run, an integrated sample of exhaust stack gas was collected in a clean, leak-free Tedlar bag for subsequent off-site analysis via gaschromatography to determine the stack gas methane and ethane content. This data was used to correct total VOC data to non-methane / ethane organic compounds (NMEOC).

APT Project IRS9169 Test Report- Roosevelt Gas Field

Triplicate 60-minute sampling runs were conducted. Pollutant concentration data was combined with concurrently collected stack gas volumetric flow rate data to calculate the mass emission rates. The TO unit was running at no less than 90% of permitted capacity for the duration of the test program. Equipment operating parameters, such as fuel use, were recorded each sampling run to document the system operating conditions during the testing.

	ctory Services, Inc. nalytical Methods \$: Roosevelt Gas Field Summary	
Gas Parameter	Sampling Method	Analytical Method	Laboratory
gas flow	Method 1, 2	draft gauge, thermocouple, pitot tube	
O ₂ , CO ₂	Method 3A	paramagnetic and non-dispersive infrared analyzer - Servomex Series 1400	
H ₂ O Method 4		gravimetric	
NO _X	Method 7E	chemiluminescent analyzer -TECO Model 42 CHL	APT, on-site
CO Method 10		gas filter correlation, infrared analyzer -TECO Model 48	
TVOC	Method 25A	flame ionization detector	
NMEOC	Method 18	gas-chromatography	APT, off-site

Table 3.1: Sampling and Analytical Methods

4. Test Method Details

4.1. Stack Gas Moisture

Stack gas moisture (H₂O) content was measured in accordance with EPA Method 4.

Each sampling period consisted of a sample of gas for moisture determination being extracted from the stack at a constant flow rate of no more than 0.75 cubic feet per minute (cfm). The gas sample passed through a stainless steel probe, through a series of four (4) chilled glass impingers, and through a calibrated dry gas meter. See Appendix 5 - Schematics for a diagram of the EPA Method 4 sampling train.

Prior to sampling, the first two impingers were each seeded with 100 milliliters of water. The third impinger was empty. The fourth impinger was seeded with 250 grams of dried silica gel. Following sampling, the moisture gain in the impingers was measured gravimetrically to determine the moisture content of the gas.

APT Project IRS9169 Test Report- Roosevelt Gas Field

4.2. Diluent (O2 and CO2), Nitrogen Oxides and Carbon Monoxide

 O_2 , CO_2 , NO_x and CO emission concentrations were measured in accordance with EPA Methods 3A (O_2 and CO_2), 7E (NO_x) and 10 (CO). Each sampling period consisted of extracting a gas sample from the stack at a constant flow rate of approximately four liters per minute (lpm). The sample passed through a refrigeration-type gas conditioner to remove moisture and into the sampling port of a Thermo Environmental Instruments (TECO) Model 42CHL chemiluminescent NO_x analyzer, a TECO Model 48H gas filter correlation infrared CO analyzer, and a Servomex Series 1400 paramagnetic O_2 / non-dispersive infrared CO_2 analyzer. The gas concentrations were displayed on the analyzer front panels in units of either parts per million, dry volume basis (ppmvd – NO_x and CO) or percent, dry volume basis (%vd – O_2 and CO_2) and logged to a computerized data acquisition system (CDAS). Please see *Appendix 5* – *Schematics* for a diagram of the EPA Methods 3A, 7E and 10 sampling train.

Before and after each sampling period, the analyzers were challenged with calibration gases to calibrate the instruments, to verify linearity of response, and to quantify zero and span drift for the previous sampling period. The calibration gases were prepared and certified in accordance with EPA Protocol 1. To ensure no system bias, the analyzer calibrations were conducted by introducing all gases to the analyzers at the sampling probe tip at stack pressure. Following sampling, the CDAS data were averaged in one-minute increments, corrected for instrumental drift, and reported as average O₂, CO₂, NO_x and CO emission concentrations for each sampling period in units of %vd or ppmvd.

4.3. TVOC / NMEOC

TVOC concentrations were measured in accordance with EPA Method 25A. Three, onehour test runs were conducted at the TO exhaust. A flame ionization detector (FID) was used to determine TVOC levels. The FID was housed in a mobile analytical trailer to provide a temperature-controlled environment for stable, accurate response.

Each sampling period consisted of extracting a gas sample from the stack at a constant flow rate of approximately four liters per minute using a heated Teflon line. The gas was directed into the sampling port of a TECO Model 51C flame ionization analyzer. TVOC concentrations were displayed on the analyzer front panel in units of parts per million, wet volume basis as propane (ppmvw as C_3H_8) and logged to a CDAS (see Appendix 4 – Schematics). Concurrent with each sampling run, an integrated stack gas sample was collected in a clean leak-free Tedlar bag for subsequent methane/ethane analysis.

Before and after each sampling period, the analyzer was challenged with EPA Protocol 1 calibration gases to calibrate the instrument, to verify linearity of response, and to quantify zero and span drift for the previous sampling period. To ensure no system bias, the analyzer calibrations were conducted by introducing all gases to the analyzer at the sampling probe tip at stack pressure. Following sampling, the CDAS data were averaged

APT Project IRS9169 Test Report– Roosevelt Gas Field

in one-minute increments, corrected for instrumental drift. and reported as average emission concentrations for each sampling period. Stack gas moisture data were used to determine TVOC emissions in parts per million, dry volume basis as propane (ppmvd as C_3H_8).

The stack gas samples collected in Tedlar bags were shipped with chain of custody documentation to the APT laboratory for methane analysis using gas chromatography. Methane levels were subtracted from the TVOC data to determine emissions in NMEOC.

5. Test Results Summary

The results of the testing program are summarized in Table 5.1. Any emission parameters not found in the table may be found in *Appendix 1*. The following terms are used in the table:

- Temp. (°F) stack gas temperature, degrees Fahrenheit
- %vd diluent concentration, dry volume percent
- %vw stack gas moisture content, wet volume percent
- ppmvd parts per million, dry volume basis
- lb/hr pollutant mass emission rate, pounds per hour
- tpy pollutant mass emission rate, tons per year
- C₃H₈ propane
- DRE destruction removal efficiency

APT Project IRS9169 Test Report- Roosevelt Gas Field

٠.

. .

mennen und anzund mit einen anförende anzunden. Gan i eine Anzunderich under anzunden im Mit steren ander anzun					Permit
	1	2	3	Average	Limits
Start Time	11:10	12:28	13:43		
Stop Time	12:10	13:28	14:43		
Gas Throughput (MMcf)	6.7	6.7	6.7	6.7	
Stack Temp. (*F)	1,481	1,437	1.434	1,451	
Moisture Content (%vw)	9.7	8.4	8.2	8.7	
O ₂ (%vd)	14.3	14.5	12.7	13.8	
CO ₂ (%vd)	3.4	3.3	4.5	3.7	
NO _X (ppmvd)	32.6	27.6	37.8	32.6	
CO (ppmvd)	1.4	0.6	0.4	0.8	
TVOC (ppmvw as C ₂ H ₈)	0.5	0.4	0.2	0.3	
Emissions Data					
VOC (ppmvd as C ₃ H ₈)	0.058*	0.058*	0.058*	0.058*	
VOC (tpy)	0.001	0.001	0.001	0.001	
VOC (lb/hr) inlet	2.8271	2.8271	2.8271	2.8271	
VOC (lb/hr) outlet	0.0001	0.0001	0.0001	0.0001	
VOC (%DRE)	99.996	99.995	99.996	99.995	≥95

ve so the detection limit of 0.058 (2% of the span gas value) was substituted. Table 5.1: Test Results Summary, TO

6. Conclusions

The testing conducted at the Roosevelt Gas Field facility on April 30, 2009 demonstrates the emission characteristics of the TO exhaust gas for comparison with manufacturer estimated emissions factors.

Summit Gas Gathering Little Canyon Unit Compressor Station – Permit # V-OU-0016-06.00 Response to EPA Additional Information Request

- 1. Ptease provide a process flow diagram. Include the following information on or with the diagram:
 - a) Identify all emission units (including insignificant units and non-emitting) using emission unit LD,s from the application.
 - b) List the operational characteristics of each emission unit (i.e., pressures, temperatures, gas compositions, etc.); and,
 - c) Identify raw material and product streams within the plant site.
- 2. Please provide a description of operations for the facility.

e 3

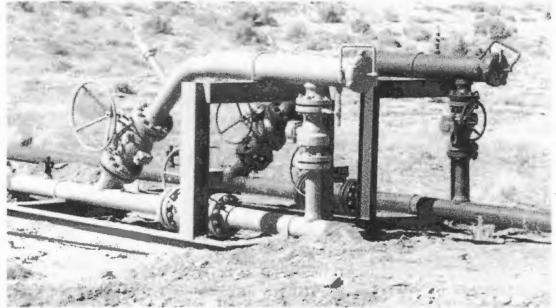
Regarding Items # 1 and 2 - As discussed with EPA, the current process description will be forthcoming with the site process flow drawings on or before February 26, 2010.

- 3 Please recalculate and submit emissions for the following storage tank emission units. 1) 1.CT-1 and 2) 1.CT-2.
 - a) EPA is requesting emissions estimates/calculations for working, standing, and breathing losses, using EPA Tanks 4.0. SGG used E&P Tank V2 for the initial application, which is acceptable software for calculating flashing emissions only. EPA Tanks 4.0 is a free online calculation model which is quick to use and can be found at: <u>http://www.epa.gov/ttn/chief/efpac/efsoftware.html</u>. Please include documentation of the input criteria and output data from the model run.

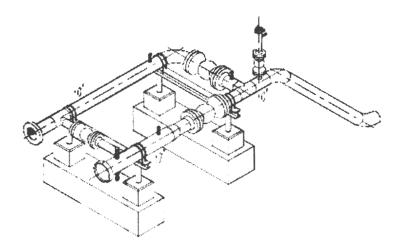
Refer to the attached EPA Tanks 4.09d emission calculations for Tank LCT-1 and LCT-2.

- Please provide a detailed description of the function and primary purpose of each of the process heaters identified in the application.
 - 550 MBtu/hr Glycol Dehydrator reboiler heater used for heating the wet glycol stream to remove ("boil off") water from the glycol.
 - 500 MBtu/hr heater for slop tanks 1 and 2 used to maintain the condensate at a specific temperature to prevent freezing during cold temperatures and to prevent paraffin buildup within the tank
 - 250 MBtu/hr heater for separator used to maintain the separated liquids at a specific temperature to prevent freezing during cold temperatures and to prevent paraffin buildup
- Provide the current manufacturer's design specification for the glycol dehydrators. Include in the specifications the maximum glycol recirculation pump rate and maximum gus throughput;

See attached dehydrator info sheet.


Summit Gas Gathering Little Canyon Unit Compressor Station – Permit # V-OU-0016-06.00 Response to EPA Additional Information Request

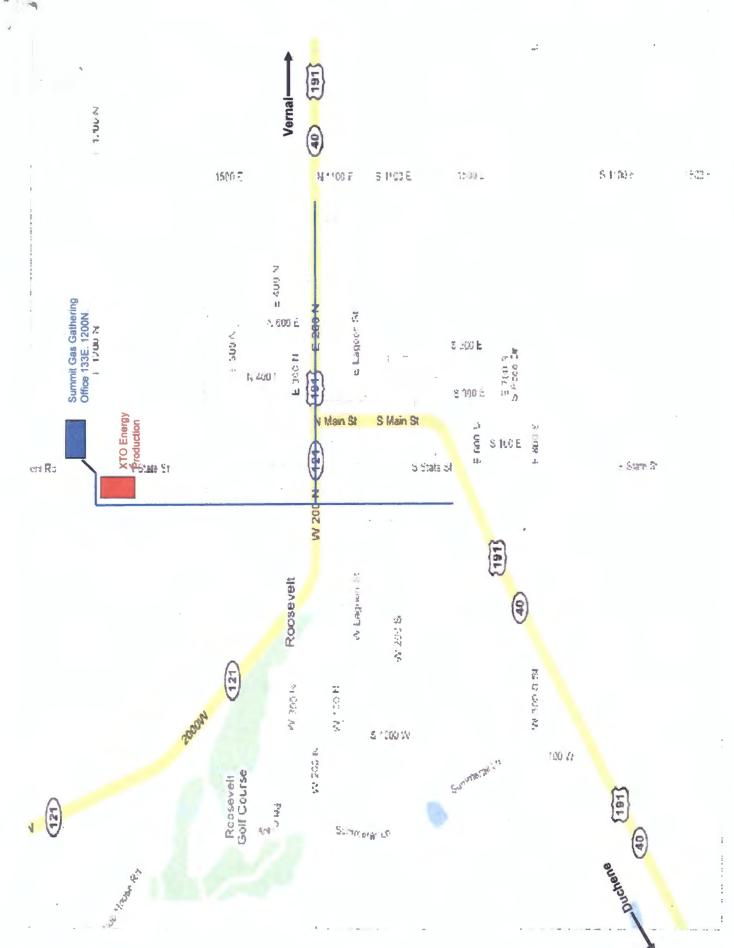
 Provide the current manufacturer's design specifications for the control equipment for dehydrator LCD-1. Include in the specifications the manufacturer's benzene, toluene, ethyl benzene, and xylene (BTEX) removal efficiency estimations.

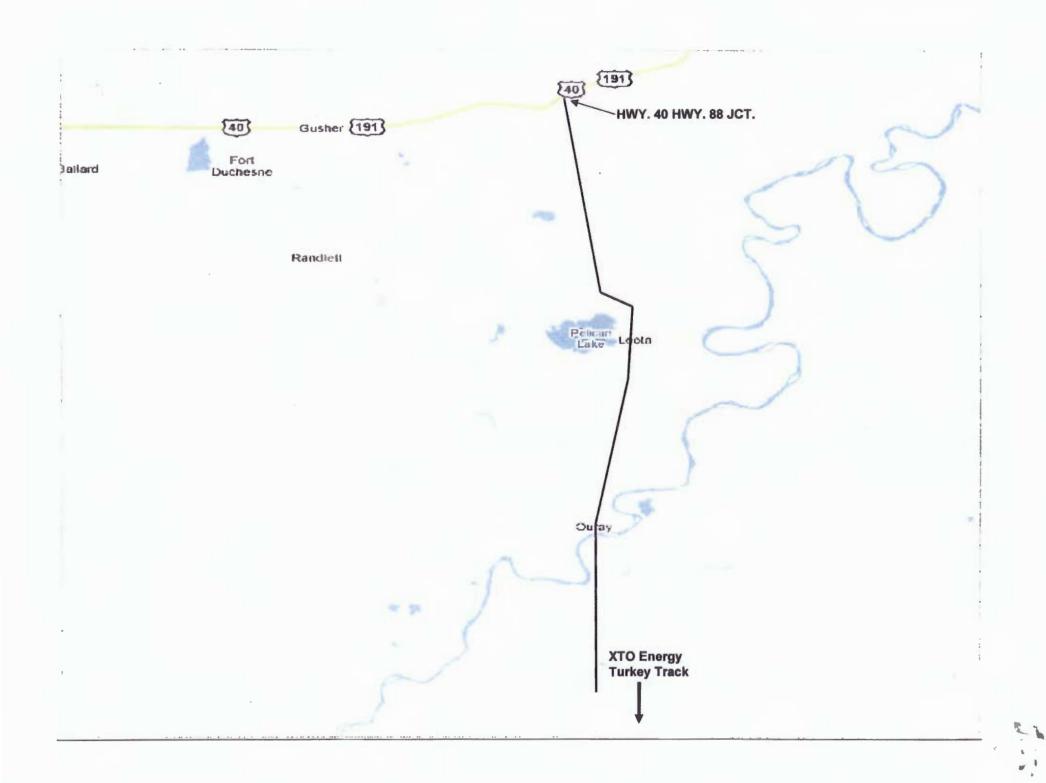

See attached Thermal Oxidizer information.

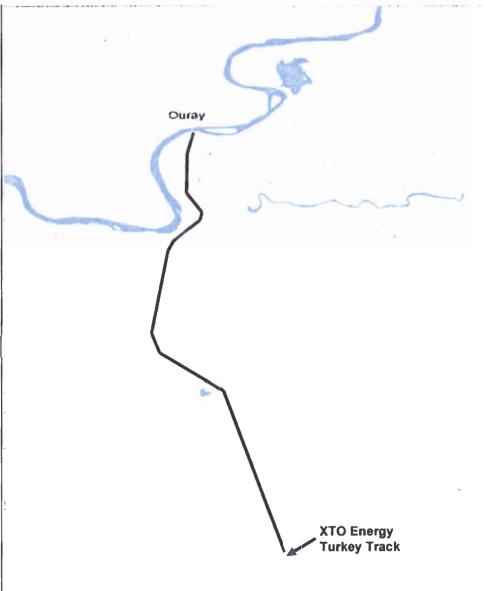
7. Please identify and describe in detail any pigging or other gas pipeline clean-out operations conducted at the site. Include in the description the location of the operations, schedules for the last twelve months, process flow diagrams, equipment lists at each operation (i.e., pour-back lines, vessels, separators, heater-treaters, tanks, etc...) and throughput for each pigging or pipeline clean-out operation.

The following diagrams represent two styles of pigging systems are present at the Title V facilities. The quantity of gas contained within each system is dependent on pipeline size. The attached pigging procedure provides basic dimensions of the pigging system for each location. Also attached is a copy of the pigging schedule for 2009 for the Title V sites. Refer to the attached basic pigging procedure utilized for each location.

Summit Gas Gathering Little Canyon Unit Compressor Station – Permit # V-OU-0016-06.00 Response to EPA Additional Information Request


5. Please provide driving directions to the facility.


The facility is in a remote area in Utah. The driving directions are to the entrance to the oil and gas field and the site GPS coordinates must be used in order to locate the facility. Please see the attached information for driving directions to the entrance to the oil and gas field. The coordinates of this facility are Latitude 39.53.49 N; Longitude 109.36.21 W.


7. Please provide <u>your</u> review of all applicable and potentially applicable requirements as they may or may not apply to your facility <u>now</u>. For requirements that do not apply, state why. Requirements that apply or potentially apply to this facility include, but may not be limited to:

Please refer to the attached regulatory applicability review.

....

....

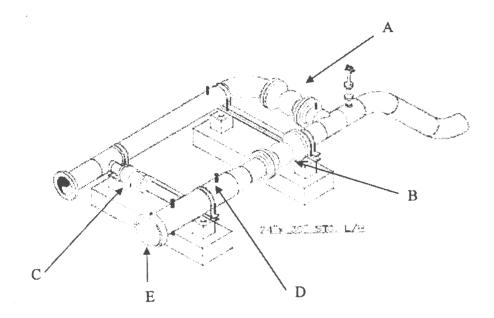
1 ;

. *

\$

a de la composition d Composition de la comp

SGG ROOSEVELT – PIPELINE PIGGING PROCEDURES


PIG LAUNCHING

4

- 1. Close valves on launch tubes (B&C) and depressurize tube with a blowdown valve (D).
 - a. Gas within the pig launcher is emitted to the environment.
- Open the pig barrel lid (E) and insert pig into launcher. Close lid (E).
 a. Pig barrel is at atmospheric pressure.
- 3. Open equalizer valve (C) to pressure pig on the back side.
 - a. Gas is contained in the gathering system.
- 4. Close bypass valve (A) and open main valve (B) to allow pig to travel down the pipeline.
 - a. Gas is contained within the gathering system.
- 5. Once pigging is complete close equalizer valve (C) and main valve (B). Open bypass valve (A) to continue flowing gas within the gathering system.
 - a. Gas is contained within the gathering system.

PIG RECEIVING

- 1. Open pig receiver main valve (B) to allow pig to enter pig receiver tube.
- 2. Open equalizer valve (C) to allow gas and fluid through the pig receiver.
- 3. Close main throughput valve (A) to divert pig into receiver.
 - a. Gas and fluid collected during the pigging operation flows through the receiver and is carried to the existing station scrubber.
 - b. Gas flows through the scrubber and remains within the gathering system.
 - c. Fluids collected during the pigging operation flow from the scrubber to the existing onsite storage tank.
- 4. Once the pig has been recovered, open the main throughput valve (A), close equalizer valve (C), and close main valve (B).
 - a. Gas is contained within the gathering system.
- 5. Blow down the pig receiver using the blowdown valve (D).
- a. Gas within the pig receiver is emitted to the environment.
- 6. Open the pig barrel lid (E) and extract pig.
 - a. Pig barrel is at atmospheric pressure.
 - b. Excess fluids left in the pig receiver barrel are recovered in a portable catch basin.

SGG UInta Basin - Pipeline Pigging Operations Associated with EPA Part 71 Title V locations 2009 Pipeline Pigging Event Log

r						1	1
Facility	Pipeline Section	Date of Pigging Event	Pipeline Pressure (psig) during Event*	Pig Section Receive Diameter (inches)	r ³ ig Section Receiver Length (Feet)	Pig Section Launcher Diameter (inches)	Pig Section Launcher Length (Feet)
TAP-4	Tap-4 to Tap-510" Common Suction Line	May 23, 2009	50	12.0	13.0	10.0	11.5
		November 10, 2009	45				
TAP-5	Tap-4 to Tap-510" Common Suction Line	May 23, 2009	50	12.0	13.0	8.0	9.0
		November 10, 2009	100				
LCU	LCU 20" from HF-110 to LCU Compressor Station	May 15, 2009	130	22.0	16.0	22.0	16.0
		June 25, 2009	170				
	·	July 21, 2009	90		T		1
		August 13, 2009	200			1	
		September 15, 2009	150				
		October 15, 2009	40				
		November 4, 2009	50				
		December 16, 2009	130				ļ
LCU	Love Unit 6" from 12-20G to LCU Compressor Station	July 21, 2009	90	8.0	8.0	8.0	8.0
		October 15, 2009	40				
Kings Canyon	Near HCU 13-30 6" Line to KCU Compressor Station	August 11, 2009	50	8.0	5.5	8.0	5.5
					1	l	1

.

*NOTE: Pressures based on daily system operating pressure during the the day of the event.

, : - - + .

•

XTO Energy / Summit Gas Gathering Uinta County, Utah Engine Order Dates (Engines >= 500 hp) - Title V Facilities

Source #	Facility / Unit Name	Equipment Description / model	XTO Field verified Serial No.	Engine Mfg Date	Initial Startup Date	Engine Order Date	Rental / XTO Owned	Comments
KCC-1	Kings Canyon #1	CAT 3512TALE	7NJ00735	11/22/2000	5/13/2008	Pre - 8/1/2007	хто	Unit acquired from Dominion. Acq. Effective 8/1/07.
KCC-2	Kings Canyon #2	CAT 3516LE	4EK03634	9/19/2001	5/28/2004	9/22/2003	Exterran	
T4C-1	TAP-4 #1	CAT 3516LE	4EK02344	11/12/1998	8/14/2008	Pre - 8/1/2007	хто	Unit acquired from Dominion. Acq. Effective 8/1/07.
T5C-1	TAP-5 #1	CAT 3516LE	WPW00281	6/28/2006	8/1/2007	4/17/2006	Exterran	
T5C-2	TAP-5 #2	CAT 3512LE	7NJ00718	10/26/2000	7/31/2008	Pre - 8/1/2007	хто	Unit acquired from Dominion. Acq. Effective 8/1/07.
T5G-1	TAP-5 GENSET	WAUK H24GSID	C-94454/1	2/28/2003	9/11/2009	12/18/2002	Stewart & Stevenson	
LCC-1	LCU #1	CAT 3516LE	4EK04570	4/13/2005	10/13/2005	6/7/2005	Exterran	
LCC-2	LCU #2	CAT 3516LE	4EK04571	4/13/2005	7/9/2006	6/15/2005	Exterran	
LCC-3	LCU #3	CAT 3516LE	4EK04875	1/23/2006	5/23/2008	1/17/2006	Exterran	1

TITLE V EQUIPMENT

SGG Little Canyon Unit (LCU) Compressor Station Process Description

The LCU Facility is a natural gas compressor station consisting of the following equipment:

- One (1) inlet two-phase gas scrubber (separator) operating at an approximate line pressure of 50 psig and a 0.25 mmBTU/hr natural gas-fired heater.
- Three (3) Caterpillar G3516TALE compressor engines (LCC-1, LCC-2, and LCC-3)
- One (1) 30 KW Capstone natural-gas fired microturbine driven generator (LCG-1)
- Two (2) 400-barrel slop-tanks (LCT-1 and LCT-2) each with a 0.5 mmBTU/hr tank heater,
- One (1) natural gas dehydrator with (LCD-1):
 - o A maximum natural gas process flow of 25 mmscfd natural gas, and
 - o One (1) 0.55 mmBTU/hr TEG reboiler heater
 - One BTEX emissions control system consisting of a Thermal Oxidizer with a 3.0 mmBTU/hr burner.

The basic process flow at the facility is as follows:

Natural gas produced from area wells is sent to the compressor station through gathering flowlines. Once the gas enters the station, it flows through a separator (scrubber) in order to reduce water and condensable liquids content in the gas stream prior to entry into the compressors. The slop water produced from the on-site scrubbers is then sent to the 400-barrel on-site slop tanks (LCT-1 and LCT-2) for storage prior to being hauled offsite. Following the inlet scrubber, the gas is compressed with three (3) natural gas internal combustion engine driven compressors (LCC-1, LCC-2, and LCC-3) up to a higher pressure (approx 700 psig). The higher pressure gas then passes through a discharge scrubber (separator) prior to entry into TEG natural gas dehydrator water removal system. The TEG natural gas dehydrator water removal system consists of one (1) 25 mmscfd natural gas TEG dehydrator (LCD-1) with one (1) 0.55 mmBTU/hr TEG process heater with regenerator emissions controlled by a Thermal Oxidizer. The natural gas dehydrator utilizes a BTEX emissions control system that captures vapors from the still vent and sends the vapors to a Thermal Oxidizer for destruction. Following dehydration the natural gas stream leaves the station via a metered sales pipeline. The station has on-site electrical power supplied by one (1) Capstone natural-gas fired microturbine-driven generator (LCG-1). In addition, the pneumatic control devices are operated by plant air supplied by the on-site electricdriven air compressor.

XTO Energy / Summit Gas Gathering – Uinta Basin, Utah Basic Site Visitation Requirements

Visitors to any site that is owned or operated by XTO or Summit Gas Gathering in the Uinta Basin, Utah area need to contact 435-722-4521 to check in with XTO / SGG's field operations personnel prior to attending the site. All visitors to an XTO or SGG facility are expected to adhere to all XTO Energy / Summit Gas Gathering safety and environmental policies.

Summit Gas Gathering requires persons entering the site to wear a hard hat, safety glasses, safety toe footwear, hearing protection, and utilize a personal H2S monitor. Summit Gas Gathering also requires a permit (issued by authorized SGG employees) prior to the performance of any hot work at the sites. No cameras or flash equipment are allowed inside any compressor building.

In addition to the safety and environmental policies, a Tribal access permit is required to access or cross tribal land. Access to XTO / Summit Gas Gathering sites or properties in the Uinta Basin in Utah will require accessing tribal land. The names and vehicle description (Make, Model, Year Color and license plate number) must be on the tribal access permit. A Tribal access permit may be obtained by contacting the Ute Tribal Office (435)725-4950.

[11] S. Herner, M. Lipp, Goldberg, and March Theory, " Annual Science Methods and an annual science of the second science of the science o

•

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	LCT-1 Salt Lake City Utah XTO SGG Vertical Fixed Roof Tank Little Canyon 400 bbl Condensate Tank #1
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 17.00 14.00 14.382 50 6.40 99,645.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1 00 0 17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.33 0.75

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Almospheric Pressure = 12.64 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

LCT-1 - Vertical Fixed Roof Tank Salt Lake City, Utah

											ndarn a daarnayyyyddarraanaan ar araddaaraa y aaddaaray daarn or o arraan a ar o rannaa ala na annaan ar o yw y dann y yr ro		
Deily Liquid Surf. Temperature (deg F)			Liquid Buik Temp Vapor Pressure (psia)		Vapor Liquid Vapor Mol. Mess Mass		Mol	Mol Basis for Vapor Pressure					
Mixture/Companent	Month	i Avg.	Min	Max.	(deg F)	Avg	M:n	Max.	Weight.	Fract	Fract	Weight	Calculations
86.4% , 196.9% 8.4899999 (111) 63a dar versamsansansansansansansansansansansansansans	tales escert de de décidição d					······································				****	æ 4ø ær - ⁴ øæ - 10 11 - 1417 sieverssin		
Gasoline (RVP 7)	All	100.00	70.00	120.00	100.00	7.4252	4 2555	10 4226	68.0000			92.00	Option 4 RVP=7, ASTM Slope=3

-

1

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

LCT-1 - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
e nere en entre contra contra contra contra entre e	E 602 750
Standing Losses (b). Vapor Space Volume (cuift):	6,693.3585 716.2831
Vapor Density (Ib/cu ft) Vapor Space Expansion Factor.	0 0841
Vented Vapor Saturation Factor:	0 2863
ank Vapor Space Volume:	
Vapor Space Volume (cu tt):	716 2831
Tank Diameter (ft):	12 0000
Vapor Space Outage (fi):	6.3333
Tank Shell Height (R)	20.0000
Average Liquid Height (ft)	14.0000
Roof Outage (ft):	0 3333
Roof Outage (Cone Roof)	
Roof Outage (ft)	0.3333
Roof Height (ft):	1 0000
Roof Slope (fl/ft).	0 1700
Shell Radius (ft)	6 0000
apor Density	_
Vapor Density (lb/cu ft).	0.0841
Vapor Molecular Weight (Ib/Ib-mole)	68.0000
Vapor Pressure at Daily Average Liquid	*
Surface Temperature (psa)	7.4252
Daily Avg Liquid Surface Temp (deg. R)	559.6700
Daily Average Ambient Temp. (deg. F)	51 9625
Ideal Gas Constant R	10 700
(psia cuft / (lb-mol-deg R)):	10 731
Liquid Bulk Temperature (deg. R).	559 6700
Tank Paint Solar Absorptance (Shell) Tank Paint Solar Absorptance (Roof):	0.5400
Daily Total Solar Insulation	0.0405
Factor (Btu/soft day)	1 453 1104
Plactor (bitu/sqn bary).	1,452,1184
apor Space Expansion Factor	
Vapor Space Expansion Factor	1 0635
Daily Vapor Temperature Range (deg. R)	50 0000
Daily Vapor Pressure Range (psia)	6 1571
Breather Vent Press. Setting Range(psia) Vapor Pressure at Daily Average Liquid	1 0630
Surfece Temperature (psia).	7 4252
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Maximum Liquid	4.2555
Surface Temperature (psia).	10.4226
Daily Avg. Liquid Surface Temp. (deg R):	559.6700
Daily Mig. Liquid Surface Temp. (deg R).	529.6700
Daily Max. Liquid Surface Temp. (deg R):	579.6700
Daily Mex. Liquid Sunace remp. (deg.R): Daily Ambient Temp. Range (deg. R):	23 3583
	23 3503
mied Vapor Saturation Factor Vented Vapor Saturation Factor	6 2002
	0.2663
Vapor Pressure at Daily Average Liquid:	7 4080
Surface Temperature (psia):	7.4252
Vapor Space Outage (fl)	6.3333
forking Losses (ID):	1,197 9022
Vapor Molecular Weight (Ib/Ib-mole):	68 0000
Japor Pressure at Daily Average Liquid	
Surface Temperature (psia):	7 4252

TANKS 4.0 Report

Annual Net Throughput (gal/yr.):	99,645 0000
Annual Turnovers	6,4000
Turnover Factor	1.0000
Maximum Liquid Volume (gal):	14,382,5038
Maximum Liquid Height (ft)	17 0000
Tark Diameter (ft)	12,0000
Working Lass Product Factor	1.0000

Total Losses (Ib)

7.891.2606

-

.

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

LCT-1 - Vertical Fixed Roof Tank Salt Lake City, Utah

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 7)	1,197.90	6,693.36	7,891.26					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification. City: State: Company: Type of Tank: Description:	LCT-2 Sait Lake City Utah XTO SGG Vertical Fixed Roof Tank Little Canyon 400 bbl Condensate Tank #2
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	20.00 12.00 17.00 14.00 14,382 50 7 00 99,645.00 Y
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 1.00 0.17
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.33 0.75

Meterological Data used in Emissions Calculations: Salt Lake City, Utah (Avg Atmospheric Pressure = 12 64 psia)

-

.

•

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

LCT-2 - Vertical Fixed Roof Tank Salt Lake City, Utah

an a hada dadha ku da an						nagan ayar witaya na 1988.	uh milikun kuyarana			Mark Handa (* 1 Jona) was Bell is (* 1		1800-0-1 shiyerinda kindenke	and men
Mixture/Component	Month		Hy Liquid Si perature (di Min.		Liquad Bulk Temp (deg F)	Vapo Avg	r Prossure Min	(psia) Max.	Vapor Mol Weight	Liquid Mass Frect	Vapor Mass Fract.	Moi Weight	Basis for Vapor Pressure Calculations
	hay shows a second of the higher that the same				en estimate in vésitor. A since	at Antonia and designation					Reprint with splits with parts of the splits	and the subsect of a second second	с у сило в очествение на наказа в очет в очет на наказа на наказание на наказание на праказание наказание наказание на праказание на
Gasoline (RVP 7)	All	100 00	70.00	120.00	100 00	7.4252	4 2555	10 4226	68 0000			92.00	Option 4 RVP=7, ASTM Slope=3

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

LCT-2 - Vertical Fixed Roof Tank Salt Lake City, Utah

Annual Emission Calcaulations	
- Set apply a service and one memory-memory-memory-memory-memory-dependence, set of	
Standing Losses (Ib).	6,693 3585
Vapor Space Volume (cu ft)	716.2831
Vapor Densky (b/cu ft):	0.0841
Vapor Space Expansion Factor:	1.0635
Vented Vapor Saturation Factor.	0.2863
ank Vapor Space Volume	
Vapor Space Volume (cu ft):	716.2831
Tank Diameter (ft):	12 0000
Vapor Space Cirtage (ft)	6 3333
Tank Shell Height (1):	20 0000
Average Liquid Height (ft):	14 0000
Roof Oulage (R)	0 3333
loof Outage (Corre Roof)	
Roof Outage (It)	0.3333
Roof Height (ft).	1.0000
Roof Slope (ft/h)	0.1700
Shell Radius (1).	6.0000
aper Density	
Vapor Density (Ib/cu ft)	0 0841
Vapor Molecular Weight (Ib/ib-mole):	68 0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia)	7 4252
Daily Avg. Liquid Surface Temp. (deg. R).	559 6700
Daily Average Ambient Temp. (deg. F):	51.9625
Ideal Gas Constant R	0110020
(psia cuft / (lb-mol-deg R))	10.731
Liquid Bulk Temperature (deg. R):	559,6700
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof)	0 5400
Daily Total Solar Insulation	0.0100
Factor (Blu/sqft day)	1,452,1184
apor Space Expansion Factor	
Vapor Space Expansion Factor:	1.0635
Daily Vapor Temperature Range (deg. R)	50.0000
Daily Vapor Pressure Range (psia):	6.1671
Breather Vent Press. Setting Range(psia):	1.0830
Vapor Pressure at Daily Average Liquid	1.0000
Surface Temperature (psia):	7.4252
Vapor Pressure at Daily Minimum Liquid	7.74.0A
Surface Temperature (psia);	4.2555
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia).	10 4226
Daily Avg. Liquid Surface Temp. (deg R):	559,6700
Daily Min. Liquid Sufface Temp. (deg R):	529,6700
Daily Max Liquid Surface Temp. (deg R):	579.6700
Daily Ambient Temp. Range (deg. R)	23.3583
ented Vapor Saturation Factor	0.0000
Vented Vapor Saturation Factor	0.2863
Vapor Pressure at Daily Average Liquid:	3
Surface Temperature (psia):	7.4252
Vapor Space Outage (ft):	6.3333
/orking Losses (ib)	1,197,9022
Vapor Molecular Weight (Ib/ib-mole):	69.0000
Vapor Pressure at Daily Average Liquid	44 COV4
Surface Temperature (psia).	7 4252
anuada variherateua (heia):	1 12 32

file://C:\Program Files\Tanks409d\summarydisplay.htm

TANKS 4.0 Report

Annual Net Throughput (gallyr)	99,645 0000
Annual Turnovers	7.0000
Turnover Factor:	1 0000
Maximum Liquid Volume (gal).	14,382,5036
Maximum Liquid Height (ft)	17 0000
Tank Diameter (R)	12.0000
Working Loss Product Factor:	1 0000

Total Losses (Ib)

7,891 2606

Page 4 of 6

,

. .

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

LCT-2 - Vertical Fixed Roof Tank Salt Lake City, Utah

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Gasoline (RVP 7)	1,197.90	6,693.36	7,891.26					

.

XTO Energy Table I - Uinta County, Utah Engine Info 2/22/2010

6

4

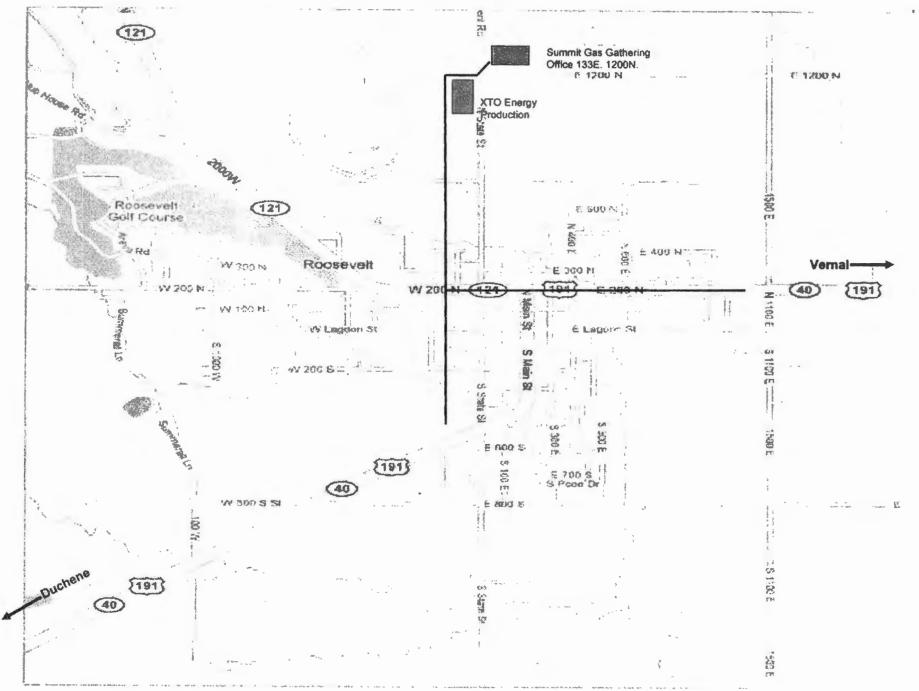
Source #	Facility / Unit Name	Equipment Description / model	Serial No.	Engine Mfg Date	Initial Startup Date
KCC-1	Kings Canyon #1	CAT 3512TALE	7NJ00735	11/22/2000	5/13/2008
KCC-2	Kings Canyon #2	CAT 3516LE	4EK03634	9/19/2001	5/28/2004
KCG-1	Kings Canyon GENSET	CAT 3406TA	CTS00498	10/19/2005	12/23/2005
T4C-1	TAP-4 #1	CAT 3516LE	4EK02344	11/12/1998	8/14/2008
T4G-1	TAP-4 GENSET*	CAT 3412LE	CTP02707	2/26/2007	10/3/2007
T4G-1	TAP-4 GENSET	Capstone Microturbine		N/A	2/18/2010
T5C-1	TAP-5 #1	CAT 3516LE	WPW00281	6/28/2006	8/1/2007
T5C-2	TAP-5 #2	CAT 3512LE	7NJ00718	10/26/2000	7/31/2008
T5G-1	TAP-5 GENSET	WAUK H24GSID	C-94454/1	2/28/2003	EST - 9/1/2009
LCC-1	LCU #1	CAT 3516LE	4EK04570	4/13/2005	10/13/2005
LCC-2	LCU #2	CAT 3516LE	4EK04571	4/13/2005	7/9/2006
LCC-3	LCU #3	CAT 3516LE	4EK04875	1/23/2006	5/23/2008

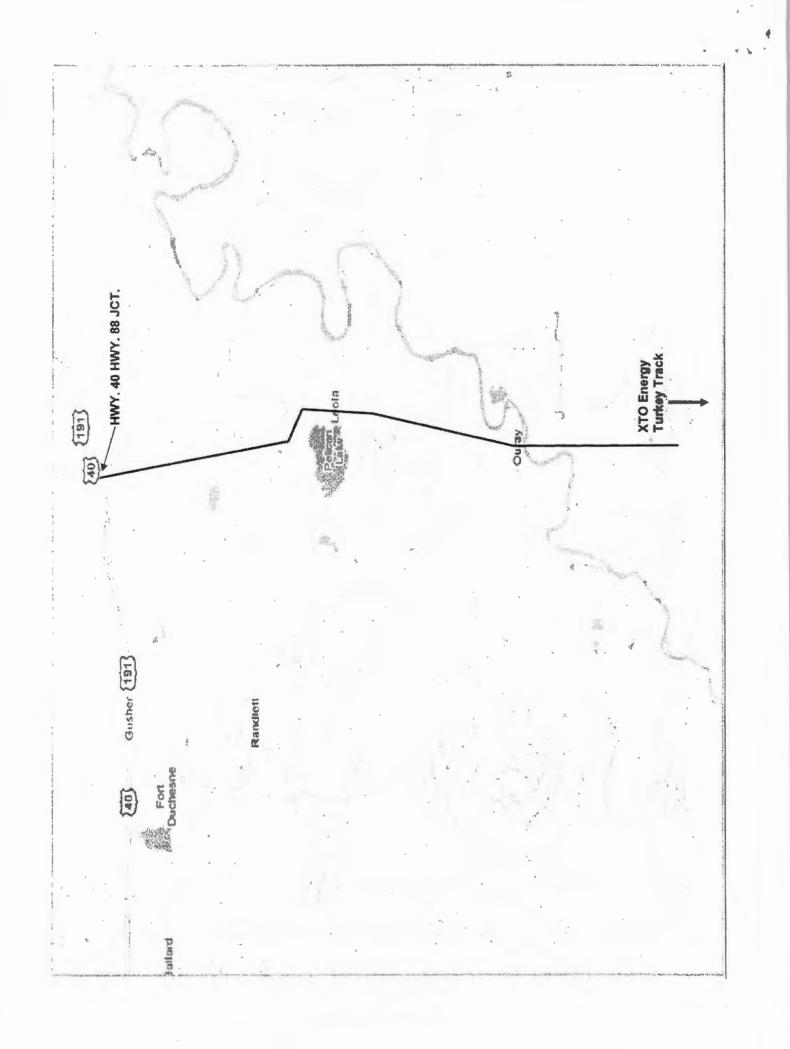
*NOTE: PERMANENTLY SHUTDOWN ON 10/15/09; REPLACED BY MICROTURBINE TITLE V EQUIPMENT

ه د بر م د م م

Page 1 of 1

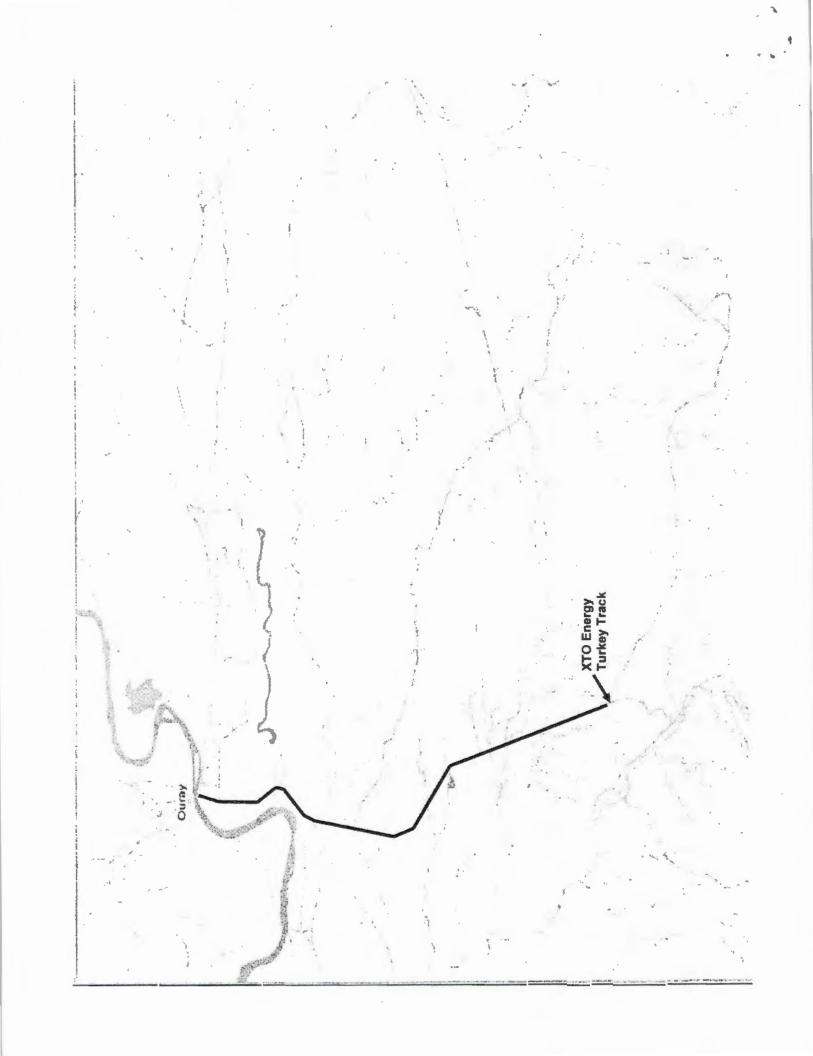
Re: P71 Permit Applications Request for Add'l Information - SGG LCU, KCU, Tap-4, Tap-5 Craig_Allison to: Eric Wortman 02/22/2010 12:14 PM Show Details


Eric - Please see the attached JJJJ engine manufacture dates per your request.


In addition, I will be sending you a revised regulatory applicability determination for the CAM regulations. The CAM rule DOES apply to the sites and the determination that I sent you stated that it does not.

Thanks, Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

\$. N



From Hwy 88 to Turkey Track

• Going south on hwy 88 drive 25 miles to turkey track.

Directions to Tap 4 CDP

 From the turkey track turn right and travel 2.7 miles on county road 5120. Turn right and cross the Black Bridge. Go .5 miles and turn right, go up the dug-way for 2.9 miles to the Blue Cattle Guard. Turn right and travel 1.7 miles, turn right into Tap 4 CDP.

Directions to Tap 5 CDP

- From the turkey track continue going south for.9 miles.
- Turn left and go .5 miles to Tap 5.

Directions to Tap LCU CDP

- From the turkey track continue going south 6.2 miles.
- Veer right off of main road and go .2 miles to LCU.

Directions to Kings Canyon CDP

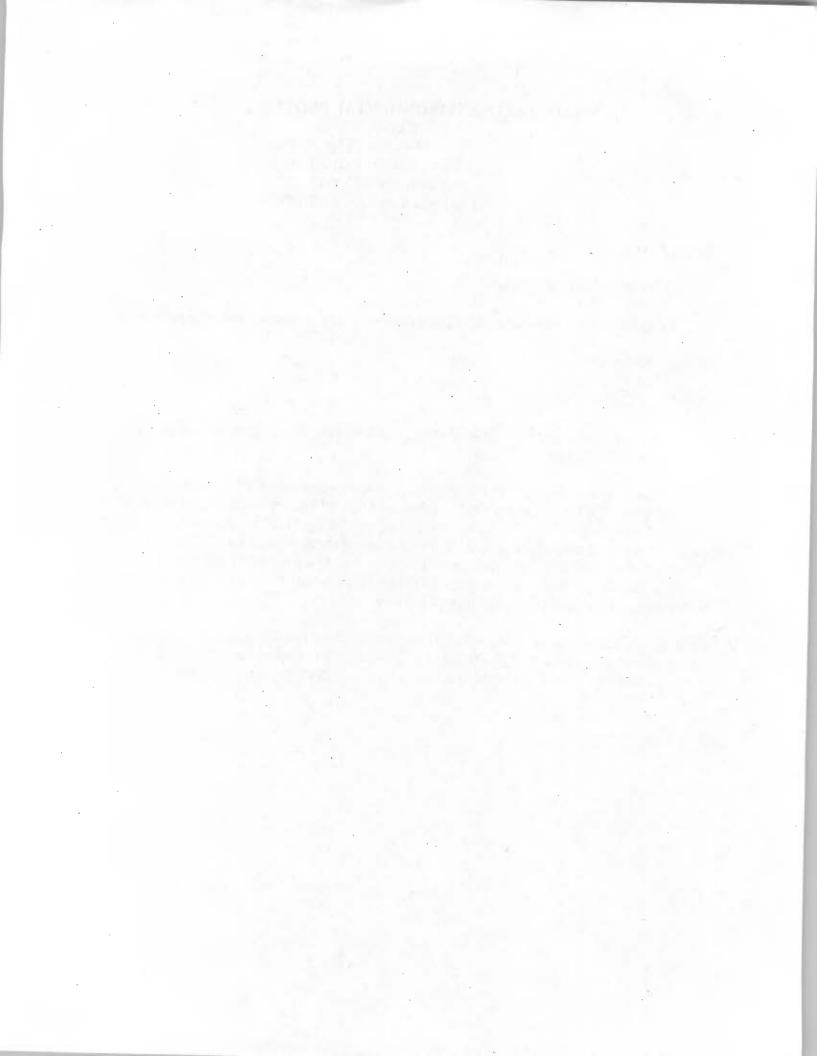
 From the turkey track turn right and travel 2.7 miles on county road 5120. Turn right and cross the Black Bridge. Go .5 miles and turn right, go up the dug-way for 2.9 miles to the Blue Cattle Guard. Continue on 2.9 miles to the End of Fence sign. Turn right and travel 1.7 miles to Kings Canyon CDP on left.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 8 1595 Wynkoop DENVER, CO 80202-1142 Phone 800-227-8917 http://www.epa.gov/region08

Ref: (8P-AR)

RECORD OF COMMUNICATION

SUBJECT: Summit Gas Gathering – Little Canyon Unit Compressor Station Application


DATE: December 14, 2009

COMMUNICATION:

Telephone conversation between Eric Wortman (EPA Region 8) and Craig Allison (EH&S Advisor for XTO Energy)

Craig Allison returned my call (Eric Wortman) to discuss questions on PTE emission calculations for the Little Canyon Unit Compressor Station. The application uses the site-rated horsepower for engines LCC-1, LCC-2, and LCG-1 of 1260 hp for PTE calculations. However, the actual emission calculations for the 2008 fee year use the nameplate hp of 1340, thus actual emissions of NO_x are slightly higher than PTE emissions. Craig indicated that he can resubmit the PTE calculations using the nameplate hp (1340) if requested. I told him it was not necessary at this time and just wanted clarification on the PTE.

Craig also indicated that he may need additional time to complete the request for additional information due by January 22, 2009 due to cold weather field conditions and holiday season. I indicated that we could be flexible and he could send over portions of the completed information.

United States Environmental Protection Agency Region VIII, Office of Air and Radiation Federal Operating Permit Application Completeness Checklist

To be completed by review engineer within 60 days of receipt of the application. Criteria derived from 40 CFR Part 71 and the Part 71 application forms. To be deemed complete, an application must provide all information required pursuant to 40 CFR 71.5(c).

Source Name: XFO Evergy Little Canyon Unit Compressor Station Date Application Received: Initial 12/11/06, revised 9/8/2009

[] Complete

[Complete but needs additional information for drafting a permit (see comments below)

Reviewer's Name Eric Wortman Date App

Date Application Complete: 10/28/209

Check if complete

IVI Source Identification [40 CFR 71.5(c)(1) & Application Form GIS parts A, B, C, & D] Facility's official name (not a colloquial name) provided Eacility's complete mailing address provided Facility's location provided Deprator information provided Comments: As of Slice Sure 152009, XTO Energy transferred owner/operator status to Summit Gas Gethering, LLC (SGG) ſ 1 **Application Information** [Application Form GIS part E] Information on the type of permit being requested complete and understandable Date operations commenced provided (for initial permits) NA- Expiration date of existing permit (for permit renewal) provided NA Description of proposed change (for modifications) provided. Are dates for the addition of units or the modification provided where needed? Comments: - New EI ordered by consent decree showed PIE exceeded major source limits. - No history/date operations commenced 414105 ĺ 1 Summary Source Information [40 CFR 71.5(c)(2) & Application Form GIS parts F, G, H, I J, K, L, & M] Applicable requirement summary complete NESHAP - Process description provided Emission unit identification and description provided Facility emissions summary provided NA Existing federally enforceable permits listed MA Finission units covered by general permits listed NA_Cross-referenced information (e.g. - Do you have access to the information?) Comments: - no process description of facility provided

1 ſ

IV

Emission Unit Descriptions for Combustion Sources [40 CFR 71.5(c)(2) - (7) & Application Form EUD-1

parts A-F] General information (ID, description, SIC and SCC Codes, Control device IDs) for each unit provided. Does the unit ID coincide with Form GIS? The SIC code may be different than that listed in section G of Form GIS. The SCC code is not mandatory, but is useful because it identifies a specific process, the pollutants from that process, and related emissions factors.

Unit description in its entirety completed (including installation dates)

✓Fuel data provided

Fuel usage rates provided

Control equipment descriptions provided (Does it include an ID for the control equipment?)

NBAmbient impact assessment provided (for temporary sources only)

Additional attachments, if needed, to provide information to the permitting authority that is not specified on the form provided

Comments:

- Ao secure codes for tanks -nosce code for dehydrator End - Contral IO same as un

Emission Unit Description of VOC Emitting Sources [40 CFR 71.5(c)(2) - (7) & Application Form EUD-2 parts A - E]

- General information (ID, description, SIC and SCC Codes, Control device IDs) for each unit provided. Does the unit ID coincide with Form GIS? The SIC code may be different than that listed in section G of Form GIS. The SCC code is not mandatory, but is useful because it identifies a specific process, the pollutants from that process, and related emissions factors.

Unit descriptions in its entirety provided (Including dates of installation)

NGControl equipment descriptions provided (Does in include an ID for the control equipment?)

NA Ambient impact assessment provided (for temporary sources only)

- Icentification of VOC and HAP emitting substances complete Additional attachments, if needed, to provide information to the permitting authority that is not specified on the form provided

Comments:

-NO SIC or SCC Lodes

-no controls -no usage (actual) or voc content for condensate - Tanks 2.0 used

Emission Unit Description for Process Sources [40 CFR 71.5(c)(2) - (7) & Application Form EUD-3 parts A - F] This form should provide technical information, including operational characteristics, applicable requirements, compliance terms, and emissions for each emissions unit. There should be one form for each unit.

General information (ID, description, SIC and SCC Codes, Control device IDs) for each unit provided. Does the unit ID coincide with Form GIS? The SIC code may be different than that listed in section G of Form GIS. The SCC code is not mandatory, but is useful because it identifies a specific process, the pollutants from that process, and related emissions factors.

Whit description in its entirety provided (including dates of installation)

Activity or production rates provided

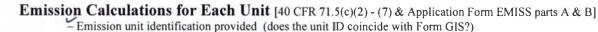
- Control equipment descriptions provided (Does in include an ID for the control equipment?)

Ambient impact assessment provided (for temporary sources only)

Additional attachments, if needed, to provide information to the permitting authority that is not specified on the form provided

Comments:

- NO SCC Code for dehydrator - Control IP same as unit ID - Glycale contentations provided


Insignificant Emission Activities or Units [40 CFR 71.5(c)(11) & Application Form IE]

Listing of insignificant activities and emissions levels exempted because of size or production rate pursuant to 71,5(c)(11)(ii) provided

Information provided sufficient to show that the exemption applies

MA Information concerning equipment, activities, or emissions units that are exempted from an otherwise applicable requirements provided (e.g. emissions units grandfathered from requirements of a NSPS)

Comments:

Actual emission rates for each pollutant provided

Potential emission rates for each pollutant provided

AS Number for each pollutant provided

- Example calculations illustrating the methodology used (formulas used, emission factors used, assumptions made, source of formulas or assumptions) provided

Comments:

-no actual emission rates provided -heaters use AP-42 - Tanks 2.0 used -Glycalc used -Mfgr. Info-for engines

Potential to Emit Summary [40 CFR 71.5(c)(3) & Application Form PTE]

Are all emission units identified? (does the unit ID coincide with Form GIS?) If the source is a major source for pollutants not listed is an attachment stipulating major source status or the calculations for that air pollutant provided?

This form is used to calculate the total PTE for each air pollutant at the facility for purposes of determining major source applicability. See the application instructions and definitions for major source at 40 CFR 71.2 to further determine completeness and accuracy of this section. Comments:

Fee Calculations [40 CFR 71.5(c)(3), 71.9, & Application Form FEE parts A - F]

General information completed

-Source information completed -Certification of truth, accuracy and completeness signed and dated - no separate one, only in application

Annual non-HAP emissions report provided

Annual HAP emission report for fee calculation purposes provided

Lattached example calculations used to determine emission values provided

Comments:

2009 rate yet

Fee Filing [Application Form FF parts A - C]

- Facility's official or legal name provided - Complete mailing address & telephone numbers of all contact persons provided - Total amount of fee remitted in US dollars provided

Photocopy of the fee payment check or other confirmation of actual fees paid provided Comments:

Fee Submittal Confirmed

- Has a confirmation been received by 8P-AR that fees and the fee filing form were deposited in the Region 8 Lockbox? Confirmation will come from Finance.

Comments

-sent email to Michelle

ſ

Compliance Status [40 CFR 71.5(c)(8) & Application Form I-Comp parts A, B, & C]

- Has each individual applicable requirement been identified and described in detail
- Has a citation for each applicable requirement been provided

- Has each emission unit subject to the applicable requirement been identified. Do the emission unit IDs correspond to the IDs defined on Form GIS

Has the compliance status for each applicable requirement been identified

- Have the methods for determining compliance with each applicable requirement been provided

Indication of compliance status with respect to each applicable requirements provided

Undication that the source will comply with all applicable requirements that take effect during the permit term NAIndication that the source will meet all future requirements

Comments:

Unit FO for Jehy Joutor listed as D-I, not LCO-I

Compliance Plans and Schedules [40 CFR 71.5(c)(8) & Application Form I-Comp parts D&E]

For any applicable requirement for which the facility will not be compliance at time of issuance, is there a description of how the source will achieve compliance

N- If needed, is there a compliance schedule containing a schedule of remedial measures, including an enforceable sequence of actions with milestones, leading to compliance?

Is the date of final compliance in the schedule?

Comments:

Compliance Certification [Application Form I-Comp parts F, G, & H]

Schedule for submittal of certification provided Statement of compliance with enhanced monitoring and compliance certification requirements provided

Comments:

Certification of Truth, Accuracy, & Completeness [40 CFR 71.5(d) & Form CTAC parts A & B]

Responsible official information complete Signature by responsible official provided Comments:

Confidential Information [40 CFR 71.5(a)(3) & 40 CFR Part 2, subpart B]

Confidentiality claim substantiated pursuant to 40 CFR Part 2 (This is not required for determining the application complete. However, it is necessary to determine that the claim is valid. ORC can help with this.)

Note to Application Reviewer:

In general, applications should be found complete if they contain enough information for you to begin to process the application. A determination of completeness is important for sources because the submittal of a timely and complete application shields the source from enforcement action for operating without a permit. Completeness in general means that all questions in the application have been addressed and are truthful and accurate.

Sources, however, are also required to submit enough information for you to be able to draft a comprehensive, enforceable permit. The level of detail required in the application to meet this requirement is usually much higher than that required for purposes of the completeness determination. If while processing an application that has been determined complete you find that additional information is needed, you may request such information in writing.

Please note in the space provided any additional information required. Note also the date of the request made to the source and the deadline for submittal provided to the source.

Comments:

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298

August 31, 2009

DECEIVED SEP 08 2009 8P - AR (817) 870-2800 (office)

Ms. Claudia Young Smith Air Program - US EPA Region 8 Part 71 - Permitting, Monitoring and Modeling Unit 1595 Wynkoop St. (8P-AR) Denver, CO 80202-1129

Certified Mail Return Receipt No. 7008 2810 0000 4380 0845

RE: Summit Gas Gathering, LLC Tap-4 Compressor Station - Uintah County, Uta

Tap-4 Compressor Station - Uintah County, Utah – Part 71 Permit # V-OU-0017-07.00 Tap-5 Compressor Station - Uintah County, Utah – Part 71 Permit # V-OU-0018-07.00 Kings Canyon Unit Compressor Station – Uintah County, Utah – Part 71 Permit # V-OU-0019-07.00 Little Canyon Unit Compressor Station – Uintah County, Utah – Part 71 Permit Pending Part 71 Permit Application Modifications

Dear Ms. Smith:

Summit Gas Gathering, LLC, hereby submits the accompanying information related to Title V - Part 71 Permit Applications for the following facilities:

- Tap-4 Compressor Station located in Uintah County, Utah Application Update
- Tap-5 Compressor Station located in Uintah County, Utah Application Update
- Kings Canyon Unit Compressor Station located in Uintah County, Utah Application Update
- Little Canyon Unit Compressor Station located in Uintah County, Utah Initial Application

The original applications for the Tap-4, Tap-5, and Kings Canyon Unit Compressor Stations were submitted by Dominion Exploration & Production Inc. in April of 2007. Following an acquisition of the referenced facilities and their associated assets, the permit applications were updated in November of 2007 to reflect XTO Energy Inc. as the new owner and operator of the facilities.

As of June 1, 2009, XTO Energy created a wholly owned subsidiary called Summit Gas Gathering, LLC (SGG) and transferred the referenced facilities and the associated physical assets to SGG. The attached, updated Part 71 Permit Applications reflect SGG as the new owner and operator, and updates the operating information for the Tap-4, Tap-5, and Kings Canyon Unit Compressor Stations. Refer to the attached copies of notifications related to the transfer of owner and operator from XTO Energy to SGG.

In addition, an Initial Part 71 permit application is being submitted for the SGG Little Canyon Unit Compressor Station (LCU). During an emissions inventory conducted as required by the XTO Energy Inc. federal Consent Decree (Civil Action No. 2:09-CV-00331-SA), SGG discovered that the estimated uncontrolled "Potential-to-emit" (PTE) emissions for the LCU facility exceeded the major source thresholds for both VOC and HAP emissions. XTO explained

August 31, 2009 Ms. Claudia Young Smith Page-2

- F 100

this to Josh Rickard and Jim Eppers of the U.S. EPA Region 8 office in late 2008, prior to the Consent Decree being lodged, and EPA's response was to require XTO to conduct an EI for all Uinta Basin sites and establish those which are now Title V and those that are currently not Title V. Little Canyon was the only additional site that became Title V. The Uinta Basin EI's were submitted to the EPA and DOJ in mid-June of 2009 as a part of the Consent Decree requirements.

The operational changes applicable to the Little Canyon Station since the transfer in ownership from XTO to Dominion include one (1) added engine. In addition, XTO used a gas analysis from a warmer time of year than Dominion used for their emissions estimate. The nature and composition of the gas also plays a part in calculating the HAP and VOC emissions, specifically for the natural gas dehydrator. Based on the PTE calculations made by Dominion, the Little Canyon location was near major source thresholds when Dominion operated it and XTO confirmed that it could be over major source limits at certain times through the recently submitted Emission Inventory. Therefore, XTO is permitting the location as Title V based on currently calculated PTE values.

Based on the estimated PTE, SGG hereby submits the attached Initial Part 71 permit application, as required by both federal regulations and the applicable U.S. Consent Decree. Also attached are the copies of the proof of payment for the LCU Part 71 Title V Permit Fees for 2008. Please refer to the attached documentation related to the emissions inventory calculation and associated reporting of the LCU major source status as required by the federal Consent Decree.

If you should have any questions or require additional information, please feel free to contact me via e-mail at <u>craig_allison@xtoenergy.com</u> or at (817) 885-2672.

Sincerely, XTO Energy

, rain all

Craig Allison EH&S Advisor

Encl: Tap-4, Tap-5, and Kings Canyon Unit – Updated Part 71 Applications Little Canyon Unit - Part 71 Initial Permit Application Certification of Truth, Accuracy, and Completeness (CTAC) Little Canyon Unit - Proof of Fee Payment (Form FF with a photocopy of the fee payment) Little Canyon Unit - Fee Calculation Worksheets (Form FEE and Supporting Data) XTO - SGG Transfer of Ownership Documentation XTO – Uinta Basin EI Reporting Documentation

Cc: Mr. Josh Rickard, U.S. EPA - Region 8 Enforcement Division (w/o attachments) Damien Jones, XTO - SGG Roosevelt NGO Office

A . 4

Summit Gas Gathering, LLC Uintah County, Utah Indian Country Lands in the State of Utah

Part 71 Permit Application Modifications and Submittals for the following:

- Tap-4 Compressor Station located in Uintah County, Utah Application Update
- Tap-5 Compressor Station located in Uintah County, Utah Application Update
- Kings Canyon Unit Compressor Station located in Uintah County, Utah – Application Update
- Little Canyon Unit Compressor Station located in Uintah County, Utah – Initial Application

810 Houston St. Ft. Worth, TX 76102

August 7, 2009

XTO Energy -Uinta Basin Facilities Emissions Inventories

The following Consent Decree requirements are applicable to the submittal of Emissions Inventories (Facility Potential-to-Emit Evaluations):

- WHEREAS, XTO will prepare and submit by no later than 60 days after the lodging of this Consent Decree revised emission inventories to determine whether the Uinta Basin Facilities, other than Kings Canyon, TAP-4, and TAP-5, are major sources prior to and after the application of controls for purposes of NESHAP's, Title V, and New Source Review;
- VIII. TITLE V OPERATING PERMITS, 45. (b) By no later than 60 days after the lodging of this Consent Decree, XTO shall submit to EPA an estimate of potential emissions for the Uinta Basin facilities, other than Kings Canyon, TAP-4, and TAP-5, calculated both without controls and with the application of controls required by this Consent Decree. Should any Uinta Basin facilities, other than Kings Canyon, TAP-4, or TAP-5, be major sources before the application of controls required by this Consent Decree, XTO shall submit complete Title V Permit applications for any such source within 180 days after the lodging of this Consent Decree. The United States agrees that these facilities shall operate in accordance with the terms of this Consent Decree until such time as EPA has issued the Title V permits for those facilities and this Consent Degree is terminated in whole or in part.

The following XTO locations are applicable to this requirement:

- Little Canyon Compressor Station
- Tap-1 Compressor Station
- Tap-2 Compressor Station
- Tap-3 Compressor Station
- RBU 9-17E Compressor Station
- RBU 11-18F Compressor Station
- Hill Creek Compressor Station
- West Willow Creek Compressor Station

XTO hereby submits the attached "estimates of potential emissions" for the applicable XTO facilities. The results of the attached emissions estimates demonstrate that \overline{only} the Little Canyon Compressor Station was identified to be a major source of emissions based on the "potential-to-emit" for the following pollutants:

- 1. Uncontrolled VOC emissions greater than 100 tpy
- 2. Uncontrolled Benzene and Xylene emissions greater than 10 tpy each
- 3. Uncontrolled Site-wide aggregate HAP emissions greater than 25 tpy

XTO Energy -Uinta Basin Facilities Emissions Inventories (continued)

Requirements in 40 CFR Part 71.3 (Applicability of Federal Operating Permits) and the criteria given in the definition of "Major Source" in 40 CFR Part 71.2 establish the major source thresholds for air emissions that are applicable to XTO's Uinta Basin Facilities covered under the Consent Decree.

These criteria established in 40 CFR 71.2 are as follows:

A major source under section 112 of the Act, which is defined as:

For pollutants other than radionuclides, any stationary source or group of stationary sources located within a contiguous area and under common control that emits or has the potential to emit, in the aggregate, 10 tpy or more of any hazardous air pollutant which has been listed pursuant to section 112(b) of the Act, 25 tpy or more of any combination of such hazardous air pollutants, or such lesser quantity as the Administrator may establish by rule.

A major stationary source of air pollutants or any group of stationary sources as defined in section 302 of the Act, that directly emits, or has the potential to emit, 100 tpy or more of any air pollutant (including any major source of fugitive emissions of any such pollutant, as determined by rule by the Administrator).

Each emission inventory evaluated the respective site for the maximum potential-to-emit (uncontrolled) criteria air pollutants, including NOx, Carbon Monoxide (CO), Volatile Organic Compounds (VOC's), as well as individual and aggregate hazardous air pollutant (HAP's) uncontrolled emissions. Emission calculation methodologies utilized approved AP-42 emission calculation methods, including U.S. EPA approved emission calculation programs such as GRI GlyCALC 4.0, AmineCALC, and E&P Tanks 2.0. The attached table gives an estimate of controlled emissions at each facility taking into account the 93% reduction in CO required by Subpart ZZZZ applicable to lean-burn RICE's and the 95% reduction in individual HAP's and VOC's resulting from Subpart HH glycol dehydrator controls.

As stated previously in this report, the XTO Little Canyon Compressor Station was evaluated to be a major source of both VOC's and HAP emissions based upon uncontrolled emissions and maximum production rates for the site. As a result, XTO will submit the appropriate Part 71 permit application within 180-days following the lodging date of the Consent Decree (October 14, 2009). No other XTO facilities evaluated as a part of this report were found to be emitting in excess of U.S. federal major source thresholds.

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298 (817) 870-2800 (off)

July 17, 2009

Ms. Callie A. Videtich Director, Air and Radiation Program U.S. Environmental Protection Agency Region 8 – Mail Code 8P-AR 1595 Wynkoop Street Denver, CO 80202-1129

Certified Mail 7008 2810 0000 4380 0685

Re: Designation of Responsible Official
 Summit Gas Gathering, LLC – Uinta Basin, Utah Facilities
 Kings Canyon Unit Compressor Station – Part 71 Permit # V-OU-0019-07.00
 Tap- 4 Compressor Station - Part 71 Permit # V-OU-0017-07.00
 Tap- 5 Compressor Station - Part 71 Permit # V-OU-00XX-07.00
 Little Canyon Unit Compressor Station – Part 71 Permit # Pending

Ms. Videtich:

Summit Gas Gathering, LLC (SGG), operating as a Delaware limited liability company, formally submits this notification to the U.S. Environmental Protection Agency. The following company employee will perform the duties of "Responsible Official" for the above referenced facilities:

• Primary Responsible Official -

Mr. Nick Dungey Chairman of the Board and President 810 Houston Street Fort Worth, Texas 76102 817-885-2440 Office 817-885-2683 fax nick_dungey@xtoenergy.com

SGG certifies that this individual meets the following credentials:

(1) For a corporation: a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit and either:

(i) the facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars); or

(ii) the delegation of authority to such representative is approved in advance by the permitting authority.

United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

シート

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

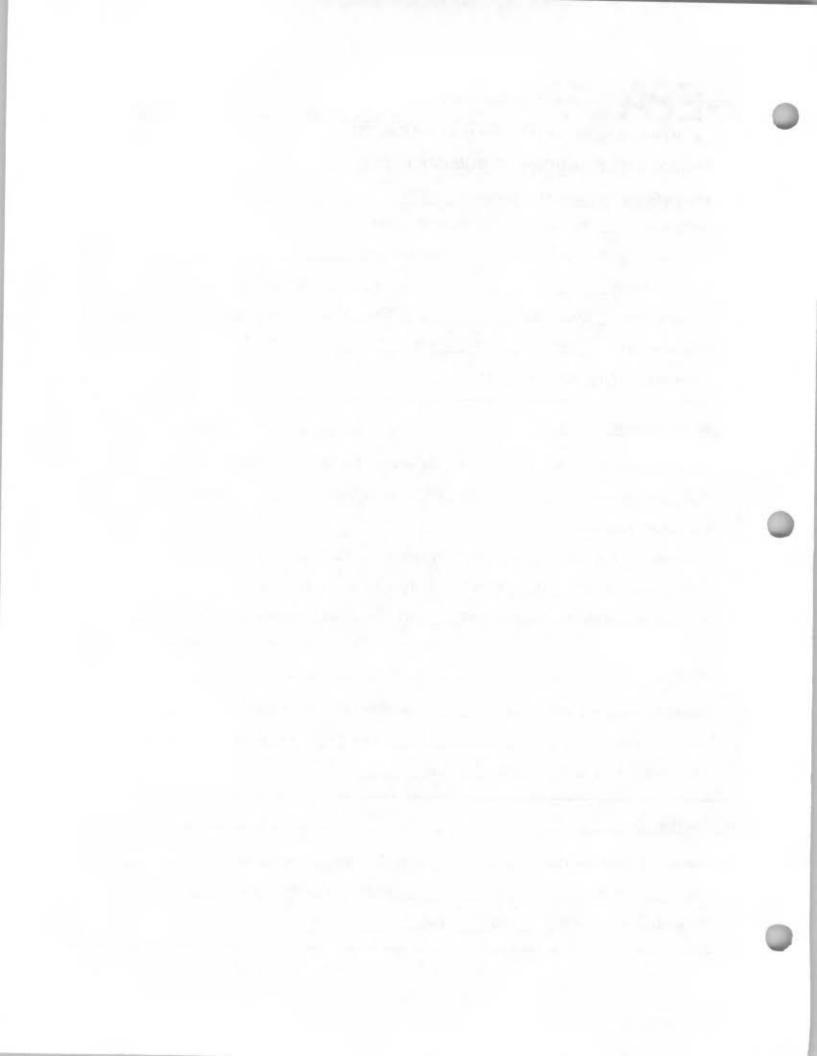
A. Responsible Official
Name: (Last) Dungey (First) Nick (MI) J
Title Chairman of the Board and President - Summit Gas Gathering, LLC
Street or P.O. Box 810 Houston St.
City Fort Worth State _TX ZIP
Telephone (817) 885-2440 Ext Facsimile (817) 870 - 8441
 B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official)
I certify under penalty of law, based on information and belief formed after reasonable inquiry, the statements and information contained in these documents are true, accurate and complete.
Name (signed) Vice 1. Angen
Name (typed) Nick Dungey Date: _7 / 16 / 2009

July 17, 2009 Ms. Callie A. Videtich Page-2

In addition, pursuant to 40 CFR 71.5(d), any application form, report, or compliance certification submitted pursuant to these regulations shall contain certification by a responsible official of truth, accuracy, and completeness (CTAC form). Attached is the completed CTAC form signed by the senior-most company official responsible for operations of the Title V, 40 CFR Part 71 facilities referenced in this request.

Please contact the undersigned at 817-885-2672 or at <u>craig_allison@xtoenergy.com</u> if you need any additional information.

Sincerely,

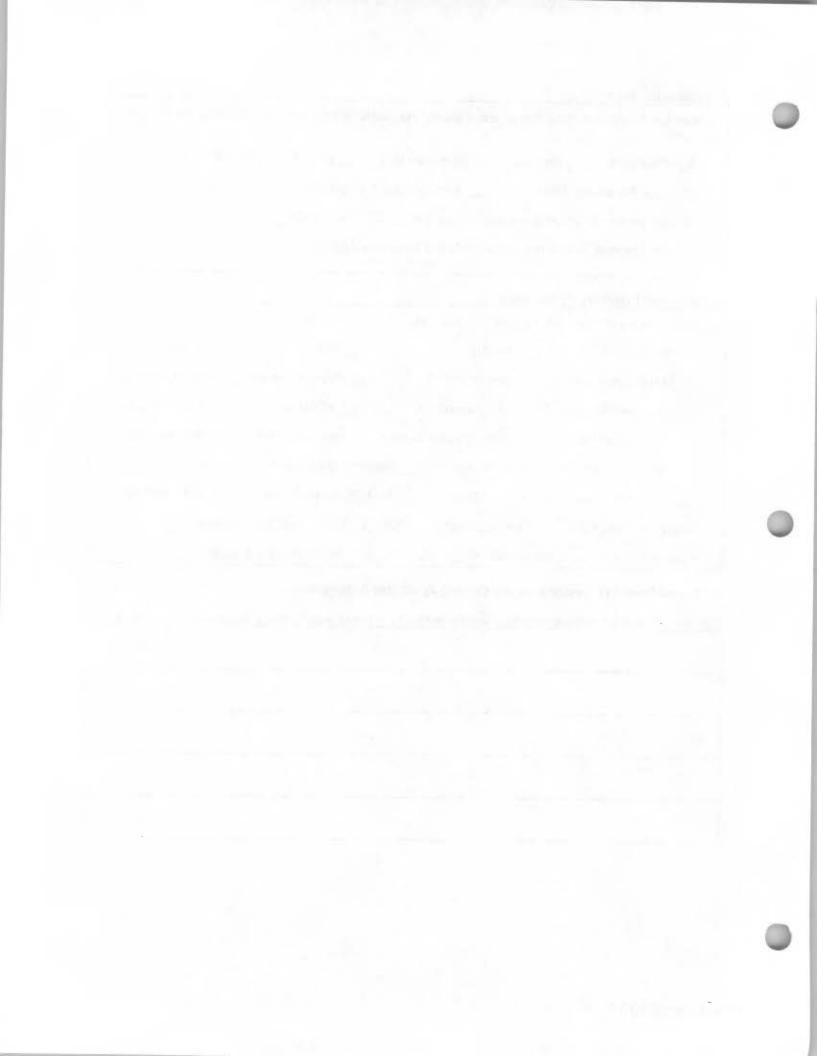

grang de

Craig Allison EH&S Advisor

Ms. Claudia Young Smith, EPA Region 8 - Certified Mail 7008 2810 0000 4380 0821
 Mr. Josh Rickard, EPA Region 8 - Certified Mail 7008 2810 0000 4380 0838
 Mr. Nick Dungey, Summit Gas Gathering, LLC

Little Canyon

Federal Operating Permit Program (40	CFR Part 71)
GENERAL INFORMATION AND SUM	MARY (GIS)
Mailing Address and Contact Information	
Facility nameLittle Canyon Unit Comp	ressor Station
Mailing address: Street or P.O. Box810	0 Houston St
CityFt. Worth	StateTXZIP76102
	TitleEH&S Advisor
Telephone (_817)8852672	Ext
Facsimile (817_)8852683	_
Facility Location	
Temporary source? Yes X No Plan	t site location Lat. 39°53'49"N, Long. 109°36'20"W
City Roosevelt State	_UT_ County_Uintah EPA Region8_
Is the facility located within:	
Indian lands? _X_YESNO O	
Non-attainment area?YES _XNO	If yes, for what air pollutants?
Within 50 miles of affected State? _X_YES	NO If yes, What State(s)? _Colorado
Owner	
Name _Summit Gas Gathering, LLC	Street/P.O. Box810 Houston St
City Ft. Worth	State_TX ZIP_76102
Telephone (817) 885 - 2672	
Operator	
	Street/P O Boy 810 Houston St
NameSummit Gas Gathering, LLC	Stree_F10. Box010 Housion St


GIS

Mark only one permit applic marked.	cation type and answer the su	pplementary question ap	propriate for the type
_X_Initial Permit Re	enewal Significant Mod	Minor Permit Mo	od(MPM)
Group Processing, MPM Administrative Amendment For initial permits, when did operations commence?04_/_04 /2005			
For permit renewal what is	the expiration date of current	permit? / /	
T of permit renewal, what is	The expiration date of our on	pomit/	
Applicable Requirement S	ummary		
Mark all types of applicable	e requirements that apply.		
SIP	FIP/TIP	PSD	Non-attainment NS
Minor source NSR	Section 111	Phase I acid rain	Phase II acid rain
Stratospheric ozone	OCS regulations	_XNESHAP	Sec. 112(d) MAC
Sec. 112(g) MACT	Early reduction of HAP	Sec 112(j) MACT	RMP [Sec.112(r)]
Tank Vessel requirem	ents, sec. 183(f)) Se	ction 129 Standards/Red	quirement
Consumer / comm pr	roducts, ' 183(e) N/	AAQS, increments or vis	sibility (temp. sources)
Has a risk management plan been registered? YES X_NO Regulatory agency			
Has a risk management pl	an been registered?YES	NO negulatory	agonoy

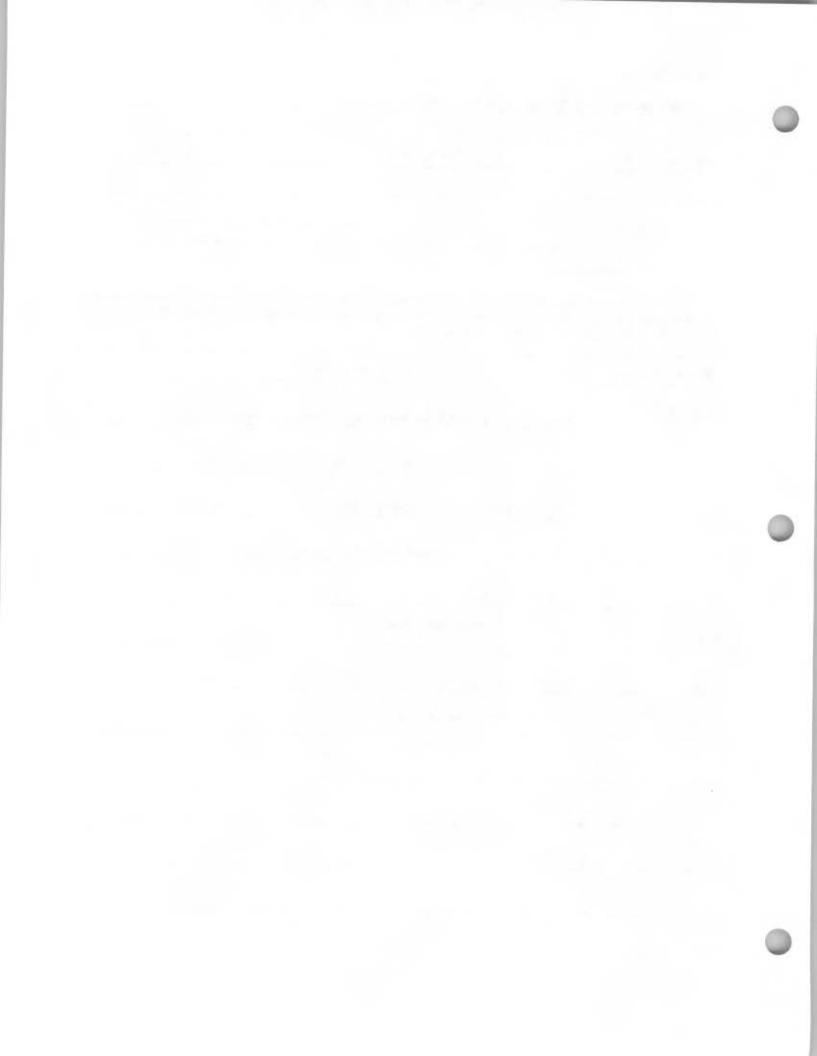
G. Source-Wide PTE Restrictions and Generic Applicable Requirements

Cite and describe any emissions-limiting requirements and/or facility-wide "generic" applicable requirements.

one	and the second sec	 	

H. Process Description

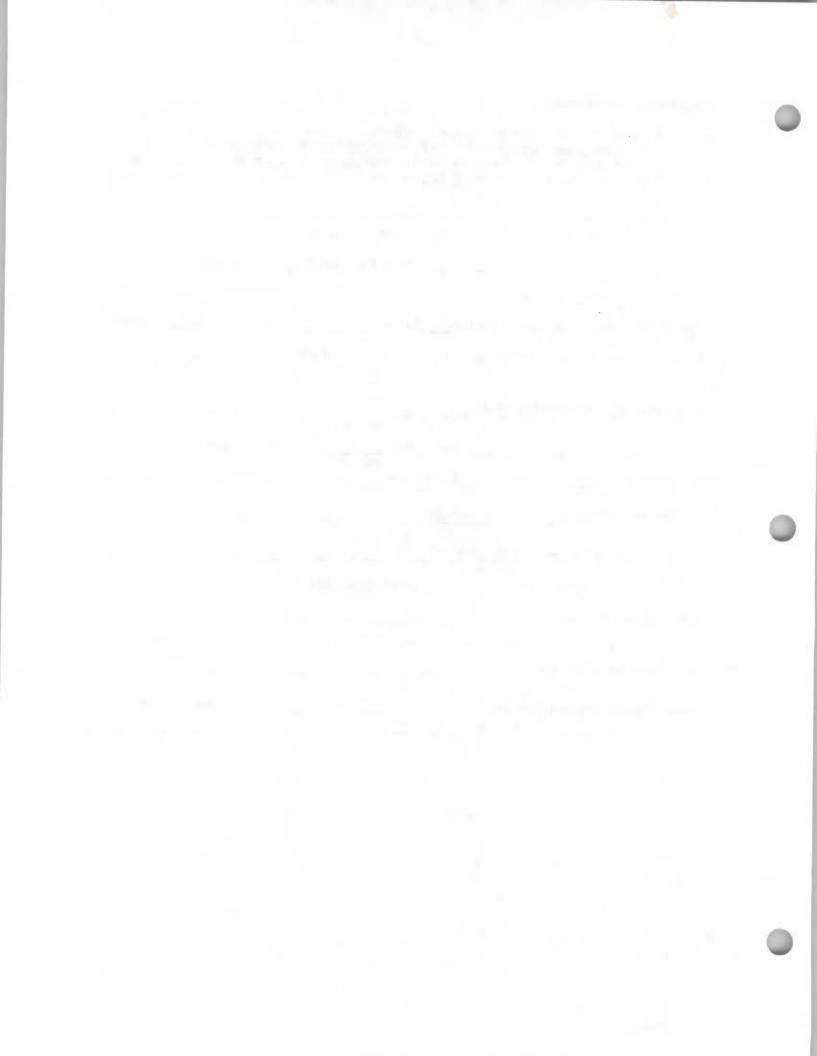
List processes, products, and SIC codes for the facility.

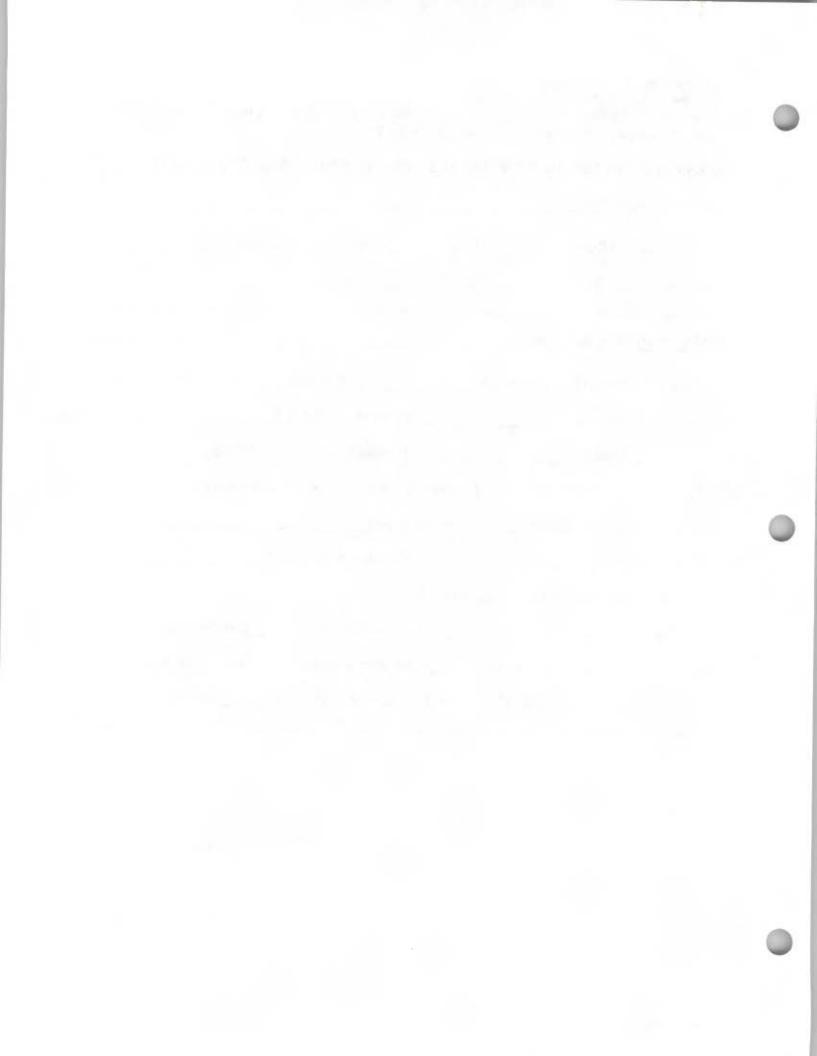

Process	Products	SIC
Natural Gas Production	Natural Gas	1311

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
LCC-1	Caterpillar Model 3516LE compressor engine 1260 site-rated horsepower
LCC-2	Caterpillar Model 3516LE compressor engine 1260 site-rated horsepower
LCC-3	Caterpillar Model 3516LE compressor engine 1260 site-rated horsepower
LCD-1	25 MMscfd Glycol dehydrator controlled by a thermal oxidizer
LCF-1	Fugitive Emissions
LCG-1	Capstone 30 kW Microturbine Genset
LCT-1	One (1) 400-bbl slop tank #1
LCT-2	One (1) 400-bbl slop tank #2


EPA Form 5900-79


J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

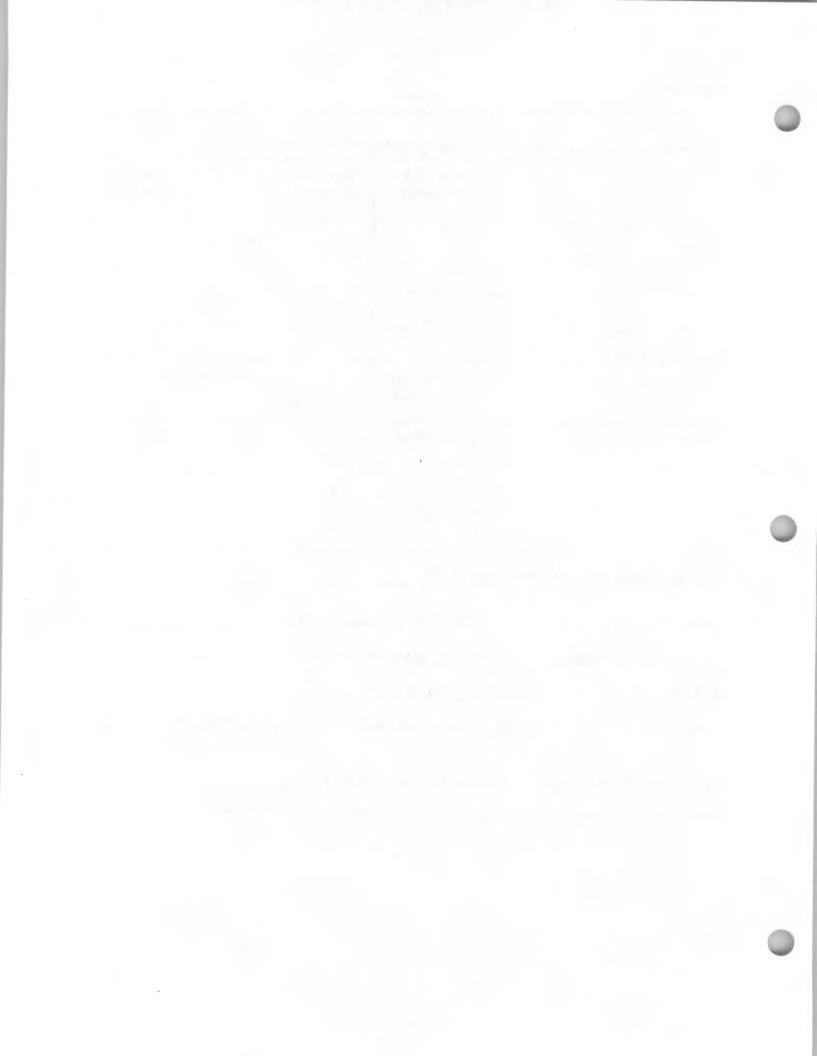
NOx55.6 tons/yr VOC1	48.3 tons/yr	SO20.1 tons/yr
PM-100.1 tons/yr CO8	36.2 tons/yr	Lead0.0 tons/yr
Total HAP40.5 tons/yr		
Single HAP emitted in the greatest amou	intXylene	PTE _12.9 tons/yr
Total of regulated pollutants (for fee calc	ulation), Sec. F, line	5 of form FEE tons/yr
K. Existing Federally-Enforceable Permits		
Permit number(s)	Permit type	Permitting authority
Permit number(s)	Permit type	Permitting authority
L. Emission Unit(s) Covered by General Pe	ermits	
Emission unit(s) subject to general perm	it	
Check one: Application made	Coverage gra	anted
General permit identifier		Expiration Date//
M. Cross-referenced Information		
Does this application cross-reference inf		

Control States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)
A. General Information
Emissions unit IDLCC-1 DescriptionCaterpillar 3516 LE engine SIC Code (4-digit)1311 SCC Code_311000203
B. Emissions Unit Description
Primary useNatural Gas Compression Temporary SourceYes _xNo ManufacturerCaterpillar Model No3516LE Serial Number4EK04570 Installation Date10/13/2005 Boiler Type:Industrial boilerProcess burnerElectric utility boiler Other (describe)Natural gas compressor engine Boiler horsepower rating1260hp Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand fired Spreader stoker Underfeed stoker Overfeed stoker Traveling grate Shaking grate Pulverized, wet bed Pulverized, dry bed Actual Heat Input9.8MM BTU/hr Max. Design Heat Input9.8MM BTU/hr

C. Fuel Data

Primary fuel type(s)____Natural Gas_____ Standby fuel type(s)__----__

Describe each fuel you expected to use during the term of the permit.

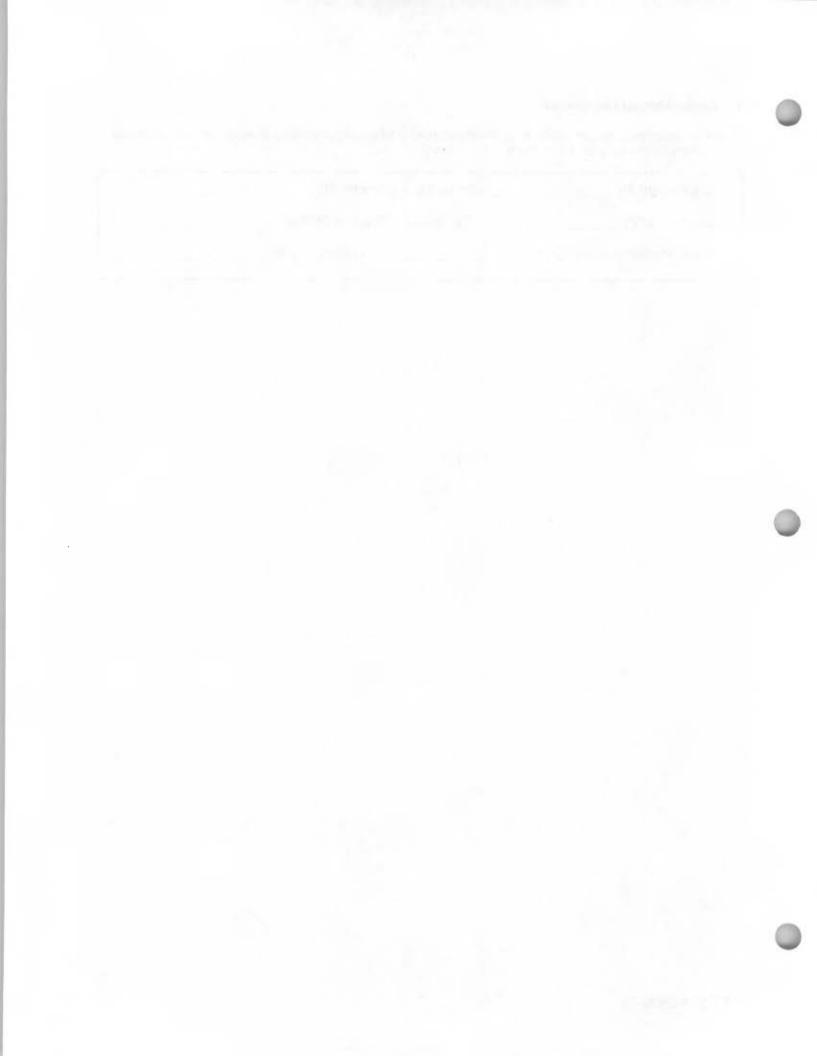

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage	
		Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

E. Associated Air Pollution Control Equipment

Emissions unit IDLCC-1 Device typeOxidation Catalyst
Air pollutant(s) Controlled_ HCHO and CO ManufacturerMiratech
Model NoIQ 26 12 L1 Serial No 1Q 1468
Installation date 10/01/2005 Control efficiency (%) <=14 ppmvd @ 15%O2 for CH2O
Efficiency estimation methodManufacturer Specifications



GIS

F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

Federal Operating Permit Program (40 C	OMB No. 2060-0336, Approval Expires 09/30/201 FR Part 71)
	UEL COMBUSTION SOURCES (EUD-1)
A Conception	
	niptionCaterpillar 3516LE engine
SIC Code (4-digit) _1311 SCC	Code_311000203
B. Emissions Unit Description	
Primary useNatural Gas Compression	Temporary SourceYes _XNo
ManufacturerCaterpillar	Model No3516LE
Senal Number4EK04571	Installation Date_7/9/2006
Boiler Type: Industrial boiler Proce	ess burner Electric utility boiler
Other (describe)Natural Gas Comp	pressor Engine
Boiler horsepower rating1260 hp	Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning	only):
Type of Fuel-Burning Equipment (coal burning Hand firedSpreader stoker Traveling grateShaking grate	

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)___NA_____

Describe each fuel you expected to use during the term of the permit.

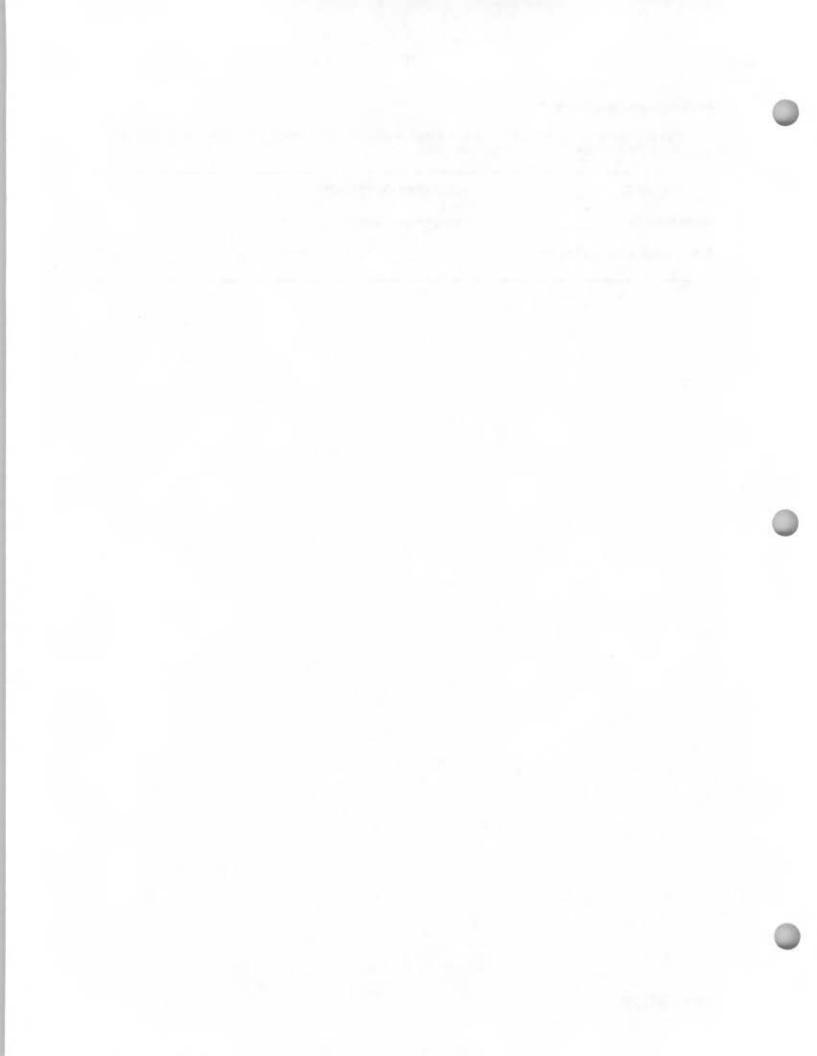
Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage	
	Usage	Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

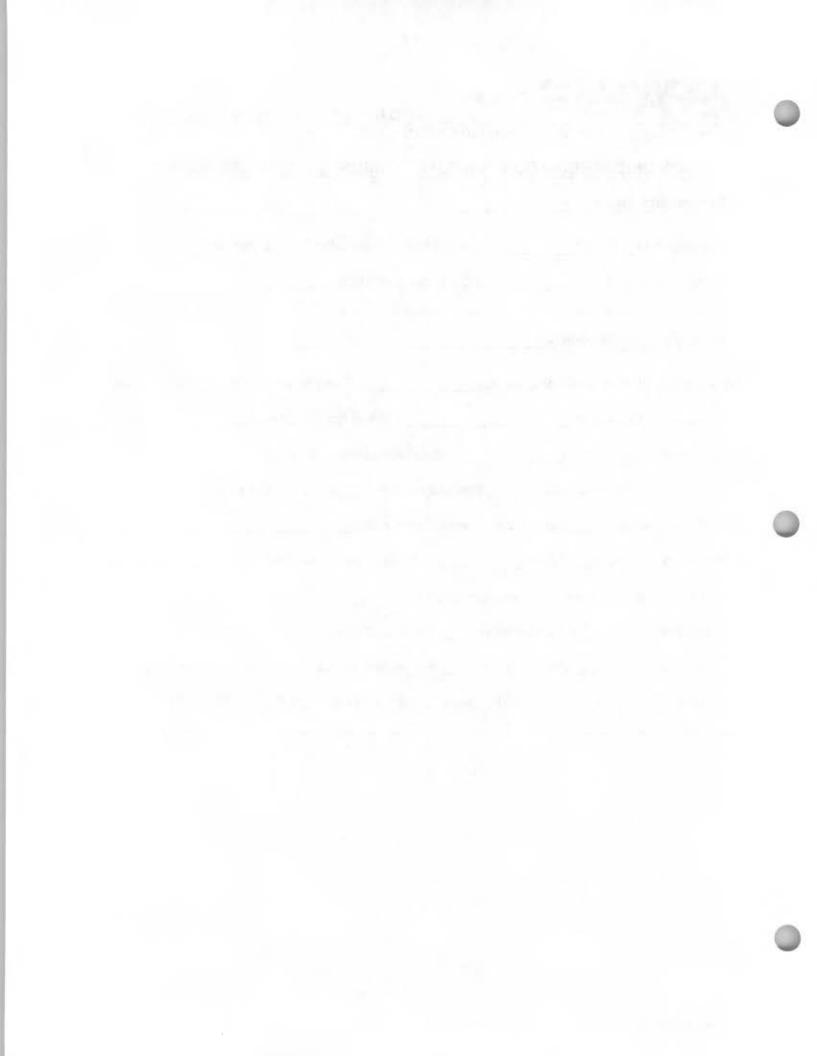
E. Associated Air Pollution Control Equipment

Emissions unit ID_LCC-2 Device typeOxidation Catalyst
Air pollutant(s) Controlled_ HCHO and CO ManufacturerMiratech
Model NoRCS 3626-12 L1 Serial No. RCS-1460
Installation date09/01_/_2005 Control efficiency (%) <=14 ppmvd @ 15%O2 for CH2O_
Efficiency estimation method Manufacturer Specifications



GIS

F. Ambient Impact Assessment


This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

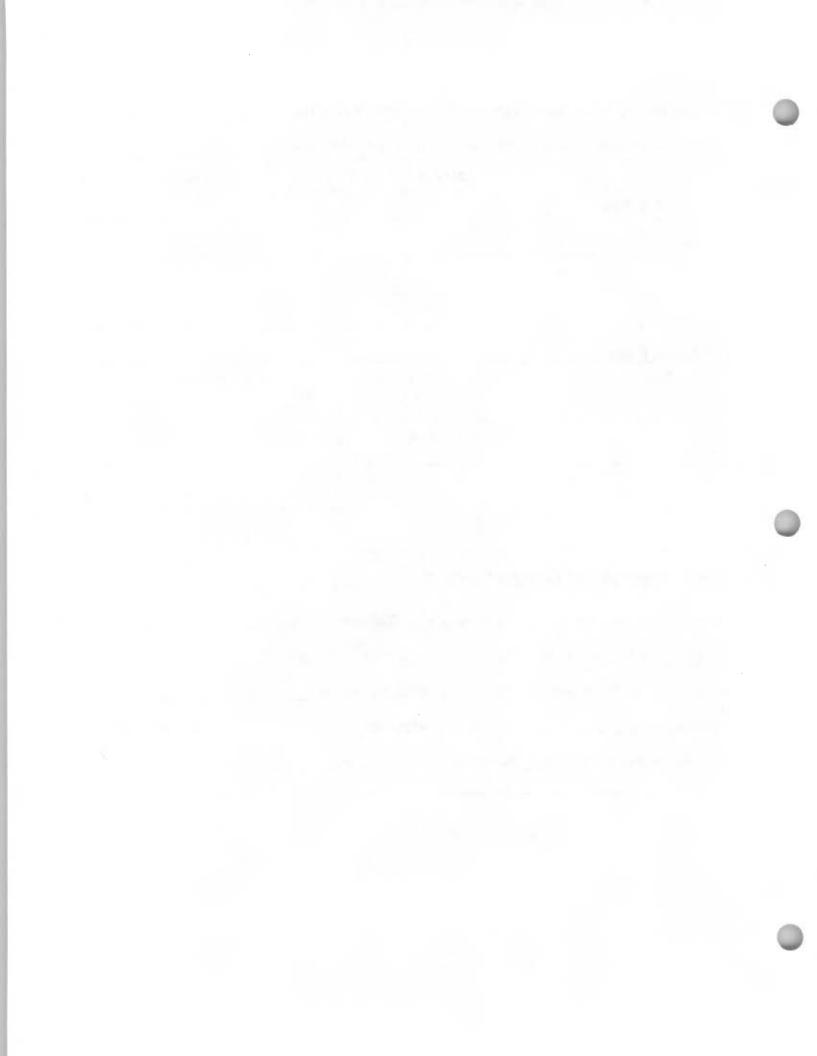
Federal Operating Permit Prog	OMB No. 2060-0336, Approval Expires 09/30/2010			
	Sound to the statement of the statement of the			
EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)				
A. General Information				
Emissions unit IDLCC-3	DescriptionCaterpillar 3516LE engine			
SIC Code (4-digit) _1311	SCC Code_311000203			
B. Emissions Unit Description				
Primary useNatural Gas Comp	ression Temporary SourceYes _XNo			
ManufacturerCaterpillar	Model No3516LE			
Serial Number4EK04875	Installation Date_5/23/2008			
Boiler Type: Industrial boiler	Process burner Electric utility boiler			
Other (describe)Natura	al Gas Compressor Engine			
	al Gas Compressor Engine p Boiler steam flow (lb/hr)			
	p Boiler steam flow (lb/hr)			
Boiler horsepower rating1260 hp	p Boiler steam flow (lb/hr)			
Boiler horsepower rating1260 hp Type of Fuel-Burning Equipment (c Hand firedSpreade	p Boiler steam flow (lb/hr) coal burning only):			

11

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)___NA_____

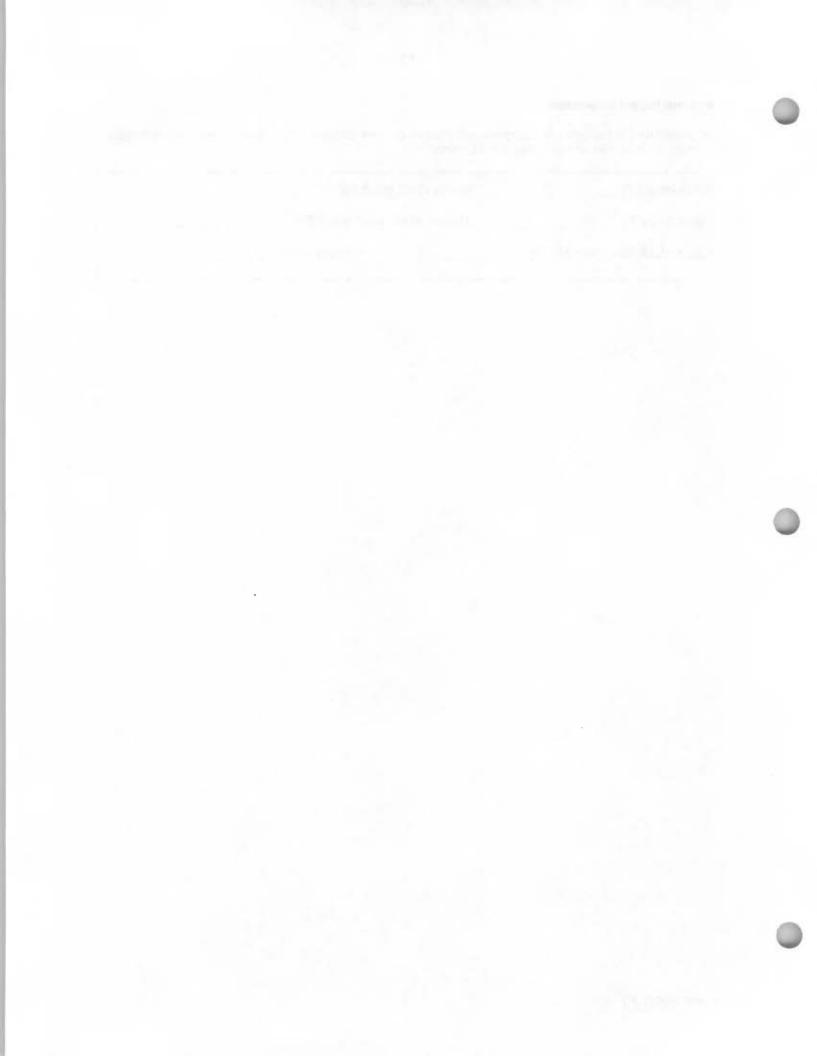
Describe each fuel you expected to use during the term of the permit.


Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage	
	Usage	Hourly	Annual
Natural Gas	85.5 MMscf	9.8 Mscf	85.5 MMscf

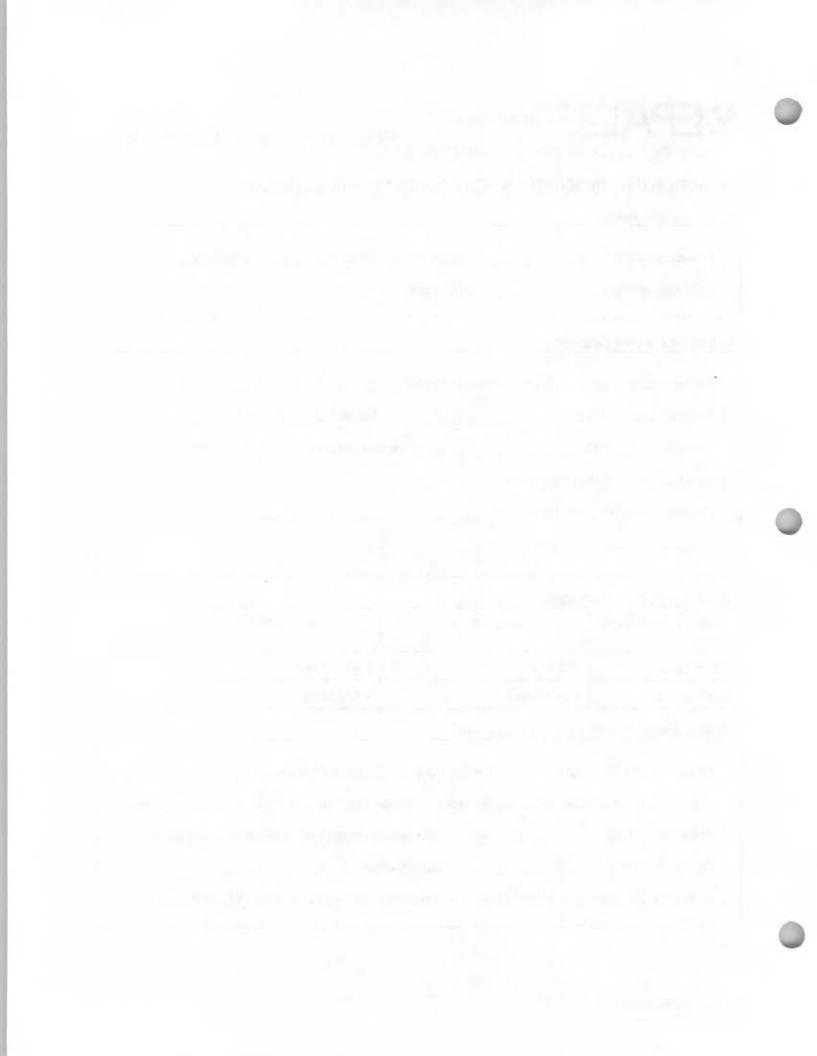
E. Associated Air Pollution Control Equipment


Emissions unit ID_LCC-3 Device typeOxidation Catalyst
Air pollutant(s) Controlled_ HCHO and CO ManufacturerGT Exhaust
Model No201V0-3-0-4112-1-30449 Serial No. 95199
Installation date09/01_/_2008_ Control efficiency (%) <=14 ppmvd @ 15%O2 for CH2O_
Efficiency estimation method Manufacturer Specifications

F. Ambient Impact Assessment

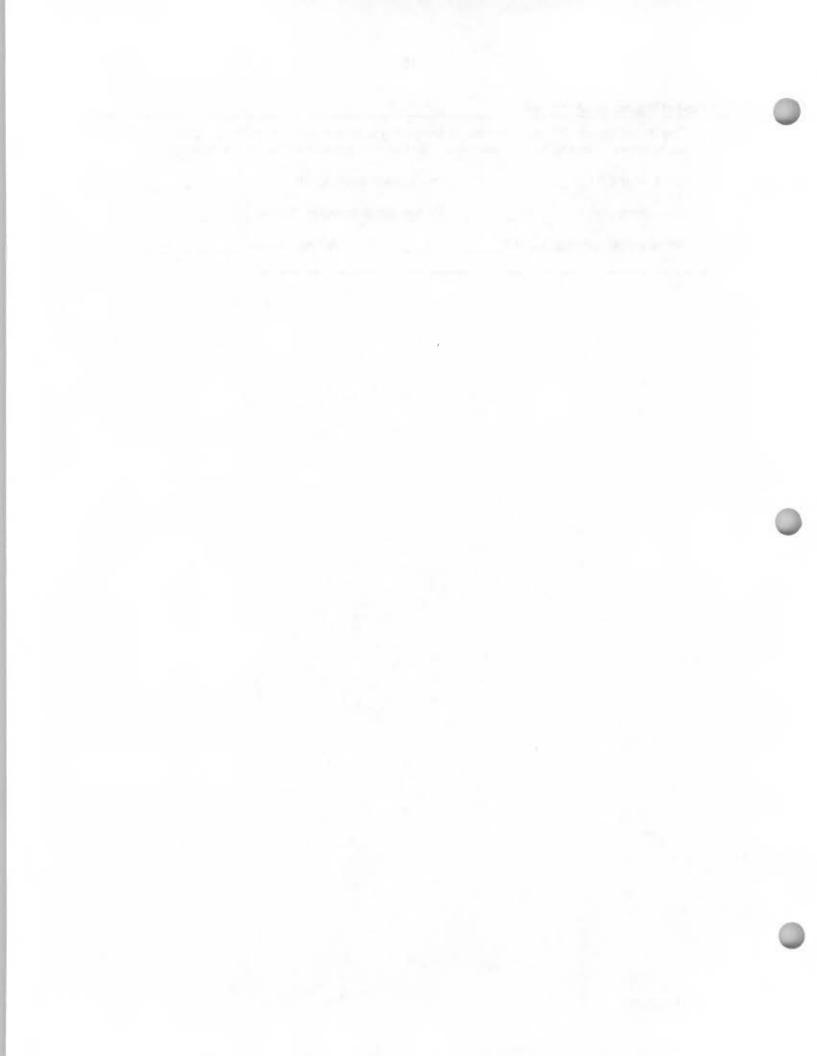
This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)



SEPA United States Environmental Pro Agency	OMB No. 2060-0336, Approval Expires 09/30/2010
Federal Operating Permit Progra	In (40 CFR Part 71)
EMISSION UNIT DESCRIPTION	FOR PROCESS SOURCES (EUD-3)
A. General Information	
Emissions unit IDLCD-1	Description25 MMscfd Glycol Dehydrator
SIC Code (4-digit) _1311	SCC Code
	Gas Dehydration Model No61440005
ManufacturerNatco	Model No61440005
Serial NoTBD	Installation date _12_/_09_/_2005_
Raw materialsWet Natural Ga	as
Finished productsDry Natural G	Gas
Temporary source: _XNo	Yes

Activity or Production Rate	Amount/Hour	Amount/Year	
Actual Rate	500 Mscf	4,417 MMscf	
Maximum rate	1.04 MMscf	9,125 MMscf	


D. Associated Air Pollution Control Equipment

Emissions unit IDLCD-1	Device TypeThermal Oxidizer
Manufacturer Industrial Refractory	Services Model No36 inch TO with TJ0200HV burner
Serial NoTBD	Installation date Late winter/early spring 2009
Control efficiency (%)99	Capture efficiency (%)
Air pollutant(s) controlled VOCs & H.	APs Efficiency estimation methodManu. Specs

E. Ambient Impact Assessment

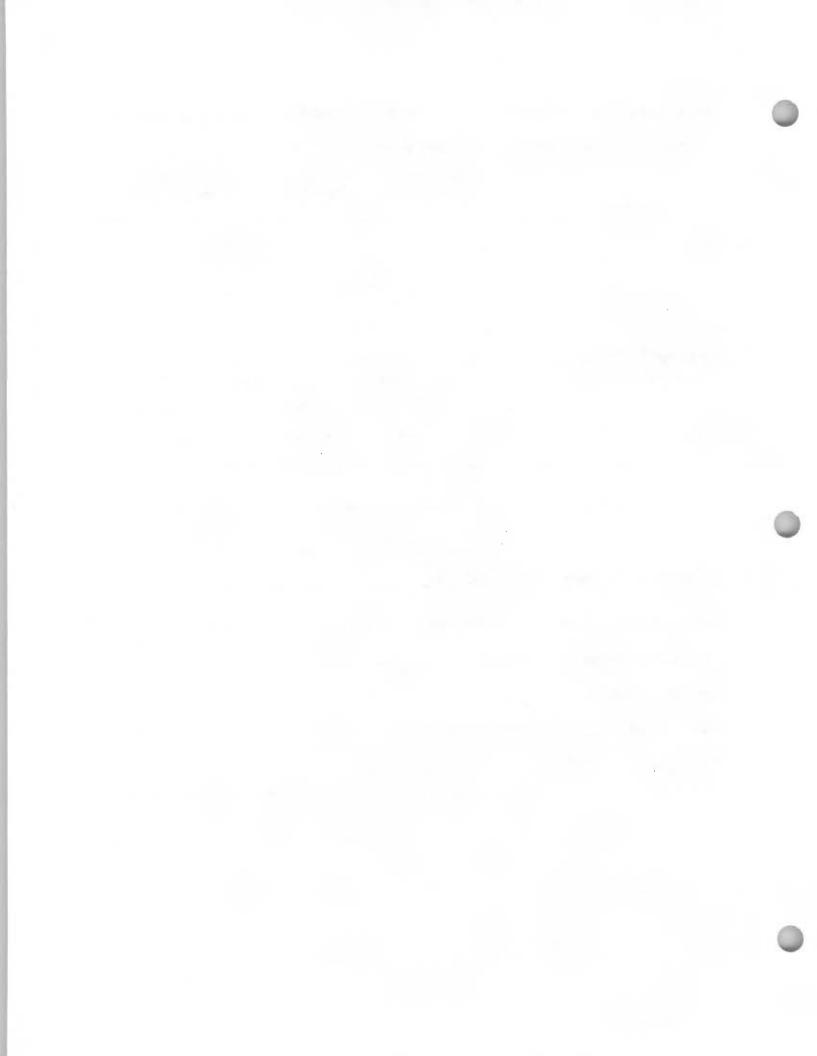
This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (This is not common)).	
Stack height (ft)	Inside stack diameter (ft)
Stack temp (F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

See PA Linited States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)
A. General Information
Emissions unit IDLCG-1 Description_Capstone 30 kW Microturbine
SIC Code (4-digit)1311 SCC Code_311000203
B. Emissions Unit Description
Primary usePower Generation Temporary SourceYes _xNo
ManufacturerCapstone Model NoC30NG
Serial NumberUnknown Installation Date8/15/09
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)Natural Gas fueled Microturbine
Boiler horsepower rating30 kW Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat Input0.4MM BTU/hr Max. Design Heat Input0.4MM BTU/hr

C. Fuel Data

Primary fuel type(s)___Natural Gas_____ Standby fuel type(s)__----_

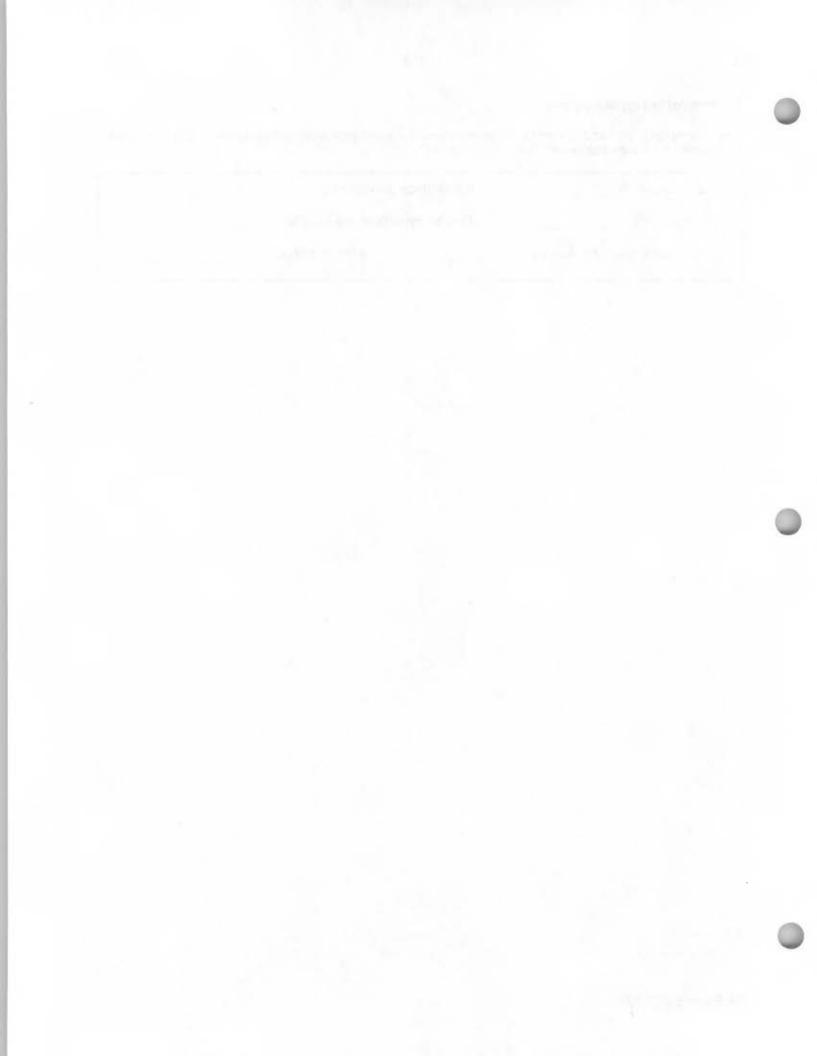
Describe each fuel you expected to use during the term of the permit.

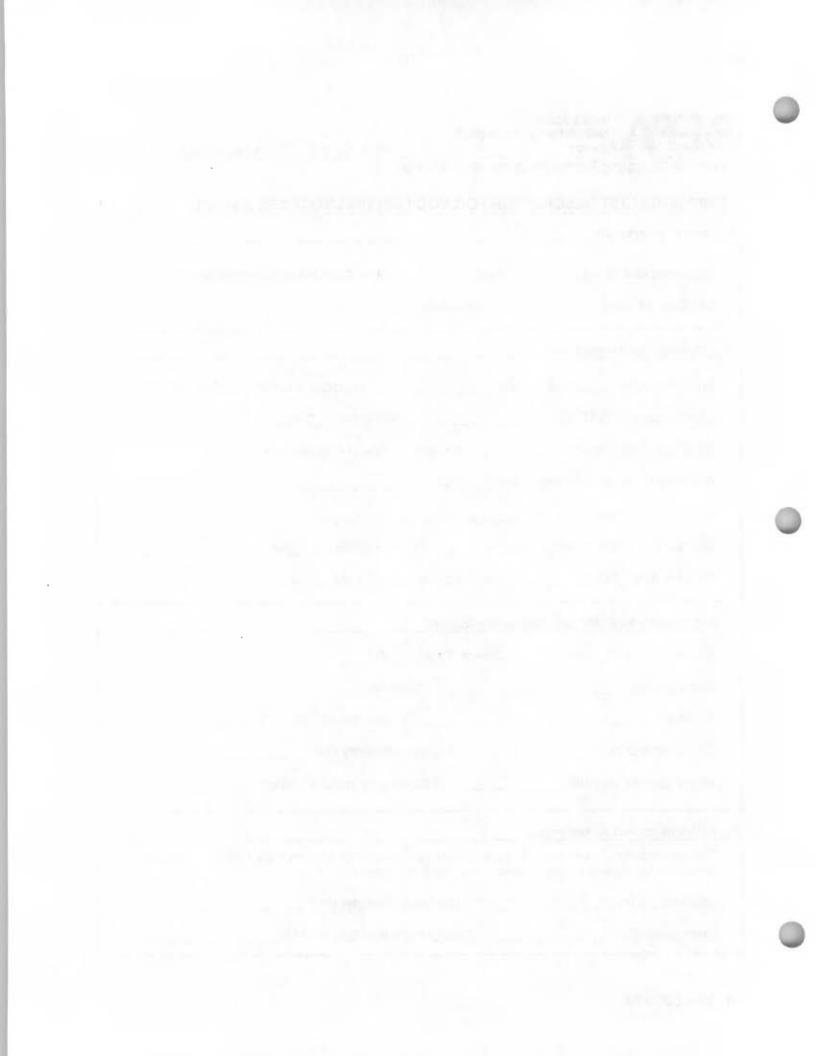

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	0	0	1004 Btu/scf

D. Fuel Usage Rates

Fuel Type	Annual Actual	Maximum Usage	
	Usage	Hourly	Annual
Natural Gas	3.44 MMscf	0.4 Mscf	3.44 MMscf
		-	

E. Associated Air Pollution Control Equipment

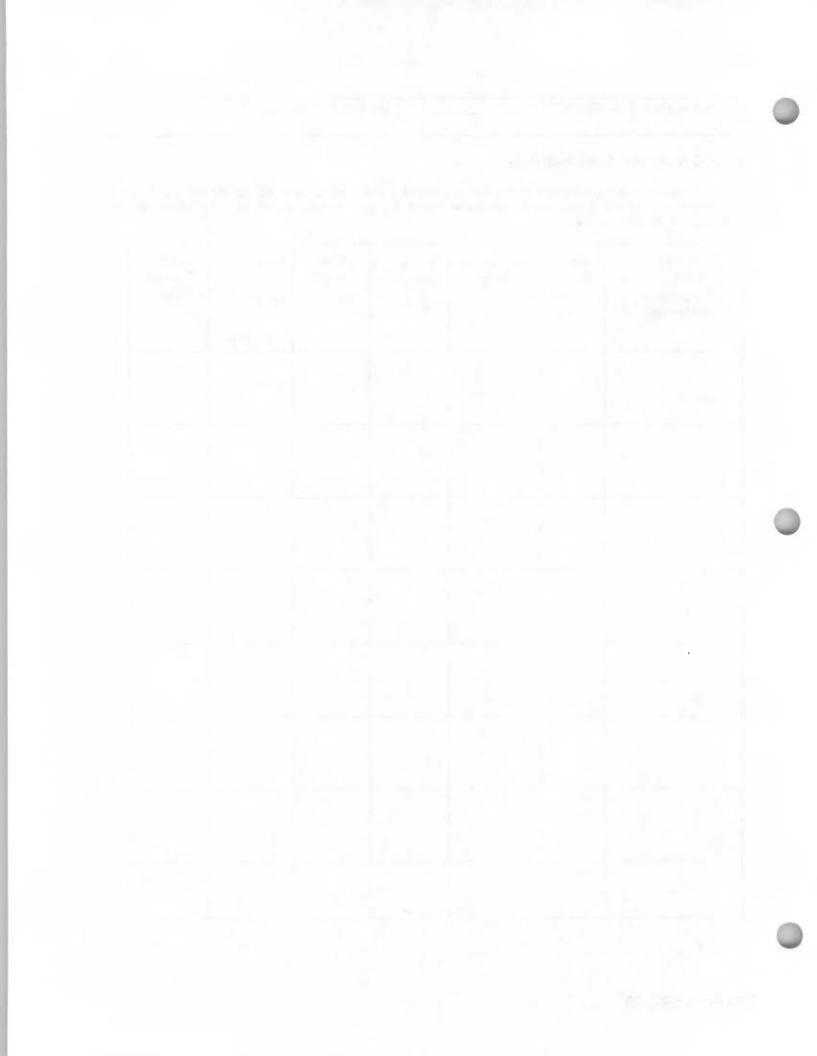

Emissions unit IDNone Device type
Air pollutant(s) Controlled Manufacturer
Model No Serial No
Installation date Control efficiency (%)
Efficiency estimation method


F. Ambient Impact Assessment

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

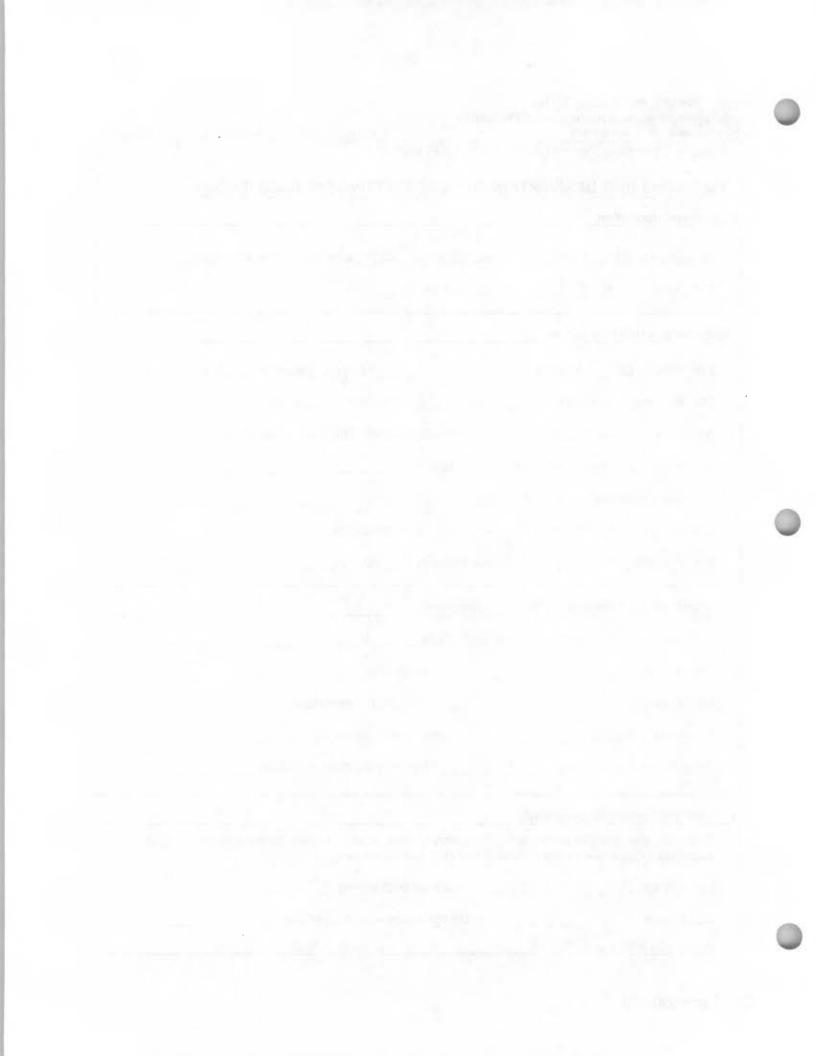
Stack height (ft)	Inside stack diameter (ft)
Stack temp(°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

Fe	ederal Operating Permit Program (40 CFR Part 71)
E	MISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)
G	ieneral Information
E	Emissions unit IDLCT-1 Description400-bbl condensate storage tank
0	SIC Code (4-digit) SCC Code
	Emissions Unit Description
E	Equipment typeStorage Tank Temporary source:Yes _X_No
ľ	ManufacturerNATCO Model No80690
0,	Serial No8801801-3 Installation date_ Unknown; after 9/15/05
1	Articles being coated or degreasedNA
/	Application methodNA
(Overspray (surface coating) (%) NA Drying method NA
r	No. of dryers NA Tank capacity400-bbl
1	Associated Air Pollution Control Equipment
E	Emissions unit ID NA Device Type NA
1	Manufacturer Model No
	Serial No Installation date/_/
(Control efficiency (%) Capture efficiency (%)
/	Air pollutant(s) controlled Efficiency estimation method
1	Ambient Impact Assessment
	This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).
	Stack height (ft) Inside stack diameter (ft)
	Stack temp (F) Design stack flow rate (ACFM)



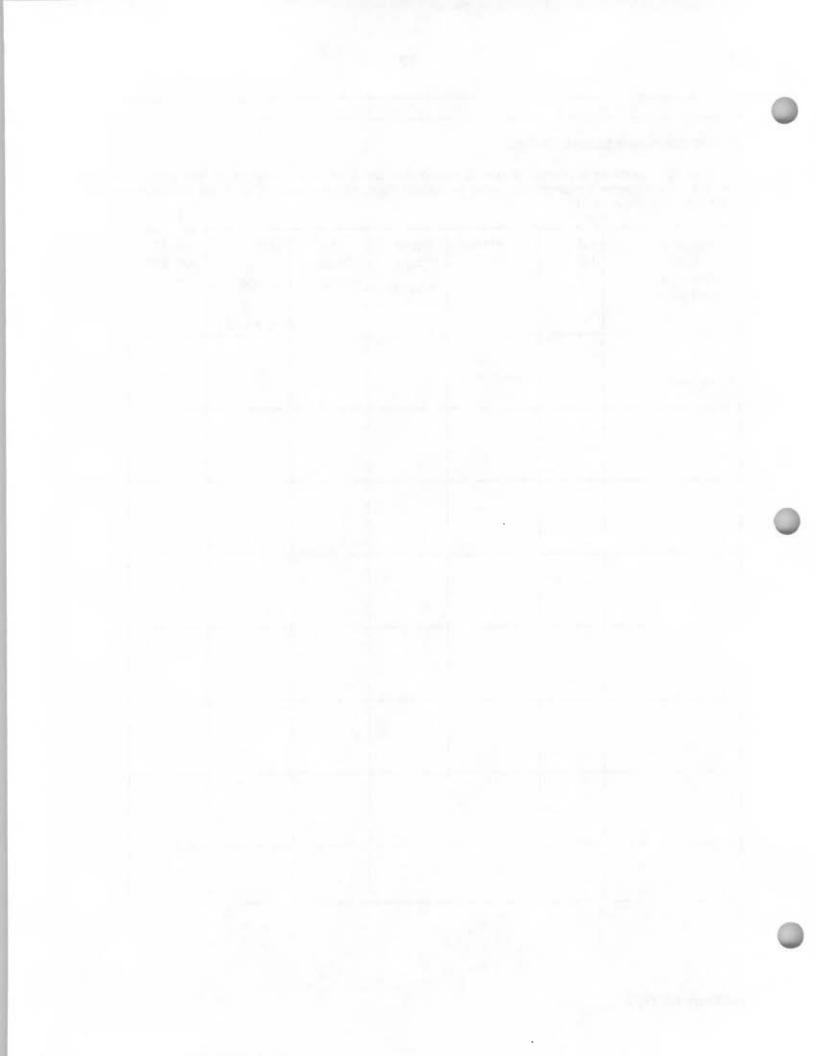
Actual stack flow rate (ACFM)	Velocity (ft/sec)

E. VOC-containing Substance Data


List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate		273	99,645	

魚

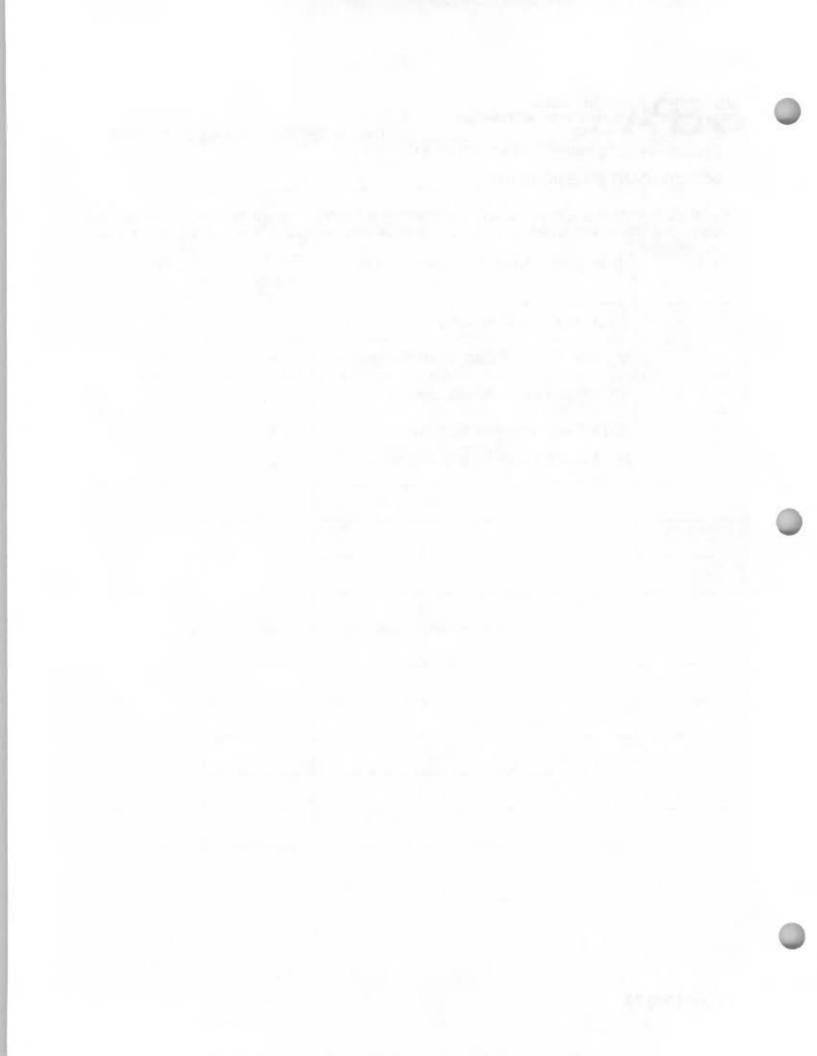

Agency	Al Protection OMB No. 2060-0336, Approval Expires 09/30/2
Federal Operating Permit Pr	ogram (40 CFR Part 71)
EMISSIONS UNIT DESCRI	PTION FOR VOC EMITTING SOURCES (EUD-2)
A. General Information	
Emissions unit IDLCT-2	Description400-bbl condensate storage tank
SIC Code (4-digit)	SCC Code
B. Emissions Unit Description	
Equipment typeStorage	e Tank Temporary source:Yes _XNo
ManufacturerNATCO	Model No#80689
Serial No8J01801-4	Installation date Unknown; after 9/15/05
Articles being coated or degr	easedNA
Application method	NA
	(%) NA Drying method NA
No. of dryersNA	Tank capacity400-bbl
C. Associated Air Pollution Co	ontrol Equipment
Emissions unit IDNA	Device TypeNA
Manufacturer	Model No
Serial No	Installation date/
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method
D. Ambient Impact Assessme	nt
	eted by temporary sources or when ambient impact assessment is an emissions unit (this is not common).
Stack height (ft)	Inside stack diameter (ft)
Stack temp (F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM	I) Velocity (ft/sec)

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Condensate		Condensate		273	99,645	
					-	

PA United States Environmental Protection Agency


OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

INSIGNIFICANT EMISSIONS (IE)

List each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

Number	Description of Activities or Emissions Units	RAP, except HAP	HAP
1	Truck loading (Condensate)	x	x
1	550 MBtu/hr Glycol Dehydrator Reboiler	x	x
1	500 MBtu/hr heater for slop tank #1	x	x
1	250 MBtu/hr heater for separator	X	x
1	500 MBtu/hr heater for slop tank #2	x	X

SEPA United States Environmental Protection Agency


OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

POTENTIAL TO EMIT (PTE)

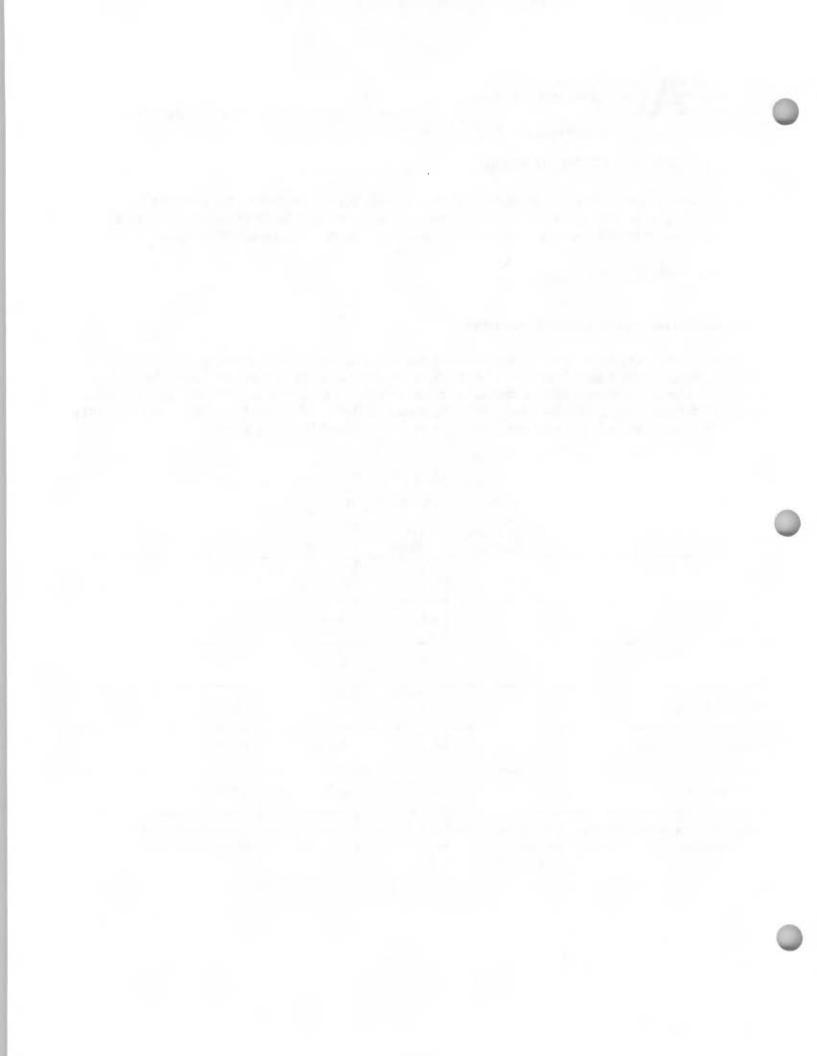
For each unit with emissions that count towards applicability, list the emissions unit ID and the PTE for the air pollutants listed below and sum them up to show totals for the facility. You may find it helpful to complete form **EMISS** before completing this form. Show other pollutants not listed that are present in major amounts at the facility on attachment in a similar fashion. You may round values to the nearest tenth of a ton. Also report facility totals in section J of form **GIS**.

Emissions Unit ID	Regulate	ed Air Poll	utants and	d Pollutant: (tons/yr)		n the Sour	ce is Major
	NOx	VOC	SO2	PM10	со	Lead	HAP
LCC-1	18.23	5.23	0.0	0.0	28.4	0.0	3.3
LCC-2	18.23	5.23	0.0	0.0	28.4	0.0	3.3
LCC-3	18.23	5.23	0.0	0.0	28.4	0.0	3.3
LCD-1	0.0	109.1	0.0	0.0	0.0	0.0	28.6
LCF-1	0.0	4.0	0.0	0.0	0.0	0.0	0.2
LCG-1	0.1	0.03	0.0	0.1	0.2	0.0	0.0
LCT-1	0.0	9.4	0.0	0.0	0.0	0.0	0.9
LCT-2	0.0	9.4	0.0	0.0	0.0	0.0	0.9
FACILITY TOTALS	55.6	148.3	0.1	0.1	86.2	0.0	40.5

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)


EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID __LCC-1____

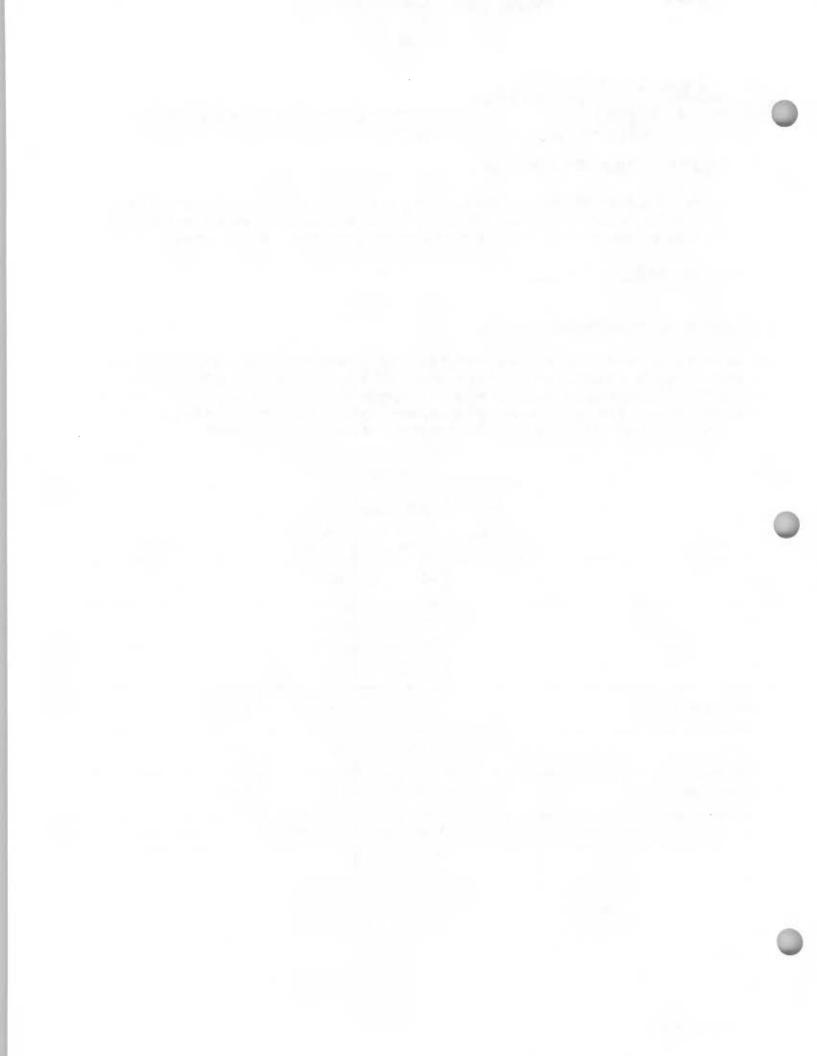
B. Identification and Quantification of Emissions

Air Pollutants		Emission Rates			
	Actual	Potential to	Emit		
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
NOx		4.2	18.2		
со		6.5	28.4		
VOC		1.2	5.2		
Acetaldehyde		0.1	0.4	75070	
Acrolein		0.1	0.2	107028	
Formaldehyde	1	0.6	2.7	50000	

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)


EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID __LCC-2____

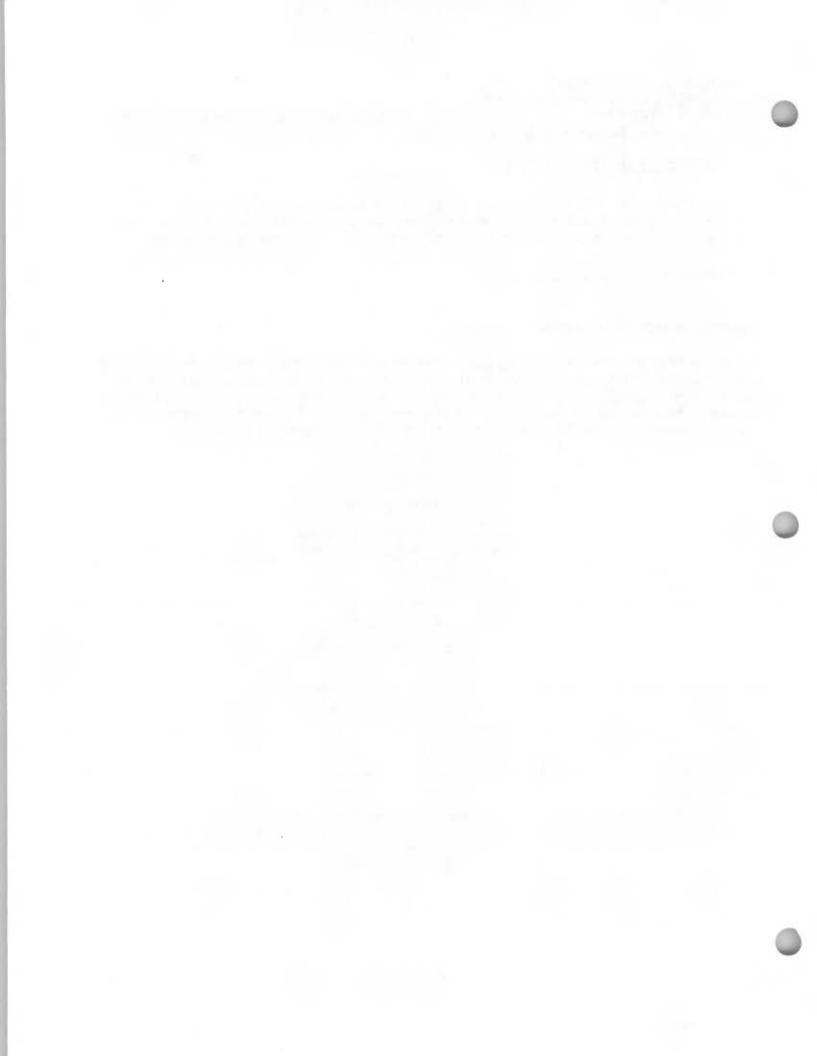
B. Identification and Quantification of Emissions

		Emission Rates			
Air Pollutants	Actual	Potential to	Emit		
	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
NOx		4.2	18.2		
со		6.5	28.4		
VOC		1.2	5.2		
Acetaldehyde		0.1	0.4	75070	
Acrolein		0.1	0.2	107028	
Formaldehyde		0.6	2.7	50000	

SEPA United States Environmental Protection Agency OMB No. 206

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)


EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID __LCC-3____

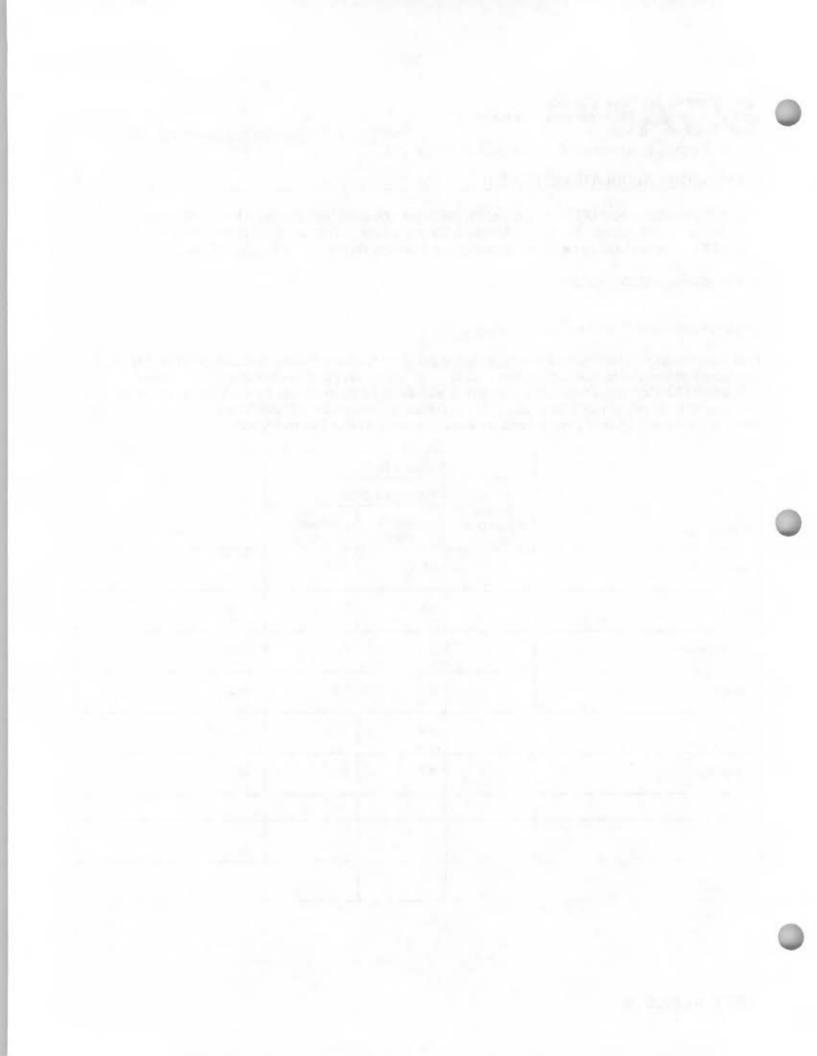
B. Identification and Quantification of Emissions

		Emission Rates	S	
	Actual	Potential to E	mit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx		4.2	18.2	
со		6.5	28.4	
VOC		1.2	5.2	
Acetaldehyde		0.1	0.4	75070
Acrolein		0.1	0.2	107028
Formaldehyde		0.6	2.7	50000

United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)


EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID __LCD-1____

B. Identification and Quantification of Emissions

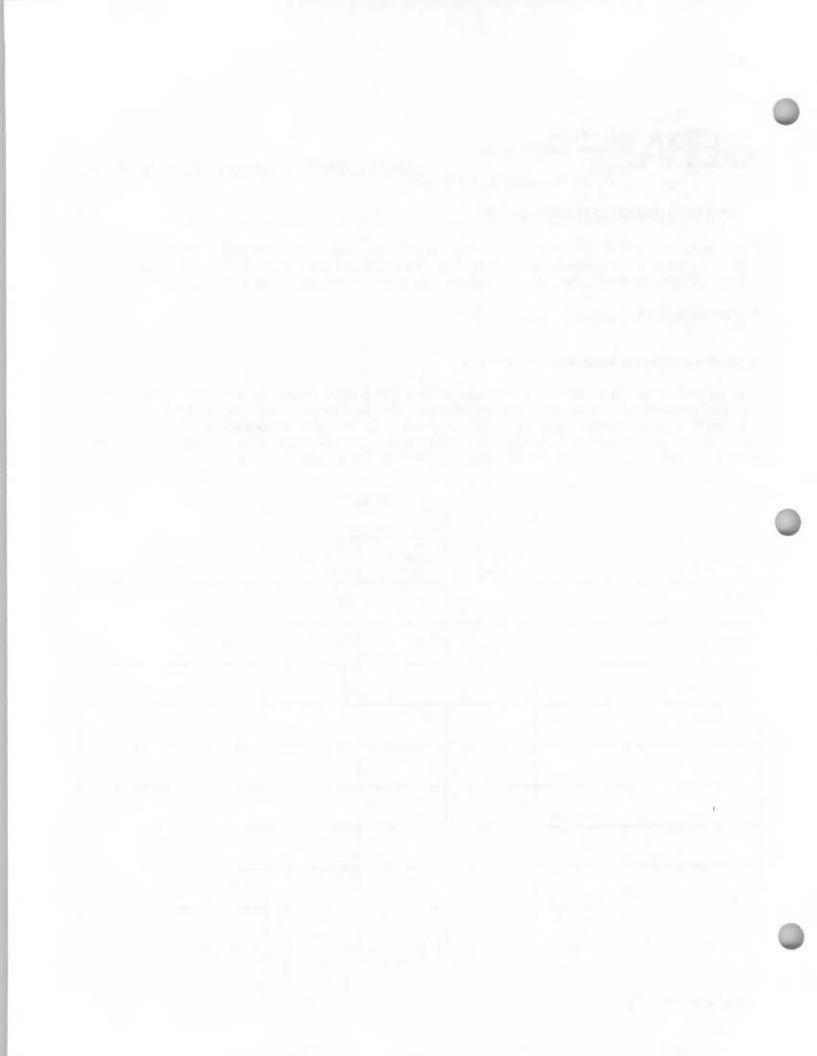
	Emission Rates				
Actual	Potential to	Emit			
Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.		
	24.9	109.1			
	2.6	11.3	71432		
	0.2	0.9	100414		
	0.1	0.6	108883		
	2.9	12.7	1330207		
	0.7	2.9	110543		
	[-{			
	Annual Emissions	Actual Annual Emissions (tons/yr)Potential to Hourly (lb/hr)24.924.92.60.20.12.9	Actual Annual Emissions (tons/yr)Potential to EmitHourly (lb/hr)Annual (tons/yr)24.9109.12.611.30.20.90.10.62.912.7		

Environmental Protection

Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)


EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

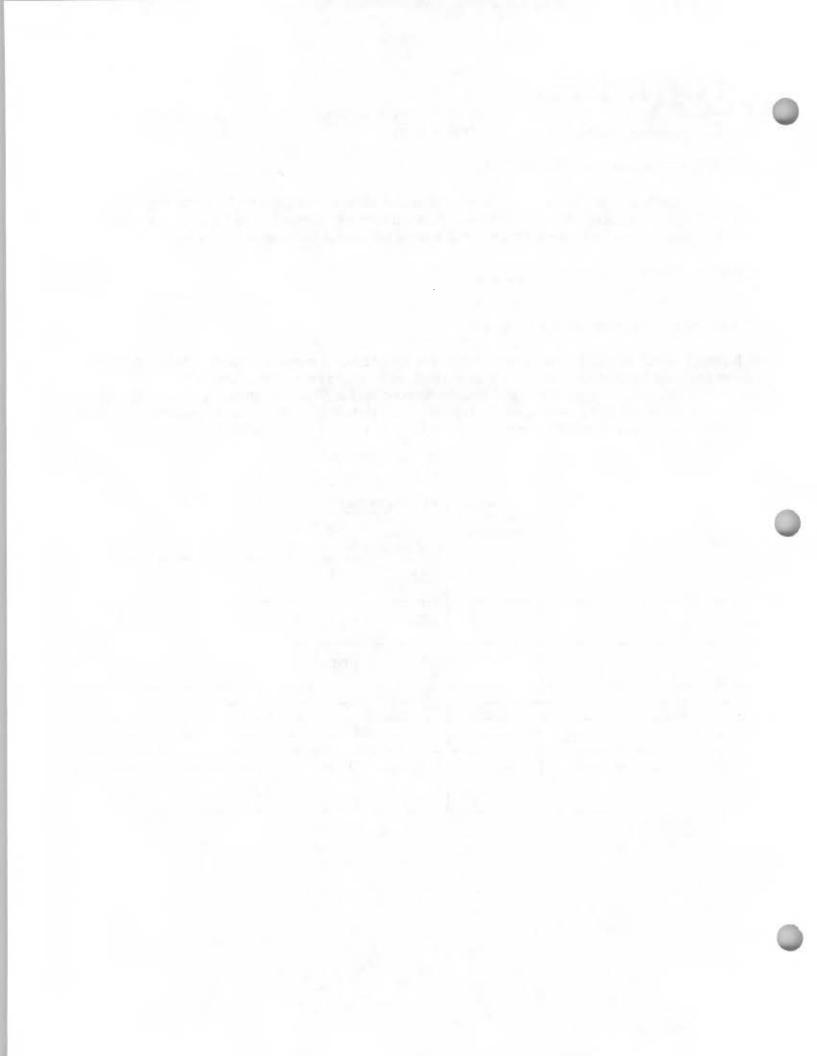
A. Emissions Unit ID ___LCF-1____

B. Identification and Quantification of Emissions

Air Pollutants	Emission Rates			
	Actual Annual Emissions (tons/yr)	Potential to Emit		
		Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC		0.9	4.0	
n-Hexane		0.0	0.1	110543

CEPA United States Environmental Protection Agency OMB No. 2060-0336, Approval Expires 09/30/2010 Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)


Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID __LCG-1____

B. Identification and Quantification of Emissions

First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

		Emission Rate		
	Actual	Potential to E	mit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NOx		0.02	0.1	
со		0.05	0.2	
VOC		0.01	0.03	

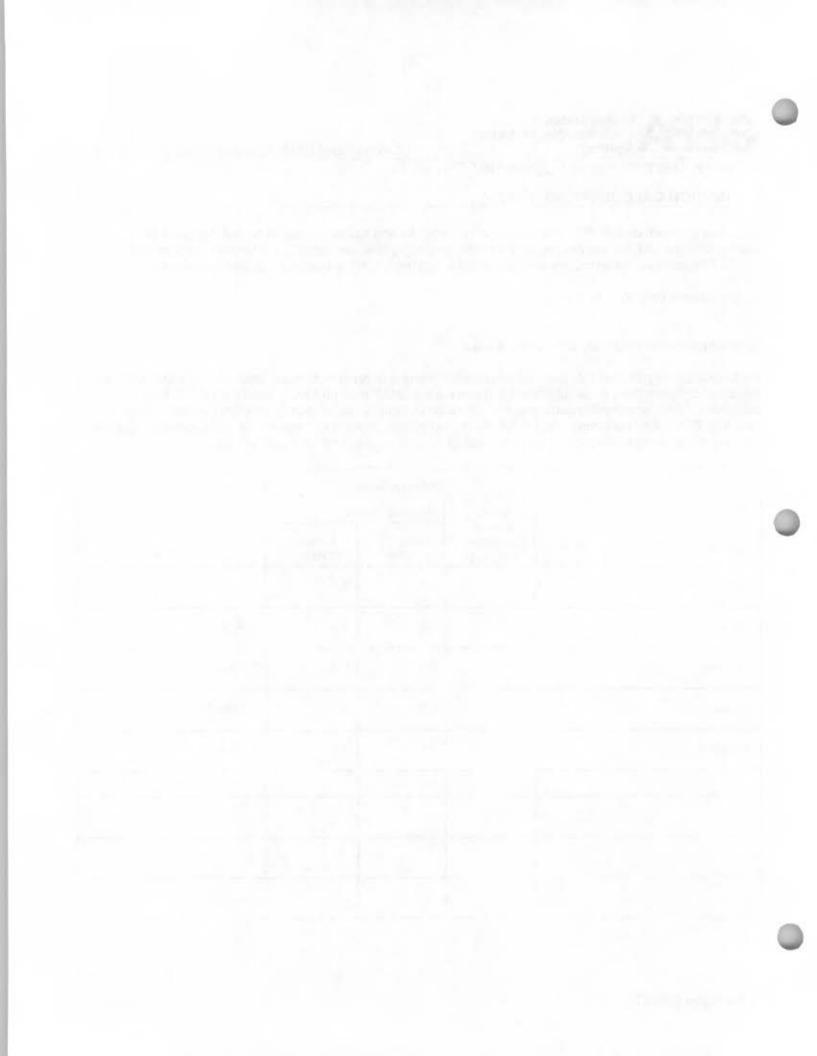
SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.


31

A. Emissions Unit ID __LCT-1___

B. Identification and Quantification of Emissions

First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

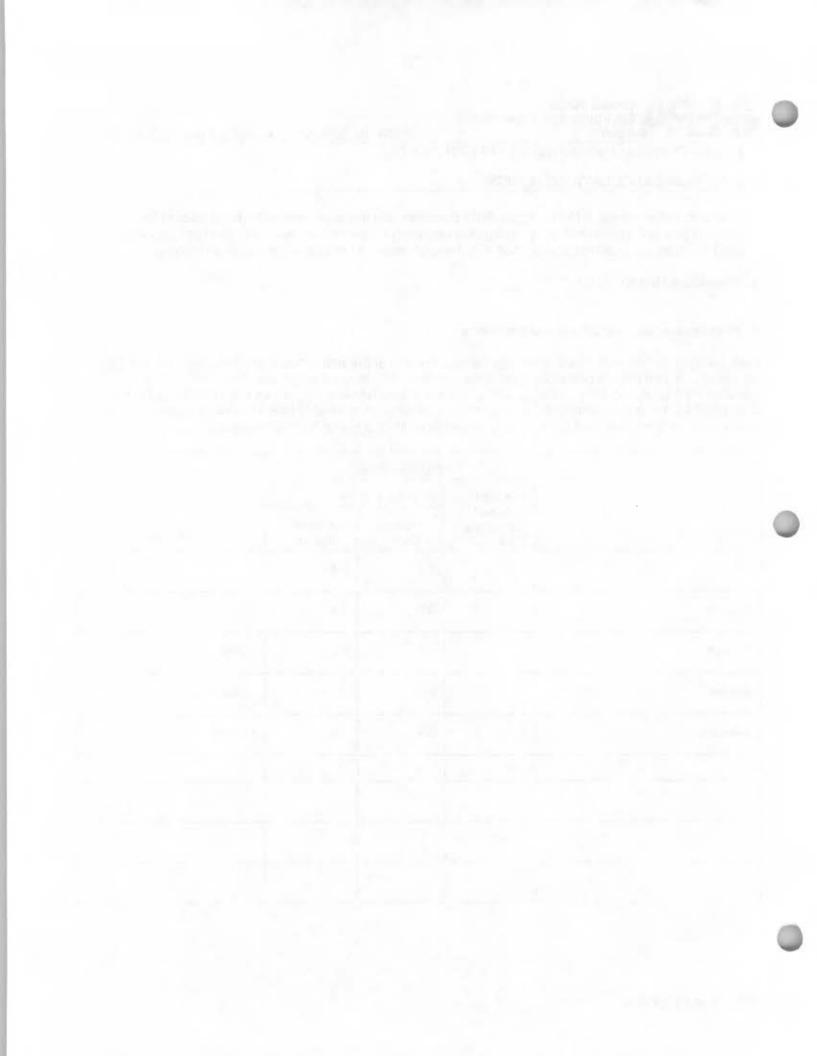
		Emission Rate		
	Actual	Potential to E	mit	_
Air Pollutants	Annual Emissions (tons/yr)	Hourly Annual (lb/hr) (tons/yr)		CAS No.
VOC		2.1	9.4	
Benzene		0.0	0.1	71432
Toluene		0.1	0.2	108883
Xylene		0.0	0.1	1330207
n-Hexane		0.1	0.4	110543

United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

EMISSION CALCULATIONS (EMISS)


Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

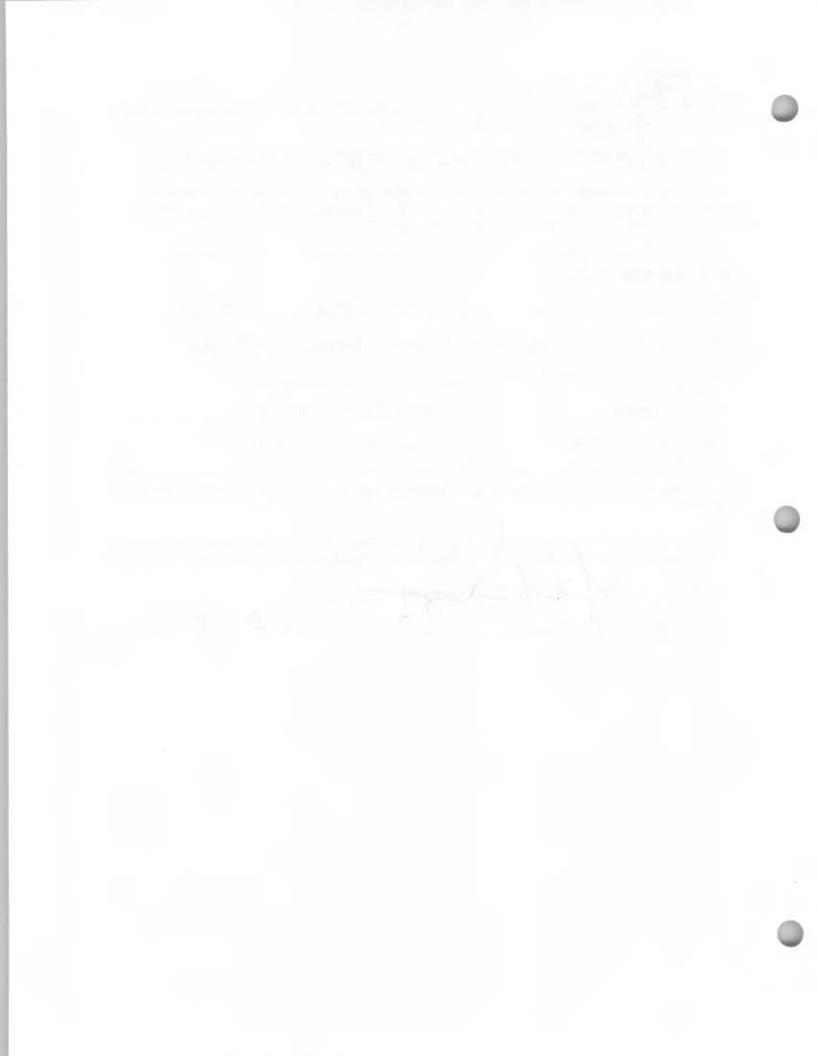
A. Emissions Unit ID __LCT-2____

B. Identification and Quantification of Emissions

First, list each air pollutant that is either regulated at the unit or present in major amounts, then list any other regulated pollutant (for fee calculation) not already listed. HAP may be simply listed as "HAP." Next, calculate PTE for applicability purposes and actual emissions for fee purposes for each pollutant. Do not calculate PTE for air pollutants listed solely for fee purposes. Include all fugitives for fee purposes. You may round to the nearest tenth of a ton for yearly values or tenth of a pound for hourly values.

		Emission Rates				
	Actual	Potential to	Emit			
Air Pollutants	Annual Emissions (<i>tons/yr</i>)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.		
VOC		2.1	9.4			
Benzene		0.0	0.1	71432		
Toluene		0.1	0.2	108883		
Xylene		0.0	0.1	1330207		
n-Hexane		0.1	0.4	110543		

United States Environmental Protection


OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

Norman (Last) Demonst	
Name: (Last) Dungey	(First) <u>Nick</u> (MI) <u>J</u>
Title Chairman of the Boar	rd and President – Summit Gas Gathering, LLC
Street or P.O. Box810 Houston	n St.
City Fort Worth	State TX ZIP 76102
Telephone (817) 885-2440 Ext	Facsimile (817) 870 - 8441
the state of the second s	and the second sec
official) I certify under penalty of law, based	on information and belief formed after reasonable inquiry, the
official) I certify under penalty of law, based	on information and belief formed after reasonable inquiry, the dimension of the second s

EPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

INITIAL COMPLIANCE PLAN AND COMPLIANCE CERTIFICATION (I-COMP)

SECTION A - COMPLIANCE STATUS AND COMPLIANCE PLAN

Complete this section for each unique combination of applicable requirements and emissions units at the facility. List all compliance methods (monitoring, recordkeeping and reporting) you used to determine compliance with the applicable requirement described above. Indicate your compliance status at this time for this requirement and compliance methods and check "YES" or "NO" to the follow-up question.

Emission Unit ID(s): LCC-1, LCC-2, LCC-3

Applicable Requirement (Describe and Cite)

MACT Subpart ZZZZ - RICE

Compliance Methods for the Above (Description and Citation):

Three (3) Caterpillar 3516LE engines will be subject to the RICE MACT (40 CFR 63 Subpart ZZZZ) standard requiring a reduction of formaldehyde emissions of \leq 14.0 ppmvd @ 15% O2 and a catalyst inlet temperature between 450 degrees Fahrenheit and 1350 degrees Fahrenheit. The compliance deadline for new 4-stroke lean burn engines is upon startup.

Compliance Status:

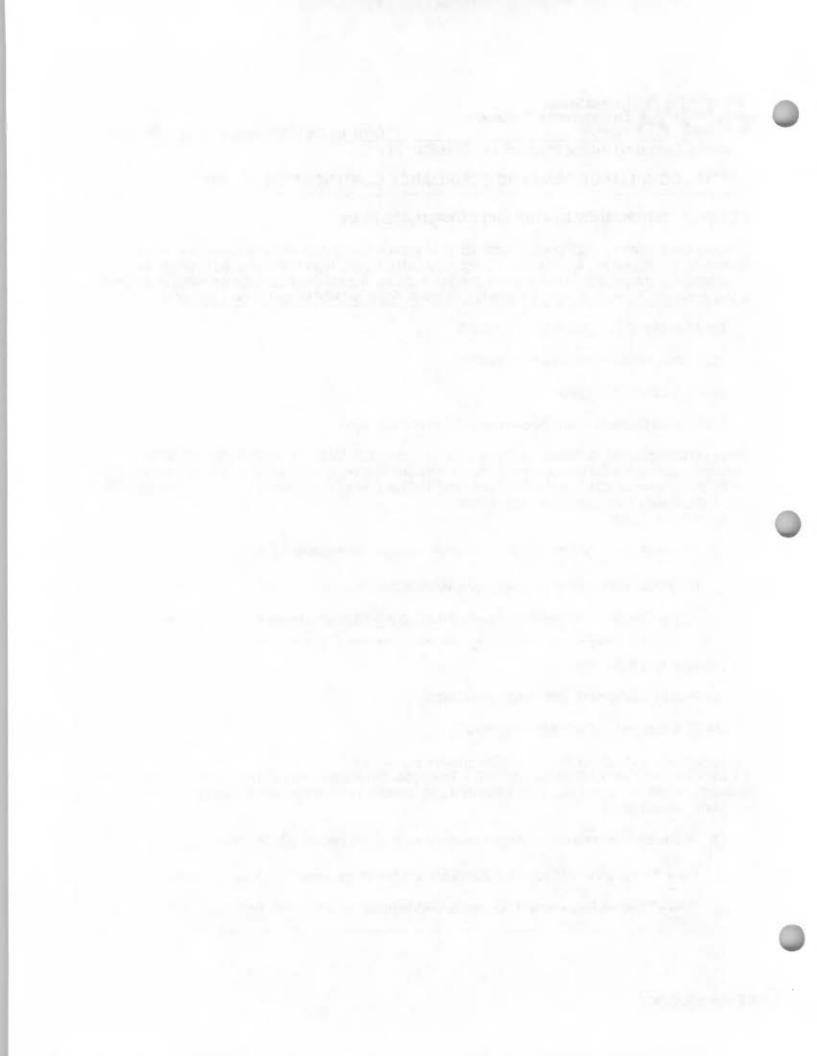
X In Compliance: Will you continue to comply up to permit issuance? _X_Yes ____No

____Not In Compliance: Will you be in compliance at permit issuance? ____Yes ____No

Future-Effective Requireme	nt: Do you expect to meet this or	n a timely basis?	Yes	No
----------------------------	-----------------------------------	-------------------	-----	----

Emission Unit ID(s): D-1

Applicable Requirement (Description and Citation):


MACT Subpart HH - Dehydration controls

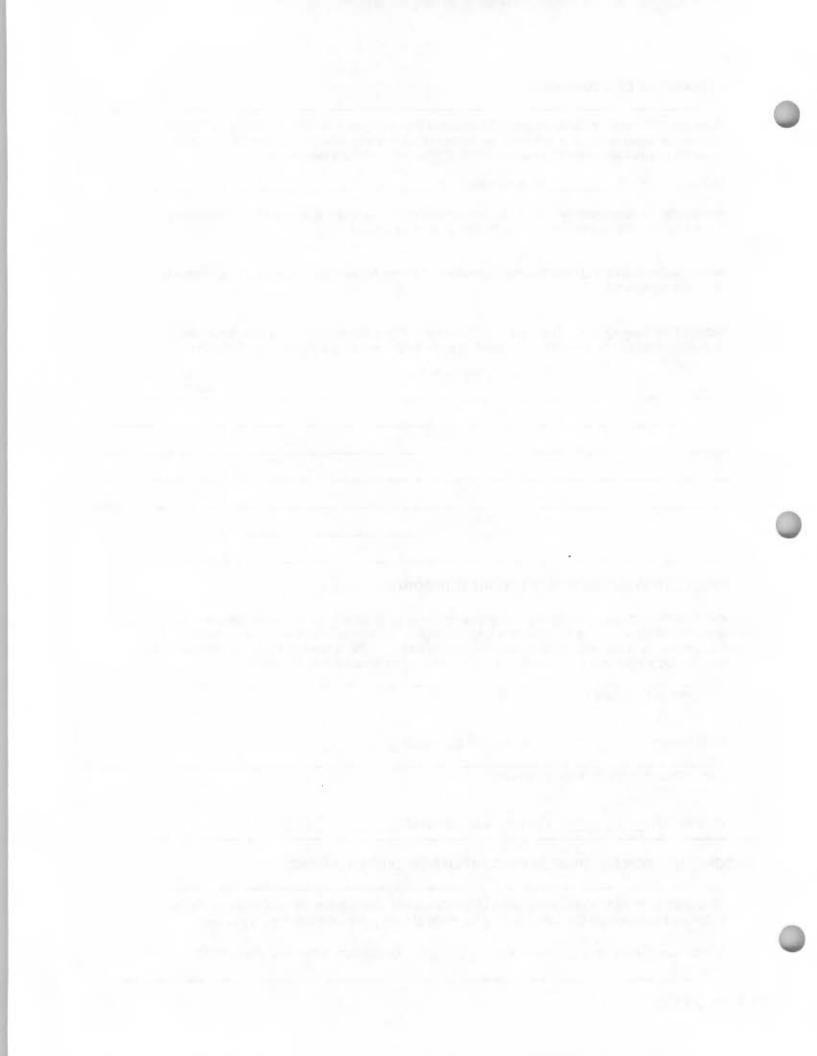
Compliance Methods for the Above (Description and Citation): Oil and Gas MACT (40 CFR 63 Subpart HH) – The glycol dehydration unit has uncontrolled PTE for HAPs above the 10/25 TPY threshold. HAP emissions from emission unit D-1 will be reduced by ≥ 95%. Compliance Status:

_X_In Compliance: Will you continue to comply up to permit issuance? _X_Yes ____No

____ Not In Compliance: Will you be in compliance at permit issuance? ____Yes ____No

____ Future-Effective Requirement: Do you expect to meet this on a timely basis? _____ Yes _____No

section if required	tion if you answered "NO" to any of the questions in sect to submit a schedule of compliance by an applicable rec cial consent decrees or administrative orders for this requ	uirement. Please attach
Jnit(s)	Requirement	·
	compliance. Briefly explain reason for noncompliance a requirement will not be met on a timely basis:	t time of permit issuance or
Narrative Descrip achieving complia	ption of how Source Compliance Will be Achieved.	Briefly explain your plan for
	npliance. Provide a schedule of remedial measures, including a data with milestones, leading to compliance, including a data	
		Data to be
	Remedial Measure or Action	Date to be Achieved
	Remedial Measure or Action	

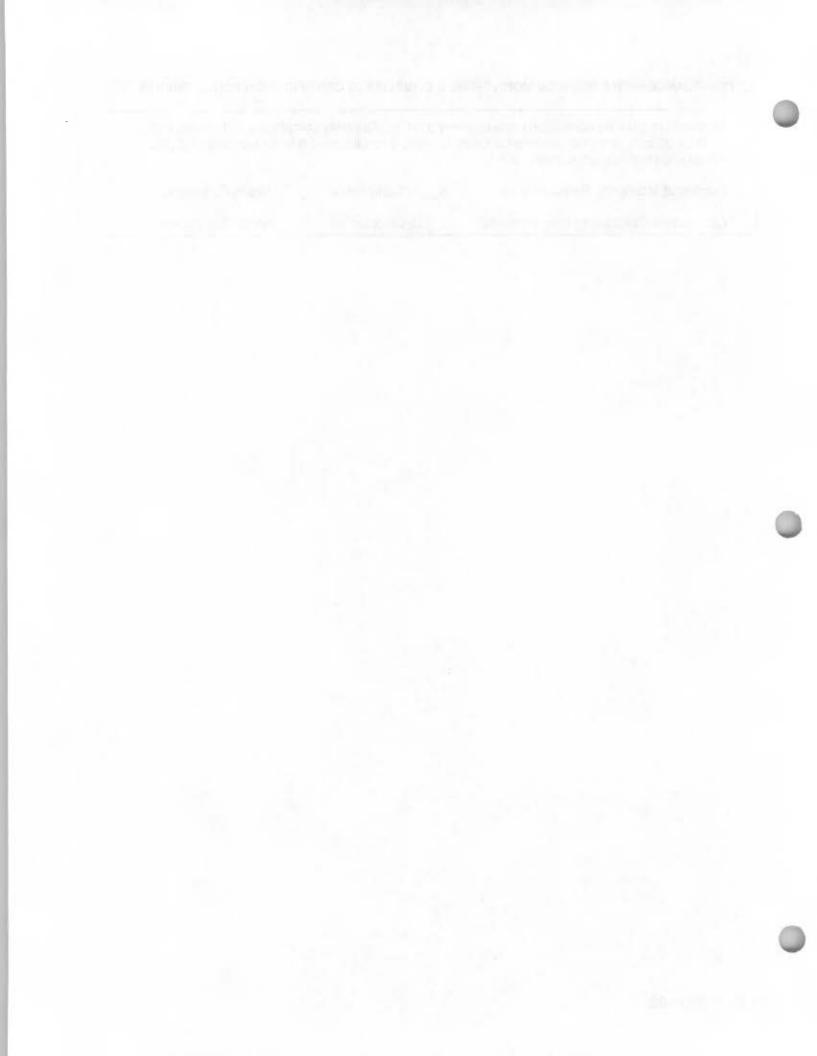

C. SCHEDULE FOR SUBMISSION OF PROGRESS REPORTS

Only complete this section if you are required to submit one or more schedules of compliance in section B or if an applicable requirement requires submittal of a progress report. If a schedule of compliance is required, your progress report should start within 6 months of application submittal and subsequently, no less than every six months. One progress report may include information on multiple schedules of compliance.

Contents of Progress	heport (describe).	
First Report/	/ Frequency of Submittal	
Contents of Progress	Report (describe):	
	/ Frequency of Submittal	

D. SCHEDULE FOR SUBMISSION OF COMPLIANCE CERTIFICATIONS

This section must be completed once by every source. Indicate when you would prefer to submit compliance certifications during the term of your permit (at least once per year). Frequency of submittal____Annually_____Beginning_6 months after permit issuance_



I-COMP

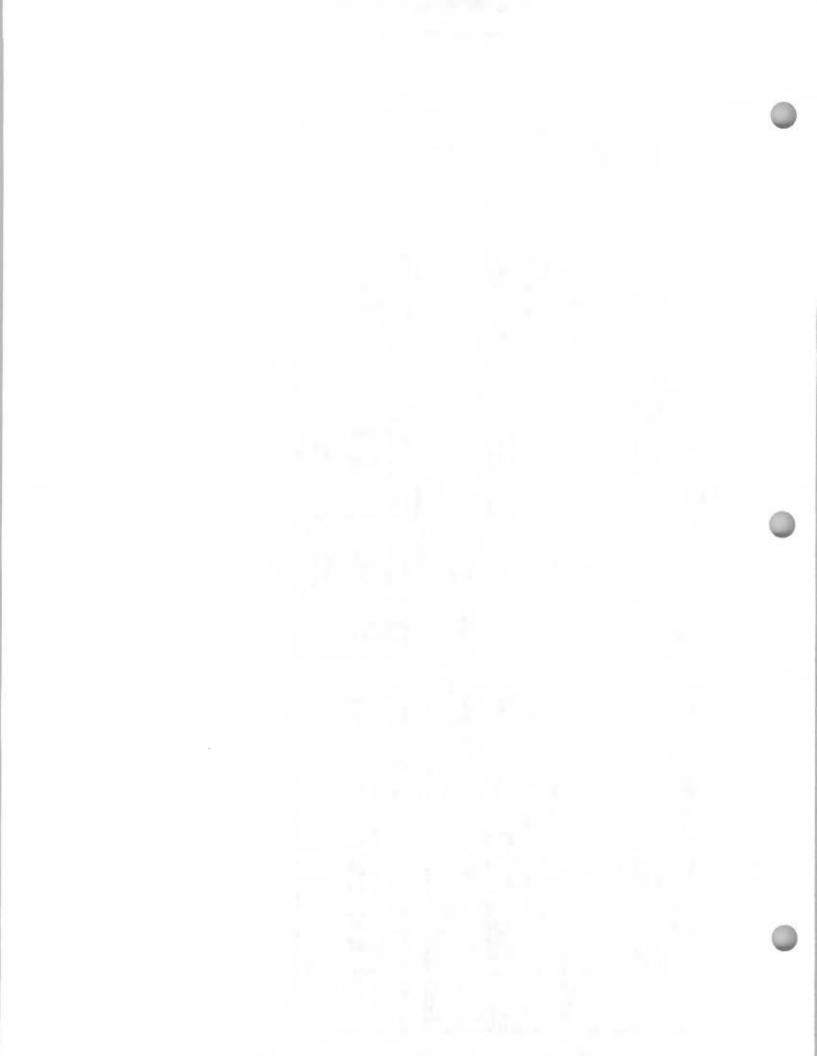
E. COMPLIANCE WITH ENHANCED MONITORING & COMPLIANCE CERTIFICATION REQUIREMENTS

This section must be completed once by every source. To certify compliance with these, you must be able to certify compliance for every applicable requirement related to monitoring and compliance certification at every unit.

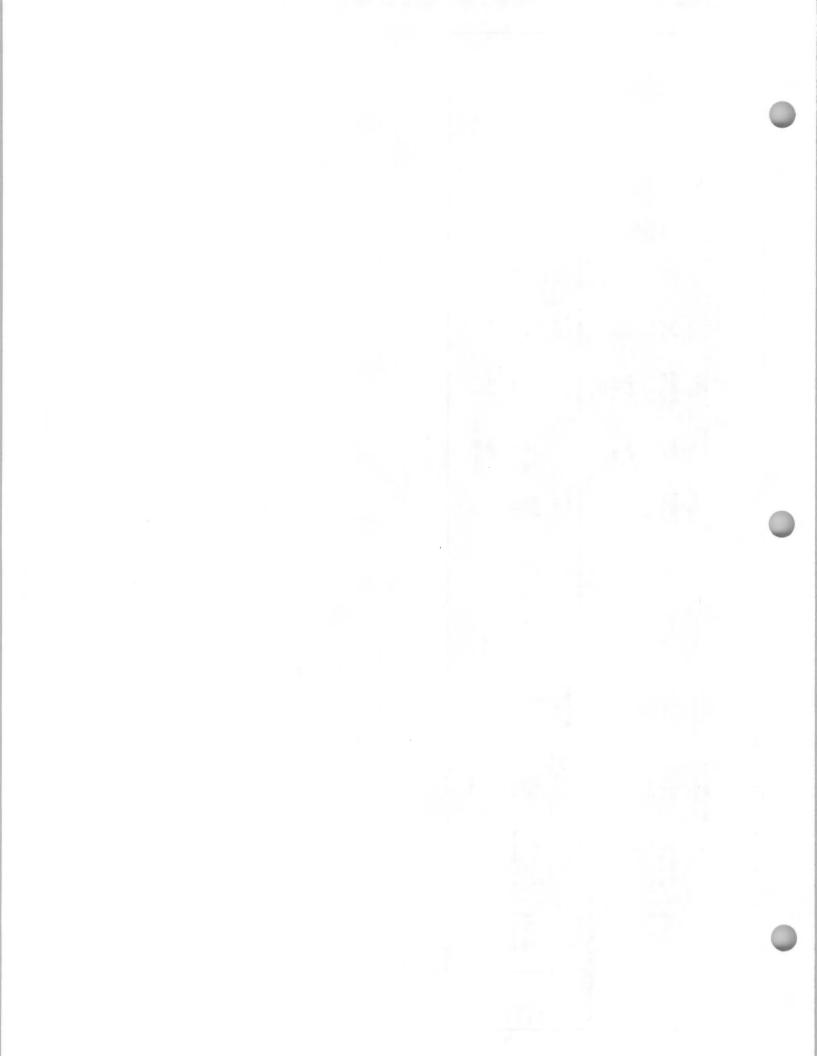
Enhanced Monitoring Requirements:	_X_ In Compliance	Not In Compliance	
Compliance Certification Requirements:	_x_ In Compliance	Not In Compliance	

_						EMIS	SIONS TO	OTALS					
	EQ ID #	N	Ox	c	0	v	oc	PM/F	PM10	so	02	Total	HAPs
		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
	LCC-1	4.16	18.23	6.49	28.44	1.19	5.23	0.001	0.003	0.01	0.025	0.75	3.30
	LCC-2 LCC-3	4.16 4.16	18.23 18.23	6.49 6.49	28.44 28.44	1.19 1.19	5.23 5.23	0.001	0.003	0.01	0.025	0.75 0.75	3.30 3.30
	LCU Dehy	0.055	0.241	0.046	0.202	0.003	0.013	0.004	0.018	0.000	0.001	0.001	0.005
	LCD-1					24.912	109.121					6.536	28.627
	LCF-1	-				0.902	3.952					0.037	0.161
		0.100	0.438	0.084	0.368	0.006	0.024	0.008	0.033	0.001	0.003	0.002	0.008
		0.025	0.110	0.021	0.092	0.001	0.006	0.002	0.008	0.000	0.001	0.0005	0.002
	80689; 80690					4.296	18.826	1				0.398	1.746
						0.153	0.669						
bine	LCG-1	0.02	0.1	0.05	0.2	0.01	0.03						
		12.688	55.574	19.685	86.220	33.860	148.322	0.016	0.070	0.018	0.080	9.234	40.448

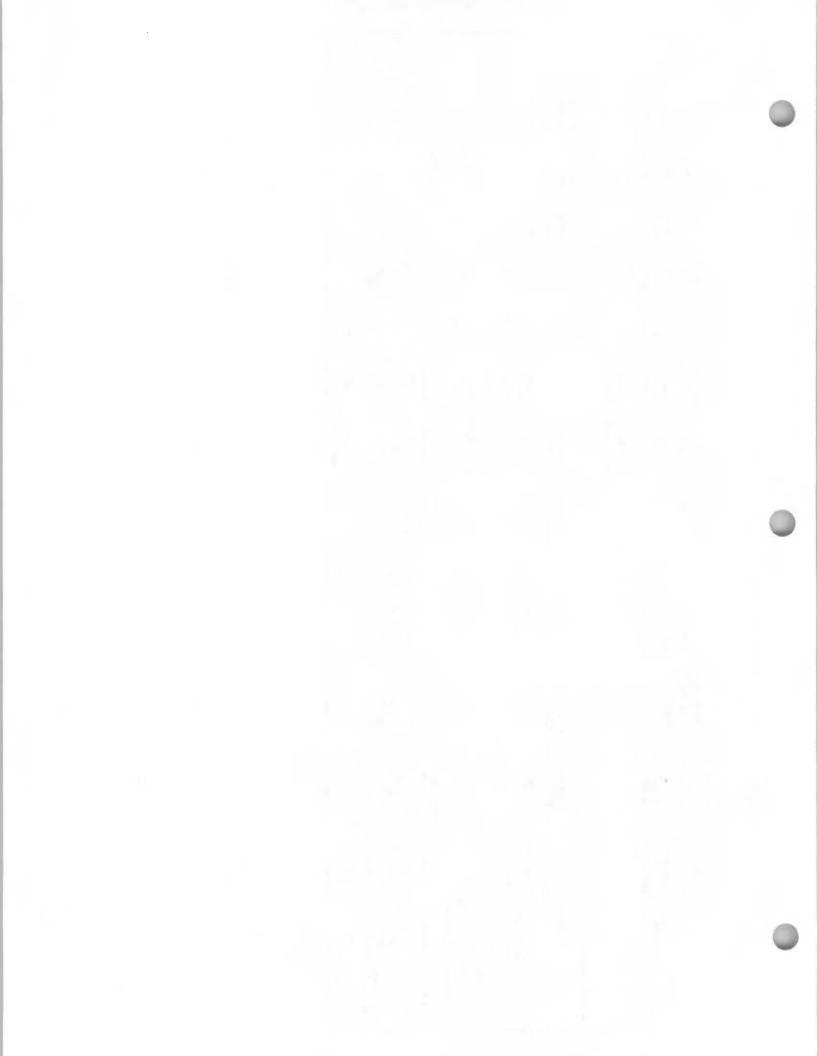
XTO Uinta - Litt
Equipment Na
Compressor Eng Compressor Eng Compressor Eng
TEG Dehy #1 Reboi
TEG Dehydrator #1 R
Equipment Le Tank Heate
Fuel Cleanup H
Slop Tanks
Condensate Truck
Generator #1 - Capstone C3
Totals


.

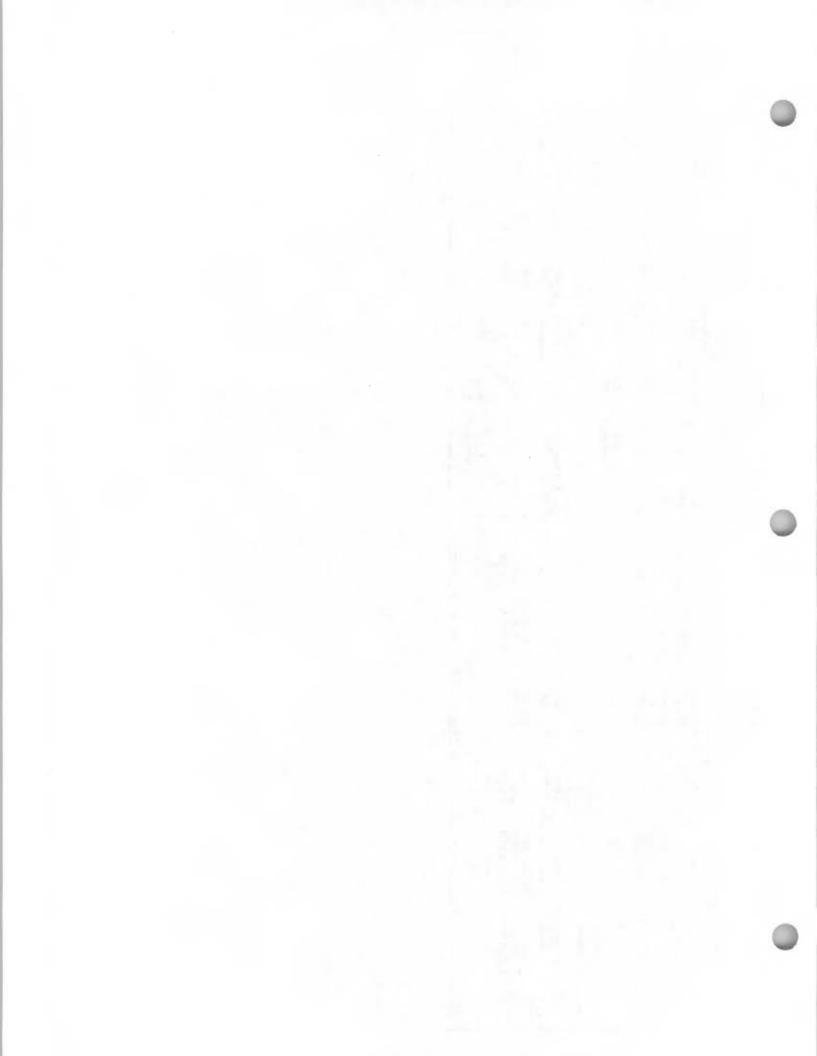
.


n - Uncontrolled		Emissions Su	Immary			1						
·) 		l i	EMISS	SIONS TOT	ALS			1
escription	EQUIP ID	Run hours / yr	CH20 tpy	Benzene tpy	Toluene tpy	Ethylbenzene tpy	Xylene tpy	Hexane tpy	2,2,4 TMP tpy	Acetaldehyde	Acrolein tpy	TOTAL HAPs tpy
516	LCC-1	8760	2.67	0.02	0.018	0.002	0.008		+1	0.36	0.22	3.30
516	LCC-2	8760	2.67	0.02	0.018	0.002	0.008			0.36	0.22	3.30
516	LCC-3	8760	2.67	0.02	0.018	0.002	0.008			0.36	0.22	3.30
stion - 1.5 mmbtu/hr	LCU Dehy	8760						0.004	· · · · · · · · · · · · · · · · · · ·			0.005
n and Flash Tank - 25 max	LCD-1	8760	1	11.252	0.632	0.909	12.731	2.941	0.162			28.63
ning Unit Heater		8760					-	0.002				0.002
ugitives	LCF-1	8760		0.018	0.015		0.006	0.122				0.16
2 X .5 MMBTU each		8760						0.008				0.01
storage tanks MicroTurbine	80689; 80690 LCG-1	8760 8760		0.194	0.454	0.010	0.102	0.852	0.134			1.75
		0.00										1
			8.023	11.521	1.154	0.924	12.862	3.929	0.296	1.077	0.662	40.441

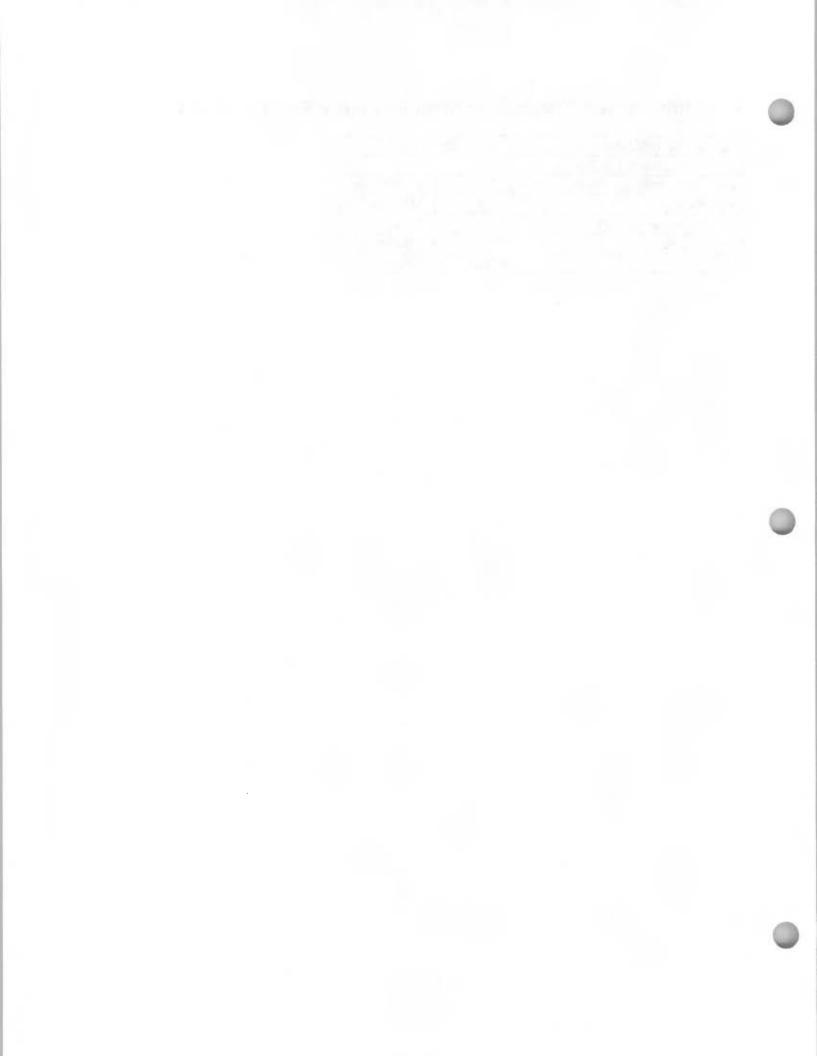
(TO Little Canyon Unit Co	mpress
Equipment Name	
Compressor Engine #1	
Compressor Engine #2	
Compressor Engine #3	
TEG Dehy #1 Reboiler Heater	TEG Re
TEG Dehydrator #1 Regenerator	TEG Rebo
Fuel Cleanup Heater	Fie
Equipment Leaks	
Tank Heaters	Storage
Slop Tanks	2
Generator #1	Ca
Total	l Emissio


XTO Litt	le Canyon Co	mpressor Sta	tion - Uncont	olled PTE Eng	gine Emiss	ions							
IOx Calc	ulations												
ID#	Emission Points	Engine	Manufacturer's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method					
10#	Chilssion Points	Cilĝine	g/bhp-hr	(hp)	(lb/hr)	ιργ	(tpy)	Metriod					
LCC-1	Comp Eng 1	Caterpillar 3516	1.50	1260	4.163	4.38	18.234	Manufacturer	s Data			 	
LCC-2	Comp Eng 2	Caterpillar 3516	1.50	1260	4.163	4.38	18.234	Manufacturer's				 	
LCC-3	Comp Eng 3	Caterpillar 3516	1.50	1260	4.163	4.38	18.234	Manufacturer's					
				Total	12.489	lb/hr							
					54.702	tpy						 	
CO Calcul	lations												
ID#	Emission Points	Engine	Manufacturer's Data	Horsepower	Emissions	Conversion to	Uncontrolled Emissions	Method	Catalyst Efficiency	Controlled	Controlled		
10 #	LinsionPoints	Engine	g/bhp-hr	(hp)	(lb/hr)	tpy	(tpy)	Metriog	%	(tpy)	(lb/hr)		
LCC-1	Comp Eng 1	Caterpillar 3516	2.34	1260	6.494	4.38	28.445	Mfg's Data	0	28.44	6.49	 	
LCC-2	Comp Eng 2	Caterpillar 3516	2.34	1260	6,494	4.38	28.445	Mfg's Data	0	28.44	6.49	 	
LCC-3	Comp Eng 3	Caterpillar 3516	2.34	1260	6.494	4.38	28.445	Mfg's Data	0	28.44	6.49		
			•	Total	19.483	lb/hr						 	
				Controlled	85.33	tpy							
OC Calc	ulations	NMNEHC										 	
ID#	Emission Points	Engine	Mfg's Data	Horsepower	Emissions	Conversion to	Uncontrolled Emissions	Method	Catalyst	Controlled Emissions	Controlled Emissions		
10#	Emission Points	Eugine	g/bhp-hr	(hp)	(lb/hr)	tpy	(tpy)	Method	Efficiency %	(tpy)	(lb/hr)		
100.1	Come Fred	Ostarrillas OF40	0.10	4000	4.40	100	6 007		-	5.00	1.40	 	
LCC-1 LCC-2	Comp Eng 1	Caterpillar 3516	0.43	1260	1.19	4.38	5.227	Mfg's Data	0	5.23	1.19	 	
LCC-2 LCC-3	Comp Eng 2 Comp Eng 3	Caterpillar 3516 Caterpillar 3516	0.43	1260 1260	1.19	4.38 4.38	5.227 5.227	Mfg's Data Mfg's Data	0	5.23 5.23	1.19	 	
LUUS	Comp Eng 3	Caterpinal 5516	0.43	1200	1.18	4.30	0.221	wigs Data	0	5.23	1.13	 	
						Total	3.58	lb/hr	1117 IL 20.			 	
	Come and Your Plant all. All I want to prove and					Controlled	15.68	tpy					

TO LICE	e canyon co	inpressor Sta	don - oncont	rolled PTE Eng	Ine Linissi	0115							 	
M Calcul	ations	PM = PM10												
ID#	Emission Points	Engine	AP-42 PM Factor	Fuel Consumption			PM Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method		
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		 	
LCC-1	Comp Eng 1	Caterpillar 3516	0.0000771	0.007778	5.99684E-07	100.0%	0.00027	1260	0.00076	4.38	0.003	AP-42	 	
LCC-2	Comp Eng 2	Caterpillar 3516	0.0000771	0.007778	5.99684E-07	100.0%	0.00027	1260	0.00076	4.38	0.003	AP-42	 	
LCC-3	Comp Eng 3	Caterpillar 3516	0.0000771	0.007778	5.99684E-07	100.0%	0.00027	1260	0.00076	4.38	0.003	AP-42	 	
								Total	0.002	lb/hr			 	-
								Controlled	0.010	tpy				
ormaldel	nyde Calculatio	ns		and the second										
1D #	Emission Points	Engine	Mfg's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions			
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(łb/hr)		 	
LCC-1	Comp Eng 1	Caterpillar 3516	0.22	1260	0.611	4.38	2.674	Mfg's Data	0	2.67	0.61			
LCC-2	Comp Eng 2	Caterpillar 3516	0.22	1260	0.611	4.38	2.674	Mfg's Data	0	2.67	0.61			
LCC-3	Comp Eng 3	Caterpillar 3516	0.22	1260	0.611	4.38	2.674	Mfg's Data	0	2.67	0.61		 	
								Total	1.83	lb/hr			 	
								Controlled	8.02	tpy				


17014	la Camuan Ca		tion Unconf					7	_	1					
	le Canyon Co	mpressor Sta	tion - Uncon	trolled PTE Eng	Ine Emissio	ons									
Benzene	Calculations														
ID#	Emission Points	Engine	Benzene AP-42 Factor (Ib/MMBTU)	Fuel Consumption (MMBTU/bhp-hr)	(lb/bhp-hr)	%	Benzene Emissions g/bhp-hr	Horsepower (hp)	Emissions (lb/hr)	Conversion to tpy	Emissions (tpy)	Method	Catalyst Efficiency %	Controlled Emissions (tpy)	Controlled Emission: (lb/hr)
		-													
LCC-1	Comp Eng 1	Caterpillar 3516	0.00044	0.007778	3.42232E-06	100.0%	0.002	1260	0.0043	4.38	0.019	AP-42	0	0.019	0.0043
LCC-2	Comp Eng 2	Caterpillar 3516	0.00044	0.007778	3.42232E-06	100.0%	0.002	1260	0.0043	4.38	0.019	AP-42	0	0.019	0.0043
LCC-3	Comp Eng 3	Caterpillar 3516	0.00044	0.007778	3.42232E-06	100.0%	0.002	1260	0.0043	4.38	0.019	AP-42	0	0.019	0.0043
								Total	0.013	lb/hr					
								Controlled	0.057	tpy					
Toluene C	Calculations														
ID#	Emission Points	Engine	Toluene AP-42 Factor	Fuel Consumption			Toluene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controller
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
_															
LCC-1	Comp Eng 1	Caterpillar 3516	0.000408	0.007778	3.17342E-06	100.0%	0.0014	1260	0.004	4.38	0.018	AP-42	0	0.018	0.0040
LCC-2	Comp Eng 2	Caterpillar 3516	0.000408	0.007778	3.17342E-06	100.0%	0.0014	1260	0.004	4.38	0.018	AP-42	0	0.018	0.0040
LCC-3	Comp Eng 3	Caterpillar 3516	0.000408	0.007778	3.17342E-06	100.0%	0.0014	1260	0.004	4.38	0.018	AP-42	0	0.018	0.0040
								Total	0.012	lb/hr					
								Controlled	0.053	tpy					
Ethylhenz	ene Calculation														
ID#	Emission Points	Engine	Ethylbenzene AP 42 Factor	Fuel Consumption			Ethylbenzene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
100.4	Comp Eng 4	Colomillos 2540	0.0000207	0.007779	2 007075 07	400.00/	0.0004	4000	0.000	4.00	0.000	AD 40	0	0.0017	0.0004
LCC-1	Comp Eng 1 Comp Eng 2	Caterpillar 3516 Caterpillar 3516	0.0000397 0.0000397	0.007778	3.08787E-07 3.08787E-07	100.0%	0.0001	1260 1260	0.000	4.38	0.002	AP-42 AP-42	0	0.0017	0.0004
LCC-2	Comp Eng 2 Comp Eng 3	Caterpillar 3516	0.0000397	0.007778			0.0001	1260	0.000	4.38	0.002	AP-42 AP-42	0	0.0017	0.0004
100-3	Comp Eng 3	Gaterphiar 3316	0.0000397	0.007776	3.08787E-07	100.0%	0.0001	1200	0.000	4.30	0.002	AP-42	0	0.0017	0.0004
								Total	0.001	lb/hr					
								Controlled	0.005	tpy					

XTO Litt	le Canyon Co	mpressor Stat	tion - Uncon	trolled PTE Eng	ine Emissio	ns									
Xviene Ca	Iculations														
ID#	Emission Points	Engine	Xylene AP-42 Factor	Fuel Consumption			Xylene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Emission [®]
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(Ilani)
LCC-1	Comp Eng 1	Caterpillar 3516	0.000184	0.007778	1.43115E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	0	0.008	0.0018
LCC-2	Comp Eng 2	Caterniller 3516	0.000184	0.007778	1.43115E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	0	0.008	0.0018
LCC-3	Comp Eng 3	Caterpillar 3516	0.000184	0.007778	1.43115E-06	100.0%	0.0006	1260	0.002	4.38	0.008	AP-42	0	0.008	0.0018
			_					Total	0.005	lb/hr					
								Controlled	0.024	tpy					
SO2 Calc	ulations														
ID #	Emission Points	Engine	SO2 AP-42 Factor	Fuel Consumption			SO2 Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method			
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(ib/hr)		(tpy)				
LCC-1	Comp Eng 1	Caterpillar 3516	0.000588	0.007778	4.57346E-06	100.0%	0.0021	1260	0.006	4.38	0.025	AP-42			
LCC-2	Comp Eng 2	Caterpillar 3516	0.000588	0.007778	4.57346E-06	100.0%	0.0021	1260	0.006	4.38	0.025	AP-42			
LCC-3	Comp Eng 3	Caterpillar 3516	0.000588	0.007778	4.57346E-06	100.0%	0.0021	1260	0.006	4.38	0.025	AP-42			
								Total	0.017	lb/hr		_			
									0.076	tpy					



							-			1					
TO Littl	e Canyon Co	mpressor Sta	tion - Uncont	rolled PTE Eng	ine Emissio	ons									
						1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1									
cetaldeh	vde Calculation	8													
1D #	Emission Points	Engine	Acetaldehyde AP 42 Factor	Fuel Consumption			Acetaldehyde Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emission 18	Controlle Emission
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(177)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00836	0.007778	6.50241E-05	100.0%	0.0295	1260	0.082	4.38	0.359	AP-42	0	0.359	0.0819
LCC-2	Comp Eng 2	Caterpillar 3516	0.00836	0.007778	6.50241E-05	100.0%	0.0295	1260	0.082	4.38	0.359	AP-42	0	0.359	0.0819
LCC-3	Comp Eng 3	Caterpillar 3516	0.00836	0.007778	6.50241E-05	100.0%	0.0295	1260	0.082	4.38	0.359	AP-42	0	0.359	0.0819
								Total	0.246	lb/hr					
								Controlled	1.077	tpy					
Acrolein C	alculations														
ID #	Emission Points	Engine	Acrolein AP-42 Factor	Fuel Consumption			Acrolein Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlle Emission
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00514	0.007778	3.99789E-05	100.0%	0.0182	1260	0.050	4.38	0.221	AP-42	0	0.221	0.0504
LCC-2	Comp Eng 2	Caterpillar 3516	0.00514	0.007778	3.99789E-05	100.0%	0.0182	1260	0.050	4.38	0.221	AP-42	0	0.221	0.0504
LCC-3	Comp Eng 3	Caterpillar 3516	0.00514	0.007778	3.99789E-05	100.0%	0.0182	1260	0.050	4.38	0.221	AP-42	0	0.221	0.0504
								Total	0.151	lb/hr					
								Controlled	0.662	tpy					

XTO Little Canyon Compressor Station - Engine Fuel Use Calcs

Engine Make/Model	Caterpilla	ar 3516 LE
Site Horsepower Rating	1260	hp
Fuel Consumption (BSFC)	7778	Btu/(hp-hr)
Heat Rating	9.8	MMBtu/hr
Heating Value (LHV)	1004	Btu/Scf
Fuel Usage	85.51	MMScf/yr
Operating Hours	8760	hrs/yr

Generator Micro-Turbine Emissions

EMISSION POINTS: | Capstone Model C30NG MicroTurbine

Engine Make/Model	Capstone Model C30NG MicroTurbine					
Site kWe Rating	30	kWe				
Heating Value	1000	Btu/Scf				
Operating Hours	8760	hrs/yr				

			Emissio	on Rate	Emission Factor
Pollutant	E	mission Factor	(lb/hr)	(tpy)	Reference
NOx	0.64	lb/MWhe	0.02	0.1	[1]
со	1.70	lb/MWhe	0.05	0.2	[1]
VOC/NMHC	0.22	lb/MWhe	0.01	0.03	[1]

[1] Capstone Mfg. Emission Factors

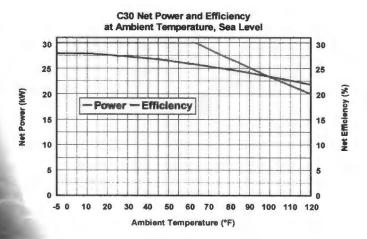
CALCULATION FORMULAS	
lb/hr = (lb/10^6 Watts-hr)*(site Watt rating 10^3 Watts)	
tons/yr= (lb/hr)*(8760 hrs/yr)* (1 ton/2000lb)	

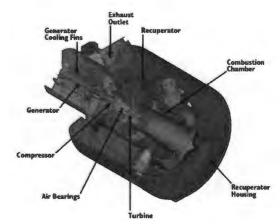
Dimensions & Weight Width x Depth x Height Weight – Grid Connect Model Weight – Dual Mode Model

762 x 1524 x 1956 mm (30 x 60 x 77 in) 405 kg (891 lbs) 578 kg (1,271 lbs)

Minimum Clearance Requirements	and the second second
Vertical Clearance	610 mm (24 in)
Horizontal Clearance	
Left and Right	762 mm (30 in)
Front	940 mm (37 in)
Rear	915 mm (36 in)

Sound Levels


Acoustic Emissions at Full Load Power


Nominal at 10 m (33 ft)

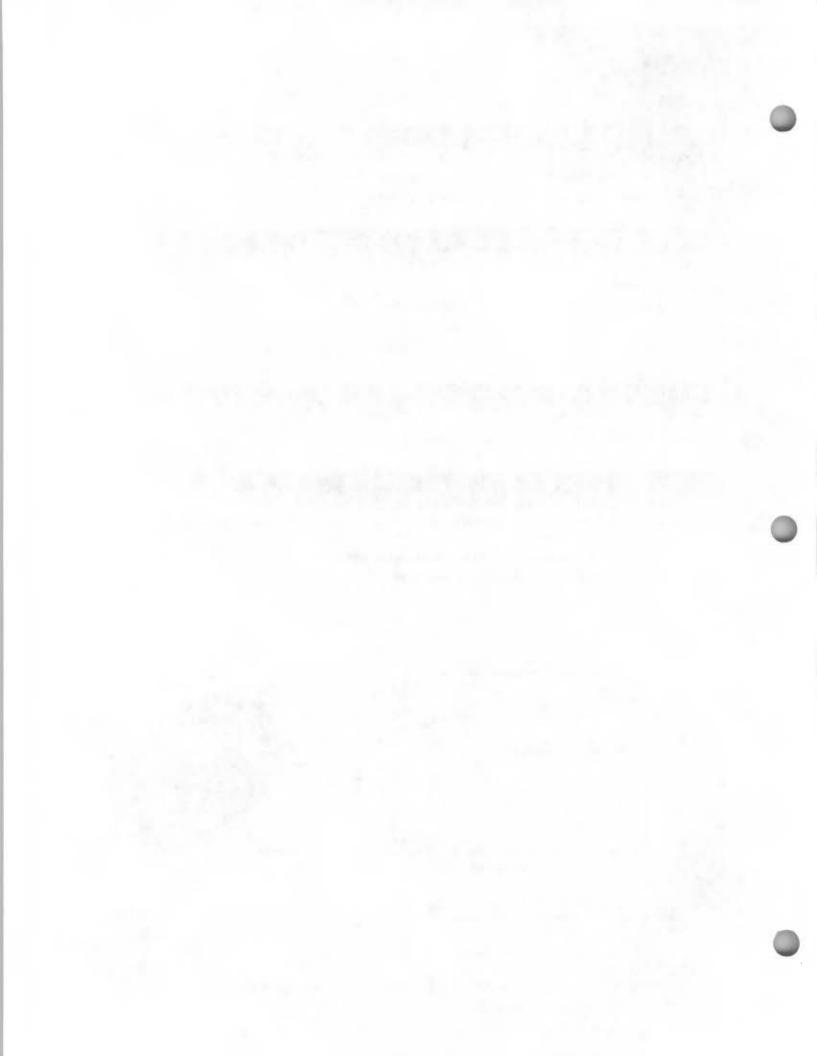
65 dBA

Certifications

- Certified to UL 2200 for stand alone natural gas operation (UL files AU2687, E209370)
- Meets statewide utility interconnection requirements for California Rule 21 and the New York State Public Service Commission
- Materials Equipment Acceptance (MEA) approval for New York City
- Models available with optional equipment for CE Marking

Some uplines may require additional equipment for grid interconnectivity
 Nominal full power proformance at ISO conditions: 59°F, 14.696 psia, 60% RH
 Why linear load
 Exhibit power profest bit firsthane fuel

Exhaust emissions with lighthane fuel


2008 . Lostone Turk

and are subject to change without notice.

I Nordhoff Street - Ttsworth • CA • 91311 • 877.716.2929 • 818.407.3770 • www.capstoneturbine.com

Capstone

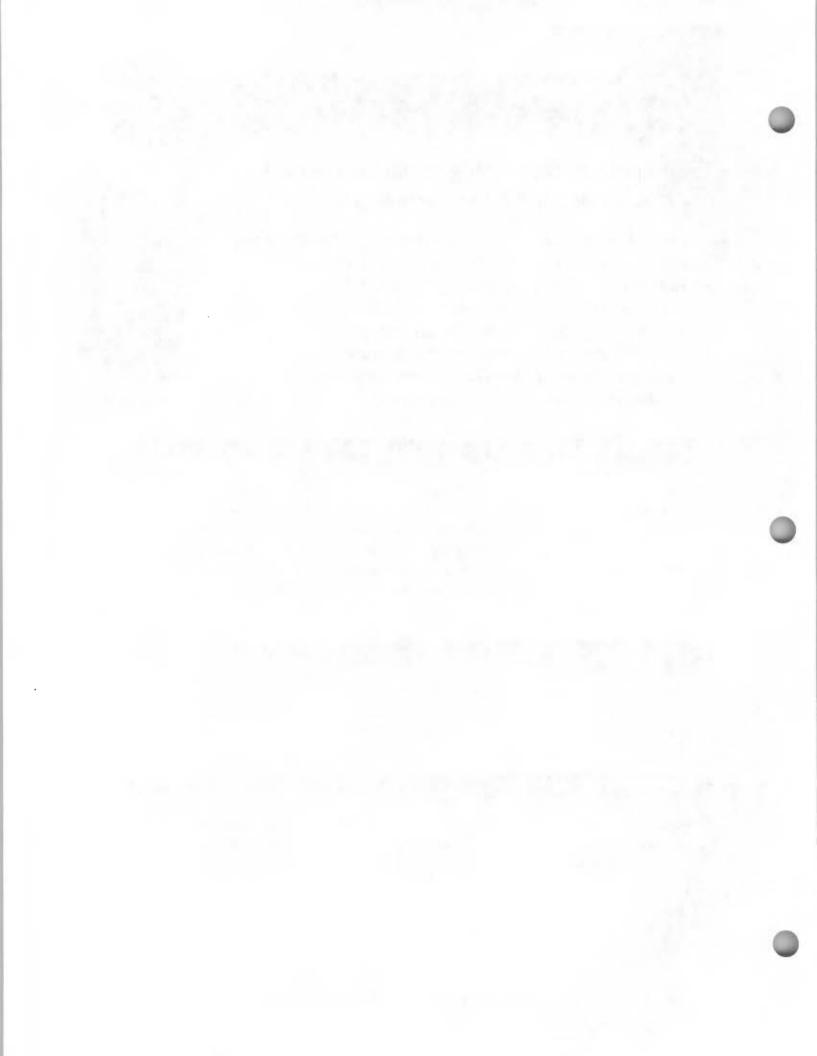
Corporation. 14/08 Capstone P/N 331031

C30 MicroTurbine Natural Gas

haust Gas Temperature

Robust power system achieves ultra-low emissions and reliable electricity from natural gas.

- Low NOx and CO, emissions better than tough global standards
- One moving part: Minimal maintenance and downtime
- Patented air bearing: No lubricating oil or coolant
- 5 and 9 year Factory Protection Plans available
- Remote monitoring and diagnostic capabilities
- Integrated utility synchronization and protection⁽¹⁾
- Small, modular design allows for easy, low-cost installation
- Reliable: 16,000,000+ run hours and counting


C30 MicroTurbine

Electrical Performance ⁽²⁾	High Pressure	Onboard Gas Compressor Option
Electrical Power Output	30 KW	28 kW
Voltage	400 to 480 VAC	400 to 480 VAC
Electrical Service	3-Phase, 4 wire	3-Phase, 4 wire
Frequency	50/60 Hz, grid connect operation	50/60 Hz, grid connect operation
	10/60 Hz, stand alone operation	10/60 Hz, stand alone operation
Maximum Output Current	46A, grid connect operation	46A, grid connect operation
	54A, stand alone operation (3)	54A, stand alone operation ⁽³⁾
Electrical Efficiency LHV	26%	25%
Fuel/Engine Characteristics ⁽²⁾	High Pressure	Onboard Gas Compressor Option
Natural Gas HHV	825 to 1,275 BTU/scf	825 to 1,275 BTU/scf
Inlet Pressure - HHV dependent	3.8-4.1 barg (55-60 psig)	0.01-1.0 barg (0.2-15 psig)
Fuel Flow LHV	415 MJ/hr (394,000 BTU/hr)	403 MJ/hr (382,000 BTU/hr)
Generator Heat Rate LHV	12.9 MJ/kWh (12,200 BTU/kWh)	12.9 MJ/kWh (12,200 BTU/kWh)
Exhaust Characteristics (2)	High Pressure	Onboard Gas Compressor Option
NOx Emissions @ 15% 02	< 9 ppmvd	< 9 ppmvd
Electrical Output (4)	0.193 g/bhp-hr (< 0.57 lb/MWh)	< 0.60 lb/MWh (0.203 g/bhp-hr)
shaust Gas Flow	0.31 kg/s (0.69 lb/sec)	0.31 kg/s (0.69 lb/sec)

Power when and where you need it. Clean and simple.

275°C (530°F)

275°C (530°F)

XTO Little Canyon Compressor Station - Microturbine Fuel Use Calcs

Engine Make/Model	Capstone 30 kW Microturbine				
Site Power Output Rating	30	kilowatts			
Heat Rating	0.4	MMBtu/hr			
Heating Value (LHV)	1004	Btu/Scf			
Fuel Usage	3.44	MMScf/yr			
Operating Hours	8760	hrs/yr			

Capstone Turbine Corporation • 21211 Nordhoff Street • Chatsworth • CA 91311 • USA Phone: (818) 734-5300 • Fax: (818) 734-5320 • Web: <u>www.microturbine.com</u>

Technical Reference

Capstone MicroTurbineTM Systems Emissions

Summary

Capstone MicroTurbine[™] systems are inherently clean and can meet some of the strictest emissions standards in the world. This technical reference is to provide customers with information that may be requested by local air permitting organizations or to compare air quality impacts of different technologies for a specific project. The preferred units of measure are "output based"; meaning that the quantity of a particular exhaust emission is reported relative to the useable output of the microturbine – typically in pounds per megawatt hour for electrical generating equipment. This technical reference also provides the volumetric measurement in parts per million, which is still used by many people. A conversion between several common units is also provided.

Maximum Exhaust Emissions at ISO Conditions

Table 1 below summarizes the exhaust emissions at full power and ISO conditions for different Capstone microturbine models. Note that the fuel can have a significant impact on certain emissions. For example landfill and digester gas can be made up of a wide variety of fuel elements and impurities, and typically contains some percentage of carbon dioxide (CO₂). This CO₂ dilutes the fuel, makes complete combustion more difficult, and results in higher carbon monoxide emissions (CO) than for pipeline-quality natural gas.

Model	Fuel	NOx	CO	VOC (5)
C30 NG	Natural Gas ⁽¹⁾	.64	1.7	.22
C30 MBTU	Landfill Gas ⁽²⁾	.64	22	12.4
C30 MBTU	Digester Gas (3)	.64	22	12.4
C30 Liquid	Diesel #2 ⁽⁴⁾	2.6	.41	.23
C65 NG Standard	Natural Gas ⁽¹⁾	.46	6.0	.10
C65 NG Low NOx	Natural Gas ⁽¹⁾	.17	6.0	.10
C65 NG CARB	Natural Gas ⁽¹⁾	.17	.24	.05
CR65 Landfill	Landfill Gas ⁽²⁾	.50	6.0	.10
CR65 Digester	Digester Gas (3)	.50	6.0	.10
C200 NG	Natural Gas ⁽¹⁾	.43	.26	.10
C200 NG CARB	Natural Gas ⁴¹⁾	.14	.20	.04
CR200 Digester	Digester Gas ⁽³⁾	.50	6.0	.10

Table 1.	Emission for Diff	erent Capstone M	icroturbine Mod	dels in [lb/MWhe]
----------	--------------------------	------------------	-----------------	-------------------

Notes:

(1) Emissions for standard natural gas at 1,000 BTU/scf (HHV)

(2) Emissions for surrogate gas containing 42% natural gas, 39% CO2, and 19% Nitrogen

(3) Emissions for surrogate gas containing 63% natural gas and 37% CO2

(4) Emissions for Diesel #2 according to ASTM D975-07b

(5) Expressed as Hexane

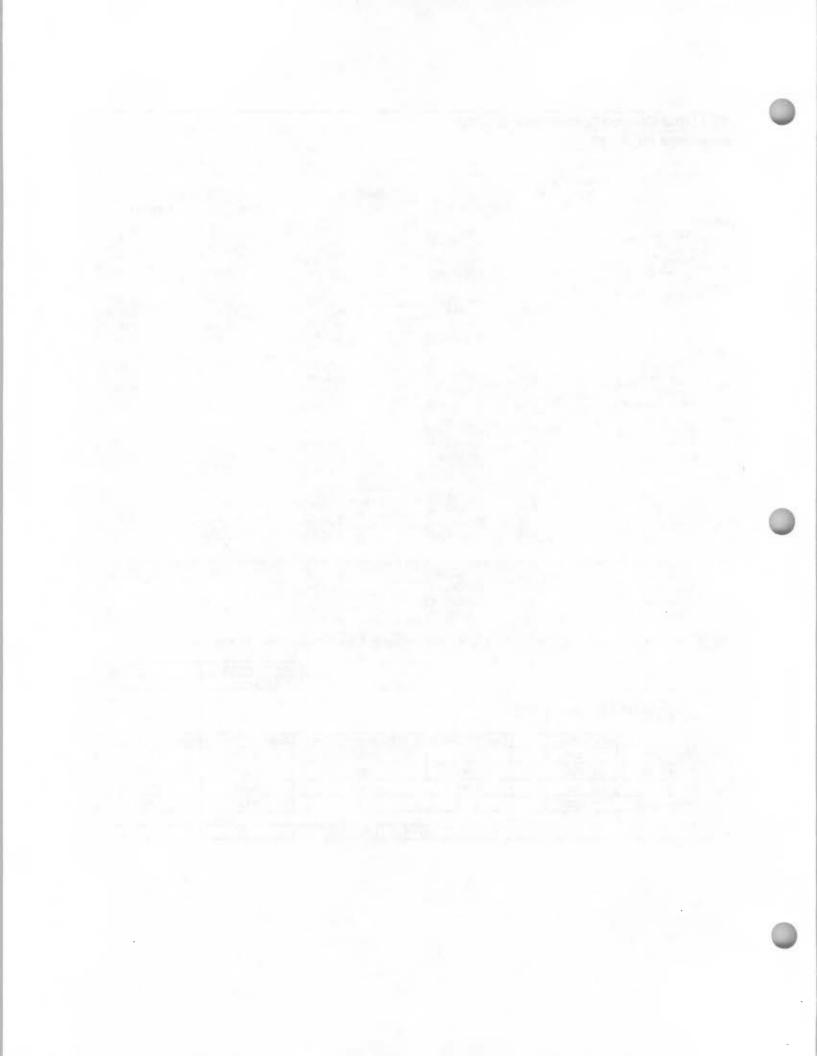
410065 Rev. A (February 2008)

Page 1 of 7

Capstone reserves the right to change or modify, without notice, the design, specifications, and/or contents of this document without incurring any obligation either with respect to equipment previously sold or in the process of construction.

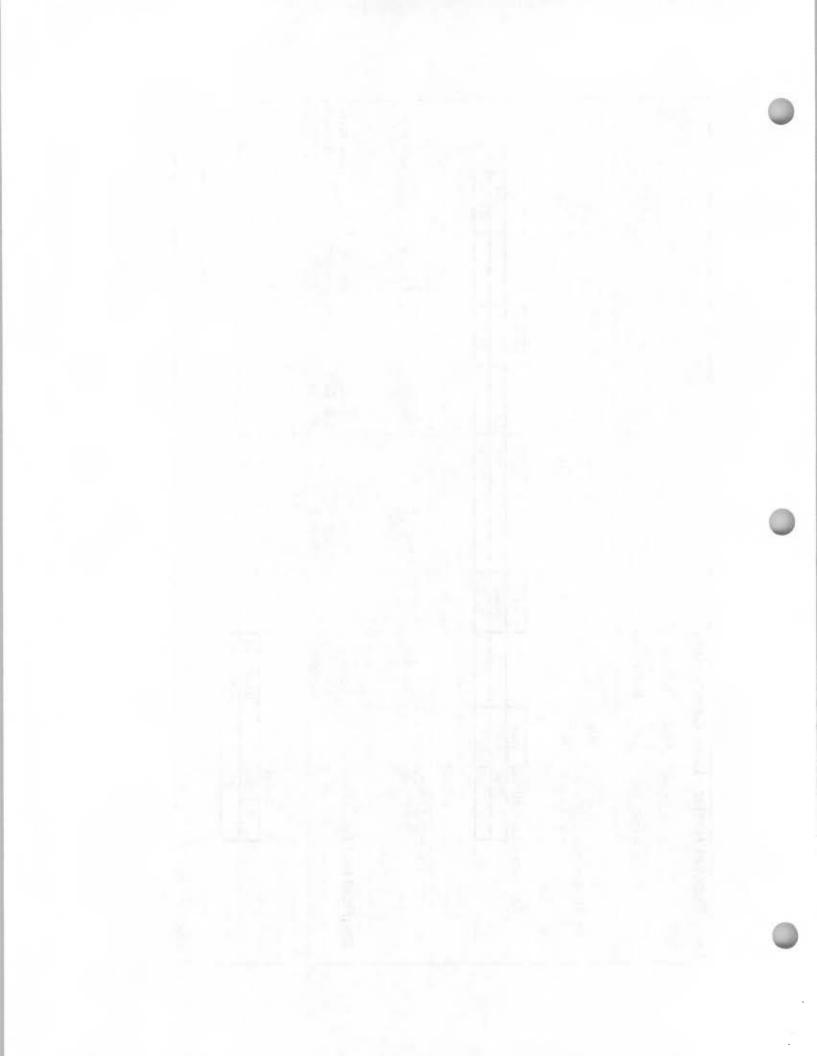


Company: XTO Energy Facility Name: Little Canyon Compressor Station Facility Location: Uintah County, Utah

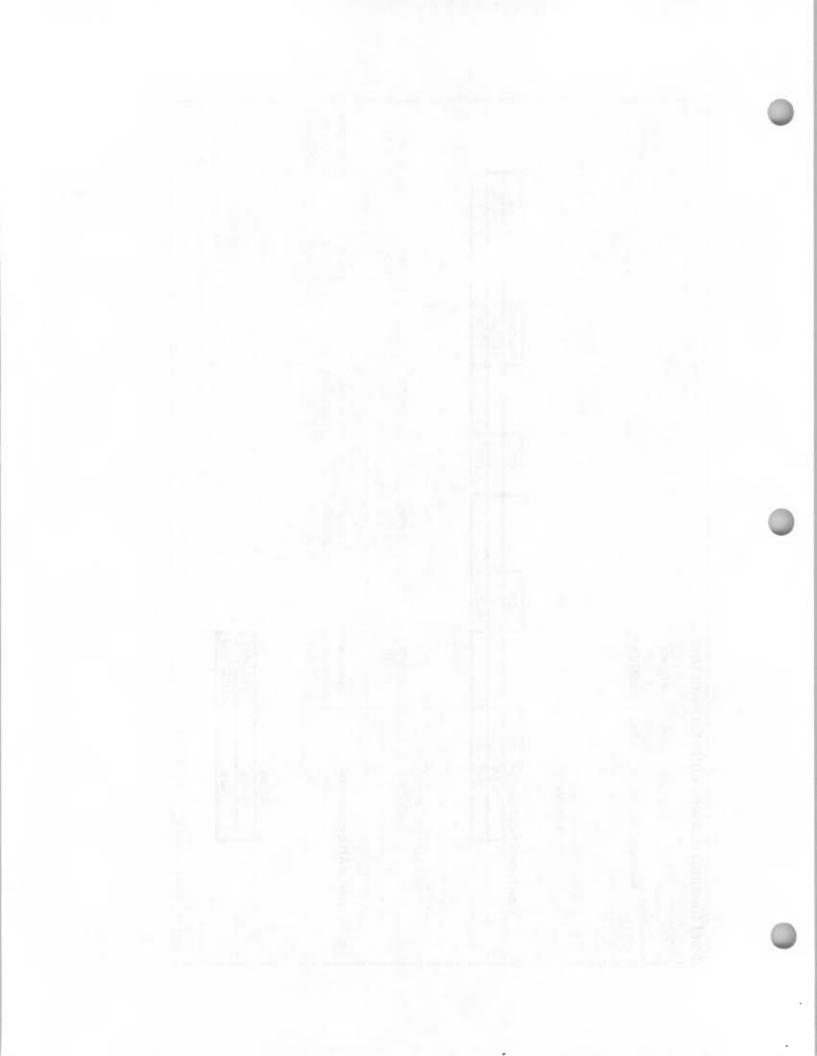

Unit: Glycol TEG Dehydrator Still Vent Maximum Daily Throughput <u>25</u> MMscfd

Uncontrolled Potential to Emit

Unit Description	Gas Flow Rate (MMscf/day)	VOCs (tons/yr)	Benzene (tons/yr)	Toluene (tons/yr)	Ethylbenzene (tons/yr)	Xylenes (tons/yr)	N-Hexane (tons/yr)	224-TMP (tons/yr)	Total HAPs (tons/yr)	Total BTEX (tons/yr)
TEG Dehy	25.0	61.6796	10.9128	0.6202	0.8989	12.6357	1.5307	0.086	26.6844	25.0676
Flash Tank		47.4412	0.3390	0.0120	0.0098	0.0955	1.4104	0.0758	1.9425	0.4563
TOTAL		109.1208	11.2518	0.6322	0.9087	12.7312	2.9411	0.1618	28.6269	25.5239



Estin	nated Fugiti	ves					
	later agri						
		Estimated					
		Components					
		Count	Hours	Factors*	%NMNEVOC	Emis	sions
				lb/hr/component		lb/year	tons/year
Valves							
	Gas/Vapor	300	8760	0.00992000	1.56%		0.2033
	Light Oil	100		0.00550000	100.00%		2.4090
	Heavy Oil		8760	0.00001900	100.00%		0.0000
	Water/Light Oil	50	8760	0.00021600	100.00%	94.60800	0.0473
Pumps							
	Gas/Vapor	6	8760	0.00529000	1.56%		0.0021
	Light Oil	3		0.02866000	100.00%		0.3765
	Heavy Oil		8760	0.00113000	100.00%		0.0000
	Water/Light Oil	3	8760	0.00005300	100.00%	1.39284	0.0007
Flanges							
	Gas/Vapor	650		0.00086000	1.56%		0.0382
	Light Oil	75		0.00024300	100.00%		0.0798
	Heavy Oil		8760	0.0000086	100.00%		0.0000
-	Water/Light Oil	50	8760	0.00000620	100.00%	2.71560	0.0013
Open-e	ended Lines						
	Gas/Vapor	15		0.00441000	1.56%		0.0045
	Light Oil		8760	0.00309000	100.00%		0.0000
	Heavy Oil		8760	0.00030900	100.00%		0.0000
-	Water/Light Oil	5	8760	0.00055000	100.00%	24.09000	0.0120
Connec		050	0700	0.000110000	1.500		
	Gas/Vapor	250		0.00044000	1.56%		0.0075
	Light Oil		8760	0.00046300	100.00%		0.0000
	Heavy Oil	50	8760 8760	0.00001700	100.00%		0.0000
	Water/Light Oil	50	0/00	0.00024300	100.00%	106.43400	0.0532
Other:	Compressors re	lief valves prov	ose dra	ine dianhranne d	lump arms, hatches, instru	mente metere poliebe	d rode and vente
Outor.	Gas/Vapor	30		0.01940000	1.56%	79.533792	0.03976689
	Light Oil		8760	0.01650000	100.00%		0.00370003
	Heavy Oil		8760	0.00006800	100.00%		
	Water/Light Oil	5		0.03090000	100.00%		0.6767
	Water Light Of	5	0/00	0.00000000	100.0078	1555.42	0.0707
*NOTE	- emission factor	s based on Tal	ole 2-4 (of U.S. EPA's 1995	Protocol for Equipment L	eak Emission Estimate	s.
_						Total in tangly on	
-						Total in tons/year Total in Lb/hr	3.9
						Total in LD/nr	0.9
	Fugitive HA	P Emissions	Tota	S			
		wetter in more		Tetal VOC ant %	Total Eugithes VOO too	Total tax for LLCD	Total Ib /b- f 114 D
	Benzene	wt% in gas	-		Total Fugitive VOC tpy	Total tpy for HAP	
		0.0072	-	1.560	3.95	0.018	0.004
	Toluene	0.0059		1.560	3.95	0.015	0.003
_	Xylene	0.0022		1.560	3.95	0.006	0.0013
	n-Hexane	0.0482		1.560	3.95	0.122	0.028
	1				TOTAL Fugitive HAP's	0.161	0.037



	Fuel Gas	1000	BTU/scf								
		8760	hrs/yr								
Max Heat Ir	put Rating	0.55	MMBTU/hr			_					
		NOx		CO		VOC		PM/PM10		SO2	
Small Boilers Emissio	ons Factor*										
	bs/MMscf)	100		84		5.5		7.6		0.6	
Estimated En		NOx		CO		VOC		PM/PM10		SO2	
	lb/hr	0.055		0.046		0.003		0.004	1.0	0.000	
	tpy	0.241		0.202		0.013		0.018		0.001	
HAP Emission	e Eactore*										4
	bs/MMscf)		Benzene		Toluene		Hexane		Formald.		Dicloroben
			0.0021		0.0034		1.8		0.075		0.0012
Estimated HAP En	nissions		Benzene		Toluene		Hexane		Formald.		Dicloroben
	lb/hr		0.0000012		0.0000019		0.0009900		0.0000413		0.000000
	tpy		0.0000051		0.0000082		0.0043362		0.0001807		0.000002
	Total										
	lb/hr		0.001035								
	tpy		0.004533								
		-									

Ч٩

uel Cleanup H	leater - Lit	tle Car	nyon Unit								
	Fuel Gas	1000	BTU/scf								
		8760	hrs/yr								
Max Hea	t Input Rating	0.25	MMBTU/hr								
		NOx		СО		VOC		PM/PM10		SO2	1
Small Boilers Emis	sions Factor*										
	(lbs/MMscf)	100		84		5.5		7.6		0.6	
Estimated		NOx		CO		VOC		PM/PM10		SO2	
	lb/hr	0.025		0.021		0.001	1	0.002		0.000	
	tpy	0.110		0.092		0.006		0.008		0.001	
HAP Emiss	ions Factors*		-								
	(lbs/MMscf)		Benzene		Toluene		Hexane		Formald.		Dicloroben
			0.0021		0.0034	-	1.8		0.075		0.0012
Estimated HAP	Emissions		Benzene		Toluene		Hexane		Formald.		Dicloroben
	lb/hr		0.0000005		0.0000009		0.0004500		0.0000188		0.000000
	tpy	annessanan	0.0000023		0.000037		0.0019710		0.0000821		0.000001
	Total										
	ib/hr		0.000470								
	tpy		0.002060								
Source: AP-42 Table		4.4.0									

XTO Little Canyon Unit Storage Tank Heaters

Two (2) tank Heaters X 0.5 MMBTU / hr each

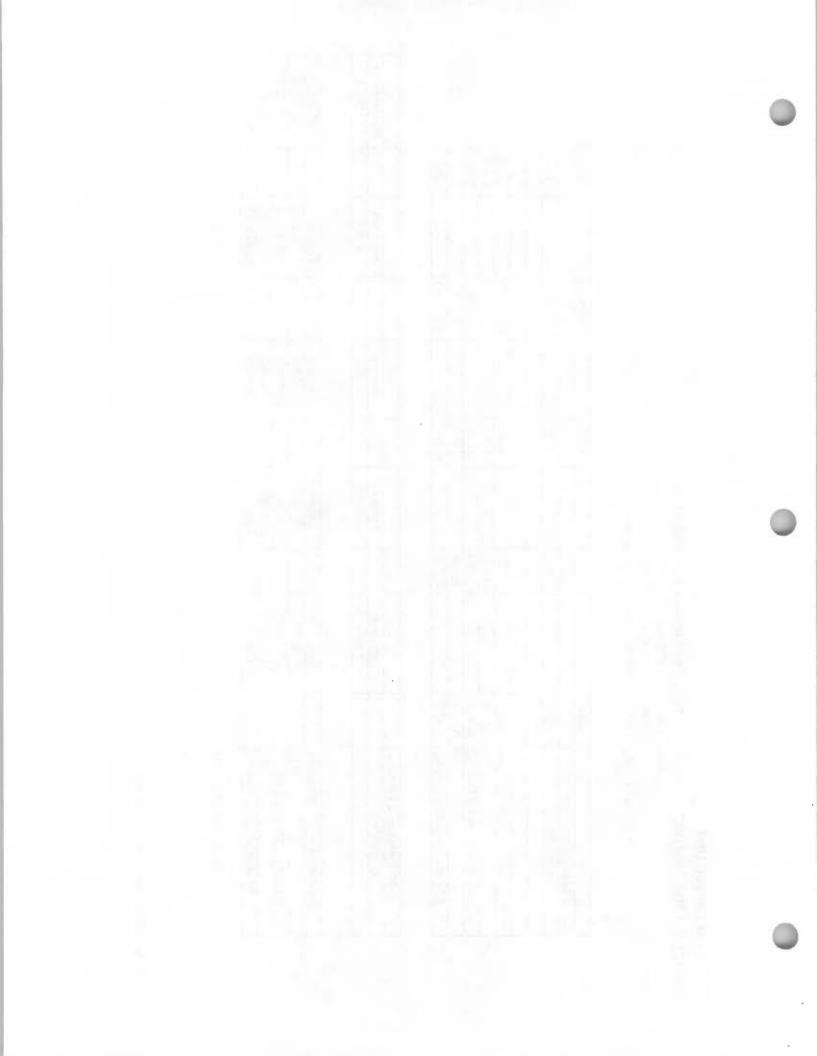
8760 Max Heat Input Rating

hrs/yr MMBTU/hr each heater

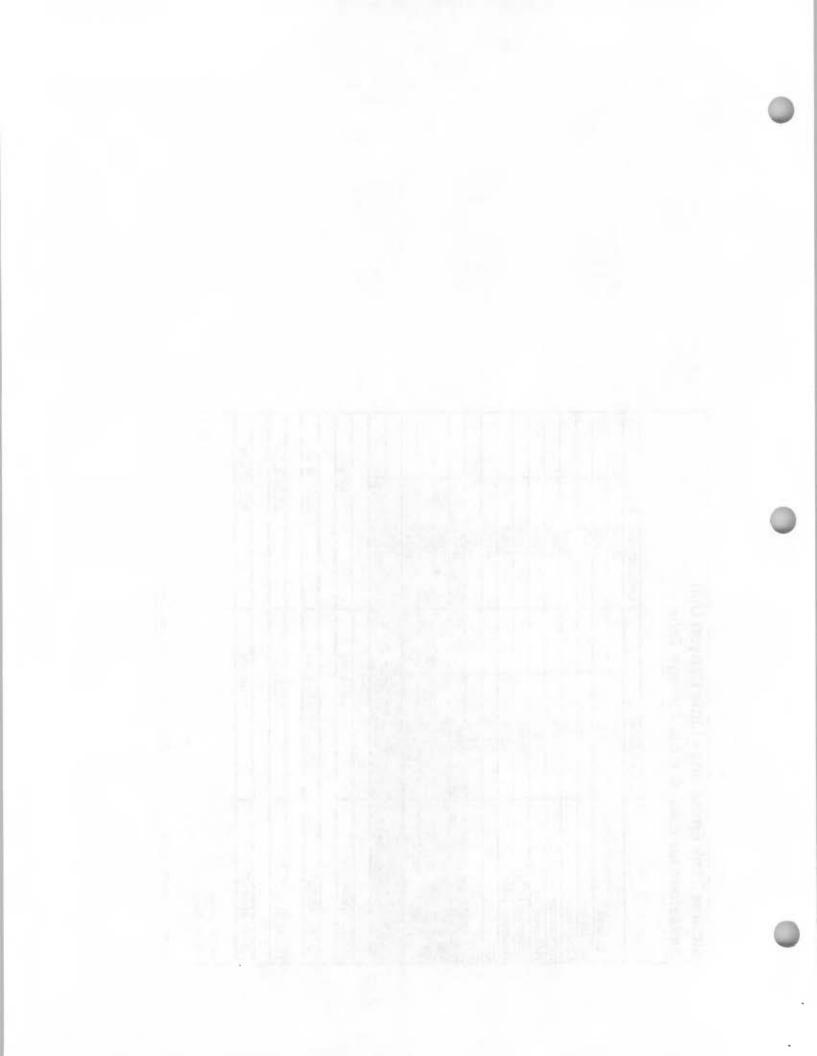
BTU/scf

0.5

Fuel Gas 1000


	NOx	CO		[PM/PM10]	SO2
Small Boilers Emissions Factor*					
(Ibs/MMscf)	100	84	5.5	7.6	0.6
Estimated Emissions	NOx	со	voc	PM/PM10	SO2
lb/hr	0.050	0.042	0.003	0.004	0.000
lb/hr Multiplied by Two (2)	0.100	0.084	0.006	0.008	0.001
tpy	0.219	0.184	0.012	0.017	0.001
TPY Multiplied by Two (2)	0.438	0.368	0.0241	0.033288	0.0026

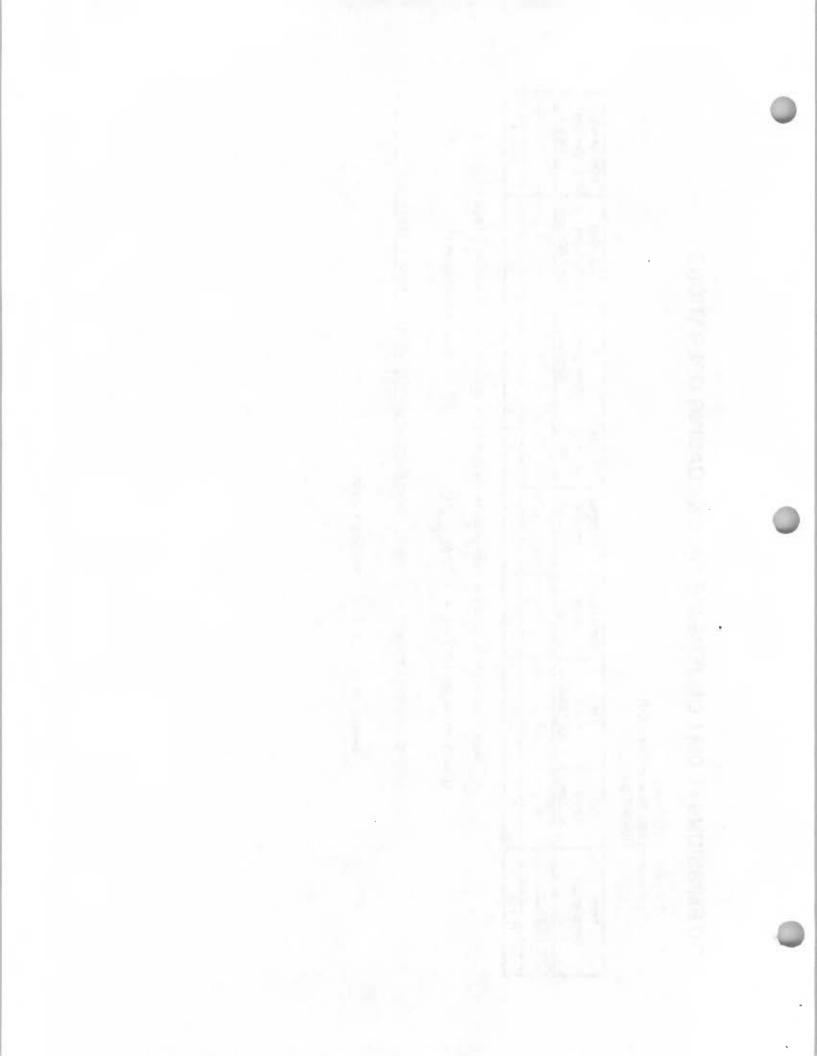
HAP Emissions Factors*					
(lbs/MMscf)	Benzene	Toluene	Hexane	Formald.	Diclorobenz.
	0.0021	0.0034	1.8	0.075	0.0012


Estimated HAP Emissions	Benzene	Toluene	Hexane	Formald.	Diclorobenz.
lb/hr	0.0000011	0.0000017	0.0009000	0.0000375	0.0000006
Ib/hr Multiplied by Two (2)	0.0000021	0.0000034	0.0018000	0.0000750	0.0000012
tpy	0.0000046	0.0000074	0.0039420	0.0001643	0.0000026
TPY Multiplied by Two (2)	0.0000092	0.0000149	0.0078840	0.0003285	0.0000053

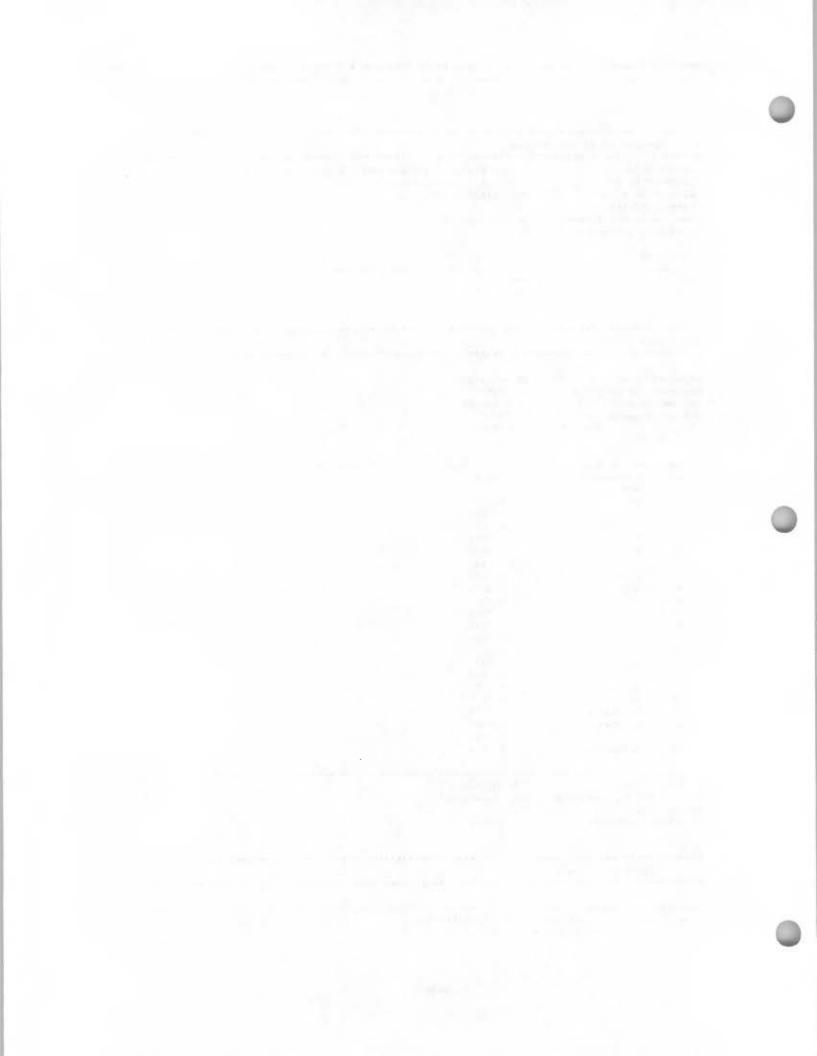
Total (two tank htrs)	
lb/hr	0.0018817
tpy	0.0082418

* Source: AP-42 Table 1.4-1, 1.4-2, & 1.4-3

Emissions for l	Each 400 bbl Stora	ge Ta	nk	
	Uncontrolled (tpy)		Uncontrolled (lb/hr)	
C3	2.341		0.534	
i-butane	1.005		0.229	
n-Butane	1.221		0.279	
-Pentane	0.553		0.126	
n-Pentane	0.389		0.089	
Hexanes	0.412		0.094	
Heptanes (C7+)	2.305		0.526	-
Octanes (C8+)	0.275		0.063	
C9	0.038		0.009	
C10+	0.001		0	1
Eenaene	0.097		0.022	
Toluene	0.227		0.052	
Elnyi-Benzene	0.005		0.001	
Tylenes	0.051		0.012	
n Hazana	0.426		0.097	
22/4-Trime hypenta	ne 0.067		0.015	
TOTAL NMNEHC*	9.413	tpy	2.148	lb/hr
TOTAL HAP's*	0.873	tpy	0.199	lb/hr
TOTAL NMNEHC**	18.826	tpy	4.296	lb/hr
TOTAL HAP's**	1.746	tpy	0.398	lb/hr
NOTE - for each tank				
**NOTE - for all tanks				


VOC EMISSIONS FROM CONDENSATE TRUCK LOADING OPERATIONS

Company: XTO Energy Location: Little Canyon Unit (LCU) Uintah County, Utah


Tank Description	Oil Sales (bbls/day)	Oil Sales (1,000 bbls/yr)	Saturation Factor (S)	True Vapor Pressure (P) (psia)	Vapor Mole Wt. (M)	Oil Temperature (T) (Degrees R)	Loading Losses (Ibs/1,000 gal)	VOC Loading Emissions (tons/yr)
Slop Tanks	13	4.745	0.6	7.4	68	560	6.7177	0.6694
TOTAL	13	4.745					6.7177	0.6694

Vapor molecular weight and true vapor pressure are based on information in AP-42 Section 7, Table 7.1-2.

Loading Losses (lbs/1,000 gal) =	<u>12.46*S*P*M</u> (AP-42 Section 5.2, Equation 1) T	
Loading Emissions (tons/year) =	Loading Losses (lbs/1,000 gal) * Oil Sales (1,000 bbls/yr) * (42 gal/bb 2,000 lbs/ton	ol)
Degrees R =	Degrees F + 460	

******	*********	***************************************
roject 1	File	: J:\XTO energy - 390\LCU T5\Tank Emissions - PTE.ept
lowshee	t Selection	: Oil Tank with Separator
alculat.	ion Method	: RVP Distillation
ontrol :	Efficiency	: 100.0%
nown Se	parator Stream	: Low Pressure Oil
	Air Composition	
iled Nam		: XTO Energy : Little Canyon Compressor Station
ell ID	•	: PTE
ate		: 2009.06.08
******	*****	***************************************
	ta Input	
******	*****	***************************************
	- Drodenine	EE 00[main]
-	r Pressure	: 55.00[psig]
-	r Temperature	: 80.00[F]
	Pressure	: 12.64[psia]
	Temperature	: 51.96[F]
10+ SG 10+ MW		: 0.7614 : 190.98
TOA WW		: 130.30
	ressure Oil	
No.	Component	mol %
1	H2S	0.0000
2	02	0.0000
3	CO2	1.1239
4	N2	0.0840
5	C1	27.7359
6	C2	2.7955
7	C3	1.5835
8	i-C4	0.7170
9	n-C4	1.0561
10	i-C5	0.7564
11	n-C5	0.6978
12	C6	1.7341
13	C7	26.6087
14	C8	9.6271
15	C9	3.8073
16	C10+	9.3447
17	Benzene	0.6206
18	Toluene	4.7280
19	E-Benzene	0.3285
20		
20	Xylenes n-C6	3.5581 2.2710
22	224Trimethylp	0.8218
	0il	
		: 6.5[bbl/day]
		: 365 [days/year]
PI Grav		: 55.0
eid Vap	or Pressure	: 7.00[psia]

	lculation Results	***************************************
-		
- Emiss	ion Summary	
tem		trolled Uncontrolled

C

	al HAPs	0.870	0.199					
	al HC	31.562	7.206					
	s, C2+	12.771	2.916					
VOC	s, C3+	9.414	2.149					
Unc	ontrolled Recove	ry Info.						
	Vapor	3.0700	[MSCFD]					
	HC Vapor	2.9700	[MSCFD]					
	GOR	472.31	[SCF/bb1]	1				
	Emission Composi	tion						
No	Component	Uncontrolled	Uncontrol	lled				
		[ton/yr]	[lb/hr]					
1	H2S	0.000	0.000					
2	02	0.000	0.000					
3	CO2	2.045	0.467					
4	N2	0.100	0.023					
5	Cl	18.790	4.290					
6	C2	3.357	0.766					
7	C3	2.341	0.534					
8	i-C4	1.005	0.229					
9	n-C4	1.221	0.279					
10	1-C5	0.553	0.126 0.089					
11 12	n-C5 C6	0.389 0.412	0.089					
13	C6 C7	2.305	0.526					
14	C8	0.275	0.063					
15	C9	0.038	0.009					
16	C10+	0.001	0.000					
17	Benzene	0.097	0.022					
18	Toluene	0.227	0.052					
	E-Benzene	0.005	0.001					
20	Xylenes	0.051	0.012					
21	-	0.426	0.097					
22	224Trimethylp	0.067	0.015					
22	224Trimethylp Total	0.067 33.705	0.015 7.695					
	Total							
	Total Stream Data	33.705	7.695	Flash Oil	Sale Oil	Flash Gas	W&S Gas	Total Emissions
	Total			Flash Oil mol %	Sale Oil mol %	Flash Gas mol %	W4S Gas mol %	Total Emissions
	Total Stream Data	33.705	7.695 LP Oil					
 No.	Total Stream Data Component	33.705 	7.695 LP Oil mol %	mol %	mol %	mol %	mol %	mol %
 No.	Total Stream Data Component H2S	33.705 MW 34.80	7.695 LP Oil mol % 0.0000	mol % 0.0000	mol % 0.0000	mol % 0.0000	mol % 0.0000	mol % 0.0000
 No. 1 2	Total Stream Data Component H2S O2	33.705 MW 34.80 32.00	7.695 LP Oil mol % 0.0000 0.0000	mol % 0.0000 0.0000	mol % 0.0000 0.0000	mol % 0.0000 0.0000	mol % 0.0000 0.0000	mol % 0.0000 0.0000
 No. 1 2 3	Total Stream Data Component H2S 02 C02	33.705 MW 34.80 32.00 44.01	7.695 LP Oil mol % 0.0000 0.0000 1.1239	mol % 0.0000 0.0000 0.0530	mol % 0.0000 0.0000 0.0530	mol % 0.0000 0.0000 3.1420	mol % 0.0000 0.0000 0.0000	mol % 0.0000 0.0000 3.1420
 No. 1 2 3 4 5 6	Total Stream Data Component H2S 02 C02 N2 C1 C2	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955	mol % 0.0000 0.0530 0.0003 0.4204 0.2719	mol % 0.0000 0.0530 0.0003 0.4204 0.2719	mol % 0.0000 3.1420 0.2417 79.2127 7.5513	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513
 No. 1 2 3 4 5 6 7	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911
 No. 1 2 3 4 5 6 7 8	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690
 No. 1 2 3 4 5 6 7 8 9	Total Stream Data Component H2S O2 C02 N2 C1 C2 C3 i-C4 n-C4	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207
 No. 1 2 3 4 5 6 7 8 9 10	Total Stream Data Component H2S O2 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183
 No. 1 2 3 4 5 6 7 8 9 10 11	Total Stream Data Component H2S O2 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649
 No. 1 2 3 4 5 6 7 8 9 10 11 12	Total Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15 86.16	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781	mol % 0.0000 0.0530 0.003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Total Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15 86.16 100.20	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Total Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15 86.16 100.20 114.23	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 190.98	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Total Stream Data Component H2S O2 CO2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665
 No. 1 2 3 4 5 6 7 8 9 10 111 122 133 14 15 16 17 18 19	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 0.0530 0.003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0352 0.3342 0.0395	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0355 0.0352 0.3342 0.3342 0.0395
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18 114.24	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 0.0530 0.003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18 114.24	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93 1.0000	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 0.0530 0.003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C104 Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat Heating Value	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18 114.24 tio	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93 1.0000	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 0.0530 0.003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0035 0.0322 0.3342 0.0395 22.80 0.3467 1287.20	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0035 0.0322 0.3342 0.0395 22.80 0.3467 1287.20
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rat	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18 114.24 EID [BTU/SCF] [Gas/Air	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93 1.0000	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 0.0530 0.003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467

E&P TANK V2.0 Calculation Report--- Developed by DB Robinson & Associates Ltd.

 RVP @ 100F
 [psia]
 188.94
 6.44
 6.44

 Spec. Gravity @ 100F
 0.633
 0.681
 0.681

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

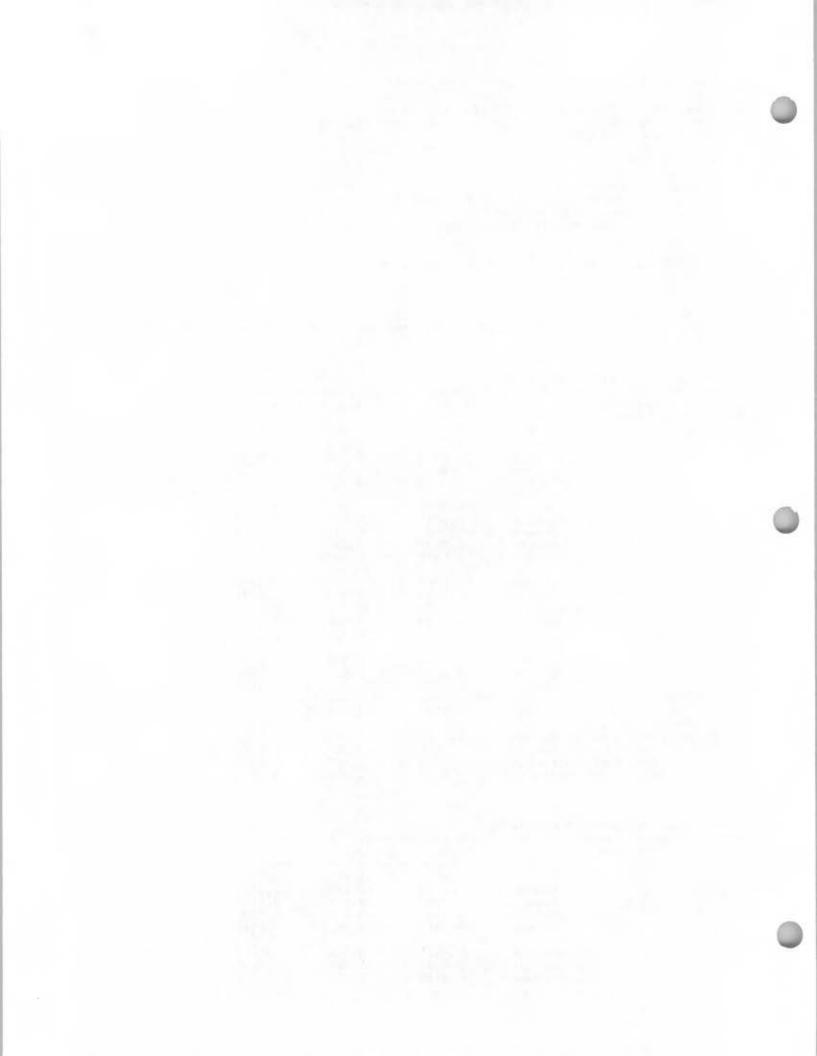
Case Name: XTO - Little Canyon CS TEG Dehydrator File Name: J:\XTO energy - 390\EI\LCU Actuals\LCU PTE.ddf Date: June 08, 2009

DESCRIPTION:

Description: PTE Emissions 25 MMscfd, 12/17/08 Gas Analysis with thermal oxidizer 45015 Kimray Glycol Pump, Optimal rate

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:



CONTROLLED REGENERATOR EMISSIONS

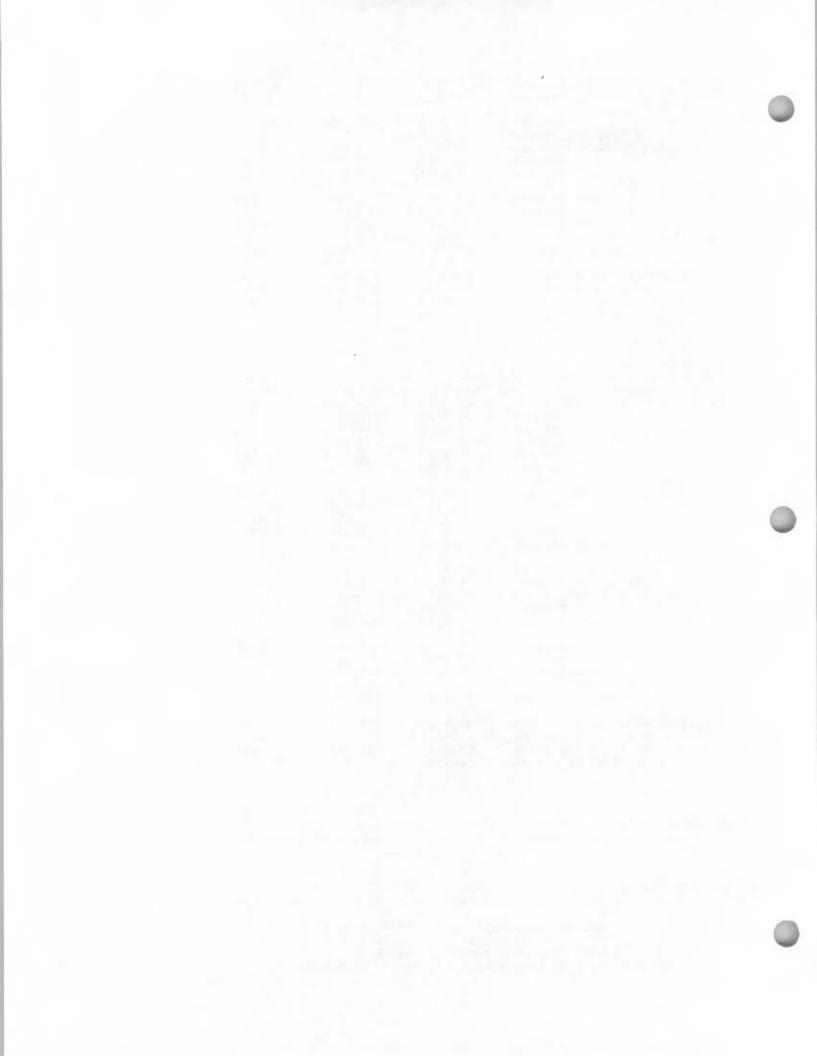
Component	lbs/hr	lbs/day	tons/yr
Methane	0.0091	0.217	0.0397
Ethane	0.0051	0.123	0.0224
Propane	0.0079	0.189	0.0344
Isobutane	0.0039	0.095	0.0173
n-Butane	0.0078	0.188	0.0342
Isopentane	0.0040	0.096	0.0176
n-Pentane	0.0045	0.108	0.0196
n-Hexane	0.0035	0.084	0.0153
Cyclohexane	0.0099	0.237	0.0433
Other Hexanes	0.0040	0.097	0.0177
Heptanes	0.0093	0.223	0.0406
Methylcyclohexane	0.0133	0.319	0.0582
2,2,4-Trimethylpentane	0.0002	0.005	0.0009
Benzene	0.0249	0.598	0.1091
Toluene	0.0014	0.034	0.0062
Ethylbenzene	0.0021	0.049	0.0090
Xylenes	0.0288	0.692	0.1264
C8+ Heavies	0.0153	0.367	0.0669
Total Emissions	0.1550	3.720	0.6789
Total Hydrocarbon Emissions	0.1550	3.720	0.6789
Total VOC Emissions	0.1408	3.380	0.6168
Total HAP Emissions	0.0609	1.462	0.2668
Total BTEX Emissions	0.0572	1.374	0.2507

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.9061	21.747	3.9688
Ethane	0.5112	12.269	2.2391
Propane	0.7863	18.871	3.4439
Isobutane	0.3948	9.474	1.7291
n-Butane	0.7819	18.765	3.4245
Isopentane	0.4013	9.632	1.7579
n-Pentane	0.4480	10.752	1.9622
n-Hexane	0.3495	8.387	1.5307

Cyclohexane Other Hexanes	0.9892 0.4039	23.741 9.695	Page: 2 4.3328 1.7693
Heptanes	0.9273	22.255	4.0615
Methylcyclohexane	1.3287	31.890	5.8199
2,2,4-Trimethylpentane	0.0196	0.471	0.0860
Benzene	2.4915	59.796	10.9128
Toluene	0.1416	3.398	0.6202
Ethylbenzene	0.2052	4.926	0.8989
Xylenes	2.8849	69.237	12.6357
C8+ Heavies	1.5283	36.680	6.6941
Total Emissions	15.4994	371.986	67.8875
Total Hydrocarbon Emissions	15.4994	371.986	67.8875
Total VOC Emissions	14.0821	337.970	61.6796
Total HAP Emissions	6.0923	146.216	26.6844 -
Total BTEX Emissions	5.7232	137.357	25.0676

_


FLASH TANK OFF GAS

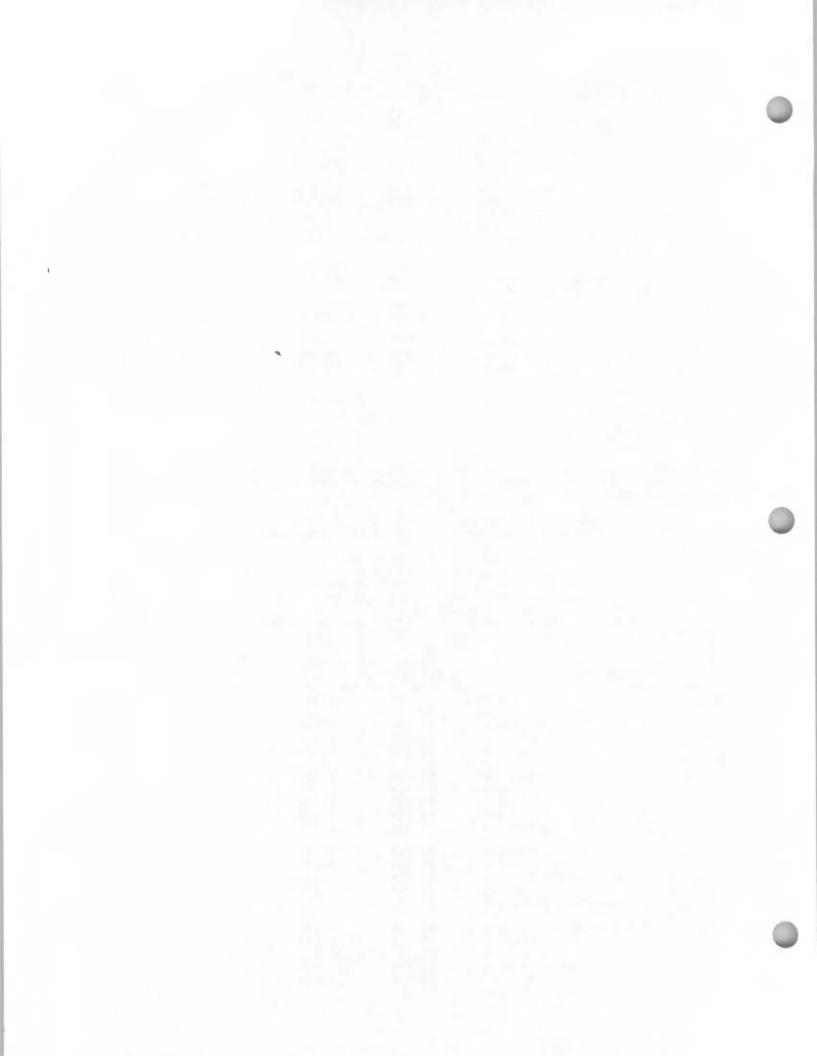
Component	lbs/hr	lbs/day	tons/yr
Methane	36.4219	874.127	159.5281
Ethane	5.5868	134.083	24.4702
Propane	4.0589	97.414	17.7780
Isobutane	1.3146	31.551	5.7581
n-Butane	1.9689	47.254	8.6238
Isopentane	0.8706	20.893	3.8131
n-Pentane	0.7675	18.421	3.3618
n-Hexane	0.3220	7.728	1.4104
Cyclohexane	0.2223	5.334	0.9735
Other Hexanes	0.4959	11.902	2.1721
Heptanes	0.4035	9.684	1.7674
Methylcyclohexane	0.2290	5.496	1.0029
2,2,4-Trimethylpentane	0.0173	0.415	0.0758
Benzene	0.0774	1.858	0.3390
Toluene	0.0027	0.066	0.0120
Ethylbenzene	0.0022	0.054	0.0098
_ Xylenes	0.0218	0.523	0.0955
C8+ Heavies	0.0566	1.360	0.2483
Total Emissions	52.8401	1268.162	231.439
Total Hydrocarbon Emissions	52.8401	1268.162	231.439
Total VOC Emissions	10.8313	259.952	47.4412
Total HAP Emissions	0.4435	10.644	1.942
Total BTEX Emissions	0.1042	2.500	0.456
		2.000	

EQUIPMENT REPORTS:

COMBUSTION DEVICE

Ambient Temperature: 55.00 deg. F Excess Oxygen: 5.00 % Combustion Efficiency: 99.00 % Supplemental Fuel Requirement: 7.74e-002 MM BTU/hr

Component	Emitted	Page: Destroyed	3
Methar	e 1.00%	99.00%	
Ethan	e 1.00%	99.00%	
Propar		99.00%	
Isobutar	e 1.00%	99.00%	
n-Butar	e 1.00%	99.00%	
Isopentar	e 1.00%	99.00%	
n-Pentar		99.00%	
n-Hexar		99.00%	
Cyclohexar	e 1.00%	99.00%	
Other Hexane		99.00%	
Heptane	s 1.00%	99.00%	
Methylcyclohexar		99.00%	
2,2,4-Trimethylpentar		99.00%	
Benzer		99.00%	
Toluer		99.00%	
Ethylbenzer	ie 1.00%	99.00%	
Xylene		99.00%	
C8+ Heavie		99.00%	


ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 1.52	lbs.	H20/MMSCF
Temperature: Pressure:	81.0 840.0	deg. psig	F

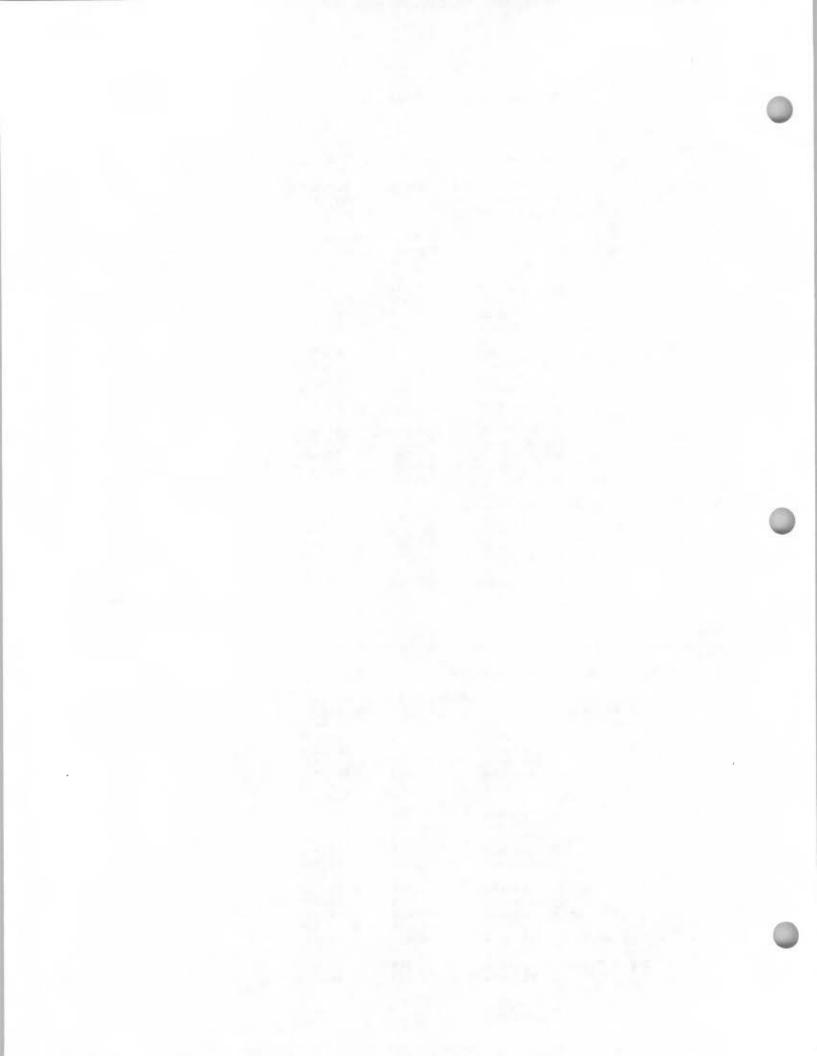
Dry Gas Flow Rate: 25.0000 MMSCF/day Glycol Losses with Dry Gas: 0.1321 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 37.54 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 9.67 gal/lb H2O

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	4.03%	95.97%
Carbon Dioxide	99.66%	0.34%
Nitrogen	99.97%	0.03%
Methane	99.98%	0.02%
Ethane	99.92%	0.08%
Propane	99.88%	0.12%
Isobutane	99.83%	0.17%
n-Butane	99.77%	0.23%
Isopentane	99.77%	0.23%
n-Pentane	99.69%	0.31%
n-Hexane	99.48%	0.52%
Cyclohexane	97.63%	2.37%
Other Hexanes	99.61%	0.39%
Heptanes	99.03%	0.97%
Methylcyclohexane	97.40%	2.60%
2,2,4-Trimethylpentane	99.60%	0.40%
Benzene	79.778	20.23%
Toluene	71.55%	28.45%
Ethylbenzene	64.49%	35.51%
Xylenes	54.75%	45.25%

Page: 4

FLASH TANK

Flash Control: Vented to atmosphere Flash Temperature: 120.0 deg. F Flash Pressure: 70.0 psig



Component	Left in Glycol	Removed in Flash Gas	
Water	99.93%	0.07%	
Carbon Dioxide	23.63%	76.37%	
Nitrogen	2.37%	97.63%	
Methane	2.43%	97.57%	
Ethane	8.38%	91.62%	
Propane	16.23%	83.77%	
Isobutane	23.09%	76.91%	
n-Butane	28.42%	71.58%	
Isopentane	31.82%	68.18%	
n-Pentane	37.11%	62.89%	
n-Hexane	52.26%	47.74%	
Cyclohexane	82.22%	17.78%	
Other Hexanes	45.36%	54.64%	
Heptanes	69.82%	30.18%	
Methylcyclohexane	85.87%	14.13%	
2,2,4-Trimethylpentane	53.77%	46.23%	
Benzene	97.14%	2.86%	
Toluene	98.25%	1.75%	
Ethylbenzene	99.03%	0.97%	
Xylenes	99.35%	0.65%	
C8+ Heavies	96.84%	3.16%	

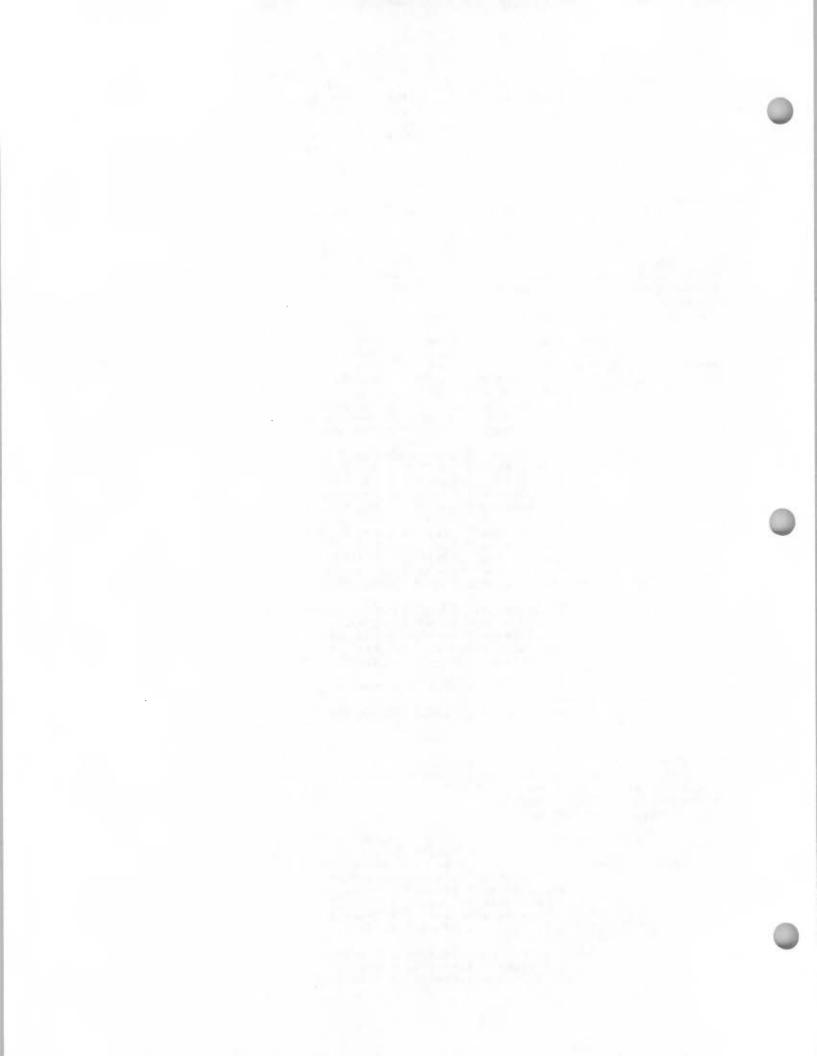
REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	57.64%	42.36%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	1.21%	98.79%
n-Pentane	1.10%	98.90%
n-Hexane	0.84%	99.16%
Cyclohexane	3.78%	96.22%
Other Hexanes	1.87%	98.13%
Heptanes	0.67%	99.33%
Methylcyclohexane	4.54%	95.46%
2,2,4-Trimethylpentane	2.38%	97.62%
Benzene	5.13%	94.87%

		Page	:
Toluene	8.02%	91.98%	
Ethylbenzene	10.49%	89.51%	
Xylenes	12.98%	87.02%	
C8+ Heavies	12.08%	87.92%	

5


STREAM REPORTS:

WET GAS STREAM

Temperature: 81.00 deg. F Pressure: 854.70 psia Flow Rate: 1.04e+006 scfh		
Component		Loading (lb/hr)
Carbon Dioxide Nitrogen Methane	7.91e-002 3.59e-001 6.39e-001 9.02e+001 5.04e+000	4.34e+002 4.92e+002 3.98e+004
Isobutane n-Butane Isopentane	2.07e+000 4.37e-001 5.68e-001 2.10e-001 1.62e-001	6.97e+002 9.08e+002 4.17e+002
Cyclohexane Other Hexanes	8.22e-002 4.64e-002	4.97e+001 1.95e+002 1.28e+002
Toluene Ethylbenzene	5.90e-003 2.00e-004	1.27e+001 5.06e-001 5.83e-001
C8+ Heavies		
Total Components	100.00	5.04e+004

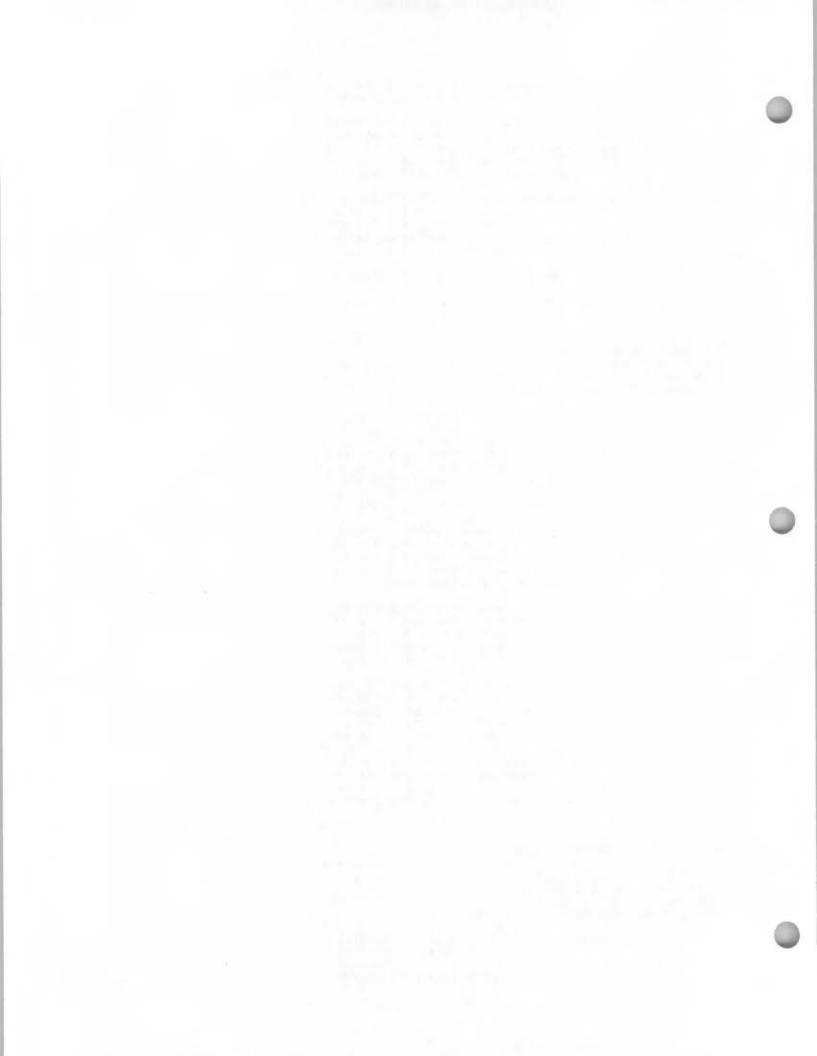
DRY GAS STREAM

 Temperature: Pressure: Flow Rate:	81.00 deg. F 854.70 psia 1.04e+006 scfh		
	Component		Loading (lb/hr)
	Carbon Dioxide Nitrogen Methane	3.19e-003 3.58e-001 6.39e-001 9.03e+001 5.04e+000	4.33e+002 4.92e+002 3.98e+004
	Isobutane	2.07e+000 4.36e-001 5.68e-001	6.96e+002

Isopentane 2.10e-001 4.16e+002 n-Pentane 1.61e-001 3.20e+002 n-Hexane 4.80e-002 1.13e+002 Cyclohexane 2.10e-002 4.85e+001 Other Hexanes 8.20e-002 1.94e+002 Heptanes 4.60e-002 1.26e+002 Methylcyclohexane 2.10e-002 5.67e+001 2,2,4-Trimethylpentane 2.49e-003 7.81e+000 Benzene 4.71e-003 1.01e+001 Toluene 1.43e-004 3.62e-001 Ethylbenzene 1.29e-004 3.76e-001 Xylenes 1.21e-003 3.51e+000 C8+ Heavies 1.39e-002 6.49e+001 Total Components 100.00 5.03e+004

Page: 6

LEAN GLYCOL STREAM


AN GLICOL SINEAH		
Temperature: 81.00 deg. F Flow Rate: 6.05e+000 gpm		
Component	Conc. (wt%)	Loading (lb/hr)
Water Carbon Dioxide Nitrogen	9.85e+001 1.50e+000 4.40e-012 3.75e-013 9.03e-018	5.11e+001 1.50e-010 1.28e-011
Propane Isobutane	4.36e-008 3.67e-009 1.07e-009 1.53e-009 1.44e-004	1.25e-007 3.65e-008 5.23e-008
n-Hexane Cyclohexane Other Hexanes	1.46e-004 8.72e-005 1.14e-003 2.26e-004 1.83e-004	2.97e-003 3.89e-002 7.69e-003
	1.40e-005 3.96e-003 3.63e-004	4.78e-004 1.35e-001 1.24e-002
Xylenes C8+ Heavies	1.26e-002 6.17e-003	
Total Components	100.00	3.40e+003

RICH GLYCOL AND PUMP GAS STREAM

81.00 deg. F 854.70 psia 6.28e+000 gpm has more than one	phase.	
Component	Conc. (wt%)	Loading (lb/hr)

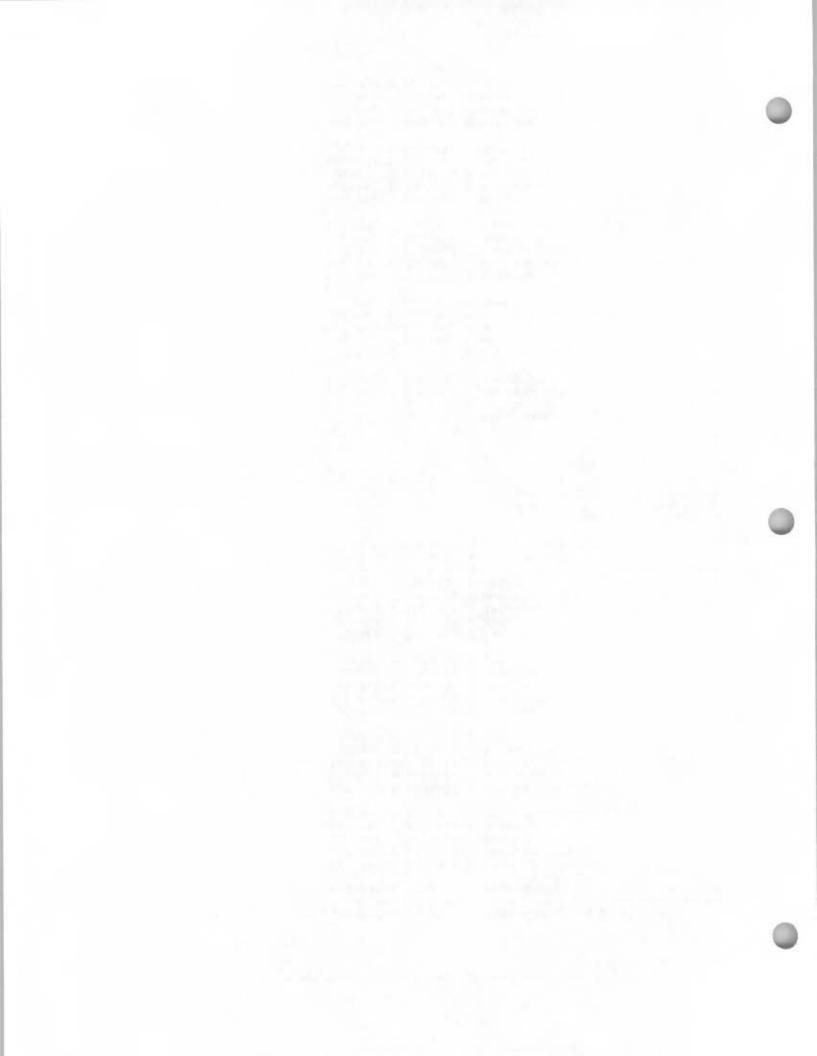
TEG 9.54e+001 3.35e+003

62

Page: 7

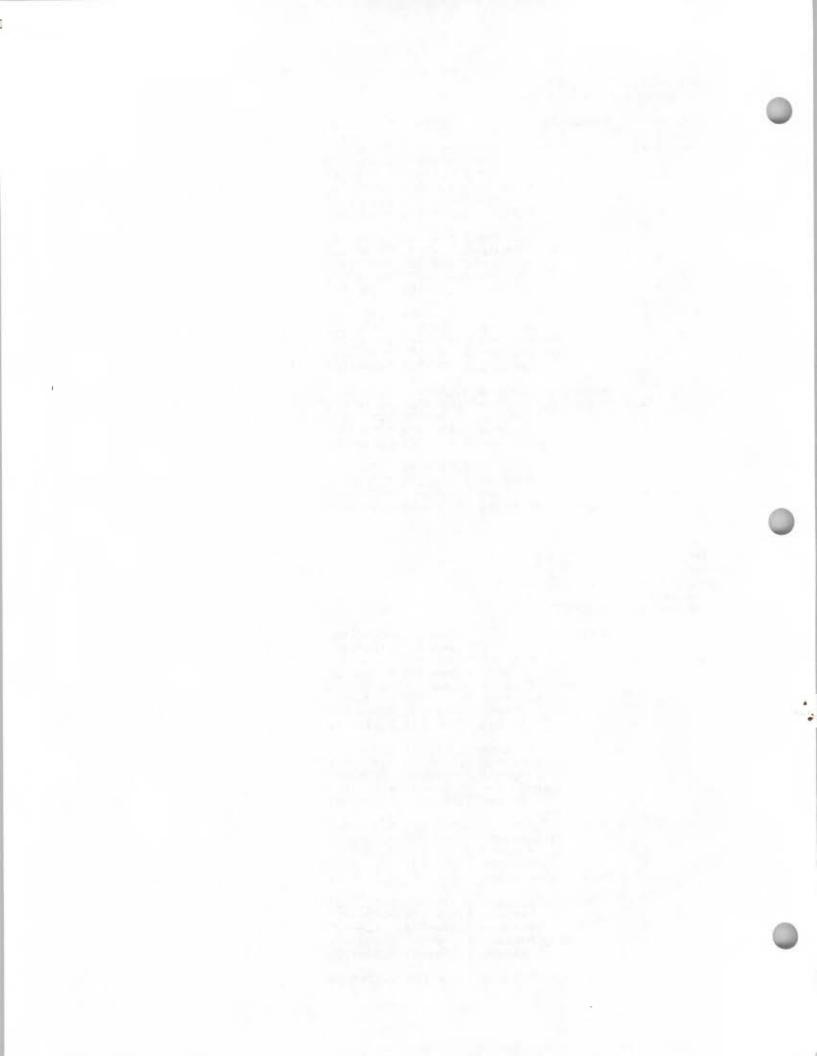
Carbon Dioxide Nitrogen	2.52e+000 5.14e-002 1.36e-002 1.06e+000	1.81e+000 4.76e-001	
Propane Isobutane	1.74e-001 1.38e-001 4.87e-002 7.83e-002 3.63e-002	4.85e+000 1.71e+000 2.75e+000	
n-Hexane Cyclohexane Other Hexanes		6.74e-001 1.25e+000 9.08e-001	
	1.06e-003 7.70e-002 4.46e-003	3.74e-002 2.70e+000 1.57e-001	
Xylenes C8+ Heavies Total Components			

FLASH TANK OFF GAS STREAM



Temperature: Pressure: Flow Rate:	120.00 deg. F 84.70 psia 1.02e+003 scfh			
	Component	Conc. (vol%)	Loading (lb/hr)	
	Carbon Dioxide Nitrogen Methane	1.21e-001 1.16e+000 6.15e-001 8.41e+001 6.88e+000	1.38e+000 4.65e-001 3.64e+001	
	Isobutane n-Butane Isopentane	3.41e+000 8.38e-001 1.26e+000 4.47e-001 3.94e-001	1.31e+000 1.97e+000 8.71e-001	
	Cyclohexane Other Hexanes	2.13e-001 1.49e-001	2.22e-001 4.96e-001 4.04e-001	
2,2	Toluene Ethylbenzene	3.67e-002 1.10e-003	7.74e-002 2.74e-003 2.24e-003	
	C8+ Heavies			
	Total Components	100.00	5.47e+001	

FLASH TANK GLYCOL STREAM



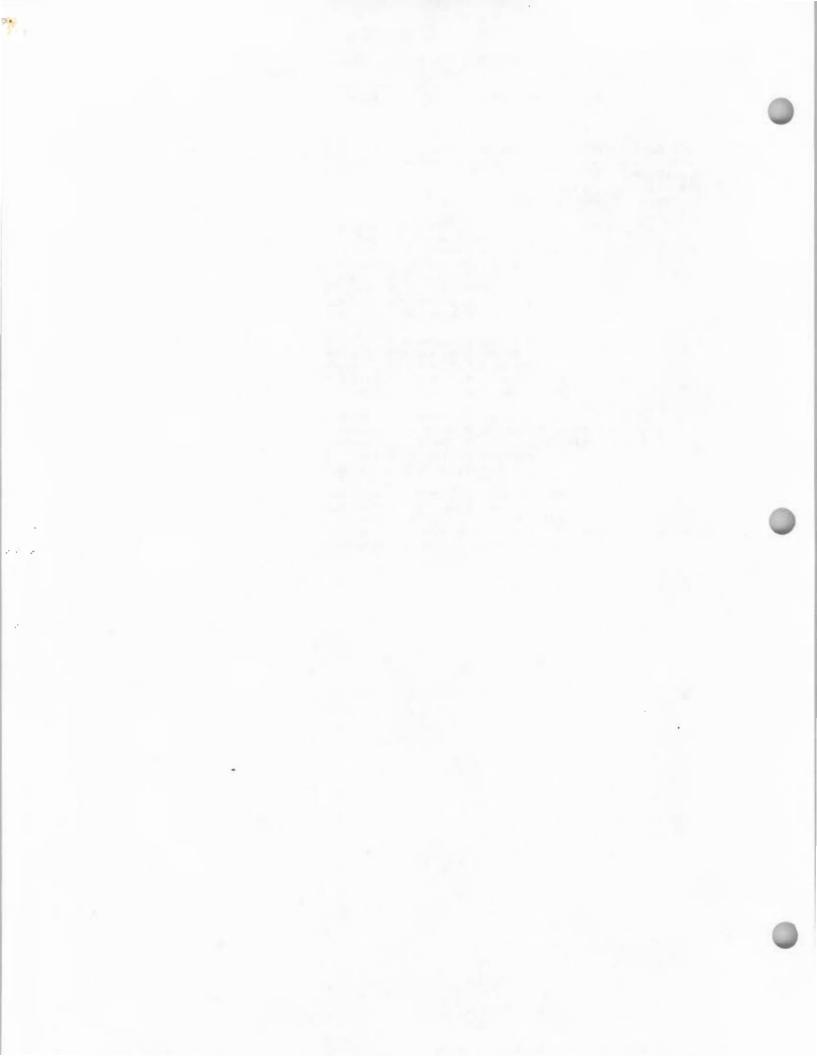
Temperature: 120.00 deg. F Flow Rate: 6.16e+000 gpm

Component	Conc. (wt%)	Loading (lb/hr)	
Water Carbon Dioxide Nitrogen	2.56e+000	8.86e+001 4.27e-001 1.13e-002	
Propane Isobutane	1.48e-002 2.27e-002 1.14e-002 2.26e-002 1.17e-002	7.86e-001 3.95e-001 7.82e-001	
n-Pentane n-Hexane Cyclohexane Other Hexanes Heptanes	2.97e-002	1.03e+000 4.12e-001	
	7.59e-002 4.45e-003	2.63e+000 1.54e-001	
Xylenes C8+ Heavies	9.59e-002 5.03e-002		
Total Components	100.00	3.46e+003	

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 8.85e+002 scfh	
Component	Conc. Loading (vol%) (lb/hr)
Carbon Dioxid Nitrogo Methai	er 8.94e+001 3.75e+001 de 4.16e-001 4.27e-001 en 1.73e-002 1.13e-002 ne 2.42e+000 9.06e-001 ne 7.29e-001 5.11e-001
Isobuta: n-Buta: Isopenta:	ne 7.64e-001 7.86e-001 ne 2.91e-001 3.95e-001 ne 5.77e-001 7.82e-001 ne 2.38e-001 4.01e-001 ne 2.66e-001 4.48e-001
Cyclohexa Other Hexan Heptan	ne 1.74e-001 3.49e-001 ne 5.04e-001 9.89e-001 es 2.01e-001 4.04e-001 es 3.97e-001 9.27e-001 ne 5.80e-001 1.33e+000
Benze Tolue Ethylbenze	ne 7.37e-003 1.96e-002 ne 1.37e+000 2.49e+000 ne 6.59e-002 1.42e-001 ne 8.29e-002 2.05e-001 es 1.16e+000 2.88e+000
C8+ Heavi	es 3.85e-001 1.53e+000

Page: 9



Total Components 100.00 5.35e+001

--- ----

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 9.04e-001 scfh		
Component		Loading (lb/hr)
Ethane Propane Isobutane	2.37e+001 7.13e+000 7.48e+000 2.85e+000 5.65e+000	5.11e-003 7.86e-003 3.95e-003
	2.61e+000 1.70e+000 4.93e+000	4.48e-003 3.49e-003 9.89e-003
Methylcyclohexane 2,2,4-Trimethylpentane Benzene	3.88e+000 5.68e+000 7.21e-002 1.34e+001 6.45e-001	1.33e-002 1.96e-004 2.49e-002
Ethylbenzene Xylenes C8+ Heavies	1.14e+001	2.88e-002
Total Components	100.00	1.55e-001

G3516 LE

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

ENGINE SPEED (rpm): FUEL SYSTEM: HPG IMPCO 1400 COMPRESSION RATIO: 8:1 WITH AIR FUEL RATIO CONTROL 130 AFTERCOOLER WATER INLET (°F): SITE CONDITIONS: JACKET WATER OUTLET (°F): 210 FUEL: **Field Gas** FUEL PRESSURE RANGE(psig): COOLING SYSTEM: JW+OC, AC 35.0-40.0 ADEM3 FUEL METHANE NUMBER: **IGNITION SYSTEM:** 62.2 EXHAUST MANIFOLD: ASWC FUEL LHV (Btu/scf): 1027 ALTITUDE(ft): 5800 COMBUSTION: Low Emission MAXIMUM INLET AIR TEMPERATURE(°F): NOx EMISSION LEVEL (g/bhp-hr NOx): 1.5 55 NAMEPLATE RATING: 1340 bhp@1400rpm SET POINT TIMING: 27.4 SITE RATING AT WAXMUN INLET AIR MAXIMUM TERA TURA RATING LOAD RATING NOTES 100% 16 11,12 ENGINE POWER 1340 945 (1)bhp 1260 670 °F 32 55 55 55 INLET AIR TEMPERATURE ENGINE DATA 7778 8055 8518 FUEL CONSUMPTION (LHV) (2)Btu/bhp-hr 7722 FUEL CONSUMPTION (HHV) (2)Btu/bhp-hr 8532 8594 8901 9412 9030 6604 12692 11944 lb/hr **AIR FLOW** (3)(4)1489 AIR FLOW WET (77°F, 14.7 psia) (3)(4) scfm 2862 2694 2036 70.0 66.5 52.3 39.3 INLET MANIFOLD PRESSURE (5) in Hg(abs) 911 EXHAUST STACK TEMPERATURE (6) •F 907 907 908 7882 7419 5620 EXHAUST GAS FLOW (@ stack temp, 14.5 psia) (7)(4)ft3/min 4126

NOx (as NO2)	(8)	g/bhp hr	1.50	1.50	1.50	1.50
CO	(8)	g/bhp-hr	2.31	2.34	2.45	2.61
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	2.43	2.45	2.56	2.72
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.63	0.64	0.66	0.71
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)	g/bhp-hr	0.42	0.43	0.45	0.47
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.22	0.22	0.23	0.24
CO2	(8)	g/bhp-hr	509	511	522	545
EXHAUST OXYGEN	(10)	% DRY	7.9	7.8	7.7	7.6

lb/hr

(7)(4)

13190

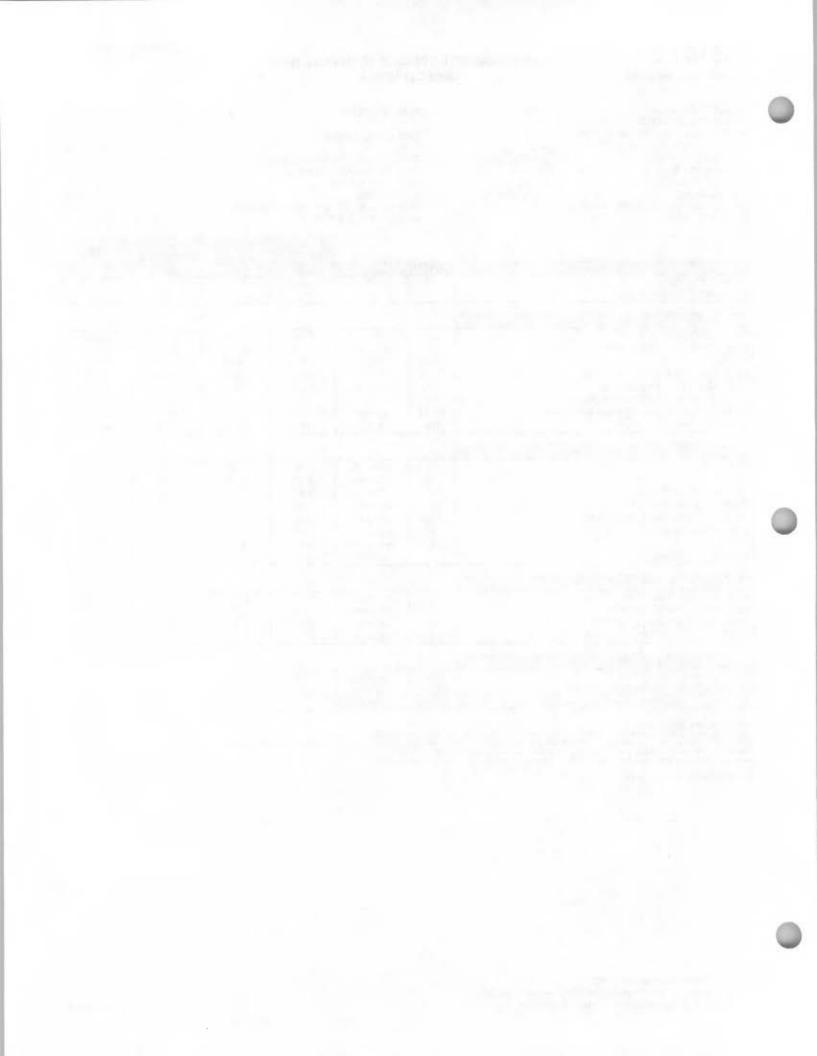
12415

9396

6879

HEAT REJ. TO JACKET WATER (JVV)		Dlu/IIIII	43000	42111	33033	29091	
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	5313	5102	4269	3543	
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	6512	6289	5324	4459	
HEAT REJ. TO AFTERCOOLER (AC)	(11)(12)	Btu/min	9473	9473	5270	2111	
							_

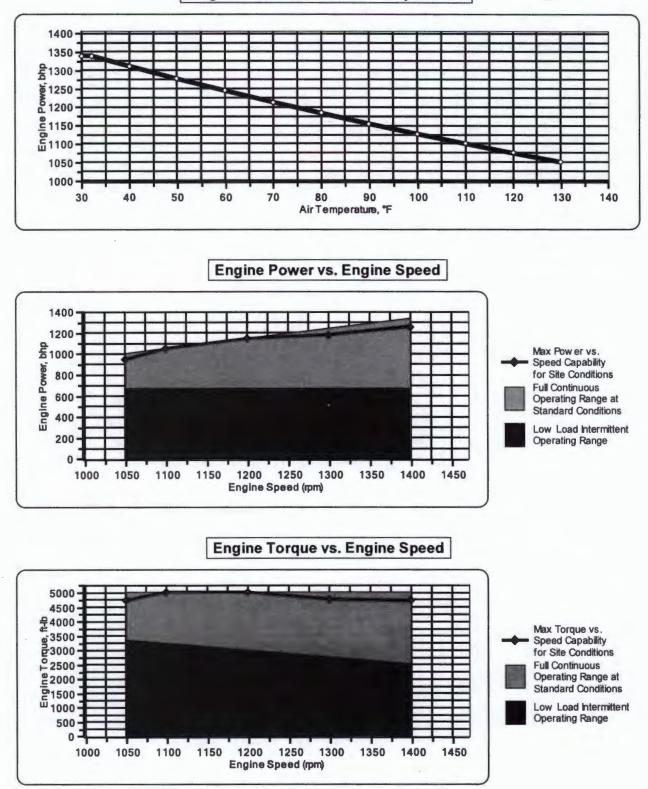
TOTAL JACKET WATER CIRCUIT (JW+OC)	(12)	Btu/min	55848
TOTAL AFTERCOOLER CIRCUIT (AC)	(12)(13)	Btu/min	9946


CONDITIONS AND DEFINITIONS Engine rating obtained and present

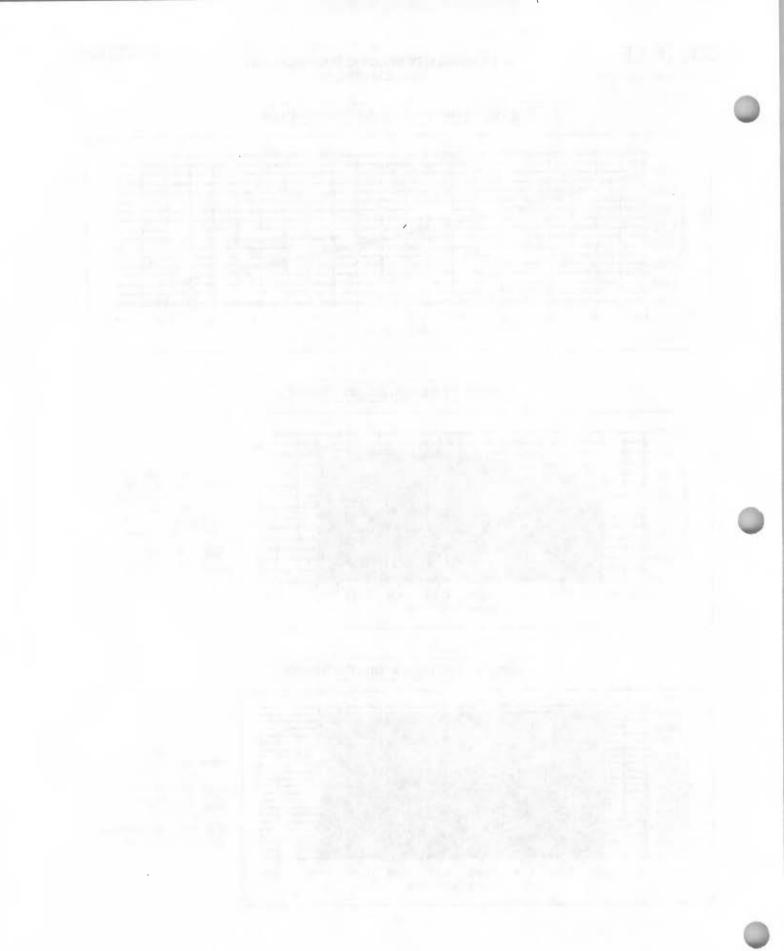
Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max. rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.

EXHAUST GAS MASS FLOW


CATERPILLAR®

GAS COMPRESSION APPLICATION


G3516 LE

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

Engine Power vs. Inlet Air Temperature

PREPARED BY: craig allison, XTO Data generated by Gas Engine Rating Pro Version 3.02.00 Ref. Data Set DM8618-00-001, Printed 03Apr2009

G3516 LE

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is ± 3.0% of full load data.

3. Undried air. Flow is a nominal value with a tolerance of ± 5 %.

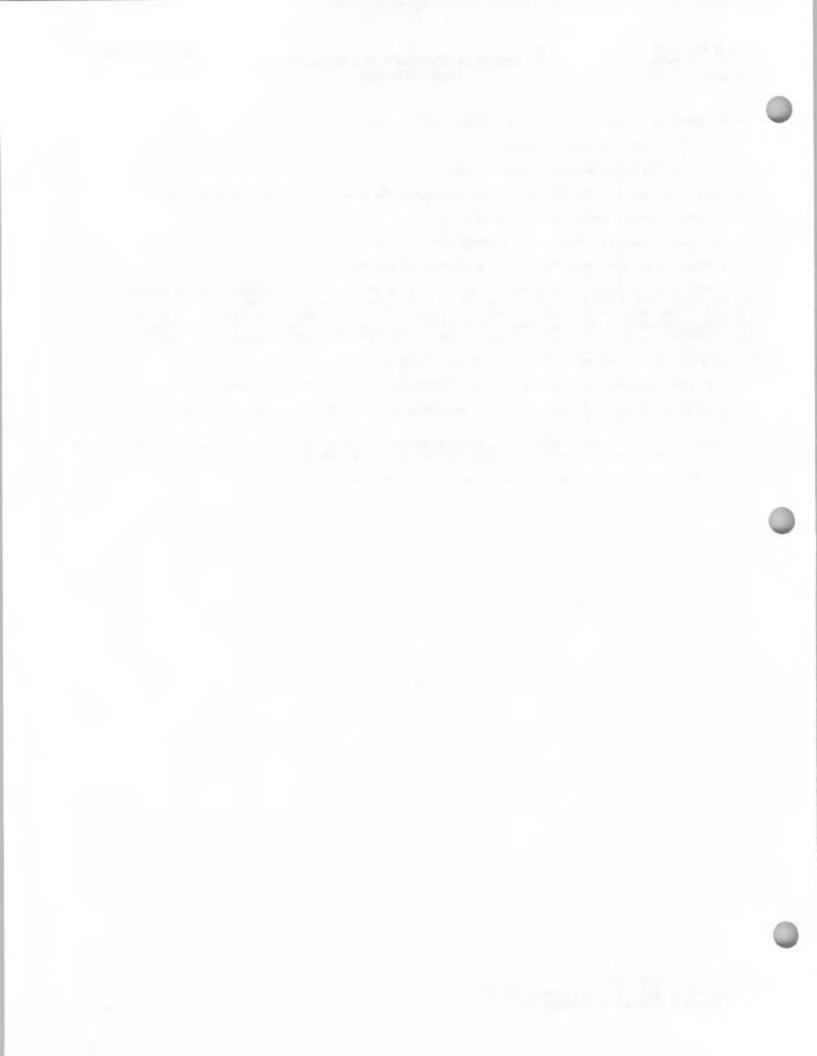
4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

6. Exhaust stack temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

8. Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Fuel methane number cannot vary more than ± 3. Engine should be setup to the nominal published NOx level to ensure emissions remain compliant with a 2.0 g/bhp-hr "not to exceed" NOx limit. All other emission values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "not to exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.


9. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

10. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

11. Heat rejection values are nominal. Tolerances, based on treated water, are \pm 10% for jacket water circuit, \pm 50% for radiation, \pm 20% for lube oil circuit, and \pm 5% for aftercooler circuit.

12. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

13. Heat exchanger sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3516 LE

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

Constituent	Abbrev	Mole %	Norm
Water Vapor	H2O	2.5211	2,5211
Methane	CH4	86.6340	86.6340
Ethane	C2H6	4.9767	4.9767
Propane	C3H8	3.5670	3.5670
Isobutane	iso-C4H1O	0.0000	0.0000
Norbutane	nor-C4H1O	1.8211	1.8211
Isopentane	iso-C5H12	0.0000	0.0000
Norpentane	nor-C5H12	0.4802	0.4802
Hexane	C6H14	0.0000	0.0000
Heptane	C7H16	0.0000	0.0000
Nitrogen	N2	0.0000	0.0000
Carbon Dioxide	CO2	0.0000	0.0000
Hydrogen Sulfide	H2S	0.0000	0.0000
Carbon Monoxide	CO	0.0000	0.0000
Hydrogen	H2	0.0000	0.0000
Oxygen	02	0.0000	0.0000
Helium	HE	0.0000	0.0000
Neopentane	neo-C5H12	0.0000	0.0000
Octane	C8H18	0.0000	0.0000
Nonane	C9H20	0.0000	0.0000
Ethylene	C2H4	0.0000	0.0000
Propylene	C3H6	0.0000	0.0000
TOTAL (Volume %)		100.0000	100.0000

Fuel Makeup:	Field Gas
Unit of Measure:	English
Calculated Fuel Properties	
Caterpillar Methane Number:	62.2
Lower Heating Value (Btu/scf):	1027
Higher Heating Value (Btu/scf):	1135
WOBBE Index (Btu/scf):	1274
THC: Free Inert Ratio:	Not Applicable
RPC (%) (To 905 Btu/scf Fuel):	100%
Compressibility Factor:	0.997
Stoich A/F Ratio (Vol/Vol):	10.68
Stoich A/F Ratio (Mass/Mass):	16.43
Specific Gravity (Relative to Air):	0.650
Specific Heat Constant (K):	1.297

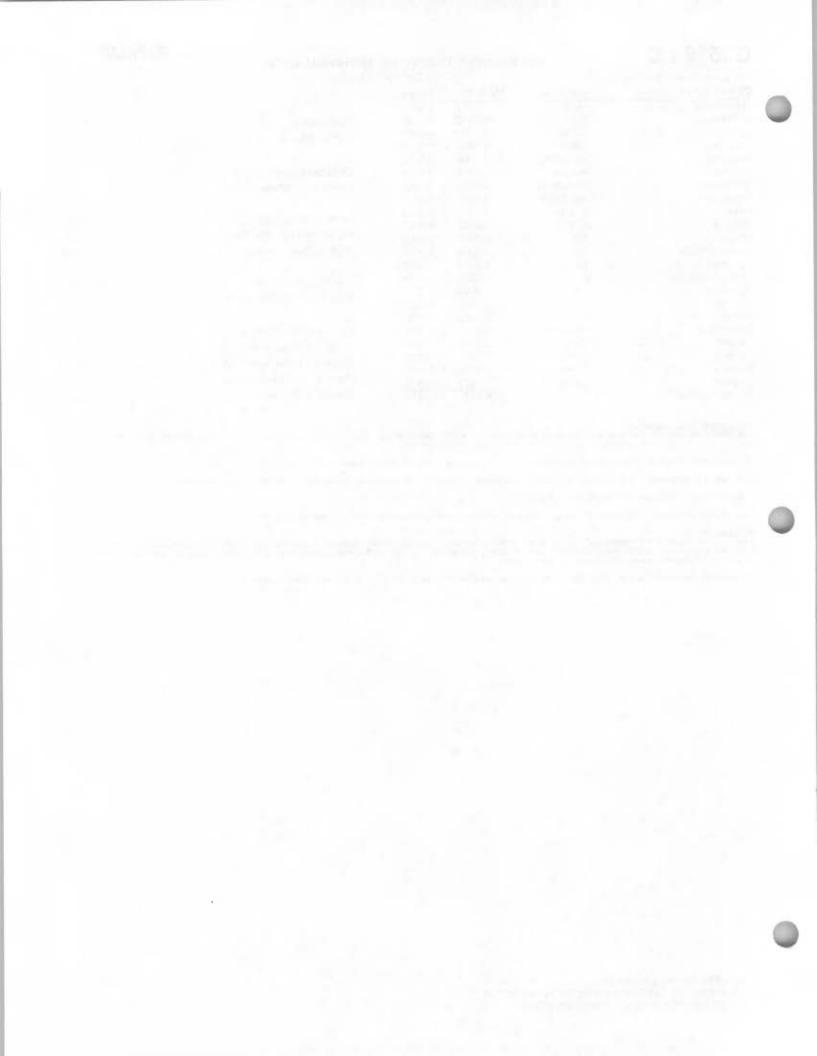
CATERPILLAR®

CONDITIONS AND DEFINITIONS Catarpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Catarpillar Gas Engine Rating Pro program take the Catarpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.


Catarpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid watar and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

Page 4 of 4

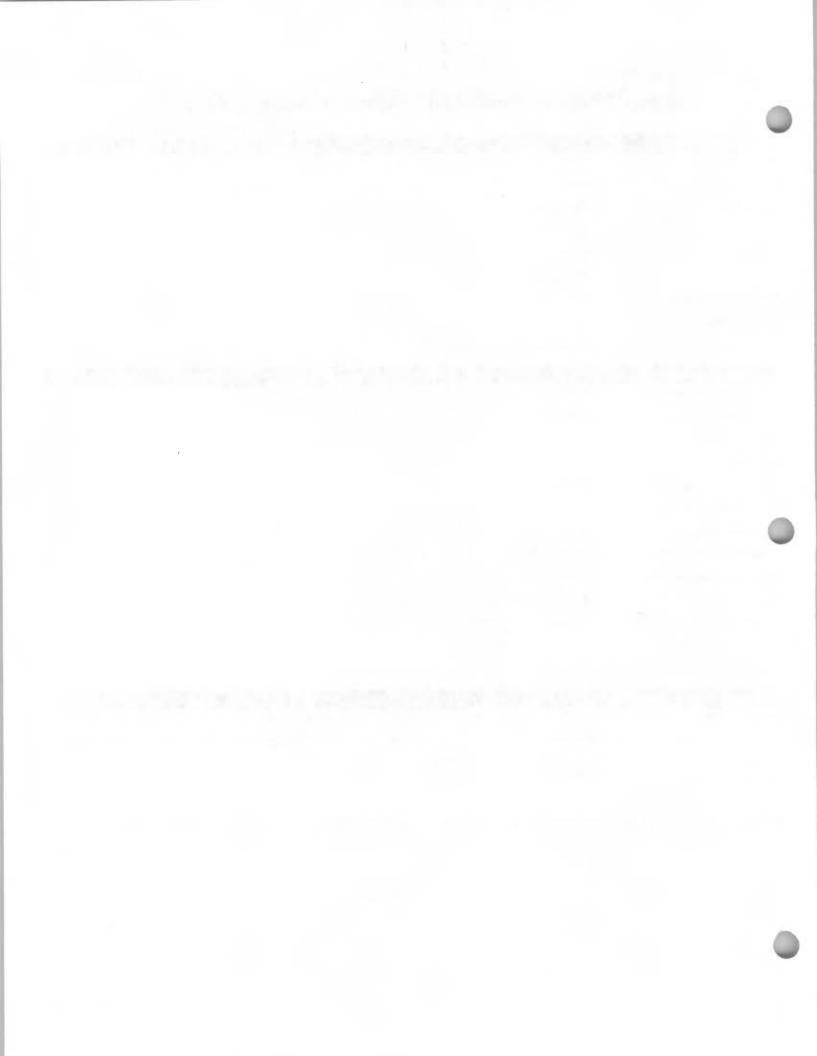
LCC-1

CONFIDENTIAL

MIRATECH Emissions Control Equipment Specification Summary

· · · · · · · · · · · · · · · · · · ·		Proposal Number:	TJ-08-2952
Engine Data			
# of Engines:	1		
Engine Operation:	Gas Compression		
Engine Make:	Caterpillar		
Engine Model:	G 3516 LE		
Power Output:	1,340 bhp		
Fuel:	Natural Gas		
Design Exhaust Temp:	854 F		
Design Exhaust Flow Rate:	13,305 lb/hr		
Lubrication Oil:	0.6 wt% sulfated ash or less		

Catalytic Converter System Data


Catalytic Converter Model:	IQ-26-12-L1	
Inlet / Outlet Pipe Size:	12 inches	
Overall Length:	43 inches	
Diameter:	26 inches	
Weight (including catalyst):	350 lbs	
Converter Pressure Loss:	4.3 Inches of WC	
und Attenuation:	N/A	
Catalyst Section Internals:	Carbon Steel	
Shell / Body Constructions:	Carbon Steel	
Inlet / Outlet Connection:	Standard 125# ANSI Bolt Pattern Flanges - FF	
Instrumentation Ports:	2 inlet/2 outlet (1/2" NPT)	
Oxygen Sensor Ports:	1 inlet/1 outlet (18mm)	
Operation Temperature Limits 750	- 1,250 degrees F (inlet); 1,350 degrees F (outlet)	

Emission Requirements

Exhaust Gases	Engine Outputs	Reduction (%)	Converter Outputs	Area Limits
	(g/ bhp-hr)		(g/ bhp-hr)	
CO	1.89	90%	0.19	90 % Reduction
CH ₂ O	0.25	76%	0.06	0.06 g/bhp-hr
Oxygen	8.3%			

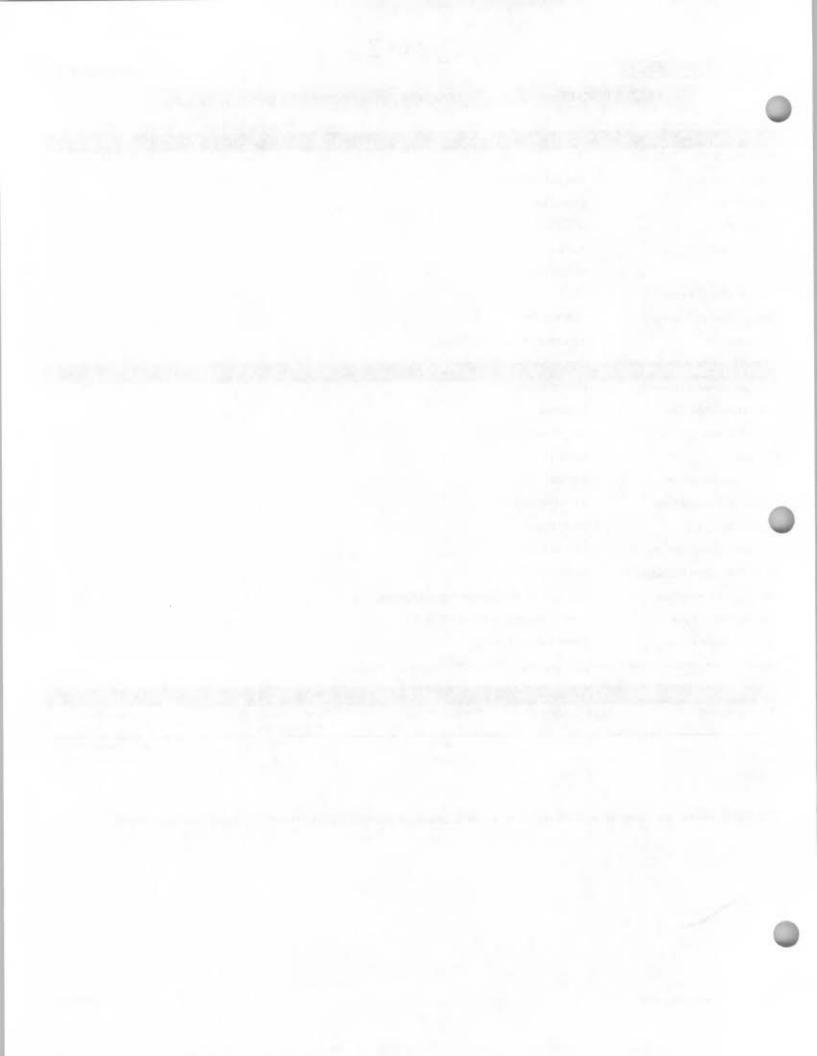
MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

LCC-Z

CONFIDENTIAL

MIRATECH Emissions Control Equipment Specification Summary

MIKA	TECH Emissions Control Equipment S	becilication Sumn	lary
		Proposal Number:	TJ-08-2951 Rev(1)
ngine Data	1		
of Engines:			
ngine Operation:	Gas Compression		
ngine Make:	Caterpillar		
ngine Model:	G 3516 LE		
ower Output:	1,340 bhp		
uel:	Natural Gas		
esign Exhaust Temp:	854 F		
esign Exhaust Flow Rate:	13,305 lb/hr		
ubrication Oil:	0.6 wt% sulfated ash or less		
Catalytic Converter Syste	m Data		
atalytic Converter Model:	RCS-3626-12-L1		
let / Outlet Pipe Size:	12 inches		
verall Length:	106 inches		
iameter:	36/26 inches		
Veight (including catalyst):	840 lbs		
onverter Pressure Loss:	4.8 Inches of WC		
ound Attenuation:	25-30 dba		
atalyst Section Internals:	Carbon Steel		
Shell / Body Constructions:	Carbon Steel		
nlet / Outlet Connection:	Standard 125# ANSI Bolt Pattern Flanges - FF		
nstrumentation Ports:	1 inlet/1 outlet/2 catalyst (1/2" NPT)		
Dxygen Sensor Ports:	1 inlet/1 outlet (18mm)		


Operation Temperature Limits 750 - 1,250 degrees F (inlet); 1,350 degrees F (outlet)

Emission Requirements **Converter Outputs** Area Limits Exhaust Gases Reduction (%) **Engine Outputs** (g/ bhp-hr) (g/ bhp-hr) co 90% 0.19 90 % Reduction 1.89 76% 0.25 0.06 0.06 g/bhp-hr CH₂O 8.3% Oxygen

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

11/19/2008

CATALYTIC SILENCER SIZING PROGRAM

LCC-3

225		CAL	ALYIIC SILENCE	R SIZING PROGRAM	
				GT EXHAUST SYSTEMS, INC.	
				4121 NW 37 Brost	
				Lincoln, NE 68524 402-323-7272 Fax 402-323-7270	
CUSTOMER: E	TEPPAN			402-323-7212 Fax 402-325-7270	
PROJECT: X	the second s			The Mitchield Company Company of Street St.	
DATE:		Q	UOTATION I.D.:		
		_	M, 1340HP, 854TEMP		
			TALYST SIZE		
-	PRESSUR	E DRO	P CALCULATED WITH	A 12 INCH OUTLET	
	EDEODM	NCE	DATA INPUT AND C	AL CHI ATIONS	
1	CIT OIL				
1	PUT DAT	A		CALCULATED	
-		-			
FLOW: ACFM		٦	ACFM	7404.38	
or SCFM 70/14.7		1	SCFM 7844.7	2986.54	
or NCuM/Min32/14.7			NCuM/Min32/14.7		
or LBAMIN			LEMIN	221.68	
or LB/HR	13301		LOVHR	13301.00	
S.G.			3.G.	0.99102	
or M.W.	28.7	* SEE	MLW.	28.700	
TGAS	854	NOTE	TGASTR	1314	
PGAS PSIG			PGAS PSIA	14.700	
PATH PSIA	14.7		OUTLET, SQ.FT.	0.785	
OUTLET SIZE, IN	12		OUTLET VEL, FTMIN	9427.5	
		1			
FUEL, (GAS, or DIESEL)	GAS		VEL HEAD, IN H 20	2.21	
FUEL, (GAS, or DIESEL) BODY STYLE (201 OR 501)	GAS 201	-	VEL HEAD, IN H 20 SCFH 22/14.7	2.21 166344 (FOR CAT CONV SPACE VEL CALC)	

"NOTE: 27.5 MW TYP FOR RICH BURN IDDIAUST GAS; 28.7 MW TYP. FOR LEAN BURN GAS OR DIEBEL

3-WAY OR OXIDATION OXIDATION

4100

2

SERIES (2100,4100,5100 - 8100)

NUMBER OF ELEMENTS = ***

** MAX. BODY CAPACITY - For moduler enter number of elements and helf elements as 1, 2, 4, 6, etc.

For the small round (6°,8°,10°,12°,14°,ar 16°) ENTER R IN C-30 AND THE DIAMETER SELECTED IN C-31. *** NUMBER ELEMENTS For modular enter the number of full and half elements as 1, 1,5, 2, 2,5, 3, 3,5, ..., up to entered Max. Body Capacity. For small round (6°,8°,10°,12°,14°,or 15°) ENTER "1° AND ENTER THE DIAMETER OF IN C-31

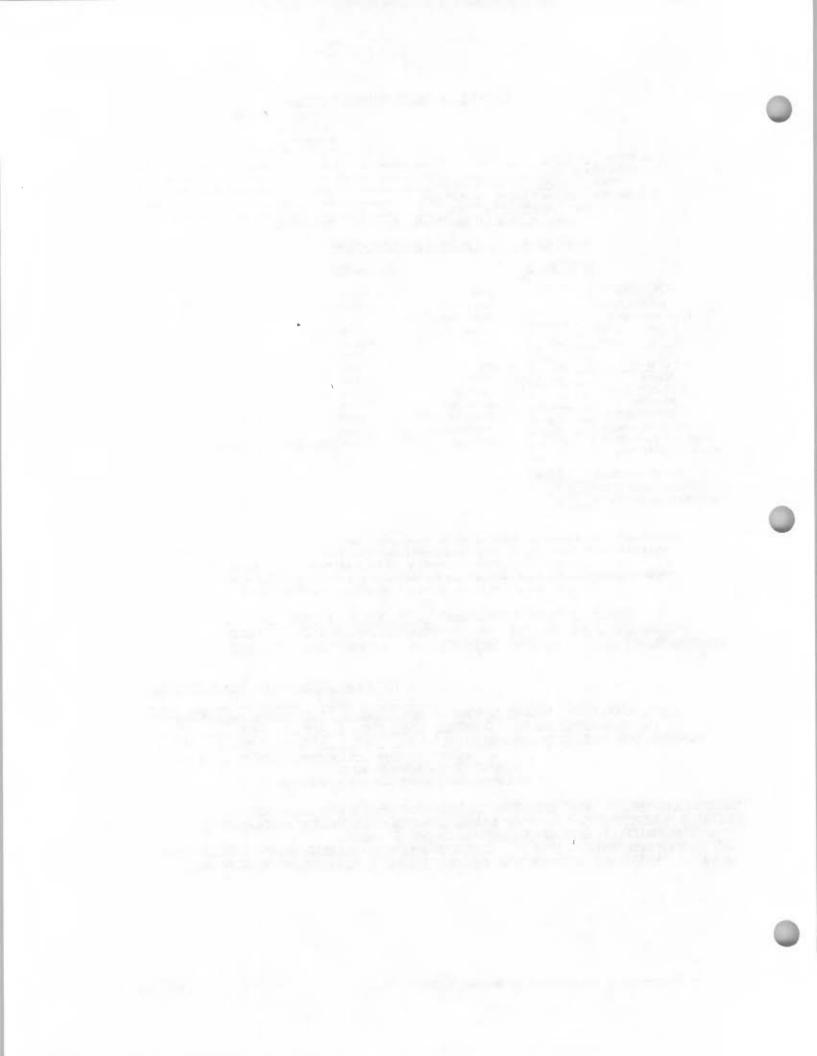
 GT CATALYTIC CONVERTER MODEL NUMBER:
 201
 V O
 3
 200
 4112

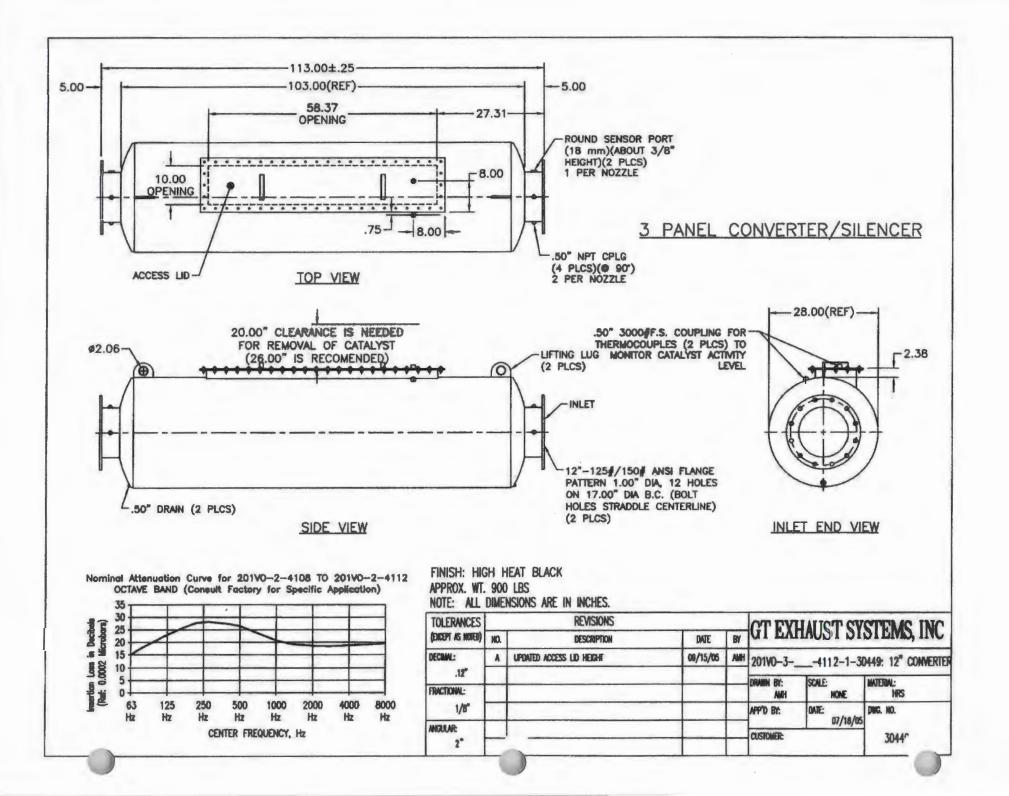
 CALCULATED PRESSURE DROP = 6.71
 INCHES H20, CALCULATED SPACE VELOCITY =
 123318

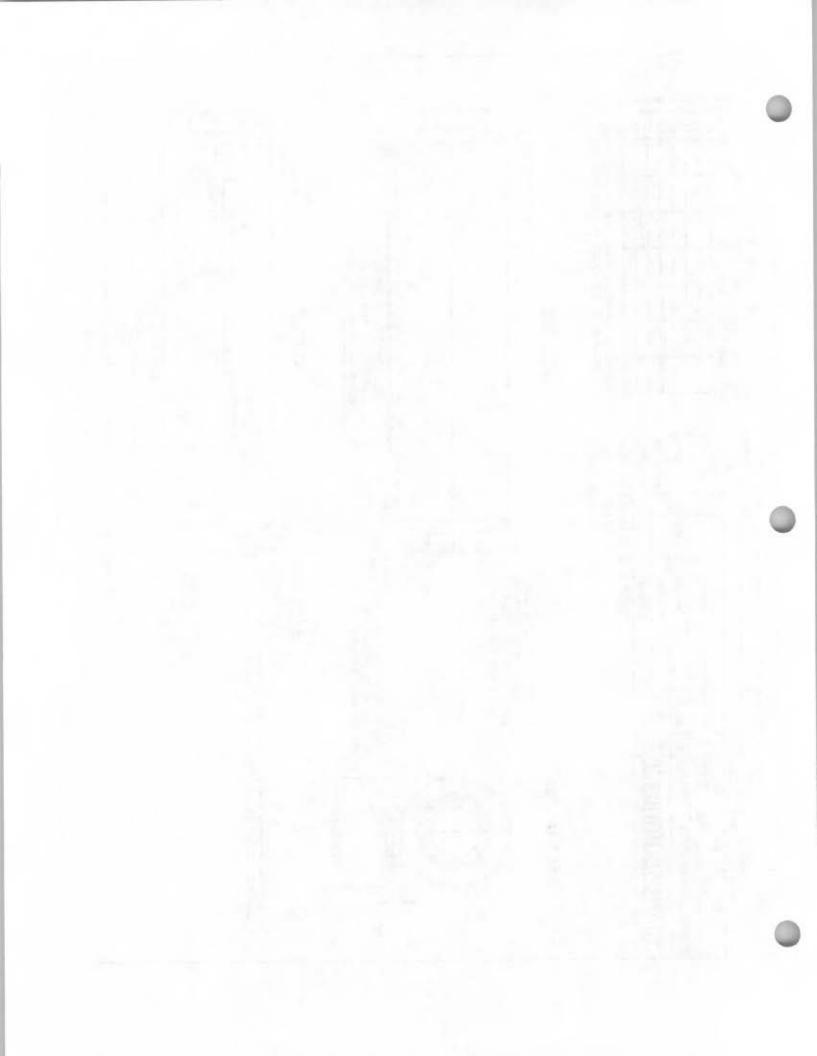
 WITH LEAN BURN GAS ENGINE,
 MIN. OXIDATION RATES ARE:
 95
 % CO & HCHO, AND
 80 % NMMEHC

VOC WILL BE STATED AS NUMERIC FOR THIS APPLICATION

BASED ON STATED EXH. FLOW & TEMPERATURE	NOX	CO	HCHO	NMHC Note 1	NMNEHC Mate 1
AND THE FOLLOWING EMISSIONS OUT OF ENGINE:	1.500	1.890	0.250	0.460	0.310
WE WARRANT EMISSIONS OUT OF CONVERTER NOT EXCEED:	1.500	0.397	0.055	0.230	0.077
UNITS:	gm/bhp-hr	gm/bhp-hr	gm/bhp-hr	gm/bhp-hr	gm/bhp-hr


Note 1: NMHC, NMNEHC & LESS THAN 50% Saturated.


Note 2: Oxidation Catalyst on Diesel or Lean Gas Connot Reduce NOx.


PERFORMANCE WARRANTY CONTINGENT UPON CONVERTER INSTALLATION ON A PROPERLY MAINTAINED ENGINE EXCESSIVE OIL CONSUMPTION AND/OR FUEL CONSUMPTION MAY MASK OR POISON THE CATALYST AND REDUCE DESTRUCTION ENGINE LUBE OIL MUST BE OF A TYPE RECOMMENDED FOR CATALYTIC CONVERTER SERVICE. ELEMENT(S) WILL REQUIRE PERIODIC CLEANING. FREQUENCY WILL DEPEND ON LEVEL OF CONTAMINANTS IN THE EXHAUST GAS CERTAIN CONTAMINANTS SUCH AS HEAVY METAL IN FUEL AND LUBE OIL WILL POSION THE CATALYST AND VOID THE WARANTY

UNI FLOW LINE XTO ENERGY 3516TALE 201VO-3-2-4112-1 95% 2-9-09, SELECT SIZE

_

INDUSTRIAL REFRACTORY SERVICES INC.

2300 South Main Street Fort Worth, Texas 76110 (817)924-9991 mriddell@irsvc.com

March 3, 2009

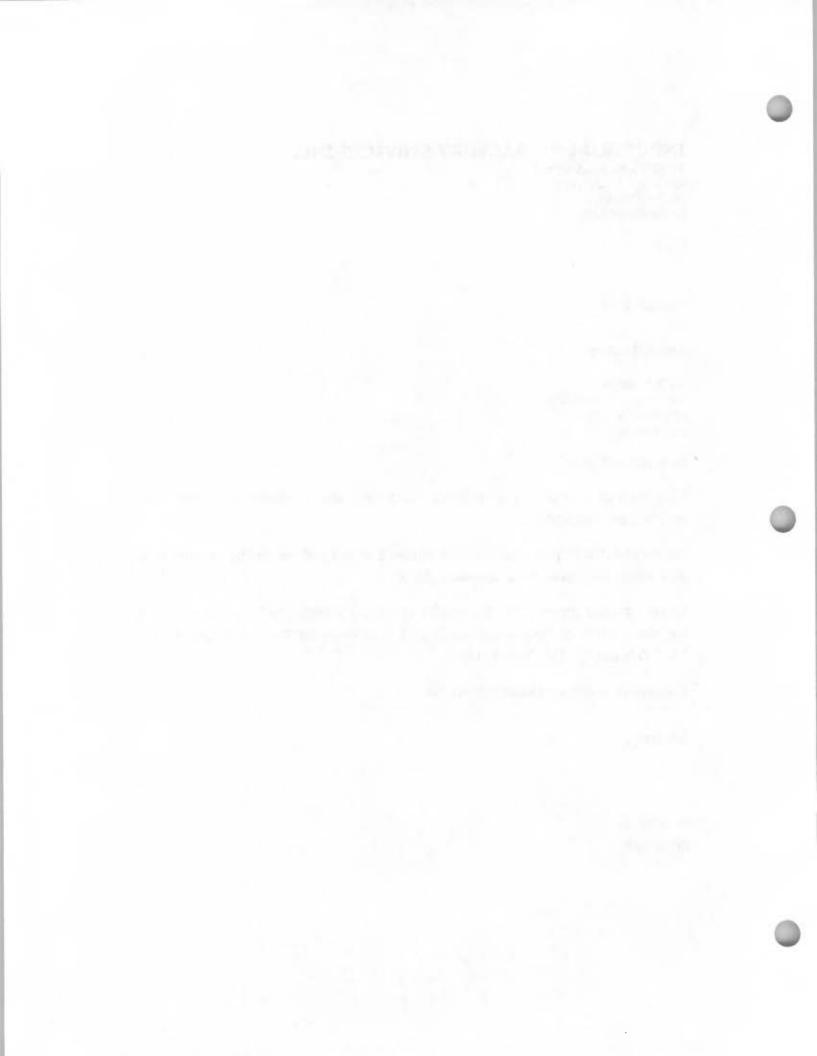
Aaron Tucker

XTO Energy

Natural Gas Operations 810 Houston Street Fort Worth, TX 76102

Dear Aaron Tucker:

The Thermal Oxidizers you recently purchased are compliant with the latest environmental regulations.


Industrial Refractory Services Inc. guarantees a 99% V.O.C. destruction efficiency on all Thermal Oxidizers unless otherwise stated.

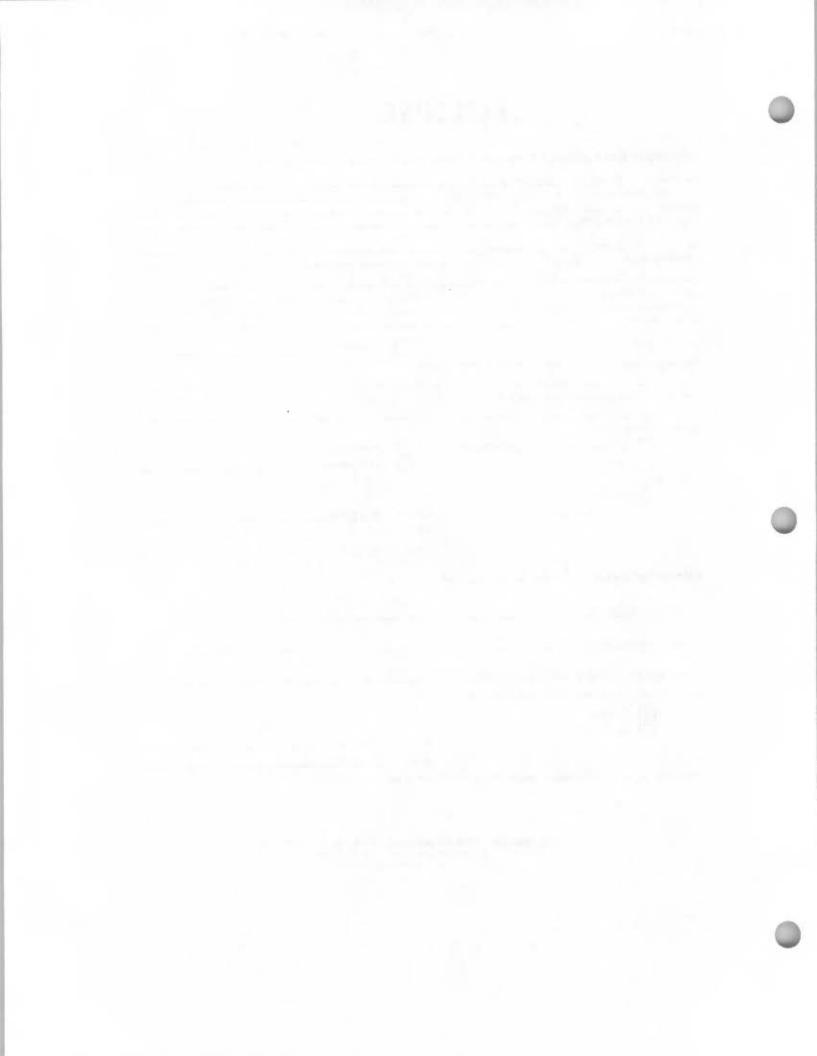
I have attached copies of the Emissions Data that is provided by Eclipse Combustion, the manufacture of the process burner that is used on the Thermal Oxidizers. The 36" T.O.'s use the TJ0200HV burner.

If you have questions please contact me.

Sincerely,

Mike Riddell Enclosure

.

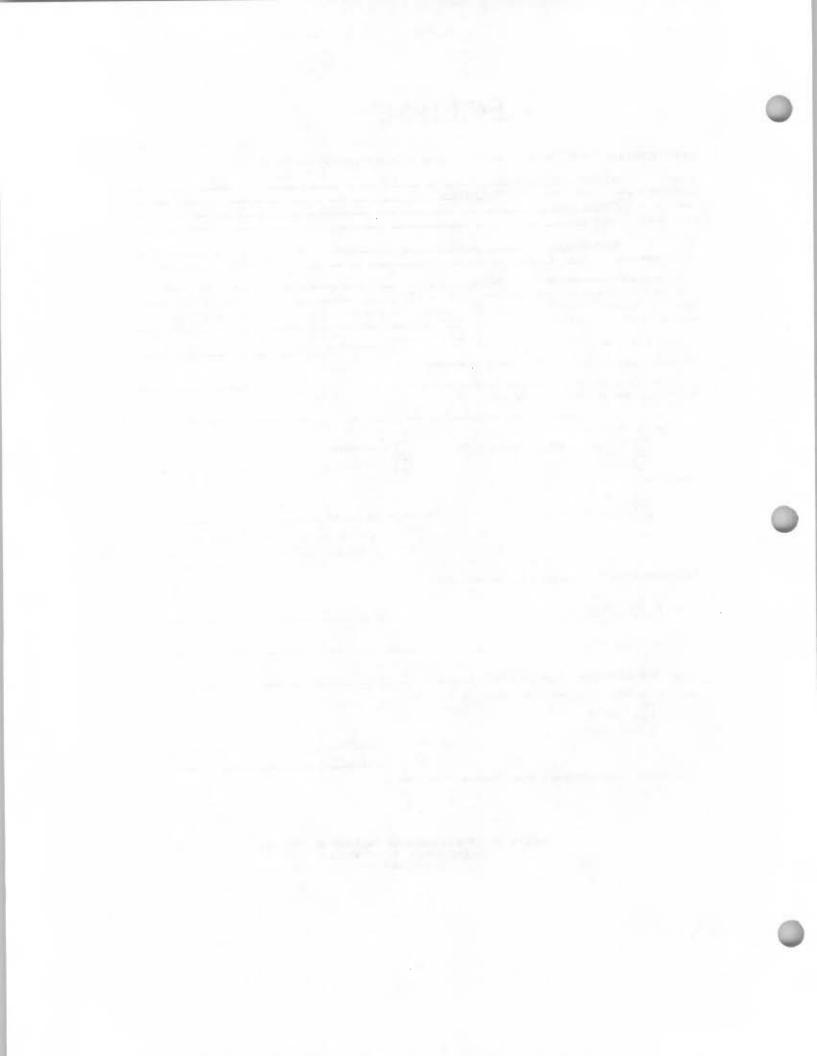

2/2

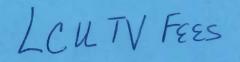
ECLIPS	E	,
---------------	---	---

Incovative Pharma- Solutions

usiomer	Industri	tal retractor	y Services				
ite location (req.				sevelt, UT			
pplication	Themes	Oxidizer					
umer model	T.J0200	HV					
leu	Natural						
rocess temperal	aure	1450°F					
ombustion air te		antering burn	er <u>Am</u>	bient			
recirculating ov	en, process	stream temp	erature ahead	of burner	NA		
urner firing arra	ngement	Horizontal					
pplicable firing r	ele	2 Mmbtuf	¥				
						O.t	
×	NO,		×	co		Other-specify	
hat are the req	uested guar	antee values	? (required to	r guarantee	validity)		
			tel well as a set				
ermit conditions	CUNCIEF WINC	n ine equipm	ent was oberas	6			
ow should emis	sions be sta	ted?					
×	ppm (pa	nts per million) corrected to	3% 02		Ib/million Btu	
	lb/hour					Other-specify	
	MOK FREEME					Con les aplace à	et al and a second s
his is a request	tor						
nis is a request	tor Estimate						
	Estimate	e see of perform	ance		Requested by.	Mile Riddel	
	Estimate		nance		Requested by.		
	Estimate		nance		Office:	IRSING.	
	Estimate Guarant	ee of periom			Office: Date.		
	Estimate Guarant	ee of perform			Office: Date:	IRSING.	
	Estimate Guarant	ee of perform			Office: Date:	IRSING.	
	Estimate Guarant	ee of perform 1927 (To be filled			Office: Date:	IRSING.	
MISSION: NO,: 50 PP	Estimate Guarant	ee of perform 1927 (To be filled			Office: Date:	IRSING.	
	Estimate Guarant	ee of perform 1927 (To be filled			Office: Date:	IRSING.	
	Estimate Guarant S DATA	tee of perform U27 (To be filled			Office: Date:	IRSING.	
MISSION:	Estimate Guarant S DATA	tee of perform U27 (To be filled			Office: Date:	IRSING.	
MISSION: NO,: 50 PP	Estimate Guarant S DATA M @ 3% C	use of perform (To be fille) 22 02	988 en	se Home Of	Office: Date:	IRSING.	
MISSION: NO,: 50 PP CO: <50 P Other: <u>Multip</u>	Estimate Guarant S DATA M @ 3% C PM @ 3% Me	USC (To be filled (To be filled (To be filled (To be filled (To be filled) (To be	to by Eclips	se Home Of	Office: Date:	IRSING.	
MISSION: NO,: 50 PP CO: <50 P	Estimate Guarant S DATA M @ 3% C PM @ 3% Me	USC (To be filled (To be filled (To be filled (To be filled (To be filled) (To be	to by Eclips	se Home Of	Office: Date:	IRSING.	
MISSION: NO,: 50 PP CO: <50 P	Estimate Guarant S DATA M @ 3% C PM @ 3% Ner For Me ormation sul	UCT UCT (To be filled UC (To be filled U	to by Eclips	se Home Of	Office: Date:	IRSING.	
MISSION: NO,: 50 PP CO: <50 P Other: Multip	Estimate Guarant S DATA M @ 3% C PM @ 3% C Alier For Me ormation sul	tee of perform UCT (To be filled 22 02 02 02 02 02 02 02 02 02 02 02	to by Eclips	se Home Of	Office: Date:	IRSING.	
MISSION: NO,: 50 PP CO: <50 P Other: Multip	Estimate Guarant S DATA M @ 3% C PM @ 3% Ner For Me ormation sul	tee of perform UCT (To be filled 22 02 02 02 02 02 02 02 02 02 02 02	to by Eclips	se Home Of	Office: Date:	IRSING.	

Eclipse, Inc. 1665 Elmwood Rd. Rockford, IL 61103 USA Tel: 815-877-3031 Fax: 815-877-3336 www.eclipsenet.com


-



Invovative. Therman Solutions

stomer a lagetlag, (see	Industrial refracto	Floosevelt,	177		
	-	modelevent,	<u>.</u>		
pplication urner model	Thermal Oxidizer				
vel	Natural Gas				
voces temperat	1450*F				
ampunction of the	mperature entering but	mer Ambient			
		parature ahead of burne	or NVA		
umer firing arran					
pplicable firing m					
-		-	-		
×	NO.	× co		Other-specify	
What are the requ	lested guarantee value	e? (required for guaran	tee validity)		
ermit conditions	under which the equip	eteredo lilw trem			
tow should emiss	tions he stated?				
_					
×	ppm (parts per milli	ion) corrected to 3% O2		Ib/million Blu	
	Ib/hour			Other-specify	
his is a request i	or				
X	Estimate				
Ē	Guarantee of perfor	mance	Requested by.	Mike Riddell	
			Office:	IR Sinc.	
					······································
			Dete:	8/19/2008	
				le the sector we are	
EMISSIONS	BDATA (To be fill	led out by Eclipse Home	Office)		
NO,: 50 PPI	M @ 3% 02				
CO -60 P	M @ 3% 02				
CO. <u>COTT</u>					
Other: Multipl		dty Tube 1.2 X NOX			
Based on the info	mation submitted abo	we, these emissions are			
	Estimated				
×	Guaranteed *		By.	Dave Pool	
×					
×			Date	81/19/08	

Eclipse, Inc. 1665 Elmwood Rd. Rocktord, IL 61103 USA Tel: 815-877-3031 Fax: 815-877-3336 www.eclipsenet.com

Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298 (817) 870-2800 (office)

July 16, 2009

COPY

U.S. Environmental Protection Agency FOIA and Miscellaneous Payments Cincinnati Finance Center P.O. Box 979078 St. Louis, MO 63197-9000

RE: Summit Gas Gathering, LLC - 2008 Part 71 Permit Fee Payments Little Canyon Unit Compressor Station

To Whom It May Concern:

XTO Energy, hereby submits the attached payment for Title V – Part 71 Permit fees for 2008 for the Summit Gas Gathering, LLC (SGG) Little Canyon Unit Compressor Station located in Uintah County, Utah. Also attached is the associated U.S. EPA fee Filing Form (FF).

If you should have any questions or require additional information, please feel free to contact me at (817) 885-2672.

Sincerely,

Craig Allison EH&S Advisor

USPS Certified Mail - No. 7008 2810 0000 4380 0852

- Encl: Check # 6757295 Little Canyon Unit EPA Form FF - Fee Filing Forms
- Cc: Damien Jones, SGG Roosevelt NGO Office Ms. Claudia Smith, U.S. EPA Region 8

001346840

817-885-2195 0000126

XTO ENERGY INC.	FORT WORTH, TEXA	AS 76102-6298 8	17-885-2195
DESCRIPTION	INVOICE DATE	INVOICE NUMBER	INVOICE AMOUNT
RMIT FEES XTO LITTLE CANYON	7/13/09	REQ 090713CA	8054.50
· · ·			
NDOR VENDOR	CHECK	CHECK	
IMBER 8006078 NAME U.S. ENVIRONMENTAL MITTANCE ADVICE PLEASE DETACH STUB BEFORE DEPOSITING THIS DOCUMENT FEATURES VISIBLE AND INVISIBLE FIB XTO ENERGY INC. 810 Houston St Fort Worth, Texas 76102-6298	CHECK ERS, A VOID BACKGRO JPMorgan Co	h Chase, N.A. Numbus, OH 6-1544/441	
AY EIGHT THOUSAND FIFTY-FOUR DOLLARS AND	FIFTY CENTS	V	AMOUNT \$8,054.50 DID AFTER 90 DAYS ENDOR
DER OF U.S. ENVIRONMENTAL PROTECTION AGENCY, FOIA AND MISC. PMNTS- CINCINNATI FINANCE CENTER PO BOX 979078 SAINT LOUIS, MO 63197		Alls	
	ALL BALL	AUTHORI	ZED SIGNATURE

SEPA United States Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

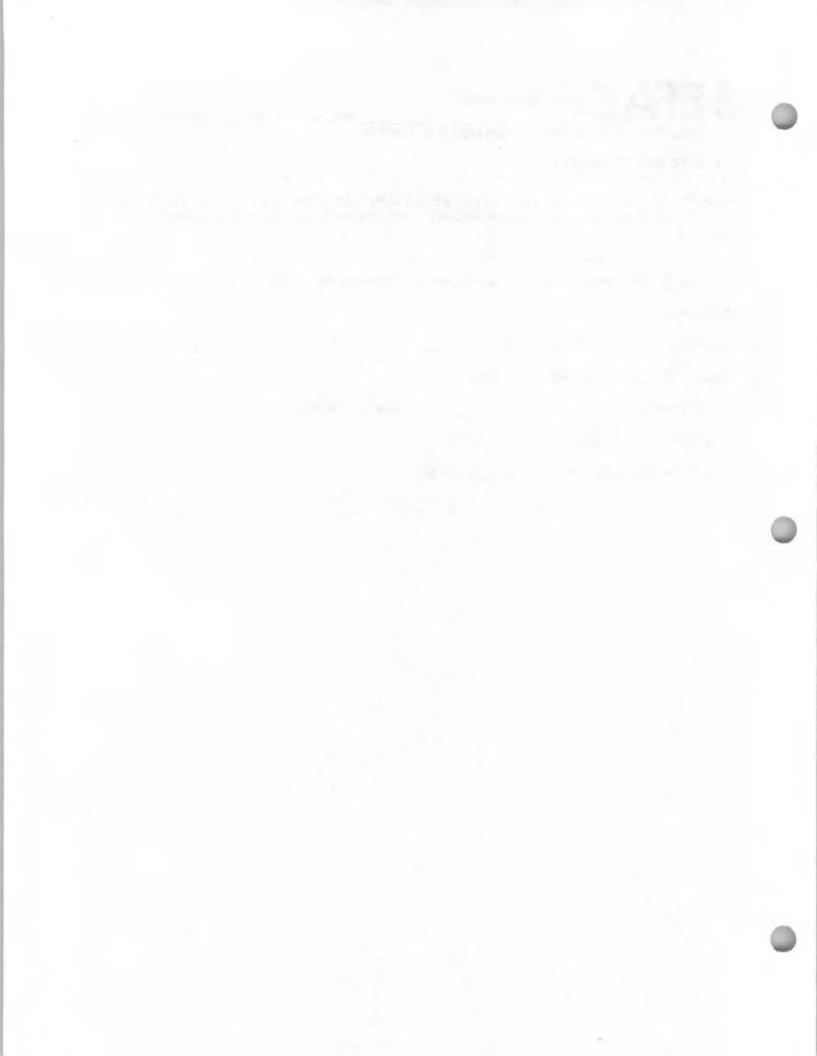
Federal Operating Permit Program (40 CFR Part 71)

FEE FILING FORM (FF)

Complete this form each time you prepare form **FEE** and send this form to the appropriate lockbox bank address, along with full payment. This form required at time of initial fee payment, and thereafter, when paying annual fees.

Source or Facility NameSummit Gas Gathering – Little Canyon Unit Compressor Station
Mailing Address:
Street/P.O. Box810 Houston St CityFt. Worth
State TX ZIP 76102 - 6298
Contact Person: Craig Allison Title EH&S Advisor
Telephone (_817) _8852672 Ext
Total Fee Payment Remitted: \$8,054.50

SEPA United States Environmental Protection Agency


OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

FEE FILING FORM (FF)

Complete this form each time you prepare form **FEE** and send this form to the appropriate lockbox bank address, along with full payment. This form required at time of initial fee payment, and thereafter, when paying annual fees.

Source or Facility NameSummit Gas Gathering – Little Canyon Unit Compressor Station
Mailing Address:
Street/P.O. Box810 Houston St CityFt. Worth
State TX ZIP 76102 - 6298
Contact Person: Craig Allison Title EH&S Advisor
Telephone (_817) _8852672 Ext
Total Fee Payment Remitted: \$8,054.50

Environmental Protection Agency

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

FEE CALCULATION WORKSHEET (FEE)

United States

Use this form initially, or thereafter on an annual basis, to calculate part 71 fees.

A. General Information

Type of fee (Check one): _X_Initial ___Annual

Deadline for submitting fee calculation worksheet / /

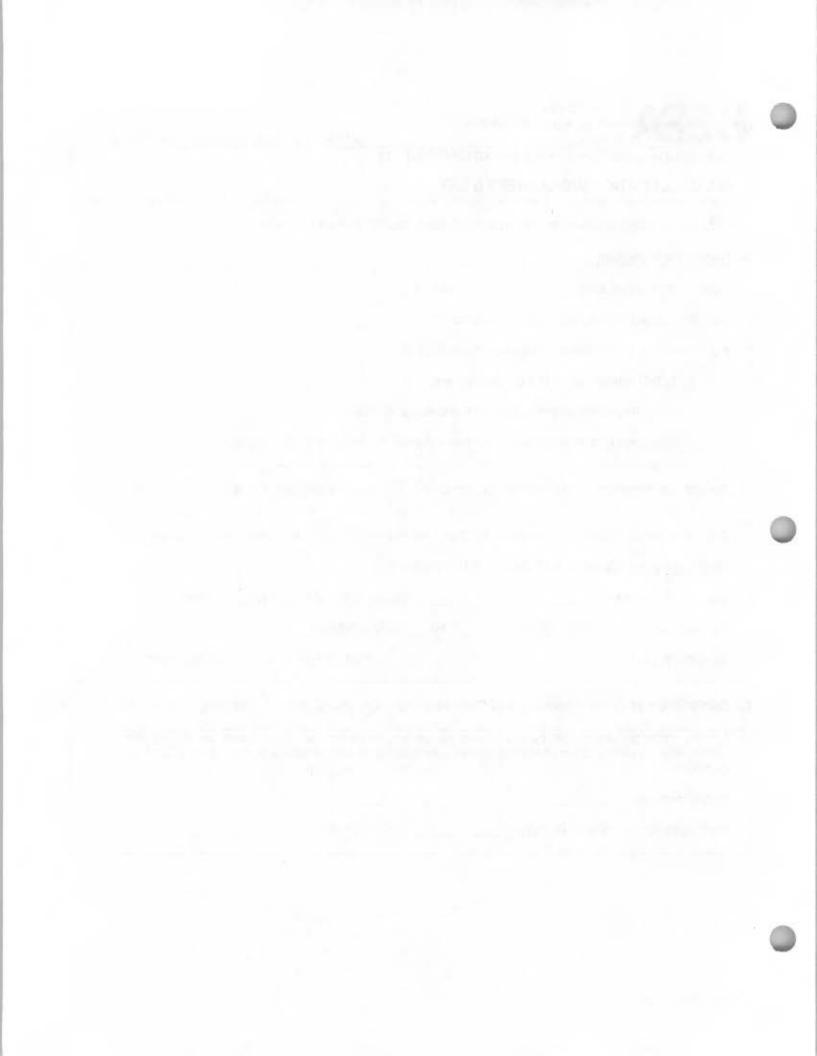
For initial fees, emissions are based on (Check one):

_X_Actual emissions for the preceding year

Estimates of actual emissions for the preceding year

Estimates of actual emissions for current year. Date commenced operations / /

B. Source Information: Complete this section only if you are not applying for a permit at this time.


Source or facility nameSummit G	as Gathering – Little Canyon Unit Compressor Station
Mailing address: Street or P.O. Box	_810 Houston St
CityFt. Worth	StateTXZIP76102 6298
Contact personCraig Allison	TitleEH&S Advisor
Telephone (_817_) _8852672	Ext Part 71 permit noNot Assigned

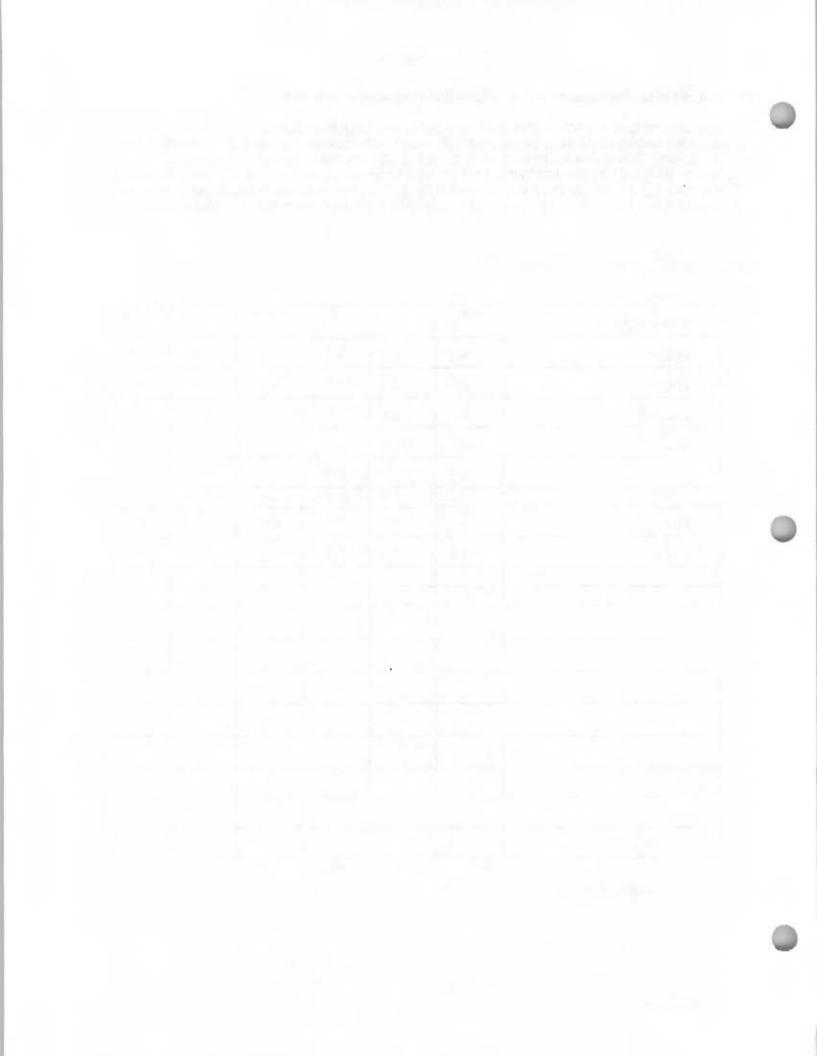
C. Certification of Truth, Accuracy and Completeness: Only needed if not submitting a separate form CTAC.

I certify under penalty of law, based on information and belief formed after reasonable inquiry, the statements and information contained in this submittal (form and attachments) are true, accurate and complete.

Name (signed)

Name (typed) ____Nick J. Dungey_____ Date: / /

D. Annual Emissions Report for Fee Calculation Purposes - Non-HAP


You may use this to report actual emissions (tons per year) of regulated pollutants (for fee calculation) on a calendar-year basis for both initial and annual fee calculation purposes. Section E is designed to report HAP emissions. Quantify all actual emissions, including fugitives, but do not include insignificant emissions and certain regulated air pollutants that are not counted for fee purposes, such as CO (see instructions). You may round to the nearest tenth of a ton on this form. Sum the emissions in each column and enter a subtotal at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000 for that column.

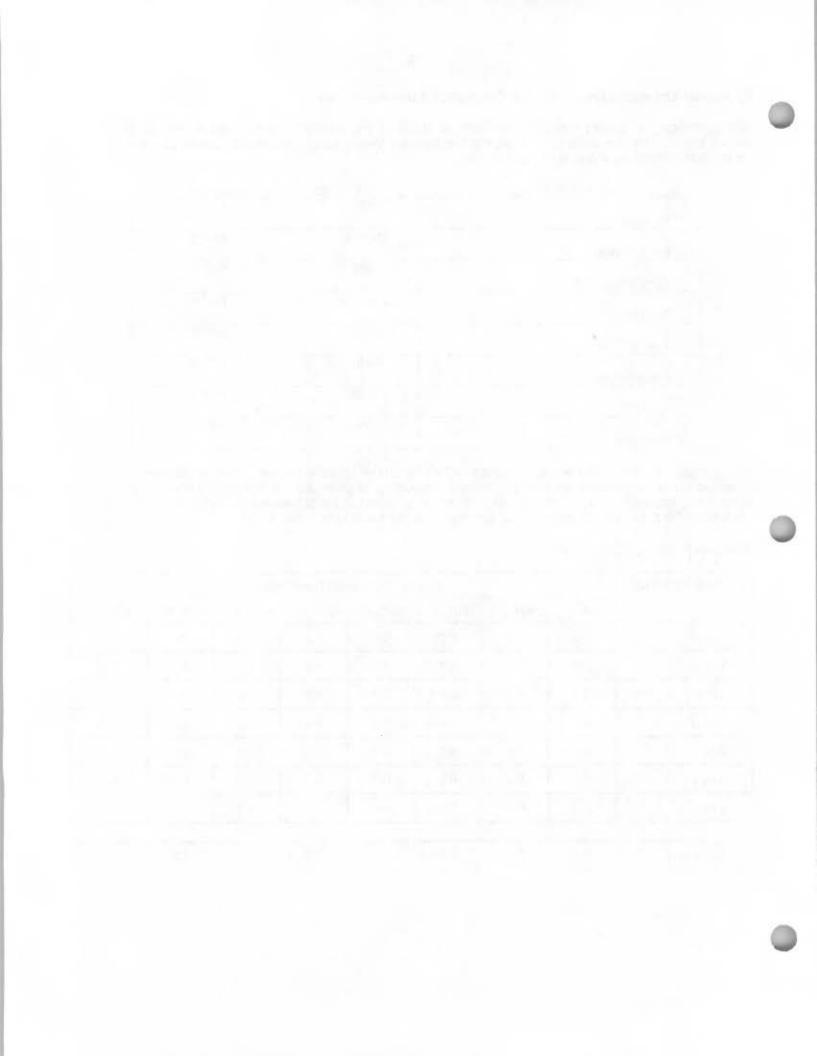
2

Emission Unit ID	NOx	VOC	SO2	PM10	Lead	Other
LCC-1	18.7	4.2	0.0	0.0	0.0	0.0
LCC-2	19.4	4.3	0.0	0.0	0.0	0.0
LCC-3	11.5	0.8	0.0	0.0	0.0	0.0
LCD-1	0.0	103.6	0.0	0.0	0.0	0.0
LCF-1	0.0	4.0	0.0	0.0	0.0	0.0
LCG-1	3.2	0.0	0.0	0.1	0.0	0.0
LCT-1	0.0	4.5	0.0	0.0	0.0	0.0
LCT-2	0.0	3.6	0.0	0.0	0.0	0.0
	52.8	125.0	0.0	0.1	0.0	0.0

This data is for _____2008_____ (year)

SUBTOTALS

E. Annual Emissions Report for Fee Calculation Purposes -- HAP

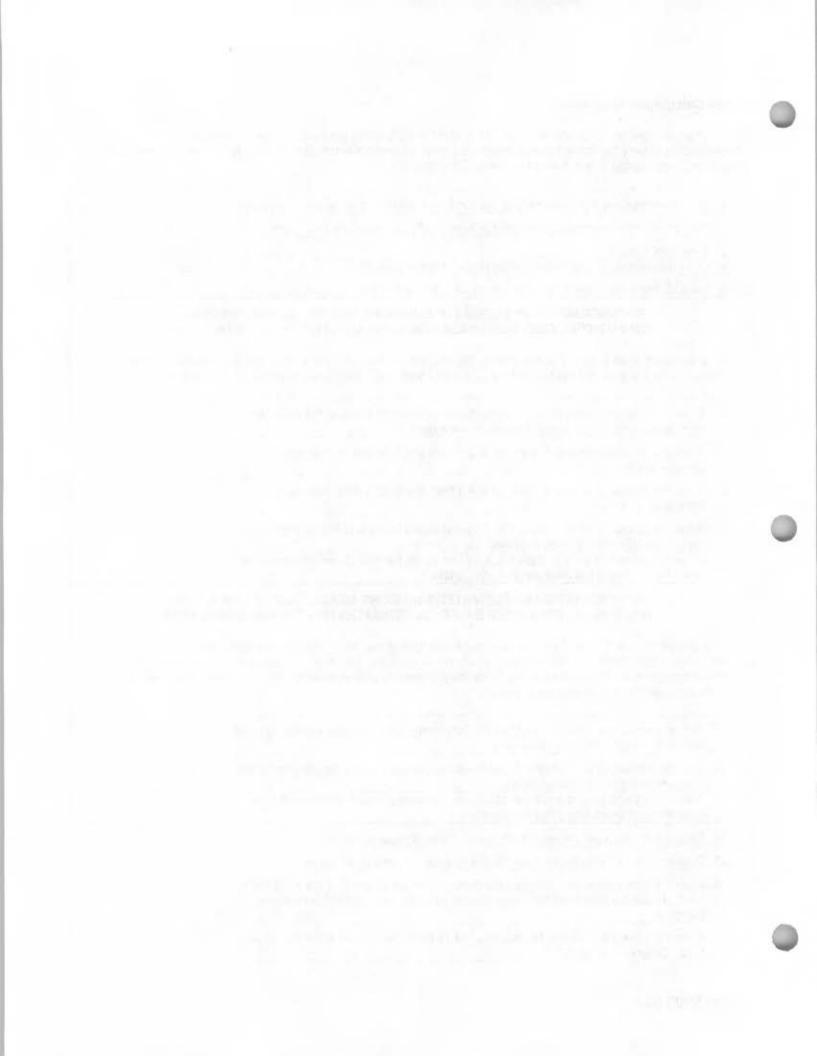

<u>HAP Identification</u>. Identify individual HAP emitted at the facility, identify the CAS number, and assign a unique identifier for use in the second table in this section. When assigning identifier codes, use "HAP1" for the first, "HAP2" for the second, and so on.

Name of HAP	CAS No	Identifier
Benzene	71432	HAP 1
Ethylbenzene	100414	HAP 2
Formaldehyde	50000	HAP 3
Toluene	108883	HAP 4
Xylene	1330207	HAP 5
Acetaldehyde	75070	HAP 6
Acrolein	107028	HAP 7
N-hexane	110543	HAP 8

<u>HAP Emissions</u>. Report the actual emissions of individual HAP identified above. Use the identifiers assigned in the table above. Include all emissions, including fugitives, and do not include insignificant emissions. You may round to the nearest tenth of a ton. Sum the emissions in each column and enter a subtotal at the bottom of the page. If any subtotal exceeds 4,000 tons, enter 4,000.

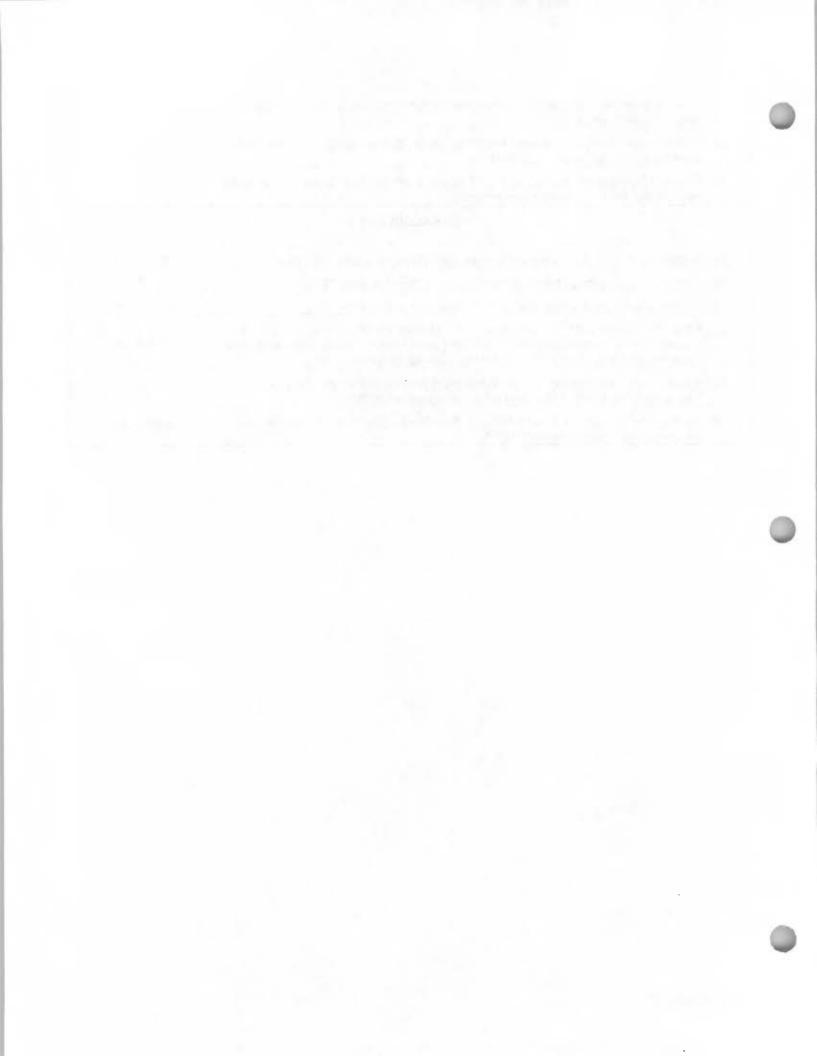
This data is for ____2008____ (year)

Emissions Unit ID			Actu	ual Emissio	ons (Tons/Y	'ear)		
	HAP_1_	HAP_2_	HAP_3_	HAP_4_	HAP_5_	HAP_6_	HAP_7	HAP_8_
LCC-1	0.0	0.0	0.7	0.0	0.0	0.3	0.2	0.0
LCC-2	0.0	0.0	0.7	0.0	0.0	0.3	0.2	0.0
LCC-3	0.0	0.0	0.4	0.0	0.0	0.2	0.1	0.0
LCD-1	9.7	0.7	0.0	0.5	8.9	0.0	0.0	3.0
LCF-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
LCT-1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.2
LCT-2	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.2
SUBTOTALS	9.7	0.7	1.8	0.7	8.9	0.8	0.5	3.5

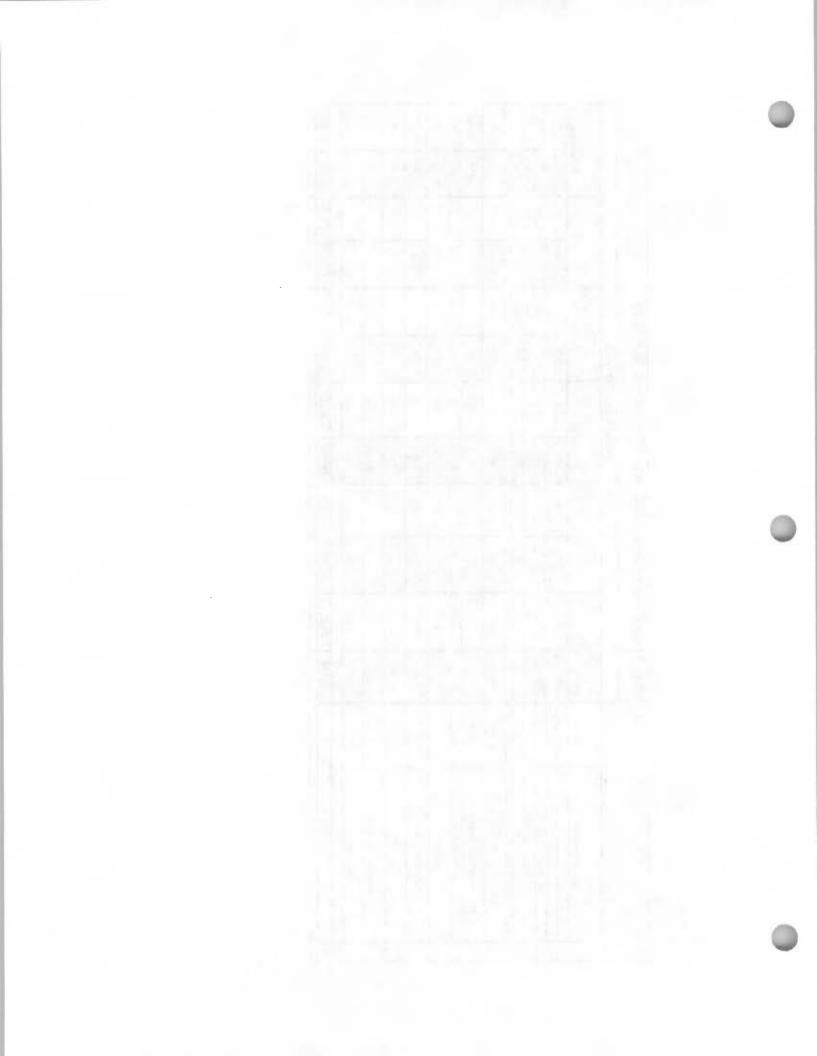


ſ

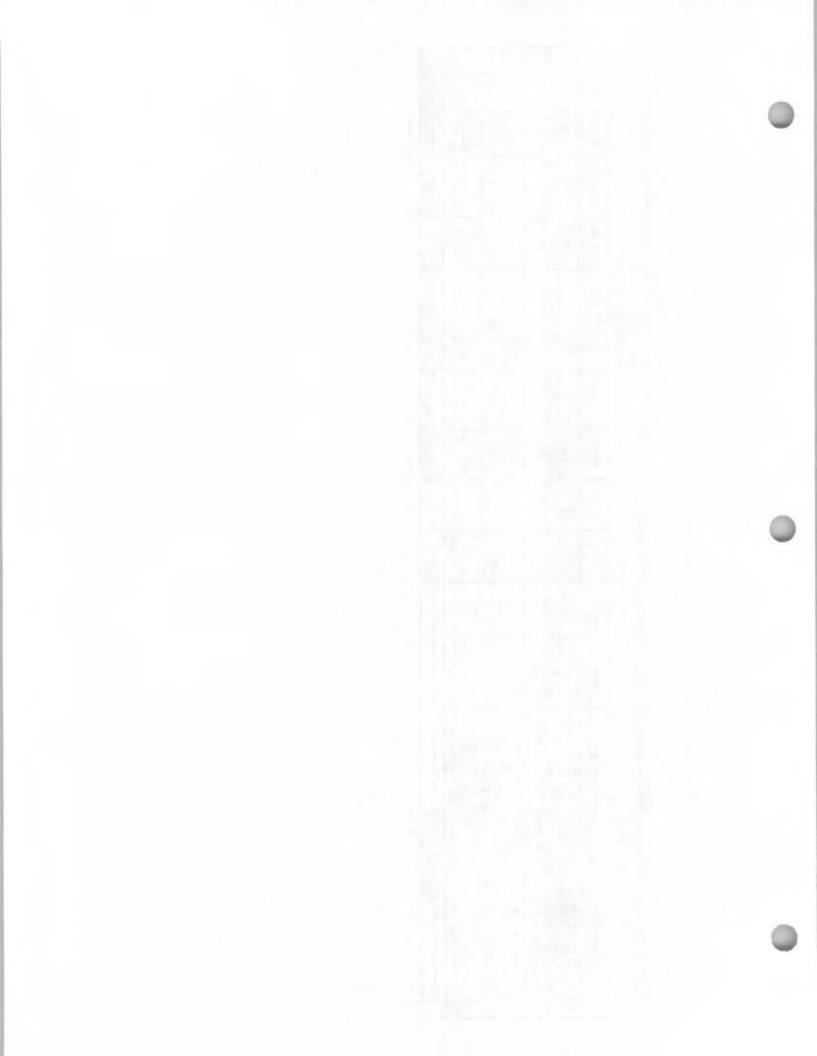
F. Fee Calculation Worksheet


This section is used to calculate the total fee owed for both initial and annual fee purposes. Reconciliation is only for limited cases when you pay the annual emissions for the first time; if it does not apply to you, complete line 1-5 and then lines 21 - 26 only.

1. Sum the emissions from section D of this form (non-HAP) and enter the total (tons).	177.9
2. Sum the emissions from section E of this form (HAP) and enter the total (tons).	26.6
3. Sum lines 1 and 2.	204.5
4. Enter the emissions that were counted twice. If none, enter "0."	26.6
5. Subtract line 4 from line 3, round to the nearest ton, and enter the result here.	178
RECONCILIATION OF ESTIMATED EMISSIONS AGAINST ACTUAL EMIS (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE CURREN Only complete lines 6-10 if you are paying the first annual fee, when the initial fee was emissions for the year you paid initial fees (this is not common). Otherwise skip to line 11 of	T YEAR) based on estimated
Enter the total estimated emissions previously reported on line 5 of the initial fee form (emissions for the year the initial fee were paid).	
 If line 5 is greater than line 6, subtract line 6 from line 5, and enter the result. Otherwise enter "0." 	
 If line 6 is greater than line 5, subtract line 5 from line 6, and enter the result. Otherwise enter "0." 	
 If line 7 is greater than 0, multiply line 7 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment. Go to line 21. 	
10. If line 8 is greater than 0, multiply line 8 by last year's fee rate (\$/ton) and enter the result here. This is the overpayment. Go to line 21.	
RECONCILIATION OF ESTIMATED EMISSIONS AGAINST ACTUAL EMIS (WHEN INITIAL FEES WERE BASED ON ESTIMATES FOR THE PRECEDING	
Only complete lines 11 - 20 if you are paying the first annual fee, when initial fees were bas estimates of actual emissions for the year preceding initial fee payment (this is not common actual emissions for the year preceding initial fee payment by also completing sections D a calendar year. Otherwise skip on to line 21.	n). Also report
11. Sum the emissions from section D (non-HAP) for the calendar year preceding initial fee payment and enter the result here.	
 Sum the emissions from section E (HAP) for the calendar year preceding initial fee payment and enter the result here. 	
13. Add lines 11 and 12 and enter the total here. These are actual emissions for the calendar year preceding initial fee payment.	and the plant of the second
14. Enter double counted emission from line 13 here. If none, enter "0."	
15. Subtract line 14 from line 13, round to the nearest ton, and enter the result here.	
 Enter the total estimated emissions previously reported on line 5 of the initial fee form. These are estimated emissions for the calendar year preceding initial fee payment. 	
17. If line 15 is greater than line 16, subtract line 16 from line 15, and enter the result here. Otherwise enter "0."	



FEE

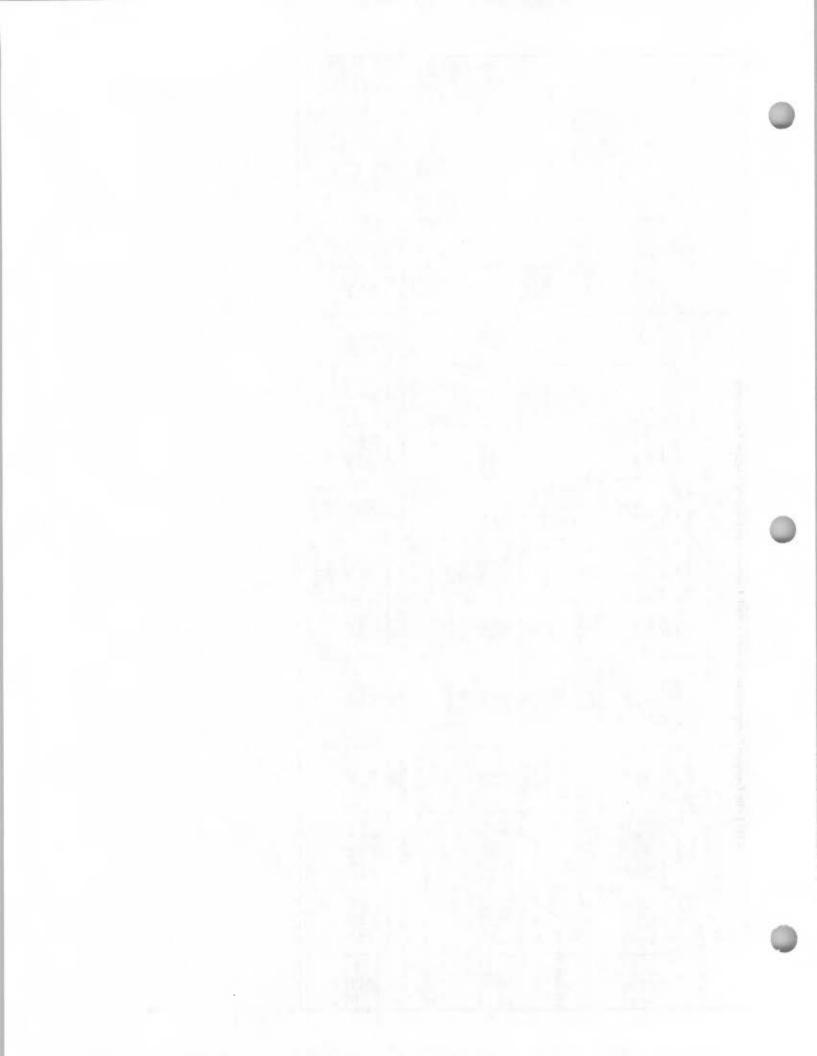

 If line 16 is greater than line 15, subtract line 15 from line 16, and enter the result here. Otherwise enter "0." 	
19. If line 17 is greater than 0, multiply line 17 by last year's fee rate (\$/ton) and enter the result here. This is the underpayment.	
20. If line 18 is greater than 0, multiply line 18 by last year's fee rate (\$/ton) and enter the result on this line. This is the overpayment.	
FEE CALCULATION	
21. Multiply line 5 (tons) by the current fee rate (\$45.25/ton) and enter the result here.	\$8,054.50
22. Enter any underpayment from line 9 or 19 here. Otherwise enter "0."	0
23. Enter any overpayment from line 10 or 20 here. Otherwise enter "0."	0
24. If line 22 is greater than "0," add it to line 21 and enter the result here. If line 23 is greater than "0," subtract this from line 21 and enter the result here. Otherwise enter the amount on line 21 here. This is the fee adjusted for reconciliation.	\$8,054.50
25. If your account was credited for fee assessment error since the last time you paid fees, enter the amount of the credit here. Otherwise enter "0."	0
26. Subtract line 25 from line 24 and enter the result here. Stop here. This is the total fee amount that you must remit to EPA.	\$8,054.50

	_	Long and the second	-						1				
	-					EMIS	SSIONS T	OTALS					
Equipment Name	EQ ID #	NOx		CO		VOC		PM/PM10		802		Total HAPs	
		lb/hr	tpy	lb/hr	tpy	ib/hr	tpy	lb/hr	tpy	lb/hr	tpy	ib/hr	tpy
Compressor Engine #1	LCC-1	4.43	18.72	0.69	2.92	0.99	4.19	0.001	0.003	0.01	0.025	0.27	1.18
Compressor Engine #2	LCC-2	4.43	19.39	0.69	3.03	0.99	4.34	0.001	0.003	0.01	0.026	0.28	1.22
Compressor Engine #3	LCC-3	4.43	11.47	1.45	3.76	0.32	0.82	0.001	0.002	0.01	0.015	0.16	0.69
TEG Dehy #1 Reboiler Heater	LCU Dehy	0.055	0.241	0.046	0.202	0.003	0.013	0.004	0.018	0.000	0.001	0.001	0.00
TEG Dehydrator #1 Regenerator	LCD-1					23.649	103.589					5.220	22.86
Equipment Leaks	LCF-1					0.902	3.952 -					0.037	0.16
Tank Heaters		0.100	0.438	0.084	0.368	0.006	0.024	0.008	0.033	0.001	0.003	0.002	0.00
Fuel Cleanup Heater		0.025	0.110	0.021	0.092	0.001	0.006	0.002	0.008	0.000	0.001	0.0005	0.00
Slop Tanks	-					1.849	8.112					0.170	0.75
Condensate Truck Loading					-	0.066	0.288						-
Generator #1	LCG-1	0.728	3.190	1.226	5.370	0.010	0.043	0.033	0.143			0.010	0.04
Totals		14.190	53.554	4.209	15.734	28,783	125.370	0.049	0.212	0.019	0.072	6.143	26.9

								EMISSIONS TOTALS									
Equipment Name	Equipment Description	EQUIP ID	Run hours / yr	CH20	Benzene	Toluene	Ethylbenzene tpy	Xylene tov	Hexane	2,2,4 TMP tpy	Acetaldehyde tpy	Acrolein tpy	TOTAL HAP				
Compressor Engine #1	CAT 3516	LCC-1	8760	0.69	0.01	0.014	0.001	0.006			0.28	0.17	1.18				
Compressor Engine #2	CAT 3516	LCC-2	8760	0.71	0.02	0.014	0.001	0.006			0.29	0.18	1.22				
Compressor Engine #3	CAT 3516	LCC-3	8760	0.39	0.01	0.006	0.001	0,004			0.17	0.11	0.69				
TEG Dehy #1 Reboiler Heater	TEG Reboiler Combustion - 1.5 mmbtu/hr burner	LCU Dehy	8760						0.004				• 0.005				
TEG Dehydrator #1 Regenerator	TEG Reboiler Still Column and Flash Tank - 25 mmscfd max	LCD-1	8760		9.650	0.506	0.687	8.897	2.959	0.163			22.86				
Fuel Cleanup Heater	Fuel Gas Conditioning Unit Heater		8760						0.002				0.002				
Equipment Leaks	Sitewide Fugitives	LCF-1	8760		0.018	0.015		0.006	0.122				0.16				
Tank Heaters	Storage Tank Heaters - 2 X .5 MMBTU each		8760	1					0.008				0.01				
Slop Tanks	2 X 400 bbl Atm storage tanks	80689; 80690	8760		0.083	0.195	0.005	0.043	0.367	0.058			0.75				
Generator #1	Ford 2.5 L 40 hp Generator engine	LCG-1	8760	0.030	0.002	0.001	0.000	0.000			0.004	0.004	0.040				
Total H	AP Emissions			1.789	9.790	2.752	2.55		5.453	- 1921	. 2.741	0.455	26.478				

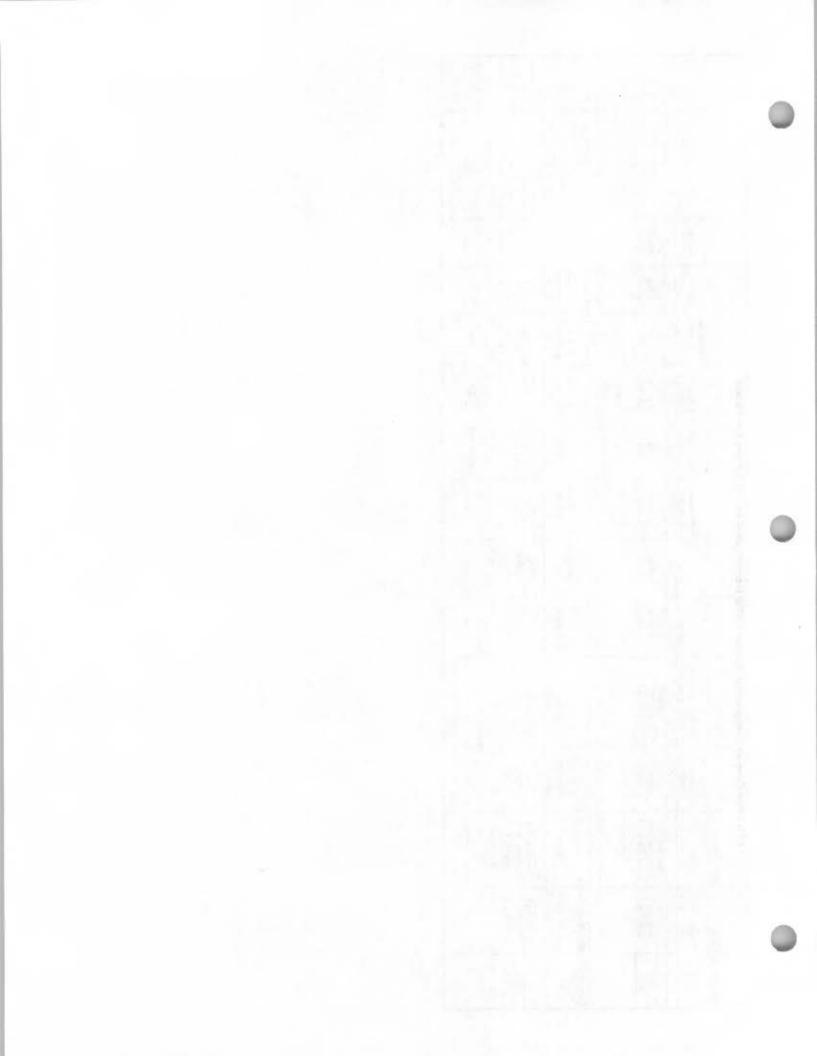


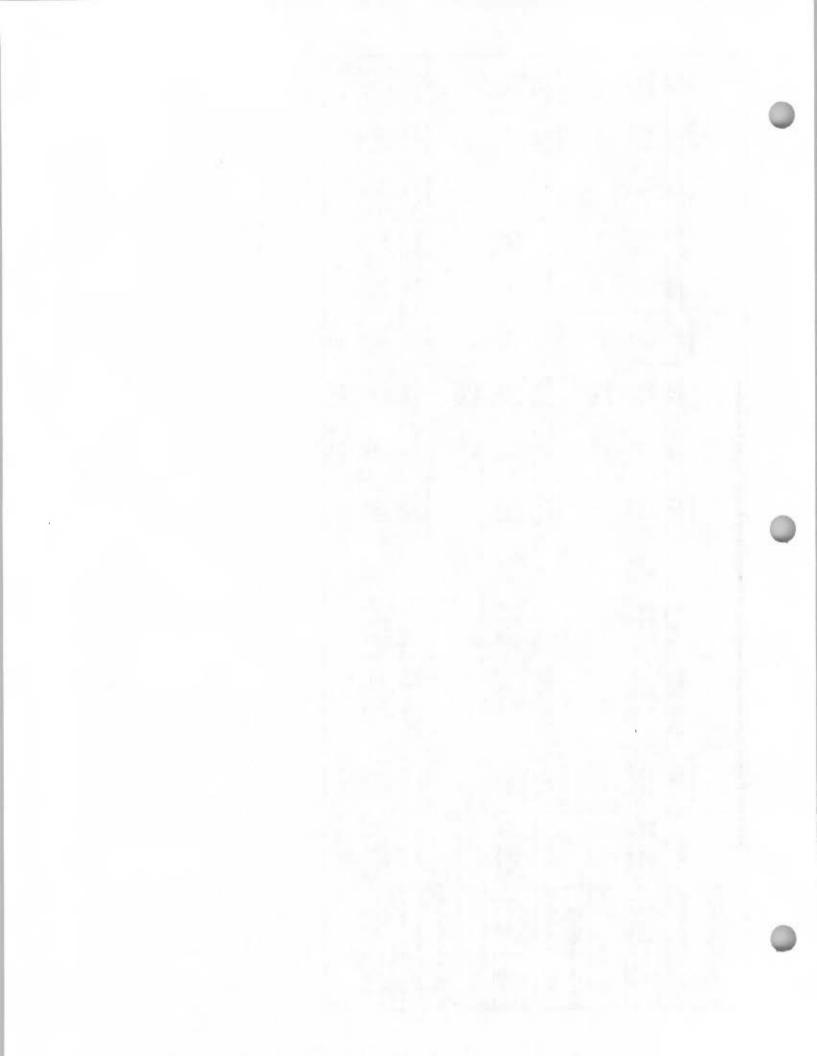
Company: XTO Energy Facility Name: Little Canyon Compressor Station Facility Location: Uintah County, Utah


Unit: Glycol TEG Dehydrator Still Vent Actual average daily throughput for 2008 12.146 MMscfd

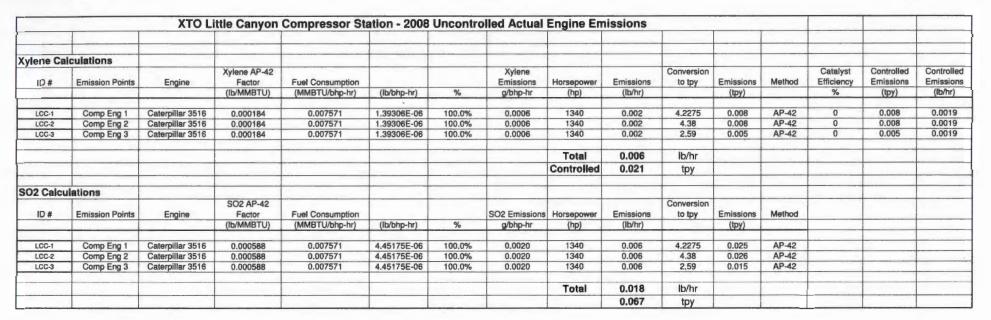
Uncontrolled 2008 Actual Emissions

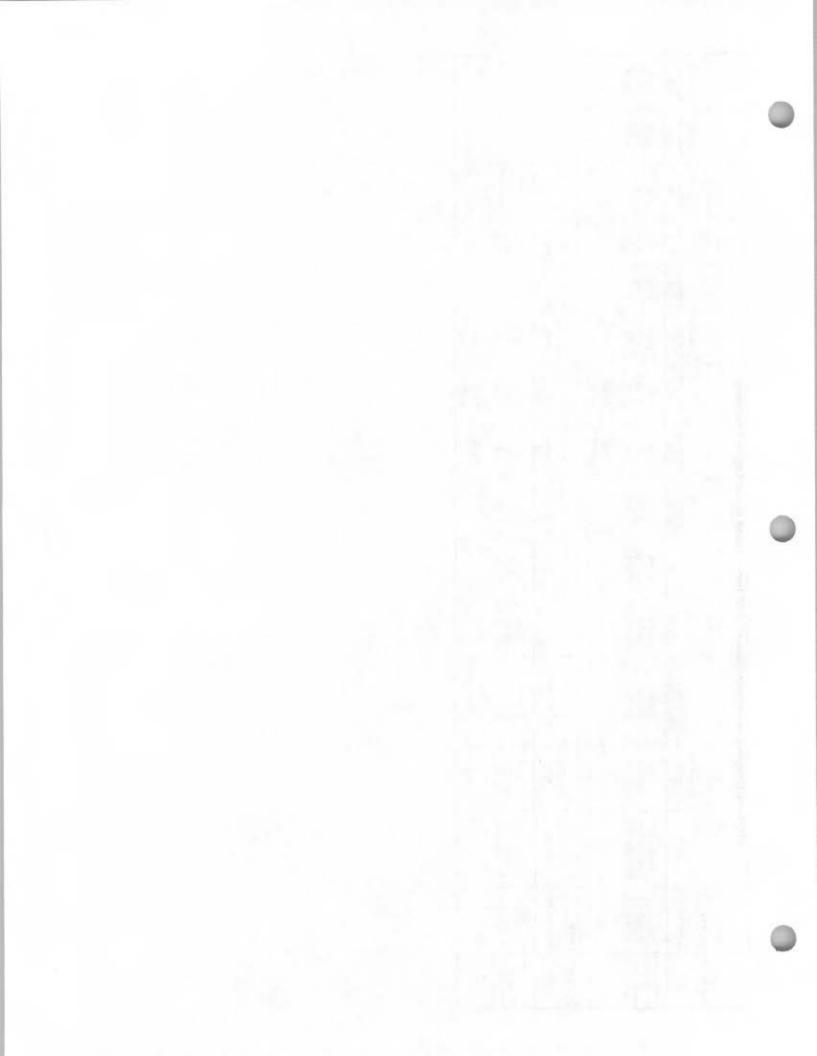
Unit Description	Gas Flow Rate (MMscf/day)	VOCs (tons/yr)	Benzene (tons/yr)	Toluene (tons/yr)	Ethylbenzene (tons/yr)	Xylenes (tons/yr)	N-Hexane (tons/yr)	224-TMP (tons/yr)	Total HAPs (tons/yr)	Total BTEX (tons/yr)
TEG Dehy	12.1	56.3816	9.3636	0.4969	0.6798	8.8312	1.5553	0.088	21.0148	19.3715
Flash Tank		47.2069	0.2865	0.0094	0.0072	0.0655	1.4041	0.0753	1.8481	0.3686
TOTAL		103.5885	9.6501	0.5063	0.6870	8.8967	2.9594	0.1633	22.8629	19.7401

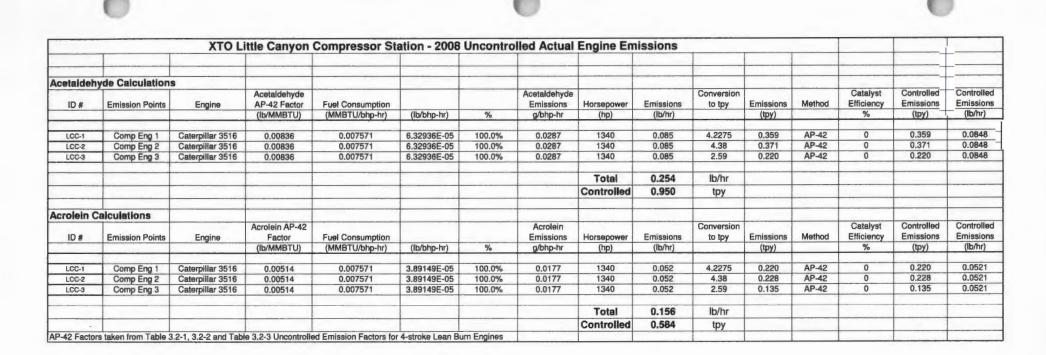

		XTO L	ittle Canyon C	Compressor St	ation - 200	B Uncontrol	led Actual	Engine En	nissions				 	
													 	_
Ox Calc	lations												 	_
IVA Galci	liations		Manufacturer's		1	Conversion to	Uncontrolled						 	
ID #	Emission Points	Engine	Data	Horsepower	Emissions	tpy	Emissions	Method					 1	
10 #	Emission Points	Engine	g/bhp-hr	(hp)	(lb/hr)	(p)	(tpy)	HIGHIGG					 	
			group-in	(1))	(ILWITIT)		(49)/						 	
LCC-1	Comp Eng 1	Caterpillar 3516	1.50	1340	4.427	4.2275	18.716	Manufacturer's	Data					
LCC-2	Comp Eng 2	Caterpillar 3516	1.50	1340	4.427	4.38	19.392	Manufacturer's					 	
LCC-3	Comp Eng 3	Caterpillar 3516	1.50	1340	4.427	2.59	11.467	Manufacturer's						
100-3	Comp Eng 5	Caterpinal 3310	1.50	1340	4,427	6.00	11.407	Manaracturers	Data				 	
				Total	13.282	lb/hr								
					49.575	tpy							+	
					_								 	
CO Calcul	ations												 	_
			Manufacturer's			Conversion to	Uncontrolled		Catalyst	Controlled	Controlled			
ID#	Emission Points	Engine	Data	Horsepower	Emissions	tpy	Emissions	Method	Efficiency	Emissions	Emissions		 	
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)		 	
LCC-1	Comp Eng 1	Caterpillar 3516	2.34	1340	6.907	4.2275	29.198	Mfg's Data	0	29.20	6.91		 	
LCC-2	Comp Eng 2	Caterpillar 3516	2.34	1340	6.907	4.38	30.251	Mfg's Data	0	30.25	6.91			
LCC-3	Comp Eng 3	Caterpillar 3516	2.34	1340	6.907	2.59	17.888	Mfg's Data	0	17.89	6.91		 	
				Total	20.720	lb/hr							 	
				Controlled	77.34	tpy			-				 	
				Controlled	11.04	ψy						-		
OC Calc	ulations	NMNEHC												
	T					Conversion to	Uncontrolled		Catalyst	Controlled	Controlled			
ID #	Emission Points	Engine	Mfg's Data	Horsepower	Emissions	tpy	Emissions	Method	Efficiency	Emissions	Emissions		 	
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)			
LCC-1	Comp Eng 1	Caterpillar 3516	0.43	1340	1.27	4.2275	5.365	Mfg's Data	0	5.37	1.27		 	
LCC-2	Comp Eng 2	Caterpillar 3516	0.43	1340	1.27	4.38	5.559	Mfg's Data	0	5.56	1.27			
LCC-3	Comp Eng 3	Caterpillar 3516	0.43	1340	1.27	2.59	3.287	Mfg's Data	0	3.29	1.27		 	
						Total	3.81	lb/hr					 	
					+								 	
						Controlled	14.21	tpy						

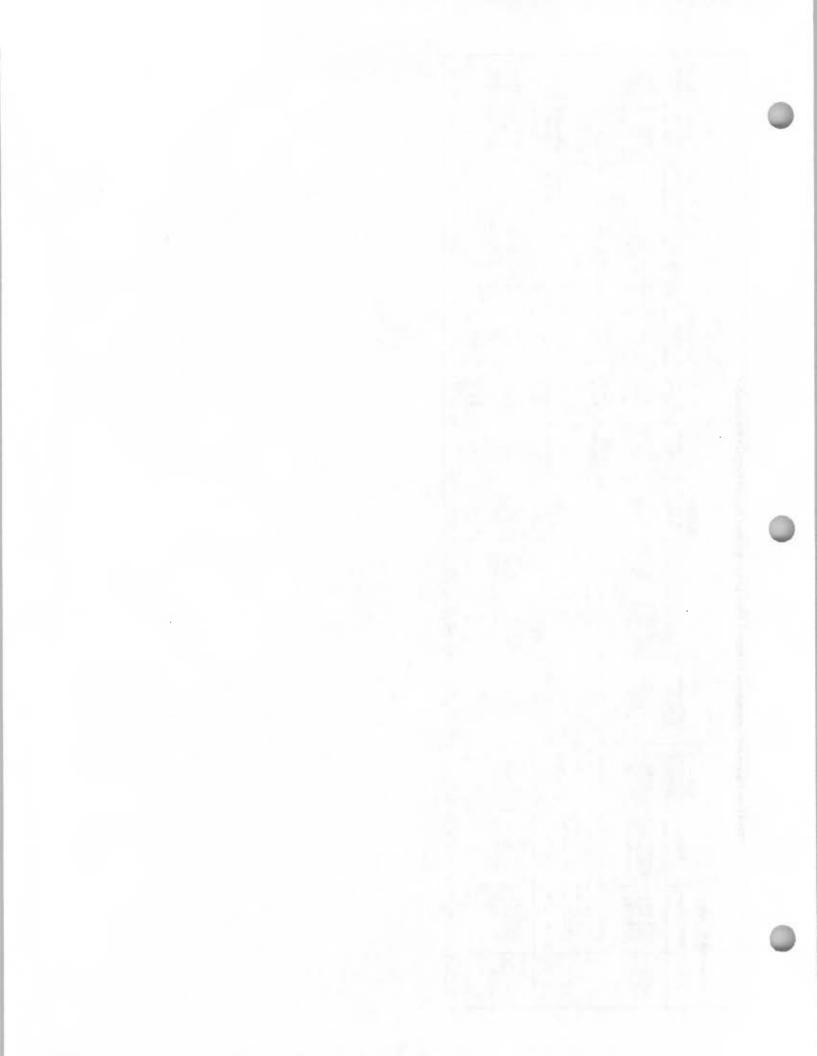


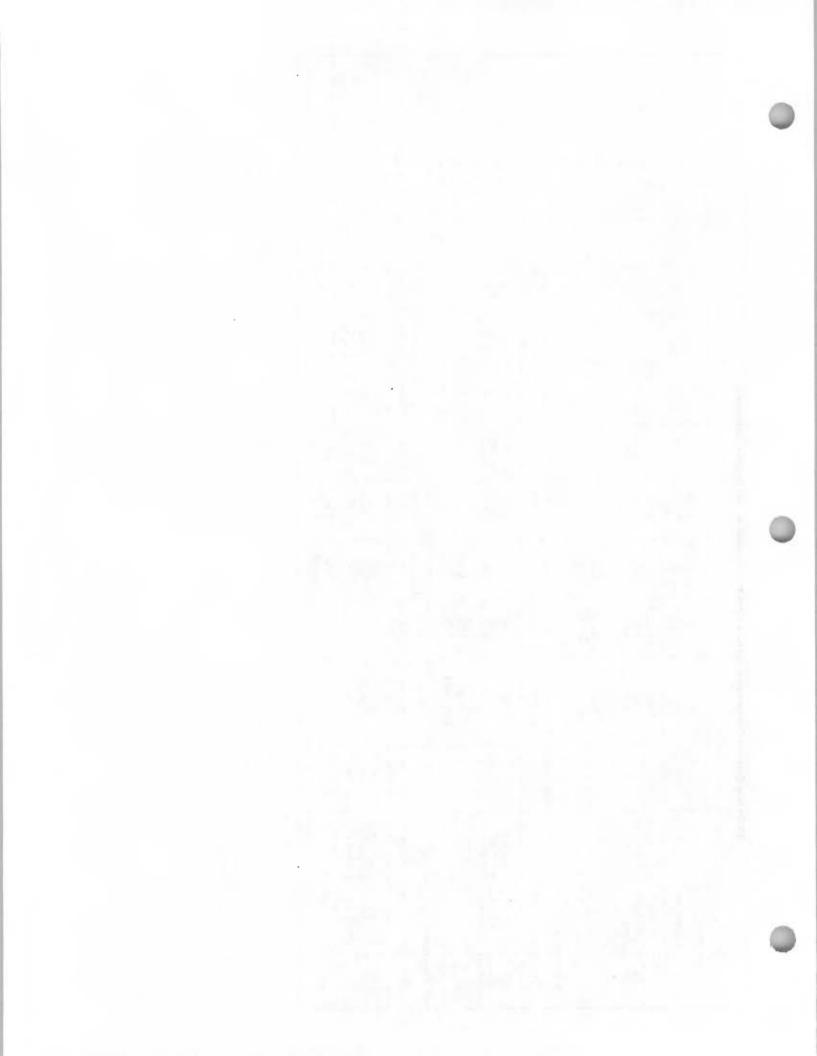
1

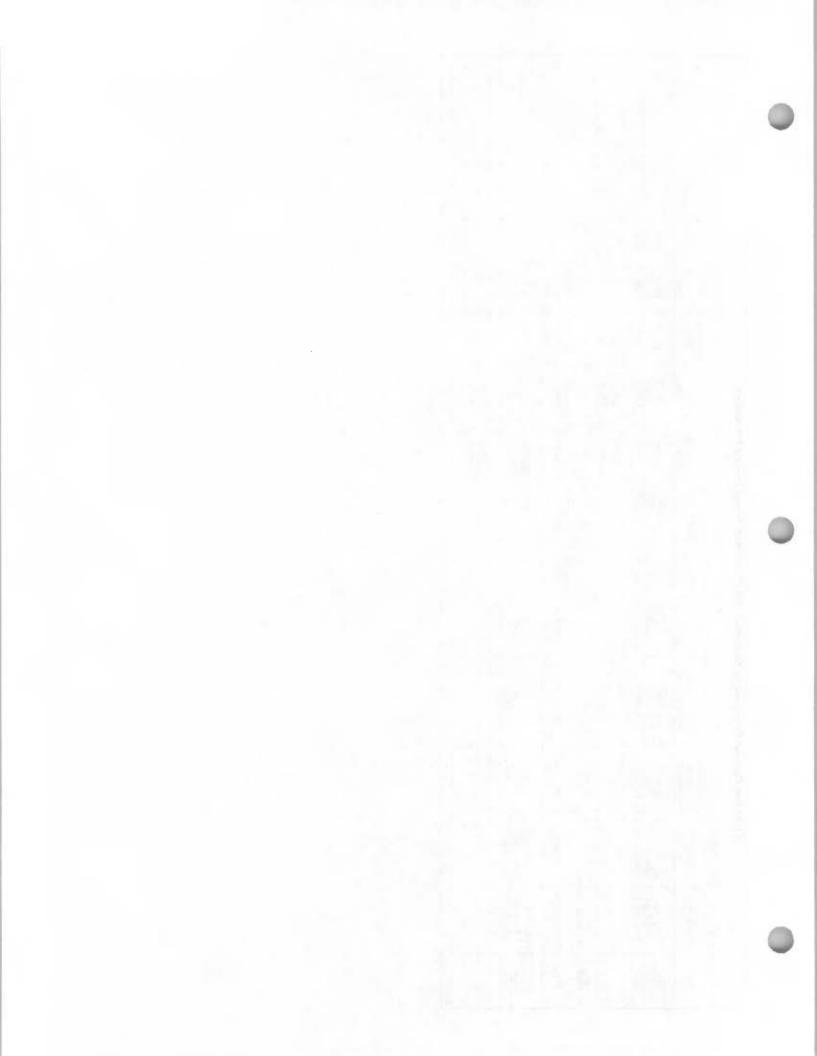

						1						Constant and		
M Calcul	ations	PM = PM10												
1D #	Emission Points	Engine	AP-42 PM Factor	Fuel Consumption	all the back		PM Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method		
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		 	
LCC-1	Comp Eng 1	Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	4.2275	0.003	AP-42	 	
LCC-2	Comp Eng 2	Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	4.38	0.003	AP-42		
LCC-3	Comp Eng 3	Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	2.59	0.002	AP-42	 	
					-			Total	0.002	lb/hr			++	
								Controlled	0.009	tpy				
Formaldeh	yde Calculatio	ns												-
ID #	Emission Points	Engine	Mfg's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions			
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)		 	
LCC-1	Comp Eng 1	Caterpillar 3516	0.22	1340	0.649	4.2275	2.745	Mfg's Data	0	2.75	0.65		 -	
LCC-2	Comp Eng 2	Caterpillar 3516	0.22	1340	0.649	4.38	2.844	Mfg's Data	0	2.84	0.65			
LCC-3	Comp Eng 3	Caterpillar 3516	0.22	1340	0.649	2.59	1.682	Mfg's Data	0	1.68	0.65			
								Total	1.95	lb/hr			 	
					1			Controlled	7.27	tpy				



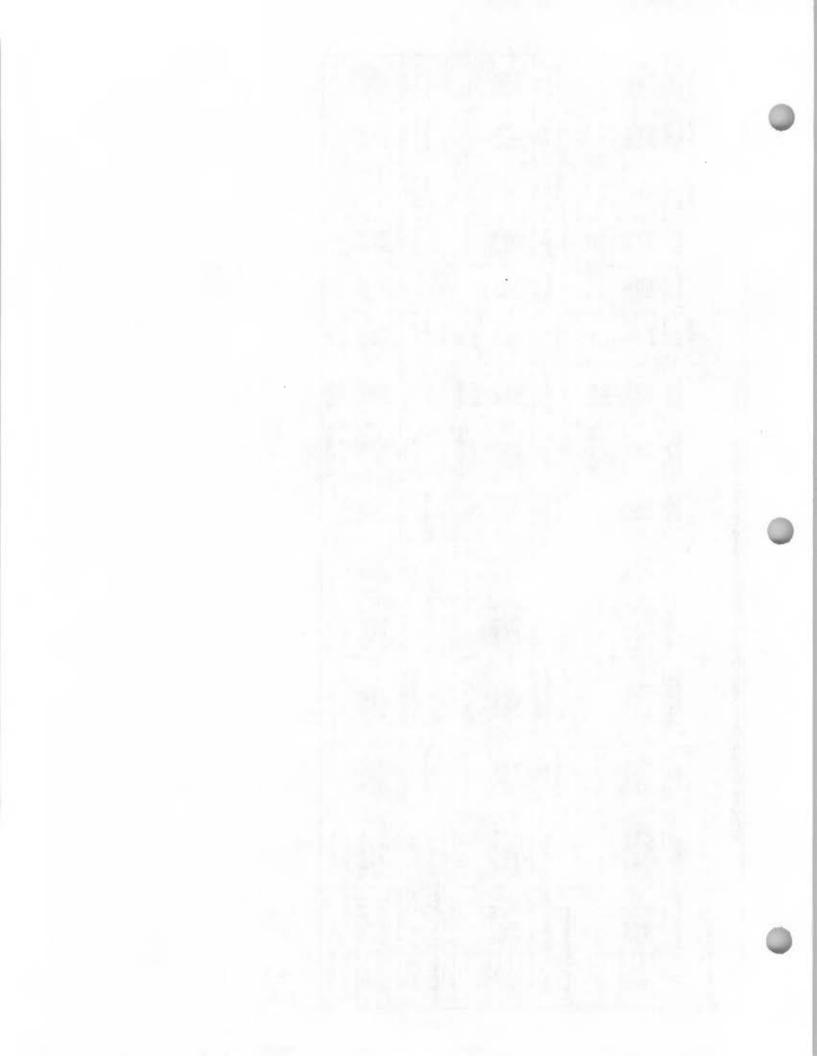

		XTO L	ittle Canyon	Compressor St	ation - 2008	Uncontro	olled Actual	Engine En	nissions						
Renzene (Calculations				1										
Dentene	Carculations														
			Benzene AP-42				Benzene	-		Conversion			Catalyst	Controlled	Controlled
ID #	Emission Points	Engine	Factor	Fuel Consumption			Emissions	Horsepower	Emissions	to tpy	Emissions	Method	Efficiency	Emissions	Emissions
		- de comerce a	(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1340	0.0045	4.2275	0.019	AP-42	0	0.019	0.0045
LCC-1	Comp Eng 2	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1340	0.0045	4.38	0.020	AP-42	0	0.020	0.0045
LCC-2	Comp Eng 3	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1340	0.0045	2.59	0.012	AP-42	0	0.012	0.0045
100-3	Comp Eng 3	Caterpillar 3516	0.00044	0.007571	3.331242-00	100.0%	0.002	1340	0.0045	2.39	0.012	AF-42	0	0.012	0.0045
							-	Total	0.013	lb/hr					
								Controlled	0.050	tpy					
								Controlled	0.050	ipy					
Toluene (Calculations														
			Toluene AP-42				Toluene	1		Conversion			Catalyst	Controlled	Controlled
ID #	Emission Points	Engine	Factor	Fuel Consumption			Emissions	Horsepower	Emissions	to tpy	Emissions	Method	Efficiency	Emissions	Emissions
	-		(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)	1	(tpy)		%	(tpy)	(lb/hr)
				()-)- and -											
LCC-1	Comp Eng 1	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1340	0.004	4.2275	0.017	AP-42	0	0.017	0.0041
LCC-2	Comp Eng 2	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1340	0.004	4.38	0.018	AP-42	0	0.018	0.0041
LCC-3	Comp Eng 3	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1340	0.004	2.59	0.011	AP-42	0	0.011	0.0041
								Total	0.012	lb/hr					
							1	Controlled	0.046	tpy				-	<u>г</u>
Ethylbenz	ene Calculation	9													
			Ethylbenzene AP-				Ethylbenzene			Conversion			Catalyst	Controlled	Controlled
ID #	Emission Points	Engine	42 Factor	Fuel Consumption			Emissions	Horsepower	Emissions	to tpy	Emissions	Method	Efficiency	Emissions	Emissions
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1340	0.000	4.2275	0.002	AP-42	0	0.0017	0.0004
LCC-2	Comp Eng 2	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1340	0.000	4.38	0.002	AP-42	0	0.0018	0.0004
LCC-3	Comp Eng 3	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1340	0.000	2.59	0.001	AP-42	0	0.0010	0.0004
									0.004	11. //					
								Total	0.001	lb/hr					-
								Controlled	0.005	tpy					



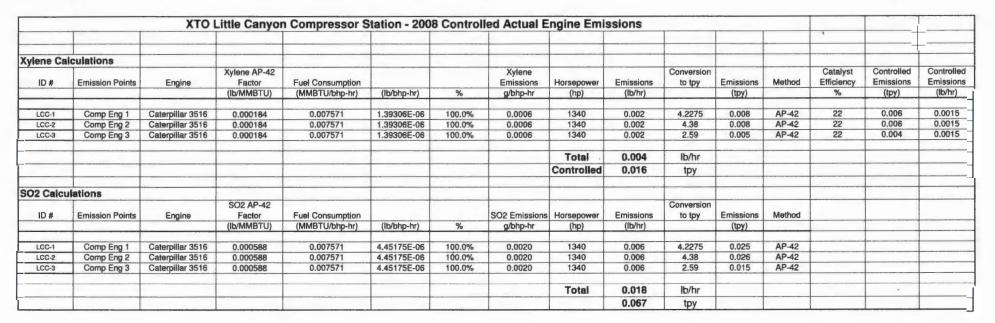




		XTO	Little Canyon	Compressor \$	Station - 20	08 Controlle	ed Actual E	ingine Em	issions			 	
NOx Calcu	lations											 	
ID#	Emission Points	Engine	Manufacturer's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method					
			g/bhp-hr	(hp)	(lb/hr)		(tpy)						
LCC-1	Comp Eng 1	Caterpillar 3516	1.50	1340	4,427	4.2275	18.716	Manufacturer's	e Dete			 	
LCC-2		Caterpillar 3516	1.50	1340	4.427	4.38	19.392	Manufacturer's				 	
LCC-2	Comp Eng 2 Comp Eng 3	Caterpillar 3516	1.50	1340	4.427	2.59	11.467	Manufacturer		+		 	
100-3	Comp Eng C	Outerpinal 5516	1.50	1040	7,767	2.00	11.401						
				Total	13.282	lb/hr							
				. oran	49.575	tpy							
00 Calaul												 	
CO Calcul	ations		Manufacturer's			Conversion to	Uncontrolled		Catalyst	Controlled	Controlled	 	
ID #	Emission Points	Engine	Data	Horsepower	Emissions	tpy	Emissions	Method	Efficiency	Emissions	Emissions	 	
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)	 	
LCC-1	Comp Eng 1	Caterpillar 3516	2.34	1340	6.907	4.2275	29.198	Mfg's Data	90	2.92	0.69	 	
LCC-2	Comp Eng 2	Caterpillar 3516	2.34	1340	6.907	4.38	30.251	Mfg's Data	90	3.03	0.69		
LCC-3	Comp Eng 3	Caterpillar 3516	2.34	1340	6.907	2.59	17.888	Mfg's Data	79	3.76	1.45		
					0.000								
				Total	2.832	lb/hr						 	
				Controlled	9.70	tpy	_					 	
OC Calc	ulations	NMNEHC										 	
ID #	Emission Points	Engine	Mfg's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions		
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(Ib/hr)		
LCC-1	Comp Eng 1	Caterpillar 3516	0.43	1340	1.27	4.2275	5.365	Mfg's Data	22	4.19	0.99		
LCC-2	Comp Eng 2	Caterpillar 3516	0.43	1340	1.27	4.38	5.559	Mfg's Data	22	4.34	0.99		
LCC-3	Comp Eng 3	Caterpillar 3516	0.43	1340	1.27	2.59	3.287	Mfg's Data	75	0.82	0.32	 	
						Total	2.30	lb/hr				 	
						Controlled	9.34	tpy				 	
					-	Sourouga	0.04	(p)				 	



	1	ΧΤΟΙ	ittle Canyo	n Compressor S	Station - 200	08 Controll	ed Actual E	Ingine Emi	ssions	1			 	_
PM Calcul	ations	PM = PM10											 +	
ID #	Emission Points	Engine	AP-42 PM Factor	Fuel Consumption			PM Emissions	Horsepower	Emissions	Conversion to toy	Emissions	Method		
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		 	
LCC-1	Comp Eng 1	Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	4.2275	0.003	AP-42	 1	-
LCC-2	Comp Eng 2	Caterpillar 3516	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	4.38	0.003	AP-42		
LCC-3	Comp Eng 3	Caterpillar 3518	0.0000771	0.007571	5.83724E-07	100.0%	0.00027	1340	0.00078	2.59	0.002	AP-42		
								Total	0.002	lb/hr				
								Controlled	0.009	tpy				
ormaldel	nyde Calculatio	ns												
ID #	Emission Points	Engine	Mfg's Data	Horsepower	Emissions	Conversion to tpy	Uncontrolled Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions			
			g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)			
LCC-1	Comp Eng 1	Caterpillar 3516	0.23	1340	0.679	4.2275	2.870	Mfg's Data	76	0.69	0.16		 	
LCC-2	Comp Eng 2	Caterpillar 3516	0.23	1340	0.679	4.38	2.973	Mfg's Data	76	0.71	0.16			-
LCC-3	Comp Eng 3	Caterpillar 3516	0.23	1340	0.679	2.59	1.758	Mfg's Data	78	0.39	0.15			
								Total	0.48	lb/hr			 	+
								Controlled	1.79	tpy				
														_



- 199	
- 10	

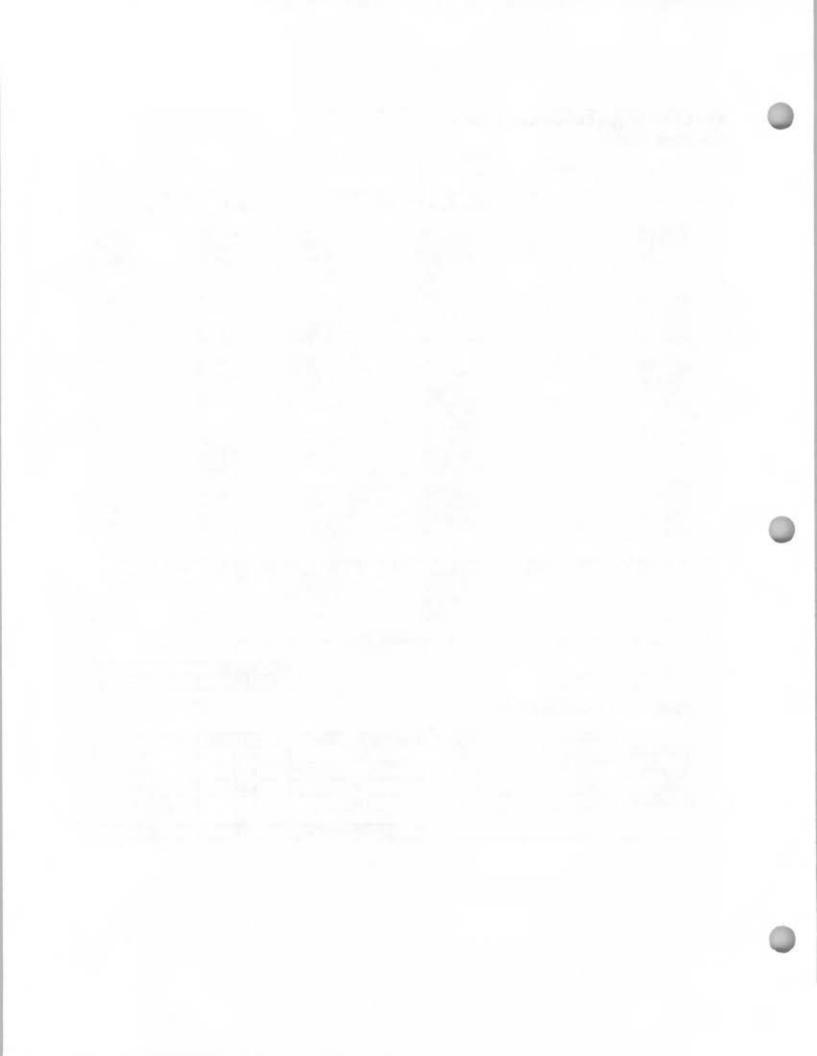
		ХТО	Little Canyon	Compressor S	station - 200	B Control	led Actual E	ngine Emi	ssions	1					
Benzene C	Calculations														
ID #	Emission Points	Engine	Benzene AP-42 Factor	Fuel Consumption			Benzene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled
			(lb/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(Ib/i \r)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1340	0.0045	4.2275	0.019	AP-42	22	0.015	0.0035
LCC-2	Comp Eng 2	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1340	0.0045	4.38	0.020	AP-42	22	0.015	0.0035
LCC-3 Comp Eng 3	Caterpillar 3516	0.00044	0.007571	3.33124E-06	100.0%	0.002	1340	0.0045	2.59	0.012	AP-42	22	0.009	0.0035	
								Total	0.010	lb/hr					
								Controlled	0.039	tpy					
Toluene C	alculations														
1D #	Emission Points	Engine	Toluene AP-42 Factor	Fuel Consumption			Toluene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emissions
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(INTIT)
LCC-1	Comp Eng 1	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1340	0.004	4.2275	0.017	AP-42	22	0.014	0.0032
LCC-2	Comp Eng 2	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1340	0.004	4.38	0.018	AP-42	22	0.014	0.0032
LCC-3	Comp Eng 3	Caterpillar 3516	0.000408	0.007571	3.08897E-06	100.0%	0.0014	1340	0.004	2.59	0.011	AP-42	22	0.008	0.0032
								Total	0.010	lb/hr					
								Controlled	0.036	tpy					
Ethylbenze	ene Calculation	\$													
ID#	Emission Points	Engine	Ethylbenzene AP- 42 Factor	Fuel Consumption			Ethylbenzene Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlled Emission
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)	-	(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1340	0.000	4.2275	0.002	AP-42	22	0.0013	0.0003
LCC-2	Comp Eng 2	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1340	0.000	4.38	0.002	AP-42	22	0.0014	0.0003
LCC-3	Comp Eng 3	Caterpillar 3516	0.0000397	0.007571	3.00569E-07	100.0%	0.0001	1340	0.000	2.59	0.001	AP-42	22	0.0008	0.0003
								Total	0.001	lb/hr					
								Controlled	0.004	tpy					

		XTO	Little Canyor	Compressor S	station - 200	B Control	led Actual E	ingine Emi	ssions						
cetaldeh	yde Calculation	5													
ID #	Emission Points	Engine	Acetaldehyde AP-42 Factor	Fuel Consumption			Acetaldehyde Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlle Emission
			(Ib/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tpy)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1340	0.085	4.2275	0.359	AP-42	22	0.280	0.0662
LCC-2	Comp Eng 2	Caterpillar 3516	0.00836	0.007571	6.32936E-05	100.0%	0.0287	1340	0.085	4.38	0.371	AP-42	22	0.290	0.0662
	Caterpillar 3516	0.00636	0.007571	6.32936E-05	100.0%	0.0287	1340	0.085	2.59	0.220	AP-42	22	0.171	0.0662	
								Total	0.198	lb/hr					
								Controlled	0.741	tpy					
Acrolein C	alculations														
ID #	Emission Points	Engine	Acrolein AP-42 Factor	Fuel Consumption			Acrolein Emissions	Horsepower	Emissions	Conversion to tpy	Emissions	Method	Catalyst Efficiency	Controlled Emissions	Controlle
			(lb/MMBTU)	(MMBTU/bhp-hr)	(lb/bhp-hr)	%	g/bhp-hr	(hp)	(lb/hr)		(tpy)		%	(tру)	(lb/hr)
LCC-1	Comp Eng 1	Caterpillar 3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1340	0.052	4.2275	0.220	AP-42	22	0.172	0.0407
LCC-2	Comp Eng 2	Caterpillar 3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1340	0.052	4.38	0.228	AP-42	22	0.178	0.0407
LCC-3	Comp Eng 3	Caterpillar 3516	0.00514	0.007571	3.89149E-05	100.0%	0.0177	1340	0.052	2.59	0.135	AP-42	22	0.105	0.0407
								Total	0.122	lb/hr					
								Controlled	0.455	tpy					1

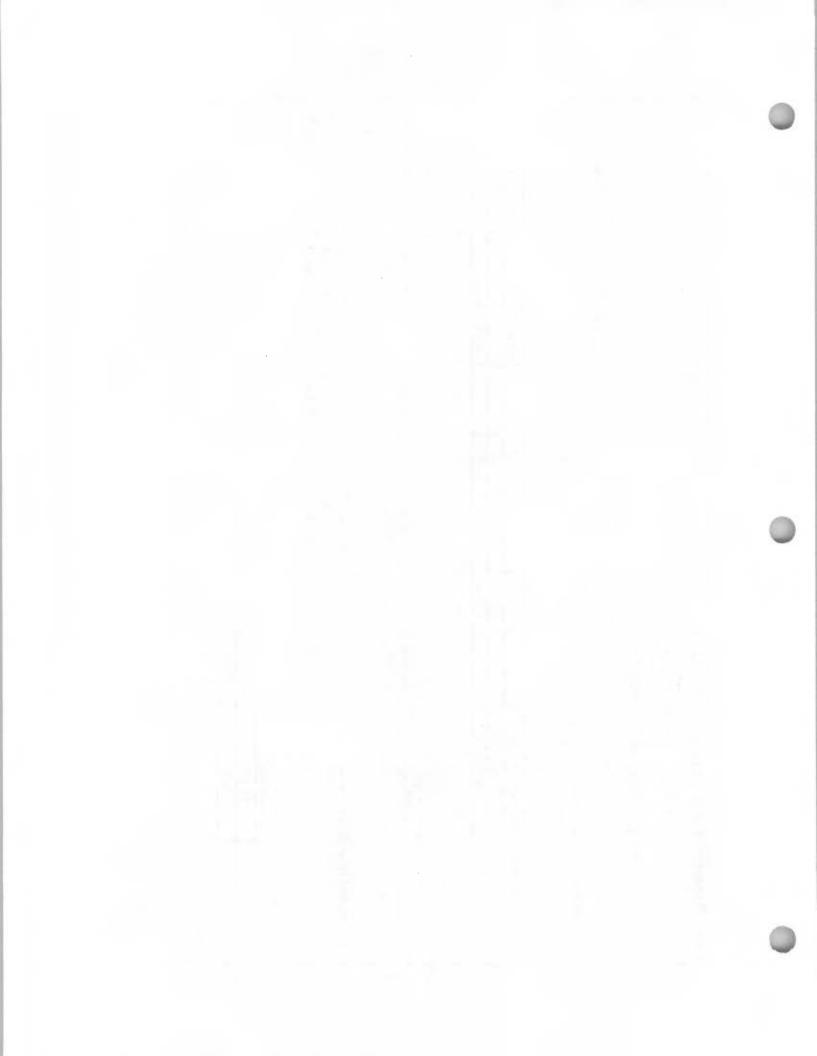
Generator Engine Emissions

EMISSION POINTS: Ford 2.5L 40 hp engine

Engine Make/Model	Ford 2.5L 40 hp engine			
Site Horsepower Rating	40	hp		
Fuel Consumption (BSFC)	8240	Btu/(hp-hr)		
Heat Rating	0.330	MMBtu/hr		
Heating Value	979	Btu/Scf		
Fuel usage	2.95	MMScf/yr		
Operating Hours	8760	hrs/yr		


					Emission	
			Emissi	on Rate	Factor	
Pollutant	Emiss	ion Factor	(lb/hr)	(tpy)	Reference	AP-42 Emission Factors
NOx	8.26	g/hp-hr	0.73	3.2	[1]	2.21E+00 lb/MMBtu
СО	13.90	g/hp-hr	1.23	5.4	[1]	3.72E+00 lb/MMBtu
VOC/NMHC	0.11	g/hp-hr	0.01	0.04	[1]	2.96E-02 lb/MMBtu
				······	······································	
PM10	0.370	g/hp-hr	0.03	0.1	[1]	9.91E-02 lb/MMBtu
Hazardous Air Pollutants				·····		
Acetaldehyde	0.0104	g/hp-hr	0.0009	0.0040	[1]	2.79E-03 lb/MMBtu
Acrolein	0.0098	g/hp-hr	0.0009	0.0038	[1]	2.63E-03 lb/MMBtu
Benzene	0.0059	g/hp-hr	0.0005	0.0023	[1]	1.58E-03 lb/MMBtu
Ethylbenzene	0.0001	g/hp-hr	0.0000	0.0000	[1]	2.48E-05 lb/MMBtu
Formaldehyde	0.0766	g/hp-hr	0.0068	0.0296	[1]	2.05E-02 lb/MMBtu
Toluene	0.0021	g/hp-hr	0.0002	0.0008	[1]	5.58E-04 lb/MMBtu
Xylene	0.0007	g/hp-hr	0.0001	0.0003	[1]	1.95E-04 lb/MMBtu
		Total HAPS	0.01	0.04		

[1] AP-42 Table 3.2-3 for stationary IC sources; July 2000, 4-stroke rich burn


	CALCULATION FORMULAS
g/(hp-hr) =	(lb/MMBtu)*(MMBtu/hr)*(453.6 g/lb) / (site-rated hp)
lb/hr =	(g/hp-hr)*(site-rated hp) / (453.6 g/lb)
tpy =	(lb/hr)*(8760 hr/yr) / (2000 lb/ton)
Fuel Usage (MMscf/yr) =	(Scf/btu)*(btu/{hp-hr})*(site-rated hp)*(24 hr/day)*(365 day/yr)*(MMScf/10 ⁶ Scf)
Heat Rating (MMbtu/hr) =	(site rated horsepower)*(Btu/(hp-hr)) / (453.6 g/lb)

	nated Fugiti	ives					
		Estimated					
		Components Count	Hours	Factors*	%NMNEVOC	Emis	and the second s
				lb/hr/component		lb/year	tons/year
Valves	0.0		0700	0.00000000	4 500/	100 00000	0.0000
	Gas/Vapor	300	8760	0.00992000	1.56%	406.68826	0.2033
	Light Oil	100	8760 8760		100.00%	4818.00000	2.4090
	Heavy Oil Water/Light Oil	50	8760	0.00021600	100.00%	94.60800	0.0000
Pumps		50	0/00	0.00021000	100.00%	94.00000	0.0473
Pumps	Gas/Vapor	6	8760	0.00529000	1.56%	4.33746	0.0021
	Light Oil	3	8760	0.02866000	100.00%	753.18480	0.3765
	Heavy Oil	5	8760	0.00113000	100.00%	0.00000	0.0000
	Water/Light Oil	3	8760	0.00005300	100.00%	1.39284	0.0007
Flange		5	0700	0.00000000	100.00 %	1.03204	0.0007
ange	Gas/Vapor	650	8760	0.00086000	1.56%	76.39070	0.0382
	Light Oil	75	8760	0.00024300	100.00%	159.65100	0.0798
-	Heavy Oil	15	8760		100.00%	0.00000	0.0000
	Water/Light Oil	50	8760	0.00000620	100.00%	2.71560	0.0013
Open-6	ended Lines		0,00	0.0000020	100.0070	2.71000	0.0010
opente	Gas/Vapor	15	8760	0.00441000	1.56%	9.03979	0.0045
_	Light Oil		8760	0.00309000	100.00%	0.00000	0.0000
-	Heavy Oil		8760	0.00030900	100.00%	0.00000	0.0000
	Water/Light Oil	5	8760	0.00055000	100.00%	24.09000	0.0120
Connec			0,00	0.0000000			0.0120
	Gas/Vapor	250	8760	0.00044000	1.56%	15.03216	0.0075
	Light Oil		8760		100.00%	0.00000	0.0000
	Heavy Oil		8760	0.00001700	100.00%	0.00000	0.0000
	Water/Light Oil	50	8760		100.00%	106.43400	0.0532
Other:	Compressors, re Gas/Vapor Light Oil Heavy Oil Water/Light Oil	lief valves, proc 30 5	ess dra 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800	lump arms, hatches, instru 1.56% 100.00% 100.00% 100.00%	ments, meters, polished 79.533792 0 0 1353.42	0.03976689
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil	30 5	8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000	1.56% 100.00% 100.00%	79.533792 0 0 1353.42	0.03976689
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil	30 5	8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000	1.56% 100.00% 100.00% 100.00% 5 Protocol for Equipment Le	79.533792 0 1353.42 pak Emission Estimates	0.03976689
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil	30 5	8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000	1.56% 100.00% 100.00% 100.00% 5 Protocol for Equipment Le	79.533792 0 1353.42 pak Emission Estimates Total in tons/year	0.03976689 0.6767 3.9
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil	30 5	8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000	1.56% 100.00% 100.00% 100.00% 5 Protocol for Equipment Le	79.533792 0 1353.42 pak Emission Estimates	0.03976689 0.6767 3.9
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil	30 5 s based on Tal	8760 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000 of U.S. EPA's 1995	1.56% 100.00% 100.00% 100.00% 5 Protocol for Equipment Le	79.533792 0 1353.42 pak Emission Estimates Total in tons/year	0.03976689 0.6767 3.9
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil	30 5 s based on Tal	8760 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000 of U.S. EPA's 1995	1.56% 100.00% 100.00% 100.00% 5 Protocol for Equipment Le	79.533792 0 1353.42 pak Emission Estimates Total in tons/year	0.03976689 0.6767
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil - emission factor Fugitive HA	30 5 s based on Tal P Emissions	8760 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000 of U.S. EPA's 1995	1.56% 100.00% 100.00% 100.00% Protocol for Equipment Le	79.533792 0 1353.42 Pak Emission Estimates Total in tons/year Total in Lb/hr	0.03976689 0.6767
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil - emission factor Fugitive HA	30 5 s based on Tal P Emissions wt% in gas 0.0072	8760 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000 of U.S. EPA's 1995 s Total VOC wt % 1.560	1.56% 100.00% 100.00% 7 Protocol for Equipment Le Total Fugitive VOC tpy 3.95	79.533792 0 1353.42 Pak Emission Estimates Total in tons/year Total in Lb/hr Total in Lb/hr Total tpy for HAP 1 0.018	0.03976689 0.6767
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil - emission factor Fugitive HAN Benzene Toluene	30 5 s based on Tal P Emissions wt% in gas 0.0072 0.0059	8760 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000 of U.S. EPA's 1995 S Total VOC wt % 1.560 1.560	1.56% 100.00% 100.00% 5 Protocol for Equipment Le Total Fugitive VOC tpy 3.95 3.95	79.533792 0 1353.42 Dak Emission Estimates Total in tons/year Total in Lb/hr Total tpy for HAP 1 0.018 0.015	0.03976689 0.6767 3.9 0.9 0.9 0.9
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil - emission factor Fugitive HA Benzene Toluene Xylene	30 5 s based on Tal P Emissions wt% in gas 0.0072 0.0059 0.0022	8760 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000 of U.S. EPA's 1995 s Total VOC wt % 1.560 1.560 1.560	1.56% 100.00% 100.00% 5 Protocol for Equipment Les Total Fugitive VOC tpy 3.95 3.95 3.95	79.533792 0 1353.42 Total in tons/year Total in Lb/hr Total tpy for HAP 1 0.018 0.015 0.006	0.03976689 0.6767 3.9 0.9 0.9 0.9 0.9 0.004 0.004 0.003 0.0013
	Gas/Vapor Light Oil Heavy Oil Water/Light Oil - emission factor Fugitive HAN Benzene Toluene	30 5 s based on Tal P Emissions wt% in gas 0.0072 0.0059	8760 8760 8760 8760 8760	0.01940000 0.01650000 0.00006800 0.03090000 of U.S. EPA's 1995 S Total VOC wt % 1.560 1.560	1.56% 100.00% 100.00% 5 Protocol for Equipment Le Total Fugitive VOC tpy 3.95 3.95	79.533792 0 1353.42 Dak Emission Estimates Total in tons/year Total in Lb/hr Total tpy for HAP 1 0.018 0.015	0.03976689 0.6767 3.9 0.9 otal lb/hr for HAP 0.004 0.003

	0	4000	DTUVeel								
Fuel	Gas	1000	BTU/scf								
Marchinest		8760	hrs/yr								
Max Heat Input R	ating	0.55	MMBTU/hr								
		NOx		CO		VOC		PM/PM10		SO2	
Small Boilers Emissions Fa	ctor*										
(Ibs/MM		100		84		5.5		7.6		0.6	
Estimated Emissi	one	NOx		СО		VOC		FPM/PM10		SO2	
	lb/hr	0.055		0.046		0.003		0.004		0.000	-
	tpy	0.033		0.202		0.003		0.004		0.000	
										_	
HAP Emissions Fac	tors*										
(lbs/MN			Benzene		Toluene		Hexane		Formald.		Diclorobe
			0.0021		0.0034		1.8		0.075		0.0012
Estimated HAP Emissi	ons		Benzene	_	Toluene		Hexane		Formald.		Diclorobe
	lb/hr		0.0000012		0.0000019		0.0009900		0.0000413		0.000000
	tpy		0.0000051		0.0000082		0.0043362		0.0001807		0.000002
т	otal										
1	b/hr		0.001035								
	tpy		0.004533								
Source: AP-42 Table 1.4-1, 1		140									

XTO Little Canyon Unit Storage Tank Heaters

Two (2) tank Heaters X 0.5 MMBTU / hr each BTU/scf

8760 Max Heat Input Rating

hrs/yr MMBTU/hr each heater

0.5

Fuel Gas 1000

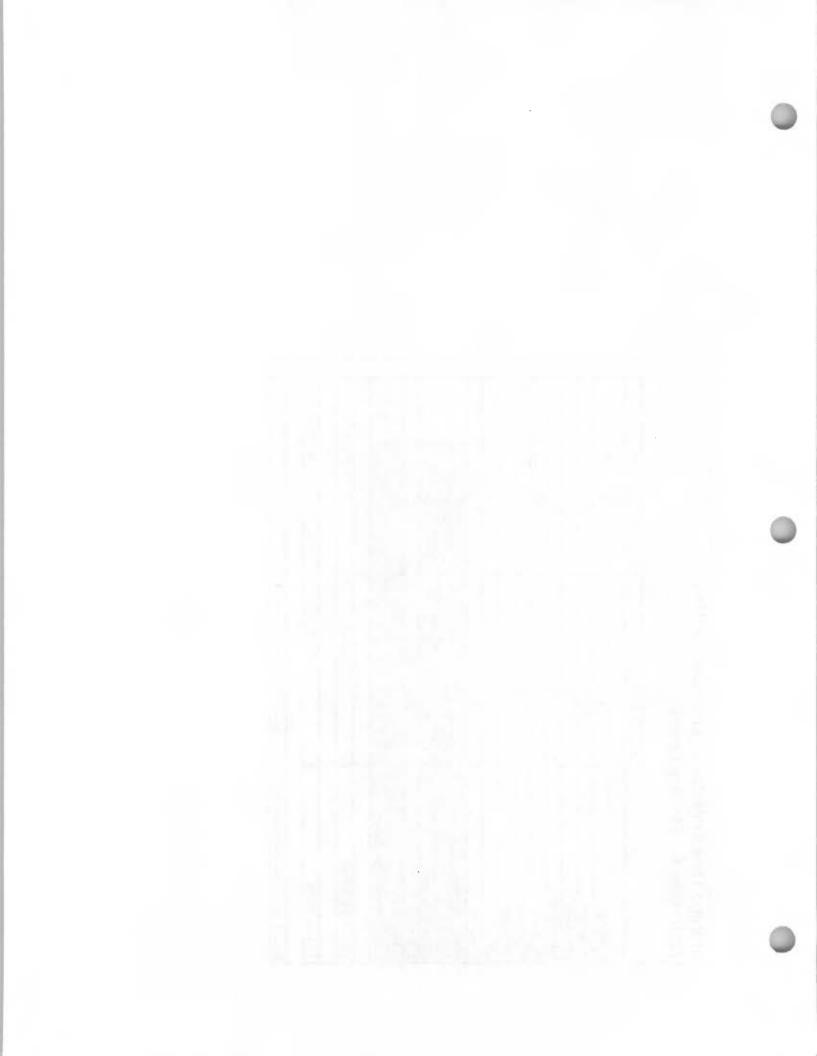
	NOx	CO	VOC	PM/PM10	SO2
Small Boilers Emissions Factor*					
(Ibs/MMscf)	100	84	5.5	7.6	0.6
Estimated Emissions	NOx	со	voc	PM/PM10	SO2
lb/hr	0.050	0.042	0.003	0.004	0.000
lb/hr Multiplied by Two (2)	0.100	0.084	0.006	0.008	0.001
tpy	0.219	0.184	0.012	0.017	0.001
TPY Multiplied by Two (2)	0.438	0.368	0.0241	0.033288	0.0026

HAP Emissions Factors*					
(Ibs/MMscf)	Benzene	Toluene	Hexane	Formald.	Diclorobenz.
	0.0021	0.0034	1.8	0.075	0.0012

Estimated HAP Emissions	Benzene	Toluene	Hexane	Formald.	Diclorobenz.
lb/hr	0.0000011	0.0000017	0.0009000	0.0000375	0.0000006
lb/hr Multiplied by Two (2)	0.0000021	0.000034	0.0018000	0.0000750	0.0000012
tpy	0.0000046	0.0000074	0.0039420	0.0001643	0.0000026
TPY Multiplied by Two (2)	0.0000092	0.0000149	0.0078840	0.0003285	0.0000053

Total (two tank htrs)	
lb/hr	0.0018817
tpy	0.0082418

* Source: AP-42 Table 1.4-1, 1.4-2, & 1.4-3



Canyon Unit	
00 BTU/scf 60 hrs/yr	
25 MMBTU/hr	
Dx CO VOC PM/PM10	SO2
0 84 5.5 7.6	0.6
Dx CO VOC PM/PM10	SO2
25 0.021 0.001 0.002	0.000
10 0.092 0.006 0.008	0.001
BenzeneTolueneHexaneForm0.00210.00341.80.0	
Benzene Toluene Hexane Form	nald. Diclorober
0.0000005 0.0000009 0.0004500 0.000	
0.0000023 0.0000037 0.0019710 0.000	
0.000470	
0.002060	
3	

Emissions for Stora	sions - Little Canyon Unit		
	Uncontrolled (tpy)	Uncontrolled (lb/hr)	
C3	1.117	0.255	
i-butane	0.479	0.109	
n-Butane	0.582	0.133	
I-Pentane	0.264	0.06	
n-Pentane	0.186	0.042	
Hexanes	0.197	0.045	
Heptanes (C7+)	1.099	0.251	
Octanes (C8+)	0.131	0.03	
C9	0.018	0.004	
C10+	0.001	0	
Benzene	0.046	0.011	
Toluene	0.108	0.025	
Ethyl-Benzene	0.003	0.001	
Xylenes	0.024	0.005	
n_Hexane	0.203	0.046	
2,2,4- Trimethylpentane	0.032	0.007	
TOTAL NMNEHC	4.49 tpy	1.024	lb/hr
TOTAL HAPs	0.416 tpy	0.095	lb/hr

Emissions for Stor	age Tank #2			
	Uncontrolled (tpy)		Uncontrolled (lb/hr)	
C3	0.901		0.206	
i-butane	0.386		0.088	
n-Butane	0.470		0.107	
I-Pentane	0.213		0.049	
n-Pentane	0.150		0.034	
Hexanes	0.159		0.036	
Heptanes (C7+)	0.887		0.203	
Octanes (C8+)	0.106		0.024	
C9	0.015		0.003	
C10+	0.000		0.000	
Benzene	0.037	1	0.008	
Toluene	0.087		0.020	
Ethyl-Benzene	0.002		0.000	
Xylenes	0.019		0.004	
n_Hexane	0.164		0.037	
2,2,4- Trimethylpentane	0.026		0.006	
TOTAL NMNEHC	3.622 t	ру	0.825	lb/hr
TOTAL HAPs	0.335 t	ру	0.075	lb/hr

VOC EMISSIONS FROM CONDENSATE TRUCK LOADING OPERATIONS

Company:	XTO Energy
Location:	Little Canyon Unit (LCU)
	Uintah County, Utah

Tank Description	Oil Sales (bbls/day)	Oil Sales (1,000 bbls/yr)	Saturation Factor (S)	True Vapor Pressure (P) (psia)	Vapor Mole Wt. (M)	Oil Temperature (T) (Degrees R)	Loading Losses (Ibs/1,000 gal)	VOC Loading Emissions (tons/yr)
Slop Tanks	5.6	2.044	0.6	7.4	68	560	6.7177	0.2884
TOTAL	5.6	2.044					6.7177	0.2884

Vapor molecular weight and true vapor pressure are based on information in AP-42 Section 7, Table 7.1-2.

Loading Losses (lbs/1,000 gal) =	<u>12.46*S*P*M</u> T	(AP-42 Section 5.2, Equation 1)
Loading Emissions (tons/year) =	Loading Losses (lbs/1,	000 gal) * Oil Sales (1,000 bbls/yr) * (42 gal/bbl) 2,000 lbs/ton
Degrees R =	Degrees F + 460	

ughput - Little Car	nyon Unit	
Dec 31, 2008		
BCF/yr		
scf/yr		
12-month avg (scf/day)		
2008 daily avg (mmscfd)		
	Dec 31, 2008 BCF/yr scf/yr 12-month avg (scf/day)	BCF/yr scf/yr

TOTAL FACILITY EMISSION FEES

Company: XTO Energy Facility Name: Little Canyon Unit Facility Location: Uintah County, Utah

Part 71 Emissions Fee Rate (per ton)	2008 Chargeable Emissions	Total Emissions Fee
\$45.25	178	\$8,054.50
TOTAL		\$8,054.50

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

DESCRIPTION:

Description: Actual Emissions 12.14 MMscfd, 12/17/08 Gas Analysis with thermal oxidizer 45015 Kimray Glycol Pump, Optimal rate

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:



CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.0092	0.220	0.0402
Ethane	0.0053	0.126	0.0231
Propane	0.0079	0.190	0.0346
Isobutane	0.0040	0.096	0.0175
n-Butane	0.0079	0.189	0.0346
Isopentane	0.0041	0.098	0.0178
n-Pentane	0.0045	0.109	0.0199
n-Hexane	0.0036	0.085	0.0156
Cyclohexane	0.0100	0.240	0.0438
Other Hexanes	0.0041	0.099	0.0180
Heptanes	0.0094	0.226	0.0413
Methylcyclohexane	0.0134	0.322	0.0587
2,2,4-Trimethylpentane	0.0002	0.005	0.0009
Benzene	0.0214	0.513	0.0936
Toluene	0.0011	0.027	0.0050
Ethylbenzene	0.0016	0.037	0.0068
Xylenes	0.0202	0.484	0.0883
C8+ Heavies	0.0154	0.370	0.0675
Total Emissions	0.1432	3.436	0.6270
Total Hydrocarbon Emissions	0.1432	3.436	0.6270
Total VOC Emissions	0.1287	3.089	0.5638
Total HAP Emissions	0.0480	1.151	0.2101
Total BTEX Emissions	0.0442	1.061	0.1937

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	0.9172	22.013	4.0173
Ethane	0.5271	12.650	2.3086

Propane Isobutane	0.7902 0.3988	18.964 9.572	Page: 2 3.4610 1.7468
n-Butane	0.7895	18.948	3.4581
Isopentane	0.4067	9.761	1.7815
n-Pentane	0.4540	10.895	1.9883
n-Hexane	0.3551	8.521	1.5552
Cyclohexane	1.0002	24.005	4.3810
Other Hexanes	0.4110	9.864	1.8003
Heptanes	0.9431	22.635	4.1309
Methylcyclohexane	1.3403	32.168	5.8707
2,2,4-Trimethylpentane	0.0201	0.482	0.0880
Benzene	2.1374	51.298	9.3618
Toluene	0.1134	2.722	0.4968
Ethylbenzene	0.1552	3.724	0.6796
Xylenes	2.0156	48.375	8.8284
C8+ Heavies	1.5402	36.966	6.7462
 Total Emissions	14.3151	343.562	62.7001
Total Hydrocarbon Emissions	14.3151	343.562	62.7001
Total VOC Emissions	12.8709	308.902	56.3746-
Total HAP Emissions	4.7968	115.123	21.0099
Total BTEX Emissions	4.4216	106.119	19.3666

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	36.3166	871.598	159.0667
Ethane	5.5947	134.272	24.5046
Propane	4.0530	97.272	17.7521
Isobutane	1.3136	31.525	5.7534
n-Butane	1.9668	47.202	8.6144
Isopentane	0.8695	20.869	3.8086
n-Pentane	0.7662	18.390	3.3561
n-Hexane	0.3206	7.693	1.4040
Cyclohexane	0.2163	5.192	0.9475
Other Hexanes	0.4944	11.865	2.1654
Heptanes	0.3989	9.573	1.7471
Methylcyclohexane	0.2221	5.330	0.9728
2,2,4-Trimethylpentane	0.0172	0.413	0.0753
Benzene	0.0654	1.570	0.2864
Toluene	0.0021	0.052	0.0094
Ethylbenzene	0.0017	0.040	0.0072
Xylenes	0.0149	0.359	0.0655
C8+ Heavies	0.0545	1.309	0.2388
Total Emissions	52.6884	1264.523	230.7754 •
Total Hydrocarbon Emissions	52.6884	1264.523	230.7754
Total VOC Emissions	10.7772	258.653	47.2041
Total HAP Emissions	0.4219	10.126	1.8479
Total BTEX Emissions	0.0841	2.019	0.3686

Page: 3

EQUIPMENT REPORTS:

Excess C Combustion Effic	ature: 55.0	
	xvgen: 5.0	10 %
Combustion Effic	iency: 99.0	0 8
Supplemental Fuel Requir	ement: 6.57e-00	2 MM BTU/hr
Component	Emitted	Destroyed
Metha	ne 1.00%	99.008
Etha	ne 1.00%	99.008
Propa	ne 1.00% ne 1.00%	99.008
Isobuta	ne 1.00%	99.008
n-Buta	ne 1.00%	99.008
Isopenta	ne 1.00%	99.008
	ne 1.00%	
n-Hexa	ne 1.00%	99.008
Cyclohexa	ne 1.00%	99.008
Other Hexan	es 1.00%	99.008
Heptan	es 1.00%	99.008
Methylcyclohexa 2,2,4-Trimethylpenta	ne 1.00%	99.008
2,2,4-Trimethylpenta	ne 1.00%	99.008
	ne 1.00%	
Tolue	ne 1.00%	99.008
Ethylbenze	ne 1.00%	99.008
	es 1.00%	
C8+ Heavi		

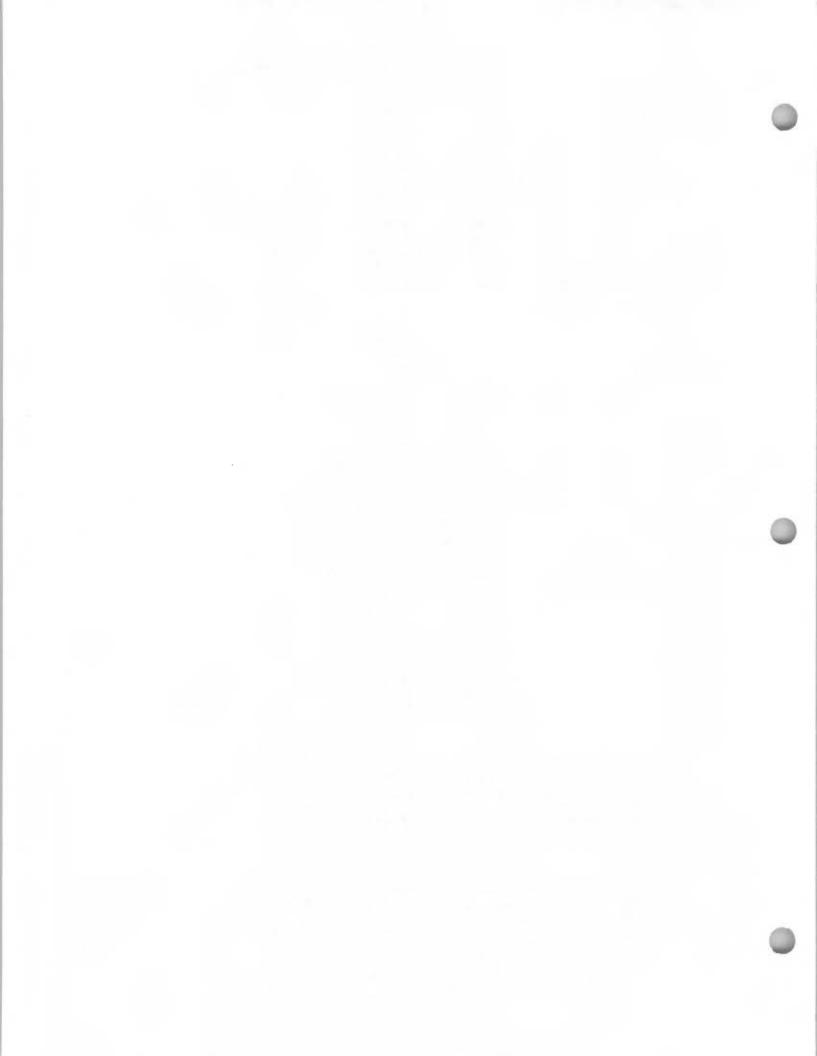
ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Temperature: 81.0 deg. F Pressure: 840.0 psig Dry Gas Flow Rate: 12.1400 MMSCF/day Glycol Losses with Dry Gas: 0.0641 lb/hr	Calculated Absorber Stages: Calculated Dry Gas Dew Point:	1.25 1.31	lbs. H2O/MMSCF
Wet Gas Water Content:SaturatedCalculated Wet Gas Water Content:37.54 lbs. H2O/MMSCFCalculated Lean Glycol Recirc. Ratio:19.80 gal/lb H2O	Pressure: Dry Gas Flow Rate: Glycol Losses with Dry Gas: Wet Gas Water Content: Calculated Wet Gas Water Content:	840.0 12.1400 0.0641 Saturated 37.54	psig MMSCF/day lb/hr lbs. H2O/MMSCF

	Component			2	Absorbed in Glycol	
2	Carbon	Water Dioxide		3.50% 99.29%	96.50 0.71	-

	Page			
Nitrogen	99.95%	0.05%		
Methane	99.95%	0.05%		
Ethane	99.84%	0.16%		
Propane	99.75%	0.25%		
Isobutane	99.64%	0.36%		
n-Butane	99.52%	0.48%		
Isopentane	99.51%	0.49%		
n-Pentane	99.36%	0.64%		
n-Hexane	98.93%	1.07%		
Cyclohexane	95.11%	4.89%		
Other Hexanes	99.19%	0.81%		
Heptanes	97.98%	2.02%		
Methylcyclohexane	94.62%	5.38%		
2,2,4-Trimethylpentane	99.17%	0.83%		
Benzene	64.32%	35.68%		
Toluene	53.14%	46.86%		
Ethylbenzene	44.79%	55.21%		
Xylenes	34.98%	65.02%		
C8+ Heavies	95.20%	4.80%		


4

FLASH TANK

Flash Control: Vented to atmosphere Flash Temperature: 120.0 deg. F Flash Pressure: 70.0 psig

Component	Left in Glycol	Removed in Flash Gas
Water	99.93%	0.07%
Carbon Dioxide	23.82%	76.18%
Nitrogen	2.42%	97.58%
Methane	2.46%	97.54%
Ethane	8.61%	91.39%
Propane	16.32%	83.68%
Isobutane	23.29%	76.71%
n-Butane	28.64%	71.36%
Isopentane	32.13%	67.87%
n-Pentane	37.46%	62.54%
n-Hexane	52.76%	47.24%
Cyclohexane	82.77%	17.23%
Other Hexanes	45.86%	54.14%
Heptanes	70.42%	29.58%
Methylcyclohexane	86.34%	13.66%
2,2,4-Trimethylpentane	54.48%	45.52%
Benzene	97.18%	2.82%
Toluene	98.29%	1.71%
Ethylbenzene	99.06%	0.94%
Xylenes	99.36%	0.64%
C8+ Heavies	96.98%	3.02%

REGENERATOR

_

No	Stripping	Gas	used	in	regenerator.
----	-----------	-----	------	----	--------------

Component	Remaining in Glycol	Distilled Overhead
Water	73.58%	26.42%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane Isobutane n-Butane Isopentane n-Pentane	0.00% 0.00% 1.20% 1.09%	100.00% 100.00% 100.00% 98.80% 98.91%
n-Hexane	0.84%	99.16%
Cyclohexane	3.76%	96.24%
Other Hexanes	1.85%	98.15%
Heptanes	0.66%	99.34%
Methylcyclohexane	4.52%	95.48%
2,2,4-Trimethylpentane	2.35%	97.65%
Benzene	5.13%	94.87%
Toluene	8.02%	91.98%
Ethylbenzene	10.48%	89.52%
Xylenes	12.96%	87.04%
C8+ Heavies	12.06%	87.94%

STREAM REPORTS:

WET GAS STREAM

Temperature:	81.00	deg.	F
Pressure:	854.70	psia	
Flow Rate:	5.07e+005	scfh	

0

Component	Conc. (vol%)	Loading (lb/hr)	
Carbon Dioxide Nitrogen Methane	7.91e-002 3.59e-001 6.39e-001 9.02e+001 5.04e+000	2.11e+002 2.39e+002 1.93e+004	
Isobutane n-Butane Isopentane	2.07e+000 4.37e-001 5.68e-001 2.10e-001 1.62e-001	3.39e+002 4.41e+002 2.02e+002	

n-Hexane 4.82e-002 5.54e+001

~

-. . .

Page: 6

Cyclohexane 2.15e-002 2.41e+001 Other Hexanes 8.22e-002 9.46e+001 Heptanes 4.64e-002 6.20e+001 Methylcyclohexane 2.16e-002 2.83e+001 2,2,4-Trimethylpentane 2.50e-003 3.81e+000 Benzene 5.90e-003 6.15e+000 Toluene 2.00e-004 2.46e-001 Ethylbenzene 2.00e-004 2.83e-001 Xylenes 2.20e-003 3.12e+000 C8+ Heavies 1.42e-002 3.23e+001 Total Components 100.00 2.45e+004 DRY GAS STREAM Temperature: 81.00 deg. F Pressure: 854.70 psia Flow Rate: 5.06e+005 scfh Conc. Loading Component (vol%) (lb/hr) Water 2.77e-003 6.65e-001 Carbon Dioxide 3.57e-001 2.10e+002 Nitrogen 6.39e-001 2.39e+002 Methane 9.03e+001 1.93e+004 Ethane 5.03e+000 2.02e+003 Propane 2.07e+000 1.21e+003 Isobutane 4.36e-001 3.38e+002 n-Butane 5.67e-001 4.39e+002 Isopentane 2.09e-001 2.01e+002 n-Pentane 1.61e-001 1.55e+002 n-Hexane 4.77e-002 5.48e+001 Cyclohexane 2.05e-002 2.30e+001 Other Hexanes 8.17e-002 9.39e+001 Heptanes 4.55e-002 6.08e+001 Methylcyclohexane 2.05e-002 2.68e+001 2,2,4-Trimethylpentane 2.48e-003 3.78e+000 Benzene 3.80e-003 3.95e+000 Toluene 1.06e-004 1.31e-001 Ethylbenzene 8.96e-005 1.27e-001 Xylenes 7.70e-004 1.09e+000 C8+ Heavies 1.35e-002 3.07e+001 ------ ------- -------Total Components 100.00 2.44e+004

LEAN GLYCOL STREAM Temperature: 81.00 deg. F Flow Rate: 6.05e+000 gpm Component Conc. Loading (wt%) (lb/hr)

Page: 7

TEG 9.85e+001 3.35e+003 Water 1.50e+000 5.11e+001 Carbon Dioxide 4.41e-012 1.50e-010 Nitrogen 3.79e-013 1.29e-011 Methane 9.11e-018 3.10e-016 Ethane 4.42e-008 1.51e-006 Propane 3.68e-009 1.25e-007 Isobutane 1.08e-009 3.66e-008 n-Butane 1.54e-009 5.25e-008 Isopentane 1.45e-004 4.94e-003 n-Pentane 1.47e-004 5.00e-003 n-Hexane 8.78e-005 2.99e-003 Cyclohexane 1.15e-003 3.91e-002 Other Hexanes 2.28e-004 7.76e-003 Heptanes 1.85e-004 6.29e-003 Methylcyclohexane 1.86e-003 6.34e-002 2,2,4-Trimethylpentane 1.42e-005 4.84e-004 Benzene 3.39e-003 1.15e-001 Toluene 2.90e-004 9.88e-003 Ethylbenzene 5.33e-004 1.82e-002 Xylenes 8.81e-003 3.00e-001 C8+ Heavies 6.21e-003 2.11e-001 _____ Total Components 100.00 3.40e+003

RICH GLYCOL AND PUMP GAS STREAM

Temperature: 81.00 deg. F Pressure: 854.70 psia Flow Rate: 6.24e+000 gpm NOTE: Stream has more than one phase.

Conc. Loading (wt%) (lb/hr) Component _____ TEG 9.60e+001 3.35e+003 Water 1.99e+000 6.95e+001 Carbon Dioxide 5.18e-002 1.81e+000 Nitrogen 1.36e-002 4.76e-001 Methane 1.07e+000 3.72e+001 Ethane 1.75e-001 6.12e+000 Propane 1.39e-001 4.84e+000 Isobutane 4.90e-002 1.71e+000 n-Butane 7.89e-002 2.76e+000 Isopentane 3.67e-002 1.28e+000 n-Pentane 3.51e-002 1.23e+000 n-Hexane 1.94e-002 6.79e-001 Cyclohexane 3.60e-002 1.26e+000 Other Hexanes 2.61e-002 9.13e-001 Heptanes 3.86e-002 1.35e+000 Methylcyclohexane 4.66e-002 1.63e+000 2,2,4-Trimethylpentane 1.08e-003 3.78e-002 Benzene 6.64e-002 2.32e+000 Toluene 3.59e-003 1.25e-001 Ethylbenzene 5.01e-003 1.75e-001

Page: 8

Xylenes C8+ Heavies	6.67e-002 5.17e-002	
Total Components	100.00	3.49e+003

FLASH TANK OFF GAS STREAM

Temperature: Pressure: Flow Rate:	84.70	psia	•			
	Component	t			Loading (lb/hr)	
	Carboi	n Dioxi Nitrog Metha	de jen ine	9.46e-002 1.16e+000 6.16e-001 8.41e+001 6.91e+000	1.38e+000 4.64e-001 3.63e+001	
	I	Isobuta n-Buta sopenta	ine ine ine	3.41e+000 8.40e-001 1.26e+000 4.48e-001 3.95e-001	1.31e+000 1.97e+000 8.70e-001	
	Other	clohexa r Hexan Heptan	nes nes	1.38e-001 9.55e-002 2.13e-001 1.48e-001 8.40e-002	2.16e-001 4.94e-001 3.99e-001	
2,2	,4-Trimeth	Benze Tolue ylbenze	ene ene ene	5.59e-003 3.11e-002 8.66e-004 5.78e-004 5.23e-003	6.54e-002 2.15e-003 1.65e-003	
	C8- Total Co			1.19e-002	5.45e-002	
	10001 0	and anon		200.00	0.100.001	

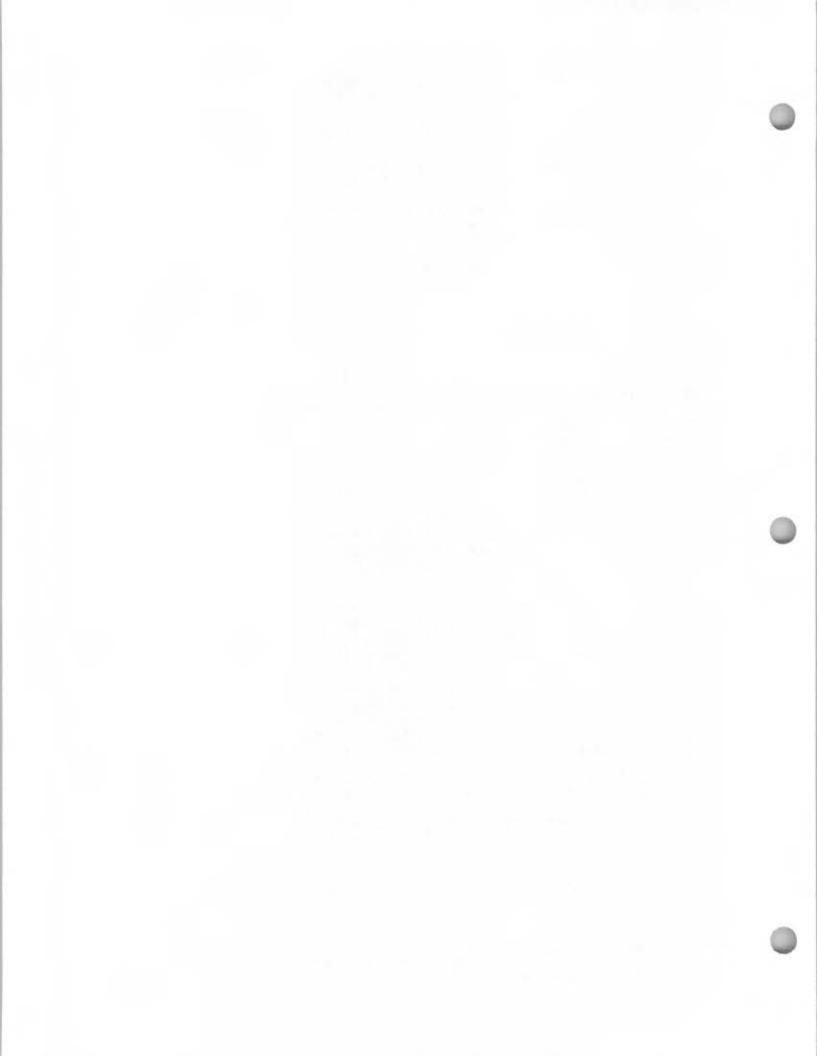
FLASH TANK GLYCOL STREAM

Temperature: Flow Rate:	120.00 deg. F 6.12e+000 gpm		
	Component		Loading (lb/hr)
	Water Carbon Dioxide Nitrogen	9.75e+001 2.02e+000 1.25e-002 3.35e-004 2.67e-002	6.94e+001 4.31e-001 1.15e-002
	Propane	1.53e-002 2.30e-002 1.16e-002	7.90e-001

n-Butane 2.30e-002 7.90e-001 Isopentane 1.20e-002 4.12e-001 n-Pentane 1.33e-002 4.59e-001 n-Hexane 1.04e-002 3.58e-001 Cyclohexane 3.02e-002 1.04e+000 Other Hexanes 1.22e-002 4.19e-001 Heptanes 2.76e-002 9.49e-001 Methylcyclohexane 4.08e-002 1.40e+000 2,2,4-Trimethylpentane 5.99e-004 2.06e-002 Benzene 6.55e-002 2.25e+000 Toluene 3.59e-003 1.23e-001 Ethylbenzene 5.04e-003 1.73e-001 Xylenes 6.74e-002 2.32e+000 C8+ Heavies 5.09e-002 1.75e+000 Total Components 100.00 3.44e+003

REGENERATOR OVERHEADS STREAM

 					_
Temperature: Pressure: Flow Rate:		psia			
	Component	:	Conc. (vol%)	Loading (lb/hr)	
	Carbor	n Dioxide Nitrogen Methane	8.11e+001 7.80e-001 3.28e-002 4.55e+000 1.40e+000	4.31e-001 1.15e-002 9.17e-001	
	Is	Isobutane n-Butane sopentane	1.43e+000 5.47e-001 1.08e+000 4.49e-001 5.01e-001	3.99e-001 7.90e-001 4.07e-001	
	Other	clohexane Hexanes Heptanes	3.28e-001 9.47e-001 3.80e-001 7.50e-001 1.09e+000	1.00e+000 4.11e-001 9.43e-001	
2,2		Benzene Toluene ylbenzene	1.40e-002 2.18e+000 9.81e-002 1.16e-001 1.51e+000	2.14e+000 1.13e-001 1.55e-001	
		Heavies	7.20e-001 100.00	1.54e+000 3.31e+001	


COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F

Page: 9

Pressure: 14.70 psia Flow Rate: 8.62e-001 scfh

Component	Conc. (vol%)	Loading (lb/hr)
Ethane Propane Isobutane	2.52e+001 7.72e+000 7.89e+000 3.02e+000 5.98e+000	5.27e-003 7.90e-003 3.99e-003
	2.77e+000 1.81e+000 5.23e+000	4.54e-003 3.55e-003 1.00e-002
Methylcyclohexane 2,2,4-Trimethylpentane Benzene	4.14e+000 6.01e+000 7.75e-002 1.20e+001 5.42e-001	1.34e-002 2.01e-004 2.14e-002
Ethylbenzene Xylenes C8+ Heavies Total Components	8.36e+000 3.98e+000	2.02e-002
Total Components	100.00	1.43e-001

	oject Setup Infor						
Project		: J:\XTO energy - 390\LCU T5\Tank Emissions - PTE.ept					
	t Selection	: Oil Tank with Separator					
	ion Method	: RVP Distillation					
Control	Efficiency	: 100.0%					
known Se	parator Stream	: Low Pressure Oil					
Entering	Air Composition	: No					
Filed Na	me	: XTO Energy					
ell Nan	ne	: Little Canyon Compressor Station					
ell ID		: PTE					
Date		: 2009.06.08					

	ta Input	******					
	Deserves	· FE (O)(main)					
-	or Pressure	: 55.00[psig]					
-		: 80.00[F]					
	Pressure	: 12.64[psia]					
	Temperature	: 51.96[F]					
10+ SG		: 0.7614					
:10+ MW		: 190.98					
- Low E	Pressure Oil						
No.	Component	mol %					
1	H2S	0.0000					
2	02	0.0000					
3	CO2	1.1239					
4	N2	0.0840					
5	C1	27.7359					
6	C2	2.7955					
7	C3	1.5835					
8	i-C4	0.7170					
9	n-C4	1.0561					
10	i-C5	0.7564					
11	n-C5	0.6978					
12	C6	1.7341					
13	C7	26.6087					
14	C8	9.6271					
15	C9						
_	C10+	3.8073					
16		9.3447					
17	Benzene	0.6206					
18	Toluene	4.7280					
19	E-Benzene	0.3285					
20	Xylenes	3.5581					
21	n-C6	2.2710					
22	224Trimethylp	0.8218					
- Sales	0il						
		: 6.5[bbl/day]					
ays of	Annual Operation	: 365 [days/year]					
PI Grav	vity	: 55.0					
Reid Vap	or Pressure	: 7.00[psia]					
******	******	***************************************					
	lculation Results						
		· ************************************					
	in Comment						
		atrolled Uncontrolled					

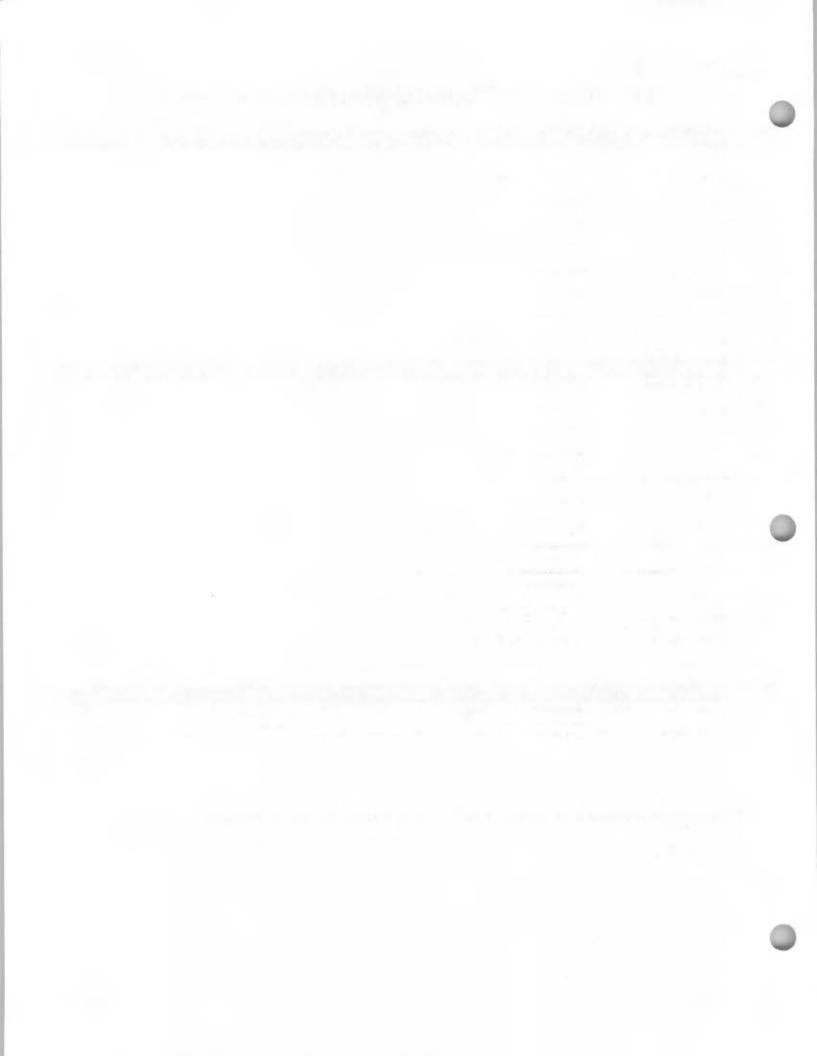
TOL	al HAPs	0.870	0.199					
	al HC	31.562	7.206					
voc	s, C2+	12.771	2.916					
voc	s, C3+	9.414	2.149					
Unc	ontrolled Recover	y Info.						
	Vapor	3.0700	[MSCFD]					
	HC Vapor	2.9700	[MSCFD]					
	GOR	472.31	[SCF/bb1]					
No	Emission Composit Component	ion Uncontrolled	Uncontrol	1ed				خلة فلا حد بند سر
NO	component	[ton/yr]	[lb/hr]	ried				
1	H2S		0.000					
	02	0.000	0.000					
2 3		0.000						
	C02	2.045	0.467					
4	N2	0.100	0.023					
5	C1	18.790	4.290					
6	C2	3.357	0.766					
7	C3	2.341	0.534					
8	i-C4	1.005	0.229					
9	n-C4	1.221	0.279					
10	i-C5	0.553	0.126					
11	n-C5	0.389	0.089					
12	C6	0.412	0.094					
13	C7	2.305	0.526					
14	C8	0.275	0.063					
15	C9	0.038	0.009					
16	C10+	0.001	0.000					
17	Benzene	0.097	0.022					
18	Toluene	0.227	0.052					
19	E-Benzene	0.005	0.001					
20	Xylenes		0.012					
		0.051						
21	n-C6	0.426	0.097					
22	224Trimethylp	0.067	0.015					
22	224Trimethylp Total	0.067 33.705	0.015 7.695					
								- 46 45 45 45 45 45
	Total			Flash Oil	Sale Oil	Flash Gas	WES Gas	Total Emission
	Total Stream Data	33.705	7.695	Flash Oil mol %	Sale Oil mol %	Flash Gas mol %	W&S Gas mol %	Total Emission mol %
	Total Stream Data	33.705	7.695 LP Oil					
 No.	Total Stream Data Component	33.705 	7.695 LP Oil mol %	mol %	mol %	mol %	mol %	mol %
 No.	Total Stream Data Component H2S	33.705 MW 34.80	7.695 LP Oil mol % 0.0000	mol % 0.0000	mol % 0.0000	mol % 0.0000	mol % 0.0000	mol % 0.0000
 No. 1 2 3	Total Stream Data Component H2S O2	33.705 MW 34.80 32.00 44.01	7.695 LP Oil mol % 0.0000 0.0000 1.1239	mol % 0.0000 0.0000 0.0530	mol % 0.0000 0.0000 0.0530	mol % 0.0000 0.0000 3.1420	mol % 0.0000 0.0000 0.0000	mol % 0.0000 0.0000 3.1420
 No. 1 2 3 4	Total Stream Data Component H2S O2 CO2 N2	33.705 MW 34.80 32.00 44.01 28.01	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840	mol % 0.0000 0.0000 0.0530 0.0003	mol % 0.0000 0.0000 0.0530 0.0003	mol % 0.0000 0.0000 3.1420 0.2417	mol % 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 0.0000 3.1420 0.2417
 No. 1 2 3 4 5	Total Stream Data Component H2S 02 C02 N2 C1	33.705 MW 34.80 32.00 44.01 28.01 16.04	7.695 LP Oil mol % 0.0000 0.0000 1.1239 0.0840 27.7359	mol % 0.0000 0.0000 0.0530 0.0003 0.4204	mol % 0.0000 0.0530 0.0003 0.4204	mol % 0.0000 0.0000 3.1420 0.2417 79.2127	mol % 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 0.0000 3.1420 0.2417 79.2127
 No. 1 2 3 4 5 6	Total Stream Data Component H2S O2 CO2 N2 C1 C2	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955	mol % 0.0000 0.0530 0.0003 0.4204 0.2719	mol % 0.0000 0.0530 0.0003 0.4204 0.2719	mol % 0.0000 3.1420 0.2417 79.2127 7.5513	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513
No. 1 2 3 4 5 6 7	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911
No. 1 2 3 4 5 6 7 8	Total Stream Data Component H2S O2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690
 No. 1 2 3 4 5 6 7 8 9	Total Stream Data Component H2S O2 C02 N2 C1 C2 C3 i-C4 n-C4	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207
 No. 1 2 3 4 5 6 7 8 9 10	Total Stream Data Component H2S O2 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 7.5513 3.5911 1.1690 1.4207 0.5183
 No. 1 2 3 4 5 6 7 8 9 10 11	Total Stream Data Component H2S O2 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649
 No. 1 2 3 4 5 6 7 8 9 10 11 12	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 86.16	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Total Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15 72.15 86.16 100.20	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Total Stream Data Component H2S 02 C02 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 86.16 100.20 114.23 128.28	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.208 0.0004 0.0843	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.208 0.0004 0.0843	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Total Stream Data Component H2S O2 CO2 CO2 CO2 CO2 CO2 CO2 CO3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665	mol % 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0352 0.3342 0.0395	mol % 0.0000	0.0000 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0352 0.3342 0.0395
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 86.18 114.24	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369 111.78	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369 111.78	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rati	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18 114.24	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93 1.0000	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467	mol % 0.0000	mol % 0.0000 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 CO2 CO2 CO2 CO2 CO2 CO3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rati Heating Value	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18 114.24 io	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93 1.0000	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369 111.78	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369 111.78	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0035 0.0322 0.3342 0.0395 22.80 0.3467 1287.20	mol % 0.0000	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467 1287.20
 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21	Total Stream Data Component H2S O2 CO2 N2 C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene Xylenes n-C6 224Trimethylp MW Stream Mole Rati	33.705 MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 58.12 72.15 72.15 72.15 72.15 86.16 100.20 114.23 128.28 190.98 78.11 92.13 106.17 106.17 86.18 114.24 io [BTU/SCF] [Gas/Air]	7.695 LP Oil mol % 0.0000 1.1239 0.0840 27.7359 2.7955 1.5835 0.7170 1.0561 0.7564 0.6978 1.7341 26.6087 9.6271 3.8073 9.3447 0.6206 4.7280 0.3285 3.5581 2.2710 0.8218 80.93 1.0000	mol % 0.0000 0.0530 0.4204 0.2719 0.5182 0.4772 0.8626 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369 111.78	mol % 0.0000 0.0530 0.0003 0.4204 0.2719 0.5182 0.4772 0.8626 0.8827 0.8745 2.4781 39.8754 14.6466 5.8165 14.3031 0.9052 7.1485 0.5010 5.4291 3.2987 1.2369 111.78	mol % 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467	mol % 0.0000	mol % 0.0000 0.0000 3.1420 0.2417 79.2127 7.5513 3.5911 1.1690 1.4207 0.5183 0.3649 0.3320 1.6072 0.1678 0.0208 0.0004 0.0843 0.1665 0.0035 0.0322 0.3342 0.0395 22.80 0.3467

E&P TANK V2.0 Calculation Report--- Developed by DB Robinson & Associates Ltd.

 RVP @ 100F
 [psia]
 188.94
 6.44
 6.44

 Spec. Gravity @ 100F
 0.633
 0.681
 0.681

MIRATECH Emissions Control Equipment Specification Summary


			Proposal Number.	TJ-08-2951 Rev(1)
Engine Data		eleisennaisteal		
# of Engines:	1			
Engine Operation:	Gas Compression			
Engine Make:	Caterpillar			
Engine Model:	G 3516 LE			
Power Output:	1,340 bhp			
Fuel:	Natural Gas			
Design Exhaust Temp:	854 F			
Design Exhaust Flow Rate:	13,305 lb/hr			
Lubrication Oil:	0.6 wt% sulfated ash or less			

Catalytic Converter Model:	RCS-3626-12-L1
Inlet / Outlet Pipe Size:	12 inches
Overall Length:	106 inches
Diameter:	36/26 inches
Weight (including catalyst):	840 lbs
Converter Pressure Loss:	4.8 Inches of WC
ound Attenuation:	25-30 dba
Catalyst Section Internals:	Carbon Steel
Shell / Body Constructions:	Carbon Steel
Inlet / Outlet Connection:	Standard 125# ANSI Bolt Pattern Flanges - FF
Instrumentation Ports:	1 inlet/1 outlet/2 catalyst (1/2" NPT)
Oxygen Sensor Ports:	1 inlet/1 outlet (18mm)
Operation Temperature Limits 75	0 - 1,250 degrees F (inlet); 1,350 degrees F (outlet)

Emission Requiren	nents			
Exhaust Gases	Engine Outputs (g/ bhp-hr)	Reduction (%)	Converter Outputs (g/ bhp-hr)	Area Limits
CO	1.89	90%	0.19	90 % Reduction
CH ₂ O	0.25	76%	0.06	0.06 g/bhp-hr
Oxygen	8.3%			

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

CATALYTIC SILENCER SIZING PROGRAM

GT EXHAUST SYSTEMS, INC. 4121 NW 37 Street Lincoln, NE 68624 402-323-7272 Fex 402-323-7270

CUSTOMER: EXTERRAN

PROJECT: XTO

5057005

MAX.

SERIES (2100,4100,5100 - 8100)

NUMBER OF ELEMENTS = "

DATE: 2/9/2009 QUOTATION I.D.: DESCRIPTION: CAT 3516TALE, 1400RPM, 1340HP, 854TEMP

SELECT OXIDATION CATALYST SIZE

PRESSURE DROP CALCULATED WITH A

12 INCH OUTLET

PERFORMANCE DATA INPUT AND CALCULATIONS

1	NPUT DATA	A		CALCULATE	D
FLOW: ACFM or SCFM 70/14.7			ACFM SCFM 78/14.7	7404.36 2966.54	
or NCuM/Min32/14.7 or LB/MIN or LB/HR	13301		NCuM/Min32/14.7 LB/MIN LB/HR	221.68	
S.G. or M.W.	28.7	* SEE	S.G. M.W.	0.99102 28.700	
TGAS'F PGAS PSIG	854	NOTE	TGAS"R PGAS PSIA	1314 14.700	
PATM PSIA OUTLET SIZE, IN	<u>14.7</u> 12		OUTLET, SQ.FT. OUTLET VEL, FT/MIN	0.785 9427.5	
FUEL, (GAS, or DIESEL) BODY STYLE (201 OR 501) IAX, BODY CAPACITY or R **	and a second sec		VEL HEAD, IN H 10 SCFH 11/14.7	2.21 166344	(FOR CAT CONV SPACE VEL CALC)
3-WAY OR OXIDATION					

" NOTE: 27.5 MW TYP FOR RICH BURN EXHAUST GAS: 28.7 MW TYP. FOR LEAN BURN GAS OR DIESEL

4100

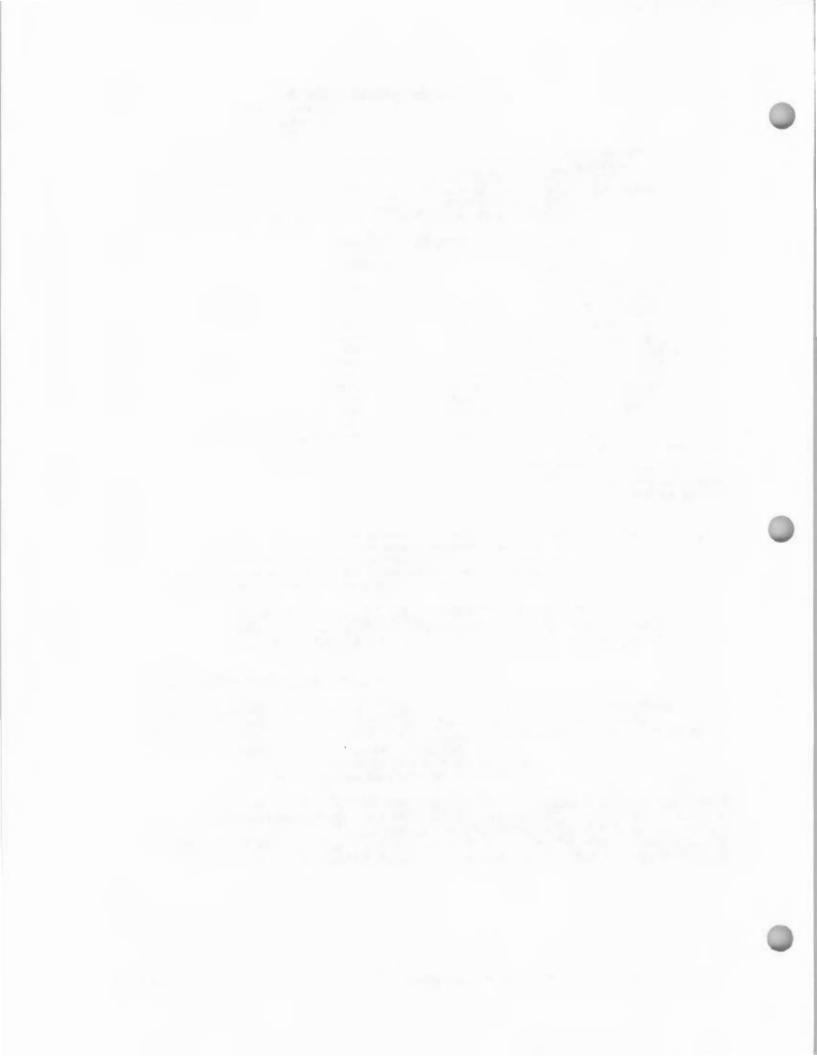
2

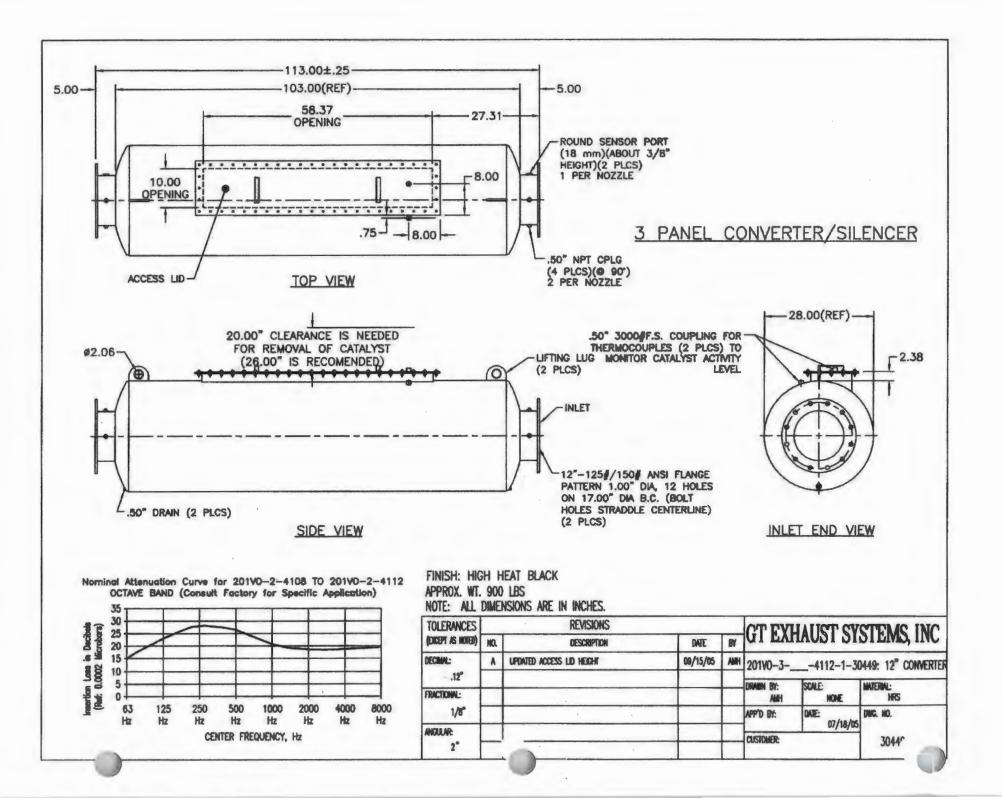
** MAX. BODY CAPACITY - For modular enter number of elements and helf elements as 1, 2, 4, 6, etc.

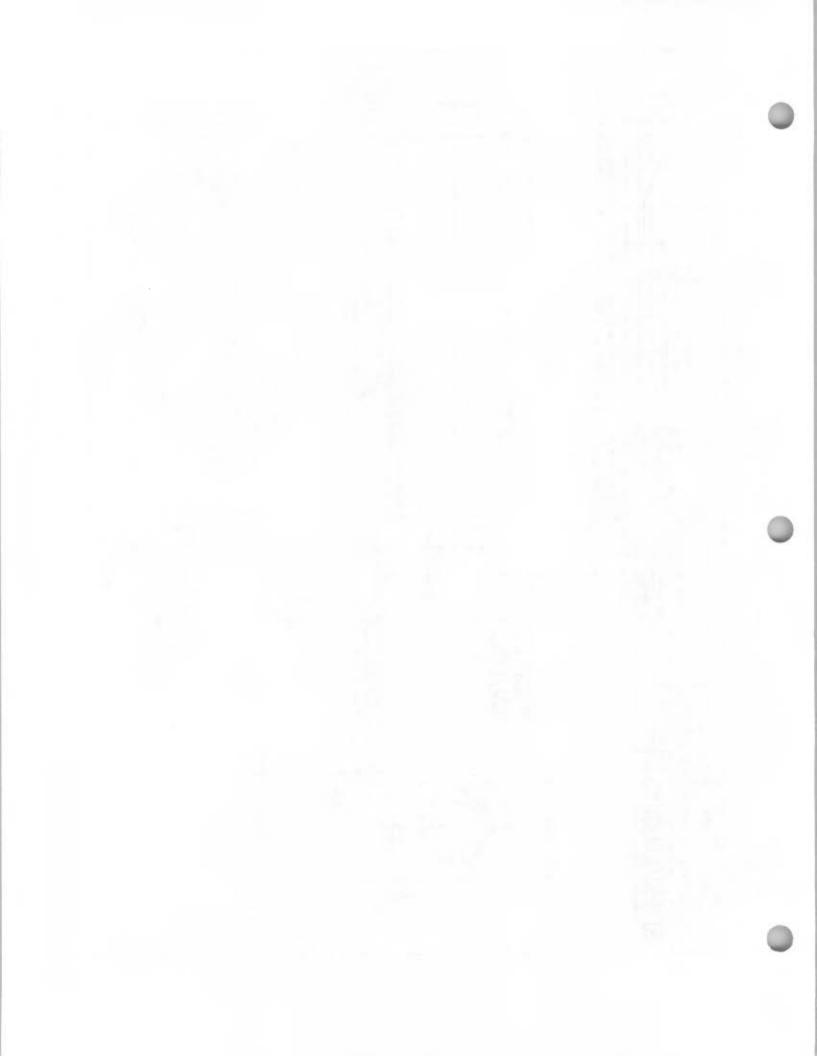
For the small round (6".8".10".12".14".or 16") ENTER R IN C-30 AND THE DIAMETER SELECTED IN C-31. *** NUMBER ELEMENTS For modular enter the number of full and half elements as 1, 1, 5, 2, 2, 5, 3, 3, 5, up to entered Max. Body Capacity. For small round (5", 8", 10", 12", 14", or 16") ENTER "1" AND ENTER THE DIAMETER OF IN C-31

GT CATALYT	IC CONVERTER M	ODEL NUMBER:	201	I VO	-	3	- 200	- 4112
CALCULATED PRESSUR	E DROP = 6.71	INCHES H20, CA	LCULA	TED SPA	CEV	ELO	CITY =	123318
WITH LEAN BURN GAS ENGINE.	MIN. OXIDATIO	IN RATES ARE:	95	% CO 8	HC	10,	AND	80 % NMMEHC

VOC WILL BE STATED AS NUMERIC FOR THIS APPLICATION


BASED ON STATED EXH. FLOW & TEMPERATURE	NOX	CO	HCHO	NMHC Nate 1	NMNEHC Mote 1
AND THE FOLLOWING EMISSIONS OUT OF ENGINE:	1.500	1.890	0.250	0.460	0.310
WE WARRANT EMISSIONS OUT OF CONVERTER NOT EXCEED:	1.500	0.397	0.055	0.230	0.077
UNITS:	gay/bhp-hr	gm/bhp-hr	gm/bho-hr	om/bhp-hr	gm/bhp-hr


Note 1: NMHC. NMNEHC & LESS THAN 50% Saturated.


Note 2: Oxidation Catalyst on Diesel or Lean Gas Cannot Reduce NOx

PERFORMANCE WARRANTY CONTINGENT UPON CONVERTER INSTALLATION ON A PROPERLY MAINTAINED ENGINE EXCESSIVE OIL CONSUMPTION AND/OR FUEL CONSUMPTION MAY MASK OR POISON THE CATALYST AND REDUCE DESTRUCTION ENGINE LUBE OIL MUST BE OF A TYPE RECOMMENDED FOR CATALYTIC CONVERTER SERVICE. ELEMENT(S) WILL REQUIRE PERIODIC CLEANING. FREQUENCY WILL DEPEND ON LEVEL OF CONTAMINANTS IN THE EXHAUST GAS CERTAIN CONTAMINANTS SUCH AS HEAVY METAL IN FUEL AND LUBE OIL WILL POSION THE CATALYST AND VOID THE WARANTY

UNI FLOW LINE XTO ENERGY 3516TALE 201VO-3-2-4112-1 95% 2-9-09, SELECT SIZE

INDUSTRIAL REFRACTORY SERVICES INC.

2300 South Main Street Fort Worth, Texas 76110 (817)924-9991 mriddell@irsvc.com

March 3, 2009

Aaron Tucker

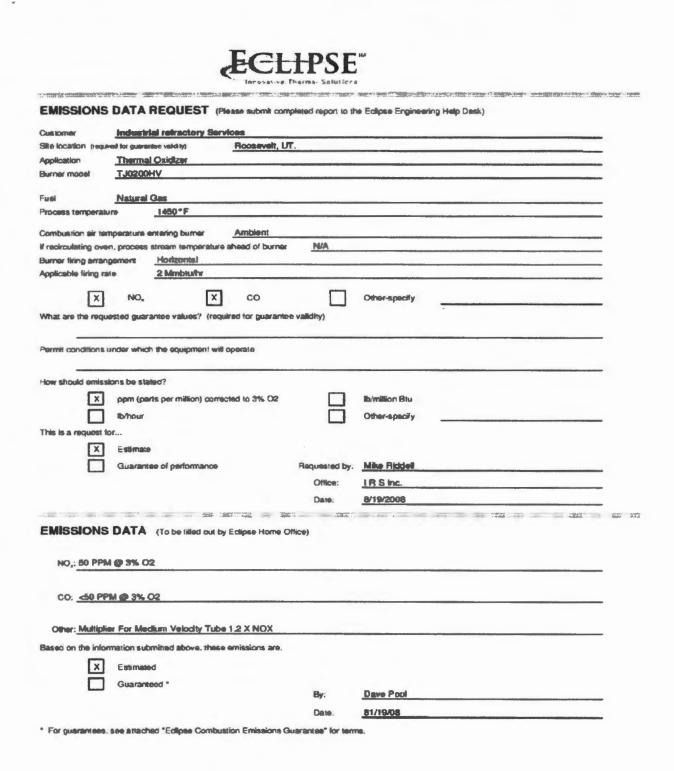
XTO Energy

Natural Gas Operations 810 Houston Street Fort Worth, TX 76102

Dear Aaron Tucker:

The Thermal Oxidizers you recently purchased are compliant with the latest environmental regulations.

Industrial Refractory Services Inc. guarantees a 99% V.O.C. destruction efficiency on all Thermal Oxidizers unless otherwise stated.


I have attached copies of the Emissions Data that is provided by Eclipse Combustion, the manufacture of the process burner that is used on the Thermal Oxidizers. The 36" T.O.'s use the TJ0200HV burner.

If you have questions please contact me.

Sincerely,

Mike Riddell Enclosure

Eclipse, Inc. 1665 Elmwood Rd. Rockford, IL 61103 USA Tel: 815-877-3031 Fax: 815-877-3336 www.eclipsenet.com

~

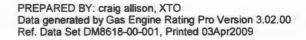
ECLIPSE

and a standard and a standard a st		Thurma-Selution	
	DATA REQUEST (Please submit con		
Sus tomer	Industrial retractory Services		
	ired for guarantee validity) Floosevelt, L	π.	
pplication	Thermal Oxidizer		
urner model	TJ0200HV		
uel.	Natural Gas		
nocess temperal	1450*F		
ombustion air te	mperature entering burner Ambient		
	en, procees stream temperature ahead of burner	NA	
urner firing arran	Horizontal		
pplicable firing r	ale 2 Mmbtufty		
X	NO. X CO		Other-specify
استا	السينا .		Const spinoly
that are the requ	uested guarantee values? (required for guarante	e validity)	
×	sions be stated? ppm (parts per million) corrected to 3% O2 Rothour	Office:	Ib/million Btu Other-specify Mike Riddel I R S Inc.
This is a request	sions be stated? ppm (parts per million) corrected to 3% O2 Ib/hour ter Estimate Guarantee of performance	Office: Date:	Other-specify Mike Riddel IR S Inc. 8/19/2008
	sions be stated? ppm (parts per million) corrected to 3% O2 Ib/hour ter Estimate Guarantee of performance	Office: Date:	Other-specify
	sions be stated? ppm (parts per million) corrected to 3% O2 lb/hour ter Estimate Guarantee of performance S DATA (To be filled out by Edipse Home (Office: Date:	Other-specify Mike Riddel IR S Inc. 8/19/2008
Image: Second	sions be stated? ppm (parts per million) corrected to 3% O2 Ib/hour tor Estimate Guarantee of performance S DATA (To be filled out by Eclipse Home (M @ 3% O2	Office: Date:	Other-specify Mike Riddel IR S Inc. 8/19/2008
Missions No,: 50 PP CO: <50 P	sions be stated? ppm (parts per million) corrected to 3% O2 lb/hour ter Estimate Guarantee of performance S DATA (To be filled out by Eclipse Home (M @ 3% O2 PM @ 3% O2	Office: Date:	Other-specify Mike Riddel IR S Inc. 8/19/2008
MISSIONS NO,: 50 PP CC. <u><50 P</u>	sions be stated? ppm (parts per million) corrected to 3% O2 lib/hour tor Estimate Guarantee of performance S DATA (To be filled out by Eclipse Home (M @ 3% O2 PM @ 3% O2 For Medium Velocity Tube 1.2 X NOX	Office: Date:	Other-specify Mike Riddel IR S Inc. 8/19/2008
MISSIONS NO,: 50 PP CO: <50 PP Other: Multipl ased on the inic	sions be stated? ppm (parts per million) corrected to 3% O2 lb/hour ter Estimate Guarantee of performance S DATA (To be filled out by Eclipse Home I M @ 3% O2 PM @ 3% O2 ter For Medium Velocity Tube 1.2 X NOX permation submitted above, these emissions are. Estimated	Office: Date:	Other-specify Mike Riddel IR S Inc. 8/19/2008
His is a request His is a request K K K K K K K K K K K K K	sions be stated? ppm (parts per million) corrected to 3% O2 Ib/hour ter Estimate Guarantee of performance S DATA (To be filled out by Eclipse Home (M@ 3% O2 PM @ 3% O2 PM @ 3% O2 PM @ 3% O2 PM @ 3% O2	Office: Date:	Other-specify Mike Riddel IR S Inc. 8/19/2008

Eclipse, Inc. 1665 Elmwood Rd. Rockford, IL 61103 USA Tel: 815-877-3031 Fax: 815-877-3336 www.eclipsenet.com

CATERPILLAR°

GAS COMPRESSION APPLICATION

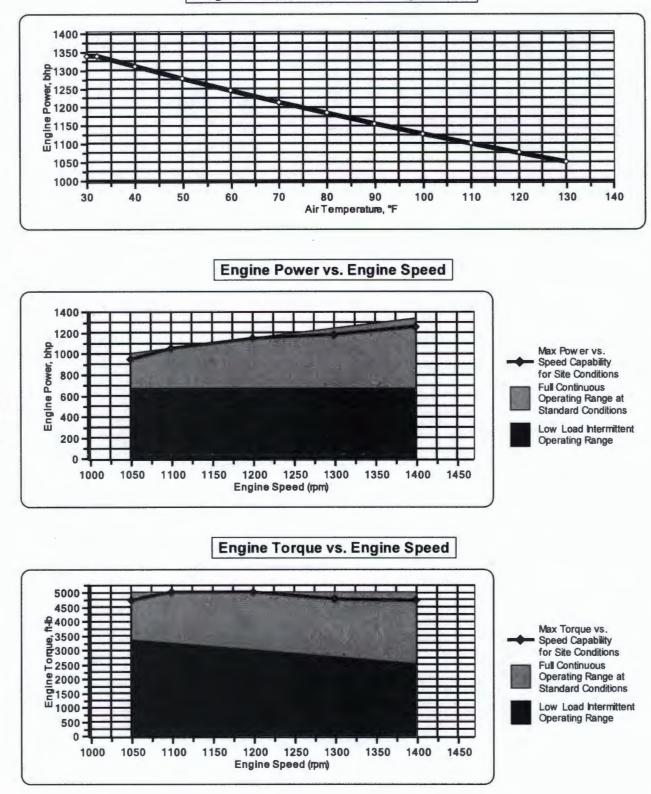

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE


NGINE SPEED (rpm): 140 COMPRESSION RATIO: 8:1	0 F	FUEL SYSTEM:				
FTERCOOLER WATER INLET (°F): 130 ACKET WATER OUTLET (°F): 210 COOLING SYSTEM: JW GNITION SYSTEM: ADI EXHAUST MANIFOLD: ASI	+OC , AC F EM3 F VC F / Emission /	SITE CONDITIONS: FUEL: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf): ALTITUDE(ft): MAXIMUM INLET AIR TEMPERATURE NAMEPLATE RATING:			WITH AIR FUEL RATIO CONTROL Field Ga: 35.0-40. 62. 102 5800 IRE(°F): 55 1340 bhp@1400rpm	
			MAXIMUM RATING	a second from a state a second	GAT MAXIMU Emilienaturi	
RATING	NOTE	LOAD	198%	100%	75%	- 55%
ENGINE POWER	(1)	bhp	1340	1260	945	670
INLET AIR TEMPERATURE		۴	32	55	55	55
ENGINE DATA						
FUEL CONSUMPTION (LHV)	(2)	Btu/bhp-hr	7722	7778	8055	8518
FUEL CONSUMPTION (HHV)	(2)	Btu/bhp-hr	8532	8594	8901	9412
AIR FLOW	(3)(4)		12692	11944	9030	6604
AIR FLOW WET (77°F, 14.7 psia)	(3)(4)		2862	2694	2036	1489
INLET MANIFOLD PRESSURE	(5)	in Hg(abs)	70.0	66.5	52.3	39.3
EXHAUST STACK TEMPERATURE	(6)	°F	907	907	908	911
EXHAUST GAS FLOW (@ stack temp, 14.5 ps			7882	7419	5620	4126
EXHAUST GAS MASS FLOW	(7)(4)	lb/hr	13190	12415	9396	6879
EMISSIONS DATA	to an a free that					
NOx (as NO2)	(8)	g/bhp-hr	1.50	1.50	1.50	1.50
CO	(8)	g/bhp-hr	2.31	2.34	2.45	2.61
THC (mol. wt. of 15.84)	(8)	g/bhp-hr	2.43	2.45	2.56	2.72
NMHC (mol. wt. of 15.84)	(8)	g/bhp-hr	0.63	0.64	0.66	0.71
NMNEHC (VOCs) (mol. wt. of 15.84)	(8)(9)		0.42	0.43	0.45	0.47
HCHO (Formaldehyde)	(8)	g/bhp-hr	0.22	0.22	0.23	0.24
CO2	(8)	g/bhp-hr	509	511	522	545
EXHAUST OXYGEN	(10)	% DRY	7.9	7.8	7.7	7.6
HEAT REJECTION	22.2.2.2.2.2					
HEAT REJ. TO JACKET WATER (JW)	(11)	Btu/min	43666	42171	35699	29897
HEAT REJ. TO ATMOSPHERE	(11)	Btu/min	5313	5102	4269	3543
HEAT REJ. TO LUBE OIL (OC)	(11)	Btu/min	6512	6289	5324	4459
HEAT REJ. TO AFTERCOOLER (AC)	(11)(12	2) Btu/min	9473	9473	5270	2111

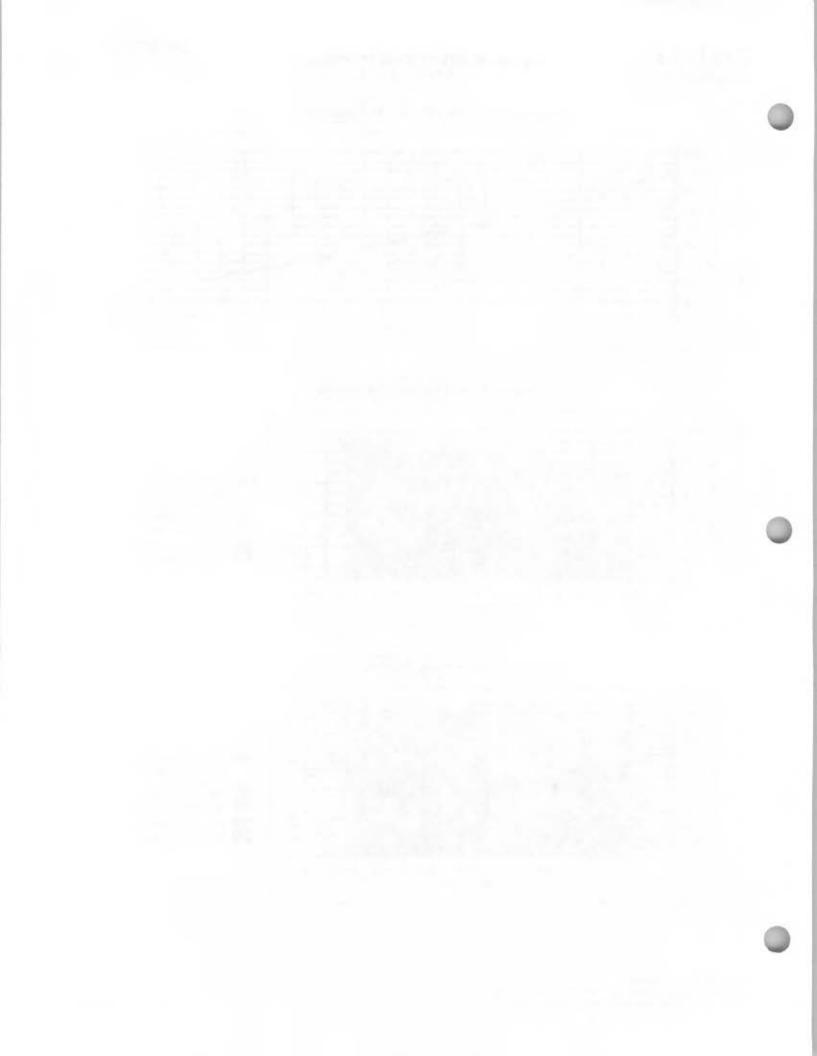
TOTAL JACKET WATER CIRCUIT (JW+OC)	(12)	Btu/min	55848
TOTAL AFTERCOOLER CIRCUIT (AC)	(12)(13)	Btu/min	9946
A cooling system safety factor of 0% has been added to th	e heat exchange	r sizing criteria	a.

CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature. Max: rating is the maximum capability for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

For notes information consult page three.


GAS COMPRESSION APPLICATION

G3516 LE


GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

CATERPILLAR°

Engine Power vs. Inlet Air Temperature

PREPARED BY: craig allison, XTO Data generated by Gas Engine Rating Pro Version 3.02.00 Ref. Data Set DM8618-00-001, Printed 03Apr2009

G3516 LE

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

NOTES

1. Engine rating is with two engine driven water pumps. Tolerance is ± 3% of full load.

2. Fuel consumption tolerance is ± 3.0% of full load data.

3. Undried air. Flow is a nominal value with a tolerance of ± 5 %.

4. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.

5. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

6. Exhaust stack temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.

7. Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

8. Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Fuel methane number cannot vary more than ± 3. Engine should be setup to the nominal published NOx level to ensure emissions remain compliant with a 2.0 g/bhp-hr "not to exceed" NOx limit. All other emission values listed are higher than nominal levels to allow for instrumentation, measurement, and engine-to-engine variations. They indicate "not to exceed" values. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.

9. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

10. Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

11. Heat rejection values are nominal. Tolerances, based on treated water, are \pm 10% for jacket water circuit, \pm 50% for radiation, \pm 20% for lube oil circuit, and \pm 5% for aftercooler circuit.

12. Aftercooler heat rejection includes an aftercooler heat rejection factor for the site elevation and inlet air temperature specified. Aftercooler heat rejection values at part load are for reference only. Do not use part load data for heat exchanger sizing.

13. Heat exchanger sizing criteria are maximum circuit heat rejection for the site, with applied tolerances.

G3516 LE

GAS COMPRESSION APPLICATION

GAS ENGINE SITE SPECIFIC TECHNICAL DATA Uinta Cat 3516LE

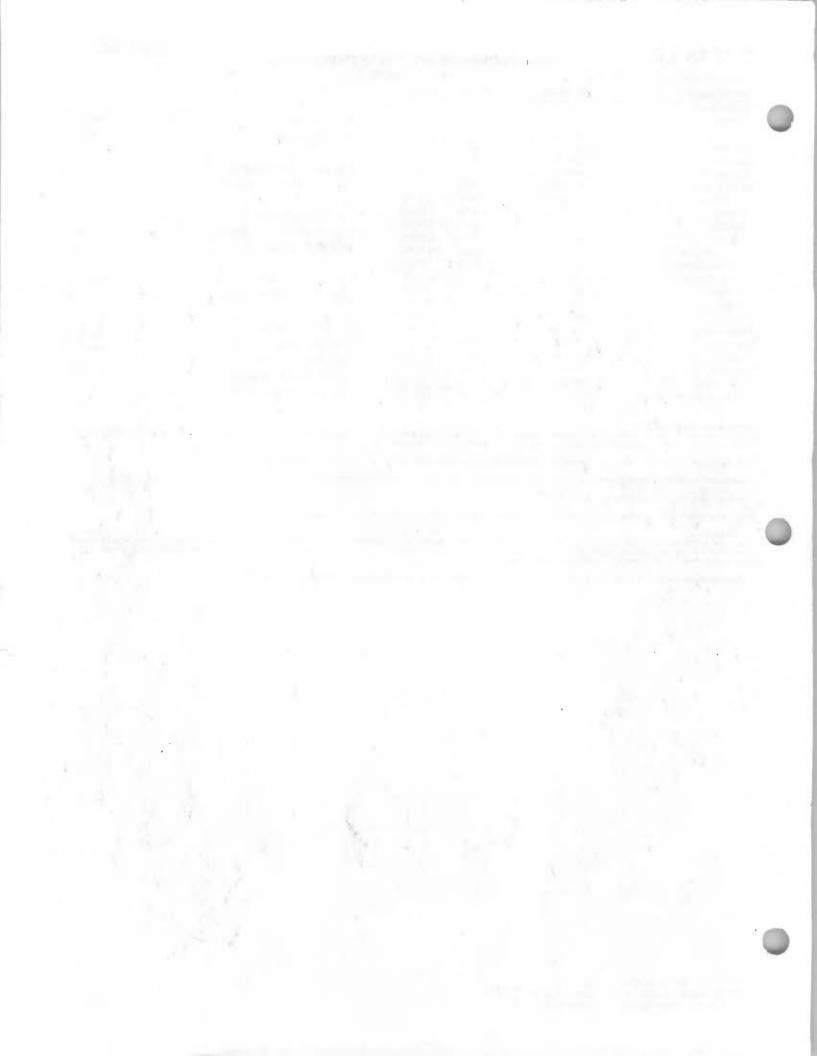
Constituent	Abbrev	Mole %	Norm	
Water Vapor	H2O	2.5211	2.5211	
Methane	CH4	86.6340	86.6340	Fuel Make
Ethane	C2H6	4.9767	4.9767	Unit of Me
Propane	C3H8	3.5670	3.5670	offic of the
Isobutane	iso-C4H1O	0.0000	0.0000	
Norbutane	nor-C4H1O	1.8211	1.8211	Calculated
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar
Norpentane	nor-C5H12	0.4802	0.4802	
Hexane	C6H14	0.0000	0.0000	Lower Hea
Heptane	C7H16	0.0000	0.0000	
Nitrogen	N2	0.0000	0.0000	Higher He
Carbon Dioxide	CO2	0.0000	0.0000	WOBBE In
Hydrogen Sulfide	H2S	0.0000	0.0000	
Carbon Monoxide	CO	0.0000	0.0000	THC: Free
Hydrogen	H2	0.0000	0.0000	
Oxygen	02	0.0000	0.0000	RPC (%) (
Helium	HE	0.0000	0.0000	
Neopentane	neo-C5H12	0.0000	0.0000	Compress
Octane	C8H18	0.0000	0.0000	Stoich A/F
Nonane	C9H20	0.0000	0.0000	Stoich A/F
Ethylene	C2H4	0.0000	0.0000	
Propylene	C3H6	0.0000	0.0000	Specific G
TOTAL (Volume %)		100,0000	100,0000	Specific H

Fuel Makeup:	Field Gas
Unit of Measure:	English
Calculated Fuel Properties	
Caterpillar Methane Number:	62.2
Lower Heating Value (Btu/scf):	1027
Higher Heating Value (Btu/scf):	1135
WOBBE Index (Btu/scf):	1274
THC: Free Inert Ratio:	Not Applicable
RPC (%) (To 905 Btu/scf Fuel):	100%
Compressibility Factor:	0.997
Stoich A/F Ratio (Vol/Vol):	10.68
Stoich A/F Ratio (Mass/Mass):	16.43
Specific Gravity (Relative to Air):	0.650
Specific Heat Constant (K):	1.297

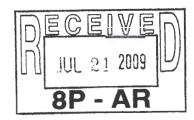
CATERPILLAR®

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.


Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account whan generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14.696 psia.


Caterpillar shell have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof.

FUEL LIQUIDS Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel oparating temparature.

Clauder Smith - EPA Sug 8

July 17, 2009

Assistant Regional Administrator Office of Enforcement, Compliance, and Environmental Justice U.S. Environmental Protection Agency, Region 8 1595 Wynkoop Denver, CO 80202-1129 Certified Mail

Certified Mail Return receipt No. 7008 2810 0000 4380 0050

- RE: XTO Energy Consent Decree Uintah Basin on Indian Country Lands in the State of Utah DOJ No. 90-5-2-1-08656 Civil Action No. 2:09-CV-00331-SA
 - Notice of Owner and Operator change for Uinta Basin Facilities

To Whom It May Concern:

XTO Energy (XTO) hereby submits this notification of owner and operator change related to the Consent Decree lodged for Civil Action No. 2:09-CV-00331-SA for the Uintah Basin on Indian Country Lands in the State of Utah. XTO Energy Inc. formed a wholly owned subsidiary under the name of Summit Gas Gathering, LLC (SGG) on April 27, 2009. As a part of the creation of SGG, XTO transferred the assets and business control of the assets to SGG as of June 1, 2009. With regard to the legal liability of XTO Energy Inc. under the referenced civil action and associated consent decree, XTO Energy Inc. still functions as the owner of SGG and retains the position of Co-defendant in conjunction with Dominion Exploration & Production, Inc. for Civil Action No. 2:09-CV-00331-SA. The following documents are attached to this letter as a part of this notification:

- A Certification of Truth, Accuracy, and Completeness (CTAC) signed by the Responsible Official.
- Statements from XTO Energy and SGG regarding Federal Tax ID and entity status of the newly formed subsidiary.

If you should have any questions or require additional information, please feel free to contact me at (817) 885-2672.

Sincerely,

XTO Energy

Craig Allison EH&S Advisor

WCA/Encl

Cc: See Distribution List on the attached page.

XTO Energy, Inc. -U.S. Consent Decree Report Distribution List

As per Paragraph 93 of the U.S. Consent Decree, unless otherwise specified herein, whenever notifications, submissions, or communications are required by this Consent Decree, they shall be made in writing and mailed or hand delivered addressed as follows:

CC via U.S. Certified Mail No. 7008 2810 0000 4380 0814 :

Chief, Environmental Enforcement Section Environment and Natural Resources Division U.S. Department of Justice P.O. Box 7611, Ben Franklin Station Washington, D.C. 20044-7611 Re: DOJ No. 90-5-2-1-08656

CC via U.S. Certified Mail No. 7008 2810 0000 4380 0777 : Director, Air Enforcement Division Office of Enforcement and Compliance Assurance U.S. Environmental Protection Agency Ariel Rios Building [2242A] 1200 Pennsylvania Avenue, N.W. Washington, D.C. 20460

Original copy via U.S. Certified Mail No. 7008 2810 0000 4380 0050 : Assistant Regional Administrator Office of Enforcement, Compliance, and Environmental Justice U.S. Environmental Protection Agency, Region 8 1595 Wynkoop Street Denver, CO 80202-1129

CC via U.S. Certified Mail No. 7008 2810 0000 4380 0791 : Mr. Josh Rickard Office of Enforcement, Compliance, and Environmental Justice U.S. Environmental Protection Agency, Region 8 1595 Wynkoop Street Denver, CO 80202-1129

CC via U.S. Certified Mail No. 7008 2810 0000 4380 0807 : Ms. Claudia Young Smith Air Program - US EPA Region 8 Part 71 - Permitting, Monitoring and Modeling Unit 1595 Wynkoop St. (8P-AR) Denver, CO 80202-1129

CC via U.S. Certified Mail No. 7008 2810 0000 4380 0784 (w/o attachments) :

Rodney J. Biggs Vice President – Operations Dominion Exploration & Production, Inc. One Dominion Drive Jane Lew, West Virginia 26378

Via E-mail: Nina Hutton Vice President – EH&S XTO Energy Inc. 810 Houston Street Fort Worth, TX 76102-6298

EPA United States Environmental Protection Agency

Federal Operating Permit Program (40 CFR Part 71)

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit). This certification is also being used to certify documents and reports submitted as part of the Consent Decree for U.S. Civil Action No. 2:09-CV-00331-SA.

A. Responsible Official				
Name: (Last) Dungey	(First) Nick (MI)			
Title Senior Vice President of Nat	ural Gas Operations - XTO Energy			
Street or P.O. Box 810 Houston St.				
City Fort Worth	State ZIP			
Telephone (817) 885-2440 Ext	Facsimile (817) 870 - 8441			
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official and includes the certification language as stated in Paragraph 52 of the E.P.A. Consent Decree) I certify under penalty of law that this document and all attachments were prepared under my supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. Name (signed) Name (typed) Nick Dungey Date:				

Summit Gas Gathering, LLC 810 Houston St. Fort Worth, TX 76102

To Whom It May Concern:

Summit Gas Gathering, LLC, a wholly owned subsidiary of XTO Energy Inc., is a Delaware limited liability company that was formed on April 27, 2009 by XTO Energy Inc. Summit's tax identification number is 26-4775626. This letter attests that payment for materials and services requested by and for Summit Gas Gathering, LLC are fully guaranteed by XTO Energy Inc.

Sincerely. Nick Dungey

President, Summit Gas Gathering, LLC Senior Vice President – Natural Gas Operations, XTO Energy Inc. Summit Gas Gathering, LLC 810 Houston St. Fort Worth, TX 76102

To Whom It May Concern:

Summit Gas Gathering, LLC, a wholly owned subsidiary of XTO Energy Inc., is a Delaware limited liability company that was formed on April 27, 2009 by XTO Energy Inc. Its tax identification number is 26-4775626.

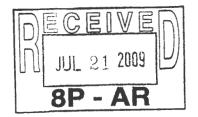
Very truly yours,

Then D. Mer Del

Frank G. McDonald Assistant Secretary of XTO Energy Inc.

٤.,

- es


Summit Gas Gathering, LLC

810 Houston Street Ft. Worth, TX 76102-6298

~

.

Ms. Callie A. Videtich Director, Air and Radiation Program U.S. Environmental Protection Agency Region 8 – Mail Code 8P-AR 1595 Wynkoop Street Denver, CO 80202-1129

Certified Mail 7008 2810 0000 4380 0685

Re: Designation of Responsible Official
 Summit Gas Gathering, LLC – Uinta Basin, Utah Facilities
 Kings Canyon Unit Compressor Station – Part 71 Permit # V-OU-0019-07.00
 Tap- 4 Compressor Station - Part 71 Permit # V-OU-0017-07.00
 Tap- 5 Compressor Station - Part 71 Permit # V-OU-00XX-07.00
 Little Canyon Unit Compressor Station – Part 71 Permit # Pending

Ms. Videtich:

Summit Gas Gathering, LLC (SGG), operating as a Delaware limited liability company, formally submits this notification to the U.S. Environmental Protection Agency. The following company employee will perform the duties of "Responsible Official" for the above referenced facilities:

•	Primary	Responsible	Official	-	
---	---------	-------------	----------	---	--

Mr. Nick Dungey Chairman of the Board and President 810 Houston Street Fort Worth, Texas 76102 817-885-2440 Office 817-885-2683 fax nick_dungey@xtoenergy.com

SGG certifies that this individual meets the following credentials:

(1) For a corporation: a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit and either:

(i) the facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars); or

(ii) the delegation of authority to such representative is approved in advance by the permitting authority.

· ·

July 17, 2009 Ms. Callie A. Videtich Page-2

-

In addition, pursuant to 40 CFR 71.5(d), any application form, report, or compliance certification submitted pursuant to these regulations shall contain certification by a responsible official of truth, accuracy, and completeness (CTAC form). Attached is the completed CTAC form signed by the senior-most company official responsible for operations of the Title V, 40 CFR Part 71 facilities referenced in this request.

Please contact the undersigned at 817-885-2672 or at <u>craig_allison@xtoenergy.com</u> if you need any additional information.

Sincerely,

Graef de

Craig Allison EH&S Advisor

Ms. Claudia Young Smith, EPA Region 8 - Certified Mail 7008 2810 0000 4380 0821
 Mr. Josh Rickard, EPA Region 8 - Certified Mail 7008 2810 0000 4380 0838
 Mr. Nick Dungey, Summit Gas Gathering, LLC

.

.

OMB No. 2060-0336, Approval Expires 09/30/2010

Federal Operating Permit Program (40 CFR Part 71)

Environmental Protection

United States

Agency

€)E

CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

A. Responsible Official				
Name: (Last) Dungey	(First) Nick (MI)			
Title Chairman of the Board and F	President – Summit Gas Gathering, LLC			
Street or P.O. Box 810 Houston St.				
City Fort Worth	_ State _ TX ZIP _ 76102			
Telephone (817) 885-2440 Ext	Facsimile (817) 870 - 8441			
B. Certification of Truth, Accuracy and Completeness (to be signed by the responsible official)				
I certify under penalty of law, based on infor statements and information contained in the	mation and belief formed after reasonable inquiry, the ese documents are true, accurate and complete.			
Name (signed)				
Name (typed) Nick Dungey	Date: 7 / 16 / 2009			

Craig_Allison@xtoenergy.co m

07/28/2009 10:02 AM

To Claudia Smith/R8/USEPA/US@EPA

cc Nina_Hutton@xtoenergy.com

bcc

Subject Re: Little Canyon Unit Compressor Station

History:		P This	message	has beer	n replied	to.	

Claudia:

I will include the a description of the operational changes related to the Little Canyon Station. The major difference is an added engine, and we (XTO) used a gas analysis from a warmer time of year than Dominion used for their emissions estimate. The nature and composition of the gas also plays a part in calculating the HAP and VOC emissions, specifically for the dehy. From what I could tell, the Little Canyon location was on the border of being a major source when Dominion operated it and we (XTO) confirmed that it could be over major source limits at certain times through our recent El. This is why XTO is permitting the location as Title V based on PTE.

XTO explained this to Josh Rickard and Jim Eppers in late 2008, prior to the CD being lodged, and EPA's response was to require XTO to conduct an El for all sites and establish those which are now Title V and those that are currently not Title V. Little Canyon was the only additional site that became Title V. The Uinta Basin El's were submitted to the EPA and DOJ in mid-June of 2009 as a part of the Consent Decree requirements.

I will put this in the cover letter with the info I am sending you which will go out next week. Let me know if you have any questions.

Regards,

Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

Smith.Claudia@epamail.epa.gov

To Craig_Allison@xtoenergy.com

07/28/2009 10:04 AM

Subject Re: Little Canyon Unit Compressor Station

Craig,

Our understanding of the LCU facility history is that Dominion did actually submit a T5 application in 2006, but then EPA enforcement folks

CC

determined the facility was a minor source, which is why our tracking system did not list the facility as having an application submitted. Did something change at the facility between then and now to make this source major? If so, is that explained in the application you will be sending?

Claudia Young Smith Environmental Scientist Air Permitting, Monitoring and Modeling Unit Office of Partnerships & Regulatory Assistance EPA Region 8 1595 Wynkoop Street (8P-AR) Denver, CO 80202-1129

Phone: (303) 312-6520 Fax: (303) 312-6064 Smith.Claudia@epa.gov

> Craig_Allison@xt oenergy.com

То

07/21/2009 03:48 PM Claudia Smith/R8/USEPA/US@EPA

CC

Subject Re: Little Canyon Unit Compressor Station

Claudia:

As we discussed, the LCU TV application and fee backup documentation, along with updates to the three TV apps that you already have, will be coming to you within the next week.

Regards, Craig Allison EH&S Advisor XTO Energy 810 Houston Street Fort Worth, TX 76102 817-885-2672 Office 817-201-2379 Cell 817-885-2683 Fax

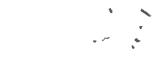
Smith.Claudia@epamail.epa.gov

07/21/2009 04:26 PM

To Craig_Allison@xtoenerg y.com

CC

Subject Little Canyon Unit Compressor Station


Craig,

I received a Designation of Responsible Official, for four XTO Energy facilities. We have received part 71 applications for three of the facilities mentioned. The letter indicates that for the fourth facility, Little Canyon Unit Compressor Station, "Part 71 Permit # Pending." We have no part 71 application on record for this facility. Should we be expecting to receive an application in the near future?

Thank you,

Claudia Young Smith Environmental Scientist Air Permitting, Monitoring and Modeling Unit Office of Partnerships & Regulatory Assistance EPA Region 8 1595 Wynkoop Street (8P-AR) Denver, CO 80202-1129

Phone: (303) 312-6520 Fax: (303) 312-6064 Smith.Claudia@epa.gov

.