

Regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions

Thomas Lauvaux, Zach Barkley

Kenneth Davis, Natasha Miles, Scott Richardson, Douglas Martins Department of Meteorology, Pennsylvania State University

Yanni Cao, Eun-Kyeong Kim, Guido Cervone, Alan Taylor Department of Geography, Pennsylvania State University

Colm Sweeney, Anna Karion, Kathryn McKain ESRL/NOAA GMD, CIRES, Boulder

Tom Murphy Marcellus Center for Outreach and Research, Pennsylvania State University

Project sponsored by the Department of Energy National Energy Technology Laboratory

EIC 2017

TA [2] Continuous, regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions

Objective: To quantify natural gas emissions from production in the northeastern Marcellus region

The Marcellus Projects: 2 approaches to estimating emissions

Aircraft Campaign

-Use CH₄ data from a series of flights in conjunction with a forward transport model to solve for the total emission rate from natural gas.

Tower-based Inversion

-Use a 2 year dataset of continuous CH₄ measurements from 4 points to detect spatial and temporal variability in emissions from natural gas using a Bayesian framework.

CH₄ Emissions Inventory

Unconventional Production

Animal Agriculture

Conventional Production

Coal mines/beds

Distribution

Landfill / Industry

from Barkley et al., under review

CH₄ Emissions Inventory

Map of the CH₄ emissions inventory for the extended Pennsylvania study domain in mol.km⁻².hour⁻¹ and our domain of interest (red box)

MARCELLUS TOWER NETWORK

Deployment of calibrated CRDS instruments at the four identified tower locations

Definitive tower locations of the 4 towers called North (N), East (E), South (S), and Central (C). Unconventional wells are plotted in the background.

	Latitude	Longitude	Installation Date	Elevation (mASL)	Sampling height (mAGL)
Tower N- North	42.0159	-76.4333	05/08/15	476	46
Tower S- South	41.4662	-76.4188	05/07/15	591	61
Tower C- Central	41.7568	-76.3265	05/05/15	341	59
Tower E- East	41.7685	-75.6807	05/13/15	450	59

Coordinates, elevations, and sampling heights of the 4 towers

Photo of temporary shed (upper) and tube inlet at tower N, 46m AGL (lower)

Deployment of calibrated CRDS instruments at the four identified tower locations

CH₄ mixing ratio measurements over 2015-2017 from the four CRDS CH₄/¹³CH₄ instruments (in ppb)

CH₄ mixing ratio enhancements over 2015-2017 from the four CRDS CH₄/¹³CH₄ instruments (in ppb)

Tower-based Inversion

Diagram of the different flux sub-regions used in the inversion. Towers (green pins) and wells (pink dots) are plotted overtop

Map of the percent change in the posterior flux compared to the prior flux using tower observations from Oct-Dec 2015

MARCELLUS AIRCRAFT CAMPAIGN

Deriving Natural Gas Emissions: 3 Steps

Step 1: Get methane observations

NOAA Twin Otter on the tarmac of the Williamsport airport

Aircraft Campaign: 10 flights

42.0

41.5[°] N

42.0

41.5 1

77.5° W

77.5[°] W

77.0[°] W

0

76.5[°] W

77.0[°] W

05/25/2015

76.5[°] W

76.0[°] W

75.5[°] W

CH₄ Enhancement (ppm)

Step 2: Model Methane Enhancements

-Use Weather Research and Forecasting Model (WRF-Chem) to model methane emissions throughout region at 3 km resolution

Modeling domain to simulate the atmospheric conditions during the deployment period (2015-2017) WRF

Unconventional Production/Gathering

Coal Mines

Step 3: Optimize Natural Gas Emissions

...let's just run through some examples

Example 1:

May 29th 2015: A rare day where science works.

Observed CH₄ Enhancement measured during the flight (in ppm)

Observed and modeled Non-Natural Gas CH₄ enhancement for the May 29th flight (in ppm)

Observation-derived natural gas CH₄ enhancement for the May 29th flight (in ppm)

Observed and modeled Natural Gas CH₄ Enhancement for the May 29th flight (in ppm)

Observed and optimized Natural Gas CH₄ enhancement for the May 29th flight (in ppm)

EXAMPLE 2: MAY 24th, 2015 The Importance of a Good Methane Inventory

Aircraft emissions estimate on May 24th 2015

Observed CH₄ enhancement for the May 24th flight at 20z (in ppm)

Modeled CH₄ Enhancement for May 24th, 2015

Coal plume has a significant impact on the regional measurements

May 24th 2015: WRF vs Obs All sources

Optimized Natural Gas Emission Rate = 0.29%

Best-guess upstream emission estimates

Optimal mean leakage rate based on 10 flights in May 2015: 0.39% of production

Moving Forward: Using what we've learned for ACT-America

Lots of ACT flights to work with

03/02/17 C130 0.02 0.018 0.05 0.016 0.04 0.014 0.012 0.03 0.01 40 1 0.008 0.02 0.006 0.01 0.004 38 1 0.002 82[°] W 80[°] W 74 W 76[°] W 78[°] W

03/04/17 B200

03/08/17 B200

03/09/17 C130

Apply methodology in other methane hotspot regions?

TA [2] Continuous, regional methane emissions estimates in northern Pennsylvania gas fields using atmospheric inversions

Conclusions

-Emissions as a percent of production from natural gas production/gathering facilities are low in the Marcellus (but tower data indicates there is temporal variability!)

-Running a transport model on flight days can:

- 1. Provide an alternative method to solving for emissions.
- 2. Help identify and separate out observed plumes associated with different sources.
- 3. Reveal days in which the background CH_4 fields are complex and derived emission rates may be unreliable.

-With the new U.S. gridded CH_4 inventory (Maasakkers et al 2016), running the transport model in other regions is easier than ever!