HYDROLOGIC AND WATER QUALITY SYSTEM WEBCAST

Presented by:

Pravin Rana, US EPA Office of Water/Project Management Office

Dr. Raghavan Srinivasan, Texas A&M University

United States Environmental Protection Agency Washington, DC

August 16, 2016

Webinar Logistics

- Presentation slides from this webinar will be available to download within about a week or two at: http://epa.gov/hawqs
- Attendees will be in listen-only mode (muted) throughout today's webinar.
- During the webinar, you may submit a question by typing into the Enter a question for staff box and clicking the Send button. Staff will read and answer these questions as time allows.
- Please complete the survey questions at the end of the webinar. Your feedback is important to us!

TOPICS FOR TODAY'S WEBCAST

• HAWQS Beta Background

- Using HAWQS
 - Registration, User Guide, Getting Help
 - SWAT and HAWQS
 - Starting and completing a project and scenarios
 - Inputs and Outputs
- Use Case Example Maumee River Basin
- HAWQS Next Steps
- Where to go for Help

POLL QUESTION #1

• Who runs your water quality models?

- Yourself you're a water quality modeling professional.
- A colleague who is a water quality modeling professional
- Contractor/consultant
- Others

Poll Question #2

• Which WQ Models do you use for your projects?

- WASP
- SPARROW
- BASINS
- SWAT
- OTHER

POLL QUESTION #3

• Which area of modeling are you involved in?

- Stormwater
- TMDL
- Climate Change
- Agriculture
- Other

HAWQS BACKGROUND

- Conceived by an EPA Cross-Office Planning Committee in 2005
- Solicited input from a diverse group during a workshop
- Key themes the Committee/Workshop considered:
 - Impact from regional and national scale policies and programs
 - National or large scale economic benefit assessment
- Full scale development began in 2010

HAWQS BACKGROUND (CONT.)

- Original themes evolved into the current web-based beta Version of HAWQS
- 2015 EPA-sponsored peer review:
 - Douglas C. Beyerlein. P.E., WRE (Consultant)
 - Kaye L. Brubaker, Ph.D., University of Maryland
 - Timothy Randhir, Ph.D., University of Massachusetts Amherst.
- 2016 Addressed peer review comments and other enhancements
 - HAWQS Beta released on June 16, 2016
 - Future releases will integrate additional features and revisit remaining peer review comments
 - Formal release of Version 1.0 planned sometime in late 2016 early 2017

HAWQS HOMEPAGE (HTTPS://EPAHAWQS.TAMU.EDU/)

Hydrologic and Water Quality System A National Watershed and Water Quality Assessment Tool

DLog in

What is HAWOS?

The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with interactive web interfaces and maps; pre-loaded input data; outputs that include tables, charts, and raw output data; a user guide, and online development, execution, and storage of a user's modeling projects.

HAWQS substantially enhances the usability of SWAT to simulate the effects of management practices based on an extensive array of crops, soils, natural vegetation types, land uses, and climate change scenarios for hydrology and the following water quality parameters:

- Sediment
- Pathogens
- Nutrients
- Biological oxygen demand
- Dissolved oxygen
- Pesticides
- Water temperature

HAWQS users can select from three watershed scales or hydrologic unit codes (HUCS) -8-digit ~700mi²; 10-digit ~227 mi²; and 12-digit ~40mi² - to run simulations. HAWQS allows for further aggregation and scalability of daily, monthly, and annual estimates of water quality across large geographic areas up to and including the continental United States.

The United States Environmental Protection Agency (USEPA) Office of Water supports and provides project management and funding for HAWQS. The Texas A&M University Spatial Sciences Laboratory and EPA subject matter experts provide ongoing technical support including system design, modeling, and software development. The United States Department of Agriculture (USDA) and Texas A&M University jointly developed SWAT and have actively supported the model for more than 25 years.

HAWQS beta was released in June 2016. Comments and proposed enhancements by prospective end-users will be used to plan, prioritize, and release future versions.

View the HAWQS brochure

hawqs@epa.gov

How does HAWOS work?

- Log in or register for a new account to get started
 - Read our <u>user guide</u> for additional help.

Create a project

- Choose a desired catchment resolution: HUC8, HUC10 or HUC12
- Select your ending HUC ID from a map

Create a scenario

- Specify the model run duration and model run frequency
- Make further customizations to your model
- Set HRUs to eliminate minor land uses, soils and slopes
- Edit general watershed inputs and databases (basin, fertilizer, urban, nutrient efficiency, land use update)
- Edit subbasin inputs (curve number, potholes, sediment routing, climate change/sensitivity, point source)
- Modify SWAT output by selecting reach, subbasin and HRU parameters
- Generate SWAT input files
- Generate SWAT Access database for SWATeditor
- Run the available versions of SWAT
- Analyze your results
 - · Run SWAT Check-a program designed to identify potential model problems
 - Generate output reach statistics
 - View output summary charts
 - Download a zip of all project files

REGISTERING FOR HAWQS

HAWQS Hydrologic and Water Quality System A National Watershed and Water Qua

A National Watershed and Water Quality Assessment Tool

What is HAWQS?

The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with interactive web interfaces and maps; pre-loaded input data; outputs that include tables, charts, and raw output data; a user guide, and online development, execution, and storage of a user's modeling projects.

HAWQS substantially enhances the usability of SWAT to simulate the effects of management practices based on an extensive array of crops, soils, natural vegetation types, land uses, and climate change scenarios for hydrology and the following water quality parameters:

- Sediment
- Pathogens
- Nutrients
- Biological oxygen demand
- Dissolved oxygen
- Pesticides
- Water temperature

How does HAWQS work?

1

2

- Log in or register for a new account to get started
- Read our <u>user guide</u> for additional help.
- Create a project
 - Choose a desired catchment resolution: HUC8, HUC10 or HUC12 Select your ending HUC ID from a map
- Create a scenario
 - Specify the model run duration and model run frequency
- Make further customizations to your model
 - Set HRUs to eliminate minor land uses, soils and slopes
 - o Edit general watershed inputs and databases (basin, fertilizer, urban, nutrient efficiency, land use update)
 - Edit subbasin inputs (curve number, potholes, sediment routing, climate change/sensitivity, point source)
 - o Modify SWAT output by selecting reach, subbasin and HRU parameters

REGISTERING FOR HAWQS

Hydrologic and Water Quality System A National Watershed and Water Quality Assessment Tool

Register for a New Account

New accounts are subject to approval by an administrator. Please submit the information below, and we will follow up with you by email.

Personal details

First name

Last name

Donce registration
information is complete, the
HAWQS Administrator will
approve/deny request.

Email address
Beta testing interest?

Please check if ou are interested in becoming a beta tester. You will be asked to participate in user design sessions, provide testing support
and other support.

11
hawqs@epa.gov

Log in

HAWQS User Guide

Prepared by the

Spatial Sciences Laboratory Texas A&M AgriLife Research College Station, TX

For the

Office of Water, Immediate Office US Environmental Protection Agency Washington, DC

Version 1.0 Beta - Released June 16, 2016

HAWQS USER GUIDE

https://epahawqs.tamu.edu/

hawqs@epa.gov

HELP IN HAWQS

Selected SWAT model Documentation

HAWQS methodology, input and database documentation

SWAT Model Documentation

SWAT2012 Input/Output Documentation

SWAT Theoretical Documentation

- <u>Channel Processes</u>
- <u>Climate</u> 🎒
- Erosion 🏝
- Hydrology A
- Management Practices

SWAT Publications

SWAT Check Documentation

hawqs@epa.gov

HAWQS Data Documentation

HAWQS Appendix 🞴

HAWQS Input Database Citation 🎒

Calibration/Validation

- Methodology P
- SWAT Manual Chapter on Calibration 4
- SWAT: Model Use, Calibration, and Validation 4

Climate Change Data and Resources

Land Use Definition Table

Point Sources Methodology 🎒

 $\mathbf{13}$

OVERVIEW OF THE HAWQS MODELING PROCESS

User creates a project and an initial/baseline modeling scenario and changes variables and inputs using web interfaces.

> The entire project can be downloaded to local hard drive and used with SWAT editor

When ready, user begins the model simulation for the baseline scenario.

SWAT Model Begins Work

SWAT finishes processing baseline model outputs, results are stored in a central database. Users can view results on web interface, save results and run additional scenarios to compare to the baseline. SWAT Water Quality Model - Hosted at Texas A&M

14

15

SWAT – THE MODEL BEHIND HAWQS

hawqs@epa.gov

• SWAT

- In use for more than 25 years and 2,700 peer reviewed publications
- Requires specific information about weather, soil properties, topography, vegetation, land management
- Physical processes associated with water movement, sediment movement, crop growth, and nutrient cycling are directly modeled.
- Aggregation of outputs (stream flow, pollutants) across large scales (e.g., Mississippi River Basin) both spatial and temporal

WHY USE HAWQS?

- Interactive web-based/cloud based applications;
- Can be accessed with any platform/browser;
- No GIS software necessary;
- No need for the user to update to the latest version of SWAT;
- Pre-loaded input data at three spatial resolutions (8, 10 and 12 digit watersheds) to reduce manual processing of input data;
- Output data in standardized charts and tables;
- Store baseline model simulation and then the "whatif" simulations in a central database;
- Download projects to desktop for more complex analysis;
- Many users can collaborate on a single project in future versions.

HAWQS INPUTS

Input	Source	Notes	Date Accessed
Weather*	NCDC corrected for	1967-2010	October 2010
	PRISM ¹		
Soil	USDA-NRCS ²	STATSGO	October 2010
Land Use	MRLC (Fry) ³	NLCD (2006) and CDL (2011-	October 2010 and
		2012)	January 2015
Aerial	NADP ⁴	(1980-2010) monthly	October 2010
Deposition			
Watershed	USGS⁵	HUCS 8, 10, and 12	October 2010
Boundaries			
Stream	NHDPlus ⁶	Reduced form	October 2010
Networks			
Elevation	NED ⁷	30 meter DEM	October 2010
Point Sources	USGS ⁸	Regression of population and	October 2010
		SPARROW model outputs	
Management	NRCS ⁹	CDL (tillage, fertilizer/manure,	January 2015
Data		crop yields)(NRCS field	
		database)	
Reservoirs	USACE ¹⁰	National Inventory of Dams	October 2010
Livestock and	USDA-NASS ¹¹		October 2010
Crops			
Model	USDA-ARS and Texas A&M	Soil Water Assessment Tool	January 2015

HAWQS PROJECT INTERFACE

HAWOS	Hydrologic and Water Quality System A National Watershed and Water Quality Assessm p	Jsers are provie projects.	de a listing	g of all of the	eir		
≡ Projects ~	Welcome!						
Webcast Example1							
Test Project Pravin	≣ Projects						
HUC 8 - 10080009 (Delta - Improve Water Quality)	Name	Last Modified -	Res. Start HUC	End HUC			
HUC 8 - 10250017	Webcast Example1	8/1/2016 10:51 AM	HUC 8 Head	10290110			
HUC 8 - 10080009	<u>Test Project Pravin</u>	6/1/2016 2:23 PM	HUC 8 Head	05120203			
HUC 8 - 05130205 (delta)	HUC 8 - 10080009 (Delta - Improve Water (Quality) 5/24/2016 7:56 AM	HUC 8 Head	10080009			
HUC 8 - 05130205	HUC 8 - 10250017	5/24/2016 7:28 AM		•			
Create a new project	HUC 8 - 10080009	3/30/2016 1:30 PM	Projects	ran he archi	ved or		
Account settings	HUC 8 - 05130205 (delta)	3/29/2016 2:53 PM	nermanently deleted				
? Help	NUC 8 - 05130205	TVI -					
Log off HAWQS navigation banel	 Archive a project you are no longer usin archiving. You have 0 archived projects. Permanently delete project. 	ng, but may want to come back	to at a later date - mo	pre about	18		
hawqs@epa.gov							

19

HAWQS PROJECT INTERFACE

	10000002	5/50/2010 1.50 FM	noco neda	1000000					
I Projects ✓	HUC 8 - 05130205 (delta)	3/29/2016 2:53 PM	HUC 8 Head	05130205					
Webcast Example1	HUC 8 - 05130205	3/29/2016 12:19 PM	HUC 8 Head	05130205					
Test Project Pravin	۰ (III III III III III III III III III	T.		۲					
HUC 8 - 10080009 (Delta - Improve Water Quality)	= Archive a project you are no longe archiving. You have 0 archived projects	r using, but may want to come back	to at a later date -	more about					
HUC 8 - 10250017	x = Permanently delete project.								
HUC 8 - 10080009									
HUC 8 - 05130205 (delta)	Create a new project								
HUC 8 - 05130205									
Create a new project	? Help	\uparrow							
Account settings	Visit the HAWQS <u>help section</u> for an in-depth user guide, SWAT model documentation, and HAWQS data								
? Help	sources.	sources.							
➡ Log off	For technical assistance, please contact	t <u>eco.web@amu.edu</u> .							
	Click here to launc	h a new project.	AHAWG	2 S					
	Project consists of:								
	• Input data files								

20

CREATE PROJECT – SELECT A WATERSHED

CREATE PROJECT – SELECT A WATERSHED AND SUB-BASINS

Click the map near the downstream point of your watershed to begin. The map will display the upstream HUCs of your watershed as well as other nearby HUCs.

CREATE PROJECT – WATERSHEDS AND SUB-BASINS SELECTED Watershed in dark green, sub-basins in

lighter green color. Light yellow are other watersheds nearby but not part of the selected watershed for modeling North Dakota Otta Michigar South Dak Toronto Detroit hicado Nebras Omaha Pennsylvania Lincoln Ohio Columbus Phil India Denver Baltimore Kansas City Colorado. Washington West-Viroinia Current position: 44.210, -84.760545 Louisville Leaflet | © OpenStreetMap contributors

Create your project

The watershed shown above contains **92** subbasins and **28,523** HRUs from the head of the watershed to HUC **07110001**. <u>View watershed routing</u>.

CREATE PROJECT – WATERSHEDS AND SUB-BASINS SELECTED

PROJECT SUMMARY

Projects > HUC 8 - 07110001

3-create a scenario

4 - download

project files

2 - set HRUs

Set HRUs

You can set threshold levels to eliminate minor land uses, soils, and slopes in each subbasin. This will reduce the number of HRUs in your project, allowing for quicker input file writing and SWAT model runs. Thresholds may only be modified before any scenarios are added to your project. After creating scenarios, you will need to create a new project or delete all scenarios if you want to reset thresholds.

O Scenarios

Create a scenario for your project. A project scenario is where you go to customize SWAT input variables and run the model. You can create multiple scenarios and make side-by-side output comparisons.

Project Files

Create a zip of all your project files and download them to your computer for offline use. We recommend waiting until you are done running all scenarios for this project before creating this file. It may take several hours if you have multiple scenarios and your project is large (>10,000 HRUs).

Receive an email when complete?

5-upload and Project Documents store project related docs

You don't have any documents uploaded for this project. Project Error Reports

You don't have any error reports submitted for this project.

6 – report and track HAWQS system errors

Download SWAT to HUC Mapping

Download

1-watershed

summary

Hover over a sub

HUC 8 Watershed - Head to 07110001

+

Project area:

Number of subbasins:

Number of HRUs:

351,482.61 km2

92

28,523

24

PROJECT SUMMARY - WATERSHED

SET PROJECT HRUS

Projects > HUC 8 - 07110001 > HRUs

subbasin. Land uses, soils, or slopes that cover area less than the th

Percentage

Setting HRUs eliminates minor land uses, soils, and slopes in order to reduce the number of HRUs in your project to improve SWAT model run time.

WATR

WETN

Threshold can be set by % of land use, soil and slope or by area

subbasins with <u>28,523</u> A HRUs. The land use is broken down below. <u>See a pie chart of land use area distribution.</u>

Check the box next to any land use in the table below that you would like to exempt from elimination based on your threshold settings above.

Land use threshold:		
	5	\$ %
Soil threshold:		
	0	%
Slope class threshold:		
	0	%

Set threshold levels below to eliminate minor land uses, soils, and slopes in each

Check the box next to any land use in the table on the right that you would like to exempt from elimination based on your threshold settings above.

Receive an email notification when we're done setting your HRUs? (Help me decide)

Land U	se Area	% of Total Area
FRSD	69,618.10 km ²	19.81 %
SOYC	50,984.79 km ²	14.51 %
CSOY	49,556.04 km ²	14.10 %
CORN	40,984.39 km ²	11.66 %
HAY	34,079.57 km ²	9.70 %
URLD	18,218.71 km²	5.18 %
WETF	16,797.74 km ²	4.78 %
RNGE	16 3/3 95 km ²	1.65 %

Set HRUs

elminated.

Set thresholds by

Hover over to get the full description of the land use

27

SET HRUS - RESULTS

Your project originally had 28,523 💵 HRUs. Setting thresholds reduced the number to 2,978 💵 HRUs.

A Note: once you create scenarios for your project, you will no longer be able to modify your HRUs.

Reset your HRUs

	Land Use	Soil Type	Slope Class
Thresholds	5%	5%	5%
Area redistribution	55,463.35 km ²	69,218.86 km ²	0.00 km ²

CREATE SCENARIO

hawqs@epa.gov

Scenario name	
Default	A
Simulation start date	
01/01/1961	
Simulation end date	
12/31/1965	=
Set-up/warm-up years	
2	
SWAT output print setting	
Daily	•
SWAT model version to run	
SWAT 2012 rev. 636	•
	Create

By default, we set the simulation dates and warm-up years to a short time period to save server resources. A more realistic model run time will span 10-20 years with 5-10 years of model warm-up. The weather data available from 1960-2010

User can choose SWAT output frequency as daily, monthly or annual. Some of the output analysis tools will work with only daily output.

As the SWAT Model is updated, users may choose which version to run. Existing scenarios will not be updated unless the user requests it from the edit screen.

SCENARIO SUMMARY PAGE

Projects > HUC 8 - 07110001 > Default

Scenario Settings	
Scenario name	Default
Simulation start date	1/1/1961
Simulation end date	12/31/1980
Set-up/warm-up years	5
SWAT output print setting	Daily
SWAT model version to run	SWAT 2012 rev. 636
Last modified	8/5/2016 2:51 AM

Select tasks to be performed such as write SWAT input files, create SWAT editor tables, Run the SWAT model, Process SWAT outputs for visualization, Zip and download the project files for use at the user desktop

Write SWAT editor tables	Never
Run SWAT 2012 rev. 636 (Time estimate)	Never
Process SWAT output files	Never

Receive email notifications when tasks complete? (<u>Help me decide</u>)

Run selected tasks

🛷 Run Scenario Task

Write SWA

Last modified Menus to customize various inputs to the SWAT model (explained in the

subsequent slides)

🖋 Customize SWAT Input Data

General watershed inputs and databases

<u>Basin input data</u>

Edit

Fertilizer input data

Nutrient efficiency

hawqs@epa.gov

hawqs@epa.gov

CUSTOMIZE SWAT INPUT – BASIN INPUT Data

Basin wide input data such as water balance, surface runoff, nutrient cycling and reach data can be edited in this screen. The interface shows what is the default value in the model, typical range for the variable based on the literature and what is the value used by the model for this project which can be edited further by the user

Projects > HUC 8 - 07110001 > Default > Basin input data

General watershed attributes are defined in the basin input file. These attributes control a diversity of physical processes at the watershed level. The interfaces will automatically set these variables to the default or recommended values listed in the variable documentation. You can use the default values or change the available values below to better reflect what is happening in your watershed. Bood the SWAT2012 IO documentation chapter on basin inputs [7].

Input Variable		Value		Valid Range	Defaul
SFTMP: Snowfall te	emperature 🟮	1	°C	-5 to 5	1
SMTMP: Snow me	t base temperature	0.5	°C	-5 to 5	0.5
SMFMX: Melt facto	r for snow on June 21 🕄	4.5	mm H2O/ºC-day	0 to 10	4.5
SMFMN: Melt facto	or for snow on December 21 🕄	4.5	mm H2O/ºC-day	0 to 10	4.5
TIMP: Snow pack t	emperature lag factor 🕚	1		0 to 1	1
IPET: Potential eva	potranspiration (PET) method 🕚	1 - Penman/	Monteith method 🔹		1
ESCO: Soil evapora	tion compensation factor 🕄	0.95		0 to 1	0.95
	e compensation factor 🚯	1		0 to 1	1

When you are done making changes in the tabs above, click save below. Please note that no changes will be saved until you click this button. To cancel, exit the page or press the cancel button.

Save changes Cancel and go back t

 $\mathbf{31}$

CUSTOMIZE SWAT INPUT – FERTILIZERS

Projects > HUC 8 - 07110001 > Default > Fertilizer input data

co m fe

C

hawqs@epa.gov

The fertilizer database summarizes the relative fractions of nitrogen and phosphorus pools in the different fertilizers. Read the <u>SWAT2012 IO documentation chapter on fertilizer inputs</u>.

	ID	Name	Descriptio	n	Mineral N	Mineral P	Organic N	Organic F	P Mineral N	applied as	NH3
Edit	1	Elem-N	Elemental	Nitrogen	1.000	0.000	0.000	0.000	0.000		
Edit	2	Elem-P	Elemental	Phosphorous	0.000	1.000	0.000	0.000	0.000		
Edit	3	ANH-NH3	Anhydrous	Erit Elemental	Nitrogen						
Edit	4	UREA	Urea	Input Variable			Valu	ie		Valid Range	Default
<u>Edit</u>	5	46-00-00	46-00-00	FMINN: Fraction (of mineral N (NO3 a	and NH4) in fertiliz	ter 1	kg r	min-N/kg fertilizer	0 to 2	1
Edit	6	33-00-00	33-00-00	FMINP: Fraction o	f mineral P in ferti	lizer	0	kg r	min-N/kg fertilizer	0 to 2	0
ıtrie	ents			FORGN: Fraction	of organic N in fert	ilizer	0	kg r	min-N/kg fertilizer	0 to 1	0
ncer	ncentration can be		FORGP: Fraction of	of organic P in ferti	lizer	0	kg r	min-N/kg fertilizer	0 to 1	0	
dified in the		FNH3N: Fraction	of mineral N in fert	ilizer applied as ar	mmonia 0	kg r	min-N/kg fertilizer	0 to 1	0		
ta to	o ru	in scena	rios								
									1	Save Changes	Cancel

CUSTOMIZE SWAT INPUT – NUTRIENT EFFICIENCY

Projects > HUC 8 - 07110001 > Default > Nutrient efficiency

The amount of fertilizer applied in auto fertilization is based on the amount of nitrogen removed at harvest. If you set nutrient efficiency value to 1.0, the model will apply enough fertilizer to replace the amount of nitrogen removed at harvest. If you enter a number greater than 1.0, the model will apply fertilizer to meet harvest removal plus an extra amount to make up for nitrogen loss due to surface runoff/leaching. If nutrient efficiency value is less than 1.0, the model will apply fertilizer at the specified fraction be the amount removed at harvest.

Your project does not contain any land use that would be affected by the nutrient efficiency variable. <u>Go back to your scenario</u> <u>summary page</u>.

hawqs@epa.gov

CUSTOMIZE SWAT INPUT – URBAN INPUT Data

Projects > HUC 8 - 07110001 > Default > Urban input data

The urban database summarizes variables used by the model to simulate different types of urban areas. Read the SWAT2012 IO documentation chapter on urban inputs 의

	ID	Name	Description	FIMP	FCIMP	CURBDEN	URBCOEF	DIRTMX	THALF	TNCONC	TPCONC	TNO30	CONC URE	CN2
<u>Edit</u>	1	URHD	Residential-High Density	0.550	0.402	0.240	0.180	225.000	0.750	550.000	223.000	7.200	98.0	00
Edit	2	URMD	Residential-Medium Density	0.292	0.231	0.240	0.180	225.000	0.750	550.000	223.000	7.200	98.0	100
Edit	3	URML	Residential-Med/Low Density	0.200	0.170	0.240	0.180	225.000	0.750	460.000	196.000	6.000	98.0	00
<u>Edit</u>	4	URLD	Residential-Low Density	Edit Resi	dential-l	High Density	1							
<u>Edit</u>	5	UCOM	Commercial											
Edit	6	UIDU	Industrial	Input Var	iable					Value			Valid Range	Default
Γο ι ano	apo d u	date ise p	the urban roperties	FCIMP	Fractio type	on directly conn	ected impervic	ous area in ur	ban land	0.4016	km/ha		0 to 1	0.4016
suc	n a	lS		CURBDEN	Curb l	ength density in	n urban land ty	pe		0.23999			0 to 1	0.23999
perv cove	pervious/impervious pover, N and P		URBCOEF	Wash-off coefficient for removal of constituents from impervious area			0.18	mm ⁻¹		0 to 1	0.18			
con can	cer be	ntrat e mo	tion loading dified to run	DIRTMX	Maxin imper	ium amount of vious areas	solids allowed	to build up o	n	225	kg/curb k	m	0 to 2000	225
arban land use			THALF	Numb to buil allowe	er of days for a d up from 0 kg d, i.e. 1/2 DIRT	mount of solid /curb km to ha MX	s on impervio If the maximu	ous areas im	0.75	days		0 to 100	0.75	

States - Conservation

CUSTOMIZE SWAT INPUT – LAND USE UPDATE Projects > HUC 8 - 07110001 > Default > Land use update

The land use update file (lup.dat) is an optional file which allows HRU fraction updating during a simulation run. The lup.dat file is particularly useful to initialize conservation measures mid-simulation. After their initialization, the practices remain in effect for the remainder of the simulation.

The lup.dat file must contain five parameters per line: sequential number, month, day, year, and name of the file that contains the fraction update. You are restricted to **25 lines** in lup.dat. Each file referenced in lup.dat must reserve the first line for comments, then for each line after contain the HRU number and updated HRU fraction value. The number of HRUs in the file must match the number of HRUs in your project or you will receive an error. In addition, the HRU fraction for each subbasin in your project must add up to one.

<u>Download a sample zip file</u> []] containing the file structure needed for your project.

Download your project HRUs.

Read the SWAT2012 IO Documentation chapter on land use update 🎒

Upload land use update zip file

Choose File No file chosen

Upload file

Cancel and go back to scenario

To update the land use the HAWQS menu provides listing of HRUs in the watershed being modeled along with sample input file for formatting the land use change scenarios and upload the same.

34

CUSTOMIZE SWAT INPUT – CLIMATE CHANGE SCENARIOS

This interface helps to choose a climate change model (9 GCM models are available), select time period of future simulation, and climate change scenarios. (in addition more reading resources are linked to learn more about various GCM models

Projects > HUC 8 - 07110001 > Default > Climate change scenarios

By default, the system uses actual climate data. Using the form below you may change your model to use downscaled global climate model simulations (CMIP), developed by <u>The</u> <u>Nature Conservancy for The World Bank</u>.

s	elect a climate model:	
	CCCMA CGCM3.1	
s	elect a time series:	
	Future data (2046-2064)	
s	elect a scenario:	
	SRES A1B	
7	Update your SWAT simulation dates. Currently your simulation is set to run from 1/1/1961 to 12/31/1980 with 5 years of warm-up. Your simulation run dates need fall within the time period selected above; if needed, please select new dates below	n to w.
s	imulation start date	
	01/01/2046	
s	imulation end date	
	12/31/2064	
s	et-up/warm-up years	
	5	

Help and more information

The background and methods are described by <u>Girvetz</u> et al. (2013), with added details in <u>Thrasher et al. (2012)</u>. As unconstrained coupled models, the climate simulations do not ingest observed sea surface temperatures, precipitation, or other weather or land surface observations. Thus, there is no expected correspondence on a year-to-year basis of historic simulated climate and observed weather. In addition, because of the bias correction involved in the downscaling, climate model skill (based on these downscaled data) in reproducing historic observations is not meaningful for ranking GCM performance (<u>Maurer</u> et al., 2014).

See the links below for more information on each model (where available):

- <u>CCCMA CGCM3.1</u>
- CNRM-CM3
- <u>GFDL CM2.0</u> <u>wiki</u>
- GFDL CM2.1
- IPSLCM4
- MIROC3.2 (medres)
- MIUB ECHO-G Meteorological Institute
- University of Bonn (MIUB), ECHO-G, Germany
- MPI ECHAM5
- MRI CGCM2.3.2

35

hawqs@epa.gov

Save changes

Here climate

analysis can be

performed by

sensitivity

CUSTOMIZE SWAT INPUT – CLIMATE SENSITIVITY/VARIABILITY ANALYSIS

Projects > HUC 8 - 07110001 > Default > Climate sensitivity/variability analysis

Adjust monthly rainfall and temperature for each subbasin in your project. Read the <u>SWAT2012 IO</u> <u>documentation chapter on subbasin inputs</u> , see page 6 for climate sensitivity variables.

Increase or decrease rainfall by up	to 100%:			adju prec	asting cipitation	
	20	%		and	perature	
	0	°C		valı sub mor	ies by basin and b nth	ру
Apply to all subbasins and months	•	Save changes	Cancel and go bac	k to scenario		
					3	6

CUSTOMIZE SWAT INPUT – CLIMATE SENSITIVITY/VARIABILITY ANALYSIS

This screen shows how the user can apply the change in climate variables by all or selected subbasins and all or selected months

Projects > HUC 8 - 07110001 > Default > Climate sensitivity/variability analysis

20

0

Adjust monthly rainfall and temperature for each subbasin in your project. Read the <u>SWAT2012 IO</u> <u>documentation chapter on subbasin inputs</u> [4], see page 6 for climate sensitivity variables.

°C

July

Increase or decrease rainfall by up to 100%:

Increase or decrease temperature by up to 20°C:

Apply to selected subbasins and months

	Select months
*	January
1	February
1	March
	April
	May
	June

ve changes Cancel and go back to scenari

37

CUSTOMIZE SWAT INPUT – WEATHER GENERATOR

Projects > HUC 8 - 07110001 > Default > Weather generator

Adjust weather generator (WGN) input data using the form below. Read the <u>SWAT2012 IO documentation chapter</u> on weather generator inputs .

Browse default WGN data

Select a WGN variable to change:

RAINHHMX - Maximum 0.5 hour rainfall in entire period of record for month (mm H2O)

15

Increase or decrease the selected variable by up to 100%:

month

Apply to all subbasins and months

Save changes

%

Cancel and go back to scenario

38

This menu allows to customize weather generator variables by subbasin and by

39

CUSTOMIZE SWAT INPUT – CURVE NUMBER

Projects > HUC 8 - 07110001 > Default > Curve number

The SCS curve number is a function of the soil's permeability, land use and antecedent soil water conditions. Read the <u>SWAT2012 IO documentation</u> chapter on MGT inputs [2], pages 4-6, for more information about curve numbers (CN2).

Download your HRUs 🚺 to see current curve number values.

haw

	2 % Apply t	o selected HRUs 🔻	
Select subbasins	Select land use	□ Select soils	Gelect slopes
☑ 07010101	FRSD	MN015	✓ 0-1
☑ 07010102	FRSE	MN026	
07010103	□ WATR	MN045	
07010104	□ WETF	MN055	
07010105	WETN	MN056	
07010106		MN264	
07010107			
07040400	•		
Save changes Cancel and	go back to scenario This n	nenu allows to cha	nge SCS CN
@epa.gov	variab	le in the model by	subbasin and by

CUSTOMIZE SWAT INPUT – CURVE NUMBER – SAVED CHANGES TABLE

Saved curve number modifications

We will provide a CSV file with your curve number values after you write your SWAT input files. Download your HRUs see original curve number values without the modifications shown below.

NOTE: Each row below is applied in order, starting from the top. Bottom settings may overwrite rows above. <u>Click here to remove all changes</u> and use the default curve numbers.

CN2	Subbasins	Land Use	Soil	Slopes	Added	
2%	07010101	FRSD	MN026, MN045	0-1	8/5/2016 3:24 AM	×
1%	07010102	WETF, WETN	MN015, MN026	0-1	8/5/2016 3:25 AM	×

Once the inputs are modified the screen shows what HRUs in what subbasin will be affected and also allows to download the changes as a CSV file for user reference

CUSTOMIZE SWAT INPUT – SEDIMENT ROUTING METHOD

Projects > HUC 8 - 07110001 > Default > Sediment routing method

Read the SWAT2012 IO documentation chapter on main channel inputs [2], see page 9 for sediment routing methods (CH_EQN).

0 - Simplified Bagnold Equation (Default)	Apply to all subbasins	Save changes	Cancel and go back to scenario
0 - Simplified Bagnold Equation (Default)			
1 - Simplified Bagnold Equation by each particle size 2 - Kodatie model 3 - Molinas and Wu model 4 - Yang sand and gravel model			

CUSTOMIZE SWAT INPUT – POINT SOURCE

User can update point source inputs in the HAWQS system. This menu provides sample file format of constant, daily, monthly or annual point source loadings by subbasin. Once the file is prepared on the desktop in a CSV format and zip them, the zipped file can be uploaded to be used as a point source scenario input in HAWQS

hawqs@epa.gov

Projects > HUC 8 - 07110001 > Default > Point source

SWAT directly simulates the loading of water, sediment and other constituents off of land areas in the watershed. To simulate the loading of water and pollutants from sources not associated with a land area (e.g. sewage treatment plants, regional groundwater recharge, etc.), SWAT allows point source information to be read in at any point along the channel network. The point source loadings may be summarized on a daily, monthly, yearly, or constant basis.

<u>Read the SWAT2012 IO Documentation chapter on measured inputs</u> (keep in mind we accept CSV files instead of spaced .dat files described in the documentation).

Sample data

Please format your files like the samples below. Note: you will need to match the dates to your scenario simulation dates. The files below are only an example.

•	Constant sample 📳
•	Daily sample 🏢
•	Monthly sample 🦉
	789

• Yearly sample 🏢

Uploading guidelines

- You may mix types; for example, you can have one subbasin with constant data, another two with daily, and one with monthly.
- Do not upload more than one type per subbasing
 You do not need to upload data for all subbasins in your project.
- Keep the file names as shown in the samples above.

Upload a zip file of CSV files. For daily, monthly, and yearly point source data, you will have one file for each subbasin in your project. For constant point source data, you will have a single CSV file containing data for each subbasin on a separate row.

Select a zip file to upload

Upload file

Choose File No file chosen

Cancel and go back to s

CUSTOMIZE SWAT INPUT – PRINT VARIABLES

Projects > HUC 8 - 07110001 > Default > Reach, subbasin, and HRU variables to print

User can select up to 20 variables for each of the model output, if none selected all SWA7 output variables will be printed

hawqs@epa.gov

Click through each tab and check specific variables to display in the SWAT output files. All variables are displayed by default (when all boxes are unchecked in a tab).

Reach Subbasin

Check up to 20 reach variables. Check none to print all.

HRU

-	Name	Description
	FLOW_IN	Average daily streamflow into reach (m3/s)
ר	FLOW_OUT	Average daily streamflow out of reach (m3/s)
	EVAP	Average daily loss of water from reach by evaporation (m3/s)
	TLOSS	Average daily loss of water from reach by transmission (m3/s)
	SED_IN	Sediment transported with water into reach (metric tons)
	SED OUT	Sediment transported with water out of reach (metric tons)

CUSTOMIZE SWAT INPUT – PRINT HRUS

Projects > HUC 8 - 07110001 > Default > HRUs to print

Select up to 20 <u>HRU IDs</u> 💵 to print when running SWAT. Select IDs by typing them in the textbox below, separating each ID by a comma (e.g. 1,2,3).

By default, only the first HRU is printed in SWAT output in order to minimize SWAT model run time and output size. Due to the number of HRUs in your project, we cannot print all of them. You will need to reduce your HRUs to 1000 or fewer.

Save changes

Cancel and go back to scenario

Download your HRUs 💵 and use the number written in the **Print ID** column in the text box above.

User can select up to 20 HRUs, if none selected all HRU outputs will be printed

45

Scenario Summary – Run Tasks

When you are done modifying SWAT inputs for a summary, select tasks to run:

Scenario Summary – Output Data

III Scenario Output Data

SWAT 2012 rev. 636 execution results

- Output reach data
- Output summary charts
- Download input.std
- <u>Download output.std</u>

Run SWAT Check to identify potential model problems

Here user can download summary input and output files, view summary charts of hydrology and sediment by month and select to analyze the reach outputs. In addition the SWAT_check program can be run online to diagnose any issues with SWAT model inputs

SWAT OUTPUT ANALYSIS – OUTPUT SUMMARY CHARTS

SWAT OUTPUT ANALYSIS – OUTPUT REACH

Generate charts of SWAT reach output by subbasin. Available statistics are:

- Load/Flow Duration Curve
- Average
- Maximum
- Minimum
- Exceedances
- Percentile

Request reach output	ut	statistics
----------------------	----	------------

Values	Load/Elow Duration Curve	
values.		
riables:	Select all/none	
	✓ FLOW_IN	
	✓ FLOW_OUT	
	EVAP	
	TLOSS	
	SED_IN	
	SED_OUT	
	SEDCONC	
	SEDCONC	
obasins:	SEDCONC	
obasins:	 ■ SEDCONC ■ Select all/none Ø7010101 	
bbasins:	■ SEDCONC ■ OPEN IN Select all/none Ø 07010101 Ø 07010102	
bbasins:	■ SEDCONC ■ OPCN_NI ■ Select all/none ■ 07010101 ■ 07010102 ■ 07010103	
bbasins:	 ■ SEDCONC ■ Select all/none ■ 07010101 ■ 07010102 ■ 07010103 ■ 07010104 	
bbasins:	 ■ SEDCONC ■ Select all/none ■ 07010101 ■ 07010102 ■ 07010103 ■ 07010104 ■ 07010105 	
bbasins:	 ■ SEDCONC ■ Select all/none ■ 07010101 ■ 07010102 ■ 07010103 ■ 07010104 ■ 07010105 ■ 07010106 	
bbasins:	 ■ SEDCONC ■ Select all/none ■ 07010101 ■ 07010102 ■ 07010103 ■ 07010104 ■ 07010105 ■ 07010106 ■ 07010107 	

SWAT OUTPUT ANALYSIS – OUTPUT REACH

2. Process data

Download	CSV of output.rch data This file will include total N and total P concentrations if total N and total P were selected as <u>reach output variables</u> before you ran SWAT.	
Unprocessed	Load/Flow Duration Curve	>
	Variables: FLOW_IN, FLOW_OUT	
	Subbasins: 07010101, 07010102, 07010103, 07010104, 07010105	
	Submitted: 8/5/2016 4:58 AM	

Click the button below to process all items marked unprocessed above.

Receive an email notification when processing is complete?

Process data

hawqs@epa.gov

 $\mathbf{51}$

 $\mathbf{52}$

SWAT OUTPUT ANALYSIS – SWAT Check

SWAT Check reads model output from a SWAT project and performs many simple checks to identify potential model problems. The intended purpose of this program is to identify model problems early in the modeling process

METADATA

Metadata keeps tracks of all inputs and changes in inputs for default and all the scenario runs

Projects > HUC 8 - 01070006 - merrimack > Metadata

This page lists your SWAT input data settings for each scenario in your project.

Watershed		HRUs		
Name	HUC 8 - 01070006 - merrimack	Original number of HRUs	1,302	
Data Resolution	HUC 8	Number of HRUs	823	
Starting HUC ID	Head	Land Use Threshold	1 km ²	
Ending HUC ID	01070006	Soil Type Threshold	1 km ²	
Number of Subbasins	6	Slope Class Threshold	1 km ²	
Project Area	12,968.29 km ²	Land Use Classes Exempted	None	

Scenarios

Scenario Name	Simulation Start Date	Simulation End Date	Set-up/Warm-up Years	Print Setting	Climate Data	
Climate change - cmip5 -hadgcm-85-2070-2100	1/1/2065	12/31/2099	5	Daily	HadGEM2-ES, RCP85, Future data (2006-2099)	
Climate change - cmip5 - rcp85 - esm (Copy)	1/1/2065	12/31/2099	5	Daily	CanESM2, RCP85, Future data (2006-2099)	
Climate change - cmip5 - rcp85 - esm	1/1/2015	12/31/2050	5	Daily	CanESM2, RCP85, Future data (2006-2099)	
Climate change - cmip5	1/1/2015	12/31/2050	5	Daily	HadGEM2-ES, RCP85, Future data (2006-2099)	
Default	1/1/1965	12/31/2000	5	Daily	Actual climate data (default)	/

HAWQS - CALIBRATION

- Monthly calibration for flow, sediment, Total N and P were performed on selected sites at the 8-digit basin for the available data
- The calibrated parameters were extended to other 10 and 12 digit basin scales

• Calibration is a continuous process as more data becomes available and from current and prospective users

USE CASE EXAMPLE: MAUMEE RIVER BASIN

Click the map near the downstream point of your watershed to begin. The map will display the upstream HUCs of your watershed as well as other nearby HUCs.

Create your project

The watershed shown above contains 7 subbasins and 1,892 HRUs from the head of the watershed to HUC 04100009. <u>View watershed</u> routing.

Give your project a unique name:

hawqs@epa.gov

HUC 8 - 04100009

Receive an email notification when the project is set up? (Help me decide)

Advanced

Create project

Data	resolution:
HU	C8
Enter	a downstream HUC:
	Go
Map I	egend
Map I	egend HUC in the watershed
Map I	egend HUC in the watershed Downstream HUC
Map I	HUC in the watershed Downstream HUC HUCs surrounding downstream HUC, but not in the watershed

Disclaimer

Map options

You may find that the total area of a watershed in HUC 8 does not match the area of the watershed in HUC 10 or HUC 12 resolutions. Some of the 10 and 12-digit basins do not flow into the big subbasins because they are closed subbasins; i.e., the rivers do not flow out of the subbasin.

Watershed area still look incorrect? Please <u>submit an error</u> report and we will look into it.

USE CASE EXAMPLE: MAUMEE RIVER BASIN

USE CASE EXAMPLE: MAUMEE RIVER BASIN – SET HRUS

Projects > Maumee River Basin > HRUs

Set threshold levels below to eliminate minor land uses, soils, and slopes in each subbasin. Land uses, soils, or slopes that cover area less than the threshold levels are eliminated.

Set thresholds by: Percentage

Land use threshold:		
	5	%
Soil threshold:		
	5	%
Slope class threshold:		
	5	%

Check the box next to any land use in the table on the right that you would like to exempt from elimination based on your threshold settings above.

Receive an email notification when we're done setting your HRUs? (Help me decide)

Set HRUs

The original total area of your project without a threshold is **17,022.21 km²** over **7** subbasins with <u>1.892</u> III HRUS. The land use is broken down below. See a pie chart of land use area distribution.

Check the box next to any land use in the table below that you would like to exempt from elimination based on your threshold settings above.

Land Use	Area	% of Total Area
CSOY	3,510.93 km ²	20.63 %
SOYC	3,257.30 km ²	19.14 %
SOYB	1,725.28 km ²	10.14 %
FRSD	1,434.63 km ²	8.43 %
URLD	1,326.71 km ²	7.79 %
HAY	1,296.16 km ²	7.61 %
WWHT	871.41 km ²	5.12 %
SYWW	753.23 km ²	4.43 %
URMD	584.56 km ²	3.43 %
WWSY	569.64 km ²	3.35 %

USE CASE EXAMPLE: MAUMEE RIVER BASIN – SET HRUS

Projects > Maumee River Basin > HRUs

Land use distribution comparison

hawqs@epa.gov

		With thresholds applied		Original	Soil Type	
Land Use	Area	% of Total Area	Area	% of Total Area	OH022	4,628.20 km ²
CSOY	4,387.55 km ²	25.78 %	3,510.93 km ²	20.63 %	OH006	2,867.75 km ²
SOYC	4,015.94 km ²	23.59 %	3,257.30 km ²	19.14 %	IN005	1,539.78 km ²
SOYE	2,196.35 km ²	12.90 %	1,725.28 km ²	10.14 %	IN004	1,410.36 km ²
FRSD	1,803.18 km ²	10.59 %	1,434.63 km ²	8.43 %	OH017	1,160.23 km ²
URLD	1,657.15 km ²	9.74 %	1,326.71 km ²	7.79 %	OH009	1,115.83 km ²
HAY	1,277.65 km ²	7.51 %	1,296.16 km ²	7.61 %	OH021	980.76 km ²
WWHI	752.38 km ²	4.42 %	871.41 km ²	5.12 %	OH014	814.39 km ²
SYWW	473.08 km ²	2.78 %	753.23 km ²	4.43 %	OH005	561.81 km ²
URMD	74.02 km ²	0.43 %	584.56 km ²	3.43 %	MI017	515.63 km ²
WWSY			569.64 km ²	3.35 %	MI055	491.93 km ²
CORN			439.55 km ²	2.58 %	OH011	334.02 km ²

Soils and slope classes after applying thresholds

 11.2.1	,					
	Area	% of Total Area	Slope Class		Area	% of Total Area
4,628.20 km ²	27.19 %		0-1	17,022.21 km ²	100.00 %	
2,867.75 km ²	16.85 %					
1,539.78 km ²	9.05 %					
1,410.36 km ²	8.29 %					
1,160.23 km ²	6.82 %					
1,115.83 km ²	6.56 %					
980.76 km ²	5.76 %					
814.39 km ²	4.78 %					
561.81 km ²	3.30 %					
515.63 km ²	3.03 %					
491.93 km ²	2.89 %					
334.02 km ²	1.96 %					

USE CASE EXAMPLE: MAUMEE RIVER BASIN – CREATE DEFAULT (BASELINE) SCENARIO

Default - baseline	±
imulation start date	
01/01/1981	
Simulation end date	
12/31/2000	1
Set-up/warm-up years	
5	
SWAT output print setting	
Monthly	•
SWAT model version to run	

59

USE CASE EXAMPLE: MAUMEE RIVER BASIN – RUN SCENARIO TASKS

	L
Re-write SWAT input files	5/9/2016 3
Re-write SWAT editor tables	5/9/2016 3
Re-run SWAT 2012 rev. 636 (Time estimate)	5/9/2016 3
Re-process SWAT output files	5/9/2016 3
Receive email notifications when tasks complete? (Help me decide) Run selected tasks	
Receive email notifications when tasks complete? (Help me decide) Run selected tasks M Scenario Output Data	
Receive email notifications when tasks complete? (Help me decide) Run selected tasks Mul Scenario Output Data SWAT 2012 rev. 636 execution results	
Receive email notifications when tasks complete? (Help me decide) Run selected tasks Lul Scenario Output Data SWAT 2012 rev. 636 execution results Output reach data	
Receive email notifications when tasks complete? (Help me decide) Run selected tasks Mul Scenario Output Data SWAT 2012 rev. 636 execution results Output reach data Output summary charts Devendend issue atd	

USE CASE EXAMPLE: MAUMEE RIVER BASIN – VISUALIZING OUTPUT

Request reach	output statistics	2. Process dat	3
Your changes he	ave been saved. Your new request is listed under 2. Process data.	Download	CSV of output.rch data This file will include total N and total P concentrations if total N and total P were selected as <u>reach output variables</u> before you ran SWA
ou selected month kceedance calcula	hly output in your project settings, so some statistics are unavailable to you, including percentile and stions. <u>Change your settings</u> to daily output and re-run SWAT to get these features.	Unprocessed	Load/Flow Duration Curve Variables: FLOW_OUT Subbasins: 04100009 Submitted: 5/10/2016 3:51 PM
Values:	Load/Flow Duration Curve *	Click the button be	Now to process all items marked unprocessed above.
Variables:	Select all/none	Receive an email	ill notification when processing is complete?
	FLOW_IN	Process data	
	ELOW_OUT		
	EVAP		
	III TLOSS		
	© SED_IN		
	SED_OUT		
	B SEDCONC		
	- II. ODCN 20		
Subbasins:	Select all/none		
	₩ 04100003		
	₿ 04100004		
	B 04100005		
	iii 04100006		
	04100007		
	04100008		
	04100009		

USE CASE EXAMPLE: MAUMEE RIVER BASIN – CLIMATE CHANGE SCENARIO

By default, the system uses actu	al climate data. Using the form below you may change your model to use downscaled global climate mo	del simulatio
(CMIP), developed by <u>The Nature</u>	e Conservancy for The World Bank.	
You last saved changes to you	ur climate change scenario 6/16/2016 11:58 AM.	
Select a climate model:		
CCCMA CGCM3.1		
Select a time series:		
Future data (2081-2100)		
Select a scenario:		
SRES A1B	on dates. Currently your simulation is set to run from 1/1/1981 to 12/31/2000 with 5 years of warm-up.	Your simula
SRES A1B Update your SWAT simulation dates need to fall within the ti	on dates. Currently your simulation is set to run from 1/1/1981 to 12/31/2000 with 5 years of warm-up. ime period selected above; if needed, please select new dates below.	Your simula
SRES A1B Update your SWAT simulation dates need to fall within the ti Simulation start date 01/01/2081	on dates. Currently your simulation is set to run from 1/1/1981 to 12/31/2000 with 5 years of warm-up. ime period selected above; if needed, please select new dates below.	Your simula
SRES A1B Update your SWAT simulation dates need to fall within the till Simulation start date 01/01/2081 Simulation end date	on dates. Currently your simulation is set to run from 1/1/1981 to 12/31/2000 with 5 years of warm-up. ime period selected above; if needed, please select new dates below.	Your simula
SRES A1B Update your SWAT simulation dates need to fall within the ti Simulation start date 01/01/2081 Simulation end date 12/31/2100	on dates. Currently your simulation is set to run from 1/1/1981 to 12/31/2000 with 5 years of warm-up. ime period selected above; if needed, please select new dates below.	Your simulat
SRES A1B Update your SWAT simulation dates need to fall within the ti Simulation start date 01/01/2081 Simulation end date 12/31/2100 Set-up/warm-up years	on dates. Currently your simulation is set to run from 1/1/1981 to 12/31/2000 with 5 years of warm-up. ime period selected above; if needed, please select new dates below.	Your simulat
SRES A1B Update your SWAT simulation dates need to fall within the till Simulation start date 01/01/2081 Simulation end date 12/31/2100 Set-up/warm-up years 5	on dates. Currently your simulation is set to run from 1/1/1981 to 12/31/2000 with 5 years of warm-up. ime period selected above; if needed, please select new dates below.	Your simul

USE CASE EXAMPLE: MAUMEE RIVER BASIN – VISUALIZING OUTPUT

USE CASE EXAMPLE: MAUMEE RIVER BASIN – VISUALIZING OUTPUT

hawqs@epa.gov

HAWQS - NEXT STEPS

- Identify and engage prospective users of HAWQS;
- Further enhance HAWQS interfaces;
- Improve output visualization tools including mapping the results, comparing multiple scenarios for a project;
- Enhance project-level sharing and collaboration;
- Add CMIP5 climate change models and scenarios;
- Improve water temperature model;
- Selectively update and analyze input data (e.g., atmospheric deposition and point sources)
- Improve agricultural inputs such as SSURGO soils and crop management
- Enhance uncertainty analysis on model outputs stemming from model input parameters.

POLL QUESTION #4

• Based on what you know about HAWQS now, do you envision using HAWQS to support any current or future water quality modeling work?

- Yes
- No
- Maybe
- Do not know at this time

QUESTIONS

hawqs@epa.gov