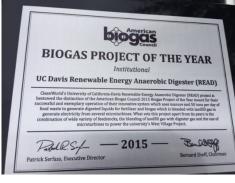


Digestate Alone and With CompostDesigning for Specific End Uses

Ruihong Zhang, PhD, Professor Biological and Agricultural Engineering Department University of California, Davis

California Bioresources Alliance 2017 Symposium November 2, 2017

Presentation Outline


- UC Davis Renewable Energy Anaerobic Digester (READ)
- Need to create values for digestate
- Benefits of digestate to composting
- UC Davis research in transforming digestate into biofertilizer products

UC Davis Renewable Energy Anaerobic Digester

- Treats 20,000 tons per year of mixed organic wastes
- Combines biogas and landfill gas to generate 5.6 GWh electricity per year
- Partnership between CleanWorld, UC Davis, U. S. Department of Energy and the California Energy Commission

Completed in January 2014

UC Davis Renewable Energy Anaerobic Digester Powers Campus with Food and Farm Waste

Digester Feedstock: Food Waste

Example Feedstock Characteristics					
Feedstock	No. of Sample Collected	TS (%, w.b.)	VS (%, w.b.)	VS/TS (%)	
UC Davis food waste	29	33.0±18.6	29.6±16.6	90.3±5.0	
Commercial food waste	6	31.5±3.6	27.9±2.8	88.8±4.5	
Mouse bedding	11	85.0±9.6	79.3±8.2	93.3±0.8	
Produce food waste	6	12.6±0.9	11.3±0.7	90.2±2.4	
Ice cream waste	5	44.5±8.4	43.4±8.1	97.6±0.4	
Tomato waste	6	7.3±0.5	6.6±0.5	89.7±1.9	
Animal feed	1	89.6	81.5	91.0	
Senior gleaners	4	33.7±1.3	31.3±1.1	93.1±1.6	
Municipal organic solid waste	5	34.7±1.3	31.2±0.9	89.9±0.9	
Folsom prison waste	3	22.7±1.6	21.7±1.7	95.4±0.5	

Example Foodstock Characteristics

Feedstock Loading

Digestate Management

About 6000-7000 gallons of liquid digestate are produced each day. Digestate has been given to farms and agricultural material facilities at a cost of over 10 cents per gallon.

Value Proposition of Digestate

- Contains nutrients and microbes
- Has compounds that promote plant growth and has disease suppression potential

Benefits of Digestate for Composting Operations

- Digestate is a good water and nutrient source for compositing operation.
- Mixing digestate with organic feedstock can increase composting rate due to higher nutrient contents.
- Composting increases the maturity and stability of digestate.

Desired Properties for Digestate Derived Fertilizer Products

- Known, consistent and stable physical, chemical and biological properties
- Sufficiently high nutrient contents (>2% nitrogen)
- Easy to transport, store and apply

Liquid Drip Irrigation

Slurry Injection

Solids Spreader ¹¹

UC Davis Research On Transforming Digestate into Biofertilizer Products

- Developed digestate treatment technologies for producing concentrated liquid and solid fertilizer products from digestates
- Tested biofertilizers products for vegetable and corn production

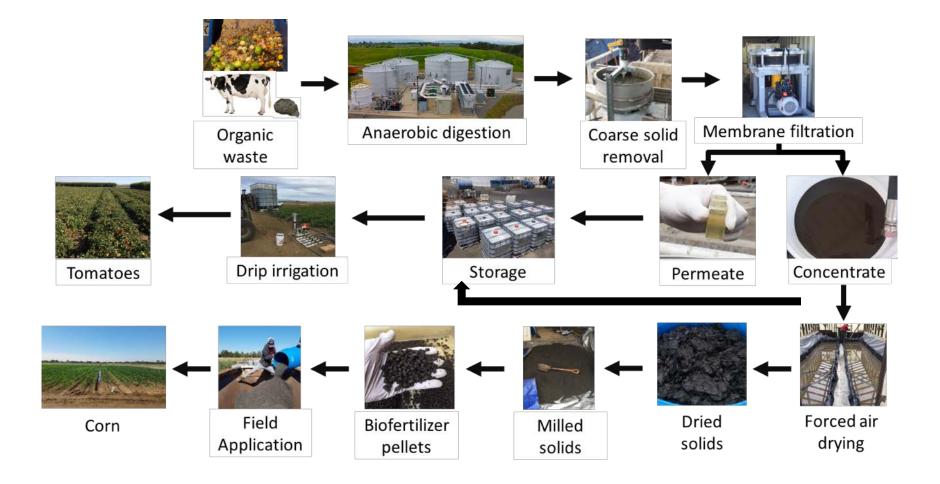
Digesters in Study

UC Davis Renewable Energy Anaerobic Digester (READ)

- Thermophilic High Solids Digestion technology
- Treats 20,000 tons per year of mixed organic wastes
- Combines biogas and landfill gas to generate
 5.6 GWh electricity per year
- Operational since the beginning of 2014

Dairy Manure Digester

- Mesophilic Completely Mixed Digester
- Treats scraped dairy manure from ~1,200 cows (144,000 wet lbs per day)
- Generates 1.94 GWh electricity per year
- Operational since the beginning of 2013



UC Davis READ Food Waste Digester

Dairy Manure Digester

Digestate Processing and Land Application

Raw Digestate Characteristics

Parameter (mg/L)	Dairy manure digestate			
TS	37,000	50,0000		
EC (dS/m)	14.4	22.4		
TKN	2,142	4,037		
NH₄-N	1,075	2,286		
Р	422	490		
PO₄-P	12.3	52.1		
CI	1,397	1,379		
K	2,180	1,692		
Ca	879	887		
Mg	571	266		
Na	522	958		

Liquid Biofertilizer Composition

	Liquid Products (<i>mg/L</i>)				
Parameter	Ultrafiltered	Ultrafiltered	Concentrated	Concentrated	
	Food Waste	Dairy Manure	Food Waste	Dairy Manure	
	Digestate	Digestate	Digestate	Digestate	
TS (% wb)	0.9	0.59	5.6	6.8	
TKN	2302	1226	5796	4228	
NH ₄ -N	2164	1139	3133	1624	
P	15	4	491	385	
К	1303	1563	1126	1570	
Na	1040	383	768	354	
Са	52	31	851	763	
Mg	45	213	129	432	

Testing Liquid Fertilizer Products for Growing Tomato

Field experimental design

- 1 acre plot
- 1050 ft² rows
- 4 rows/treatment (randomized)
- Fertilizer application 180 lb N/acre

5 treatment conditions

- 2 controls:
 - No fertilizer
 - Synthetic commercial fertilizer (UAN 32)
- Ultrafiltered Dairy Manure Digestate
- Concentrated Dairy Manure Digestate
- Concentrated Food Waste Digestate

Russell Ranch Sustainable Agriculture Facility Home of the Century Experiment

A PROGRAM OF THE AGRICULTURAL SUSTAINABILITY INSTITUTE

UC DAVIS COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCE

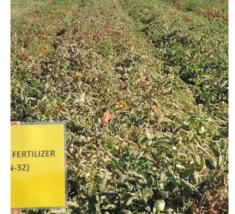
Tomato Harvesting and Measurement

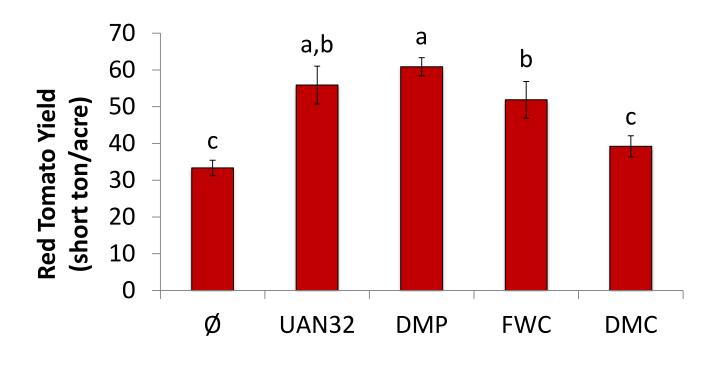
Analyses Biomass yields (fruit and plant)

Tomato Quality (color, moisture, brix, pH, size)

Plant Comparison

Ultrafiltered Dairy Manure Digestate


Concentrated Food Waste Digestate


No Fertilizer

Synthetic Fertilizer

Red Tomato Yield

Φ – No Fertilizer
 UAN32 - Synthetic Fertilizer
 DMP – Ultrafiltered Dairy Manure Digestate
 FWC – Concentrated Food Waste Digestate
 DMC – Concentrated Dairy Manure Digestate

Conclusions from Tomato Field Testing

 Compared to synthetic fertilizers, biofertilizers resulted in similar or better yields of red tomatoes, less sunburnt tomatoes, and higher yield of soluble solids in tomatoes.

Testing Solid Fertilizer Products for Growing Corn

Type: Short season corn

Size: $3,150 \text{ ft}^2 \text{ microplots x 3 replicates}$

9,450 ft² total or 0.22 acres/trt

Irrigation: Flood irrigation

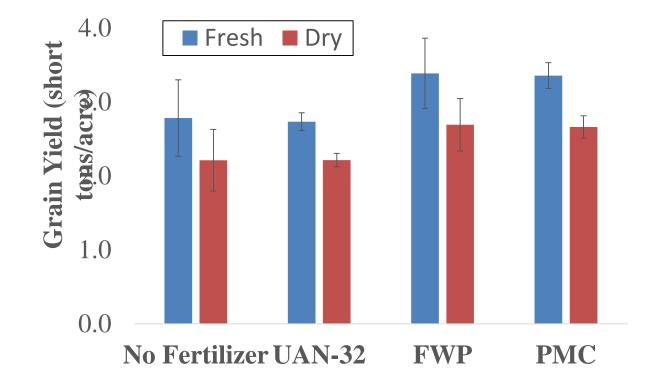
Nitrogen Rate: 210 lbs N/acre

Treatments

- 1) No fertilizer (negative control),
- 2) Synthetic/mineral, UAN-32
 - 32% Nitrogen product
 - Urea (16%), Ammonium-Nitrate (16%)
 - 11.08 lbs/gal; 3.55 lbs N/gal
- 3) Composted Poultry manure
- 4) Food Waste Digestate Pellets

Food waste digestate pellet composition

Parameter	Food Waste Pellet ¹
Moisture Content	8.98
Total Nitrogen	4.99
Carbon	37.76
Phosphorus	1.75
Potassium	2.67
Sodium	1.29
Calcium	4.04
Magnesium	0.41


¹Values as % wet basis

Corn Harvesting

Corn Yield Results: Fresh & Dry grain

FWP = Food waste pellets; PMC = Poultry Manure compost;
UAN-32 = urea ammonium nitrate; No fertilizer = no fertilizer applied

Outlook of Digestate and Compost

- A potentially large number of new fertilizer and soil amendment materials can be derived from digestate and compost.
- Growing demand for organic fertilizers for farms and gardens and need to replace conventional fertilizers on non-livestock farms will continue to create new markets.
- Integration of anaerobic digesters and composters will increase Bioproducts' portfolio.

Acknowledgements

Project Sponsors

California Department of Food and Agriculture

Central Valley Regional Water Quality Control Board

Researchers at UC Davis

Biological and Agricultural Engineering Department

 Ruihong Zhang, Hossein Edalati, Tyler Barzee, Hamed El Mashad, Tanner Garrett, Brandon Roosenboom, Ashwin Bala, Yutao Liu

Sustainable Agricultural Institute

• Kate Scow, Emma Torbert, Bibiana Molinos

Collaborators

CleanWorld: Josh Rapport, Caleb Adams, Michele Wong New Hope Dairy and CalBio: Arlin Van Groningen, Arlan Van Leeuwen, Ross Buckenham Sacramento Municipal Utility District: Valentino Tiangco