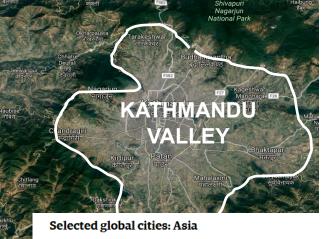
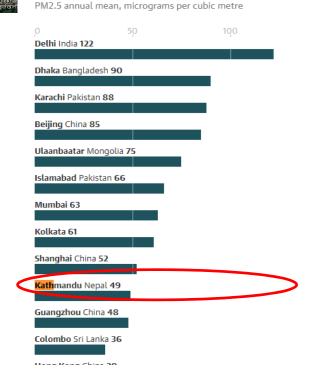

A HIGH RESOLUTION TECHNOLOGY-BASED BOTTOM-UP EMISSIONS INVENTORY FOR NEPAL

Pankaj Sadavarte¹, Bhupendra Das^{2,3}, Kiran Shakya², Maheswar Rupakheti¹, Prakash V. Bhave², Rejina Maskey Byanju³, Mark G. Lawrence¹


¹Institute for Advanced Sustainability Studies, Potsdam, Germany ²International Centre for Integrated Mountain Development, Patan, Nepal ³Central Department of Environmental Science, Tribhuvan University, Nepal


Background and motivation

- Population 26 Million in 2011. 10% resides in Valley.
- Complex topography, heavy rely on biomass and imports of fossil fuel makes it crucial to understand the landlocked country in the Himalayas.
- Studies over Nepal voids in understanding the energy consumption nationally, albeit few studies have strived with Tier I approach at sectoral level. [Bhattarai and Jha, 2015; Malla 2013; Shrestha and Rajbhandari, 2010]
- Regional inventory are unable to capture the variablity in spatial distribution

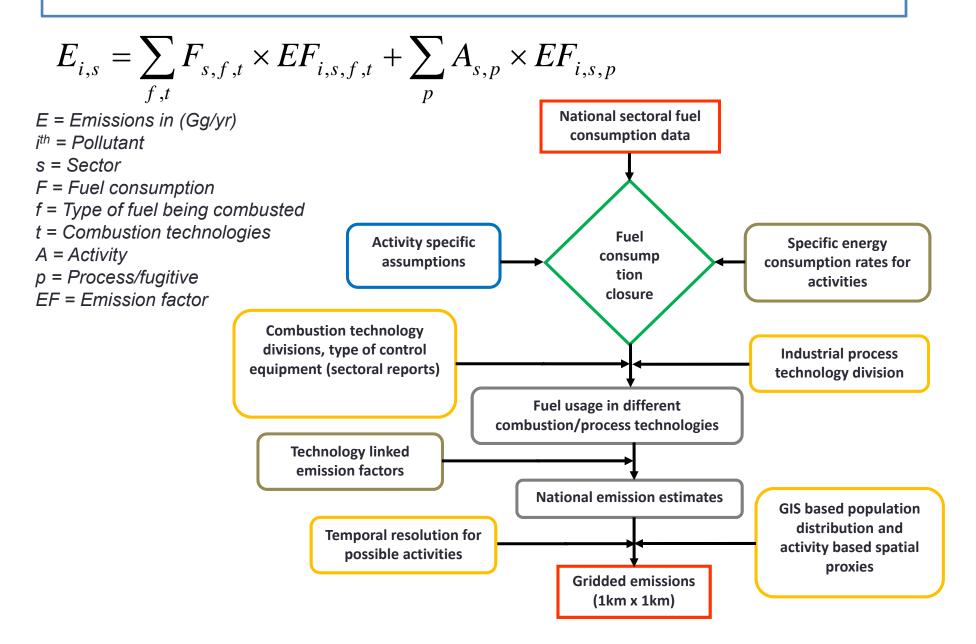
Guardian graphic | Source: WHO database, updated 2016. Source: Dhital, 2015: p26;

Objectives/Goals of Emission Inventory

- Comprehensive understanding of the energy and emissions from energy-use sectors with combustion technology details.
 - Develop bottom-up methodologies within each sector to estimate present day technology-based energy consumption.
 - Quantify technology-linked emissions for short-lived climate forcers, ozone precursors ($PM_{2.5}$, BC, OC, SO_2 , NO_X , CO, NMVOC and CH_4) and greenhouse gases (CO_2 and N_2O).
 - Understand trends in energy use pattern and emissions 2005 Present using activities at coherent sources
 - Develop a tool to understand the energy and emission sources in order to frame mitigation policies for Kathmandu Valley.

Emission inventory details

Features	Details						
Base year	2011 (Trend: 2005 2011 2016)						
Region	75 districts as per Census 2011						
Sectors (5) sub-sectors (17)	 Residential (4): Cooking, lighting, space heating, water heating and boiling Industry (3): Brick production, Point sources of cement, basic iron, structural metal, pharmaceutical, tea and coffee, grain mill, noodles and area sources of small industries Transport (4): Private passenger vehicles, public passenger vehicles and public freight vehicles, off-road vehicles Commercial (2): Diesel genset users (Academic institutions, hospitals, financial institutions, government offices), barrack canteens, hotels and restaurants Agriculture (4): Agricultural residue burning, diesel pumps, tractors, power tillers and threshers 						
Species	Aerosols and constituents: $PM_{2.5}$, BC and OC Ozone precursors and other gases: NO_X , CO, NMVOC and SO_2 Greenhouse gases: CO_2 , CH_4 and N_2O						
Spatial resolution	1 km × 1 km						
Temporal resolution	Monthly						


Combustion technologies

Sector	Sub-sector/Activities	Fuel	Combustion & Process technology	#
		Firewood	Traditional mud cookstove (TCS),	
		Dungcakes	Improved cookstove (ICS)	
	Cooking	LPG	LPG stove	
		Kerosene	Kerosene pressure stove	
AL		Biogas	Biogas stove	
Î,	Lighting	Kerosene	Kerosene wick lamp	
E	Lighting	Biogas	Biogas lamp	9
RESIDENTIAL		Firewood	TCS	
Ш Ж	Water heating and boiling	Kerosene	Kerosene pressure stove	
		LPG	LPG stove	
		Firewood (In)	TCS	
	Space heating	Firewood (Out)	Open burning	
		Dungcakes	Open burning	
	Brick kilns	Coal, wood	Fixed Bulls' Trench Kiln, Clamps	
>	Cement production	Coal	Rotary kilns	
NDUSTRY	Basic Iron	Furnace oil	Reheating furnace	•
		Coal, wood	Furnace	11
ģ	Industries	Rice husk Boiler		
=	แนนอนเยร	Diesel	Diesel generator, oil boiler	
		Furnace oil	Oil boiler	

Combustion technologies

Sector	Sub-sector/Activities	Fuel	Combustion & Process technology	#		
COMMERCIAL	Academic institutions, government offices, hospitals, financial institutions and other service sectors	Diesel	Diesel generator	2		
		Coal/Wood	Residential furnace			
NO.	Barrack canteen, Hotel,	Kerosene	Kerosene pressure stove			
Ö	Restaurants	LPG	LPG stove			
		Diesel	Diesel generator and oil boiler			
	Agricultural residue burning	Biomass	Open burning			
(GRI- LTURE	Irrigation Pumps	Diesel/Gasoline	Diesel pump/Gasoline pump			
-TL -TL	Tractors	Diesel	Diesel tractor	5		
	Power tiller	Diesel	Diesel power tillers			
	Thresher	Diesel	Diesel engines			
F	Private passenger	Gasoline	Two wheeler, Cars			
TRANS-PORT	Public passenger	Diesel Jeep/Taxi, Microbus/Minibu Bus		9		
	Public freight	Diesel	Pick-up/Mini truck, Trucks, Others	9		
	Off-road vehicles	Diesel	Tractors, power tillers			
	TOTAL COMBUSTION TECHNOLOGIES					

Methodology for energy and emissions

Vehicular emissions methodology

$$E_{i} = \sum_{c} \sum_{v} \sum_{c,v} V_{c,v} \times P_{c} \times FE_{c} \times EF_{i,c,v}$$

Currently α and L_{50} from Pandey and Venkataraman, 2014. α and L_{50} will be estimated for Nepal case.

SuF(s) - Survival fraction = Su(s)/Su(0)

Su(s) – survival rate; α – shape factor;

 L_{50} – age at which 50% vehicles have retired;

 $V_{C,V}$ – On-road vehicle population for category 'c' and vintage 'v'

$$V_{C,V} = Sales(yy) \times SuF(s)$$

$$Su(s) = \frac{1}{1 + \exp[\alpha_{ret}(1 - s/L_{50,ret})]}$$

[Yan et al., 2011; Pandey and Venkataraman, 2014]

P_c – Passenger VKT ----- NEPAL Study

Modelled using the Shreejan et al., 2013 for different vehicle categories (# vehicles survey were 700 for two wheelers, taxis, buses, vans and three wheelers)

FE_c – Fuel efficiency (km/l) ----- NEPAL Study

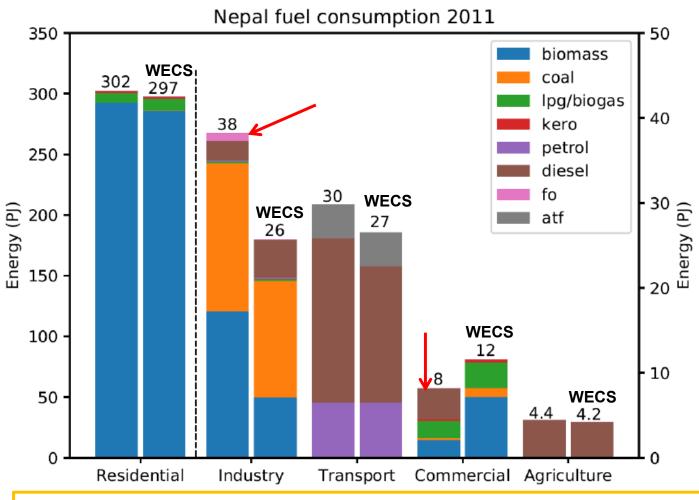
Compiled and averaged from literature reporting fuel efficiency for Nepal vehicles

EF_c – Emission factors (g/kg) ------ Indian Study

Currently the Indian dynamometer measured emission factors are used from Pandey and Venkataraman, 2014. For Nepal these needs to be examined and estimated.

Emission Factors

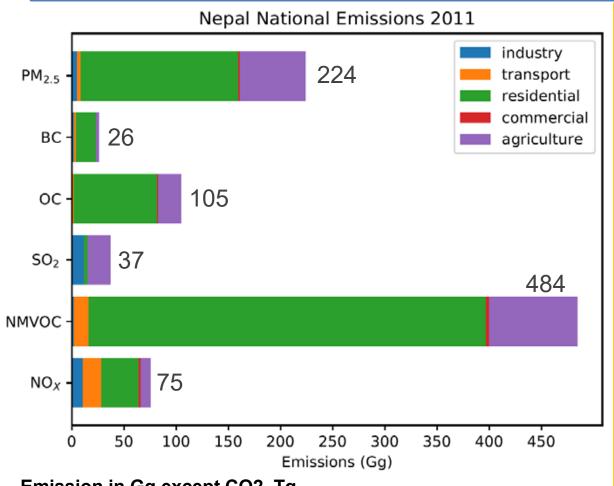
Reference	Activities/Technologies	Species
NAMASTE Campaign Stockwell et al., (2016) Jayarathane et al., (2016)	 -Cooking TCS (wood, dungcakes, ag.res.) -Cooking biogas stove -Cooking ICS (wood) -Open burning (dungcakes) -Brick kiln (Clamps, Zig-zag) -Diesel generators -Diesel pumps 	CO_2 , CH_4 , NO _X , CO, NMVOC, PM _{2.5} , BC, OC and SO ₂
Smith K., (2000) Habib et al., (2008)	-LPG stove, Kerosene stove	Gases Aerosols
Lam et al., (2012)	-Kerosene lamps	Aerosols, CO


Salient features:

- Field measured emission factors for Nepal region.
- Emission factor for cookstoves were a factor 2-5 higher for PM2.5 and OC/EC ratios were 1-2 factor high than lab measurement studies.
- SO2 emissions from fossil fuel were estimated using sulphur content of the fuel.
- N2O default emission factors from IPCC

Proxy for residential, industrial area source & transport

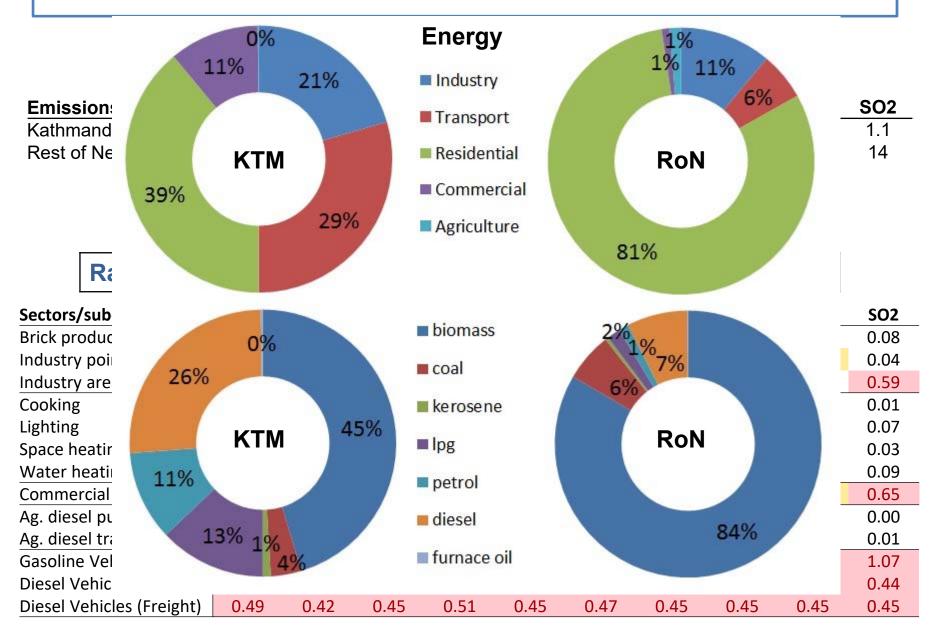
 GIS based Dasymetric ulation 2011 Legend Mapping Technique Land-use data 2010 Settlement points population 750 Slope > 45 angle is discarded 1000 Above 10000 Currrently, on-road emissions are distributed using population which need revision 	 1512 point source out of 4076 s industries Brick industry locations were identified using google maps (450 kilns out of 600 reported) Other point sources were identified using their address
 Institutional reports were used to identify the locations of event tourist hotels, hospitals, and the banks, academic institutions while rest commercial sector was treated as area source 	 Land use land cover for Cover 2010 distributing emissions from agricultural residue burning, pumps, tractors, power tillers 24440 19200


National Energy consumption for 2011

Residential sector is the highest consumer of energy 78.9%, followed by industry 10%, transport 7.8%. Biomass attribute to 81.6% while 18.4% from imported fossil fuel.

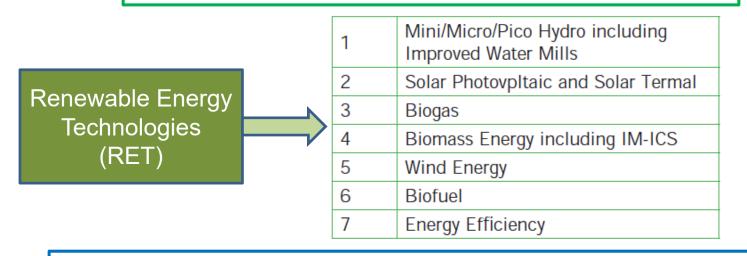
Industry: Fuel consumption like coal, ricehusk and furnace oil in point sources like brick. cement industries, sugar, paper have been corrected using the specific fuel consumption for Nepal. Furnace oil accounted using the trade statistics. Commercial: Use of diesel in DG sets was corrected based on the electricity demand. Ag. Diesel estimates were in agreement with WECS.

National emissions for 2011 and comparison

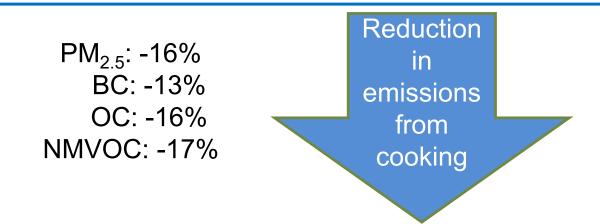


Emission in Gg except CO2. Tg

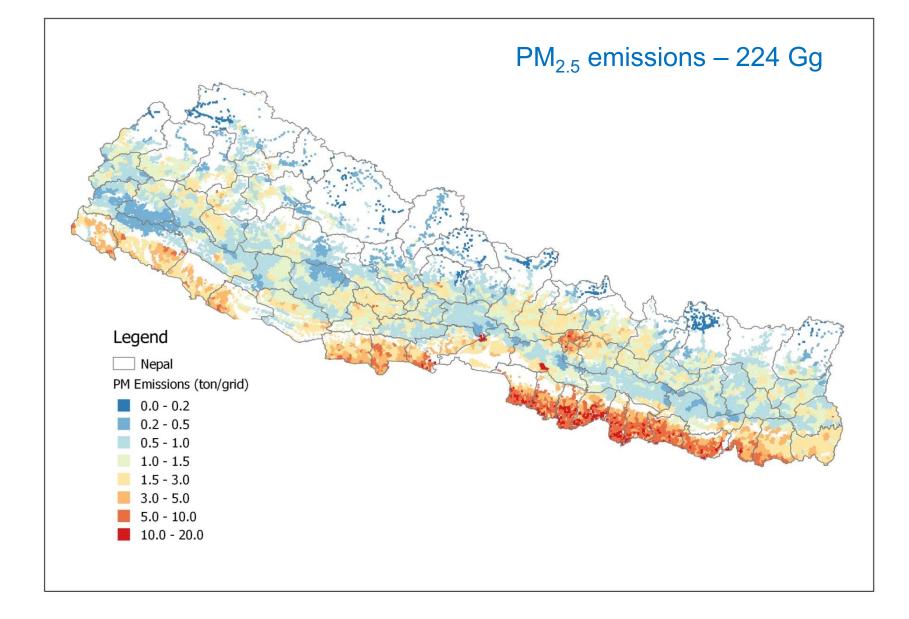
	CO2	CH4	N2O	NOx	CO	NMVOC	PM2.5	BC	OC	SO2
MIX HTAP	34.0	90.0	1.5	83.0	2109.0	376.7	139.0	27.0	105.0	30.0
This Study	35.0	107.7	2.1	67.9	1514.9	400.5	161.7	23.6	83.0	15.6


- Cooking emit around 45% to 55% of total emissions for all species except NO_x & SO₂.
- Water heating 7-10% and Space heating 12-15%
- In agriculture sector mainly crop residue burning emit >90%, while 10% from diesel use in pumps, tractors/tillers.
- High SO₂ emissions from ag.residue and coal use in bricks and cement industry.
- NMVOC emission from transport also includes running evaporates.
- Industries (cement) and transport (diesel passenger) also contribute significantly to NOX emissions (42%).

Emissions comparison Kathmandu and RoN



Renewable energy programmes and implications


Alternative Energy and Promotion Centre (AEPC) Centre for Rural Technology, Nepal (CRT/N)

0.3 Million ICS were disseminated till 2011/12

PM_{2.5} Emissions for 2011 (unit: ton/grid)

Conclusion and future work

- Conclusion:
 - An attempt has been made to compile all the scattered information on activities to estimate energy
 - Detailed energy and emissions from all the possible activities have been considered in this work including the energy efficiency programmes
 - Emissions were estimated using recent on-field measured emission factors
 - Spatial variability of emissions has been improved using subsector and activity based proxies.

• Future work:

- Uncertainty estimates
- Improvement in spatial distribution of transport emissions
- Trend estimates
- Model read files
- Decision support tool in the approach to improve the air quality