

County-level Gridded Livestock Methane Emissions for the Contiguous United States

Alexander N. Hristov, Michael Harper, Robert Meinen, Rick Day, Juliana Lopes, Troy Ott, Aranya Venkatesh, and Cynthia A. Randles The Pennsylvania State University and ExxonMobil Research and Engineering

USEPA Emissions Inventory Conference August 14-18, 2017

Global methane inventories

1. Is this a real growth? 2. $CH_4 + \cdot OH \rightarrow \cdot CH_3 + H_2O$

Q1: Our approach indicates that significant OH-related uncertainties in the CH₄ budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH₄ emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.

Rigby et al., 2017 (PNAS)

3. If the growth is real, what is causing it?

Global methane inventories

Schwietzke et al., 2016 (Nature)

.....the recent temporal increases in microbial emissions have been substantially larger (than from fossil fuel)

Schaefer et al., 2016 (Science)

.....Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands

How reliable are the isotope data?

Turner et al., 2017 (PNAS)

atmospheric methane since 2007

Wang et al., 2016 (Science)

We have to consider how these predictions agree with global livestock population trends

Trends in global fossil fuel production, 2006 - 2015

US methane accounting controversy

			40 to	90% higher	
Table 1. U.S. Fluxes of	Methane in 2004 [Tg a $^{-1}$]		tha	n USEPA's	
Source Type	EPA [2013] ^a	EDGAR v4.2 ^b	Miller et al. [stimates	rk ^d
Total			47.2±1.9	37.0 ± 1	1.4
Anthropogenic	28.3 (24.6, 32.3)	25.8	44.5±1.9	30.1 ± 1	.3
Livestock	8.8 (7.7, 10.4)	8.5	16.9 ± 6.7	12.2 ± 1	.3
Natural Gas and Oil	9.0 (7.2, 13.4)	6.3		7.2 ± 0	.6
Landfills	5.4 (2.5, 7.9)	5.3		5.8 ± 0.1	.3
Coal Mining	2.7 (2.3, 3.2)	3.9		2.4 ± 0.1	.3

SANG

Livestock methane emissions in the United States

The recent study by Miller et al. (1) provides a comprehensive, quantitative analysis of anthropogenic methane sources in the United States using atmospheric methane observations, spatial datasets, and a high-resolution atmospheric transport model. The authors conclude that "...emissions due to rumi-

beef and dairy cattle requirements and ranged from 3.8 (calves < 500 lbs live weight), to 9–10 (cattle on feed or other steers and heifers > 500 lbs), 11 (beef cows), and 22 kg/d (dairy cows). Methane production rates were estimated at 8–13 (cattle on feed) or 20 g/kg (all other cate-

be unsubstantiated by the above "bottomup" approach. There is a need for a detailed inventory of manure systems for all farm animal species and categories, which will help to more accurately estimate greenhouse gas (and ammonia) emissions from animal manure in the United States.

USDA-NASS, 2017

US cattle population trends

Objectives

- There is a need for spatially-accurate emission inventories for non-CO₂ GHG emissions
- Using a bottom-up approach, estimate livestock (cattle, swine, and poultry) methane emissions in the contiguous United States
- Develop a spatially-explicit, gridded (0.1° x 0.1°) methane emissions inventory and maps for the livestock sector
- Compare this bottom-up analysis with other existing gridded inventories (Maasakkers et al., 2016 and EDGAR)

Inventory development process: enteric

Methane emissions from enteric fermentation (Gg/yr) = Feed dry matter intake (DMI; kg/head/d) × methane emission factor (g/kg DMI) × 365 (d/yr) × county animal population by animal category (head)

Cattle: database includes estimates for 3,063 counties **Swine and poultry**: databases included 469 and 728 counties, respectively

GLOBAL NETWORK individual animal database (>5,200 individual dairy cow data)

Less complex models requiring only DMI, or DMI plus NDF had predictive ability similar to more complex models

Niu et al., in preparation

The Feed and Nutrition Network

Global Research Alliance on Agricultural GHG **ALLIANCE COUNCIL RESEARCH GROUPS** PADDY RICE LIVESTOCK CROPLANDS *= • He . **INTEGRATIVE RESEARCH GROUP** ◆ ※ **ALLIANCE SECRETARIAT** Livestock Research Group Current Building research capability landscape Policy suppor Good practice & links to quidance & international nethodologies initiatives Research Collaborativ networks & research databases

International collaboration in database development: THE GLOBAL NETWORK PROJECT

> Research Networks, including FNN

Enteric CH₄ Production Models

	Model Developr	Model Performance	
Level	Model	Predictor	RMSPE, %
1	GEI Level	GEI	15.8
2	DMI Level	DMI	15.6
3	DMI & NDF Level	DMI, NDF	14.5
Λ	DML & FE Loval	DMI EE	15.8

Conclusion: simpler models had predictive ability close to complex models

	_	_	
0			10.7
9	Performance	ECM, MP	17.7
10	Animal Level	DMI, EE, NDF, MF, BW	14.5
11	Animal without DMI Level	EE, NDF, MP, ECM, BW	16.3
-	IPCC, 2006	GEI	16.1
-	IPCC, 1997	GEI	16.6

Niu et al., in preparation

Dry matter intake estimation

-Equations used to estimate dry matter (DMI) or Net Energy of Maintenance (NE_m) intakes for various categories of cattle

Cattle category ^a	DMI (kg/head/d) or NE _m intake (Mcal/head/d) equations ^b	Source
Beef cows	$DMI = SBW^{0.75} \times (0.0194 + 0.0545 \times NE_m)$	NRC ^{2,3}
Dairy cows		
Dry cows	DMI = 0.0968 × BW ^{0.75}	NRC ⁴
Lactating cows ^c	DMI = 0.372 × FCM + 0.0968 × BW ^{0.75}	NRC ⁴
Bulls	$DMI = 0.0968 \times BW^{0.75}$	NRC ⁴
Beef replacement heifers	NE_{m} intake = $BW^{0.75} \times (0.2435 \times NE_{m} - 0.0466 \times NE_{m}^{2} - 0.1128) \div NE_{m}$	NRC ³
Dairy replacement heifers ^d	$DMI = BW^{0.75} \times (0.2435 \times NE_m - 0.0466 \times NE_m^2 - 0.1128) \div NE_m$	NRC ⁴
Cattle on feed	$DMI = [BW^{0.75} \times (0.2453 \times NE_{m} - 0.0466 \times NE_{m}^{2} - 0.0869)] \div NE_{m}$	NRC⁵
Heifer and steers (>500 lbs or 227 kg live weight) ^e	NE_{m} intake = $BW^{0.75} \times (0.2435 \times NE_{m} - 0.0466 \times NE_{m}^{2} - 0.1128)$	NRC ³
Calves (<500 lbs or 227 kg live weight)	$DMI = [BW^{0.75} \times (0.2453 \times NE_m - 0.0466 \times NE_m^2 - 0.1128)] \div NE_m$	NRC⁵
^a Based on NASS ¹ .		

^bSBW, shrunk body weight (0.96 × full BW), kg; NE_m, net energy of maintenance concentration in the diet, Mcal/kg dry matter; BW, body weight,

kg; FCM (4% fat-corrected milk), kg/d = $(0.4 \times \text{milk production}, \text{kg/d}) + [15 \times (\text{milk fat}, \% \div 100) \times \text{milk production}, \text{kg/d}]$.

^cStage of lactation was omitted from the DMI equation. Average daily milk yield and milk fat content specific to each state were used to calculate DMI for that state¹.

^dNo adjustments were made to the DMI equation, including for the last trimester of pregnancy.

^eHeifer and steers that are not replacement heifers or cattle on feed.

Table 1. Cattle categories, inventories, dry matter intake (DMI), and methane emission factors used to estimate county-level enteric emissions for the continental United States

	2012 cattle	Live	Source for DMI	NEm	Predicted DMI,	Methane	Methane
	inventory, ×	weight,	or NE _m intake	concentratior,	kg/d (lower and	emission yield,	emission factor,
Cattle category ^a	1,000 head ^ь	kg ^c	equations ^d	Mcal/kg ^e	upper bounds) ^d	g/kg DMI (lower	g/head/d (lower
						and upper	and upper
						bounds) ^f	bounds) ^g
Beef cows (1)	28,860	613	NRC ^{18,19}	1.09	9.4 (7.5, 11.3)	22 (19.5, 24.5)	207 (147, 277)
Dairy cows (2)	(9,262)						
Dry cows	1,762	670	NRC ²⁰	N/A	12.7 (10.2,	22 (19.5 <i>,</i> 24.5)	280 (199, 375)
					15.3)		
Lactating cows ^h	7,500	670	NRC ²⁰	N/A	22.9 (18.3,	19 (15.2 <i>,</i> 22.8)	436 (278, 628)
					27.5)		
Bulls (3)	2,125	920	NRC ²⁰	N/A	16.2 (12.9,	22 (19.5 <i>,</i> 24.5)	356 (252, 476)
					19.4)		
Beef replacement	5,636	406	NRC ¹⁹	1.12	8.2 (6.6, 9.8)	22 (19.5 <i>,</i> 24.5)	180 (128, 241)
heifers (4)							
Dairy replacement	4,785	409	NRC ²⁰	1.19	8.5 (6.8, 10.2)	19 (15.2 <i>,</i> 22.8)	161 (103, 232)
heifers (5)							
Cattle on feed (6)	14,377	441	NRC ²¹	2.05	10.3 (8.3, 12.4)	10 (7.5, 12.5)	103 (62, 155)
Heifer and steers (>500	12,084	325	NRC ¹⁹	1.41	7.5 (6.0, 9.0)	22 (19.5 <i>,</i> 24.5)	165 (117, 220)
lbs or 227 kg live							
weight) ⁱ (7)							
Calves (<500 lbs or 227	14,209	123	NRC ²¹	1.41	3.7 (2.9, 4.4)	19 (15.2, 22.8)	70 (45 <i>,</i> 101)
kg live weight) (8)							
30 1 1140014							

^aBased on NASS¹⁴.

^bAnimal inventories from the 2012 Census of Agriculture¹⁴; total cattle = 91,338,162; dry cows = 15% of all dairy cows.

^cReference: categories 1, 3, 4, 5, 7, and 8, from USEPA¹⁵; category 2, from USEPA¹⁵ and Hardie et al.¹⁶; category 6, from Anele et al.¹⁷.

^dFor DMI equations, see Table S1. Lower and upper bounds were assumed at -20 and +20%, respectively.

^eDietary concentration of Net Energy of Maintenance: categories 1, 4, 7, and 8, from Beef NRC¹⁹; category 5, from Dairy NRC²⁰; category 6, from Anele et al.¹⁷.

^fReference: for categories 1 and 2 (dry cows), from Herd et al.²²; for categories 2 (lactating cows), 5, and 8, from Hristov et al.²³⁻²⁵; for categories 3, 4, and 7, from Herd et al.²²; and for category 6, based on²⁶⁻⁸. Lower and upper bounds were based on \pm 1 SD from the original publications or data

Inventory development process: manure emissions

- Manure emission estimates were calculated using published US EPA protocols and factors
- Methane emission from manure (kg/yr) = (Animal population × VSE × B_o) × [(WMS₁ × MCF₁) + + (WMS_n × MCF_n)] × (Methane density)
- National Agricultural Statistic Services (NASS) data was utilized to provide animal populations
 - Cattle values were estimated for every county in the 48 contiguous states of the United States
 - Swine and poultry estimates were conducted on a county basis for states with the highest populations of each species and on a state-level for less populated states
- Uncertainty bounds for manure methane emissions were taken from USEPA: -18% (lower) and +20% (upper)

Gridded inventory maps

- County-level total enteric and total manure methane values were allocated based upon the relative percentage of feed sources (based on USDA-NASS CropScape data) within each county
- All emission rasters were projected to geographic coordinates (latitude/longitude, WGS84 datum) and resampled to 0.1 decimal degree cells
- Gridded emissions inventories were produced for:
 - Cattle enteric
 - Cattle manure management
 - Total cattle emissions
 - Total manure emissions
 - Total combined emissions
 - The gridded inventory can be accessed at: <u>Penn State Gridded</u> <u>Livestock Methane Inventory</u>.

Figure 1. Gridded $(0.1^{\circ} \times 0.1^{\circ})$ county-level livestock methane emissions for the contiguous United States: Enteric fermentation, cattle (panel A); Manure management, cattle (panel B), Manure management, cattle, swine, and poultry (panel C), and Cattle enteric and livestock (cattle, swine, and poultry) manure management (panel D, which is the sum of A and C).

Total methane emissions

Table 2. Comparison of methane emissions from the livestock sector across alternate bottom-up emissions inventories

	Year	Average annual er	nissions from the continental Unite	ited States (Gg/year)	
missions inventory	_				
		Enteric fermentation	Manure management	Total	
DGAR ¹³	2010	6,580ª	2,148ª	8,728	
Maasakkers et al. ¹²	2012	6,433 ^b	2,534°	8,967	
JSEPA ¹	2012	6,433 ^b	2,611°	9,044	
This study	2012	6,201 (4,197, 8,582) ^{b,d}	2,715 (2,226, 3,258) ^{c,d}	8,916 (6,423, 11,840) ^d	
All species.					
Cattle only.					

Cattle, swine, and poultry.

^dLower and upper bounds in parentheses.

Comparable total methane emissions between our analysis and USEPA or EDGAR

However, the spatial distribution of emissions differed significantly from that of EDGAR (and USEPA)

Gridded differences in emissions between bottom-up approaches

Lyon et al., 2015 vs. this analysis: 25 counties in the Barnett Shale region of Texas

County

Conclusions

- Atmospheric methane concentrations are increasing since 2006
 - Reasons are unknown
 - Cannot be attributed to a specific source based on isotopic data
- For inventory purposes, DMI and methane yield are sufficient to estimate cattle enteric methane emission factors
- Manure emission factors are more complex (very diverse manure systems!)
- Good agreement in total emission estimates among bottom-up approaches (this analysis, USEPA, EDGAR)
 - Large discrepancies in spatial distribution of emissions
- Conclusions from top-down inventories that use inaccurate spatial distribution emission data from gridded bottom-up inventories may be misleading

QUESTIONS?

SUC

1940

1AC: C #44118

6