

Background

Researchers from the United States Environmental Protection Agency (USEPA), Konza Prairie Biological Station (KPBS), and Kansas State University conducted a prescribed burn study focusing on smoke plume dynamics and chemistry in the Flint Hills region (KR_x) during March 13-22, 2017. KPBS (39°05' N, 96°35' W) is a 3,487 ha native tallgrass prairie preserve (*http://kpbs.konza.k-state.edu/*). Plumes were observed using Ceilometers (CL-51) and a scanning Mini Micro Pulse Lidar (MiniMPL) for 17 tall Prairie grass plots <300 acres (121 ha), the total area burned ~1500 acres (607 ha). Potential uses for the data: characterizing plumes from small fires, evaluating air quality models, and development of plume rise algorithms.

Figure 1. 2017 Burn Plan from KPBS website <u>http://kpbs.konza.k-state.edu/</u> indicated in red are the burn dates for each field. The grey areas are all burns planned for 2017.

Burn id	Burn Site	Date	Area Burned (acres)
K1	Nature Trail	15-Mar-17	-
K2	Below Ground plots	15-Mar-17	-
КЗ	Ramp plots	15-Mar-17	-
K4	HQA	15-Mar-17	31
К5	HQB	15-Mar-17	37
K6	A3	15-Mar-17	13
К7	HQC	15-Mar-17	43
K8	Top half N1A	16-Mar-17	84
К9	K20A	16-Mar-17	205
K10	N2B	20-Mar-17	294
K11	N4D	20-Mar-17	335
K12	N1B	20-Mar-17	299
K13	N1A bottom half	20-Mar-17	148

Experimental Design

The initial study design: 1. Capture fire smoke plumes and 2. Study the mixed layer height.

To capture smoke plumes we deployed the MiniMPL perpendicular to the mean wind direction ~500 m from the center of the prescribed burn field. The scanning pattern is set between 0-40° elevation (Θ) at 2-10° steps and at azimuth (ϕ) of 0-90° at 10-45° steps. To compare with air quality models, we record a full field scan at least every 15 min using 5-15s averaging bins. *The mixed layer height (MLH) was measured with the MiniMPL using daily 30 min vertical scans and

constant vertical scans from the CL-51 (36 sec averaging bins, for both).

Example MiniMPL Scanning Scenario for a Prescribed burn used March 15, 2017

At a deployment distance from the fire of 500 m using 15 s averaging bins with 0-12° elevation (Θ) at 3° steps and 3 azimuth angles (ϕ) (-5, 0, 5), where 0° = North.

The time of a full field scan is calculated as such:

Field scan time (ρ_{T}) = 15s * Θ_{T} (x 5 angles) * ϕ_{T} (x 3 angles) = 225 s (3.75 min) This scan scenario allows for 16 field scans per hour.

> **U.S. Environmental Protection Agency** Office of Research and Development

Table 1. Specific prescribed burns during KRX March 2017

Prescribed Grassland Smoke Plume Observations Using Lidar in the Northern Flint Hills Region Joseph L. Wilkins¹, Kirk Baker², Matthew Landis¹, Johanna Aurell^{1,3}, Brian Gullett¹

¹ Office of Research and Development, USEPA, Research Triangle Park, NC 27711 ² Office of Air Quality Planning and Standards, USEPA, Research Triangle Park, NC 27711 ³ University of Dayton Research Institute, UDRI

Konza Prairie Biological Station Prescribed Burn (KR_x)

Lidar Experiment Instrumentation

During KR_x, Lidars are used to investigate prescribed burns in the Flint Hills. Yearly burns are used to maintain the 1.6 million acres of ecosystem and cattle grazing land. Observations assist modeling limitations: steep terrain, small fire sizes, on short time scales, and missed detections.

Figure 2. A MiniMPL (left) and a CL-51 ceilometer (right) placed near a burn site. Lidars are placed next to each other scanning vertically to cross validate data and to measure the mixed layer height. The accumulation time for each instrument differs so for comparison a 36s average bin for backscatter data is used.

Determining the Lidar Relative Plume Height

Images of smoke taken from the MiniMPL's location for each prescribed burn

15Mar17 K1-K3 1:34pm

16Mar17 K8 11:31am

Time

Start time	End time	
1:34pm	1:58pm	
1:34pm	1:58pm	
1:34pm	1:58pm	
2:11pm	3:05pm	
2:41pm	3:28pm	
2:41pm	3:28pm	
3:47pm	5:30pm	
10:52am	12:43pm	
12:55pm	2:30pm	
10:44am	2:20pm	
~	2:20pm	
~	2:20pm	
~	2:20pm	

Accumulation time (Averaging BIN) The MiniMPL takes an observation using light, every 1s, a signal is sent out and received back. To reduce noise the mean or averaging bin of 5-36s are used.

			Sigma Space Mini MPL 1 st GEN	Vaisala CL-51
		Range resolution	30 m	10 m
	nce	Minimum range	150 m	5 m
	ma	Accumulation time	1 sec – 15 min	6-160 s
	for	Detection range	Up to 10 km	Up to 15 km
	Per	Scanning	Yes	Vertical or 12° titled
	S	Laser wavelength	532 nm	910 nm
) ptic	Laser pulse energy	3-4 μJ @ 2500 Hz	6500 Hz
	0	Detector	Fiber coupled	InGaAs diode
	C D	Size (mm)	380 x 305 x 480	834 x 266 x 264
	esig	Weight	13 kg	18.6 kg
	Ď	Power requirement	100 W	310 W

15Mar17 K4-K5 2:48pm

15Mar17 K7 4:06 pm

16Mar17 K9 1:15pm

20Mar17 K10-K13 11:36pm

Visualizing the plume from the MiniMPL

Figure 3. The Relative plume height is interpreted from the MiniMPL backscatter (on March 15). The range indicates distance from Lidar to particle. (Top) particle counts, the lighter the color the higher the intensity of backscatter, with white being off scale.

(Bottom) depolarization ratio, used to determine particle types. Smoke is indicated by yellow and red; white is underdetermined by the software

Max Plume height 461m above surface detected @ 15° elevation (O) and azimuth $(\phi) 0^{\circ}$, range 1.56 km from LiDAR.

MiniMPL CO Pol

Hour of Day (local UTC -5)

Figure 4. *MiniMPL (top) and a CL-51 ceilometer (bottom) side-by-side* vertical scanning pattern weekend analysis. A 36s averaging bins for the MiniMPL was used to compare with preset CL-51 bins to study the mixed layer height (MLH). Modeling the correct MLH (lower 1-4 km) is critical for improvement of transport chemistry and plume height determination. Both instruments capture very little smoke outside of the relative MLH (CL-51 MLH indicated with black dots) indicating that pollution in the area typically stays in the MLH.

With this experiment being the first to use a scanning MiniMPL during a prescribed burn, we propose that with further refinement and field experience, the MiniMPL may be able to provide useful information on near source plume mapping in future studies. These studies would be useful in evaluating mixed layer heights and plume rise for different fuel types in order to improve model parametrization.

<u>Acknowledgements</u>: We would like to recognize the USEPA Region 7 Office for help provided in collecting data. The EPA NEIC office for loaning the MiniMPL and Sigma Space for training on the MiniMPL. Fire burn Manager Patrick O'Neil and KPBS along with the many workers/volunteers. A special thanks to Jim Szykman for providing the ceilometers and backscatter plots.

0000-0003-1888-787X

Joseph L. Wilkins, PhD I wilkins.joseph@epa.gov

CL-51 and MiniMPL MLH comparison

Six minute averaged Lidar mixed layer height (MLH) scans 18 MAR 2017 (Saturday) **19 MAR 2017 (Sunday)**

MiniMPL CO Pol

Hour of Day (local UTC -5)

Preliminary Results/Future Work

• Our initial study design was too slow and included scan angles that were too steep. Individual plumes were discernable from only 5-30 minutes, and were often missed by the scanning Lidar.

• Ideally scanning patterns should only extend slightly above the MLH unless weather conditions are supportive or large enough acres burned.

• For this study, a vertical slicing pattern perpendicular to the mean wind flow was the best position for Lidar measurements., with the preferred downwind distance being ~500 m.

• Scanning patterns had to be created "on-the-fly" based on burn orientation and meteorology.

• Preliminary results suggest that plume tops were less than ~0.7 km and remained trapped in the lower mixed layer (~1 km), unless more than 80 acres burned.

• Mixed layer heights estimated with the MiniMPL showed decent agreement with the CL-51, with the MiniMPL ~100 m lower than the CL-51.