

Regional and global long-term emissions constrained by NO₂ and SO₂ satellite observations

Zhen Qu, Daven K. Henze, Jun Wang, Xiaoguang Xu, Yi Wang

zhen.qu@colorado.edu EPA EIC

Motivations & Goals

- Long term & high resolution: effectiveness of control strategy
- Bottom-up estimates: uncertainties & long time to compile
- Top-down estimates: satellite & CTM

Recent NO_x trend studies for China

 Comparison of top-down (EKF & EnKF) and bottom up estimates (Ding *et al.*, 2017)

Motivations & Goals

- Long term & high resolution: effectiveness of control strategy
- Bottom-up estimates: uncertainties & long time to compile
- Top-down estimates: satellite & CTM

Kalman filter: large number of nodes and memory4D-Var: time consumingMass balance: nonlinear chemistry & smearing from transport

Goal 1: Facilitate long-term inversion of NO_x & SO₂ emissions.

- Chemical interactions
 Goal 2: Assimilate multispecies observations and optimization
- Correlated emissions
 Goal 3: Sector-based inversion

Goal 1: Hybrid inversion

- Method
- Evaluation using pseudo observation test
- Top-down NO_x emissions for China
- Global top-down NO_x emissions

• Model: GEOS-Chem chemical transport model and its adjoint

- Meteorological input from Goddard Earth Observing System (GEOS)
- Simulate chemical reactions, transport of species, convection and deposition
- Resolution: 0.5 latitude x 0.667 longitude, 47 vertical layers (from surface to P = 0.01hPa)
- Domain:0°N ~ 50°N, 70°E ~ 150°E
- Adjoint model adjust emissions at each model grid cell based on observations and bottom-up emissions

(http://www.geos-chem.org)

• Observations:

OMI NO₂

- NASA standard L2 product for China
- Compare standard product with DOMINO retrievals in global inversion

Inversion approaches:

4D-Var:

- adjust emissions independently in each grid cell
- takes into account transport and chemical reactions
- computationally expansive

Mass balance:

- scale emissions by the ratio of observed & simulated column
- computationally cheap
- limited by nonlinear chemistry and smearing from transport

Hybrid 4D-Var / Mass balance:

- blend of accuracy and efficiency

Hybrid inversion for NO_x

Hybrid method:

Base year (2010): 4D-Var

Other years (2005-2012): use 2010 4D-Var posterior for mass balance.

Hybrid inversion for NO_x

Hybrid method:

Base year (2010): 4D-Var

Other years (2005-2012): use 2010 4D-Var posterior for mass balance.

Scaled emissions in pseudo observation test

 Hybrid posterior has smaller NMSE (by 59% to 78%) and better correlation.

(Qu et al., JGR, 2017)

Hybrid inversion for NO_x emission in China

Comparison of hybrid posterior

Seasonality of NO_x emissions in China

- Larger seasonality and year-to-year variation in top-down emissions
- Top-down estimates are more consistent with bottom-up emissions in the summer.
 (Qu et al., JGR, 2017)

Comparison of hybrid posterior

Bottom-up (anthropogenic emission from MEIC [Liu et al., 2016] plus GEOS-Chem prior natural emissions)
 Bottom-up (anthropogenic emission from Xia et al. [2016] plus GEOS-Chem prior natural emissions)

Top-down estimate has smaller emissions and emission growth rate over China. (Qu et al., JGR, 2017)

Hybrid inversion for global NO_x

Global NO₂ trend from OMI, 2005-2015, 95%CI

Decreased NO₂ column density in East US, Europe and Japan

Global NO₂ trend from OMI, 2005-2015, 95%CI

- Decreased NO₂ column density in East US, Europe and Japan
- Increased NO₂ column density in Asia, Australia, Africa and South America

Global NO₂ trend from OMI, 2005-2010, 95%CI

NO₂ column mainly increases in Asia;

Global NO₂ trend from OMI, 2005-2010, 95%CI

NO₂ column mainly increases in Asia; decrease in US, Europe and Japan

Global NO₂ trend from OMI, 2005-2010, 95%CI

NO₂ column mainly increases in Asia; decrease in US, Europe and Japan
 Different trend in Australia, south India and Africa

Global NO₂ trend from OMI, 2010-2015, 95%CI

Global NO₂ trend from OMI, 2010-2015, 95%CI

Global NO₂ trend from OMI, 2010-2015, 95%CI

- NO₂ column decrease in East China; increase in west US, Japan
- Larger increasing trend from DOMINO retrieval
- Trends: robust versus retrieval specific

Trend of top-down NO_x emissions, SP, 95%CI

Compare w/ column trend:

-Similar in US, Europe, China

Goal 2: Assimilate & optimize multispecies

- Method
- Evaluation using pseudo observation test
- 4D-Var & hybrid inversion
- Comparison with in-situ measurements

Model & Observations

• Model: GEOS-Chem adjoint, nested China, 0.5° x 0.667°.

• Observations:

OMI NO₂ & SO₂, NASA standard L2 product

Pseudo observation test: multispecies optimization

- Better performance of joint 4D-Var (by 7.1%) and mass balance (by 5.6%) than single species inversion

Pseudo observation test: multispecies optimization

- Better performance of joint 4D-Var (by 7.1%) and mass balance (by 5.6%) than single species inversion

Pseudo observation test: multispecies optimization

VarJ: 4D-Var jointly
VarS: Sum of two individual 4D-Var
MBJ: Mass balance jointly
MBS: Sum of two individual mass balance
OptS: Optimize SO₂ emissions
OptN: Optimize NO_x emissions
ObsS: Observe SO₂ column
ObsN: Observe NO₂ column

- Better performance of joint 4D-Var (by 7.1%) and mass balance (by 5.6%) than single species inversion
- Largest decrease of NMSE if observe and optimize both species at the same time

Impact of multispecies observations on posterior emissions

- Differences occur mostly in low emission regions.
- Changes of SO₂ emissions (70%) have little effect on NO₂ concentration (< 5%), so incorporating NO₂ observation does not change SO₂ emissions much.
- In remote region, increase of NO_x leads to increase of OH, and decrease of SO_2 column.

Top-down SO₂ emissions

Trend of emissions and column densities are different; meteorology _ lead to 7% changes of SO₂ SCD at national level

Top-down SO₂ emissions

Step 2: MB for trend

- Trend of emissions and column densities are different; meteorology lead to 7% changes of SO₂ SCD at national level
- Top-down emissions is lower than bottom-up estimate by ~100%

Evaluation of SO₂ emissions using in-situ measurements China, Jan, 2010 Beijing

(Gao et al., 2016)

- GEOS-Chem timeseries is relatively consistent with observations

Evaluation of SO₂ emissions using in-situ measurements China, Jan, 2010 Beijing Xianghe Tianjin 150 **Prior** SO₂ [pbbv] Posterior 100 100 50 50 15 22 23 22 23 24 14 15 21 200 200 200 WRF-Chem Observation 150 150 150 (Gao et al., 2016) (qdd)²OS 100 14 20 14 16 Date Date Date GEOS-Chem timeseries is relatively consistent with observations GC SO₂ is lower in Tianjin & Xianghe, but similar with in-situ measurements in Beijing

Evaluation of SO₂ emissions using observations China, Jan, 2010

- GEOS-Chem SO₂ column bias high compared to OMI observation

Evaluation of SO₂ emissions using in-situ measurements

India, Jan, 2010

 SO₂ concentration in Delhi, Karnataka, Maharashtra and Tamil Nadu has been decreased and match better with in-situ measurements

Evaluation of NO_x emissions using in-situ measurements India, Jan, 2010

 Lower NO_x concentration from GEOS-Chem probably due to coarse grid resolution and few measurements

Goal 3: Sector-based inversion

Sector-based inversion

- Motivation: Emissions are correlated through the amount of fuel combustions (Emission = species emission factor × fuel)
- Observe NO₂ and SO₂ column density.
- Optimize 7 sector-specific grid-cell emission scaling factors: industry, energy, residential, aviation, transportation, ship and agriculture.
- Apply scaling factors to NO_x , SO_2 , CO, NH_3 , BC, OC and NMVOC

Sector-based inversion

- Motivation: Emissions are correlated through the amount of fuel combustions (Emission = species emission factor × fuel)
- Observe NO₂ and SO₂ column density.
- Optimize 7 sector-specific grid-cell emission scaling factors: industry, energy, residential, aviation, transportation, ship and agriculture.
- Apply scaling factors to NO_x, SO₂, CO, NH₃, BC, OC and NMVOC.
- No prior emissions constraints.
 Changes of NO_x emissions in 4D-Var inversion (Jan, 2010, posterior prior) Optimize sector
 Optimize species
 Sector & species

- -1e12 3.3e11 3.3e11 1e12 molec/cm²/s
 Sector-based and species-based inversions have similar decrease of model error (~70%), but converge to different solutions.
- Next step: Will evaluate through in-situ measurements.

Aura 272.5 sec. 103 sec. 23 sec. 259.5 sec. 000.2 PARASOL PARASOL

Summary

- Develop a hybrid inversion that is more accurate than basic mass balance and less time-consuming than 4D-Var
- Different trend between column density and emissions
- Assimilating SO₂ observations affect NO_x posterior emissions
- Smaller posterior NO_x (1-18%) and SO_2 (~100%) emissions than bottom-up estimates in China
- Simulated NO_x concentrations are generally smaller than in-situ measurements; SO₂ simulation could be improved by the inversion depending on the location/bottom-up emissions
- Build up sector-based formulation to address the correlation among species

Qu et al., Monthly top-down NO_x emissions for China (2005-2012): a hybrid inversion method and trend analysis, JGR, 2017.

Hybrid 4D-Var / Mass balance

Base year (2010): 4D-Var

Other years (2005-2012): use 2010 4D-Var posterior for mass balance.

Motivation:

- Use 4D-Var to correct impact from transport
- Model / MB is sensitive to the prior emissions more accurate than MB
- Computationally cheaper than 4D-Var

Inverse Modeling

Atmospheric "forward" model gives C = kE

Monitoring site measures concentration *C*

(fuel burned) X (emission factor) \Rightarrow *a priori* "bottom-up" estimate $E_a \pm \sigma_a$ Inverse model $E = k^{-1}C$ \Rightarrow "top-down" estimate $E_{\varepsilon} \pm \sigma_{\varepsilon}$

Evaluation of SO₂ emissions with observations SO₂ at Beijing Miyun

- Generally lower simulated SO2 concentration than in-situ measurements
- Higher simulated SO2 column compared to OMI observations
- Less SO2 in-situ measurements than satellite observations

Evaluation of NO_x emissions using in-situ NO₂ measurements China, Jan, 2010

 GC simulation has lower NO₂ concentration and worse correlation with observations, probably due to coarse grid resolution

Evaluation of NO_x emissions using observations China, Jan, 2010

- Increased NO2 column due to spatially correlated error of emissions

Lightning NO_x growth rate, abs value

Lightning NO_x growth rate, relative value

Absolute growth rate NO₂ column

