

Chemical Phase II/V Rules

0.000

Key Requirements, Maintaining Compliance, Best Sampling Practices, and Resources

Kendra Morrison April 30, 2019

Chemical Phase II/V Rules

Establish MCLs for 65 chemical contaminants:

- Inorganic chemicals (IOCs) [40 CFR 141.23]
- Volatile organic chemicals (VOCs) [40 CFR 141.24(f)]
- Synthetic organic chemicals (SOCs) [40 CFR 141.24(h)]

<u>Chronic contaminants</u>, except for nitrate, which is an acute contaminant.

Applicability:

- Community water systems (CWS)
- Non-transient non-community water systems (NTNC)

Sample?

Entry point to the distribution system, representative of each source after treatment, but prior to the first customer.

Chain of Custody? Facility ID and

Sample Point ID

15 Inorganic Chemicals (IOCs)

- Mineral-based compounds; typically do not contain carbon
- Sources: natural occurrence, farming practices, industrial processes, and other human activities

Inorganics Antimony Arsenic **Asbestos Barium** Beryllium Cadmium Chromium Cyanide **Fluoride** Mercury Nickel Nitrate and Nitrite Selenium **Sodium** Thallium

21 Volatile Organic Compounds (VOCs)

- VOCs contain carbon and volatilize (vaporize) readily into the atmosphere
- Sources: improper waste disposal and leaking

underground storage tanks

Volatile Organics		
1,1,1-Trichloroethane	Ethylbenzene	
1,1,2-Trichloroethane	o-Dichlorobenzene	
1,2,4-Trichlorobenzene	p-Dichlorobenzene	
1,2-Dichloroethane	Styrene	
1,2-Dichloropropane	Tetrachloroethylene	
Benzene	Toluene	
Carbon Tetrachloride	Total Xylenes	
Chlorobenzene	Trans-1,2- Dichloroethylene	
Cis-1,2-Dichloroethylene	Trichloroethylene	
Dichloroethene	Vinyl Chloride	
Dichloromethane		

0.0 Co⁶⁶⁰⁶Co

28 Synthetic Organic Chemicals (SOCs)

- Synthesized (man-made) from carbon and other elements like hydrogen, nitrogen, or chlorine; they do <u>not</u> occur naturally
- Sources: used as pesticides, herbicides, defoliants, and fuel additives and can enter water through runoff, industrial waste discharges, improper disposal of chemicals, and

accidental releases

Synthetic Organic Chemicals (SOCs)

Synthetic Organics			
2,4,5-TP (Silvex)	Dibromochloro- propane	Hexachlorobenzene	
2,4-D	Dinoseb	Hexachlorocyclo- pentadiene	
Alachlor (Lasso)	Dioxin	Lindane	
Atrazine	Diquat PESTIC	Methoxychlor	
Benzo(a)pyrene	Endothall	Oxamyl (Vydate)	
Bis(2-ethylhexyl) Adipate	Endrin	Polychlorinated Biphenyls (PCBs)	
Bis(2-ethylhexyl) Phthalate	Ethylene Dibromide	Pentachlorophenol	
Carbofuran	Glyphosate	Picloram	
Chlordane	Heptachlor	Simazine	
Dalapon	Heptachlor Epoxide	Toxaphene	

Chronic Health Effects

- IOCs can cause cancer, organ damage, and circulatory, nervous and reproductive system disorders
- VOCs may cause central nervous system damage, kidney or liver disease, and respiratory tract irritation; some are carcinogens or possible carcinogens
- SOCs may cause injury to lungs, liver, or kidneys, reproductive difficulties, genetic mutation or fetal deformity, or cancer

Chemical Monitoring Requirements

IOCs (except asbestos) - Based on **source water type**

02 - CO²⁰⁰ 00 - 00

- Groundwater sample once every 3 years (triennial)
- Surface water sample annually

<u>VOCs</u> – Based on source water type

Groundwater - sample annually; after 3 years of

non-detects, EPA may allow sampling once every 3 yearsSurface water - sample annually

SOCs – Based on **population served**

- ≤ 3,300 persons sample once every 3 years
- > 3,300 persons sample twice in one year during each 3year compliance period (in 2 different quarters)

Asbestos Monitoring Requirements

New Water System or New Water Supply -

• Collect single sample at the entry point to the distribution system representative of the source after treatment

Presence of Asbestos Cement (AC) Pipe -

- Systems with AC pipe are required to monitor for asbestos during the first 3-years of each 9-year compliance cycle
- Sample is collected in the distribution system at a location served by the AC pipe

New Water System or New Water Source Monitoring Requirements

10.5° Co2000 200

IOCs (except asbestos)

• Sample in the 1st quarter of the 3-year monitoring schedule

<u>Asbestos</u>

• Single sample representative of the source after treatment

VOCs

• Sample 4 consecutive quarters

<u>SOCs</u>

• Sample 4 consecutive quarters

Triggers for Increased Monitoring

IOCs and Asbestos

- Trigger = exceed MCL
 - ► No violation assessed
 - Increase to quarterly monitoring in the quarter following the exceedance for that inorganic

Concerto Concerto

VOCs

- Trigger = exceed federal method detection limit 0.5 μg/L
 Increase to quarterly monitoring in the quarter following
 - the exceedance for that chemical
- Trigger = exceed MCL
 - ► No violation assessed
 - Increase to quarterly monitoring in the quarter following the exceedance for that chemical

Triggers for Increased Monitoring

<u>SOCs</u>

 Trigger = equal or exceed federal method detection limits (varies)

CO-000000

- Increase to quarterly monitoring in the quarter following the exceedance for that chemical
- Trigger = exceed the MCL
 - ► No violation assessed
 - Increase to quarterly monitoring in the quarter following the exceedance for that chemical

All Chemicals (IOCs, VOCs, SOCs)

- GW systems must monitor at least 2 quarters
- SW systems must monitor at least 4 quarters following increased monitoring.

How is Compliance Determined and What Can Happen?

 In general, compliance is based on the running annual average (RAA) of the concentration of a contaminant that is on increased monitoring

 i.e. RAA for 4 quarters of data

- If the public water system has a RAA > MCL, EPA will issue a notice of violation (NOV) letter
- EPA will also issue a notice of violation for failures to monitor

Determinations for Reducing Monitoring

A public water system can only return to routine monitoring when EPA determines that the concentrations are **reliably and consistently (R&C) below the corresponding MCLs**.

- Determined on a case-by-case basis
- GW systems must monitor at least 2 quarters and SW systems must monitor at least 4 quarters
- EPA may also consider the following factors: quality of data, amount of data, length of monitoring, variations in sample results, variations in the RAA
 - At a minimum, the results or RAA must be less than half the MCL to obtain an R&C determination

Importance of Best Sampling Practices

 Make sure you do <u>not</u> handle chemicals before sampling, or store chemicals like gasoline, pesticides, oils, etc. near the sampling location = POTENTIAL FOR CROSS CONTAMINATION

- EPA may ask for confirmation samples if a detection is suspicious
- EPA will also review laboratory quality assurance/ quality control data to verify the validity of suspicious results

Case Examples:

- Pesticides detections
- Total xylenes detections
- Di(2-ethylhexyl) phthalate detections

DC

Importance of Best Sampling Practices

• Plastic, clear glass, or amber glass bottles will be used for chemical sampling.

- Check with the lab and follow instructions.
 - VOCs require the absence of air space in VOA (volatile organic analysis) glass bottles
- If the bottle contains a preservative, **do not rinse** the bottle.
- Wear gloves and eye protection when handling acids and other preservatives
- Ship samples to the lab as instructed as soon as they are collected.
 - Delays may necessitate re-sampling due to sample holding times being exceeded during storage and shipment.

What's Next?

 The Phase II/V rules are not currently scheduled for review or revision

- EPA has a regulatory process that determines whether a contaminant will be regulated or not

 Unregulated Contaminant Monitoring Rule (UCMR)
- Perchlorate (CIO4-) is currently the only chemical for which a new drinking water standard may be developed.
 Public notice will be issued at the end of May.

Contact Information and Additional Resources

Kendra Morrison Chemical Phase II/V Rule Manager (303) 312-6145 <u>morrison.kendra@epa.gov</u>

 List of regulated chemicals and other useful information: <u>https://www.epa.gov/region8-waterops</u>

 EPA's website on the chemical rules: <u>https://www.epa.gov/dwreginfo/chemical-contaminant-rules</u>

 Quick Guide to Drinking Water Sample Collection (September 2016)