RELATION BETWEEN AMBIENT AIR QUALITY & LOCAL EMISSIONS AT COUNTY LEVEL GROUND LEVEL OZONE & PM_{2.5}

Kotur S. Narasimhan

This is a combined Presentation of Two Papers

1. Relation between PM_{2.5} in Ambient Air and Local Emissions at County Level

2. Relation between Ground Level Ozone and Local Emissions at County Level

OZONE 80 ppb	NAAQS 2008 STANDARDS	PM _{2.5} 15 mcg/m ³
2008	YEAR OF ASSESSMENT	2012
836	COUNTIES MONITORED	314
	NON ATTAINMENT	
46	AREAS	9
225	COUNTIES	20
611	COUNTIES IN ATTAINMENT	294
2,312	COUNTIES NOT MONITORED	2,795

INFLUENCE OF LOCAL EMISSIONS

EMISSIONS	OZONE	PM _{2.5}
DIRECTLY EMITTED	NO	PARTLY
СО	\checkmark	
NH ₃		\checkmark
NO _X	\checkmark	✓
SO ₂	✓	✓
VOC	✓	
PM ₁₀		✓
PM _{2.5}		✓
Temperature	\checkmark	\checkmark

IN THEORY AIR QUALITY = f EMISSIONS

- ANY QUANTITATIVE RELATION BETWEEN AIR QUALITY AND LOCAL EMISSIONS HAVE NOT BEEN SO FAR POSSIBLE INSPITE OF VOLUMINOUS DATA BOTH ON AIR QUALITY (AQS) AND EMISSIONS (NEI)
- MAIN REASON BEING LACK OF DATA COMPATIBILITY ON TEMPORAL AND SPATIAL SCALE
- THIS POSITON HAS CHANGED FOR BETTER WITH THE AVAILABILITY OF EMISSIONS DATA FROM ALL SOURCES IN MONTHLY INTERVALS AT COUNTY LEVEL FOR ALL POLLUTANTS FOR THE YEAR 2011
- THIS PRESENTATION GIVES EMPIRICAL RELATIONS DERIVED BETWEEN MONTHLY MAXIMUM O₃ OR PM_{2.5} CONCETRATIONS IN AMBIENT AIR WITH ALL THE INDEPENDENT VARIABLES AT THE COUNTY LEVEL

MULTIPLE REGRESSION ANALYSES

- TRIAL AND ERROR REGRESSION ANALYSIS ARE CARRIED OUT TO RELATE REPORTED MONTHLY MAXIMUM CONCENTRATIONS OF DEPENDENT VARIABLE [OZONE] or [PM2.5] WITH MONTHLY EMISSIONS OF ALL INDEPENDENT EFFECTIVE VARIABLES AT COUNTY LEVEL
- BEST FIT CONDITIONS ARE PRESENTED
- SIMILAR FIT IS FOUND TO HOLD GOOD FOR A CONTIGUOUS AREA ACROSS STATES OR FOR A GROUP OF COUNTIES IN A STATE

DERIVED EMPIRICAL RELATION

[MONTHLY MAX AQ VALUE] = a x A + b x B + c x C... where, A, B, C,.... are independent variables & a, b, c are numerical constants.

Numerical values of the constants vary for counties as well as for a group of counties

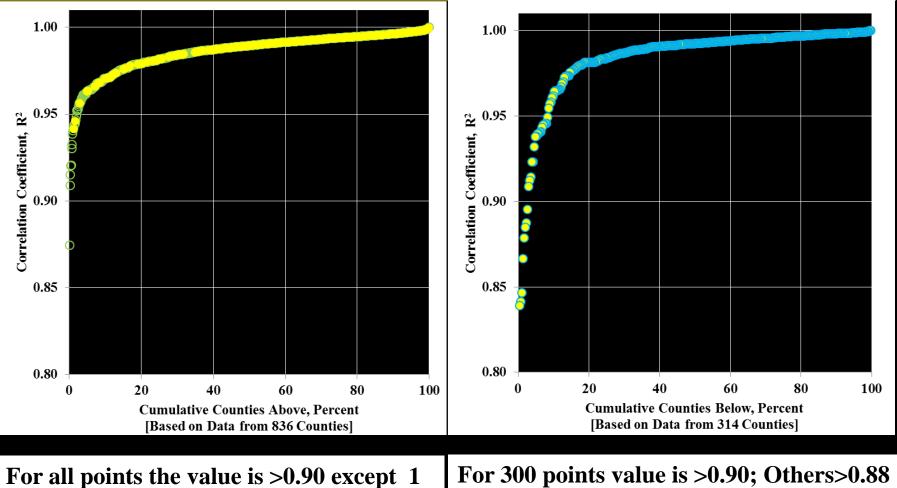
This is expected, as one can visualize, that no two counties or areas are identical in any respect like covered area, emissions level, spread of sources, relative positioning of air quality monitors or the emission sources etc.

DERIVED EQUATIONS

For Ozone

O₃ = a * CO + b * HONO + c * NO + d * NO₂ + e * VOC + f * T

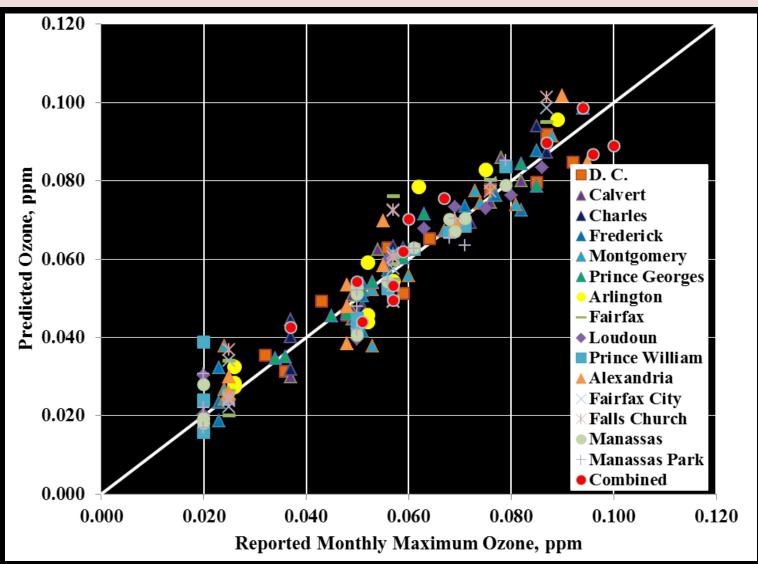
For PM_{2.5}

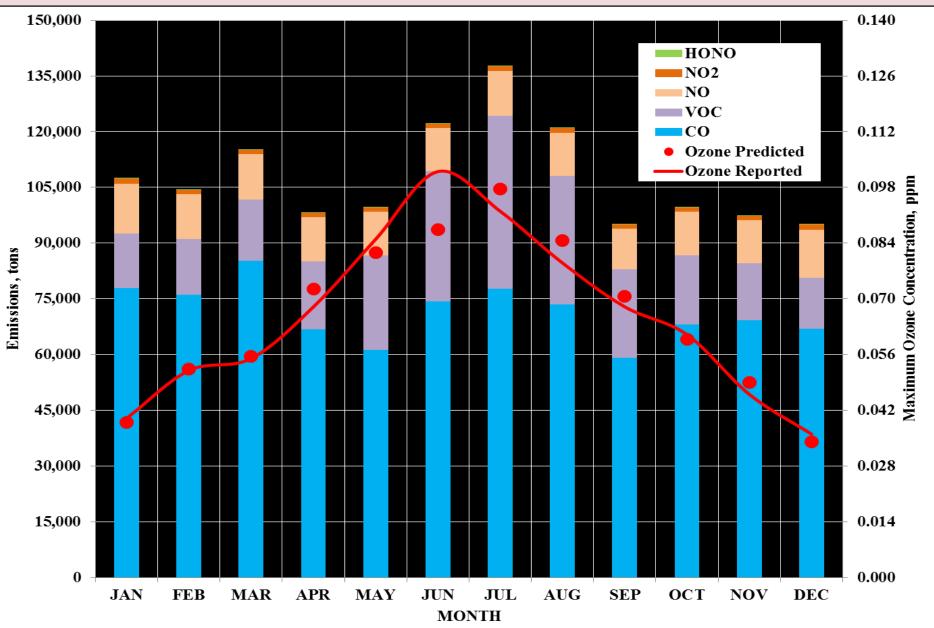

 $CPM_{2.5} = a*PM_{10} + b*PM_{2.5} + c*T + d*NO_X + e*SO_2 + f*NH_3 + g*VOC + h*CO$

Where

- O₃ is monthly maximum ozone concentration in air, ppm
- CPM_{2.5} is monthly maximum concentration of PM2.5 in ambient air, microgram per cubic meter
- CO is monthly carbon monoxide emissions, tons
- HONO is monthly emissions of nitrous acid, tons
- NO is monthly emissions of nitric oxide, tons
- NO₂ is monthly emissions of nitrogen dioxide, tons
- NOX is sum of HONO, NO, NO₂, tons
- VOC is monthly emissions of volatile organic compounds, tons
- SO₂ is monthly emissions of sulfur dioxide, tons
- NH₃ is monthly emissions of ammonia, tons
- PM₁₀ is monthly emissions of below 10 micron particulates, tons
- PM_{2.5} is monthly emissions of below 2.5 micron particulates, tons
- T is monthly maximum temperature, ⁰C
- a' to 'h' are numerical constants

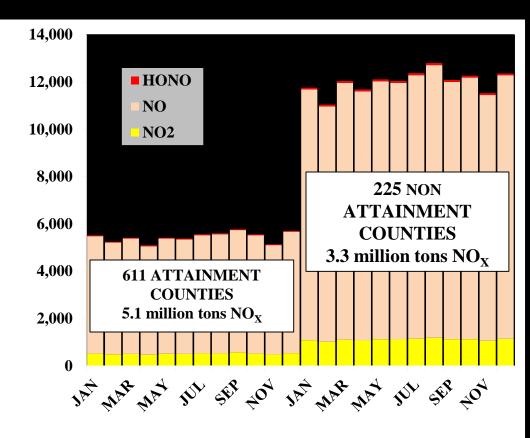
CORRELATION CONFIDENCEOZONEPM2.5



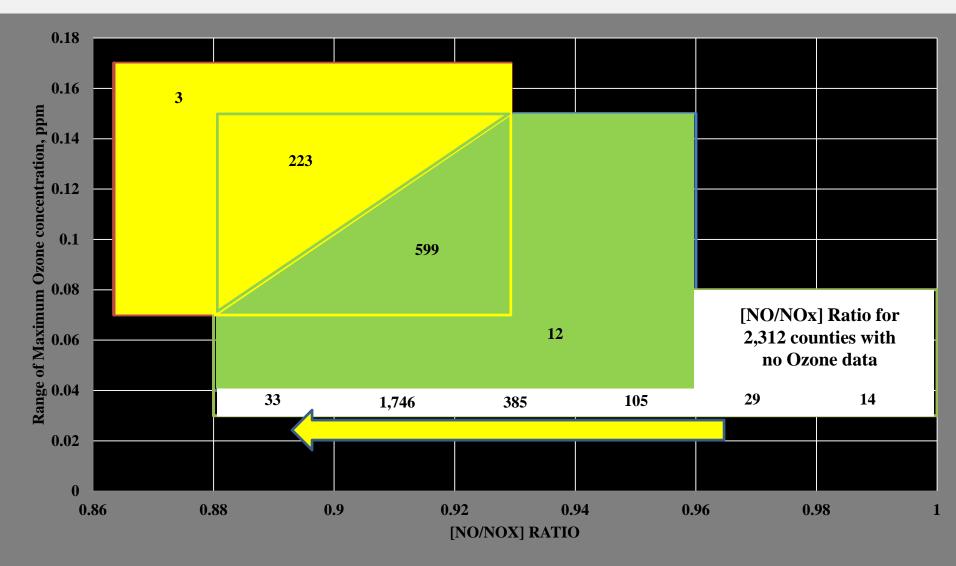

ATTAINMENT & NON-ATTAINMENT POINTS ARE DISTINGUISHED BY COLOR

DETAILS SPECIFIC TO OZONE

METROPOLITAN D. C. AREA COUNTIES & COMBINED


METROPOLITAN D. C. AREA EMISSIONS & OZONE

DETAILS SPECIFIC TO OZONE


- USE OF NO_X COMPONENTS INDIVIDUALLY GAVE A BETTER FIT OF DATA THAN COMPOSITE VALUES OF NO_X
- RANGE OF NO_X EMISSIONS FOR OZONE ATTAIMENT AND FOR NON-ATTAINMENT OVERLAP CONSIDERABLY

AS THE RANGE OF NO_X OVERLAPED, TO DELINEATE NON-ATTAINMENT AREAS FROM ATTAINMEN AREAS CONSIDERATION IS GIVEN TO THE EFFECT OF RATIOS OF NO_X COMPONENTS TO CLASSIFY AREAS OF OZONE ATTAINMENT FROM THAT OF NON-ATTAINMENT AREAS

SIGNIFICANCE OF [NO/NO_X] RATIO

ENVIRONMENTAL QUALITY

NON-ATTAINMENT AREAS TEND TOWARDS LOWER [NO/NO_x] RATIOS


EMISSION SOURCE EFFECT ON [NO/NO_X] RATIO

Source	Counties	NO _X	[NO/NO _X] Ratio						
(NO _X %)		%	0.85	0.87	0.9	0.92	0.93	0.95	1
	Non-Attainment	10							
On Road (38%)	Attainment	14							
	No Ozone Data	14							
	Non-Attainment	3							
Non Road (12%)	Attainment	4							
	No Ozone Data	5							
	Non-Attainment	3							
Non Point (17%)	Attainment	5							
	No Ozone Data	9							
	Non-Attainment	2							
Point EGU (14%)	Attainment	5							
	No Ozone Data	7							
	Non-Attainment	2							
Point Non EGU (12%)	Attainment	4							
	No Ozone Data	6							
	Non-Attainment	0.5							
Biogenic (9%)	Attainment	2							
	No Ozone Data	7							

LOWER RATIOS ARE PREDOMINENTLY FROM ONROAD SOURCES

SEASON & SOURCE SHARE OF NO_x EMISSIONS

SOURCE SHARE OF NOX EMISSION (RANGE), Percent

MOBILE FOLLOWED BY POWER PLANTS ARE LEADING SOURCES

SOURCE SHARE OF NO_X EMISSIONS

Source	COUNTIES	On Road	EGU	Non Point	Non EGU	Bio	Non Road		
Source	COUNTIES	2011 Source Maximum NO _X Emissions, tons							
On Road	1,725	4,635,304	372,607	1,209,678	734,605	418,833	1,227,864		
EGU	201	327,962	1,472,566	203,503	151,263	59,837	93,358		
Non Point	433	297,631	33,257	839,268	192,746	173,367	158,245		
Non EGU	239	248,512	71,194	186,379	667,681	73,552	83,476		
Biogenic & Fire	383	106,577	5,593	94,603	23,348	246,842	90,795		
Non Road	135	50,716	3,474	37,964	14,812	45,260	98,112		
All Sources	3,116	5,666,702	1,958,692	2,571,395	1,784,455	1,017,691	1,751,852		

SPECIFIC POWER PLANTS IDENTIFIED

SI No	FIPS	State	County	Plants, No	NO _X , tons	
1	08001	Colorado	Adams	3	9,052	
2	13015	Georgia	Bartow	2	15,130	
3	18029	Indiana	Dearborn	1	5,095	
4	18089		Lake	5	7,495	
5	24003	Maryland	Anne Arundel	2	6,493	
6	24017		Charles	1	1,256	
7	29071	Missouri	Franklin	1	9,890	
8	34009	New Jersey	Cape May	2	594	
9	34033		Salem	4	851	
10	36013	New York	Chautauqua	2	1,861	
11	37071	North Carolina	Gaston	2	5,507	
12	39025	Ohio	Clermont	2	15,982	NO _x EMISSIONS FROM
13	39085		Lake	1	8,450	
14	39093		Lorain	2	4,679	51
15	42005	Pennsylvania	Armstrong	3	23,891	POWER PLANTS IN
16	42007		Beaver	3	14,874	23
17	42095		Northampton	5	3,588	
18	42125		Washington	2	1,864	COUNTIES IN
19	47001	Tennessee	Anderson	1	912	15
20	48157	Texas	Fort Bend	2	5,468	STATES
21	51510	Virginia	Alexandria City	1	558	SIAILS
22	55059	Wisconsin	Kenosha	2	2,496	
23	56037	Wyoming	Sweetwater	2	27,073	LIKELY TO MATTER MORI

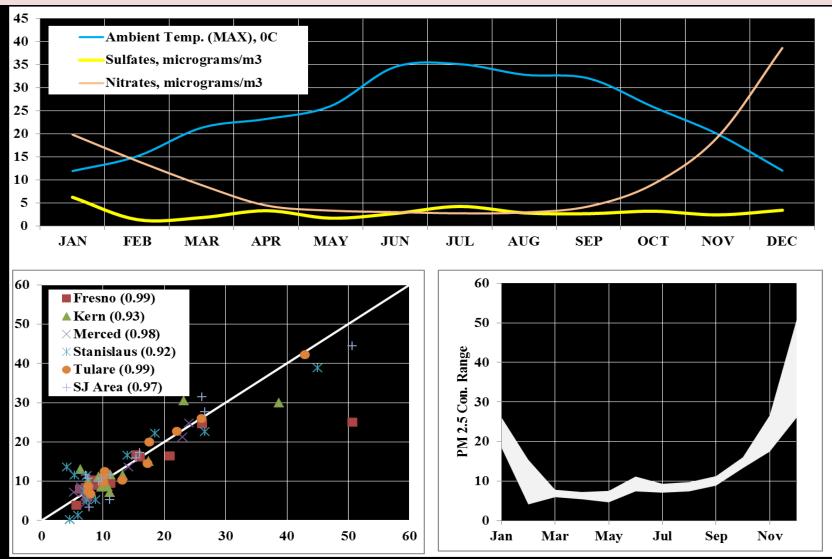
R **RELATIVELY**

CONCLUSIONS SPECIF TO OZONE

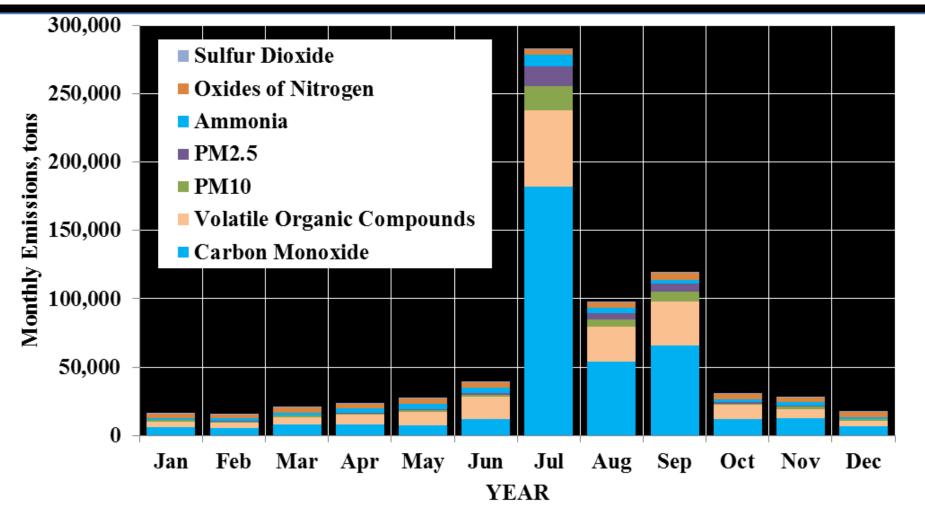
- IT IS POSSIBLE TO RELATE AMBIENT OZONE CONCENTRATIONS TO LOCAL EMISSIONS OF NO_X COMPONENTS, CO, VOC AND MAXIMUM TEMPERATURE
- BESIDES TOTAL NO_X, RATIO OF [NO/NO_X] APPEAR TO MATTER IN SEPARATING ATTAINMENT FROM NON-ATTAINMENT AREAS
- MOBLE SOURCES FOLLOWED BY EGU ARE LEADING AMONG SOURCES THAT IMPACT OZONE CONCENTRATION
- IT MAY ALSO BE POSSIBLE TO DELINEATE POWER PLANTS THAT MAY MATTER MORE THAN OTHERS IN THE CONTEXT OF OZONE IN AMBIENT AIR
- EMPIRICAL RELATION DERIVED CAN BE OF USE IN DRAFTING STATE IMPLEMENTATION PLANS (SIP).

DETAILS SPECIFIC TO PARTICULATES

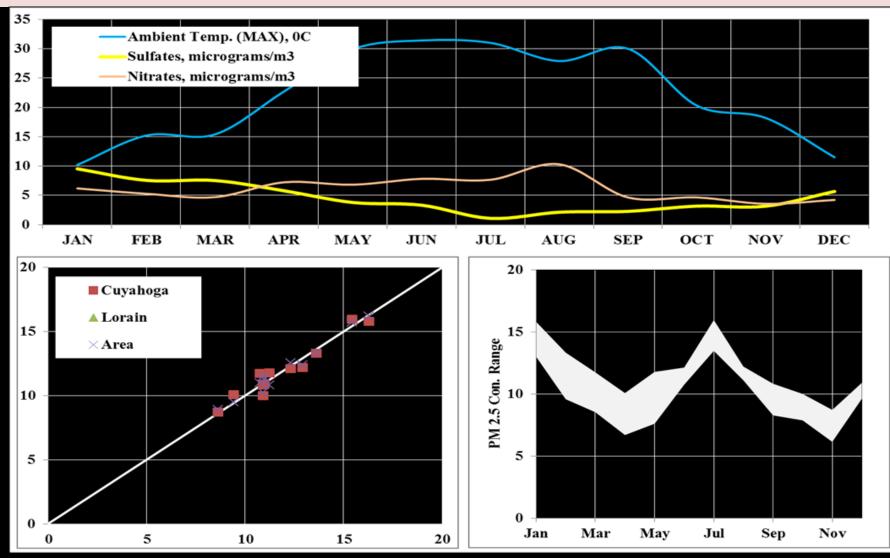
ANANLYSES SPECIFIC TO PARTICULATES


20 Non-Attainment Counties in 2012 for 2008 NAAQS PM _{2.5} Standards										
States		S2. Ohio								
	A1	A2	A3	A4	A5					
Area	San Joaquin Valley	South coast Air Basin	Imperial	Plumas	Cleveland					
Counties	1. Fresno	9. Los Angeles	13. Imperial	14. Plumas	15. Cuyahoga					
	2. Kern	10. Orange			16. Lorain					
	3. Kings	11. Riverside								
	4. Madera	12. San Bernardino								
	5. Merced									
	6. San Joaquin									
	7. Stanislaus									
	8. Tulare									
States		S3. Pennsylvania		S4. Id	aho					
Area	A6	A7	A8	A9						
Alta	Allegheny	Delaware	Lebanon	West Silve	er Valley					
Counties	17. Allegheny	18. Delaware	19. Lebanon	20. Shoshone						

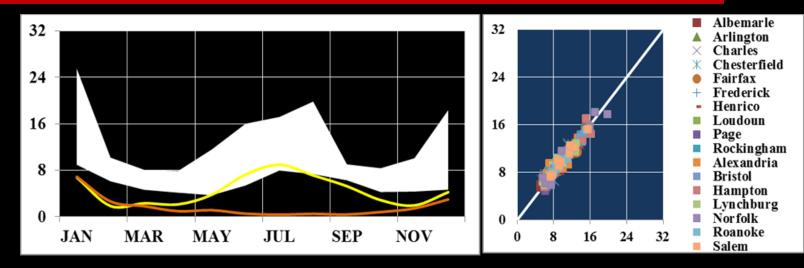
ANANLYSES SPECIFIC TO PARTICULATES COMPOSITION

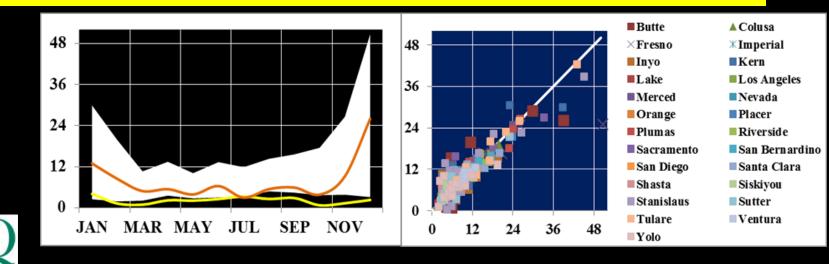

- DETAILED ANALYSES OF PARTICULATE BEHAVIOR CARRIED OUT WITH RESPECT TO AMBIENT CONCENTRATION & THEIR COMPOSITION BASED ON SPECIATION DATA REPORTED IN AQS FOR ALL THE 20 NON ATTAINMENT COUNTIES AS WELL AS FOR STATES AS A WHOLE
- BASED ON THE COMPUTED SULFATES & NITRATES CONCENTRATION CORRESPONDING TO THE MAXIMUM CONCETRATION RANGE RENDER STATES TO BE CLASSIFIED INTO TWO GROUPS OF SULFATES RICH OR NITRATES RICH PARTICULATE EMISSION

CONCENTRATION & COMPOSITION VARIATION SAN JOAQUIN VALLEY – CALIFORNIA



MONTHLY EMISSION OF VARIABLES SAN JOAQUIN VALLEY CALIFORNIA

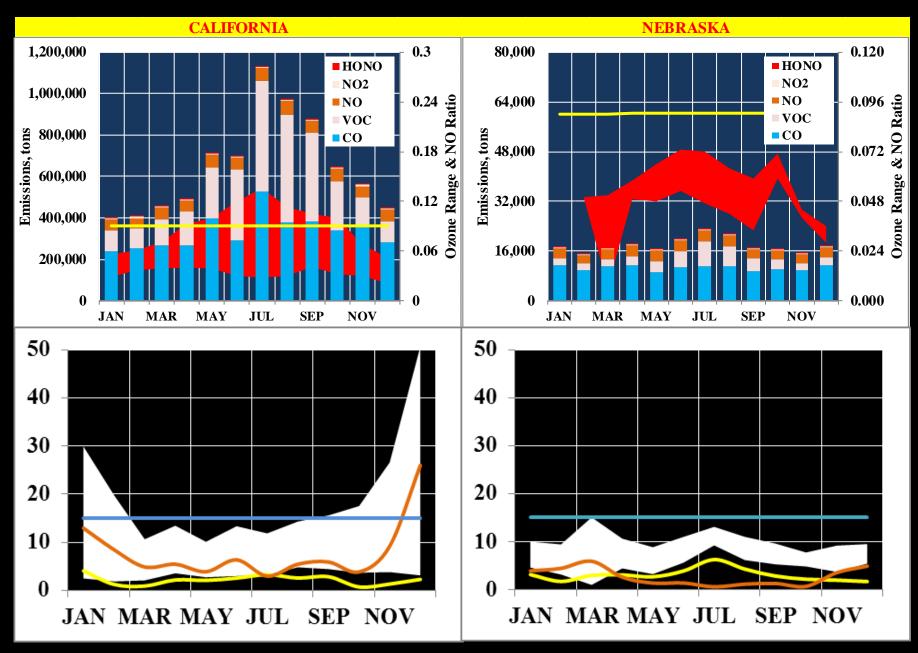

CONCENTRATION & COMPOSITION VARIATION SAN CLEVELAND - OHIO


STATE WISE ANALYSES

TYPICALLY SULFATES PREDOMINANT PARTICULATES - VIRGINIA

TYPICALLY NITRATES PREDOMINANT PARTICULATES - CALIFORNIA

VIRGINIA DEPARTMENT OF ENVIRONMENTAL OUALITY


STATES CLASSIFICATION BASED ON PARTICULATE CHARECTERISTICS

S	ULFATES RICH	NITRATE RICH				
1	Alabama	1	Arkansas	16	Nevada	
2	Connecticut	2	Arizona	17	New Jersey	
3	Rhode Island	3	California	18	North Dakota	
4	Delaware	4	Colorado	19	Ohio	
5	Georgia	5	Indiana	20	Oregon	
6	Louisiana	6	Iowa	21	Utah	
7	Massachusetts	7	Kentucky	22	Washington	
8	New Hampshire	8	Kansas	23	Wisconsin	
9	North Carolina	9	Maryland	24	Wyoming	
10	South Carolina	10	Michigan	25	Vermont	
11	Pennsylvania	11	Minnesota	Non attainment counties are located in highlighted states		
12	Tennessee	12	Mississipi			
13	Texas	13	Missouri			
14	Virginia	14	Montana			
15	West Virginia	15	Nebrska			

CONCLUSIONS SPECIFIC TO PARTICULATES

- IT IS POSSIBLE TO RELATE PARTICULATE CONCENTRATION IN AIR TO LOCAL EMISSIONS OF PM₁₀, PM_{2.5}, NO_X, SO₂, NH₃, VOC, CO & MAXIMUM TEMPERATURE
- ANNUAL PATTERN OF CONCENTRATION & ITS COMPOSTION VARIES WITH LOCALITIES WITH TWO DISTINCT PATTERNS:
 - ONE WITH PEAK CONCENTRATION IN SUMMER MONTHS TYPICALLY RICH IN SULFATES [15 STATES]
 - OTHER PEAK CONCENTRATIONS IN WINTER MONTHS TYPICALLY RICH IN NITRATES [25 STATES]

INDIVIDUAL STATES

Acknowledgements:

- Thank You All for Listening;
- EPA/EIC2017 Organizers for the Opportunity;
- MARAMA/VADEQ for Financing;
- Thomas R. Ballou, Director, Air Data Analysis & Virginia DEQ

