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Executive Summary 
The U.S. Environmental Protection Agency’s (USEPA) Coalbed Methane Outreach Program (CMOP) works 
with coal mines in the U.S. to encourage the economic use of coal mine methane (CMM) gas that is 
otherwise vented to the atmosphere.  Methane is both the primary constituent of natural gas and a potent 
greenhouse gas when released to the atmosphere.  Reducing emissions can yield substantial economic 
and environmental benefits, and the implementation of available, cost-effective methane emission 
reduction opportunities in the coal industry can lead to improved mine safety, greater mine productivity, 
and increased revenues. 

The work of USEPA also directly supports the goals and objectives of the Global Methane Initiative (GMI), 
an international partnership of 42 member countries and the European Commission that focuses on cost-
effective, near-term methane recovery and use as a clean energy source. An integral element of the 
USEPA’s international outreach in support of the GMI is the development of CMM pre-feasibility studies. 
These studies identify cost-effective project development opportunities through a high-level review of gas 
availability, end-use options, and emission reduction potential. 

The Liulong Coal Mine, owned and operated by the Guangxi Baise Mining Group Co Ltd. (BMG) was 
selected as the recipient for a pre-feasibility study for CMM drainage and utilization because of the 
difficult gas conditions at the mine and expected increases in gas production in coming years as the mine 
expands. The mine was ultimately selected for this pre-feasibility study based on the level of commitment 
BMG and provincial authorities in Guizhou Province have demonstrated to implement methane drainage 
and utilization projects, and the high likelihood of project implementation and resulting methane 
reductions. 

The mine is located on the western margin of Guizhou Province in the Liuzhi Coalfield in Liupanshui City. 
Like many other mines in Guizhou Province, the Liulong Mine faces challenging mining conditions with 
targeted coal seams having high gas contents. The mine, which is formally classified as a coal and gas 
outburst mine, currently employs a gas drainage system using short, cross-panel boreholes, but this 
method of degassing the mine has not been effective. BMG has considered an alternative drainage 
method used by other mines in Guizhou Province where inseam boreholes are drilled vertically up into 
the target seam from an underlying gallery. This method, however, can be very expensive. The company 
is, therefore, interested in alternatives that could improve gas drainage in a cost effective manner.  In 
addition, BMG would like to use the CMM produced at the mine for power generation. To date, the Liulong 
Mine has not implemented a gas utilization project. 

Aside from the current mining operation, BMG is planning a large reserve addition, called the Dayong 
Coalfield, with geologic conditions that mirror existing operations. The Dayong Coalfield is scheduled to 
commence operations at the beginning of 2018. The same seams that are mined in the current mine plan 
will be mined in the Dayong addition. 

Based on the stated objectives of BMG and the conditions at current and future workings, the objectives 
of this pre-feasibility study are to: 

• Identify and assess alternative methane drainage options that can improve gas availability (gas 
quality and gas quantity); 
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• Produce reservoir models simulating gas production from the mined seams based on geologic 
data provided by the Liulong Mine; 

• Forecast gas production over the life of the project at the Liulong Mine and Dayong Coalfield 
reserve addition by applying the results of the reservoir simulation to the mine layout and future 
production schedule; 

• Identify and assess CMM utilization options potentially available to the Liulong Mine, including 
CMM-based power production; 

• Determine the power plant capacity based on the gas production forecasts and prepare a 
preliminary financial analysis of CMM-to-power; and 

• Outline recommended next steps for BMG and the Liulong Mine to support their pursuit of a 
CMM recovery and use project. 

There are two working seams for coal production at the Liulong Mine, the No. 7 seam and the No. 3 seam. 
The No. 3 seam is closest to the surface. The No. 18 seam is also permitted for coal production, but the 
seam is not currently mined. Based on a detailed review of mine data provided by BMG and the China 
Coal Information Institute (CCII), two directional drilling concepts for methane drainage at the Liulong 
Mine are proposed, which can be applied to both the panels in the existing mine and also in the Dayong 
reserve addition. 

The first proposed drainage method is the application of in-seam boreholes implemented from the rock 
gallery (or other lower elevation gallery) that penetrate up into the mining seam at intervals of 30 meters 
(m).  The objectives of this approach are to provide additional reach, potentially eliminate the underlying 
drainage galleries, and provide for more drainage time, which could possibly enable larger borehole 
spacing. The second proposed drainage method is the application of horizontal gob boreholes (HGBs). 
Although there is no available data that quantifies that gob gas emissions are significant relative to 
methane emissions from the mined seam, the data provided by the mine indicates all surrounding strata 
are gassy. 

Inseam boreholes were initially modeled at 30 m spacings. However, gas production was very low and in-
situ gas content in the coal seams after 10 years of degassing was still around 80 percent of original gas 
content in the No. 3 seam, and 70 percent in the No. 7 seam.  This led to a second simulation with 10 m 
spacings, which increased gas production significantly. However, the in-mine HGBs appear to be the most 
effective option for gas drainage at Liulong, as shown in Figure ES-1. 
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Figure ES-1:  CMM Production Forecast 

Although several potential options exist for use of CMM at the Liulong Mine, power production is the 
most viable option based on preliminary market data provided by BMG and CCII. Chinese coal mines have 
significant experience implementing CMM power generation projects, including mines in Guizhou. In 
China, the knowledge, expertise and experience to support cost-effective implementation, operation and 
maintenance of a CMM power plant are widely available.  Industrial power prices are also attractive for 
CMM-to-power projects at US$0.14 per kilowatt-hour (kWh) with subsidies.  Power plants are modular 
and can be easily expanded if gas availability increases or decreases. Additionally, the technical challenges 
of wheeling excess power to the grid are easily overcome because mines are large users of electricity with 
access to high voltage interconnects or even electricity substations at the mine.  Other possibilities include 
sales to the local natural gas distribution network, compressed natural gas or liquefied natural gas 
(CNG/LNG) production, and use as boiler fuel.  However, all of these potential end uses have additional 
barriers that must be addressed. For example, the local gas network, operated by the Liupanshui Natural 
Gas Corporation, is currently inaccessible to the mine. A pipeline must be constructed from the mine over 
difficult terrain to give the mine access to the local gas network.  In addition, the current and projected 
gas sales price is low and not economic.  CNG/LNG requires costly infrastructure, and LNG production, in 
particular, has very high operating and maintenance costs. Use as boiler fuel at the mine is a possibility 
although the mine is in a temperate area and heating needs are very limited in Guizhou Province. 

This study focuses on the most likely utilization option, power production, to evaluate project economics. 
The financial analysis considers the entire capital and operating costs of the project including the cost of 
drilling boreholes, the gathering system, and the power plant. The economic results for the power project 
are summarized in Table ES-1.  Cases 2 and 3 both have a positive net present value discounted using a 
yearly discount rate of 10 percent (NPV-10).  However, the HGBs case, Case 3, which has an NPV-10 of 
over US$30 million and an internal rate of return (IRR) of 43 percent, is preferable to Case 2, in-seam 
boreholes with 10 m spacing, which has a NPV-10 of just under $1.3 million and an IRR of 12 percent. Case 
3 delivers the largest CMM production to maximize the capacity of the power plant. In addition, net 
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emission reductions associated with the destruction of drained methane from the optimal development 
scenario are estimated to total 2.9 million metric tons of carbon dioxide equivalent (MtCO2e) over the life 
of the project. Case 1, using in-seam boreholes, is unviable. 

Case Description 

Max 
Power 
Plant 

Capacity 

NPV-10 
US$000 IRR Payback 

(Year) 

Net CO2e 
Reductions 

(Million 
metric tons) 

1 In-seam boreholes penetrating 
mining seams at intervals of 30 m 2 MW -5,722 -3% - 0.32 Mt 

2 In-seam boreholes penetrating 
mining seams at intervals of 10 m 6 MW +1,278 +12% 8 1.1 Mt 

3 Horizontal gob boreholes placed 
above mining seams 9 MW +30,054 +43% 3 2.9 Mt 

Table ES-1: Summary of Economic Results 

As a pre-feasibility study, this report is intended to provide an initial assessment of project feasibility. 
Further site-specific analysis is necessary to develop a “bankable” feasibility study acceptable to project 
investors, banks, and other sources of finance.  Section 6 provides further guidance for BMG to aid in their 
assessment of a CMM capture and use project.  Foremost among these recommendations is the need to 
clearly define the geology, gas content data, prospective mine layout, and mine production plan for the 
Dayong addition.  The existing workings provide limited potential for a large-scale CMM project, but the 
prospects improve considerably with the very large Dayong addition. 
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1 China’s Coal Industry and Coal Mine Methane 
1.1 China’s Coal Industry 
In 2016, China ranked first in global coal production with 3,411 million tonnes (Mt) of production, 
accounting for 46 percent of the global share (BP, 2017).  Between 1981 and 2016, China’s coal production 
increased by 2,789 Mt (Figure 1-1). In 2014, coal production began stabilizing due to decreased demand 
(BP, 2017). 

At the end of 2016, China’s total proved reserves of coal were 244,010 Mt (ranked second globally behind 
the U.S.), with 94 percent being anthracite or bituminous coal and the remaining 6 percent being sub-
bituminous or lignite (BP, 2017). China’s coal reserves are located throughout the country with the 
majority located in Shanxi, Inner Mongolia, Xinjiang, Shaanxi, and Guizhou provinces, with Guizhou 
ranking fifth in total reserves (GZICCEP, 2011). 

As shown in Figure 1-1, coal production has grown rapidly from 2.2 billion tons (Gt) in 2005 to 3.75 Gt in 
2015, although coal production in 2015 is down from peak production of 3.97 Gt in 2013. Total coal 
consumption in China was 3.97 Gt in 2015. By the end of 2015, the total annual coal consumption in China 
accounted for 64 percent of total energy consumption, but the Chinese Government is targeting a 
consumption level of 62 percent by 2020 in the latest energy development strategy plan released by the 
State Council (He, 2016) . 

Figure 1-1:  China Coal Production, 1981-2014 

The Chinese government is currently attempting to consolidate the nation’s coal mines in order to 
improve industry economics, reduce pollution, make the national coal industry more efficient, and 
improve safety (USEPA, 2015). Currently China has 12,000 coal mines and has implemented a policy of 
phasing out coal mines producing less than 90,000 tons of coal per year (EIA, 2015) (USEPA, 2015). Existing 
coal and gas outburst mines, an official classification by China’s State Administration for Coal Mine Safety 
Supervision, must produce at least 450,000 tons per annum (tpa). 
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14.3 Tcm 
39% 

10.6 Tcm 
29% 

Although smaller mines are closing, large scale coal mines are still being constructed. In some cases, 
production capacity at smaller mines is being expanded, as is the case with the Liulong Mine.  According 
to the CCII, approximately 400 large-scale coal mines with annual output over 1.2 Mt were added in 2015. 
The minimum size for a new coal and gas outburst mine is 900,000 tpa (CCII, 2016).  Thus, large scale coal 
production will continue in China for many years to come. With many well-established coal industries in 
northern and eastern provinces, the Chinese Government has turned its focus to newer mining prospects 
– including Guizhou and neighboring provinces in southwest China – by supporting increased investment 
in these areas. 

1.2 Coal Mine Methane in China 
The USEPA estimated China’s CMM emissions to be 22,490 million cubic meters (Mcm) in 2015 (USEPA, 
2015). Coal producers continue to face significant challenges related to CMM management and mine 
safety. In 2015, 13.6 billion cubic meters (Bcm) of CMM were drained in China, of which 4.77 Bcm were 
utilized. Total installed CMM power generation capacity is almost 3000 megawatts (MW), including a 120 
MW power project and a 30 MW ventilation air methane (VAM) power project both in Shanxi Province 
(Wenge, 2016). 

The “China Petroleum Resource Assessment” indicates that the total coalbed methane (CBM) resource in 
China is about 36.81 trillion cubic meters (Tcm). The burial depth of most CBM resources is less than 2,000 
m with 39 percent of the total resource between depths of 1000 m to 1500 m (Figure 1-2). 

32% 

1500~2000m 

1000~1500m 

~1000m 

Figure 1-2:  Depth of Coalbed Methane Resources in China 

Despite the slight reduction in total coal production from its peak, the volume of drained and utilized 
CMM is expected to continue increasing as shallower coal reserves become exhausted and mines begin 
to develop deeper, gassier coal seams to meet demand. CMM drained and utilized is also expected to 
increase as mines develop more experience with gas capture and use, as gas drainage methods improve, 
and as coal production becomes concentrated in large-scale gassy mines. Capture and use of CMM is also 
a provincial and national priority in coal mining provinces, including Guizhou. 
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1.3 Coal Mine Methane Resources in Guizhou Province 
Reserve estimates for Guizhou Province indicate that there are 3.15 Tcm of total CMM reserves in the 
province (Yuguang, 2004), of which approximately 45 percent are in the Liupanshui Coalfield (GZICCEP, 
2011). Out of the total Provincial CMM reserves, 434 Bcm are held by mines with a capacity of over 
300,000 tpa, of which 264 Bcm is extractable (GZICCEP, 2011). Historically Guizhou province has had an 
average gas utilization rate of 16 percent (GZICCEP, 2011), with gas utilized for power generation and civil 
use. 

Source: (U.S. Geological Survey, 2014) 

Figure 1-3: Coal Map of China Highlighting Coalfields of Guizhou Province 

Figure 1-3 shows the coalfields of Guizhou Province.  Most of the coal and gas resources in Guizhou 
Province are found in the Late Permian strata.  The entire province can be separated into southeastern 
and northwestern gas bearing areas. The southeastern area is a low gas zone and the northwestern area 
is a high gas zone. The gas resources are rich at the Panguan syncline in the Panjiang coal mine area, 
Gemudi syncline in the Shuicheng coal mine area, Bide-Santang syncline in the Liuzhi coal mine area, and 
Jinlong syncline in northern Guizhou. Among the coalfields in Guizhou, the gas content of the Liupanshui 
Coalfield is the highest. 
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1.4 Liulong Coal Mine 
The Liulong Coal Mine is in the Liupanshui Coalfield of Guizhou Province. The mine is a coal and gas 
outburst mine currently permitted to produce 600,000 tpa with the potential for annual production of 1.5 
million tpa after a reserve addition, the Dayong Coalfield, is added to the existing operation. The reserve 
addition is scheduled to be integrated at the beginning of the 2018 calendar year. 

1.4.1 Selection of the Liulong Coal Mine 
The Liulong Mine was selected for this pre-feasibility study for the following reasons: 

• The coal seams in western Guizhou Province are very gassy and prone to outburst; therefore, the 
Chinese Government and the Guizhou Provincial Government have made CMM drainage a very 
high safety priority; 

• Gas drainage and utilization are lagging behind other major coal producing regions in China, and 
regional authorities and the mine owner and operators welcome technical assistance; 

• The Chinese Central Government and local Guizhou Government have also placed a high priority 
on CMM utilization. Economic development targets in Guizhou Province will require continued 
reliance on coal, so it is likely that coal production will continue to grow. Successful early 
development of gas drainage and utilization projects can lead to sector-wide growth, and more 
effectively leveraging USEPA’s technical support; 

• The Liulong Mine is currently draining CMM, but has requested technical assistance to improve 
drainage practices and to develop a CMM power project; and 

• The Liulong Mine’s reserve addition means that initial efforts at gas capture and use in the current 
mine workings will be expanded to a much larger operation, resulting in greater emission 
reductions. 

1.4.2 Location of the Liulong Mine 
The mine is located in southwestern China’s Guizhou Province, situated along the western border of the 
province in Yangfeng Village, Pingzhai Town, Liuzhi Special District of Liupanshui City. Liupanshui is in the 
Liuzhi Coalfield, one of the three most productive coalfields in Guizhou Province. The mine is bounded by 
a coal seam cropline in the east, the F146 fault in the south, the newly-delimited 3 and 4 turning points in 
the west, and the F141 fault in the north. The length of the existing mine permit (pre-Dayong addition) 
from east to west is 1.4 kilometers (km), the width from south to north is about 1.6 km, and the existing 
mine boundary covers 7 square kilometers (km2). The mine portal and mine buildings are located in the 
small village of Mitangtian at an elevation of 1500 m above sea level. The mining portal is conveniently 
located 8 km from the Pingzhai Town Government, 8 km from the Liuzhi railway station, and 8 km away 
from the An-shui highway. The reserve addition, called the Dayong Coalfield, will increase the mine’s 
footprint by a total of 45 km2. Figure 1-4, Figure 1-5, and Figure 1-6 show the locations of Guizhou 
Province, Liupanshui City, and the Liulong Mine, respectively. 
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Figure 1-4. Map of China Highlighting Guizhou Province 

Figure 1-5. Map of Guizhou Province Highlighting Liupanshui City 
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 Location of Liulong Mine 

Figure 1-6. Location of Liulong Mine relative to Liuzhi District, Liupanshui City 

Guiyang is the capital of Guizhou Province and the likely point of entry into the province for anyone visiting 
the Liulong Mine from outside of Guizhou. Pingzhai Town, Liuzhi Special District of Liupanshui City, where 
the mine is located, is easily accessible by a recently constructed major highway from Guiyang; the trip by 
automobile is approximately two hours from central Guiyang.  It takes approximately 20 minutes to reach 
the mine from the town center.  Accessing the mine’s surface facilities requires travel up a hillside on a 
steep and narrow, but paved, road through a small village over a ridge and then down a short and steep 
road to the mine offices and main portal. 

The offices and portal of the Liulong Mine are located in a valley abutting several large hills. A conveyor 
brings coal up to the processing plant, which is located adjacent to the road from Liuzhi District to the 
mine.  Larger transport vehicles may have difficulty navigating the road; however, large scale equipment 
has been delivered to the mine for mine development and coal production, and mobile drilling rigs have 
been deployed at the mine for coring.  One other mobility challenge is a tunnel underpass from the city 
to the mine.  It is necessary to use the underpass to access the mine road and proceed up the hill through 
the village to the mine. Navigating the underpass with a relatively low ceiling and narrow width may 
require special consideration in transporting power generation equipment, gas upgrading equipment, or 
other utilization equipment. The photograph in Figure 1-7 shows an example of the local terrain. 
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Figure 1-7:  Mine Workers at the Liulong Mine with Example of Local Karst Terrain in the Background 

1.4.3 History of the Liulong Mine and Planned Reserve Addition 
The Liulong Mine was constructed in the 1990’s and was originally a private mine.  The mine operator, 
Mr. Peng Yanhui, developed the mine including the construction of the paved road from the local village, 
over the hillside, to the mine. The originally licensed coal production was less than 100,000 tpa.  In June 
2008, the Liulong Coal Mine was granted a mining license for production of 150,000 tpa by the 
Department of Land and Resources of Guizhou Province, and this was further increased to 300,000 tpa in 
January 2012. BMG, a state-owned company, purchased a majority share of the Liulong Mine in February 
2014, partnering with the original mine owner. Today BMG owns 73 percent of the shares and Mr. Peng 
Yanhui controls the remaining 27 percent. In February 2014, BMG received authorization to increase the 
production capacity of Liulong Coal Mine to 600,000 tpa. Target coal production for the Dayong Coalfield 
reserve addition is 900,000 tpa by 2020, thus the expanded Liulong Mine will have a combined production 
capacity of 1.5 million tpa. 

1.4.4 Topography and Climate 
The terrain of Guizhou Province where the Liulong Mine and many other coal mining operations are 
located is a karst terrain characterized by steep, rounded hills and mountains that have been carved out 
of limestone over time. The hills and mountains in the area are heavily forested. The undulating karst 
terrain has several impacts for coal mining and gas management.  The sudden changes in overburden can 
place significant stresses on coal seams, putting mining development and production under risk of coal 
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and rock outbursts.  Karst terrains can also hold pockets of subterranean water that can flood mine 
workings if breached; however, this has not been an issue for the Liulong Mine.  For surface operations, 
the steep, undulating terrain can present challenges transporting and mobilizing equipment. Although 
there are significant vertical stresses, the mine reports that horizontal stresses are not a concern. 

Guizhou Province has a humid monsoon climate and is located in the subtropical climate zone. The area 
has neither a severe winter nor hot summer. Guizhou has an average annual temperature between 14oC 
to 16oC (57oF to 61oF). January, Guizhou’s coldest month, has average temperatures of between 4oC to 
9oC (39oF to 48oF) and July, Guizhou’s warmest month, has average temperatures between 22oC to 26oC 
(72oF to 79oF). Annual average precipitation in Guizhou is between 900 to 1500 millimeters (mm) (China 
Today, 2015). Project construction is unlikely to be affected by cold, ice, or snow, but may be impacted by 
rainy weather. 

1.4.5 Regional Geology 
The Liuzhi Coal mine area is a part of Liupanshui Coalfield in western Guizhou Province. The total area of 
the Liupanshui Coalfield is 24,869 km2, of which the coal-bearing area is 14,587 km2. The coal-bearing 
strata are transited from continental facies to interactive marine-terrigenous facies from the west to the 
east. The upper Permian series strata are the main coal-bearing strata. The Changxing Formation and 
Longtan Formation contain the main minable strata and the major target strata for CBM development. 

In terms of regional structure, this area is located at the fourth-order tectonic element below the passive 
margin fold thrust belt south of the Yangtze continental block, Zhijin relieved folded zone, and Liupanshui 
complex deformation zone. The main faults in the area are the Nayong-Weng’an Fault, Shizong-Guiyang 
Fault, Shuicheng-Ziyun Fault, Wangmo-Dushan Fault, Panxian-Shuicheng Fault, and Zunyi-Huishui Fault. 
The area successively went through the Indosinian movement, Yanshan movement, and Himalaya 
movement. The Yanshan movement has the strongest influence on the area, generating structural feature 
combinations with different directions and forms in different areas, and controlling the preservation 
degree and occurrence status of coal-bearing strata. 

The structural pattern of the Liupanshui Coalfield contains widely spaced anticlines, and can be divided 
into three groups according to distribution direction and morphological characteristics. The three groups 
consist of northwest folding anticlines located toward the northeast of the coalfield, northeast folding 
anticlines located south of the Panxian-Qinglong line, and brachy-anticlines located at the center of the 
coalfield. Normal strike folds are common in the coalfield and are distributed along the anticline axis or 
wings. 

The late Permian epoch coal-bearing strata in Liupanshui Coalfield mainly consists of a delta, wad, and 
lagoon sedimentary system, formed by terrestrial rivers from the west, and coastal tidal forces from the 
ocean in the southeast. Main sedimentation types are tidal distributary channel facies, distributary 
tideway facies, and distributary bay facies. Sedimentary patterns in this region are as follows: the 
continental side mainly develops upper delta plain systems with active rivers; the central area develops 
transitional delta plain systems controlled by river and tide activity; the coastal area develops lower delta 
plain systems with tide activity and wad-lagoon systems. This region was undergoing a transgression 
progress in the early Longtan period. The main sedimentary pattern is a wad-lagoon sedimentary system. 
A delta system developed in the line of Shuicheng and Panxian. During the late Longyuan period, this 
region was controlled by a regressional geologic process, the delta sedimentary system developed 
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extensively, and the lagoon-wad system moved eastwards. In the Changxing period a new transgression 
process started, and the delta system shrunk towards the continental side, but still developed at a large 
scale. 

1.5 Guangxi Baise Coal Mining Group – Owner/Operator of the Liulong Mine 
The Liulong Coal Mine is majority-owned and managed by the Baise Mining Group Co Ltd. (BMG), a large 
state-owned enterprise based in Baise City in Guangxi Zhuang Autonomous Region, adjacent to Guizhou 
Province. BMG’s holdings include 22 enterprises, and the company has total assets of RMB 8 billion (USD 
1.2 billion). Its primary industry is coal, but it is involved in other industries including manganese ore 
production, power generation, aluminum production, coal logistics, coal conveyor manufacturing, 
building materials, real estate, and professional engineering services for coal mines. BMG is the primary 
lignite producer in Guangxi, and is also a leading manganese carbonate producer in China.  The company 
has over 5,000 employees. 

The coal business of BMG is spread throughout the southeastern and southwestern provinces of China 
and other Southeast Asian countries. BMG’s subsidiary that owns and operates the Liulong Mine, Guangxi 
Baise Coal Mining Group, is one of the top 100 enterprises in Guangxi Province. The Liulong Mine is BMG’s 
first investment in the Guizhou coal sector.  The coal produced from the Liulong Mine is used as steam 
coal, for chemical manufacturing, and for civil uses. BMG requested assistance to improve gas drainage 
and develop a CMM utilization plan for the Liulong Mine because it has limited experience with gassy 
mines; none of BMG’s eight mines in Guangxi are gassy. 
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2 Summary of Liulong Mine Characteristics 
2.1 Coal Reserves 
Currently, the Liulong Mine has coal reserves of 6.8 Mt, of which 5.1 Mt are recoverable.  However, as 
noted previously, BMG is in the process of integrating the coal reserves of the Dayong Coalfield, which 
would increase the Liulong Mine’s reserves to approximately 80 Mt (see Figure 2-1). 

1:5000 

Figure 2-1:  Relationship of the Existing Workings to the Dayong Coalfield Reserve Addition 

2.2 Coal Production 
Historic coal production figures were not provided by the mine for this study. The mine’s coal production 
was small relative to future production and is not a good indicator of future production.  The permitted 
production capacity of the mine has risen quickly from less than 150,000 tpa in 2007 to 600,000 tpa 
currently, and will reach 1.5 million tpa when the Dayong field comes online. 

The two working seams for coal production at the Liulong Mine are the No. 7 seam and the No. 3 seam. 
The No. 18 seam is also permitted for coal production, but the seam is not currently mined.  The elevation 
of the No. 3 seam is between 1350 m to 1600 m above sea level, the elevation of the No. 7 seam is 
between 1200 m to 1350 m above sea level, and the elevation of the No. 18 seam is between 1020 m to 
1200 m above sea level. 

The existing mine is divided into east and west wings. BMG uses the adit method for development and 
the retreating longwall mining method to extract coal. 
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Figure 2-2. Mine Portal (or main adit) to the Liulong Mine 

2.3 CMM Emissions 
BMG provided data on CMM characteristics from historic and current operations. Pure methane (CH4) 
flow in gas drainage ranges from 160 cubic meters (m3) to 763 m3 per hour, roughly enough CH4 to support 
electricity generation capacity ranging from 500 kilowatts (kW) to 3 MW.  The historic average CH4 

concentration is 21 percent, but has reached 30 percent. 

Although Liulong Mine’s historic absolute gas emission rate is relatively low, the mine has a high specific 
emissions rate of 40.3 m3 of gas per ton of coal mined (equivalent to 1,422 cubic feet per ton, ft3/t), 
showing that CMM production from the mine could be significant with improved degassing methods and 
increased coal production.  For example, 600,000 tpa of production would generate 24.2 Mcm of CMM, 
or enough to generate up to 8 MW of electricity with a consistent gas source. 
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The relative gas emission rates for the working seams, Seams No. 3 and No. 7, are shown in Table 2-1: 

Coal 
Seam 
No. 

Working face gas 
emission rate (m3/t) 

Tunneling gas 
emission rate 

(m3/min) 

Gas emission 
rate in the 

mining area 

Gas emission rate in the mine 

q1 q2 q3 q4 (m3/t) Relative 
(m3/t) 

Absolute 
(m3/min) 

3 10.2 21.9 0.66 1.04 37.65 56.47 36.65 
7 7.73 0.00 3.50 1.30 25.75 38.63 24.39 

Table 2-1 Statistical Table of Gas Emission Rate before Extraction 

Currently, the mine employs short cross-panel boreholes for degassing the No. 3 and No. 7 seams; 
however, this method has proved to be relatively ineffective. The coals are friable, and a potential 
borehole collapse could be problematic. BMG has considered an alternative approach to draining gas that 
would entail driving galleries in the underlying No. 18 seam, and then drilling boreholes vertically into the 
higher elevation No. 7 and No. 3 seams. However, this option is prohibitively expensive. 

BMG has also considered surface pre-drainage wells and surface gob vent boreholes (GVBs), but these 
methods are not practical alternatives at this time. The terrain makes it very difficult to mobilize and 
service surface drilling equipment, wellheads, and gathering systems. Two proposed alternatives that 
should improve drainage are discussed in Section 3: (1) in-mine directionally drilled boreholes from an 
underlying gallery, similar to the alternative preferred by BMG, and (2) long in-mine directionally drilled 
gob boreholes. 

In addition to technical challenges, title to the produced gas is another barrier for pre-drainage wells. 
Although BMG could use any CMM produced from surface pre-drainage wells for up to five years after a 
borehole is drilled, it must have a CBM license to use or sell gas after the initial five-year period.  A party 
other than BMG currently holds the CBM license within the permitted mine boundary and within the 
Dayong Coalfield, likely adding potential legal hurdles and costs to obtain rights to the gas after the five-
year license concludes. 

2.4 Mine Geology (Stratigraphy, Lithology, Tectonics) 
The mining area is located in the northwest section of the northeast wing of the Liuzhi Syncline. The strata 
of the Liuzhi Syncline have a strike to the northwest between 40° and 45°. The strata generally dip 
between 16° to 36°, and in the southwest, strata generally dip 25° to 30°, increasing from the northwest 
to southeast. The Syncline is slightly inclined, and faults in the mining area are mainly transverse normal 
faults. Oblique and flat normal faulting along with rare reverse faulting has also been observed. No 
faulting, folding or problems with the cleat structure in the existing mine is expected to affect the flow of 
gas. There is a major fault in the Dayong Coalfield, but the mine management does not believe this will 
impact the mining operation or gas management. 

The three minable coal seams found within the Liulong Mine are seams No. 3, No. 7, and No. 18. Currently, 
only seams No. 3 and No. 7 are being exploited by the mine. Seam No. 3 has a mean mining elevation of 
1386 m above sea level and a thickness ranging from approximately 0.1 m to 2.86 m, with an average 
thickness of 1.05 m. Seam No. 7 has a mean mining elevation of 1463 m above sea level and a thickness 
that ranges from approximately 1.06 m to 14.24 m, with an average thickness of 6.39 m. Seam No. 18 has 
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an approximate thickness range of 0.11 m to 2.53 m, with an average thickness of 1.40 m. The coal is 
generally soft, and boreholes are prone to collapse. 

The exposed strata in the Liulong Coal Mine area contains the Quaternary Sequence (Q), Yongning Town 
Formation (T1yn), and the Yelang Formation (T1y) of the lower Triassic series; Dalong Formation (P3d), 
Longtan Formation (P3l), and Mount Emei Basalt Formation (P3β) of the upper Permian series; and 
Maokou Formation of the middle Permian series (P2m). The characteristics of each stratum and rock 
association are described, from most recent to oldest, as follows: 

(1) The Quaternary System (Q): Mainly slide rock, alluvial deposit, diluvium, stacked up in valley and 
gentle slope of coal series. 

(2) Yongning Town Formation of lower Triassic series (T1yn): The upper is light grey medium 
stratiform limestone, intercalated by three to four layers of greyish yellow dolomite limestone; 
the middle is light grey medium-thick stratiform limestone, intercalated by purple and greyish-
green mudstone; the lower is off-white and light grey thick-layer to massive limestone, with local 
oolitic texture. 

(3) Yelang Formation of lower Triassic series (T1y): The upper is off-white and light grey medium and 
thick-layer to massive limestone, mainly oolitic limestone and purple thin stratified argillaceous 
limestone, intercalated by thin burgundy mudstone; the lower is grey and greyish green thin 
stratified siltstone and calcareous siltstone. 

(4) Dalong Formation of upper Permian series (P3d): Dark grey to grey black mudstone, siltstone, 
intercalated by three to five layers of thin to medium and thick stratiform limestone (or 
argillaceous limestone), the middle is a layer of stable siliceous limestone (or limestone), which is 
the marker bed. 

(5) Longtan Formation of upper Permian series (P3l): Mainly grey to dark grey sandstone, siltstone 
intercalated by sandy mudstone, mudstone, carbonaceous mudstone and clay rock. 

(6) Mount Emei Basalt Formation of upper Permian series (P3β): Dim gray and grayish-green basalt 
with cryptocrystalline to fine grained texture, vesicular structures, and columnar jointing 
structures; the top and bottom commonly develops tuff and tuff sandstone. 

(7) Maokou Formation of middle Permian series (P2m): Light grey fine grained thick stratiform to 
massive limestone. Karst structures are present. 

The faults in the area of the Liulong Mine are mainly lateral normal faults, followed by oblique and flat 
normal faults, with few reverse faults. The F18, F20, and F21 have the greatest potential impact, and are 
described below: 

(1) F18 lateral normal fault: Extends from the axis of the Liuzhi syncline towards the northeast via 
Longzhaodi and Zhengjiazhai across the coal series and extends outside of the region near Shabao. 
The trend is 65°NE with a dip of 49° to 57°SE. The largest fault displacement is located near the 
No. 7 coal seam. The fault passes through Triassic limestone towards the southwest with a 20 m 
to 70 m wide fracture zone. The vertical fault displacement in Yongning Town Formation, 
Longzhaodi, is only 150 m, and ground horizontal displacement is 330 m. The fault is branched in 
the NE section near Yejialan Dam into F140, F138, and subsidiary faults F139 and F147. The fault 
displacement reduces rapidly and disappears to Maokou limestone near Shabao. 

(2) F20 oblique normal fault: Starts from Xiaobadi in the northeast, and crosses with the F21 fault. 
Based on trenching and drilling data, the vertical fault displacement is 115 m, and the horizontal 
displacement is 173 m. 
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(3) F21 oblique normal fault: Starts from the coal series in the east of Dayutang, extends to Guanling 
Formation towards the southwest, and then disappears. The trend of the southwestern section is 
74°NE, then turns to the NW as it extends southwards after Dayutang with a dip angle of 50° to 
63°. Vertical fault displacement is about 200 m, and horizontal displacement is about 450 m. The 
fault displacement suddenly becomes smaller in the northeastern part of the coal series. Vertical 
fault displacement in the northeastern part of the coal series is 20 m to 60 m, and the horizontal 
displacement is 100 m, and disappears towards the east. 

2.5 Gas Resources 
Currently, under the permitted mine plan the CBM resources are 100 Mcm. Table 2-2 shows the gas 
contents for the three seams. After the Dayong coalfield reserve addition, the mine boundaries will 
have an estimated CBM resource of 2 Bcm. 

Coal Seam No. 3 No. 7 No. 18 

Original gas content (m3/t) 12.63 15.06 15.62 

Table 2-2:  Reported Gas Content of the Coal Seams in the existing mining area (m3/t) 

2.6 Mine Operations 
The Liulong Mine is designated as a coal and gas outburst mine. Under Chinese regulations the minimum 
size for an existing coal and gas outburst mine is 450,000 tpa, an increase from the 2014 standard of 
300,000 tpa. Current coal production at the Liulong mine is 1,500 tons per day (tpd), or 547,500 tpa. 

The industrial plant and mine offices for the Liulong Coal Mine are located in Mitangtian village in the hills 
above Liuzhi District, Liupanshui City. The surface plant includes an office building with dormitories, a 
bathhouse, and a material storage yard. The mine employs the adit incline shaft, a multilevel mining 
development method. Three shafts are used within the mine layout – the main adit, an intake shaft, and 
a return-air exhaust shaft. A steel rail is laid inside the shaft for the transportation of coal, materials, 
equipment, and for ventilation and pipe installation. The elevation of the main adit is 1,502 m above sea 
level. The intake shaft has an elevation of 1,565 m above sea level, with a net cross section of 8.5 square 
meters (m2) and a base cross section of 9.5 m2. The return-air exhaust shaft is at an elevation of 1,580 m 
above sea level, with a net cross section of 8.5 m2, and an excavated section of 9.5 m2. 

The mining elevation of Liulong Mine is between 1,000 m and 1,600 m above sea level. In addition to the 
three coal seams that are mineable – the No. 3, No. 7, and No. 18 seams – the No. 9 seam can be used for 
drainage galleries, but coal production is not feasible. The No. 3, No. 7, and No. 9 coals seams in the 
existing mining operation extend to the Dayong Addition. At present, there are two coal faces in 
production, panels 1033 (No. 3 Seam) and 1071 (No. 7 Seam), and two tunneling faces including 1071 and 
1074. The 1074 return airway is under reconstruction, and the drainage ways for panels 1076 and 1075 
are being prepared for tunneling. 

Because of the coal seam dip angle and the characteristics of the coal structure, the Liulong Mine has 
adopted the strike and retreat long wall mining methods.  For the No. 3 Seam, the mine uses the gob-side 
entry retaining strike long wall retreat mining method, and the No. 7 seam uses the strike long wall 
inclined layering retreat mining method. 

18 



 

 

   
     

  
              

  
    

         
           

     
        

   
 

   
      

       
   

   
  

       
  

      
    

  
     

  
  

 
 

2.7 Mine Ventilation and Methane Drainage 
The Liulong Mine maintains a gas drainage system to supplement the ventilation system. 

2.7.1 Mine Ventilation 
The main adit and inclined shafts are used as intake shafts, and there is one exhaust shaft. The 
independent exhaust system is set in the mining section and along the development face. At the working 
faces, the mine employs the common U-shape ventilation method.  Nominal air flow is 42 to 93 cubic 
meters per second (m3/s), air pressure is 625 to 2,360 pascals (Pa), and the two reversible exhaust fans 
are rated at 110 kW each. The average VAM concentration is 0.12 percent. The ventilation flow rate is 
expected to increase significantly as the existing operation increases coal production and mining expands 
to the Dayong Addition. Methane concentrations in mine ventilation air will be heavily dependent on the 
rate of mining, the ventilation flow rates, and success in implementing an extensive and effective gas 
drainage program. 

2.7.2 Gas Drainage System for the Current Mining Operation 
The Liulong Mine utilizes short cross panel boreholes for degassing, which can be a very effective method; 
however, the coals in Liupanshui are very friable and susceptible to borehole collapse. As a result, this 
method has met limited success at the Liulong Mine. As an alternative, BMG has been considering utilizing 
in-seam boreholes drilled from an underlying gallery below the mined seam.  According to presentations 
delivered at the Guizhou Gas Exploration and Development Workshop held in Guiyang, Guizhou, China in 
December 2015, there is growing interest in this degasification approach in Guizhou (GICCEP, 2015). This 
method, though, is more expensive than traditional gas drainage approaches, and can be cost-prohibitive.  
Figure 2-3 presents a side-view of the underlying drainage gallery concept now being considered at the 
Liulong Mine and some other mines in Guizhou Province. BMG is also interested in vertical pre-drainage 
boreholes drilled from the surface.  BMG reports that Liupanshui City has previously drilled two or three 
pilot CBM wells although the results were not made public. However, as noted in Section 2.3, logistical 
and legal barriers limit the potential use of surface pre-drainage and, as such, this pre-feasibility study 
does not consider surface pre-drainage as a viable degassing technology for the near-term. 
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Figure 2-3: Cross-Measure Boreholes Drilled from a Gallery below the Mined Seam 

The mine maintains a permanent drainage system. The system is normally active when mine development 
and coal production is occurring. The drainage system consists of two 2BEC-420 high negative pressure 
drainage pumps with 160 kW of motor power, a maximum pressure of 16,000 Pa, a revolving speed of 
390 rotations per minute (rpm), and a maximum pumping speed of 126 cubic meters per minute (m3/min). 
Additionally, there are two 2BEA-303 low negative pressure drainage pumps with 75 kW of motor power, 
a maximum pressure of 3,300 Pa, a revolving speed of 590 rpm, and a maximum pumping speed of 52 
m3/min. The system also consists of high and low negative pressure drainage pipelines with diameters of 
400 mm. The high negative pressure drainage pipeline travels from the exhaust rise to a horizontal level 
of 1,350 m above sea level and to the drive surfaces. Placement of the low negative pressure pipeline is 
in the exhaust airway at the surface with an elevation of 1,033 m above sea level. In 2014, the gas drainage 
volume from the mine was 2.76 Mcm with a CH4 concentration ranging from 8 percent to 30 percent, and 
an average concentration of 21 percent CH4. A new working face in 2016 has reportedly increased gas 
production to 500,000 m3 per month, effectively doubling the volume of CMM produced. 

The coal mine has installed a sophisticated KJ90NB CMM monitoring system, comprised of two dedicated 
monitoring computers along with one standby KJ90NA system (Figure 2-4).  The system includes gas 
sensors, negative pressure transducers, equipment on/off transducers, air velocity transducers, and water 
level sensors that provide mine staff with real-time continuous monitoring. The control room includes a 
large monitor where continuous data is shown (Figure 2-5).  Alarms are triggered if any readings are 
outside of expected ranges. The system also includes cameras throughout the mine to provide live 
feedback from underground operations to the control room, and a diagram of the mine layout showing 
the location and movement of all staff underground (Figure 2-6). 
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Figure 2-4: Liulong Mine State-of-the Art Control and Monitoring Room 
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Figure 2-5: Screen Providing Real-Time Feedback on CH4 percent, Air Velocity, Etc. 

Figure 2-6: Real-time Tracking System for Workers in the Underground Operations 
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3 Evaluation of Methane Drainage Concepts and Gas Forecast 
The purpose of this pre-feasibility study is to determine the technical and economic viability of a CMM 
capture and utilization project at the Liulong Mine. After an initial assessment of the site geology and 
consideration of various drainage options, the recommended design incorporates the use of either in-
seam pre-drainage boreholes or horizontal gob boreholes, and utilizes the drained gas to generate 
electricity for on-site consumption. The forecasted gas production profile for each methane drainage 
scenario is presented below, forming the basis of the economic analyses performed in Section 5. 

3.1 Proposed Gas Drainage Concepts 
Based on a detailed review of available mine data, several directional drilling concepts for methane 
drainage at the Liulong Mine are proposed. The proposed gas drainage concepts focus on the current 
mining district with examples applied to the No. 7 Seam, from which most of the coal is currently 
produced. However, it is envisioned that the proposed drilling concepts could also be applied to the 
panels in the Dayong reserve addition. 

For modeling purposes, the longwall panels are short on all mining levels, approximately 250 m long with 
100 m wide faces. Longwall mining is in retreat, with the panels developed on strike with the faces dipping 
29 degrees. The mine’s current methane drainage practice is to use short cross-panel boreholes drilled in 
a parallel pattern from a side gallery. However, this method has not proven effective because the coals 
are friable, leading to borehole collapse. The proposed drainage concepts for the CMM project at the 
Liulong Mine are outlined below. While these concepts, as shown, apply to the No. 7 Seam only, it is 
assumed that similar concepts will apply to the No. 3 Seam as well. 

3.1.1 In-Seam Pre-Drainage Boreholes 
As illustrated in Figure 3-1 and Figure 3-2 (plan and profile view, respectively), the first concept is the 
application of in-seam boreholes implemented from the rock gallery (or other lower elevation gallery) 
that penetrate up into the mining seam at intervals of 30 m. The objective of this concept is to provide 
additional reach, potentially mitigate the underlying drainage galleries, and provide for more drainage 
time, which could possibly enable larger borehole spacing. The boreholes that penetrate the seam can 
be drilled into the seam as drilling allows (high pressure, soft, or friable coal). These boreholes could be 
developed from mains or other adjacent galleries and drilled significantly in advance of mining or rock 
drainage gallery development. 
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Figure 3-1: Horizontal Trunkline Boreholes Drilled from Underlying Gallery with Branchline Boreholes 
Drilled Upwards into Coal Seam (Plan View) 

Figure 3-2: Horizontal Trunkline Boreholes Drilled from Underlying Gallery with Branchline Boreholes 
Drilled Upwards into Coal Seam (Profile View) 

3.1.2 Horizontal Gob Boreholes 
The second concept is the application of horizontal gob boreholes (HGBs).  Although there is no 
information that quantifies that gob gas emissions are significant relative to methane emissions from the 
mined seam, the data indicates that all surrounding strata are gassy. Because the panels in the current 
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mining district are short, drilling can originate out of the gateroads, from mains, or as shown on the 
concept illustration (Figure 3-3).  Three HGBs are proposed at varying heights on the up-dip side of the 
panels along the low pressure return airway (Figure 3-4). 

Figure 3-3: Horizontal Gob Boreholes Drilled from Mining Level 
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Figure 3-4: Horizontal Gob Boreholes Drilled from Mining Level (Profile View) 

3.2 Estimating Gas Production from In-Seam Pre-Drainage Boreholes 
A series of reservoir models designed to simulate gas production volumes from in-seam pre-drainage 
boreholes were constructed.  The following sections discuss the construction of the gas drainage borehole 
models, the input parameters used to populate the reservoir simulation models, and the simulation 
results. 

3.2.1 Simulation Models 
Four, single-layer models were constructed to calculate gas production for a longwall panel located within 
the current mining district. One model for each seam was designed to simulate production from in-seam 
boreholes implemented from the rock gallery (or other lower elevation gallery) that penetrate up into the 
mining seam at intervals of 30 m. Two additional models (one for each seam) were developed to explore 
an alternative spacing case where the in-seam boreholes penetrate up into the mining seam at intervals 
of 10 m. All boreholes are drilled into a longwall panel with the face dipping at an angle of 29 degrees 
and are assumed to be 250 m in lateral length.  The models were run for ten years to simulate gas 
production rates and cumulative production volumes from each seam within a typical longwall panel in 
the current mining area. 

A typical longwall panel at the mine targeting either the No. 3 or No. 7 seam is estimated to have a face 
width of 100 m and a panel length of 250 m covering an aerial extent of 2.5 hectare (ha) (or 6 acres). 
Based on these dimensions, model grids were created to accommodate each of the well spacing scenarios. 
The model grid setup for the 30 m spacing case consisted of 25 grid-blocks in the x-direction, 50 grid-
blocks in the y-direction, and one grid-block in the z-direction, while the model grid setup for the 10 m 
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spacing case consisted of 25 grid-blocks in the x-direction, 34 grid-blocks in the y-direction, and one grid-
block in the z-direction.  The model layouts for the in-seam pre-drainage concepts are illustrated in Figure 
3-5, Figure 3-6, and Figure 3-7, which show an example simulation model from plan, profile, and 3D view, 
respectively. 

Figure 3-5: Example Model Layout for In-Seam Pre-Drainage Boreholes (Plan View) 

Figure 3-6: Example Model Layout for In-Seam Pre-Drainage Boreholes (Profile View) 
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Figure 3-7: Example Model Layout for In-Seam Pre-Drainage Boreholes (3D View) 

3.2.2 Model Preparation and Runs 
The input data used to populate the reservoir model was obtained primarily from the mine’s geologic and 
reservoir data.  Where appropriate, supplemental geological and reservoir data from analogous projects 
were also used.  The input parameters used in the reservoir simulation study are presented in Table 3-1, 
followed by a brief discussion of the most important reservoir parameters. 
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Reservoir Parameter 
Value(s) 

Notes 
Seam 3 Seam 7 

Seam Elevation (TOP), m above MSL 1496 1420 Mine data from Area 1; Core hole No. 24 

Coal Depth (TOP), m 80 149 Mine data from Area 1; Core hole No. 24 

Coal Thickness, m 1.3 8.0 Mine data from Area 1; Core hole No. 24 

Coal Density, g/cc 1.62 1.39 Mine data 

Pressure Gradient, kPa/m3 11.94 9.51 Calculated from reservoir pressure and 
depth 

Initial Reservoir Pressure, kPa 950 1420 Mine data; Top of each seam 

Initial Water Saturation, percent 100 100 Assumption 

Langmuir Volume, m3/tonne 28.97 28.15 Mine data; Isotherm analysis 

Langmuir Pressure, kPa 1126 1045 Mine data; Isotherm analysis 

In Situ Gas Content, m3/tonne 12.63 15.06 Mine data 

Desorption Pressure, kPa 870 1202 
Calculated based on in situ gas content 
and maximum storage capacity from 
isotherm 

Sorption Times, days 10 10 Assumption 

Fracture Spacing, cm 2.54 2.54 Assumption 

Dip Angle of Face, degrees 29 29 Based on Area 1 mine data 

Absolute Cleat Permeability, md 0.55 0.55 Mine data; midpoint of range (0.1 to 1 
md) 

Cleat Porosity, percent 5.55 4.32 Mine data 

Relative Permeability Curve Curve Assumption; See Figure 3-10 

Pore Volume Compressibility, kPa -1 2.76E-03 2.76E-03 Assumption 

Matrix Shrinkage Compressibility, kPa -1 0.00E+00 0.00E+00 None 

Gas Gravity 0.6 0.6 Assumption 

Water Viscosity, (mPa·s) 0.8 0.8 Assumption 

Water Formation Volume Factor, 
reservoir barrel per stock tank barrel 
(RB/STB) 

1.00 1.00 Calculation 

Completion and Stimulation Assumes skin factor of zero 

Borehole Operation In-mine pipeline with surface vacuum station providing vacuum 
pressure of 16 kPa 

Borehole Spacing 
Two cases: In-seam boreholes implemented from rock gallery (spaced 
30 m apart) that penetrate up into seams at intervals of 30 m (Case 1) 
and 10 m (Case 2) 

Table 3-1: Reservoir Parameters for Simulation of In-Seam Pre-Drainage Boreholes 
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3.2.2.1 Permeability 
Coal bed permeability, as it applies to production of methane from coal seams, is a result of the natural 
cleat (fracture) system of the coal and consists of face cleats and butt cleats. This natural cleat system is 
sometimes enhanced by natural fracturing caused by tectonic forces in the basin. The permeability 
resulting from the fracture systems in the coal is called “absolute permeability” and is a critical input 
parameter for reservoir simulation studies. Absolute permeability data for the seams range from 0.1 
milidarcy (md) to 1 md. The permeability value for both seams is assumed to be 0.55 md, which represents 
the midpoint of the permeability range provided. 

3.2.2.2 Langmuir Volume and Pressure 
Based on the laboratory measured Langmuir volumes and pressures for the No. 3 and No. 7 seams in the 
current mine area, the corresponding Langmuir volumes and Langmuir pressures used in the reservoir 
simulation models are 28.97 cubic meters per tonne (m3/t) and 1,126 kilopascal (KPa), respectively, for 
the No. 3 Seam, and 28.15 m3/t and 1,045 KPa, respectively, for the No. 7 Seam. Figure 3-8 and Figure 3-9 
depict the methane isotherms utilized in the simulation for the in-seam pre-drainage boreholes for the 
No. 3 and No. 7 seams, respectively. 

` 

Figure 3-8: Methane Isotherm Used in Simulation of In-Seam Pre-Drainage Boreholes in the No. 3 
Seam 
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Figure 3-9: Methane Isotherm Used in Simulation of In-Seam Pre-Drainage Boreholes in the No. 7 
Seam 

3.2.2.3 Gas Content 
Based on the results of gas desorption analyses conducted on coal samples from the No. 3 and No. 7 
seams, an initial gas content value of 12.63 m3/t was used in the simulation study for the No. 3 Seam, and 
15.06 m3/t was used in the No. 7 Seam simulations. As shown in Figure 3-8 and Figure 3-9, the coal seams 
are slightly undersaturated, with respect to gas, at 95 percent and 93 percent saturation for the No. 3 and 
No. 7 seams, respectively. 

3.2.2.4 Relative Permeability 
The flow of gas and water through coal seams is governed by permeability, of which there are two types, 
depending on the amount of water in the cleats and pore spaces.  When only one fluid exists in the pore 
space, the measured permeability is considered absolute permeability.  Absolute permeability represents 
the maximum permeability of the cleat and natural fracture and pore space in the coals.  However, once 
production begins and the pressure in the cleat system starts to decline due to the removal of water, gas 
is released from the coals into the cleat and natural fracture network.  The introduction of gas into the 
cleat system results in multiple fluid phases (gas and water) in the pore space, and the transport of both 
fluids must be considered in order to accurately model production.  To accomplish this, relative 
permeability functions are used in conjunction with specific permeability to determine the effective 
permeability of each fluid phase. 

Relative permeability data for the project area was unavailable.  Therefore, the relative permeability curve 
used in the simulation study was obtained from the results of reservoir simulation study performed in the 
region. Figure 3-10 is a graph of the relative permeability curves used in the reservoir simulation of the 
study area. 
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Figure 3-10: Relative Permeability Curve Used in Simulation 

3.2.2.5 Coal Seam Depth and Thickness 
Based on corehole No. 24 located in Area 1, the elevation of the No. 3 Seam floor is 1,496 m above sea 
level with a seam thickness of 1.3 m, while the elevation of the No. 7 Seam floor is 1,420 m above sea 
level with a seam thickness of 8 m. For modeling purposes, a depth from surface to the top of the coal 
reservoir of 80 m and 149 m was used for the No. 3 and No. 7 seams, respectively.  All coal faces were 
assumed to dip by 29 degrees. 

3.2.2.6 Reservoir and Desorption Pressure 
An initial reservoir pressure of 1,126 kPa and 1,420 kPa was reported by the mine at the top of the No. 3 
and No. 7 seams, respectively, which correspond to hydrostatic pressure gradients of 11.94 and 9.51 
kPa/m.  Because the coal seam is assumed to be undersaturated with respect to gas, desorption pressures 
of 870 and 1,202 kPa are calculated based on in situ gas contents and maximum storage capacity from the 
isotherms for the No. 3 and No. 7 seams, respectively. 

3.2.2.7 Porosity and Initial Water Saturation 
Porosity is a measure of the void space in a material. Based on the data for the No. 3 and No. 7 seams, 
porosity values of 5.55 percent and 4.32 percent were used in the simulations. The cleat and natural 
fracture system in the reservoir was assumed to be 100 percent water saturated. 

3.2.2.8 Sorption Time 
Sorption time is defined as the length of time required for 63 percent of the gas in a sample to be 
desorbed. In this study a 10-day sorption time was used, which is consistent with the coals in the region. 
Production rate and cumulative production forecasts are typically relatively insensitive to sorption time. 

3.2.2.9 Fracture Spacing 
A fracture spacing of 2.54 centimeters (cm) was assumed in the simulations, which is consistent with data 
in the region. In the model, fracture spacing is only used for calculation of diffusion coefficients for 
different shapes of matrix elements and it does not materially affect the simulation results. 
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3.2.2.10 Borehole Spacing 
As discussed previously, in-seam boreholes implemented from the rock gallery (or other lower elevation 
gallery) that penetrate up into the mining seam at intervals of 30 m are proposed. An alternative case is 
also explored where in-seam boreholes penetrate up into the mining seam at intervals of 10 m.  For both 
cases, three separate branches will be drilled with the central branch running down the center of the 
panel and the adjacent branches spaced at 30 m from the central branch. 

3.2.2.11 Completion 
In-seam boreholes with lateral lengths of 250 m are drilled and completed in the longwall panel.  For 
modeling purposes, a skin value of zero is assumed. 

3.2.2.12 Borehole Operation 
An in-mine pipeline with a surface vacuum station providing a vacuum pressure of 16 kPa was assumed. 
In coal mine methane operations, low borehole pressure is required to achieve maximum gas content 
reduction.  The wells were produced for a total of ten years. 

3.2.3 Model Results 
As noted previously, four reservoir models were created to simulate gas production for the current mine 
area at the Liulong Mine. The models were run for a period of ten years and the resulting gas production 
profiles were calculated. Simulated gas production rate and cumulative gas production for a longwall 
panel developed in the No. 3 Seam using 30 m borehole spacing is shown in Figure 3-11, while Figure 3-12, 
Figure 3-13, and Figure 3-14 show the same results for the No. 7 Seam using 30 m borehole spacing, the 
No. 3 Seam using 10 m borehole spacing, and the No. 7 Seam using 10 m borehole spacing, respectively. 

Figure 3-11: No. 3 Seam Simulation Results – Gas Rate and Cumulative Production at 30 m Spacing 
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Figure 3-12: No. 7 Seam Simulation Results – Gas Rate and Cumulative Production at 30 m Spacing 

Figure 3-13: No. 3 Seam Simulation Results – Gas Rate and Cumulative Production at 10 m Spacing 
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Figure 3-14: No. 7 Seam Simulation Results – Gas Rate and Cumulative Production at 10 m Spacing 

Figure 3-15 shows the simulated reduction in in-situ gas content of the panel over time utilizing in-seam 
pre-drainage boreholes drilled into Seam No. 3 using a borehole spacing of 30 m. Likewise, Figure 3-16 
through Figure 3-18 show the simulated reduction in in-situ methane for the other three models. Figure 
3-19 through Figure 3-22 show the change in in-situ gas content over time in chart form for each of the 
four models. 
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Figure 3-15: Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage Boreholes – No. 3 
Seam at 30 m Spacing 

Figure 3-16: Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage Boreholes – No. 7 
Seam at 30 m Spacing 
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Figure 3-17: Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage Boreholes – No. 3 
Seam at 10 m Spacing 

Figure 3-18: Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage Boreholes – No. 7 
Seam at 10 m Spacing 
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Figure 3-19: Summary of Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage 
Boreholes – No. 3 Seam at 30 m Spacing 

Figure 3-20: Summary of Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage 
Boreholes – No. 7 Seam at 30 m Spacing 
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Figure 3-21: Summary of Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage 
Boreholes – No. 3 Seam at 10 m Spacing 

Figure 3-22: Summary of Reduction in In-Situ Gas Content Over Time Using In-Seam Pre-Drainage 
Boreholes – No. 7 Seam at 10 m Spacing 

3.3 Estimating Gas Production from Horizontal Gob Boreholes 
Estimating gas production (i.e., gob gas flow rate) from HGBs is difficult since gob gas flow rates typically 
fluctuate over time and vary with borehole length and configuration. HGB performance is a function of 
parameters such as borehole diameter, length, lining, wellhead vacuum, vertical placement above the 
mining seam, and lateral placement along tension zones. HGB gas flow rates are most influenced by 
borehole diameter, length, wellhead vacuum, and reservoir pressure contribution, while HGB 
effectiveness is attributed to parameters such as vertical placement above the longwall panel, lateral 
placement relative to tension zones along the gob, and wellhead/stand-pipe integrity (Brunner & 
Schumacher, 2012). 
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As discussed by Brunner and Schumacher (2012), gob gas flow rate can be approximated using the General 
Flow equation for the steady-state isothermal flow in a gas pipeline, which relates the pressure drop along 
a pipeline with flow rate. This approach utilizes adjustments to the friction factor to match collected data, 
and assumes that gob gas flow measured at the HGB collar originates from the end of the hole. The basic 
equation for steady-state isothermal flow in a gas pipeline, as recommended by Menon (2005), is provided 
below. 

Gob gas flow rates from HGBs placed above the No. 3 and No. 7 seams at Liulong Mine were estimated 
by applying the above equation based on the input parameter values summarized in Table 3-2. An average 
coefficient of friction of 0.0200, as derived from analysis by Brunner and Schumacher (2012), was used to 
estimate gob gas flow rates at currently achievable diameter and length configurations for varying 
wellhead vacuum pressures assuming a gob gas concentration of 70 percent methane in air. Mine 
operators typically drill HGBs between 75 mm and 150 mm in diameter. For the current analysis, gob gas 
flow rates for three borehole configurations – 96 mm, 121 mm, and 146 mm – were investigated. HGBs 
with borehole lengths of 250 m are planned for the Liulong Mine, which is well within the technical limits 
observed in the field, as mine operators routinely drill boreholes to lengths of up to 1,200 m. Based on 
the low vacuum (3.3 kPa) and high vacuum (16 kPa) drainage systems currently located at the Liulong 
Mine, two additional wellhead vacuum pressure cases were also investigated. 
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Parameter Value 
Coefficient of Friction, dimensionless 0.0200 

Base (standard) Pressure, kPa No. 3 Seam: 1179 
No. 7 Seam: 1729 

Base (standard) Temperature, K 293 

Upstream Pressure, kPa No. 3 Seam: 1179 
No. 7 Seam: 1729 

Downstream Pressure, kPa 

Calculated based on 
wellhead vacuum 
pressure; 3.3 and 16 kPa 
cases investigated 

Gas Gravity (air = 1.0) 0.6 
Average Gas Flowing Temperature, K 293 
Pipeline Length, km 0.25 

Gas Compressibility Factor, dimensionless Seam No. 3: 0.99 
Seam No. 7: 0.98 

Pipe Inside Diameter, mm 96, 121 and 146 mm 
cases investigated 

Table 3-2: Horizontal Gob Borehole Model Inputs 

Figure 3-23 and Figure 3-24 show the incremental increase in gob gas flow capacity as a function of 
wellhead vacuum and borehole diameter for a 250 m unlined HGB at 96 mm, 121 mm, and 146 mm drilled 
in the No. 3 and No. 7 seams, respectively. As illustrated in the exhibits, gob gas flow rates typically 
increase as both the borehole diameter and wellhead vacuum pressure increase.  Assuming a HGB with a 
121 mm borehole diameter placed on 16 kPa of vacuum pressure, gob gas flow rates are estimated to be 
between 92 to 111 liters per second (l/s), or 5.5 to 6.6 m3/min (3.9 to 4.6 m3/min of pure CH4). Based on 
a panel length of 250 m and an average face advance rate of 2.5 meters per day (m/d), a longwall panel 
will take 100 days to mine through, resulting in an estimated total gob gas production for a single HGB 
placed above the No. 3 Seam of 956 thousand cubic meters (1000-m3) (669 1000-m3 of pure CH4).  If placed 
above the No. 7 Seam, a single HGB is estimated to produce 793 1000-m3 of gob gas (555 1000-m3 of pure 
CH4). Strategic placement of the HGBs may allow borehole collars to remain intact and allow boreholes 
to remain productive after longwall mining is completed, which would further increase total gob gas 
production. 
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Figure 3-23: Gob Gas Flow Rate Projections for 250 m Horizontal Gob Borehole Configurations in Seam 
No. 3 at Varying Wellhead Vacuum (70 percent CH4) 

Figure 3-24: Gob Gas Flow Rate Projections for 250 m Horizontal Gob Borehole Configurations in Seam 
No. 7 at Varying Wellhead Vacuum (70 percent CH4) 
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4 Market Information 
CMM in China has evolved from a safety concern to a valued commodity and significant source of natural 
gas supply (USEPA, 2015). In 2011, the Chinese government’s “Natural Gas Development Plan During the 
12th Five-Year Plan Period” included CBM/CMM for the first time. This plan, which covered the years 
between 2011 and 2015, targeted the consumption of 20 Bcm of CBM/CMM by 2015 (USEPA, 2015). 
Furthermore, the “Twelfth Five-year Plan for CBM and CMM”, which was more ambitious, called for total 
production to rise to 30 Bcm by 2015, with 16 Bcm coming from CBM and 14 Bcm coming from CMM. 
Utilization of CMM was targeted to rise to 8.4 Bcm, and construction of 13 pipelines with a total length of 
2,000 km and 12 Bcm per year of total transport capacity was also called for (USEPA, 2015). The “Twelfth 
Five-year Plan for CBM and CMM” further targeted CMM to be primarily used for local power generation, 
called for an increase in the number of household users to 3.3 million, and called for CMM generating 
capacity to quadruple to 2,850 MW between 2010 and 2015 (USEPA, 2015). 

Although CMM drainage and utilization is being heavily promoted by the Chinese government, there are 
still significant barriers to project development. China’s natural gas market and infrastructure are 
underdeveloped considering that natural gas only accounts for approximately 5.6 percent of China’s 
primary energy consumption (BP, 2017). Most Chinese cities and towns do not offer access to natural gas 
for the majority of their citizens. The locations of coal mines that produce CMM are mostly in remote 
mountainous areas with no access to natural gas distribution networks, and constructing pipelines in 
these remote areas is usually not feasible because of the difficult terrain. 

In Guizhou Province, the primary utilization options for CMM are power generation and civil use. Guizhou 
is economically underdeveloped with little to no natural gas infrastructure, and in most cases, it is not 
feasible to construct pipeline systems to transport CMM from producing mines due to the province’s 
terrain having vast differences in topographic highs and lows. Where the gas is being used, most mines 
use drained CMM to generate power for their own mining activities, reducing their energy costs with 
potential to sell any surplus energy back into the grid, as is the intention of BMG. 

With respect to electricity, there are still significant barriers to selling surplus energy to the grid. The 
process of connecting to the grid is complicated and requires approval on the provincial level from the 
Development and Reform Commission, the Electricity Regulatory Office, the Planning Bureau, Price 
Bureau, Environmental Protection Bureau, Land and Resources Bureau, Power Supply Bureau, and other 
authorities (GZICCEP, 2011). There is also high volatility in CMM production and power generation due to 
the complex geology of the coal seams and the characteristic low permeability coals. 

4.1 Guizhou Province Economic Conditions 
Guizhou has been ranked as one of the fastest growing provinces in China since 2010. Between 2010 and 
2015, the gross regional domestic product broke through RMB 1 trillion to RMB 1.05 trillion, with the 
average annual increase of 12.5 percent (Guizhou Province, 2016). Other economic indicators improved 
over the same period, such as: 

• Investment in fixed assets amounted to RMB 1.07 trillion, with an average annual increase of 29.5 
percent. 

• The balance of deposits and loan in financial institutions reached RMB 1.9 trillion and RMB 1.5 
trillion, respectively, representing an average annual increase of 21.4 percent and 21.2 percent, 
respectively. 
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• Stock market capitalization increased on average by 41.2 percent per year to RMB 2.59 trillion in 
2015. 

• Total retail sales of consumer goods stood at RMB 328.3 billion, which is an average annual 
increase of 17.2 percent. 

• Government revenues amounted to RMB 150.34 billion, with an average annual increase of 23 
percent. 

• Per capita disposable income of residents in the cities and rural areas reached RMB 24,580 and 
RMB 7,387 respectively, with an average annual increase of 11.8 percent and 14.4 percent, 
respectively. 

During the 13th Five Year Plan (2016-2020) period, Guizhou’s main economic and social development goals 
are to increase employment opportunities in the cities and towns, increase the urbanization rate to at 
least 50 percent, and to meet the energy conservation and emission reduction goals outlined by the 
Chinese Central Government (CCII, 2016). CMM capture and use projects like the one being considered 
by the Liulong Coal Mine would help achieve these goals by generating employment, modernizing the 
local energy infrastructure, and reducing emissions from mining activities. 

4.2 Liupanshui Economic Conditions 
During China’s 12th Five Year Plan (2011-2015) period, the gross domestic production (GDP) of Liupanshui 
reached RMB 120 billion, with an average annual increase of 14.9 percent; the investment in fixed assets 
rose to RMB 528 billion, with an average annual increase of 42.6 percent.  Per capita disposable income 
of residents in the cities and towns experienced an annual increase of 11.5 percent.  According to the 
Guizhou Provincial Government, the Liuzhi Special District is considered an economically strong county 
(Guizhou Province, 2016). 

The economic and social development goals for Liupanshui, as laid out in China’s 13th Five Year Plan (2016-
2020), are as follows ( Liupanshui City Government, 2015): 

• Average annual increase of gross regional domestic product above 12 percent, 
• Increase in investment in fixed assets of 20 percent, 
• Increase in total retail sales of consumer goods by 12 percent, 
• Increase government budget revenues by 6 percent, 
• Increase of the per capital disposable income of residents in rural areas by 11 percent and 12 

percent, respectively, 
• Employment opportunities in cities and towns to reach 350,000, with a registered urban 

unemployment rate under 4.2 percent, 
• A targeted urbanization rate above 55 percent, 
• A 20 percent increase in the proportion of emerging industries in the GDP, 
• Service industry GDP to rise to 45 percent, 
• A forest coverage rate of 60 percent or above, and 
• To achieve the energy conservation and emission reduction targets assigned for the province. 
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4.3 Energy Commodity Markets in Liupanshui 
4.3.1 Power 
In 2015, annual power generation for Liupanshui City was 35.5 billion kWh, with a total installed capacity 
of approximately 15 MW. Electricity was primarily consumed for civil use and by the commercial sector, 
which consumed 11.4 billion kWh in 2015. In the first quarter of 2016, total power generation reached 
7.7 billion kWh, dropping 14.2 percent on a year-over-year basis, while commercial power consumption 
reached 2.1 billion kWh, accounting for 27.5 percent of the total. 

During the 12th Five Year Plan (2011-2015) period, power sector investment totaled RMB 6.7 billion and 
29 transformer stations of 110-kilovolt (kV) or above were built. By the end of 2015, 7,631 km of 
additional transmission lines were installed and full coverage of the double 220-kV main network frame 
loop was achieved. In the same year, the municipal electrical grid’s reliability rose to 99.87 percent and 
the completion of the first phase of the Liupanshui 500-kV transformer substation significantly 
strengthened the connection between the regional grid and Guizhou’s main grid. During the 13th Five 
Year Plan (2016-2020) period, Liupanshui City plans to increase investments for electrical power by RMB 
670 million with a focus on renewable and unconventional energy supplies (CCII, 2016). 

In the Liuzhi Special District, where the Liulong coal mine is located, total investment in power grid 
construction was RMB 666 million during the 12th Five Year Plan (2011-2015) period. Presently there is 
one 220-kV transformer substation, two main transformer substations, and six 110-kV transformer 
substations with installed capacity of 360 mega-volt ampere (MVA). There also are 12 main transformer 
substations with an installed capacity of 549 MVA, 10 35-kV transformer substations, and 20 main 
transformer substations with installed capacity of 105.15 MVA. 

4.3.2 Natural Gas and/or Town Gas 
The Liupanshui Natural Gas Corporation (LNGC) operates the local gas distribution system, which includes 
over 80,000 residential and 1,600 commercial customers. LNGC’s network has over 700 km of gas 
pipeline, 200 regional regulator stations, and covers nearly 60 percent of the urban areas.  The primary 
source of town gas is the Shuicheng Iron & Steel Group plant, with an annual coal gas production output 
of 574 Mcm. Although the distribution system is extensive, it is not adequate to meet existing demand. 
For example, gas demand in Liupanshui during the winter is around 360,000 m3/d, while daily gas supply 
is only 280,000 m3/d. Presently in Liupanshui, the demand for natural gas is approximately 60 to 70 Mcm 
per year, but by the end of 2020, demand is expected to exceed 500 Mcm (CCII, 2016). 

LNG storage and distribution stations are currently under construction in all of the districts and counties 
of Liupanshui. At present, one LNG station in the Hongqiao New District has been completed and already 
has 43,000 gas users.  The construction of the natural gas pipeline network in Panxian County has also 
been completed and there are upwards of 1,200 customers. 

The primary challenge faced by a CMM gas pipeline sales project in Liupanshui is the high cost of gas 
transportation and the low cost of coke oven gas. The nominal burner tip price of natural gas for civil use 
is RMB 3.8 per m3 ($16.15 per thousand cubic feet, Mcf, at current exchange rates), but this must compete 
with the low price of coke oven gas from Shuicheng Iron & Steel Group, which costs only RMB 0.90 per m3 

($3.82 per Mcf). As a result, the LNGC must discount prices for civil use to RMB 1.40 per m3 ($5.95 per 
Mcf) while still covering the cost of transportation.  Other LNGC burner tip prices are: non-profit gas is 
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RMB 1.65 per m3 ($7.00 per Mcf); commercial gas is RMB 1.75 per m3 ($7.43 per Mcf), and the domestic 
rate for low income residents is RMB 0.90 m3 ($3.82 per Mcf). 

The Sino-Burma natural gas pipeline, which was scheduled for completion in 2016, connects to Liupanshui 
and is expected to provide some price relief. It is estimated that the price of natural gas for civil use will 
fall to RMB 3.2 per m3 ($13.60 per Mcf). Furthermore, the LNGC plans to invest RMB 471 million to build 
a 103 km natural gas pipeline from Liuzhi to Shuicheng in order to supply 480 Mcm of natural gas per year 
to the citizens. The market for coke oven gas is expected to eventually disappear from the regional market. 

4.3.3 Other Relevant Energy Markets 
During the 13th Five Year Plan (2016-2020) period, Liupanshui plans to expend considerable effort to 
accelerate industrial transformation and promote the comprehensive utilization of coal resources and 
clean energy. Comprehensive development in wind power, hydroelectricity, and photovoltaic power 
generation projects will be completed while significant effort will be made to further increase CBM and 
CMM production, and construction of CNG/LNG projects (Liupanshui Municipal Bureau of Statistics , 
2015). 

In 2015, mines in Liupanshui City drained 1.18 Bcm, with 479 Mcm of this CMM utilized primarily for power 
generation or town gas. The relatively large scale of CMM capture and use in the area suggests that 
infrastructure and technical capacity are available to the Liulong Mine for BMG’s efforts to improve gas 
recovery at the mine (Liupanshui Municipal Bureau of Statistics , 2015), 

In the next five years, existing gas extraction systems are scheduled to be upgraded and transformed 
throughout the city. By 2020, it is estimated that CBM/CMM drainage will reach 3 Bcm. In-mine drainage 
is estimated to account for 2 Bcm, while surface gob wells and pre-drainage wells are estimated to account 
for the remaining 1 Bcm.  The CBM/CMM utilization rate is expected to reach 60 percent, or 1.8 Bcm, an 
increase of 275 percent from 2015. CMM with concentrations below 30 percent will be used for power 
generation, while CMM with concentrations above 30 percent will likely be processed and upgraded into 
CNG/LNG to be used as fuel for civil or industrial use (CCII, 2016). 

In 2015, LNG production in Liupanshui City was 28,400 tons, and CNG production was 69,900 m3 with an 
estimated value of RMB 34.95 million. In 2016, a 1 Mcm LNG production facility was expected to come 
on line.  In addition, as part of the 13th Five Year Plan (2016-2020) Liupanshui City is slated to build a facility 
to convert up to 1 Bcm of coke oven gas to LNG/CNG (Liupanshui Municipal Bureau of Statistics , 2015). 

4.4 Environmental Markets 
Since 2005, China has participated in the global carbon market through the Clean Development 
Mechanism (CDM) under the United Nations Framework Convention on Climate Change (UNFCCC).  From 
2005 through 2012, the National Development and Reform Commission (NDRC) approved 128 CMM 
projects under the CDM, although not all projects qualified for Certified Emission Reductions (CERs) during 
the eligibility period, which ran from 2008 through 2012. Since 2012, the price of CERs has dropped due 
to a lack of demand, and the CDM is no longer applicable to new CMM projects in China (UNECE, 2016). 
However, by 2013 China established seven pilot carbon markets, and is expected to launch a national 
emissions market in late 2017. The seven carbon emission trading pilots were set up in Shenzhen, Beijing, 
Guangdong, Shanghai, Tianjin, Hubei, and Chongqing, and in 2016, an eighth carbon exchange was added 
in Sichuan. 
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When introduced, the Chinese national emissions trading system (ETS) will be the largest market for 
carbon emissions permits in the world.  Originally envisioned to include eight major industrial sectors, the 
national trading system is now expected to cover only three at initial launch, consisting of electricity, 
aluminum, and cement (Kahn, 2017). While specifics of the market have not yet been released, Chinese 
Certified Emissions Reduction (CCER) credits generated from CMM projects are expected to be eligible for 
use as offsets in the national market as they have been in some of the pilot carbon markets. However, 
the percentage of allocations that can be met with CCERs is currently unknown. 

4.5 Legal and Regulatory Environment 
As part of China’s broader strategy to reduce air pollution, the government set a target of 40 Bcm of 
CBM/CMM production by 2020, which is more than double the country’s 2015 production of 18 Bcm. To 
incentivize companies to invest in the CBM/CMM industry, China has offered gas producers preferential 
policies, including exemption from equipment import duties, refunds on value-added tax collected from 
gas sales, accelerated depreciation of assets, tax credits for investment in technical innovation, free-
market gas pricing, and access to technology development funds (Econotimes, 2016). 

Of particular interest to the proposed CMM project at Liulong are two national subsidies available to CMM 
projects that can potentially provide the incremental funding necessary to achieve desirable rates of 
return. 

• Subsidy for CMM-to-power:  CMM-to-power projects are eligible for a subsidy of RMB 0.25 per 
kWh (US$0.038/kWh).  Considering that breakeven costs for a CMM-to-power project are usually 
US$0.04 – $0.06 per kWh, this is an attractive subsidy. The NDRC also granted coal mining 
companies permission to utilize any electricity generated by themselves, and stipulated that grid 
operators should give priority to surplus electricity generated from CBM with respect to grid 
connection. 

• Subsidy for sales to town gas or natural gas systems: There is an RMB 0.30 per m3 (US$1.27 per 
Mcf) subsidy for selling CMM as town gas or to the natural gas network.  This is also an attractive 
subsidy, especially if the infrastructure is already in place to allow immediate gas sales, but each 
case must be evaluated to determine if the subsidy is adequate.  For example, it may not be 
sufficient if a gas pipeline sales project will require gas processing, compression, and construction 
of a lateral pipeline. 

While numerous beneficial policies exist to promote the development of the CBM/CMM industry in China, 
it is not clear how effective these incentives will be as the sector faces numerous hurdles to development. 
CBM/CMM competes on price with oil and gas from conventional sources, which have been on a 
downward trend since late 2014. Intervention by local governments could also potentially diminish the 
impact of CBM/CMM related incentives.  Additionally, CBM/CMM exploration priority is usually given to 
existing petroleum and coal mining rights holders, which is concentrated at the national oil companies.  In 
Guizhou, the majority of CBM mining rights have been registered by CNPC and Sinopec Group, while most 
of the coal mining rights belong to the local government, which has inhibited private capital penetration 
and constrained development of the province’s CBM resources (Econotimes, 2016). 

4.6 CMM Utilization Options for the Liulong Mine 
With average methane concentrations ranging between 12 and 30 percent, drained gas from the Liulong 
Mine is considered low-concentration CMM. Implementation of improved gas drainage will increase 
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considerably the quality of CMM produced at Liulong.  As shown in Section 5, CH4 concentrations are 
expected to increase to between 70 and 98 percent, depending on the drainage technology used. It is 
also crucial to increase the CH4 concentration to reduce the risk of explosion.  Methane is explosive in 
concentrations between 5 and 15 percent.  If ignited, the flame can propagate through a gas drainage 
pipe increasing the scale and impact of an explosion. The sections below briefly explore each potential 
option for CMM utilization at the Liulong Mine. 

4.6.1 Power Generation 
On-site power generation using CMM is one of the many utilization options considered in this study. Any 
electricity generated by a CMM power plant would likely be used at the mine, with excess power being 
sold to the local electric grid. There is a strong case to use the CMM for power generation. There is 
significant experience throughout the Chinese coalfields with CMM power, including in Guizhou. The 
knowledge, expertise, and experience are widely available to support cost-effective implementation, 
operation, and maintenance of a CMM power plant. Industrial power prices are also attractive for CMM-
to-power projects. A generally accepted breakeven cost for CMM-based power projects is RMB 0.27 to 
0.40 per kWh (US$0.04-0.06 per kWh). The price paid by the Liulong Mine is RMB 0.65/kWh (US$0.098 
per kWh), amounting to a savings potential of RMB 0.25 to 0.38 per kWh (US$0.037 to 0.056 per kWh). 
In addition, the RMB 0.25 (US$0.038/kWh) subsidy makes power generation even more attractive. 

There are several other advantages for power production at the mine. Suppliers deliver turn-key solutions 
with the gas engine, generator, and control system combinations in prefabricated containers. These 
plants are modular and can be easily expanded if gas availability increases. The ability to offset high power 
prices at mines has been another reason CMM-to-power projects are very attractive in China.  The 
technical challenges of wheeling excess power to the grid are easily overcome because mines are large 
users of electricity with access to high voltage interconnects or even electricity substations at the mine. 

4.6.2 Town Gas/Natural Gas 
Historically, town gas was the predominant use of CMM in China prior to the Kyoto Protocol, when power 
generation grew in popularity.  Town gas is produced from in-mine or surface gob wells, and is often 
stored in large holding tanks at a mine. Town gas is medium-quality, usually ranging from 30 to 60 percent 
CH4, and is distributed to local communities in the immediate vicinity of a coal mine through low pressure 
distribution lines. Natural gas pipelines typically require higher quality gas, normally above 90 percent 
CH4. Unlike many CMM markets in China, the LNGC provides a local gas distribution network. LNGC has 
previously sold town gas produced from coking ovens, but is upgrading the system to use higher quality 
natural gas. 

There are four major constraints facing BMG in selling to the LNGC grid.  Although the burner-tip price of 
natural gas is high at RMB 3.8 per m3 (US$16.15 per Mcf), the price of coke oven gas is low.  For natural 
gas to compete, LNGC must discount the price of natural gas by two-thirds. Second, demand for natural 
gas outstrips grid supply. As the grid expands, the capacity problems should be addressed; however, this 
is likely to increase rates as the LNGC seeks to recover the capital costs of expansion. Third, selling CMM 
to the grid will necessitate upgrading the gas quality to medium or high quality CMM if future CMM 
production yields gas quality similar to current CH4 concentrations.  Due to the very low quality of the 
Liulong drained gas, this will probably require multi-stage processing and compression.  Should either of 
the drilling methods proposed prove successful, gas quality upgrades may not be necessary. The capital 
cost (Capex) for a gas processing unit would cost approximately US$1 to 4 million and annual operating 
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expenses (Opex) could be expected to be around US$250,000 to 1 million. Although inseam drainage 
should produce high-quality CMM, the final constraint faced by natural gas pipeline sales is the long 
distance to a trunkline and the lack of a pipeline from the mine to the gas grid, which makes this option 
impractical. Although there is an RMB 0.30 per m3 (US$1.27 per Mcf) subsidy for selling CMM for town 
gas or the natural gas network, this may not be enough to offset the cost of laying a pipeline lateral to the 
LNGC. 

4.6.3 Industrial Use 
There are no industrial operations adjacent to the mine, and it would be very expensive to lay a pipeline 
to an industrial user considering the terrain.  However, the mine does maintain a coal preparation plant 
and CMM could replace coal as the fuel used for coal drying.  This currently occurs at one mine in the 
United States, the Buchanan Mine in Virginia. 

4.6.4 Boiler Fuel 
Coal boilers are used at many mines for heating and hot water in mine buildings and for heating mine 
shafts.  CMM could be used at the Liulong Coal Mine to fuel boilers used for heating and hot water in the 
mine buildings and employee apartments.  There is some demand for heating in winter; however, it is 
limited by the mild climate in southwestern China. Should BMG consider using CMM in boilers in place of 
coal, it would necessarily require upgrading the gas quality to at least medium concentration gas. Due to 
the cost of gas processing equipment, this is not likely to be economically feasible. 

4.6.5 Compressed Natural Gas (CNG)/Liquefied Natural Gas (LNG) 
There is growing interest in CNG and LNG in China as demonstrated by the USEPA feasibility study for the 
Songzao mine in Chongqing (U.S. Environmental Protection Agency, 2009), and BMG expressed interest 
in this option.  Certainly, the continuing development of natural gas infrastructure in Liupanshui City, 
including CNG and LNG operations, provides a potential avenue for a CMM-to-CNG/LNG operation. 
However, CNG or LNG is not economically feasible at this time, even if future gas production is medium 
quality. CNG and LNG production requires significant capital costs to upgrade gas quality, compress, and 
liquefy the gas. For example, Capex to manage the residual gas flow at each mine could total US$3 million 
for CNG and US$6-7 million for an LNG plant.  Opex at each mine could total US$1-2 million per year. The 
sale price for LNG would need to be roughly RMB 2.15 per 1000 metric tons or the equivalent of RMB 3.0 
per m3 (US$12.00 per Mcf) of pipeline quality gas. 

4.6.6 Flaring 
To be allowed in China, flaring must be part of an integrated approach that includes other CMM utilization 
options such as power generation, industrial supply, boiler fuel or CNG/LNG production. Should BMG 
move forward with a CMM project, a good strategy may be to incorporate a flare into the project to 
reduce emissions when the primary utilization technology is unavailable, for example when gas engines 
are down for maintenance. 

4.6.7 Recommendation for CMM Utilization 
After consideration of the potential options for CMM utilization at the Liulong Mine, power generation is 
the most viable option, considering current market conditions in Guizhou Province and the priorities of 
mine management. Therefore, for this pre-feasibility study, the Economic Analysis in Section 7 focuses on 
CMM power generation.  Based on gas supply forecasts, the mine could be capable of operating as much 
as 9 MW of electricity capacity. 
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This pre-feasibility study is intended to provide an initial assessment of project viability.  A Final 
Investment Decision (FID) should only be made after completion of a full feasibility study based on more 
refined data and detailed cost estimates, completion of a detailed site investigation, implementation of 
well tests, and possibly completion of a Front End Engineering & Design (FEED). 

5 Economic Analysis 
5.1 Project Development Alternatives 
In order to assess the economic viability of the drainage scenarios presented throughout this report, it is 
necessary to first define the project scope.  CMM gas production profiles were generated for a total of 
three project development cases, as follows: 

• Case 1: In-Seam pre-drainage boreholes penetrating mining seams at intervals of 30 m 
• Case 2: In-Seam pre-drainage boreholes penetrating mining seams at intervals of 10 m 
• Case 3: Horizontal gob boreholes placed above mining seams 

Figure 5-1 and Figure 5-2 show a conceptual mine layout and development plan for the existing mine and 
the Dayong reserve addition, respectively. For the existing mine, the plan shows the five remaining panels 
yet to be mined.  Three panels in the No. 3 Seam are scheduled to be mined beginning in January, May, 
and September of 2017, with the remaining two panels, which target the No. 7 Seam, scheduled to be 
mined in January and May of 2018. For the purpose of forecasting gas production from the existing mine, 
it is assumed these five panels have already been defined, with drilling locations identified.  For 
development cases 1 and 2, which utilize in-seam drainage, it is assumed that borehole development will 
take place before the project start date of January 2017, which means gas production from four of the 
five panels will commence at the beginning of the project.  No gas production is assumed for Panel 1034 
since the proposed project timeline does not allow for pre-drainage using in-seam boreholes. For Case 3, 
which employs HGBs, it is assumed production is initiated as each longwall panel begins mining 
operations. 

For the Dayong reserve addition, the plan shows panels with mining commencing in January 2019 through 
January 2032. Proposed panel locations were mapped using a panel size of 250 m by 100 m.  The plan as 
shown identifies 40 panel locations in a single seam. Since both the No. 3 and No. 7 seams will be mined 
in the reserves addition area, a total of 80 panels are proposed in the development schedule, which 
assumes the same layout for both seams.  For the purpose of forecasting gas production from the reserve 
addition, and since the mine permit allows for simultaneous mining at two panels, it is assumed panels in 
both the No. 3 and No. 7 seams are mined at the same time. Based on an advance rate of 2.5 m/d, it is 
assumed to take a total of 130 days to mine each panel, which includes 100 days to mine each panel plus 
an additional 30 days per panel to account for stoppages and movement of the longwall equipment 
between panels.  As a result, three panels per year will be developed in each seam (total of six per year), 
with the initiation of operations staggered in order to reduce fluctuations in gas production volumes. 
Panels in the No. 7 Seam have start dates of January, May, and September, while panels in the No. 3 Seam 
have start dates of March, July, and November. 

For cases employing in-seam drainage, it is assumed all necessary mine roads and drilling locations are 
developed at a pace to allow gas production from one new panel to come online every two months 
beginning in January 2019.  As for the existing mine, production for the case employing HGBs in the 
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reserve addition is also assumed to start as each longwall panel begins mining operations. For all 
development cases in the existing mine and the reserve addition, production from in-seam pre-drainage 
boreholes is terminated prior to the initiation of mining operations at each panel, and production from 
HGBs is assumed to either extend six months after mining at each panel is completed, or terminate once 
100 percent of each seams’ gas resource has been depleted, whichever occurs first. 

Figure 5-1: Conceptual Mine Layout and Development Schedule for the Existing Mine 

Figure 5-2: Conceptual Mine Layout and Development Schedule for the Dayong Reserves Addition 
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5.2 Gas Production Forecasts 
Gas production forecasts were developed using the simulation results and the development scenarios 
discussed above.  The CMM production forecasts for Cases 1, 2, and 3 are shown in Figure 5-3. As shown 
in the graph, HGBs are expected to produce significantly greater volumes of CMM during the life of the 
project. 

Figure 5-3: CMM Production Forecast 

5.3 Project Economics 
5.3.1 Economic Assessment Methodology 
The economic and financial performance of a proposed Liulong Mine CMM drainage and utilization 
project were evaluated using key inputs discussed in the following sections of this report. A simple 
discounted cash flow model of CMM drainage and power sales was constructed to evaluate project 
economics.  Key performance measures that were used for evaluating the project included net present 
value (NPV), internal rate of return (IRR), and payback period (years). The results of the analyses are 
presented on a pre-tax basis. 

5.3.2 Economic Assumptions 
Cost estimates for goods and services required for the development of the CMM project at the Liulong 
Mine were based on a combination of data provided by CCII, known average development costs of 
analogous projects in the region and the U.S., and other publicly available sources (USEPA, 2011).  A more 
detailed analysis should be conducted if this project advances to the full-scale feasibility study level. The 
major cost components for the CMM project include the in-seam and horizontal gob boreholes, gathering 
system, surface vacuum station, compressor, and power plant. 
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5.3.2.1 Drainage System Input Parameters 
The drainage system capital cost assumptions, operating cost assumptions, and physical and financial 
factors used in the economic evaluation are provided in Table 5-1.  A more detailed discussion of each 
input parameter is provided below. 

Physical & Financial Factors Units Value 
Methane Concentration of Drained Gas percent 98 
Methane Concentration of Gob Gas percent 70 
Cost Escalation percent 3.0 
Price Escalation percent 3.0 

Capital Expenditures Units Value 
Drainage System 

Borehole Cost $/m 100 (in-seam); 130 (HGB) 
Surface Vacuum Station $/W 1.34 
Vacuum Pump Efficiency W/1000m3/d 922 

Gathering System 
Gathering Pipe Cost $/m 75 
Gathering Pipe Length m/panel 450 

Operating Expenses Units Value 
Field Fuel Use (gas) percent 10 
O&M $/1000m3 17.66 

Table 5-1: Summary of Drainage System Input Parameters 

5.3.2.1.1 Drainage System Physical and Financial Factors 
Price and Cost Escalation:  All prices and costs are assumed to increase by 3 percent per annum. 

Methane Concentration of Gas: The drained gas is assumed to have a methane concentration of 98 
percent and the gob gas is assumed to have a methane concentration of 70 percent. 

5.3.2.1.2 Drainage System Capital Expenditures 
The drainage system includes the in-seam and horizontal gob drainage boreholes and vacuum pumps used 
to bring the drainage gas to the surface. The major input parameters and assumptions associated with 
the drainage system are as follows: 

Borehole Cost: In-seam borehole costs are estimated at $100 per m. For the 30 m borehole spacing case, 
total borehole costs for the application of the in-seam drainage concept is $96,600 per panel, which 
includes 750 m of borehole drilled in the underlying gallery plus 216 m of borehole drilled from the gallery 
into the target seam. For the 10 m borehole spacing case, total borehole costs for the application of the 
in-seam drainage concept is $139,800 per panel, which includes 750 m of borehole drilled in the 
underlying gallery plus 648 m of borehole drilled from the gallery into the target seam. HGB costs are 
estimated at $130 per m.  With three 250 m boreholes per panel, total borehole cost for the application 
of the HGB drainage concept is $97,500 per panel. 

53 



 

 

 
  

   
 

   
 

 
      

   
      

   
  

  
 

  
   

   
   

 

   
      

 

   
     

    
    

   
   

    
   

   
   

   
   

    
      

     
    

Surface Vacuum Station: Vacuum pumps draw gas from the wells into the gathering system.  Vacuum 
pump costs are a function of the gas flow rate and efficiency of the pump.  To estimate the capital costs 
for the vacuum pump station, a pump cost of $1.34 per Watt (W) and a pump efficiency of 922 watts per 
thousand cubic meters per day (W/1000m3/d) are assumed.  Total capital cost for the surface vacuum 
station is estimated as the product of pump cost, pump efficiency, and peak gas flow (i.e., $/W x 
W/1000m3/d x 1000m3/d). 

Gathering System Cost: The gathering system consists of the piping and associated valves and meters 
necessary to get the gas from within the mine to the power plant located on the surface. The gathering 
system cost is a function of the piping length and cost per meter.  For the proposed project, we assume a 
piping cost of $75/m and roughly 450 m of gathering lines per panel. 

5.3.2.1.3 Drainage System Operating Expenses 
Field Fuel Use: For the proposed project, it is assumed that CMM is used to power the vacuum pumps and 
compressors in the gathering and delivery systems. Total fuel use is assumed to be 10 percent, which is 
deducted from the gas delivered to the end use. 

Normal Operating and Maintenance Cost: The normal operating and maintenance cost associated with 
the vacuum pumps and compressors is assumed to be $17.66/1000m3. 

5.3.2.2 Power Plant Input Parameters 
The drained methane can be used to fuel internal combustion engines that drive generators to make 
electricity for use at the mine or for sale to the local power grid.  The major cost components for the 
power project are the cost of the engine and generator, as well as costs for gas processing to remove 
solids and water, and the cost of equipment for connecting to the power grid.  The assumptions used to 
assess the economic viability of the power project are presented in Table 5-2.  A more detailed discussion 
of each input parameter is provided below. 

Physical & Financial Factors Units Value 
Generator Efficiency percent 40 
Run Time percent 65 
Electricity Price $/kWh 0.10 
CMM Subsidy $/kWh 0.04 

Capital Expenditures Units Value 
Power Plant $/kW 760 

Operating Expenses Units Value 
Power Plant O&M $/kWh 0.03 

Carbon Emission Reductions Units Value 
Global Warming Potential of CH4 tCO2e 25 
CO2 from Combustion of 1 ton CH4 tCO2 2.75 

Table 5-2: Summary of Power Plant Input Parameters 
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5.3.2.2.1 Power Plant Physical and Financial Factors 
Generator Efficiency and Run Time: Typical electrical power efficiency is between 30 percent and 44 
percent and run time generally ranges between 7,500 to 8,300 hours annually (USEPA, 2011).  For the 
proposed power project an electrical efficiency of 40 percent and an annual run time of 65 percent, or 
5,694 hours, were assumed. The efficiency value is based on information provided by CCII and the run 
time value is consistent with the typical operation of Shengli engines in the field. 

Electricity Price and CMM Subsidy: The effective electricity sales price received for the power produced is 
$0.14/kWh, which includes a base electricity price of $0.10 and a CMM subsidy of $0.04/kWh. 

5.3.2.2.2 Power Plant Capital Expenditures 
Power Plant Cost Factor: The power plant cost factor, which includes capital costs for gas pretreatment, 
power generation, and electrical interconnection equipment, is assumed to be $760/kW. 

5.3.2.2.3 Power Plant Operating Expenses 
Power Plant Operating and Maintenance Cost: The operating and maintenance costs for the power plant 
are assumed to be $0.03/kWh. 

5.3.2.2.4 Carbon Emission Reductions 
Global Warming Potential of CH4: A global warming potential of 25 is used. This value is from the 
Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2013) . 

CO2 from Combustion of CH4: Combustion of methane generates CO2.  Estimating emission reductions 
from CMM projects must account for the release of CO2 from combustion when calculating net CO2 

emission reductions. For each ton of CH4 combusted, 2.75 tCO2 is emitted, resulting in a net emission 
reduction of 18.25 tCO2e per ton of CH4 destroyed. 

5.3.3 Economic Results 
The economic results for the power project are summarized in Table 5-3. Cases 2 and 3 both have a 
positive NPV-10.  However, Case 3, which has a NPV-10 of over $30 million and an IRR of 43 percent, is 
preferable to Case 2, which has a NPV-10 of just under $1.3 million and an IRR of 12 percent. 

Case Description 

Max 
Power 
Plant 

Capacity 

NPV-10 
US$000 IRR Payback 

Year 

Net CO2e 
Reductions 

(Million 
metric tons) 

1 In-seam boreholes penetrating 
mining seams at intervals of 30 m 2 MW -5,722 -3% - 0.32 Mt 

2 In-seam boreholes penetrating 
mining seams at intervals of 10 m 6 MW +1,278 +12% 8 1.1 Mt 

3 Horizontal gob boreholes placed 
above mining seams 9 MW +30,054 +43% 3 2.9 Mt 

Table 5-3: Summary of Economic Results 

6 Conclusions, Recommendations and Next Steps 
This pre-feasibility study proposes three methane drainage approaches for the Liulong Coal Mine in 
Guizhou Province.  The study further provides a high-level estimate of gas production using these methods 
and an economic analysis of using the CMM to generate power. After consideration of possible options 
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for CMM utilization at the Liulong Mine, power generation was selected as the best option for the mine 
given market conditions and mine management priorities. As the analysis shows, drainage using 
horizontal gob boreholes will be the most effective option for the Liulong Mine in terms of gas drainage 
and economics. In addition, net emission reductions associated with the destruction of drained methane 
are estimated to total 2.9 MtCO2e over the life of the project using the optimal development scenario. 

It is recommended that BMG pursue the development of a small 1-MW power project using CMM from 
the existing system of cross-panel boreholes. The power plant could grow as gas availability increases with 
improved drainage. Based on the results of this pre-feasibility study, for BMG to move toward project 
development the following next steps are recommended:  

• Develop a clear mine layout for the Dayong coalfield with exact panel dimensions and coal 
production forecasts. 

• Take additional core samples in the Dayong coalfield and conduct gas desorption analyses to 
obtain accurate measure of gas content, permeability and porosity of the coals.  This will inform 
a more thorough gas production forecast. 

• Confirm the ability of the Liulong Mine to sell excess electricity to the power grid and establish a 
confirmed price for an interconnect to the grid. 

• Conduct pilot tests for both types of in-mine degasification technologies proposed in this study to 
develop more accurate forecasts for CH4 concentration and volumetric throughput. 

• Investigate and analyze more thoroughly all utilization options including power production to 
confirm the economic and technical feasibility of CMM-to-power and the viability of alternatives 
and their competitiveness with power generation. 

• Begin investigation of financing options to confirm available sources of project finance so that 
BMG can determine the appropriate sources and mix of financing, including the mix of debt and 
equity. 
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