

2017-2018 Annual Monitoring Network Plan for the North Carolina Division of Air Quality

Volume 2

Site Descriptions by Division of Air Quality Regional Office and Metropolitan Statistical Area

A. The Asheville Monitoring Region

June 30, 2017

State of North Carolina | Department of Environmental Quality | Division of Air Quality 1641 Mail Service Center | 217 W. Jones Street, Suite 4000 | Raleigh, NC 27699-1641 919 707 8400 T

Table of Contents

List of Figures
List of Tables
A. The Asheville Monitoring Region
(1) The Mountain Top Areas
(2) The Asheville MSA
(3) The Non-MSA Valley Areas
Appendix A.1 Annual Network Site Review Forms for 2016
Appendix A-2. Scale of Representativeness
Appendix A-3. Duke Progress Energy Skyland Siting Analysis and Additional Site Information A67
Duke Energy Asheville SO2 Modeling for Monitor PlacementA67
IntroductionA67
Duke Energy Asheville
AERMOD ModelingA68
Modeling Results and Ranking MethodologyA72
Ranking Results and Discussion of the Skyland DRR Monitor SiteA74
Region 4 Requested Information for Chosen Sites
Appendix A-4. Evergreen Packaging Canton Siting Analysis and Additional Site Information
Siting Analysis for the Canton DRR Site (Evergreen Packaging Canton)
Region 4 Requested Information for the Canton DRR Site (Evergreen Packaging – Canton)

List of Figures

Figure A-1. The Asheville monitoring region A7
Figure A-2. Location of mountain top monitoring sites A8
Figure A-3. Joanna Bald ozone monitoring site A8
Figure A-4. The Joanna Bald site looking north A9
Figure A-5. Looking northwest from the Joanna Bald site A9
Figure A-6. The Joanna Bald site looking west A9
Figure A-7. Looking southwest from the Joanna Bald site A9
Figure A-8. Looking northeast from the Joanna Bald site A9
Figure A-9. The Joanna Bald site looking east A9
Figure A-10. Looking southeast from the Joanna Bald site A9
Figure A-11. The Joanna Bald site looking south A9
Figure A-12. Location of Joanna Bald relative to the flood plain A10

Figure A-13.	Frying Pan Mountain ozone and IMPROVE monitoring site, 37-087-0035	A11
Figure A-14.	Looking north from the Frying Pan site	A11
Figure A-15.	Looking northwest from the Frying Pan site	A11
Figure A-16.	Looking northeast from the Frying Pan site	A11
Figure A-17.	Looking east from the Frying Pan site	A11
Figure A-18.	Looking west from the Frying Pan site	A12
Figure A-19.	Looking southwest from the Frying Pan site	A12
Figure A-20.	Looking southeast from the Frying Pan site	A12
Figure A-21.	Looking south from the Frying Pan site	A12
Figure A-22	Asheville area monitors in relation to the flood plain	A12
Figure A-23.	The Purchase Knob seasonal ozone monitoring site	A13
Figure A-24.	Location of Purchase Knob relative to the flood plain	A13
Figure A-25.	Looking north from the Purchase Knob site	A14
Figure A-26.	Purchase Knob site looking northwest	A14
Figure A-27.	Looking west from the Purchase Knob site	A14
Figure A-28.	Purchase Knob site looking southwest	A14
Figure A-29.	Purchase Knob site looking northeast	A14
Figure A-30.	Looking east from the Purchase Knob site	A14
Figure A-31.	Looking southeast from the Purchase Knob site	A14
Figure A-32.	Looking south from the Purchase Knob site	A14
Figure A-33.	The Mount Mitchell ozone monitoring site	A15
Figure A-34.	Looking north from the Mount Mitchell site	A15
Figure A-35.	Mount Mitchell site looking northwest	A15
Figure A-36.	Mount Mitchell looking northeast	A15
Figure A-37.	Looking west from the Mount Mitchell site	A15
	Mount Mitchell looking southwest	
Figure A-39.	Looking east from the Mount Mitchell site	A16
	Looking south from the Mount Mitchell site	
Figure A-41.	Location of the Mount Mitchell site relative to the flood plain	A16
Figure A-42.	Locations of Monitoring Sites in the Asheville MSA	A17
Figure A-43.	WNC Board of Education fine particle monitoring site, 37-021-0024	A18
Figure A-44.	Board of Education site looking north	A18
Figure A-45.	Board of Education site looking northwest	A18
Figure A-46.	Board of Education site looking northeast	A18
Figure A-47.	Board of Education site looking east	A18
Figure A-48.	Board of Education site looking west	A19
Figure A-49.	Board of Education site looking southwest	A19
-	Board of Education site looking southeast	
Figure A-51.	Board of Education site looking south	A19
Figure A-52.	The Bent Creek ozone monitoring site, 37-021-0030	A19

Figure A-53. Looking north from the Bent Creek site	A20
Figure A-54. Looking northwest from the Bent Creek site	A20
Figure A-55. Looking west from the Bent Creek site	
Figure A-56. Looking southwest from the Bent Creek site	A20
Figure A-57. Looking northeast from the Bent Creek site	A20
Figure A-58. Looking east from the Bent Creek site	A20
Figure A-59. Looking southeast from the Bent Creek site	A20
Figure A-60. Looking south from the Bent Creek site	A20
Figure A-61. AB Tech urban air toxics monitoring site	
Figure A-62. Looking north from the AB Tech site	A21
Figure A-63. Looking northwest from the AB Tech site	A21
Figure A-64. Looking northeast from the AB Tech site	A21
Figure A-65. Looking east from the AB Tech site	A21
Figure A-66. Looking west from the AB Tech site	A22
Figure A-67. Looking southwest from the AB Tech site	A22
Figure A-68. Looking southeast from the AB Tech site	A22
Figure A-69. Looking south from the AB Tech site	A22
Figure A-70. Aerial view showing the location of the Skyland DRR monitoring station	A23
Figure A-71. Looking north from the Skyland DRR site	A23
Figure A-72. Looking northeast from the Skyland DRR site	A23
Figure A-73. Looking northwest from the Skyland DRR site	A24
Figure A-74. Looking west from the Skyland DRR site	A24
Figure A-75. Looking southwest from the Skyland DRR site	A24
Figure A-76. Looking east from the Skyland DRR site	A24
Figure A-77. Looking southeast from the Skyland DRR site	A24
Figure A-78. Looking south from the Skyland DRR site	A24
Figure A-79. The Waynesville elementary school ozone monitoring site	A25
Figure A-80. Aerial view of the Waynesville ozone monitoring site (A is the old site locat	ion)
	A25
Figure A-81. Looking north from Waynesville ozone site	A26
Figure A-82. Waynesville ozone site looking east	A26
Figure A-83. Waynesville ozone site looking west	A26
Figure A-84. Waynesville ozone site looking south	A26
Figure A-85. Aerial view showing the location of the Canton DRR monitoring station	A27
Figure A-86. Canton DRR sulfur dioxide monitoring site	A27
Figure A-87. Looking north from the Canton DRR site	A28
Figure A-88. Looking northwest from the Canton DRR site	A28
Figure A-89. Looking west from the Canton DRR site	
Figure A-90. Looking southwest from the Canton DRR site	A28
FigureA- 91. Looking northeast from the Canton DRR site	A28

Figure A-92. Looking east from Canton DRR site	A28
Figure A-93. Looking southeast from the Canton DRR site	A28
Figure A-94. Looking south from the Canton DRR site	
Figure A-95. Monitoring sites in the non-MSA valley areas of the Asheville monitoring region	on
	A30
Figure A-96. The Bryson City ozone, particle and meteorological monitoring station, 37-173	
0002	A30
Figure A-97. Looking north from the Bryson site	A31
Figure A-98. The Bryson site looking northwest	A31
Figure A-99. Looking west from the Bryson site	A31
Figure A-100. The Bryson site looking southwest	A31
Figure A-101. The Bryson site looking northeast	A31
Figure A-102. Looking east from the Bryson site	A31
Figure A-103. The Bryson site looking southeast	A31
Figure A-104. Looking south from the Bryson site	A31
Figure A-105. Linville Falls ozone and IMPROVE monitoring site	A33
Figure A-106. Looking north from the Linville site	A33
Figure A-107. The Linville site looking northwest	A33
Figure A-108. Looking west from the Linville site	A34
Figure A-109. The Linville site looking southwest	A34
Figure A-110. The Linville site looking northeast	A34
Figure A-111. Looking east from the Linville site	A34
Figure A-112. The Linville site looking southeast	
Figure A-113. Looking south from the Linville site	A34
Figure A-114. Eviction notice from the Town of Spruce Pine	A36
Figure A-115. Arial view of city hall and hospital monitoring sites	A37
Figure A-116. Spruce Pine hospital, 37-121-0004, fine particle monitoring site	A37
Figure A-117. Spruce Pine hospital site looking north	A38
Figure A-118. Spruce Pine hospital site looking northwest	A38
Figure A-119. Spruce Pine hospital site looking west	A38
Figure A-120. Spruce Pine hospital site looking northeast	A38
Figure A-121. Spruce Pine hospital site looking east	A38
Figure A-122. Spruce Pine hospital site looking southeast	A38
Figure A-123. Spruce Pine hospital site looking southwest	A39
Figure A-124. Spruce Pine hospital site looking south	A39
Figure A-125. Aerial View of Duke Energy Asheville and Surrounding Areas	A69
Figure A-126. Locations in Duke Energy Asheville SO2 Modeling for Monitor Placement	A70
Figure A-127. Receptor Grids in Duke Energy Asheville SO2 Modeling for Monitor Placem	ient
Receptor	A71
Figure A-128. Modeled NDVs for Duke Energy Asheville	A72

Figure A-129. Frequency of Daily Maximum Concentrations for Duke Energy Asheville A73
Figure A-130. Locations of Top Ranked Receptors for Duke Energy Asheville A74
Figure A-131. View of Asheville Plant from near the Skyland DRR Monitor Location A78
Figure A-132. 2014 Traffic count map near the Skyland DRR site (from NC DOT) A79
Figure A-133. Location of the Skyland DRR monitoring station relative to the population of the
Arden area in Buncombe County A80
Figure A-134. Wind rose for the Asheville Airport A81
Figure A-135. 2014 Traffic count map for Canton, from NC DOT A110
Figure A-136. Location of the Canton DRR monitoring station relative to the population of
Canton in Haywood County A111
Figure A-137. Wind rose for Canton using 1993 data (from Evergreen Packaging) A111
Figure A-138. Canton 2012-2014 wind rose (from Evergreen Packaging) A112

List of Tables

Table A1. Site Information Table for Joanna Bald	A10
Table A2. Site Information Table for Frying Pan Mountain	A13
Table A3. Site Table for Waynesville Elementary School	A25
Table A4. Site Information Table for Bryson City	A32
Table A5. Site Information Table for Linville Falls	A34
Table A6. Site Type Appropriate Siting Scales	A66
Table 7. Parameters for Duke Energy Asheville SO2 Modeling for Monitor Placement	A68
Table 8. Selected Ranking Results from the Duke Energy Asheville SO2 Modeling for Monitor	
Placement	A75
Table 9. Other considerations in site selection	A82
Table 10. The 2016-2017 Sulfur Dioxide Monitoring Network for the Asheville MSA ^a	A83
Table 11. Other considerations in selection of the Canton DRR site	A113

A. The Asheville Monitoring Region

The Asheville monitoring region, shown in Figure A-1, consists of four sections: (1) the mountain-top areas, those areas above 1.2 kilometers, Km, or 4,000 feet in elevation in Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Graham, Haywood, Henderson, Jackson, Madison, Macon, McDowell, Mitchell, Swain, Transylvania and Yancey counties, (2) the Asheville metropolitan statistical area, MSA, i.e., valley sites below 1.2 Km in Buncombe, Haywood, Henderson and Madison counties, (3) the non-MSA valley areas, those areas below 1.2 Km in elevation in Avery, Cherokee, Clay, Graham, Jackson, Macon, McDowell, Mitchell, Polk, Rutherford, Swain, Transylvania and Yancey counties and (4) the western portion of the Hickory-Lenoir-Morganton MSA, i.e., valley sites in Burke and Caldwell counties. This section of the monitoring plan focuses on the first three sections. Monitoring in Burke and Caldwell is covered in Section C, the Mooresville Monitoring Region.

Figure A-1. The Asheville monitoring region The squares show the approximate locations of the monitoring sites in this region.

(1) The Mountain Top Areas

The mountain top areas consist of elevations at or above 1.2 kilometers or 4,000 feet in 17 counties in western North Carolina: Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Graham, Haywood, Henderson, Jackson, Madison, Macon, McDowell, Mitchell, Swain, Transylvania and Yancey. There are no metropolitan or micropolitan statistical areas at these elevations. The DAQ currently operates four monitoring sites and the Eastern Band of Cherokee Indians, EBCI, operates one monitoring site on mountain tops at elevations greater than 1.2 kilometers. The United States Environmental Protection Agency, EPA, also operates a Clean Air Status and Trends Network, CASTNET, site at an elevation of 1.2 kilometers. The Barnett Knob tribal monitor is discussed further in the EBCI network plan. The Cranberry CASTNET site is discussed further in the CASTNET network plan.¹ One of the DAQ sites is an ozone-monitoring site located on Joanna Bald Mountain in the Joyce Kilmer National Wilderness Area. In addition to this site, the DAQ operates two high-elevation sites in Haywood County located in or near class 1 areas: Frying Pan in the Shining Rock Wilderness Area and Purchase Knob in the Great Smoky Mountains National Park. Another DAQ site is in Mount Mitchell State Park. The locations of the four DAQ and the tribal monitors are shown in Figure A-2.

¹ 2017 CASTNET Annual Network Plan, April 10, 2017, available on the worldwide web at <u>https://www.epa.gov/sites/production/files/2017-04/documents/draft_castnet_2017_annual_network_plan.pdf</u>, accessed May 1, 2017.

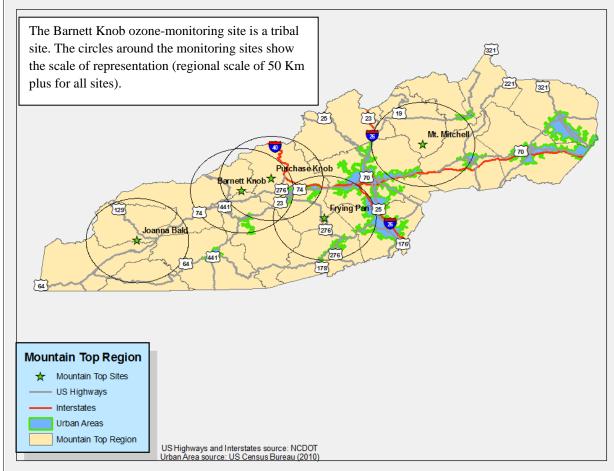


Figure A-2. Location of mountain top monitoring sites

At the Joanna Bald site in Graham County, the DAQ operates an ozone monitor that belongs to the United States Department of Agriculture Forest Service. The relative humidity and air temperature sensors that were installed in 2005 were shut down on Oct. 8, 2014. A picture of the site as well as views looking north, east, south and west are provided in Figure A-4 through Figure A-11. Table A1 summarizes monitoring information for the site. This monitoring site is in the Joyce Kilmer-Slickrock Wilderness Area, a class I area. This monitor is a rural monitor. The location of the monitor with regards to the flood plain is shown in Figure A-12.

Figure A-3. Joanna Bald ozone monitoring site

Figure A-4. The Joanna Bald site looking north

Figure A-5. Looking northwest from the Joanna Bald site

Figure A-6. The Joanna Bald site looking west

Figure A-7. Looking southwest from the Joanna Bald site

Figure A-8. Looking northeast from the Joanna Bald site

Figure A-9. The Joanna Bald site looking east

Figure A-10. Looking southeast from the Joanna Bald site

Figure A-11. The Joanna Bald site looking south

Table AI.	Sile I	morm	auvii	laur	101 JU		Dalu							
Site Name:								AQS	Site Iden	tification	L			
	Joanna Bald								ber:		37	-075-00	001	
Location:	Natio	onal Fore	est Roa	d 423 S _I	pur, Rol	obinsvill	le, No	rth Caro	lina					
CBSA:	None	2							CBSA	#:		0000	0	
Latitude	35.25	57930		Lo	ongitud	e -	83.79	5620	Datum	:		WGS	84	
Elevation	1429	meters												
Parameter								Meth	od	Sar	nple	Samj	oling	
Name	Meth	ıod						Refer	ence ID	Du	ration	Sche	dule	
Ozone	Instru	umental	with ul	tra viole	et photo	metry ((947)	EQOA	4-0880-04	47 1-H	lour	April	1 to Oct. 31	
Date Monito	or Esta	blished	: Ozo	one								April	3, 2003	
Nearest Roa	d: 1	National	Forest	Road	Traffi	c Count	:	< 10 Year			of Count: Estimate			
Parameter N	lame	Distar	nce to F	Road 1	I Direction to Road				Monitor Type Statement			of Purpose		
							Special		Real-tin	ne AQI	reportin	g and		
Ozone		14,3	23 met	neters Northwest				purpose forecastin			ing. Co	g. Compliance w/NAAQS.		
							Sui	itable fo	r Compa	rison to	Pr	oposal t	o Move or	
Parameter N	lame	Monit	oring (Objectiv				AQS			Change			
Ozone		Genera	al back	ground	Reg	gional			Yes			N	lone	
							Meet	ts Part 5	8 Requir	ements f	or:			
Parameter Name				Appendix A A			pendi	x C	A	opendix 1	D	Α	ppendix E	
Ozone				Yes	**		Yes			Yes		Yes		
Parameter N	lame		Probe	Height	eight (m) Distance to			Support Distance			stance to Trees		Obstacles	
Ozone			4.22 m	0, ,			1.7 n	neters	10	10.97 meters to northwest			None	

Table A1. Site Information Table for Joanna Bald

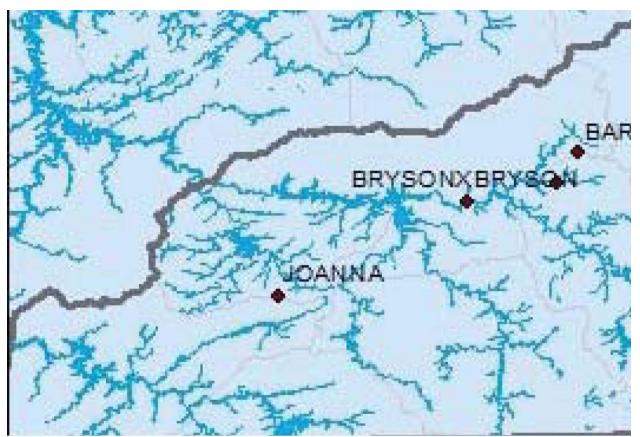


Figure A-12. Location of Joanna Bald relative to the flood plain

At the Frying Pan Mountain monitoring site, 37-087-0035, the DAQ operates a seasonal ozone monitor. At the end of the 2011 ozone season, a new monitoring shelter was constructed at the site. A picture of the site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure A-13 through Figure A-21. Table A2 provides information on the site. This site is in a class 1 area (the Shining Rock Wilderness Area) and is collocated with an Interagency Monitoring of Protected Visual Environments (IMPROVE) monitor. This monitor is a rural monitor. The location of the monitor with regards to the flood plain is shown in Figure A-22.

Figure A-13. Frying Pan Mountain ozone and IMPROVE monitoring site, 37-087-0035

Figure A-14. Looking north from the Frying Pan site

Figure A-16. Looking northeast from the Frying Pan site

Figure A-15. Looking northwest from the Frying Pan site

Figure A-17. Looking east from the Frying Pan site

Figure A-18. Looking west from the Frying Pan site

Figure A-19. Looking southwest from the Frying Pan site

Figure A-20. Looking southeast from the Frying Pan site

Figure A-21. Looking south from the Frying Pan site

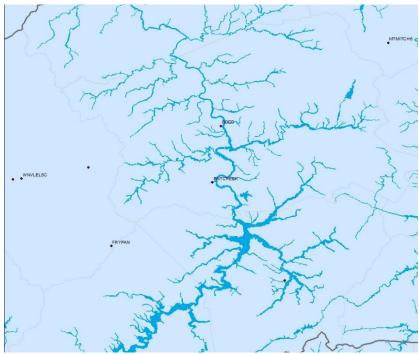


Figure A-22 Asheville area monitors in relation to the flood plain

Site Name:	Frying	Frying Pan Mountain						Identi	ficati	er:	37-087-0035					
Location:	Tower	Blue R	lue Ridge Pkwy Mile Marker 410, Canton, North Carolina													
CBSA:		None							CBS	5A #	:		00000)		
Latitude		35.393	719	Longi	tude	-82.77	438	36	Dati	um:			WGS	84		
Elevation		1617.8	88 meters													
Parameter N	lame	Metho	d		Meth	od Refe	erei	nce ID	S	Samj	ole D	uration	Sar	npling Schedule		
Ozone	violet	nental with photometry	EQO	A-0880-	047	7	1	-Ho	ur		-	ril 1 to Oct. 31				
Date Monito											1			y 8, 1990		
Nearest Roa	d:	<u> </u>			Traffic	Traffic Count:300				Year of Co				ount: Estimated		
Parameter N	lame	Distance to Road Dire			ction to Road Monito			r Type Statement			ement o	of Purpose				
Ozone		315 meters			Southeast Special purpose				1			w/NAAQS. Real-time ng & forecasting.				
Parameter N	ame	Monitoring Objective			Scale				Comparison AQS Prop				osal to Move or Change			
Ozone		.			Regiona				es None			None				
Parameter				N	Ieets 40	CFR Pa	rt 5	58 Req	luire	men	ts for	:				
Name		Appendix A			Арр	Appendix C			Appendix D					Appendix E		
Ozone	Ozone Yes				Yes			Yes					Yes			
Parameter N	Parameter Name			Probe Height (m)			Distance to Suppor			t Distance to Tre				Obstacles		
Ozone			4.5			1.1 m	lete	r			> 20) meters		None		

Table A2. Site Information Table for Frying Pan Mountain

At the **Purchase Knob** monitoring site, 37-087-0036, the DAQ operates a seasonal ozone monitor. Figure A-23 shows the site. The location of the monitor with regards to the flood plain is shown in Figure A-24. Views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure A-25 through Figure A-32. This site is in a class 1 area (Great Smokey Mountains National Park). This monitor is a rural monitor.

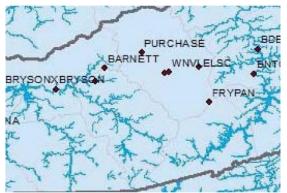


Figure A-24. Location of Purchase Knob relative to the flood plain

Figure A-23. The Purchase Knob seasonal ozone monitoring site

Figure A-25. Looking north from the Purchase Knob site

Figure A-26. Purchase Knob site looking northwest

Figure A-27. Looking west from the Purchase Knob site

Figure A-28. Purchase Knob site looking southwest

Figure A-29. Purchase Knob site looking northeast

Figure A-30. Looking east from the Purchase Knob site

Figure A-31. Looking southeast from the Purchase Knob site

Figure A-32. Looking south from the Purchase Knob site

At **Mount Mitchell,** the DAQ operates a seasonal ozone monitor. A picture of the site as well as views looking north, east, south and west are provided in Figure A-33 through Figure A-40. This site is located at the Mount Mitchell State Park visitor center. The location of the monitor with regards to the flood plain is shown in Figure A-41.

Figure A-34. Looking north from the Mount Mitchell site

Figure A-35. Mount Mitchell site looking northwest

Figure A-33. The Mount Mitchell ozone monitoring site

Figure A-36. Mount Mitchell looking northeast

Figure A-37. Looking west from the Mount Mitchell site

Figure A-38. Mount Mitchell looking southwest

Figure A-39. Looking east from the Mount Mitchell site

Figure A-40. Looking south from the Mount Mitchell site

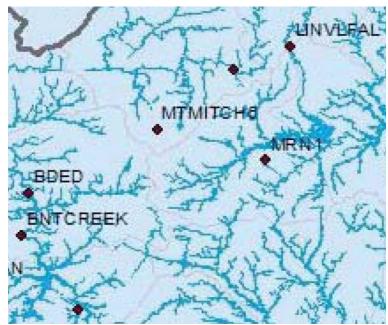


Figure A-41. Location of the Mount Mitchell site relative to the flood plain

There are no new monitoring rules that require additional monitoring in these high-elevation areas. The mountain top seasonal ozone monitors started on March 1, 2017, because the ozone monitoring season was extended to March in 2015. The DAQ requested and received a waiver

for March ozone monitoring for the Joanna Bald, Frying Pan, Purchase Knob and Mount Mitchell sites in years when the weather does not allow access to these sites. Access is often limited during the winter. Sometimes these sites remain inaccessible until early to mid-April. The waiver request approval was granted by the EPA in December 2016.

(2) The Asheville MSA

The Asheville MSA consists of the valley portions (areas under the elevation of 1.2 Km or 4,000 feet) of four counties: Buncombe, Haywood, Henderson and Madison. The major urban areas are Asheville, Waynesville and Hendersonville. The DAQ currently operates two monitoring sites in the Asheville MSA, the Western North Carolina Regional Air Quality Agency, WNC, operates two, both agencies jointly operate an urban air toxics monitoring site and DAQ and Duke Energy Progress jointly operate a sulfur dioxide data requirements rule, DRR, site. These sites are located at the Board of Education, Bent Creek, AB Tech and Skyland in Buncombe County and the Waynesville Elementary School and Canton in Haywood County. In 2013 WNC relocated its ozone monitor at Bent Creek to another location within the park. On Dec. 31, 2015, the DAQ shut down the fine particle monitor at the Waynesville Recreation Center. On Jan. 1, 2017, two new source-oriented monitoring sites began operating in this MSA. One is operated by the DAQ in Canton near the Evergreen facility. The other is operated by Duke in Skyland near the Asheville Steam Station. The locations of these six monitoring sites are shown in Figure A-42.

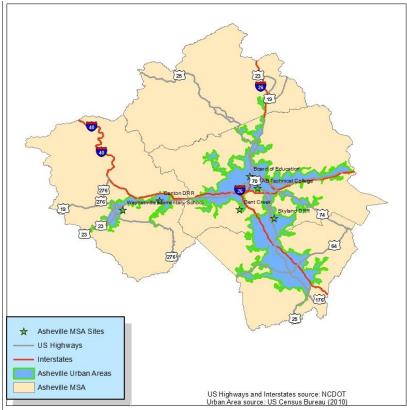


Figure A-42. Locations of Monitoring Sites in the Asheville MSA

At the **Board of Education** site, WNC operates a one-in-three-day fine particle federal reference method, FRM, monitor, a one-in-six-day collocated precision fine particle FRM monitor and a continuous fine particle monitor. The one-in-six-day SASS and URG 3000 speciation fine particle monitors were shut down in January 2015 when the EPA stopped funding them. A picture of the site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure A-43 through Figure A-51. On Jan. 1, 2013, WNC changed from using the well impactor ninety-six, WINS, to very sharp cut cyclones, VSCC, on the FRMs. In 2017 WNC plans to change the method for continuously measuring fine particles.

Figure A-43. WNC Board of Education fine particle monitoring site, 37-021-0024

Figure A-44. Board of Education site looking north

Figure A-45. Board of Education site looking northwest

Figure A-46. Board of Education site looking northeast

Figure A-47. Board of Education site looking east

Figure A-48. Board of Education site looking west

Figure A-49. Board of Education site looking southwest

Figure A-50. Board of Education site looking southeast

Figure A-51. Board of Education site looking south

At the **Bent Creek** site, 37-021-0030, WNC operates a seasonal ozone monitor. A picture of the site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure A-52 through Figure A-60. This site is one of two urban ozone-monitoring sites in the MSA. 40 CFR 58 Appendix D requires the Asheville MSA to have two ozone monitoring sites. Because of the growth of the trees at the old Bent Creek location, WNC moved the site to a new Bent Creek location that is within a mile of the old Bent Creek location on June 6, 2013.

Figure A-52. The Bent Creek ozone monitoring site, 37-021-0030

Figure A-53. Looking north from the Bent Creek site

Figure A-54. Looking northwest from the Bent Creek site

Figure A-55. Looking west from the Bent Creek site

Figure A-56. Looking southwest from the Bent Creek site

Figure A-57. Looking northeast from the Bent Creek site

Figure A-58. Looking east from the Bent Creek site

Figure A-59. Looking southeast from the Bent Creek site

Figure A-60. Looking south from the Bent Creek site

At the **AB Tech** site, 37-021-0035, WNC operates a year-round air toxics volatile organic compound sampler. Samples are collected in stainless steel canisters and sent to the Laboratory Analysis Branch, LAB, where they are analyzed for 68 compounds using the Compendium Method for Toxic Organics 15. A picture of the site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure A-61 through Figure A-69.

Figure A-61. AB Tech urban air toxics monitoring site

Figure A-62. Looking north from the AB Tech site

Figure A-63. Looking northwest from the AB Tech site

Figure A-64. Looking northeast from the AB Tech site

Figure A-65. Looking east from the AB Tech site

Figure A-66. Looking west from the AB Tech site

Figure A-67. Looking southwest from the AB Tech site

Figure A-68. Looking southeast from the AB Tech site

Figure A-69. Looking south from the AB Tech site

In 2015, the North Carolina Division of Air Quality, DAQ, began working with Duke Energy Progress to establish a sulfur dioxide monitoring station in Skyland, North Carolina, to characterize the ambient sulfur dioxide concentrations near the Asheville steam station as required by the DRR for sulfur dioxide.² The area chosen for placement of the monitor was selected using the results of modeling done as described in the technical assistance document and is reported in Appendix A-3. Duke Progress Energy Skyland Siting Analysis and Additional Site Information. An aerial view of the monitoring location in Figure A-70.

² Data Requirements Rule for the 2010 1-Hour Sulfur Dioxide Primary National Ambient Air Quality Standard, Federal Register of Aug. 21, 2015, (80 FR 51052)(FRL-9928-18-OAR), 2015-20367.

Figure A-70. Aerial view showing the location of the Skyland DRR monitoring station

The Air Quality System identification number for this monitor is 37-021-0036-42401-1. DAQ operates this monitor in collaboration with Duke Energy Progress to ensure the air in the Asheville area complies with the national ambient air quality standards for sulfur dioxide. Duke Energy Progress operates the monitor following the DAQ quality assurance project plan and the monitor is part of the DAQ primary quality assurance organization. Figure A-71 through Figure A-78 show views from the site looking north, east, southeast, south, west and northwest.

Figure A-71. Looking north from the Skyland DRR site

Figure A-72. Looking northeast from the Skyland DRR site

Figure A-73. Looking northwest from the Skyland DRR site

Figure A-74. Looking west from the Skyland DRR site

Figure A-75. Looking southwest from the Skyland DRR site

Figure A-76. Looking east from the Skyland DRR site

Figure A-77. Looking southeast from the Skyland DRR site

Figure A-78. Looking south from the Skyland DRR site

Figure A-79. The Waynesville elementary school ozone monitoring site

At the **Waynesville Elementary**

School site, 37-087-0008, the DAQ operates a seasonal ozone monitor, one of two urban ozone monitoring sites in the MSA. 40 CFR 58 Appendix D requires the Asheville MSA to have two ozone monitoring sites. The site is shown in Figure A-79. Table A3 provides information on the site. This site started at the beginning of the 2011 ozone monitoring season and is across the street from the Haywood County Health Department where the previous site was located.

Table A3. Site	Information	Table for	Wavnesville	Elementary	School
	mormanon	I doit iti	vi a ynes vine	Licification	JUIIOUI

Table A5. Site information Table for Waynesvine Elementary School													
Site Name:	Wayr	nesville l	Elementary So	chool		AQS Sit	e Idei	ntification	Number:	37-()87-0008		
Location:	2236	Ashevil	le Road, Way	nesvill	e, North	Carolina	L	CBSA:	Asheville, N	[C	MSA #: 11700		
Latitude	35.50	7160	Longitude	-82.96	53370 I	Datum:	WG	S84 Eleva	ation 793 1	meter	rs		
Parameter							Met	hod	Sample				
Name	Meth	od					Refe	erence ID	Duration	I Sa	mpling Schedule		
Ozone	Instru	imental v	with ultra viol	let phot	tometry	(047)	EQC	DA-0880-04	17 1-Hour	Μ	arch 1 to Oct. 31		
Date Monitor Established:OzoneApril 1, 2011										pril 1, 2011			
Nearest Road	l:	Ashev	ille Road	Т	'raffic C	Count:	8600		Year of Co	ount	2014		
Parameter Name Dista			nce to Road	Dire	Direction to Road			Monitor Type Stateme			nt of Purpose		
									Complianc	e w/	NAAQS. Real-time		
Ozone		1	51 meters	E	East nort	heast	SLA	AMS	ting a	ng & forecasting.			
										P	roposal to Move or		
Parameter N	ame	Monito	oring Objecti	Suitab	le for	Comparis	on to NAAQS	QS Change					
Ozone		Popula	tion exposure	R	egional	Yes None							
Parameter N	ame					Meets I	Part 5	8 Require	ments for:				
			Appendix A Ap		Apper	pendix C		Appendix I)		Appendix E		
Ozone			Yes			Yes			Yes		Yes		
Parameter N	ame		Probe Height (m) Dista			nce to Su	ppor	port Distance to Trees			Obstacles		
Ozone			3.8		1	.02 mete	rs >20 meters			None			

The site was relocated on April 1, 2011, to Junaluska Elementary School at 2238 Asheville Road, Waynesville, NC 28786, approximately 200 meters east of the previous Waynesville health department site. An aerial view of the area is shown in Figure A-80. Figure A-81, Figure A-83, Figure A-84 and Figure A-82 provide views looking north, east, south and west from the new site.

Figure A-80. Aerial view of the Waynesville ozone monitoring site (A is the old site location)

Figure A-81. Looking north from Waynesville ozone site

Figure A-83. Waynesville ozone site looking west

Figure A-82. Waynesville ozone site looking east

Figure A-84. Waynesville ozone site looking south

At the **Canton DRR** site, 37-087-0013, DAQ operates a source-oriented sulfur dioxide monitor to meet the requirements in the 2010 sulfur dioxide data requirements rule. The monitor will operate for a minimum of three years from 2017 to 2019 to ensure ambient air in the proximity of the Evergreen/Blue Ridge Paper facility meets the national ambient air quality standards. DAQ operates this monitor to ensure the air in the Asheville area complies with the national ambient air quality standards for sulfur dioxide. Figure A-85 through Figure A-94 show an aerial view of the site in relationship to the Evergreen facility, the site and views from the site looking north, northeast, east, south, southwest, west and northwest.

Figure A-85. Aerial view showing the location of the Canton DRR monitoring station

Figure A-86. Canton DRR sulfur dioxide monitoring site

Figure A-87. Looking north from the Canton DRR site

Figure A-88. Looking northwest from the Canton DRR site

Figure A-89. Looking west from the Canton DRR site

Figure A-90. Looking southwest from the Canton DRR site

FigureA- 91. Looking northeast from the Canton DRR site

Figure A-92. Looking east from Canton DRR site

Figure A-93. Looking southeast from the Canton DRR site

Figure A-94. Looking south from the Canton DRR site

The December 2010 changes to the lead monitoring regulations³ impacted the Asheville MSA because Evergreen/Blue Ridge Paper Products, located in Haywood County, emitted over 0.5 tons of lead to the air in 2009 and 2010.⁴ In 2011, the DAQ requested and received a waiver for lead monitoring at Blue Ridge Paper based on results of modeling.⁵ Model results indicate the maximum ambient lead concentration in the ambient air at and beyond the fence line is 0.006 micrograms per cubic meter, well below the 0.075 micrograms per cubic meter (50 percent of the NAAQS) threshold for monitoring. The DAQ did not renew the waiver in 2015 because the facility currently emits less than 0.5 tons of lead.⁶

The 2015 sulfur dioxide monitoring requirements required additional sulfur dioxide monitoring in this MSA.⁷ The sulfur dioxide monitors required by this rule are discussed in detail in Appendix A-3. Duke Progress Energy Skyland Siting Analysis and Additional Site Information and Appendix A-4. Evergreen Packaging Canton Siting Analysis and Additional Site Information. Both sites started in January 2017.

(3) The Non-MSA Valley Areas

The non-MSA valley areas consist of those areas below 1.2 Km (4,000 feet) in 13 counties: Avery, Cherokee, Clay, Graham, Jackson, Macon, McDowell, Mitchell, Polk, Rutherford, Swain, Transylvania and Yancey. There are no major metropolitan areas. The Brevard micropolitan statistical area is in Transylvania County and the Forest City micropolitan statistical area is in Rutherford County. The DAQ currently operates three monitoring sites in this area and the EBCI operates two monitoring sites. The EBCI operates a fine-particle monitoring site in Cherokee, North Carolina and an ozone-monitoring site in Swain County at the old high school. Both sites are tribal monitors and not part of the DAQ monitoring network. This section focuses on the three monitoring sites operated by DAQ. These sites are located at Bryson City in Swain County, Linville Falls in Avery County and Spruce Pine in Mitchell County. The locations of these five monitoring sites are shown in Figure A-95. The Marion particle monitoring station in McDowell County was shut down on Dec. 31, 2015.

³ Revisions to Lead Ambient Air Monitoring Requirements, Federal Register, Vol. 75, No. 247, Monday, Dec. 27, 2010, p. 81126, available on the worldwide web at https://www.gpo.gov/fdsys/pkg/FR-2010-12-27/pdf/2010-32153.pdf#page=1.

⁴ North Carolina Criteria and Toxic Air Pollutant Point Source Emissions Report, available on the worldwide web at

https://xapps.ncdenr.org/aq/ToxicsReport/ToxicsReportFacility.jsp?ibeam=true&year=2009&pollutant=153&county code=087.

⁵ 2011 State of North Carolina Ambient Air Monitoring Network Plan, The U. S. EPA Region 4 Comments and Recommendations, p3-4, available at

http://xapps.ncdenr.org/aq/documents/DocsSearch.do?dispatch=download&documentId=7843.

⁶ Data obtained from the DAQ emission inventory database available on the worldwide web at https://xapps.ncdenr.org/aq/ToxicsReport/ToxicsReportFacility.jsp?ibeam=true&year=2015&pollutant=153&county <u>code=087</u>, accessed on May 12, 2017
 ⁷ Data Requirements Rule for the 2010 1-Hour Sulfur Dioxide Primary National Ambient Air Quality Standard,

Federal Register of Aug. 21, 2015, (80 FR 51052) (FRL-9928-18-OAR), 2015-20367.

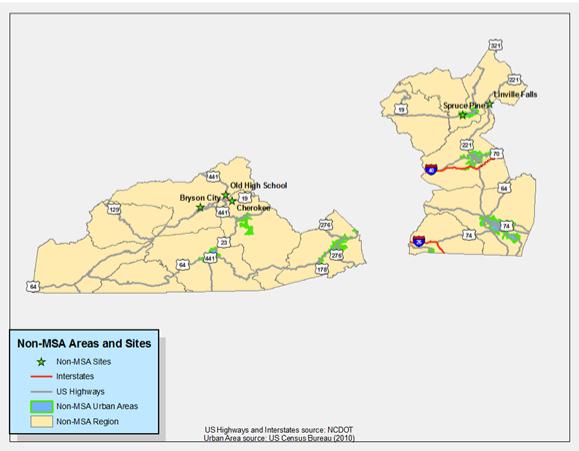


Figure A-95. Monitoring sites in the non-MSA valley areas of the Asheville monitoring region

At Bryson City in Swain County, 37-173-0002, DAQ operates a seasonal ozone monitor and a federal equivalent method, FEM, beta attenuation, BAM, continuous fine particle monitor. In April 2014, the Tennessee Valley Authority added a hydrologic gauging station. A 12-month special purpose sulfur dioxide monitor collected background data for modeling attainment demonstrations for the Asheville power plant from August 2014 to August 2015. Figure A-96 through Figure A-104 shows the site and views looking north, northeast, east, southeast, south, southwest, west and northwest. The site is collocated with a meteorological tower measuring wind speed, wind direction, two-meter and 10-meter ambient temperature, relative humidity, ultraviolet radiation and rain fall.

Figure A-96. The Bryson City ozone, particle and meteorological monitoring station, 37-173-0002

Figure A-97. Looking north from the Bryson site

Figure A-98. The Bryson site looking northwest

Figure A-99. Looking west from the Bryson site

Figure A-101. The Bryson site looking northeast

Figure A-102. Looking east from the Bryson site

Figure A-103. The Bryson site looking southeast

Figure A-100. The Bryson site looking southwestFigure A-104. Looking south from the Bryson siteTable A4 summarizes monitoring information for the Bryson City site.

		ation Table for	DIYSU		•	* 1				07	172 0002		
Site Name:	Bryson City	AQS Site Identification Number 37-173-0002 Park Drive, Bryson City, North Carolina 37-173-0002											
Location:	30 Recreation												
CBSA:		Not in a CBSA									000		
Latitude			ongitud	le	-83.4	42133	3 I	Datum:		W	GS84		
Elevation		560 meters											
Parameter N	ame	Method				Meth Refe	iod rence]	ID	Sampl Durati		Sampling Schedule		
		Instrumental with	ultra vio	olet									
Ozone		photometry (047)				EQO.	A-088	0-047	1-Hou	r	March 1 to	Oct. 31	
		Met One BAM-10	20 Mas	s Mor	nitor								
PM 2.5 local	conditions	w/VSCC - beta att	enuatio	n		EQPI	M-030	8-170	1-Hou	r	Year round	1	
Outdoor temp	erature &	Instrumental - elec	ctronic o	or mac	chine	Not a	refere	ence					
temperature d	ifference	avg. (041)				methe	od		1-Hour	r	Year round	1	
						Not a	refere	ence					
Rain/melt pre	cipitation	Bucket - continuou	us or inc	creme	ntal	methe	od		1-Hou	r	Year round	1	
		Instrumental - hyg	rotherm	nograp	h	Not a	refere	ence					
Relative hum	idity	elec or mach avg ((011)			methe	od		1-Hou	r	Year round	1	
						Not a	refere	ence					
Solar radiatio	n	Instrumental – pyr	anomet	er (01	1)	methe	od		1-Hou	r	Year round	1	
		Instrumental - electronic or machine					refere	ence					
Wind direction	n/speed	avg. (050)					od		1-Hou	r	Year round	1	
		Ozone									April 1, 199	95	
		PM 2.5 local cond	itions								June 17, 20	09	
D.A. Maria		Outdoor temperatu	ifferer	nce				April 25, 2001					
Date Monito	r	Rain/melt precipitation									April 25, 20	001	
Established:		Relative humidity						April 25, 20	001				
		Solar radiation						April 25, 20	001				
		Wind direction/spe							April 25, 20				
Nearest Road	1:	Recreation Park D	Count: 100 Yea					• of Count: 2010					
		Distance to	Direct	ion									
Parameter N	ame	Road			Mon	itor T	ype	State	ment of	f Pu	rpose		
			to Roud								NAAQS. Real-time		
Ozone		20 meters	North	west	SLA	SLAMS					ng & forecasting.		
010110		20 11101010	1.0101					-			iance w/NAAQS. Real-time		
PM 2.5 local	conditions	25 meters	North	east	SLA	SLAMS			reporting & forecasti				
Outdoor temp										8	8		
temperature d		25 meters	North	east	Non-	-regula	tory Real-time inf			orm	ormation & modeling		
Rain/melt pre		25 meters	North						Real-time inform				
Relative hum		25 meters	North			regula			Real-time information & modeling				
Solar radiatio		25 meters	North			regula					ation & mod		
Wind direction		25 meters	North			regula					ation & mod		
-	*						-		NAAQ		Proposal to	-	
Parameter N	ame	Monitoring Obje	ctive	Scale	e			parison	-	-	or Change		
Ozone		General backgroun		Neig	hborh	ood		Ye			Nor	ie	
	I 2.5 local conditions Regional transport			Regi				Ye			Nor		
Outdoor temp													
temperature difference		Not applicable		Not a	applic	able	N	Not appl	icable		None		
Rain/melt pre		Not applicable			applic		N	Not appl	icable		Nor		
Relative hum	*	Not applicable			applic			Not appl			None		
		Not applicable											
Solar radiation		applicable	Not applicable Not applicable			I I	Not applicable Not applicable			None None			
Wind direction		Not applicable		Not	onnlia	able		11					

Table A4. Site Information Table for Bryson City

	Meets Part 58 Requirements for:						
Parameter Name	Appendix A	Appendix C	Ap	pendix D	Appendix E		
Ozone	Yes	Yes		Yes	Yes		
PM 2.5 local conditions	Yes	Yes		Yes	Yes		
Outdoor temperature & temperature difference	Not applicable	Not applicable	No	Not applicable		Not applicable	
Rain/melt precipitation	Not applicable	Not applicable	No	Not applicable		Not applicable	
Relative humidity	Not applicable	Not applicable	No	Not applicable		Not applicable	
Solar radiation	Not applicable	Not applicable	No	Not applicable		Not applicable	
Wind direction/speed	Not applicable	Not applicable	Not applicable		Not applicable		
Parameter Name	Probe Height (m)	Distance to Support	;	Distance to Trees		Obstacles	
Ozone	4.57	1.82 meters		15.54 meters southwest		None	
PM 2.5 local conditions	2.286	2.0574 meters		10.97 meters		None	
Outdoor temperature & temperature difference	2 & 10	> 1 meters	s >20		>20 meters		
Rain/melt precipitation	Ground level	Not applicable		>20 meters		None	
Relative humidity	2	> 1 meters		>20 meters		None	
Solar radiation	2	> 1 meters		>20 meters		None	
Wind direction/speed	10	> 1 meters		>20 meters		None	

Table A4. Site Information Table for Bryson City

At the **Linville Falls** site, the DAQ operates a seasonal ozone monitor. A picture of the site as well as views looking north, northeast, east, southeast, south, southwest, west and northwest are provided in Figure A-105 through Figure A-113. This monitoring site is in the Linville Gorge Wilderness Area class 1 area and is collocated with an IMPROVE monitor. This monitor is a rural monitor. The collocated relative humidity and ambient temperature sensor was shut down on Oct. 30, 2014.

Figure A-106. Looking north from the Linville site

Figure A-105. Linville Falls ozone and IMPROVE monitoring site

Figure A-107. The Linville site looking northwest

Figure A-108. Looking west from the Linville site

Figure A-109. The Linville site looking southwest

Figure A-110. The Linville site looking northeast Table A5 Site Information Table for Linvill

Figure A-111. Looking east from the Linville site

Figure A-112. The Linville site looking southeast

Figure A-113. Looking south from the Linville site

Parameter Name Distance to Roa		nce to Road	Direction	n to Road Monitor Type		Statement of Purpose			
Nearest Road: Linville Falls Ro		alls Road	Traffic Count: <		<	10	Year of Count: Estimate		Estimate
Date Monitor Established: Ozone						Aug. 1, 1999			
Ozone	Instrumental with ultra violet photometry (047)			EQOA-0880-047		1-Hour	March 1 to Oct. 31		
1 anic							Duration	Sam	sing seneulle
Parameter Name	Method					Sample Duration	Sampling Schedule		
Elevation	987 meters							1	
Latitude	35.972347	Le	ongitude	-81.9330)72	Datum:		WGS84	
CBSA:	None			CBSA #:		:	00000		
Location:	100 Linville Falls Road, Linville Falls								
Site Name:	Linville Falls			AQS Site Identification Number:			37-011-0002		
Table A5.	Site Informa	tion Table	for Linvil	le Falls					

Ozone	86	meters	East	SLAMS		Compliance w/NAAQS. Real-time AQI reporting and forecasting.		
Parameter Name	Monito	oring Object	ive Scale	10 11-110110-10	Suitable for Proposal to Comparison to NAAQS Change			
Ozone	Genera	l background	l Urban		Yes	None		
		Meets Part 58 Requirements for:						
Parameter Name		Appendi	ix A Appen	dix C	Appendix D	Appendix E		
Ozone		Yes	Ye	s	Yes	Yes		
Parameter Name	Pr	obe Height ((m) Distance	to Support	Distance to Tr	es Obstacles		
Ozone	3.6	6 meters	1.29	5 meters	> 20 meter	None		

Table A5. Site Information Table for Linville Falls

In the fall of 2013, DAQ was evicted from the monitoring site located in Spruce Pine on the top of town hall, 37-121-0001. Figure A-114 provides the eviction notice from the Town of Spruce Pine. The Town of Spruce Pine purchased a building and relocated their offices at the end of 2013. Thus, DAQ shut down the Spruce Pine site at the end of 2013 and established a new site at the Blue Ridge Regional Hospital, 37-121-0004. Because of the timing of the notice, DAQ was unable to include this network modification in the July 2013 network monitoring plan. Thus, the DAQ requested emergency approval from the EPA Region IV for shutting down the old site and establishing the new site. Details on the new site are provided below.

Spruce Pine is in the mountains where there are very few flat open spaces to locate a monitor. The DAQ prefers to keep the monitors on the ground for safety reasons and for ease of access. After searching around Spruce Pine within a mile of the city hall location, a new location at Blue Ridge Regional Hospital, 272 Hospital Dr., Spruce Pine, NC, was identified. As shown in Figure A-115, the hospital location is approximately 1 kilometer east southeast of the city hall site. It is approximately 75 meters southeast of Highway U.S. 19 East, which had an average annual daily traffic count of 9,500 in 2012. Based on Figure E-1 in 40 CFR 58 Appendix E, the monitor is on the edge of the neighborhood-urban scale boundary. The site is located at latitude 35.912487 and longitude -82.062082. A picture of the site and pictures taken from the site looking in 8 compass directions are provided in Figure A-116 through Figure A-124.

Town of Spruce Pine, North Carolina

Paul _____ Stere____ F#

September 19, 2013

Mr. Steve D. Ensley Division of Air Quality, NCDENR 2090 US Highway 70 Swannanoa, NC 28778

C SEP 2 3 2013 DIVISION OF AIR QUALITY ASHEVILLE REGIONAL OFFICE

Dear Mr. Ensley:

Air Quality Equipment Atop the Spruce Pine Town Hall

As you may be aware, the Town of Spruce Pine has purchased a building and plans to relocate our town hall. If all goes as anticipated, the closing on the property will be on September 27, 2013. We hope to have our offices moved by the end of the current calendar year.

No decision has been made as to the use or disposition of the existing building. I wanted to give you ample time to make your decisions regarding the location of the air quality equipment currently located on top of our building. Please feel free to contact me with questions or comments.

Sincerely,

a

Richard Canipe Manager, Town of Spruce Pine

cc: Terri Davis, NCDENR Division of Air Quality

Post Office Box 189, Spruce Pine, North Carolina 28777-0189 Telephone: (828) 765-3000 Fax: (828) 765-3014 Website: www.sprucepine-nc.gov

Figure A-114. Eviction notice from the Town of Spruce Pine

Figure A-115. Arial view of city hall and hospital monitoring sites

Figure A-116. Spruce Pine hospital, 37-121-0004, fine particle monitoring site

Figure A-117. Spruce Pine hospital site looking north

Figure A-118. Spruce Pine hospital site looking northwest

Figure A-119. Spruce Pine hospital site looking west

Figure A-120. Spruce Pine hospital site looking northeast

Figure A-121. Spruce Pine hospital site looking east

Figure A-122. Spruce Pine hospital site looking southeast

Figure A-123. Spruce Pine hospital site looking southwest

Figure A-124. Spruce Pine hospital site looking south

The hospital has a boiler house and emergency generators but the monitor is at least 200 meters northeast from them. The trees to the northeast are about 32 meters high and 80 meters from the site. The trees to the east are about 33 meters high and 86 meters away. The trees to the southeast are 60 meters tall and 140 meters away. The building to the southwest is about 11 meters high and 130 meters from the site. The trees to the west are about 38 meters tall and 90 meters away. All the trees and buildings are far enough away as to not be obstacles to the flow of the air. In 2015 the hospital expanded the parking lot. The monitor was moved 9 meters to the north on March 31, 2015.

There are no new monitoring rules that require additional monitoring in these non-MSA valley areas.

Appendix A.1 Annual Network Site Review Forms for 2016

Joanna Bald in Joyce Kilmer-Slickrock Wilderness Area

Frying Pan in the Shining Rock Wilderness Area

Purchase Knob in the Great Smoky Mountains National Park

Mount Mitchell in the Mount Mitchell State Park

Bent Creek in Asheville, operated by the WNCRAQA

Board of Education in Asheville, operated by the WNCRAQA

AB Tech Air Toxics Site, operated by WNCRAQA & the Laboratory Analysis Branch

Waynesville Health Center in Waynesville

Canton DRR in Canton

Bryson City

Linville Falls in the Linville Gorge Wilderness Area

Spruce Pine

Region_ARO Site Name JOANNA			AQS Site # 37- <u>075-0001</u>			
Street Address-National Forest Road 423 Spur			City Robbinsville			
Urban Area	Not in an Urban A	rea	Core-based Stati	stical Area None		
	Enter E	Exact				
Longitude	<u>-83.7955</u>	Latitude	<u>35.2578</u>	Method of Measuring		
In Decimal De	grees	In Decima	l Degrees	Explanatio	on: <u>Google Ea</u>	<u>rth</u>
Elevation Abo	ve/below Mean Sea	Level (in me	ters)		1436.00	
Name of neare	st road to inlet prob	e National F	orest Road A	DT Year		
Distance of oz	one probe to nearest	traffic lane (m) Direction	from ozone probe to	nearest traffic l	ane
	o count available. H			14 1		_
Name of nearest major road Snow Bird Road (#1115) ADT 930 Year 2013						
Distance of sit	e to nearest major ro	oad (m) <u>620</u>	0.00 Direction from	site to nearest major	road <u>NW</u>	
Comments: U	sed google earth for	distance				
Site located ne	ar electrical substati	on/high volta	ige power lines?		Yes	No 🛛
Distance of sit	e to nearest railroad	track		(m)Dire	ection to RR	_ 🛛 🛛 NA
OPTIONAL Distance of site to nearest power pole w/transformer (m) Direction					rection	
Distance betw	een site and drip line	e of water tov	ver (m)Dire	ction from site to wate	r tower	NA
	ources of potential bi ctivities, fast food re			se bulk storage, stacks	s, vents, railroad	1 tracks,

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

-

Parameters	Monitoring Objective	Scale	Site Type			
\bigcirc O ₃	General/Background	Micro	SLAMS			
	Highest Concentration Max O3 Concentration	Middle				
	Population Exposure		⊠SPM			
	Source Oriented					
	Transport	Urban				
	Upwind Background Welfare Related Impacts	Regional				
Probe inlet height (from ground) 2-15 m? Yes 🛛 No						
	red height from ground (meters)					
Distance of outer e	Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting					
structure > 1 m? Y	es 🛛 No 🗌					
Actual measured d	istance from outer edge of probe	e to supporting structure (me	eters) <u>1.7</u>			
Is probe > 20 m from the nearest tree drip line? Yes \square *No \boxtimes (answer *'d questions)						
*Is probe > 10 m from the nearest tree drip line? Yes \times *No						
*Distance from probe to tree (m) <u>10.97</u> Direction from probe to tree <u>NW</u> *Height of tree (m) <u>9.30</u>						
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛						
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes \square No \square						

JOANNA BALD SITE REVIEW 2016

1

RECOMMENDATIONS:
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No 🗌
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes No
Comments:
Date of Last Site Pictures: November 12, 2016 New Pictures Submitted? Yes No
Reviewer Terri Davis Date: December 13, 2016

Ambient Monitoring Coordinator Steve Ensley Date: January 19, 2017

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

JOANNA BALD SITE REVIEW 2016

Region_ARO Site Name FRYPAN		AQS Site # 37- <u>2087</u> - <u>0035</u>		
Street Address-750 Frying Pan Re	oad		City <u>Canton</u>	
Urban Area Not in an Urban Ar	ea	Core-based Statis	stical Area None	
Enter Ex	act			
Longitude <u>-82.7742</u>	Latitude	<u>35.3937</u>	Method of Measuring	
In Decimal Degrees	In Decima	l Degrees	Explanation: Google earth	
Elevation Above/below Mean Sea I	evel (in me	ters)	<u>1617.88</u>	
Name of nearest road to inlet probe	Blue Ridge	e Parkway A	DT 300 Year estimated	
Distance of ozone probe to nearest t	raffic lane (m) 315 Direction fro	om ozone probe to nearest traffic lane S	<u>SE</u>
Comments:				And and a second second
Name of nearest major road Blue I	Ridge Parkw	vay ADT 300 Year	<u>2014</u>	
Distance of site to nearest major road (m) $\underline{315.00}$ Direction from site to nearest major road SE				
Comments:				
Site located near electrical substation	n/high volta	age power lines?	Yes N	Jo 🛛
Distance of site to nearest railroad track (m) Direction to RR NA				
OPTIONAL Distance of site to nearest power pole w/transformer (m) Direction				
Distance between site and drip line of water tower (m) Direction from site to water tower NA				
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks,				
construction activities, fast food restaurants, and swimming pools.				
	12			

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type			
\bigcirc O ₃	General/Background	Micro	SLAMS			
	Highest Concentration Max O3 Concentration	Middle	— ⊠SPM			
	Population Exposure	Neighborhood				
	Source Oriented	Urban				
	Upwind Background Welfare Related Impacts	Regional				
Probe inlet height	(from ground) 2-15 m? Yes 🔀	No				
	red height from ground (meters)					
	Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting					
structure > 1 m? Y						
	istance from outer edge of probe					
Is probe > 20 m from the nearest tree drip line? Yes \boxtimes *No \square (answer *'d questions)						
*Is probe > 10 m from the nearest tree drip line? Yes \checkmark *No \checkmark						
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🛛						
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes No						

FRYPAN SITE REVIEW 2016

Revised 2017-01-194

RECOMMENDATIONS
THE COMMENDER OF THE OF THE

Reviewer Terri Davis	Date: <u>December 13, 2016</u>
Ambient Monitoring Coordinator Steve Ensley	Date: 1/19/17

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

FRYPAN SITE REVIEW 2016

3

Region ARO	ARO Site Name Purchase Knob AQS Site # 37-087-0036						
Street Address-6905 Purchase Road			City <u>Waynesville</u>				
Urban Area No	t in an Urban A	rea	Core-based Sta	tistical Area No	ne		
	Enter Exa	ıct					
Longitude <u>-8</u>	<u>3.0741</u> 1	Latitude	<u>35.5871</u>	Me	thod of Mea	isuring	
In Decimal Degrees	s I	In Decima	l Degrees	<u>Other (explain)</u>	Explanatio	on: <u>Google</u>	<u>Earth</u>
Elevation Above/be	elow Mean Sea	Level (in	meters)		<u>1504.49</u>	1	
Name of nearest roa	ad to inlet probe	e Purchas	e Road ADT	20 Year estimate	d		
Distance of ozone p	probe to nearest	traffic la	ne (m) <u>103</u> Directi	on from ozone proł	be to nearest	traffic lane	<u>SE</u>
Comments:							
Name of nearest ma	ajor road <u>US-2</u>	276 Jonath	an Creek Road A	DT <u>8100</u> Year	<u>20</u>	<u>)15</u>	
Distance of site to r	nearest major ro	oad (m) 5	418.00 Direction	from site to nearest	major road	<u>ESE</u>	
Comments:							
Site located near ele	ectrical substati	on/high v	oltage power lines	?		Yes	No 🛛
Distance of site to r	Distance of site to nearest railroad track (m) Direction to RR NA					XNA	
OPTIONAL Distance of site to nearest power pole w/transformer (m) Direction							
Distance between site and drip line of water tower (m) Direction from site to water tower 🖾 NA							
Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools.							

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type		
\bigcirc O ₃	General/Background	Micro	SLAMS		
	Highest Concentration Max O3 Concentration	Middle			
	Population Exposure	 Neighborhood	SPM		
	Source Oriented				
	Transport	Urban			
	Upwind Background Welfare Related Impacts	Regional			
Probe inlet height	(from ground) 2-15 m? Yes				
The state of the second s	red height from ground (meters)				
Distance of outer e	edge of probe inlet from horizon	tal (wall) and/or vertical (ro	of) supporting		
structure > 1 m? Y	es 🛛 No 🗌		63511 10200716 (20081-8		
Actual measured d	listance from outer edge of probe	e to supporting structure (m	eters) <u>1.07</u>		
Is probe > 20 m from the second se	om the nearest tree drip line?	Yes 🔲 🛛 *No 🔀 (answer *	*'d questions)		
*Is probe > 10 m from the nearest tree drip line? Yes \times *No					
*Distance from probe to tree (m) $\underline{16.40}$ Direction from probe to tree <u>WNW</u> *Height of tree (m) $\underline{2.49}$					
Are there any obstacles to air flow? *Yes \Box (answer *'d questions) No \boxtimes					
*Identify obstacle Tree Distance from probe inlet (m)Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes 🗌 No 🔲					

Purchase Knob site review 2016

Revised 2017-04-304

REC	OMME	NDAT	IONS.
ILL'	CIVILL		UTID:

1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d ques	stions)
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No 🗌
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes 🗌 No 🗌	
Comments:	
Date of Last Site Pictures: $2/4/15$ New Pictures Submitted? Yes	No
Reviewer Steve Ensley	Date: October 21, 2016

Ambient Monitoring Coordinator Steve Ensley _____ Date: October 21, 2016

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Purchase Knob site review 2016

Revised 2017-04-304

Region_ARO Site Name Mt. Mitchell				AQS Site # 37- <u>199-0004</u>			
Street Address-2388 State Hwy 128				City Burnsville			
Urban Area Not in an Urban Area Core-based Statist				stical A	stical Area None		
	Enter E	xact					
Longitude	<u>-82.2649</u>	Latitude	<u>35.765453</u>		Method o	f Measuring	
In Decimal Deg	rees	In Decima	al Degrees		Explanation:	Google Earth	
Elevation Abov	e/below Mean Sea	Level (in m	eters)		20	22.00	
Name of neares	t road to inlet probe	State Hwy	<u>128</u> ADT <u>67</u>	<u>)</u> Year	latest available	<u>2014</u>	
Distance of ozo	ne probe to nearest	traffic lane	(m) 151 Direction fr	om ozo	ne probe to near	est traffic lane <u>W</u>	
Comments:							
Name of neares	t major road State	<u>Hwy 128</u> A	DT <u>670</u> Year		<u>2014</u>		
Distance of site	to nearest major ro	ad (m) <u>151</u>	.00 Direction from s	ite to n	earest major road	d <u>W</u>	
Comments:							
Site located nea	r electrical substati	on/high volt	age power lines?			Yes 🗌 No 🛛	
Distance of site	to nearest railroad	track		(m)_	Direct	tion to RR 🛛 🕅 NA	
			wer pole w/transform		(m) _	Direction	
Distance betwee	en site and drip line	of water to	wer (m) Direc	tion fro	om site to water t	ower NA	
Explain any sou	rces of potential bi	as; include o	ultivated fields, loos	e bulk	storage, stacks, v	ents, railroad tracks,	
construction act	ivities, fast food re	staurants, ar	nd swimming pools.				

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type			
\bigcirc O ₃	General/Background	Micro	SLAMS			
	Max O3 Concentration	Middle	⊠SPM			
	Population Exposure	Neighborhood				
	Source Oriented	Urban				
	Upwind Background Welfare Related Impacts	Regional				
Probe inlet height	(from ground) 2-15 m? Yes 🛛	No 🗌				
Give actual measu	red height from ground (meters)	see comments				
Distance of outer e	edge of probe inlet from horizon	tal (wall) and/or vertical (ro	of) supporting			
structure > 1 m? Y	es 🛛 No 🗌					
Actual measured d	listance from outer edge of probe	e to supporting structure (me	eters) see comments			
Is probe $> 20 \text{ m from }$	om the nearest tree drip line?	Yes 🛛 🛛 *No 🗌 (answer '	*'d questions)			
*Is probe $> 10 \text{ m f}$	rom the nearest tree drip line?	Yes 🗌 *No 🗌				
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obst	acles to air flow? *Yes 🗌 (ansv	ver *'d questions) No 🛛				
	Distance from probe inlet (m probe to obstacle at least twice the he					

MT MITCHELL SITE REVIEW 2016

1

RECOMMENDATIONS:

1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)
*2) Change monitoring objective? Yes [(enter new objective:) No [
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes No
Comments: Unable to measure probe distance due to height from ground. Probe
measurements taken from prior site review when site was installed and measrured. Probe is
actually within 20m of tree dripline but probe height is higher than the trees so it is recorded as
not being within 20m of tree dripline.
Date of Last Site Pictures: <u>November 6, 2014</u> New Pictures Submitted? Yes No
Reviewer Bob Graves Date: October 17, 2016

Ambient Monitoring Coordinator Steve Ensley Date: January 19, 2017

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

MT MITCHELL SITE REVIEW 2016

3

Design WNIC	Site Name Bent Cre	-1.	1	100 0:4-	# 27 021 0020	
Region_WNC S Street Address-125 Idlwoo	AQS Site # 37- <u>021-0030</u>					
			City			
Urban Area ASHEVILL		Core-based Stati	stical Area	Ashevill	e, NC	
E	nter Exact					
Longitude <u>-82.6133</u> Latitude		<u>35.5083</u>	Method of Measuring			
In Decimal Degrees	In Decimal	l Degrees	Ex	planation	:	
Elevation Above/below Mea	In Sea Level (in me	ters)				
Name of nearest road to inle	t probe	ADT <u>880</u> Year	atest availab	le		
Distance of ozone probe to r	earest traffic lane (m) <u>337</u> Direction fr	om ozone pr	obe to near	rest traffic lane <u>NE</u>	
Comments:						
Name of nearest major road	Brevard Road (Hy	wy. 191) ADT 120	<u>00</u> Year	2	2012	
Distance of site to nearest m	ajor road (m) <u>115</u>	7.64 Direction from	site to neare	st major ro	ad <u>NE</u>	
Comments:						
Site located near electrical s	ubstation/high volta	ige power lines?			Yes 🗌 No 🛛	
Distance of site to nearest ra	ilroad track		(m) <u>5371</u>	Direc	tion to RR <u>NE</u> \square NA	
OPTIONAL Distance of	of site to nearest por	wer pole w/transfor	mer	(m)_	Direction	
Distance between site and drip line of water tower (m) Direction from site to water tower						
Explain any sources of poter construction activities, fast f			se bulk storag	ge, stacks,	vents, railroad tracks,	
<u>0</u>						

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type				
$\boxtimes O_3$	General/Background	Micro	SLAMS				
	Highest Concentration Middle						
	Population Exposure	Neighborhood					
	Source Oriented	Urban					
	Upwind Background Welfare Related Impacts	Regional					
Probe inlet height	(from ground) 2-15 m? Yes 🗵	No 🗌					
Give actual measu	red height from ground (meters)	<u>5.00</u>					
Distance of outer e	dge of probe inlet from horizon	tal (wall) and/or vertical (ro	of) supporting				
structure > 1 m? Y	es 🛛 No 🗌		MONEL PROPAGATA				
Actual measured d	istance from outer edge of probe	e to supporting structure (me	eters) <u>2.00</u>				
Is probe $> 20 \text{ m from }$	om the nearest tree drip line?	Yes 🛛 *No 🗌 (answer '	*'d questions)				
*Is probe $> 10 \text{ m f}$	rom the nearest tree drip line?	Yes 🗌 *No 🗌					
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)							
Are there any obst	acles to air flow? *Yes 🗌 (ansv	ver *'d questions) No 🛛					
	Distance from probe inlet (m probe to obstacle at least twice the he						

Revised 2017-05-054

RECOMMENDATIONS:	
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes [] (enter new objective:)	No 🗌
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) N	o 🗌
*4) Relocate site? Yes 🗌 No 🗌	
Comments:	
Date of Last Site Pictures: 2016 New Pictures Submitted? Yes No	
Reviewer	Date:
Ambient Monitoring Coordinator Kevin Lance	Date: <u>May 3, 2017</u>

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Revised 2017-05-054

Region_WNC Site Name Board of Education			AQS Site # 37- <u>021-0034</u>			
Street Address-175 Bingham Road				City Asheville, NC		
Urban Area	ASHEVILLE	С	ore-based Stati	istical .	Area Asheville, NC	
	Enter E	xact				
Longitude	<u>-82.5844</u>	Latitude	35.6062		Method of Measuring	
In Decimal De	grees	In Decimal De	grees	_	Explanation: Google Earth	
Elevation Abo	ve/below Mean Sea	Level (in meters)		<u>662.94</u>	
Name of neare	st road to inlet probe	<u>Bingham</u> A	DT Choose an	Item22	<u>200</u> Year <u>2012</u>	
Distance of oz	one probe to nearest	traffic lane (m)	Direction	n from	inlet to nearest traffic lane	
Comments:						
Name of neare	st major road <u>Bing</u> l	nam ADT 2200	<u>)</u> Year Choose	an item	n <u>2012</u>	
Distance of sit	e to nearest major ro	ad (m) <u>130.56</u>	Direction from	site to a	nearest major road <u>W</u>	
Comments:						
Site located ne	ar electrical substation	on/high voltage	power lines?		Yes 🗌 No 🛛	
Distance of sit	e to nearest railroad	track	(m)	<u>208</u> Di	irection to RR \underline{E} \Box NA	
OPTIONAL	. Distance of site t	o nearest power	pole w/transfor	mer	(m) <u>138</u> Direction <u>W</u>	
Distance betw	een site and drip line	of water tower	(m)Dire	ction fi	from site to water tower XNA	
	ources of potential bia ctivities, fast food res				k storage, stacks, vents, railroad tracks,	
<u> </u>						

Site Information

Instructions:

Address: Sometimes local addresses change. Confirm the local address of the site using a 911 locator or the address used by the local utility company, community or county to identify the site location.

Urban Area: If the monitor is located within the bounds of an urban area (an incorporated area with a population of 10,000 or more people), select the appropriate urban area from the list. Otherwise select "Not in an Urban Area". Core-Based Statistical Area (CBSA): If the monitor is located within a county that is part of a metropolitan statistical area (MSA) or a micropolitan statistical area (MiSA), then it is located within a core-based statistical area. If the monitoring station is located in a county included in a MSA or MiSA, select the appropriate CBSA from the list. Otherwise select "None".

Longitude and Latitude: The longitude and latitude should be entered in decimal degrees. Use a conversion program, such as http://transition.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html, to convert to decimal degrees. Road Information: For the nearest road to the inlet probe, list whatever roadway that carries vehicles that is closest to the probe, whether or not it is a named or public road and even if the road has very little traffic. Use the comments space if necessary to describe the road or the source of the annual average daily traffic (AADT) counts. If the monitor is located near an unnamed, little used, private road, use the nearest major road space to list the closest named public road to the site. Include the distance and direction of the nearest major road from the site as well as the AADT if it is available. If the closest road is a small public road but there is a large major roadway such as an interstate highway, divided highway, major thoroughfare, etc., near the monitoring station use the nearest major road space to list the information about this major roadway. Include the distance and direction of the major road from the site as well as the AADT. The AADT for state roads can be obtained from the North Carolina Division of Transportation at http://www.ncdot.gov/travel/statemapping/trafficvolumemaps/default.html. For AADT values for local roadways contact the appropriate local governments.

Any Sources of Potential Bias: Use this space to record any information about the site that is not requested elsewhere. Especially note any changes to the site that occurred near the site in the past year, such as road construction, building construction, new businesses, businesses closing, or changes in traffic patterns, crops or other agricultural activities.

Parameters	Monitoring Objective	Scale	Monitor Type			
Air flow < 200 L/min → PM2.5 FRM	General/Background	Micro	SLAMS			
\square PM10 FRM	Highest Concentration	 Middle	SPM			
PM10 Cont. (BAM)	Population Exposure					
PM10-2.5 FRM	Source Oriented	Neighborhood	Nonregulatory			
PM10-2.5 BAM PM10 Lead (PB)	Transport	Urban	Supplemental Speciation			
\square PM2.5 Cont. (BAM)		Regional				
PM2.5 Spec. (SASS)	Welfare Related Impacts					
$\square PM2.5 Spec. (URG)$						
PM2.5 Cont. Spec. Probe inlet height (from		2-7m 🕅 7-15	$m \qquad \square > 15 m$			
	ice from probe inlet to ground (m□ ~ 13 m			
	of probe inlet from horizontal (nlatform on no of			
supporting structure > 2		wair) and/or vertical (plation of 1001)			
	ice from outer edge of probe inl	let to sumorting struct	ure (meters)			
	outer edge of probe inlets of any					
	low volume monitor at the site		Yes 🛛 No 🗌 NA 🗌			
	outer edge of all low volume mo					
	$\Gamma SP inlet = 2 m or greater?$		Yes 🗌 No 🗌 NA 🛛			
	Monitors (Two FRMs, FRM &	BAM, FRM *Yes	(answer *'d questions)			
& TEOM, BAM & TE	OM) Located at Site?	A.				
* Entire inlet opening of	of collocated PM 2.5 samplers (X) within 2 to Yes	\boxtimes No \square			
4 m of each other?			e actual (meters): <u>3</u>			
	sampler inlets within 1 m verti	-	No 🗌			
other?			e actual (meters): <u>1</u>			
Is an URG 3000 monito	or collocated with a SASS mon	1000	\square (answer *'d questions) Io \square NA \square			
* Entire inlet opening of	collocated speciation samplers inle	ets (X) within 2 to 4 m o	of each other? Yes 🗌 No 🗌			
Give actual (meters)						
-	ttion sampler inlets within 1 m	vertically of each othe	r? Yes 🗌 No 🗌			
Give actual (meters)						
Is a low-volume PM10 at the site to measure P	monitor collocated with a PM2 M10-2.5?	2.5 monitor *Yes	☐ (answer *'d questions) No ☑ NA □			
	of collocated PM10 and PM2.5s	samplers for PM10-2.5	5 (X) Yes No			
within 2 to 4 m of each						
	and PM2.5 sampler inlets within	in 1 m vertically of ea	ch Yes No			
other?						
Is probe > 20 m from the second se	he nearest tree drip line? Yes	X *No □ (answe	r *'d questions)			
*Is probe > 10 m from	the nearest tree drip line? Ye	es 🔲 *No 🗌				
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obstacles	s to air flow? *Yes 🗌 (answer '	* 'd questions) No 🔀				
*Identify obstacle	Distance from probe inlet (m)	Direction from prob				
*Is distance from inlet prob	e to obstacle at least twice the height	that the obstacle protrudes	above the probe? Yes 🗌 No 🗌			

<u>RECOMMENDATIONS:</u> 1) Maintain current site status? Yes X *No (answer *'d questions)
*2) Change monitoring objective? Yes 🗌 (enter new objective:) No 🗌
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes No
Comments:
Date of Last Site Pictures: 2015 New Pictures Submitted? Yes 🗌 No 🔀
ReviewerDate: May 3, 2017

Instructions (continued):

Ambient Monitoring Coordinator Kevin Lance

Trees: The probe or inlet must be at least 10 meters or further from the drip line of trees. A distance of at least 20 meters between the probe and any tree or trees is preferred.

Obstacles: An obstacle is anything that restricts air flow. A tree can be an obstacle because it has branches and leaves that restrict the flow of air but a pole is not considered to be an obstacle. To avoid interference from obstacles, the probe or inlet must have unrestricted airflow and be located away from obstacles. The distance from the obstacle to the probe or inlet must be at least twice the height that the obstacle protrudes above the probe, inlet, or monitoring path.

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Revised 2017-05-034

Date: May 3, 2017

Site Name AB Tech Region WNC AQS Site # 37-021-0035 Street Address-AB Technical Community College City Asheville **Core-based Statistical Area** Urban Area ASHEVILLE Asheville, NC Enter Exact -82.58611 35.572222 Longitude Latitude Method of Measuring In Decimal Degrees In Decimal Degrees **Explanation: Google Earth** Elevation Above/below Mean Sea Level (in meters) 647.39 Name of nearest road to inlet probe Victoria Road ADT 2200 Year Choose an item 2010 Comments: Cul-de-sac 73 m from probe Distance of site to nearest major road (m) 359.00 Direction from site to nearest major road <u>E</u> Name of nearest major road Victoria Road ADT 2200 Year 2010 Comments: Site located near electrical substation/high voltage power lines? Yes No 🗙 Distance of site to nearest railroad track (m) <u>341</u>Direction to RR <u>WSW</u> NA **OPTIONAL** Distance of site to nearest power pole w/transformer Direction (m) Distance between site and drip line of water tower (m) _ Direction from site to water tower NA Explain any sources of potential bias; include cultivated fields, loose bulk storage, stacks, vents, railroad tracks, construction activities, fast food restaurants, and swimming pools.

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Monitor Type
 NA SO₂ (NAAQS) SO₂ (trace-level) NO₂ (NAAQS) HSNO_y O₃ NH₃ Hydrocarbon X Air Toxics CO (trace-level) 	General/Background Highest Concentration Max O3 Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	Micro Middle Neighborhood Vrban Regional	SLAMS SPM Monitor Network Affiliation NCORE Unofficial PAMS
Probe inlet height (from g	ground) 2-15 m? Yes 🛛 No 🗌	Give actual measured heig	ht from ground (meters)
	probe inlet from horizontal (wall) and from outer edge of probe to supportin		g structure > 1 m? Yes 🛛 No
	probe inlet from other monitoring prol		Yes 🛛 No 🗌 NA 🗌
Is probe > 20 m from the	nearest tree drip line? Yes 🔲 *N	o 🗌 (answer *'d questions)	1
*Is probe > 10 m from the	e nearest tree drip line? 🛛 Yes 🔲 *N	io 🔲	
	ree (m) Direction from probe		e (m)
Are there any obstacles to	air flow? *Yes 🛛 (answer *'d questi	ons) No 🗌	
*Identify obstacle tree D	Distance from probe inlet (m) <u>30</u> Direc	tion from probe inlet to obst	tacle <u>ENE</u>
	obe to obstacle at least twice the height		
Distance of probe to near	est traffic lane (m) <u>359</u> Direction fr	om probe to nearest traffic la	ane <u>E</u>

Parameters	Monitoring Objective	Scale	Site Type
🛛 NA	Comorol/Declement		SLAMS
Air flow < 200 L/min □ PM2.5 FRM	General/Background Highest Concentration	Micro Middle	SPM
PM10 FRM	Population Exposure	Neighborhood	Monitor Network Affiliation
PM10 Cont. (BAM)	Source Oriented	Urban	
PM10-2.5 FRM		Regional	NCORE
PM10-2.5 BAM PM10 Lead (PB)	Transport	Kegional	SUPPLEMENTAL
PM2.5 Cont. (BAM)	Welfare Related Impacts		SPECIATION
PM2.5 Spec. (SASS)			Monitor NAAQS Exclusion
PM2.5 Spec. (URG) PM2.5 Cont. Spec.			NONREGULATORY
	∎ ground)	n 7-15 m	
	e from probe inlet to ground (meters)		
Distance of outer edge of	probe inlet from horizontal (wall) a	nd/or vertical (platform or	roof) supporting structure $> 2 \text{ m}$?
Actual measured distance	e from outer edge of probe inlet to su	pporting structure (meters)) Yes 🔲 No 🗌
	ter edge of probe inlets of any low ve	olume monitor and any oth	er Yes No NA
low volume monitor at the Distance (Y) between our	ter edge of all low volume monitor in	nlets and any Hi-Volume F	NA 10
or TSP inlet = 2 m or gre	ater?		Yes No NA
Are collocated PM2.5 Me TEOM, BAM & TEOM)	onitors (Two FRMs, FRM & BAM, Located at Site?	FRM & *Yes 🗌 (an	swer *'d questions) No 🗌 NA 🗌
* Entire inlet opening of	collocated PM 2.5 samplers (X) with	nin 2 to 4 m of	
each other?		Yes 🗌	No Give actual (meters)
	ampler inlets within 1 m vertically o		No Give actual (meters)
	collocated with a SASS monitor at t collocated speciation samplers inlets		
Give actual (meters)	conocated speciation samplers mets	(2x) whilm 2 to 4 m of cac	
* Are collocated speciation	on sampler inlets within 1 m vertical		No 🔲 Give actual (meters)
	ionitor collocated with a PM2.5 mon	itor at the *Yes 🗌 (an	swer *'d questions) No 🗌 NA 🗌
site to measure PM10-2.5	collocated PM10 and PM2.5sampler		
within 2 to 4 m of each o			Yes 🗌 No 🗌
	nd PM2.5 sampler inlets within 1 m v		Yes No No
Is probe > 20 m from the	nearest tree drip line? Yes 🗌 👌	*No 🗌 (answer *'d questi	ons)
*Is probe ≥ 10 m from th	in the second second second F second s	No 🗌	
	tree (m) Direction from prob o air flow? *Yes \Box (answer *'d que		tree (m)
	Distance from probe inlet (m)		at to obstable
	obe to obstacle at least twice the height		
Distance of probe to near		on from probe to nearest tr	
RECOMMENDATIONS:			
	- tatus? Yes 🔲 *No 🗌 (answer *	"d questions)	
	bjective? Yes 🗌 (enter new objec		
	esentativeness? Yes 🔲 (enter new		
*4) Relocate site? Yes			
Comments:			
	2016 New Pictures Submitte	ed? Yes 🔲 No 🕅	
			Date May 3, 2017
Ambient Monitoring Coor	Tumator Kevin Lance		Date <u>May 3, 2017</u>

ABTechtoxics

			She morma			
Region_ARO	Site Nam	e <u>Wayne</u>	sville School	А	QS Site # 37- <u>087</u> -	0008
Street Address-2236 Asheville Road				City Waynesville		
Urban Area Not	in an Urban Ar	ea	Core-based Stat	istical Area 🛛 🛛	Asheville, NC	
	Enter Exa	ct				
Longitude <u>-82</u>	2.9636 L	atitude	<u>35.5072</u>	1	Method of Measu	ring
In Decimal Degrees	Iı	n Decima	1 Degrees	Other (explain	<u>)</u> Explanation:	Google Earth
Elevation Above/be	low Mean Sea I	Level (in	meters)		<u>793.00</u>	
Name of nearest roa	d to inlet probe	Ashevil	le Road ADT	<u>8600</u> Year late	est available 201	4
Distance of ozone p	robe to nearest	traffic la	ne (m) 151 Directi	on from ozone p	robe to nearest traf	fic lane SW
Comments:				_		
Name of nearest ma	jor road <u>Hwy</u>	74 (Great	t Smoky Mountain	<u>s Expressway)</u> A	DT <u>29000</u> Year	
2014						
Distance of site to n	earest major roa	ıd (m) 1	056.35 Direction	from site to near	est major road NV	W
Comments:		() _				
Site located near ele	ctrical substatio	n/high v	oltage power lines	?		Yes No
Distance of site to n			0 1		a) 771Direction to	RR NW NA
OPTIONAL D	istance of site to	o nearest	power pole w/tran	1	(m)	Direction
Distance between si	te and drip line	of water	tower (m)]	Direction from si	te to water tower _	
Explain any sources	of potential bia	ıs; includ	e cultivated fields.	loose bulk stora	ge, stacks, vents, r	ailroad tracks,
construction activiti	es, fast food res	taurants,	and swimming po	ols.		

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type			
\bigcirc O ₃	General/Background	Micro	SLAMS			
	Highest Concentration Max O3 Concentration	Middle				
	Population Exposure	Neighborhood	SPM			
	Source Oriented	Millelghoomood				
	Transport	Urban				
	Upwind Background Welfare Related Impacts	Regional				
Probe inlet height (from ground) 2-15 m? Yes 🛛 No						
	red height from ground (meters)					
Distance of outer e structure > 1 m? Y	edge of probe inlet from horizont	tal (wall) and/or vertical (ro	of) supporting			
The second s			1 1 02			
	istance from outer edge of probe					
Is probe > 20 m from the nearest tree drip line? Yes \times *No \square (answer *'d questions)						
*Is probe $> 10 \text{ m f}$	rom the nearest tree drip line?	Yes 🗌 *No 🗌				
*Distance from pro	obe to tree (m) Direction	n from probe to tree *	Height of tree (m)			
Are there any obst	acles to air flow? *Yes 🗌 (ansv	ver *'d questions) No 🛛				
	Distance from probe inlet (m					
*Is distance from inlet	probe to obstacle at least twice the hei	ight that the obstacle protrudes ab	bove the probe? Yes \square No \square			

Waynesville site review 2016

Revised 2017-01-194

RECOMMENDATIONS:
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)
*2) Change monitoring objective? Yes [(enter new objective:) No [
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes No
Comments:
Date of Last Site Pictures: January 28, 2015 New Pictures Submitted? Yes 🗌 No 🗙
Reviewer Steve Ensley Date: October 21, 2016

Ambient Monitoring Coordinator	Steve Ensley	Date:	10/21/16

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Waynesville site review 2016

		~		i u u u u	
Region ARO	Region ARO Site Name Car		me <u>Canton</u>	DRR	AQS Site # 37- <u>087</u> -0013
Street Address	Street Address-104 Pace Street			City Canton	
Urban Area 🛛	Choose an ite	m.	Core-base	ed Statistical Area	Asheville, NC
	Enter E	xact		Me	ethod of Measuring
Longitude -	<u>82.848764</u>	Latitude	35.535039		
In Decimal Deg	grees	In Decimal D	legrees	Other (explain)	Explanation: Google Earth
Elevation Abov	ve/below Mea	n Sea Level (i	n meters)		<u>813.5112</u>
Name of neares	st road to inlet	t probe <u>Black</u>	well Drive (Hwy 215) ADT 9	<u>9500</u> Year latest available <u>2014</u>
Comments:					
	st major road	-			rrest major road <u>SSW</u> ar latest available <u>2014</u>
Site located nea	r electrical su	ubstation/high	voltage pow	ver lines?	Yes No 🕅
Distance of site	to nearest rai	ilroad track		(m) <u>297</u>	Direction to RR SSW
**OPTIONAL	** Distance o	f site to neares	t power pol	e w/transformer	(m) Direction
Distance between	n site and drip	line of water to	wer (m)	Direction from s	site to water tower NA
Explain any sou	arces of poten	itial bias; inclu	de cultivate	d fields, loose bull	k storage, stacks, vents, railroad
tracks, construc	tion activities	s, fast food res	taurants, and	d swimming pools.	

Site Information

Parameters	Monitoring Objective	Scale	Monitor Type		
SO2(NAAQS) SO2(trace-level)	General/Background Highest Concentration Population Exposure Source Oriented Transport Upwind Background Welfare Related Impacts	☐Micro Middle ☐Neighborhood ☐Urban ☐Regional	SPM		
Probe inlet height (from ground) 2-15 m? Yes 🛛 No 🗌 Give actual measured height from ground (meters) 4.67					
	probe inlet from horizontal (wall) and/or vertical (roof) supportion outer edge of probe to supporting structure (meters) $\frac{1}{2}$? Yes 🛛 No 🗖		
Distance of outer edge of	probe inlet from other gas monitoring probe inlets > 0.25 m	? Yes 🗖	No 🗌 NA 🛛		
Is probe > 20 m from the	nearest tree drip line? Yes 🛛 *No 🗌 (answer *'d ques	stions)			
*Is probe > 10 m from th	e nearest tree drip line? Yes 🗖 *No 🗖				
	tree (m) Direction from probe to tree *Height of	of tree (m)			
	o air flow? *Yes 🗌 (answer *'d questions) No 🛛				
*Is distance from inlet pr	Distance from probe inlet (m)Direction from probe obe to obstacle at least twice the height that the obstacle prot	rudes above the probe	?Yes 🗌 No 🗌		
Distance of probe to near	est traffic lane (m) 10 Direction from probe to nearest training the set of the set o	ttic lane <u>NW</u>			

ANSWER ALL APPLICABLE QUESTIONS:

SULFUR DIOXIDE MONITOR RECOMMENDATIONS:	
1) Maintain current monitor status? Yes 🛛 *No 🗌 (answer *'d questions)	
*2) Change monitoring objective? Yes [] (enter new objective) No []-	
*3) Change scale of representativeness? Yes 🗌 (enter new scale) No 🔲	
*4) Relocate monitor? Yes 🗌 No 🗌	
Comments:	
Date of Last Site Pictures 11/3/16 New Pictures Submitted? Yes 🛛 No 🗌	
Reviewer <u>Steve Ensley</u>	Date <u>October 21, 2016</u>
Ambient Monitoring Coordinator Steve Ensley	
Revised 2016-12-08	

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Canton DRR site review 2016

Region ARO Site Name Bryson City				AQS Site # 37- <u>173</u> - <u>0002</u>			
Street Address-30 R	ecreation Pa	<u>rk Drive</u>		City <u>Br</u>	yson Cit	ty	
Urban Area Choos	e an item.		Core-based St	atistical Are	a Ch	noose an item.	
	Enter Ex	act					
Longitude <u>-83.4</u>	42228	Latitude	<u>35.434846</u>		Me	thod of Measu	iring
In Decimal Degrees		In Decimal 1	Degrees	Other (ex	plain)	Explanation:	Google Earth
Elevation Above/below	v Mean Sea	ı Level (in r	neters)			<u>559</u>	
Name of nearest road to	inlet probe <u>F</u>	lecreation Pa	<u>rk Drive</u> ADT <u>1</u>	<u>00</u> Year Choo	ose an ite	em <u>2010</u>	
Comments:							
Distance of site to neares	t major road	(m) <u>416.00</u>	Direction from si	te to nearest r	najor roa	ad <u>SSE</u>	
Name of nearest major ro	oad <u>US 19</u> A	DT <u>6800</u> Y	'ear <u>2015</u>				
Comments:							
Site located near electric	al substation/	high voltage	power lines?				Yes 🔲 No 🛛
Distance of site to near					(m) <u>2</u>	240 Direction to	
OPTIONAL Dist						(m)	Direction
Distance between site an							<u>NA</u>
Explain any sources of					storage,	, stacks, vents, r	ailroad tracks,
construction activities,	fast food re	staurants, a	nd swimming p	ools.			
ANSWER ALL APPL	CABLEOU	FSTIONS					
Parameters		onitoring O	bjective	Scal	9	Mon	itor Type
ter delater falles en la constant de la C	-						

Site Information

Parameters	Monitoring Objective	Scale	Monitor Type		
□ NA	General/Background Highest Concentration Max O3 Concentration	Micro Middle	SLAMS SPM		
HSNOy	Population Exposure		Monitor Network Affiliation		
X O ₃ NH ₃ Hydrocarbon Air Toxics CO (trace-level)	Source Oriented Transport Upwind Background Welfare Related Impacts	Neighborhood Urban Regional	NCORE Unofficial PAMS		
Probe inlet height (from ground) 2-15 m? Yes 🛛 No 🗌 Give actual measured height from ground (meters) 4.57					
	probe inlet from horizontal (wall) and/o from outer edge of probe to supporting		g structure ≥ 1 m? Yes ⊠No 🗌		
	probe inlet from other monitoring probe		Yes 🛛 No 🗌 NA 🗌		
Is probe > 20 m from the	nearest tree drip line? Yes 🔲 *No	(answer *'d questions))		
*Is probe > 10 m from the	e nearest tree drip line? 🛛 Yes 🔀 *No				
	ree (m) <u>15.54</u> Direction from probe to		e (m) <u>3.15</u>		
Are there any obstacles to	air flow? *Yes 🗌 (answer *'d question	ns) No 🛛			
*Identify obstacle	Distance from probe inlet (m)I	Direction from probe inlet	to obstacle		
*Is distance from inlet pro	obe to obstacle at least twice the height t	hat the obstacle protrudes	above the probe? Yes 🗌 No		
Distance of probe to near	est traffic lane (m) <u>20</u> Direction from	probe to nearest traffic lan	ne <u>NW</u>		

Parameters	Monitoring Objective	Scale	Site Type
□ NA Air flow < 200 L/min	General/Background	☐ Micro	SLAMS
\square PM2.5 FRM	Highest Concentration	☐Middle	SPM
🗖 PM10 FRM	Population Exposure	Neighborhood	Monitor Network Affiliation
□ PM10 Cont. (BAM) □ PM10-2.5 FRM	Source Oriented	Urban	NCORE
PM10-2.5 FRM	Transport		SUPPLEMENTAL
PM10 Lead (PB)	Welfare Related Impacts		
PM2.5 Cont. (BAM) PM2.5 Spec. (SASS)			SPECIATION
\square PM2.5 Spec. (JRG)			Monitor NAAQS Exclusion
PM2.5 Cont. Spec.			NONREGULATORY
	ground) $\square < 2 \text{ m} $ $\boxtimes 2-71$		\sim > 15 m
	from probe inlet to ground (meters)	Section and the section of the secti	
	probe inlet from horizontal (wall) as from outer edge of probe inlet to su		
	er edge of probe inlets of any low v		
low volume monitor at th		.1.4	
or TSP inlet = 2 m or grea			$\begin{array}{c c} \mathbf{Yes} \square & \mathbf{No} \square & \mathbf{NA} \blacksquare \end{array}$
Are collocated PM2.5 Mo TEOM, BAM & TEOM)	onitors (Two FRMs, FRM & BAM, Located at Site?	FRM & *Yes □ (an:	swer *'d questions) No 🛛 NA 🗌
	collocated PM 2.5 samplers (X) with		
each other? *Are collocated PM2 5 sa	ampler inlets within 1 m vertically o		No Give actual (meters)
Is an URG 3000 monitor	collocated with a SASS monitor at t	he site? *Yes \square (answe	$r *'d$ questions) No \square NA \square
	collocated speciation samplers inlets	(X) within 2 to 4 m of eac	h other? Yes 🗋 No 🔲
Give actual (meters)*	on sampler inlets within 1 m vertical	lv of each other? Yes	No Give actual (meters)
	onitor collocated with a PM2.5 mon	iter at the	answer *'d questions) No 🛛 NA
site to measure PM10-2.5			
* Entire inlet opening of a within 2 to 4 m of each of	collocated PM10 and PM2.5sampler ther?	s for PM10-2.5 (X)	Yes 🗌 No 🗌
	id PM2.5 sampler inlets within 1 m v	vertically of each other?	Yes 🗌 No 🗌
	nearest tree drip line? Yes 🗌 '		ons)
	e nearest tree drip line? 🛛 Yes 🔀 👌		
*Distance from probe to t	tree (m) 10.97 Direction from prob	be to tree*Height of t	ree (m) <u>3.15</u>
1 Martin Contraction Contraction	o air flow? *Yes 🗌 (answer *'d que Distance from probe inlet (m)		at to obstacle
	obe to obstacle at least twice the height		
	est traffic lane (m) <u>25</u> Direction f		
RECOMMENDATIONS:	-		
1) Maintain current site st	tatus? Yes 🛛 *No 🗖 (answer *	^{*'} d questions)	
*2) Change monitoring of	bjective? Yes 🗖 (enter new objec	tive No 🔲-	
*3) Change scale of repre	sentativeness? Yes 🔲 (enter new	v scale _) No 🗌	
*4) Relocate site? Yes	□ No □		
Comments:			
Date of Last Site Pictures	New Pictures Submitted? Y	es 🗌 No 🗌	
Reviewer <u>Steve Ensley</u>			Date <u>October 26, 2016</u>
Ambient Monitoring Coor	dinator Steve Ensley		DateOctober 26, 2016

Bryson City site review 2016

Region ARO Site Na	ame Linville	Falls		AQS Site # 37-011-0002	
Street Address-Linville Falls Road			City Li	nville Falls	
Urban Area Not in an Urban A	Irea	Core-based Statis	stical Area None		
Enter I	Exact				
Longitude <u>81.9330</u>	Latitude	<u>35.9723</u>		Method of Measuring	
In Decimal Degrees	In Decima	l Degrees		Explanation: Google Earth	
Elevation Above/below Mean Sea	Level (in me	eters)		<u>988.00</u>	
Name of nearest road to inlet prob	e <u>Blue Ridg</u>	<u>e Parkway</u> A	DT <u>0</u> Ye	ear estimated	
Distance of ozone probe to neares	t traffic lane	(m) 270 Direction fr	om ozone	probe to nearest traffic lane <u>NNW</u>	
Comments:					
Name of nearest major road <u>Hwy</u>	<u>221</u> ADT	<u>410</u> Year	<u>2014</u>		
Distance of site to nearest major re	oad (m) <u>160</u>	0.00 Direction from	site to nea	arest major road <u>SW</u>	
Comments:					
Site located near electrical substat	ion/high volt	age power lines?		Yes 🗌 No 🛛	
Distance of site to nearest railroad	track		(m)	Direction to RR M	
OPTIONAL Distance of site				(m) Direction _	
Distance between site and drip lin	e of water to	wer (m)Direc	tion from	site to water tower NA	
Explain any sources of potential b	ias; include c	ultivated fields, loos	e bulk sto	orage, stacks, vents, railroad tracks,	
construction activities, fast food re	staurants, an	d swimming pools.			

Site Information

ANSWER ALL APPLICABLE QUESTIONS:

Parameters	Monitoring Objective	Scale	Site Type		
\bigcirc O ₃	General/Background	Micro	SLAMS		
	Highest Concentration Max O3 Concentration	Middle	∐ ⊠spm		
	Population Exposure	Neighborhood			
	Source Oriented	Urban			
	Upwind Background Welfare Related Impacts	Regional			
Probe inlet height (from ground) 2-15 m? Yes 🛛 No					
Give actual measu	red height from ground (meters)	<u>3.66</u>			
Distance of outer edge of probe inlet from horizontal (wall) and/or vertical (roof) supporting					
structure > 1 m? Y			15 19 5501 Edgelandski 55		
	istance from outer edge of probe				
Is probe > 20 m from the nearest tree drip line? Yes \boxtimes *No \square (answer *'d questions)					
*Is probe > 10 m f	rom the nearest tree drip line?	Yes 🔲 *No 🗌			
Distance from pro	obe to tree (m) Direction	from probe to tree	Height of tree (m)		
Are there any obst	acles to air flow? *Yes 🗌 (ansv	ver *'d questions) No 🛛			
	Distance from probe inlet (m probe to obstacle at least twice the her				

Linville Falls site review 2016

Revised 2017-04-304

<u>RECOMMENDATIONS:</u>
1) Maintain current site status? Yes 🛛 *No 🗌 (answer *'d questions)
*2) Change monitoring objective? Yes [(enter new objective:) No [
*3) Change scale of representativeness? Yes 🗌 (enter new scale:) No 🗌
*4) Relocate site? Yes No
Comments:
Date of Last Site Pictures: October 19, 2015 New Pictures Submitted? Yes 🗌 No 🗙

Reviewer Terri DavisDate: December 13, 2016Ambient Monitoring Coordinator Steve EnsleyDate: 1/19/17

Instructions:

If the annual network review has indicated that the monitoring objectives and scale of representativeness for the site have not changed and the siting criteria still meets those monitoring objectives and that scale of representativeness and there are no other reasons to modify the site in any way, check "Yes" to the question "Maintain current site status?" and skip the rest of the recommendations section.

If the annual network review has indicated that the monitoring objectives, scale of representativeness, or siting criteria have changed for some reason or there is another reason to modify the site in some way, check "No" to the question "Maintain current site status?" and complete the rest of the recommendations section. If the monitoring objective or scale of representativeness needs to be changed, check the "Yes" box and write in the new monitoring objective or scale of representativeness on the line. Otherwise check the "No" box. If the site needs to be relocated, check the "Yes" box. If the site needs to be shut down, write "Shut down" in the comments line. Also use the comments line to explain any change requested.

Check the site picture archive to find out when the last set of site pictures were taken and write the date down on the line. If the pictures are more than five years old or if something at the site has changed in the past year, take new site pictures. Changes that require new site pictures include additions, removals, or movement of monitors at the site, growth or removal of trees and other shrubs at the site, and construction of roads or buildings at or in the vicinity of the site.

Pictures of the site should at a minimum include at least one picture showing the site itself and pictures standing at the probe or inlet or as close as possible to the probe or inlet looking in the four compass directions (north, east, south, and west). If meteorological data are collected at the site, pictures standing at the meteorological tower looking southwest and northeast should also be included. Sometimes pictures looking at the site from the four compass directions are also helpful.

Be sure to correctly identify the pictures as to which compass direction they show. This documentation may be achieved by using good notes when taking the pictures, holding a compass in front of the camera, or placing a sign with the appropriate direction indicated somewhere in the picture. Label the pictures with the name of the site using the two digit logger ID (HC, JW, *etc.*), the direction (N, NE, E, SE, S, SW, W, NW), and the date taken (YYYYMMDD) and transfer the pictures to the group drive in the appropriate Incoming/Regional Office directory.

Linville Falls site review 2016

Region_ARO Site Name Spruce Pine Hospital Street Address-272 Hospital Drive			AQS Site # 37- <u>121-0004</u>			
			City Spruce Pine			
Urban Area	SPRUCE PIN	E	Core-based St	tatistical Area None		
	Enter	r Exact				
Longitude	-82.0343	Latitude	<u>35.5444</u>	M	lethod of Mea	suring
In Decimal Deg	rees	In Decimal I	Degrees	Other (explain)	Explanatio	n: Google earth
Elevation Abo	ve/below Mean	Sea Level (in r	neters)		787	
Name of nearest	road to inlet pro	be Hospital Drive	<u>e</u> ADT <u>NA</u> Year	r Choose an item	<u>0</u>	
Comments:						
and the second sec	1000	road (m) 90.00 T	Direction from sit	e to nearest major ro	NW	
		· · · <u> </u>		e to hearest major re		
		<u>19</u> ADT <u>10000</u>	Year <u>2014</u>			
Comments: <u>NC</u>	DOT Traffic Vol	ume Map				
Site located near	electrical substa	tion/high voltage	power lines?			Yes 📃 No 🛛
Distance of sit	e to nearest rail	road track		(m) <u>327</u> Direction	to RR <u>W</u> NA
**OPTIONAL	** Distance of	site to nearest po	ower pole w/tra	nsformer	(m)	Direction
Distance betwee	n site and drip li	ne of water tower	(m)Dire	ection from site to w	ater tower	NA
Explain any so	urces of potenti	al bias; include	cultivated field	s, loose bulk storag	ge, stacks, vents	s, railroad tracks,
The second s	AN ARTICLE OF A CONTRACT OF A					
construction ad	tivities, fast for	od restaurants, a	nd swimming p	ools.		
construction ac	tivities, fast foo	od restaurants, a	nd swimming p	ools.		

Site Information

ANSWER ALL APPLICABLE QUESTIONS:						
Parameters	Monitoring Objective	Scale	Monitor Type			
Distance of outer edge of Actual measured distance	probe inlet from horizontal (wall) and/o from outer edge of probe to supporting	structure (meters)				
Distance of outer edge of probe inlet from other monitoring probe inlets > 1 m? Yes Ves No NA I Is probe > 20 m from the nearest tree drip line? Yes Yes Yes (answer *'d questions)						
*Is proce Is proce <t< td=""></t<>						
 *Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle *Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes No Distance of probe to nearest traffic lane (m) Direction from probe to nearest traffic lane 						

Parameters	Monitoring Objective	Scale	Site Type			
🗆 NA		□ \ C and	SLAMS			
Air flow < 200 L/min	General/Background	Micro	SPM			
PM2.5 FRM PM10 FRM	Highest Concentration	Middle				
PM10 Cont. (BAM)	Population Exposure	Neighborhood	Monitor Network Affiliation			
D PM10-2.5 FRM	Source Oriented	Urban	NCORE			
PM10-2.5 BAM	Transport	Regional	SUPPLEMENTAL			
PM10 Lead (PB) PM2.5 Cont. (BAM)	Welfare Related Impacts		SPECIATION			
PM2.5 Spec. (SASS)			Monitor NAAQS Exclusion			
PM2.5 Spec. (URG) PM2.5 Cont. Spec.			NONREGULATORY			
	(round) $\Box < 2 \text{ m}$ $\Box = 2.7 \text{m}$	🗌 7-15 m	> 15 m			
	from probe inlet to ground (meters)					
	probe inlet from horizontal (wall) and					
	from outer edge of probe inlet to sup					
Distance (Y) between out volume monitor at the site	er edge of probe inlets of any low vol $a = 1 \text{ m or greater}^2$	ume monitor and any other	low Yes No NA			
Distance (Y) between out	er edge of all low volume monitor inl	ets and any Hi-Volume PM	I-10 Yes 🗌 No 🗌 NA 🗙			
	nitors (Two FRMs, FRM & BAM, F	RM & ∗Vac ⊠ (a)	nswer *'d questions) No 🗌 NA 🗌			
TEOM, BAM & TEOM)						
	collocated PM 2.5 samplers (X) within		No 🗖 Give ectual (maters) 1 778			
and the second	each other? Yes No X Give actual (meters) 1.778 *Are collocated PM2.5 sampler inlets within 1 m vertically of each other? Yes No Give actual (meters) 1.778					
Is an URG 3000 monitor collocated with a SASS monitor at the site? *Yes \Box (answer *'d questions) No \Box NA \boxtimes						
* Entire inlet opening of collocated speciation samplers inlets (X) within 2 to 4 m of each other? Yes No						
Give actual (meters)						
* Are collocated speciation sampler inlets within 1 m vertically of each other? Yes No Give actual (meters)						
Is a low-volume PM10 monitor collocated with a PM2.5 monitor at the site to measure PM10-2.5? *Yes (answer *'d questions) No 🛛 NA						
	collocated PM10 and PM2.5samplers	for PM10-2.5 (X) within	Yes No			
2 to 4 m of each other? *Are collocated PM10 an	d PM2.5 sampler inlets within 1 m ve	rtically of each other?	Yes 🔲 No 🗌			
		No [] (answer *'d question				
*Is probe > 10 m from the nearest tree drip line? Yes \square *No \square						
*Distance from probe to tree (m) Direction from probe to tree *Height of tree (m)						
Are there any obstacles to air flow? *Yes 🗌 (answer *'d questions) No 🔀						
*Identify obstacle Distance from probe inlet (m) Direction from probe inlet to obstacle						
*Is distance from inlet probe to obstacle at least twice the height that the obstacle protrudes above the probe? Yes 🛛 No 🗌 Distance of probe to nearest traffic lane (m) 89 Direction from probe to nearest traffic lane WNW						
		on probe to nearest traffic i				
<u>RECOMMENDATION</u>		2.8 3 2				
2	status? Yes 🛛 *No 🗌 (answer	5 S				
*2) Change monitoring objective? Yes [(enter new objective) No []-						
/ 0 1	resentativeness? Yes 🔲 (enter new	w scale _) No 🗌				
*4) Relocate site? Ye	s 🗌 No 🗌					
Comments:						
Date of Last Site Picture	s <u>10/31/16</u> New Pictures Sub	mitted? Yes 🔀 🛛 No 🗖				
Reviewer <u>Terri Davis</u>			Date <u>December 13, 2016</u>			
Ambient Monitoring Co	ordinator Steve Ensley		DateJanuary 19, 2017			
Ð	FOR STATE AND A ST					

Spruce Pine Hospital site review 2016

Appendix A-2. Scale of Representativeness

Each station in the monitoring network must be described in terms of the physical dimensions of the air parcel nearest the monitoring station throughout which actual pollutant concentrations are reasonably similar. Area dimensions or scales of representativeness used in the network description are:

- a) Microscale defines the concentration in air volumes associated with area dimensions ranging from several meters up to about 100 meters.
- b) Middle scale defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometers.
- c) Neighborhood scale defines concentrations within an extended area of a city that has relatively uniform land use with dimensions ranging from about 0.5 to 4.0 kilometers.
- d) Urban scale defines an overall citywide condition with dimensions on the order of 4 to 50 kilometers.
- e) Regional Scale defines air quality levels over areas having dimensions of 50 to hundreds of kilometers.

Closely associated with the area around the monitoring station where pollutant concentrations are reasonably similar are the basic monitoring exposures of the station.

There are six basic exposures:

- a) Sites located to determine the highest concentrations expected to occur in the area covered by the network.
- b) Sites located to determine representative concentrations in areas of high population density.
- c) Sites located to determine the impact on ambient pollution levels of significant sources or source categories.
- d) Sites located to determine general background concentration levels.
- e) Sites located to determine the extent of regional pollutant transport among populated areas.
- f) Sites located to measure air pollution impacts on visibility, vegetation damage or other welfare-based impacts and in support of secondary standards.

The design intent in siting stations is to correctly match the area dimensions represented by the sample of monitored air with the area dimensions most appropriate for the monitoring objective of the station. The following relationship of the six basic objectives and the scales of representativeness are appropriate when siting monitoring stations:

1. Highest concentration	Micro, middle, neighborhood (sometimes urban		
	or regional for secondarily formed pollutants)		
2. Population oriented	Neighborhood, urban		
3. Source impact	Micro, middle, neighborhood		
4. General/background & regional transport	Urban, regional		
5. Welfare-related impacts	Urban, regional		

Table A6. Site Type Appropriate Siting Scales

Appendix A-3. Duke Progress Energy Skyland Siting Analysis and Additional Site Information

Duke Energy Asheville SO2 Modeling for Monitor Placement

Introduction

On June 22, 2010, the United States Environmental Protection Agency, EPA, revised the primary sulfur dioxide, SO₂, national ambient air quality standard, NAAQS, (75 FR 35520). The EPA promulgated a new 1-hour daily maximum primary SO₂ standard at a level of 75 parts per billion, ppb, based on the 3-year average of the annual 99th percentile of 1-hour daily maximum concentrations.

On May 13, 2014, the EPA proposed the data requirements rule, DRR, for the 1-Hour SO₂ NAAQS (79 FR 27445). The final DRR was promulgated on Aug. 21, 2015 (80 FR 51051)⁸ and requires states to gather and submit to the EPA additional information characterizing SO₂ air quality in areas with larger sources of SO₂ emissions. In the DRR, air agencies have the choice to use either monitoring or modeling to characterize SO₂ air quality near priority SO₂ sources and submit the modeling and/or monitoring to the EPA on a schedule specified by the rule.

This analysis was conducted to identify a suitable 1-hour SO₂ source-oriented monitoring site location for the 2017-2019 monitoring period intended to satisfy the DRR for Duke Energy Asheville should the facility and North Carolina Department of Environmental Quality decide to use monitoring instead of modeling to comply with the DRR. Currently, the closest SO₂ monitor is about 80 kilometers west of Duke Energy Asheville, located at 30 Recreation Park Drive, Bryson City, NC. The 1-hour background monitored air concentration for the area based on 2014 data from that monitor is 1.1 ppb or $2.9 \,\mu g/m^3$.

Duke Energy Asheville

Duke Energy's Asheville Plant is a coal-fired electric generating facility located at 200 CP&L Drive in Arden, NC. The facility produces steam in two coal-fired combustion units (Units 1 and 2) and the steam is routed to steam turbines that produce electricity to sell to residential or industrial consumers. The facility is not a significant source of SO₂ emissions since it emits less than the 2,000 tons per year threshold specified in the DRR for determining which sources need to be evaluated in determining area NAAQS compliance designations. However, this facility was modeled and shown to potentially violate the SO2 NAAQS by a third-party, The Sierra Club.

A part of the requirements for the DRR is the consideration of other sources of SO₂ emissions in the vicinity of the facility. The only other large source of SO₂ emissions in the region, Evergreen Packaging in Canton, NC, is over 25 kilometers away from Duke Energy Asheville. This facility

⁸ Data Requirements Rule for the 2010 1-Hour Sulfur Dioxide Primary National Ambient Air Quality Standard, Federal Register of Aug. 21, 2015, (80 FR 51052)(FRL-9928-18-OAR), 2015-20367.

is a significant source of SO_2 emissions since it emits more than the 2,000 tons per year threshold specified in the DRR and is being examined in a different exercise. However, the facilities are far enough apart to not impact the same areas.

AERMOD Modeling

As described in the EPA SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document, or the Monitoring TAD, ⁹ the Division of Air Quality's, DAQ's, modeling followed the recommendations of the SO₂ NAAQS Designations Modeling Technical Assistance Document, also known as the Modeling TAD. Based on the Modeling TAD, given the source-oriented nature of SO₂, dispersion models are appropriate air quality modeling tools to predict the near-field concentrations. The AMS/EPA Regulatory Model, AERMOD, was used, as suggested in the Monitoring TAD. AERMOD is the preferred air dispersion model because it is capable of handling rural and urban areas, flat and complex terrain, surface and elevated releases and multiple sources, including, point, area and volume sources, to address ambient impacts for the designations process.

Three years of hourly SO₂ Continuous Emissions Monitor, CEM, data for each of the two stacks at the Duke Energy Asheville facility were used in the modeling. Following the example in Appendix A of the Monitoring TAD, normalized emission rates were used as input to the model. Because of the linear scalability of emissions to modeled concentrations, the relative model results using normalized emissions can be used to predict the location of maximum concentration gradients. The CEM emissions rates were normalized by dividing each hour's rate by the highest overall rate over all stacks throughout the period. Building locations, sizes and orientations relative to stacks were input into BPIP-PRIME to calculate building parameters for AERMOD. Table 7 provides the stack parameters used in the modeling analysis.

Source ID	Easting (X)	Northing (Y)	Base Elevation	Stack Height	Temperature	Exit Velocity	Stack Diameter
	(m)	(m)	(m)	(m)	(K)	(m/s)	(m)
UNIT1	359,957.5	3,926,328.5	662	99.7	324	17.3	5.0
UNIT2	359,963.9	3,926,328.5	662	99.7	322	17.1	5.0

Table 7.	Parameters fo	r Duke Energy Ashev	ille SO2 Modeling	for Monitor Placement
----------	---------------	---------------------	-------------------	-----------------------

Receptors were spaced 100 meters apart along the fence line. A set of nested Cartesian grid receptors were generated extending outward from the fence line. The receptors were spaced 100 meters apart out to 3 km from the facility center, 500 meters apart from 3 to 5 km out and 1000 meters apart from 5 to 10 km out. Receptors were removed from the model if they were within the fence line of the facility or in areas not suitable for the placement of a permanent monitor

⁹ SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document, U.S. EPA, Office of Air and Radiation, Office of Air Quality Planning and Standards, Air Quality Assessment Division, December 2013, Draft.

such as open water. The following figures are included to show the facility and modeling inputs. Figure A-125 is an aerial photo of the facility, Figure A-126 shows the emissions point and building locations and Figure A-127 shows the receptor placement.

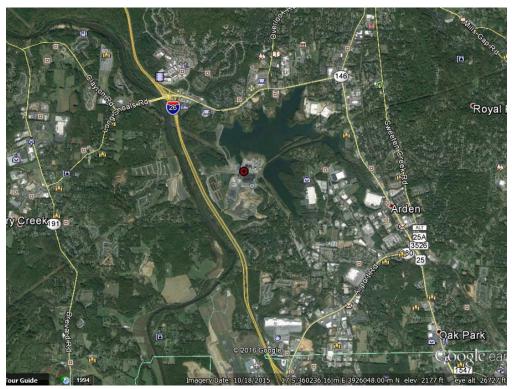
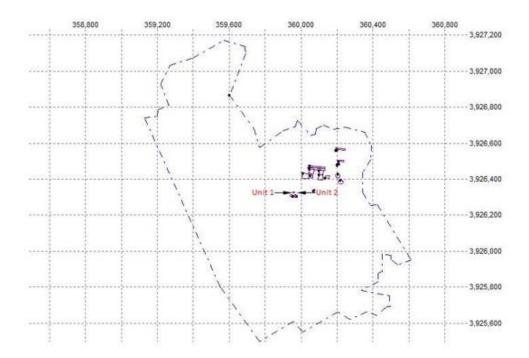



Figure A-125. Aerial View of Duke Energy Asheville and Surrounding Areas

Figure A-126. Locations in Duke Energy Asheville SO2 Modeling for Monitor Placement (*UTM NAD 83 Coordinates in Meters, Zone 17*)

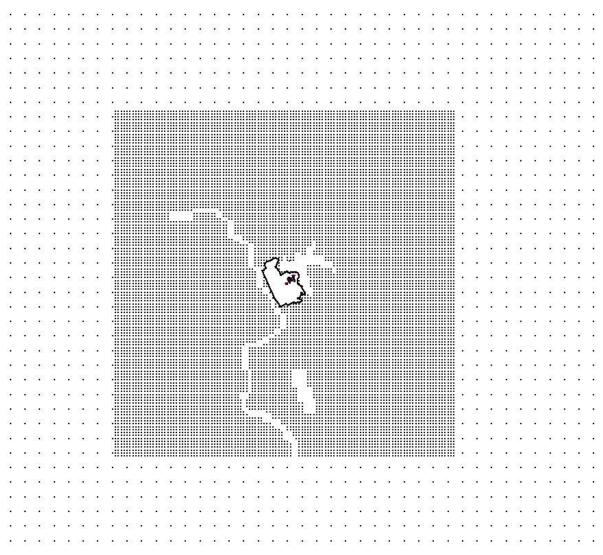


Figure A-127. Receptor Grids in Duke Energy Asheville SO2 Modeling for Monitor Placement Receptor

Terrain data used in the analysis were obtained from the USGS Seamless Data Server at http://viewer.nationalmap.gov/viewer/. The 1 arc-second NED data were obtained in the GeoTIFF format and used in determining receptor elevations and hill heights using AERMAP. National Weather Service, NWS, Automated Surface Observation Station, ASOS, data for 2012 to 2014 for the station located at Asheville, NC were processed using AERMET together with upper air data for the same period from Greensboro, NC. AERMinute was also used in processing the data to incorporate additional wind data.

Modeling Results and Ranking Methodology

Following the guidance outlined in Appendix A of the Monitoring TAD, normalized modeled impacts were used to determine suitable locations for installing an SO₂ monitor near Duke Energy Asheville. The three-year average of each year's 4th daily highest 1-hour maximum concentration (99th percentile of daily 1-hour maximum concentrations) was calculated for each receptor. This value is commonly referred to as the design value (DV). Because normalized emissions were used to calculate these values, the results are referred to as normalized design values or NDVs in this analysis.

Figure A-128 shows a contour plot of the NDVs for the receptors near Duke Energy Asheville. Individual NDV's for the higher areas are also presented. The pushpin represents the Skyland DRR monitor location.

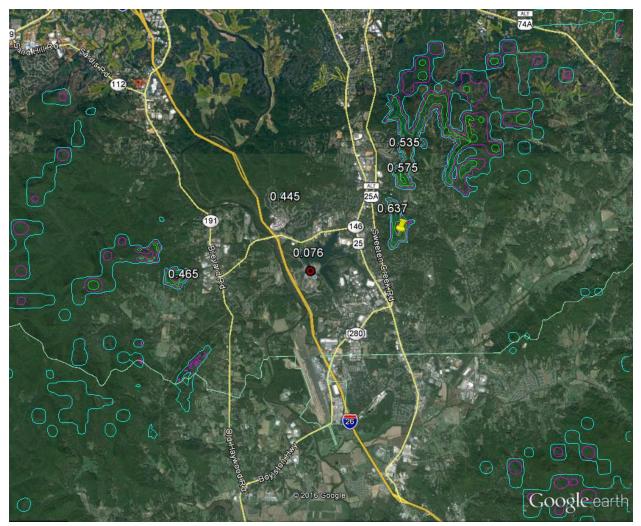


Figure A-128. Modeled NDVs for Duke Energy Asheville

Based on Appendix A of the Monitoring TAD, the site selection process also needs to account for the frequency in which a receptor has the daily maximum concentrations. The frequency is the number of times each receptor was estimated to have the maximum daily 1-hour concentration. Figure A-129 shows the results of the frequency analysis. The pushpin represents the Skyland DRR monitor location.

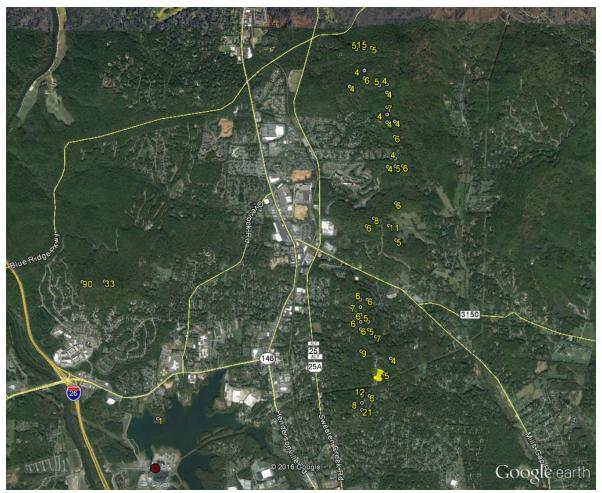


Figure A-129. Frequency of Daily Maximum Concentrations for Duke Energy Asheville

Each receptor's frequency value was used with its NDV to create a relative prioritized list of receptor locations. This process is referred to in Appendix A of the Monitoring TAD as a scoring strategy. The list of receptors was developed through the following steps:

- 1. The NDVs were ranked from highest to lowest. Rank 1 means the highest NDV.
- 2. The frequencies for the 200 receptors were ranked from the highest to lowest. Rank 1 means the highest number of days having the daily maximum value.
- 3. The NDV rank and the frequency rank were added together to obtain a score.

4. The scores were ranked from lowest to highest. The receptors with the lowest scores were identified as the most favorable locations for the monitor.

Ranking Results and Discussion of the Skyland DRR Monitor Site

Figure A-130 shows the receptor locations that ranked in the top 30, note that there were several ties in rankings. DAQ staff, in conjunction with Duke Energy staff and a representative from EPA Region 4, conducted an in-situ survey near the Duke Energy Asheville area to select a suitable location for SO₂ monitor placement. The survey focused on the areas to the northeast of the Asheville facility where the higher-ranking receptors are located. See Figure A-130. When selecting adequate locations for the Skyland DRR monitor, considerations were made regarding the availability of electrical power, security of the monitor, accessibility, proper instrument exposure and assurance of long-term use of the site. This last point was especially important, given the tight timelines in the rule. Most of the nearby clear area is privately-owned and there was no guarantee that we could keep the monitor there for at least three years to get a design value.

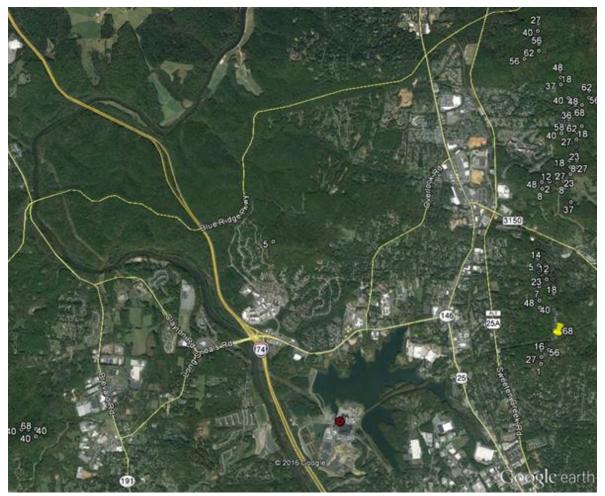


Figure A-130. Locations of Top Ranked Receptors for Duke Energy Asheville

Table 8 shows a summary of the ranking results for the top receptors and the Skyland DRR monitor location resulting from the site visit conducted using information from the scoring strategy.

Easting, in meters	Northing, in meters	Normalized Design Value, NDV	NDV Ratio	NDV Rank	Freq. Count	Freq. Rank	Score	Score Rank
362,900	3,927,200	0.49	0.78	11	21	3	14	1
362,900	3,928,500	0.63	1.00	1	6	14	15	2
363,100	3,929,800	0.58	0.92	3	8	12	15	2
362,900	3,928,400	0.62	0.98	2	6	14	16	4
359,100	3,929,000	0.44	0.70	16	90	1	17	5
362,900	3,928,600	0.57	0.90	4	7	13	17	5
362,900	3,928,300	0.56	0.89	5	6	14	19	7
363,000	3,929,700	0.54	0.86	6	6	14	20	8
363,300	3,929,700	0.50	0.79	10	11	10	20	8
363,400	3,930,000	0.54	0.86	6	6	14	20	8
363,000	3,932,200	0.47	0.75	13	14	8	21	11
363,000	3,928,500	0.62	0.98	2	0	20	22	12
363,200	3,929,900	0.56	0.89	5	3	17	22	12
362,900	3,928,700	0.51	0.81	9	6	14	23	14
363,400	3,930,500	0.52	0.83	8	5	15	23	14
362,900	3,927,400	0.45	0.71	15	12	9	24	16
363,300	3,929,900	0.57	0.90	4	0	20	24	16
363,100	3,928,200	0.48	0.76	12	7	13	25	18
363,300	3,930,600	0.52	0.83	8	3	17	25	18
363,300	3,931,300	0.48	0.76	12	7	13	25	18
363,400	3,930,100	0.56	0.89	5	0	20	25	18
363,500	3,930,500	0.49	0.78	11	6	14	25	18
363,000	3,928,400	0.49	0.78	11	5	15	26	23
363,300	3,929,800	0.54	0.86	6	0	20	26	23
363,400	3,930,800	0.53	0.84	7	1	19	26	23
363,500	3,930,100	0.54	0.86	6	0	20	26	23
362,900	3,927,300	0.45	0.71	15	8	12	27	27
363,000	3,932,100	0.40	0.63	20	15	7	27	27
363,300	3,930,000	0.53	0.84	7	0	20	27	27
363,300	3,931,100	0.49	0.78	11	4	16	27	27
363,400	3,929,900	0.52	0.83	8	1	19	27	27

Table 8. Selected Ranking Results from the Duke Energy Asheville SO2 Modeling for Monitor Placement

Easting, in meters	Northing, in meters	Normalized Design Value, NDV	NDV Ratio	NDV Rank	Freq. Count	Freq. Rank	Score	Score Rank
363,400	3,930,900	0.47	0.75	13	6	14	27	27
363,500	3,930,000	0.53	0.84	7	0	20	27	27
363,500	3,930,300	0.53	0.84	7	0	20	27	27
363,500	3,930,400	0.51	0.81	9	2	18	27	27
363,400	3,930,700	0.52	0.83	8	0	20	28	36
363,100	3,928,300	0.51	0.81	9	0	20	29	37
363,300	3,931,200	0.47	0.75	13	4	16	29	37
363,400	3,929,500	0.46	0.73	14	5	15	29	37
355,500	3,926,400	0.45	0.71	15	5	15	30	40
355,700	3,926,300	0.46	0.73	14	4	16	30	40
355,700	3,926,400	0.44	0.70	16	6	14	30	40
362,900	3,928,000	0.41	0.65	19	9	11	30	40
363,000	3,932,000	0.50	0.79	10	0	20	30	40
363,300	3,930,500	0.46	0.73	14	4	16	30	40
363,300	3,930,700	0.47	0.75	13	3	17	30	40
363,400	3,931,000	0.50	0.79	10	0	20	30	40
362,900	3,928,100	0.47	0.75	13	2	18	31	48
363,000	3,929,800	0.47	0.75	13	2	18	31	48
363,100	3,928,400	0.49	0.78	11	0	20	31	48
363,300	3,931,400	0.47	0.75	13	2	18	31	48
363,300	3,931,500	0.45	0.71	15	4	16	31	48
363,400	3,929,800	0.49	0.78	11	0	20	31	48
363,500	3,930,900	0.49	0.78	11	0	20	31	48
364,900	3,929,900	0.49	0.78	11	0	20	31	48
362,800	3,931,600	0.44	0.70	16	4	16	32	56
363,000	3,927,400	0.42	0.67	18	6	14	32	56
363,000	3,931,800	0.44	0.70	16	4	16	32	56
363,400	3,930,300	0.48	0.76	12	0	20	32	56
363,500	3,930,800	0.48	0.76	12	0	20	32	56
363,700	3,931,000	0.48	0.76	12	0	20	32	56
354,100	3,927,200	0.41	0.65	19	6	14	33	62
363,000	3,931,700	0.41	0.65	19	6	14	33	62
363,600	3,930,600	0.47	0.75	13	0	20	33	62
363,700	3,931,100	0.47	0.75	13	0	20	33	62
364,800	3,929,600	0.47	0.75	13	0	20	33	62

Table 8. Selected Ranking Results from the Duke Energy Asheville SO2 Modeling for Monitor Placement

Easting, in meters	Northing, in meters	Normalized Design Value, NDV	NDV Ratio	NDV Rank	Freq. Count	Freq. Rank	Score	Score Rank
364,800	3,929,800	0.47	0.75	13	0	20	33	62
355,600	3,926,400	0.46	0.73	14	0	20	34	68
		Sk	yland DRI	R Monitor I	Location			
362,900	3,931,700	0.46	0.73	14	0	20	34	68
363,000	3,928,600	0.44	0.70	16	2	18	34	68
363,200	3,927,700	0.41	0.65	19	5	15	34	68
363,400	3,930,400	0.44	0.70	16	2	18	34	68
363,400	3,930,600	0.42	0.67	18	4	16	34	58
363,500	3,930,200	0.46	0.73	14	0	20	34	68
363,600	3,930,900	0.46	0.73	14	0	20	34	68
364,800	3,929,700	0.46	0.73	14	0	20	34	68

Table 8. Selected Ranking Results from the Duke Energy Asheville SO2 Modeling for Monitor Placement

The Skyland DRR location, denoted by the pushpin in Figure A-128 through Figure A-130, was selected that is approximately 3.4 km northeast of the property line of the Asheville facility. This location is underneath the high-tension line tower, in an open location free of trees or other vegetation. The selected location has a score ranking of #68 as indicated in Table 2. The location is the highest of the ranked receptors not located in densely wooded areas. Figure A-131 shows the view of the Asheville plant from near the Skyland DRR monitor location. Based on this information, DAQ believes that the Skyland DRR location is highly suitable for operating an SO₂ monitor.

Figure A-131. View of Asheville Plant from near the Skyland DRR Monitor Location

Region 4 Requested Information for Chosen Sites

In 2015, the DAQ began working with Duke Energy Progress to establish a sulfur dioxide monitoring station in Skyland, North Carolina, to characterize the ambient sulfur dioxide concentrations near the Asheville steam station as required by the data requirements rule for sulfur dioxide.¹⁰ The area chosen for placement of the monitor was selected using the results of modeling done as described in the technical assistance document¹¹ and reported earlier in this appendix. An aerial view of the Skyland DRR monitoring station identified based on the earlier reported considerations is shown in Figure A-70.

The Air Quality System, AQS, identification number for this monitor is 37-021-0036-42401-1. DAQ operates this monitor in collaboration with Duke Energy Progress to ensure the air in the Asheville area complies with the national ambient air quality standards for sulfur dioxide. Duke Energy Progress operates the monitor following the DAQ quality assurance project plan and the monitor is part of the DAQ primary quality assurance organization. Figure A-71 through Figure A-78 show views from the Skyland DRR site looking north, east, southeast, south, west and northwest.

¹⁰ Data Requirements Rule for the 2010 1-Hour Sulfur Dioxide Primary National Ambient Air Quality Standard, Federal Register of Aug. 21, 2015, (80 FR 51052) (FRL-9928-18-OAR), 2015-20367.

¹¹ SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document, U.S. EPA, Office of Air and Radiation, Office of Air Quality Planning and Standards, Air Quality Assessment Division, December 2013, Draft.

The Skyland DRR monitoring site is located at least 10 meters from trees in all directions. The tallest trees are estimated to be 15.2 meters in height. The monitoring site is located approximately 30 meters from the two-story house to the north. The land slopes down to the west and up toward the east. The nearest road is Crestwood Drive located approximately 19 meters to the southeast. This road does not have traffic count data; however, as shown in Figure A-132, Royal Pines Road, had an average annual daily traffic count of 1,700 in 2014. The probe height is 3.6 meters.

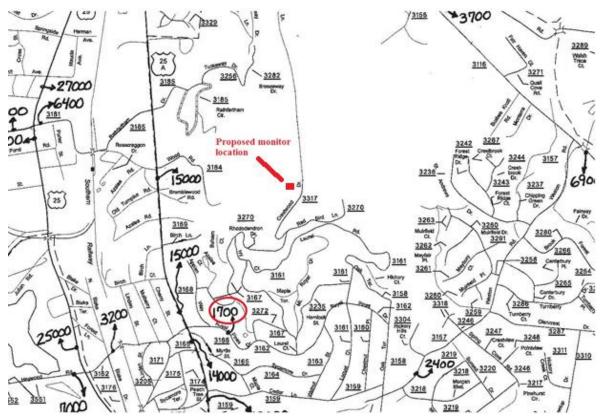


Figure A-132. 2014 Traffic count map near the Skyland DRR site (from NC DOT)

The AQS identification number and street address for the site is: 37-021-0036 and Crestwood Drive Air Monitor, Asheville Plant, Arden, North Carolina. The latitude and longitude is 35.481861 and -82.509861. The sampling and analysis method is AQS code 560, Thermo Electron 43i TLE pulsed fluorescent instrument, EQSA-0486-060, and the operating schedule is hourly. The monitoring objective is source oriented. Figure A-133 shows the location of the monitoring station relative to the population center of Buncombe County in the Arden area. Based on the wind roses in Figure A-134, the Skyland DRR monitoring station is not located downwind of the Asheville plant. However, the concentrations are higher at the Skyland DRR location than downwind from the plant because the chosen location is at a higher elevation and in the pathway of the plume. The spatial scale of representativeness for the monitor is

neighborhood scale based on the distance of the monitor from the source. The monitor is located approximately 3.4 kilometers east northeast of the property line for the facility.

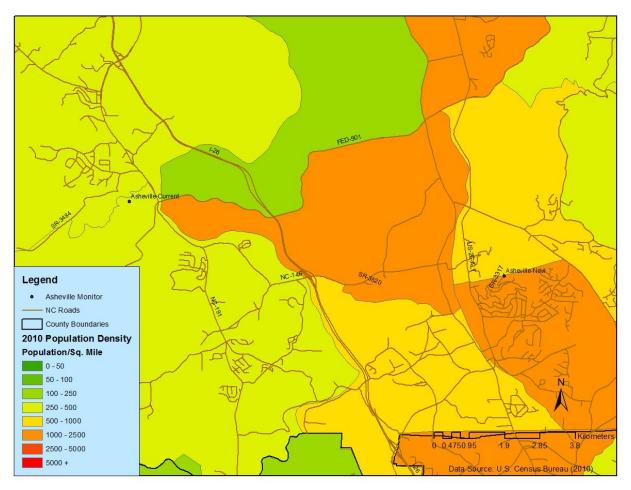
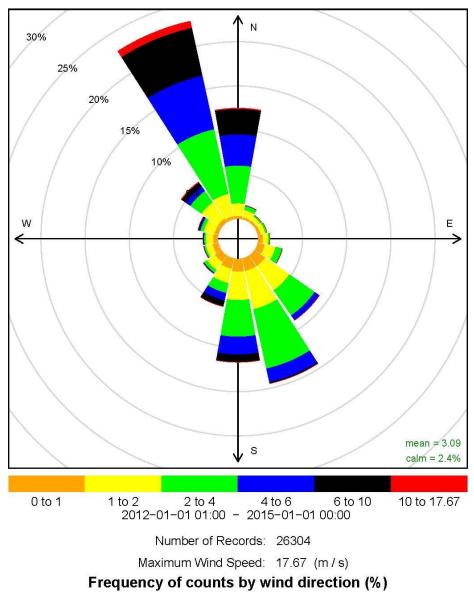



Figure A-133. Location of the Skyland DRR monitoring station relative to the population of the Arden area in Buncombe County

Asheville Airport Windrose 2012-2014

Figure A-134. Wind rose for the Asheville Airport

This monitor is in the Asheville metropolitan statistical area and is representative of the air quality downwind from the fence line of the Asheville Steam Station.

The proposed monitoring site was provided to the public for comment during 30 days in November and December as an addendum to the 2016-207 network monitoring plan.

Table 9 summarizes other factors DAQ evaluated when choosing the location for the Skyland DRR monitoring station. Table 10 summarizes the EPA-required information for the chosen Skyland DRR site.

Factor	Evaluation
Long-term Site Commitment	The chosen location is on land to which Duke has
	obtained a lease and already has access for maintenance
	of power transmission lines. Because the area is needed
	for the power transmission lines it will not be developed
	any time in the next three years
Sufficient Operating Space	20-meter by 35-meter open area free of trees and
	buildings.
Access and Security	The building is on the right of way for the power
	transmission lines and underneath the tower.
Safety	Appropriate electrical permits were obtained.
Power	Location is approximately 15 meters from transformer.
Environmental Control	The monitoring shelter is a 6 foot by 6-foot trailer with
	the tongue of the trailer facing south.
Exposure	The monitoring station is at least 10 meters from the
-	driplines of trees and there are no trees or buildings
	between the monitor and the source.
Distance from Nearby	There are no other permitted facilities within 0.5 miles of
Emitters	the chosen location.
Proximity to Other	The Skyland DRR monitoring station is located about 7-
Measurements	kilometers northeast of the Asheville Regional Airport
	and 11 kilometers east southeast of the Bent Creek ozone
	monitoring station.

Table 9. Other considerations in site selection

	27.001.0026
AQS Site Id Number:	37-021-0036
Site Name:	Skyland DRR
	Crestwood Drive Air Monitor, Asheville
Street Address:	Plant
City:	Arden
Latitude:	35.481861
Longitude:	-82.509861
MSA, CSA or CBSA represented:	Asheville
Monitor Type:	Industrial
Operating Schedule:	Hourly – every year
	Maximum concentration site in the vicinity
Statement of Purpose:	of the Duke Progress Energy Asheville Plant.
	Compliance w/NAAQS.
Monitoring Objective:	Source-oriented
Scale:	Neighborhood
Suitable for Comparison to NAAQS:	Yes
Meets Requirements of Part 58 Appendix A:	Yes
Meets Requirements of Part 58 Appendix C:	Yes: EQSA-0486-060
Meets Requirements of Part 58 Appendix D:	No – Data Requirements Rule
Meets Requirements of Part 58 Appendix E:	Yes
Proposal to Move or Change:	Monitoring started Jan. 6, 2017

Table 10. The 2016-2017 Sulfur Dioxide Monitoring Network for the Asheville MSA ^a

^a The monitor uses an instrumental pulsed fluorescence method using a Thermo Electron 43i-TLE, Air Quality System, AQS, method code 560.

Appendix A-4. Evergreen Packaging Canton Siting Analysis and Additional Site Information

Siting Analysis for the Canton DRR Site (Evergreen Packaging -- Canton)

FINAL REPORT

SO2 DATA REQUIREMENTS RULE MONITOR SITING ANALYSIS

Evergreen Packaging – Canton Mill Permit No. 08961T17 Facility ID No. 4400159 Canton, North Carolina

P.O. Box 4000 Canton, NC 28716

Prepared by:

AECOM Technical Services of North Carolina, Inc. 1600 Perimeter Park Drive, Suite 400 Morrisville, NC 27560

TABLE OF CONTENTS

1.0	Introdu	ction		1-1
2.0	Facility 2.1		ation Description and Location	
3.0	3.1	Analysi: 3.1.1 3.1.2 3.1.3 3.1.4	analysis s Approach and Model Selection Meteorological Data Receptors Sources Modeled Emissions	3-1 3-1 3-1 3-2 3-2
	3.2		g Results and Ranking Methodology Ranking Results	
		3.2.1	Numing neouno.	

List of Figures

- Figure 2-1. Site and SO₂ Monitor Locations
- Figure 3-1. SO₂ DRR Full Receptor Grid
- Figure 3-2. SO₂ DRR Near Receptor Grid
- Figure 3-3. Source and Building Layout
- Figure 3-4. Modeled NDVs
- Figure 3-5. Receptor NDV Ratio to Maximum NDV
- Figure 3-6. Top 200 NDVs
- Figure 3-7. Top 50 NDVs
- Figure 3-8. Frequency of Daily Maximums
- Figure 3-9. Location of Top 50 NDVs with Rank
- Figure 3-10a. Frequency of Daily Maximums (Area 1)
- Figure 3-10b. Location of Top 50 NDVs with Rank (Area 1)
- Figure 3-11a. Frequency of Daily Maximums (Area 2)
- Figure 3-11b. Location of Top 50 NDVs with Rank (Area 2)
- Figure 3-12a. Frequency of Daily Maximums (Area 3)
- Figure 3-12b. Location of Top 50 NDVs with Rank (Area 3)

List of Tables

- Table 3-1. Modeled Stack Parameters
- Table 3-2. Top 10 Ranking Receptors by Score

1.0 INTRODUCTION

On June 22, 2010, the EPA revised the primary sulfur dioxide (SO₂) National Ambient Air Quality Standard (NAAQS) (75 FR 35520). The EPA promulgated a new 1-hour daily maximum primary SO₂ standard at a level of 75 parts per billion (ppb), based on the 3-year average of the annual 99th percentile of 1-hour daily maximum concentrations.

On May 13, 2014, the EPA proposed the Data Requirements Rule (DRR) for the 1-Hour SO₂ NAAQS (79 FR 27445). The final DRR was promulgated on August 21, 2015 (80 FR 51051) and requires states to gather and submit to the EPA additional information characterizing SO₂ air quality in areas with larger sources of SO₂ emissions. In the DRR, air agencies have the choice to use either monitoring or modeling to characterize SO₂ air quality in the vicinity of priority SO₂ sources, and submit the modeling and/or monitoring to the EPA on a schedule specified by the rule.

This analysis was conducted to identify a suitable 1-hour SO₂ source-oriented monitoring site location for the 2017-2019 monitoring period intended to satisfy the DRR for Evergreen Packaging Canton (EP Canton). Currently, the two closest SO₂ monitors with valid design values are about 90 kilometers southwest and 90 kilometers southeast of EP Canton, located at 133 Perry Avenue, Greenville, SC and on Round Mountain Tower Road, Long Creek, SC. The 1-hour background monitored air concentrations for these monitors, based on 2012-2014 data are 7 ppb (18.29 μ g/m³) at the Greenville, SC monitor and 3 ppb (7.84 μ g/m³) at the Long Creek, SC monitor.

The purpose of this report is to provide a summary of modeling that was performed to estimate locations for a future SO_2 monitor near the EP Canton Mill.

2.0 FACILITY INFORMATION

2.1 Facility Description and Location

Evergreen Packaging owns and operates an integrated bleached Kraft pulp and paper mill in Canton, North Carolina. Primary operations at the mill include 5 solid fuel-fired industrial boilers, wood pulping operations, chemical recovery operations, bleaching operations, papermaking, and additional operations and equipment necessary to support these operations. The Mill started up in 1908 and produces a nominal 600,000 tons per year of uncoated fine paper and bleached paperboard.

The Canton Mill is located in Haywood County. The Mill site is located approximately 25 kilometers (km) west of Asheville, North Carolina. Figure 2-1 shows the site location and current SO₂ monitors within 200 km of the Mill.

3.0 MONITOR SITING ANALYSIS

3.1 Analysis Approach and Model Selection

As described in the EPA SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document (Monitoring TAD), the modeling followed the recommendations of the SO₂ NAAQS Designations Modeling Technical Assistance Document (Modeling TAD). According to the Modeling TAD, given the source-oriented nature of SO₂, dispersion models are appropriate air quality modeling tools to predict the near-field concentrations. The AMS/EPA Regulatory Model (AERMOD version 15181) was used, as suggested in the Monitoring TAD. AERMOD is the preferred air dispersion model because it is capable of handling rural and urban areas, flat and complex terrain, surface and elevated releases, and multiple sources (including, point, area, and volume sources) to address ambient impacts for the designations process.

3.1.1 Meteorological Data

The EP Canton Mill is located in Canton, North Carolina approximately 25 kilometers west of Asheville in an area of complex terrain. Meteorological data for this area is not available for download on the NC DAQ website. AERMOD-ready meteorological data was created by processing surface data from the Asheville Regional Airport, upper air data from the Peachtree City, Georgia National Weather Service (NWS) site, and onsite meteorological data. The DRR requires modeling to be performed for the most recent three year period. Since the 2015 meteorological data has not been fully quality assured, meteorological data for the 2012-2014 period was processed.

3.1.2 Receptors

The dispersion modeling receptor grids were developed following procedures outlined in the *New Source Review Workshop Manual* (October 1990), the *North Carolina PSD Modeling Guidance* (January 2012), and the Modeling TAD. A detailed discrete receptor grid system was created to assess air quality impacts in all directions from the EP Canton Mill to a distance of up to 10 km from the property boundary.

Discrete receptors were placed along the property line at 50-meter intervals. A 100-meter grid spacing was used from the property line out to a distance of approximately 500 meters and 500-meter grid spacing from 500 m to 5,000 m. The remaining grid from 5,000 m to approximately 10,000 m used a 1,000-meter grid spacing. According to the Modeling TAD, receptors should only be placed where it is suitable for the placement of a permanent monitor; therefore receptors on Evergreen Packaging property and over water were removed. Figure 3-1 presents the full modeling receptor grid, while Figure 3-2 presents the near-field receptor grid along with the Evergreen Packaging property boundaries.

Terrain data used in the analysis was obtained from the USGS Seamless Data Server at http://viewer.nationalmap.gov/viewer/. The 1 arc-second NED data was obtained in the GeoTIFF format and used in determining receptor elevations and hill heights using AERMAP.

ΑΞϹΟΜ

3.1.3 Sources

There are multiple SO_2 emissions sources present at the EP Canton Mill, all of which were modeled as point sources. Intermittent sources such as emergency generators were not included in the modeling as they typically do not run for an hour except during emergency situations.

The AERMOD model uses a steady-state Gaussian plume equation to model emissions from point sources such as stacks and vents. All point sources were modeled using actual stack exhaust parameters. The following parameters were used for modeling the point sources: emission rates (grams/sec), stack height (m), stack diameter (m), stack exit velocity (m/sec), stack exhaust temperature (K), and direction-specific building dimensions (m). Building locations, sizes, and orientations relative to stacks were input into BPIP-PRIME to calculate building parameters for AERMOD. Table 3-1 presents a list of the modeled facility point sources and their associated parameters. The source and building layout for modeling is shown in Figure 3-3.

Source ID	Source Description	Stack Height (m)	Temperature (K)	Exit Velocity (m/s)	Stack Diameter (m)	Normalized Emission Rate (g/s)
BLOXRTO	RTO	30.5	324.8	8.53	1.2	2.5x10 ⁻⁴
#5LIME	No. 5 Lime Kiln	62.2	335.9	8.80	1.5	1.3x10 ⁻⁴
#4LIME	No. 4 Lime Kiln	58.0	337.6	9.80	1.2	5.0x10 ⁻⁴
#11REC	No. 11 Recovery Boiler	61.7	413.2	18.30	3.7	1.1x10 ⁻¹
#10REC	No. 10 Recovery Boiler	61.7	410.9	17.90	3.7	1.3x10 ⁻¹
#10SDT	No. 10 Smelt Dissolving Tank	61.7	341.5	8.80	1.2	2.5x10 ⁻⁴
#11SDT	No. 11 Smelt Dissolving Tank	61.7	342.0	9.10	1.2	2.5x10 ⁻⁴
PMNO19A	No. 19 Paper Machine Calendar Nip Heater	20.1	499.8	0.30	0.5	2.5x10 ⁻⁶
PMNO19B	No. 19 Paper Machine Calendar Nip Heater	20.1	499.8	0.30	0.5	2.5x10 ⁻⁶
225NGBLS	Natural Gas Package Boilers	50.3	435.9	1.46	2.4	2.5x10 ⁻⁴
RLBARKCTRL	Riley Bark Boiler	34.8	332.0	17.92	2.4	1.0x10 ⁻¹
RLCOAL#4P	No. 4 Power Boiler/Riley Coal Boiler Common Stack	79.2	327.6	19.00	3.0	4.6x10-2

Table 3-1. Modeled Stack Parameters

3.1.4 Modeled Emissions

Hourly data was not available; therefore, maximum actual emissions for each source were used in the modeling. Following the example in Appendix A of the Monitoring TAD, normalized emission rates were

used as input to the model (Table 3-1). Because of the linear scalability of emissions to modeled concentrations, the relative model results using normalized emissions can be used to predict the location of maximum concentration gradients. The emissions rates were normalized by dividing each source's emission rate by the highest overall emission rate over all stacks.

3.2 Modeling Results and Ranking Methodology

Following the guidance outlined in Appendix A of the Monitoring TAD, normalized modeled impacts were used to determine suitable locations for installing an SO₂ monitor near the EP Canton Mill. The three year average of each year's 4th daily highest 1-hour maximum concentration (99th percentile of daily 1-hour maximum concentrations) was calculated for each receptor. This value is commonly referred to as the design value (DV). Because normalized emissions were used to calculate these values, the results are referred to as normalized design values (NDVs) in this analysis.

Figure 3-4 shows the NDVs for the receptors near EP Canton. To better understand the relative difference between the NDVs, Figure 3-5 shows the ratio of the NDV at each receptor to that of the overall maximum NDV. In the figures, the receptors with the highest values are in the black area surrounded by the darker purple. From the NDV ratio results, 200 receptors with the highest values were selected for further analysis. The receptors having the top 200 and top 50 NDVs are shown in Figures 3-6 and 3-7, respectively. The highest NDVs in the figures are shown in purple.

Figures 3-6 and 3-7 show the prioritized locations that were first evaluated to select a monitor location. The primary objective of this analysis was to find a sufficient number of feasible locations with predicted peak and/or relatively high SO_2 concentrations where a permanent monitoring site could be located. However; according to Appendix A of the Monitoring TAD, the site selection process also needed to account for the frequency in which a receptor has the daily maximum concentrations. The frequency is the number of times each receptor was estimated to have the maximum daily 1-hour concentration. Figure 3-8 shows the results of the frequency analysis.

Each receptor's frequency value was used with its NDV to create a relative prioritized list of receptor locations. This process is referred to in Appendix A of the Monitoring TAD as a scoring strategy. The list of receptors was developed through the following steps:

- 1. The NDVs were ranked from highest to lowest. Rank 1 means the highest NDV.
- 2. The frequencies for the receptors were ranked from the highest to lowest. Rank 1 means the highest number of days having the daily maximum value.
- 3. The NDV rank and the frequency rank were added together to obtain a score.
- 4. The scores were ranked from lowest to highest. The receptors with the lowest scores were identified as the most favorable locations for the monitor.

3.2.1 Ranking Results

Table 3-2 shows a summary of the ranking results for the top 10 receptors. Figure 3-9 shows the receptor locations that ranked in the top 50 (note that as shown in Table 3-2 there were some ties in

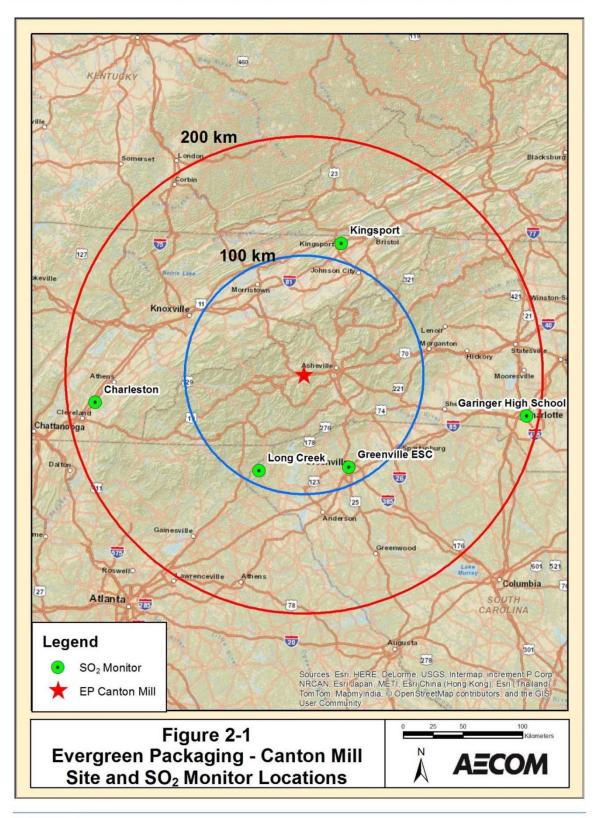
AECOM

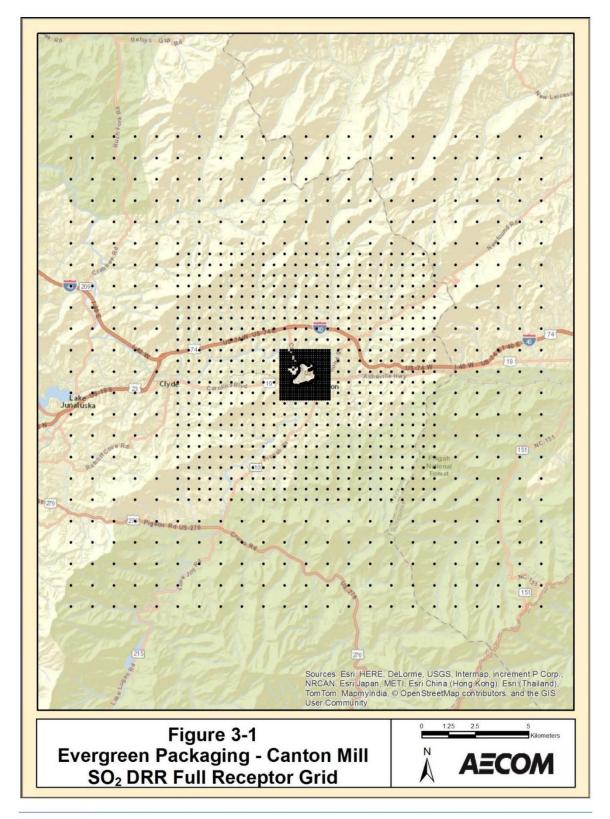
rankings). Figures 10 through 12 show a pair of plots with a closer view of the three areas with the highest receptor rankings. The first plot (a), shows the frequency of the daily maximums, while the second plot (b), shows the score rankings.

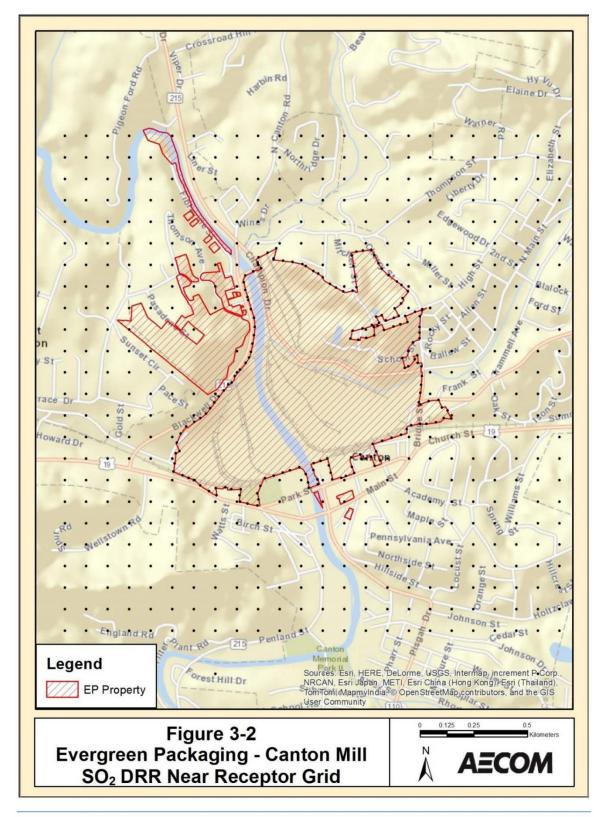
To aid NCDAQ and EPA monitor siting staff, on-property receptors were added in Areas 2 and 3 on the frequency plots. The Area 2 plot (Figure 11a) shows the low frequency of daily maximums over the EP property between School Street and High Street. The Area 3 plot (Figure 12a) shows low frequencies of daily maxima along the edge of the fenced parking lot off of Bridge Street, and no daily maxima occurrences over the parking lot. It should be noted that the both of these areas are periodically patrolled by Mill security guards.

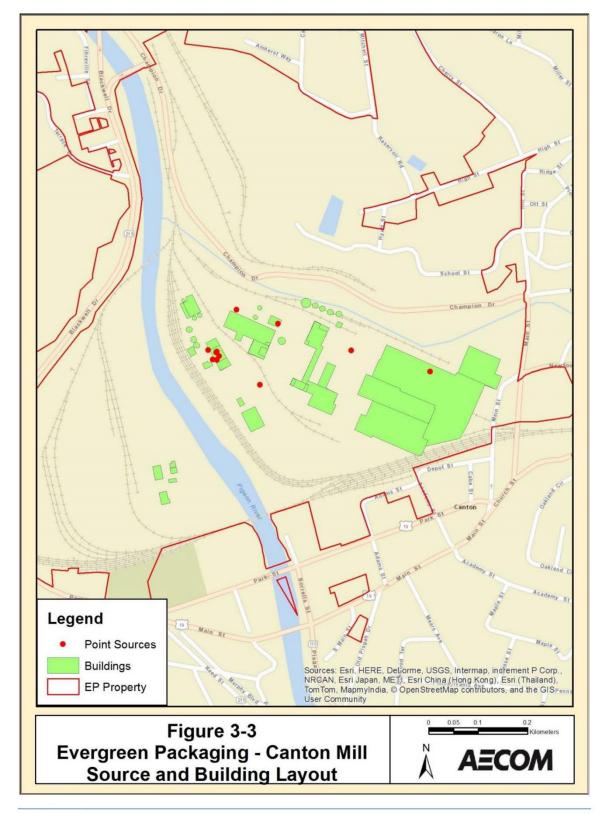
NCDAQ staff, in conjunction with Evergreen Packaging staff and a representative from EPA Region 4, conducted a survey in the vicinity of the EP Canton Mill to evaluate potential locations for SO₂ monitor placement. The survey focused on the three areas where the majority of the maximum NDVs occurred. When selecting adequate locations for the proposed monitor, considerations will be made regarding the availability of electrical power, security of the monitor, accessibility, proper instrument exposure, and assurance of long-term use of the site. This last point will be especially important, given the tight timelines in the rule. Additional consideration for frequency of impact will need to be considered for determining the need of any secondary monitors.

UTM Zone	17 (NAD83)	Normalized	NDV	Frequency	Frequency		Score	Comments on
Easting (m)	Northing (m)	Design Value (NDV)	Rank	Count	Rank	Score	Rank	Location
332512.3	3933970.5	1.31	2	70	1	3	1	Edge of EP Property,
332493.3	3933945.2	1.32	1	60	3	4	2	east of Blackwell Drive
332474.3	3933919.8	1.29	3	31	9	12	3	(Area 1)
332534.3	3933998.7	1.17	8	35	6	14	4	(Alea I)
333387.3	3934178.5	1.14	13	15	19	32	5	Edge of EP Property, on edge of School St. (Area 2)
332417.2	3934010.6	1.02	31	48	4	35	6	Private property, west of Blackwell Drive (Area 1)
333311.7	3934353.1	1.17	10	12	26	36	7	On Blackwell Drive (Area 1)
332517.2	3934010.5	1.09	22	19	14	36	7	Edge of EP Property, on edge of High St. (Area 2)
333596.8	3933934.4	1.06	23	16	17	40	9	Corner of EP Property & private property, on edge of Plum St. (Area 3)
332317.2	3933910.6	1.13	16	13	25	41	10	Private property, west of Blackwell Drive (Area 1)

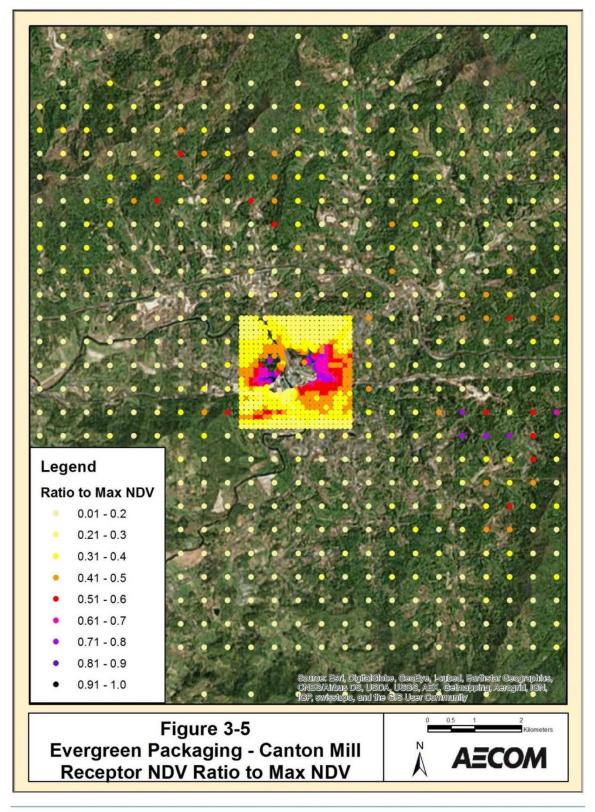

Table 3-2. Top 10 Ranking Receptors by S	score
--	-------

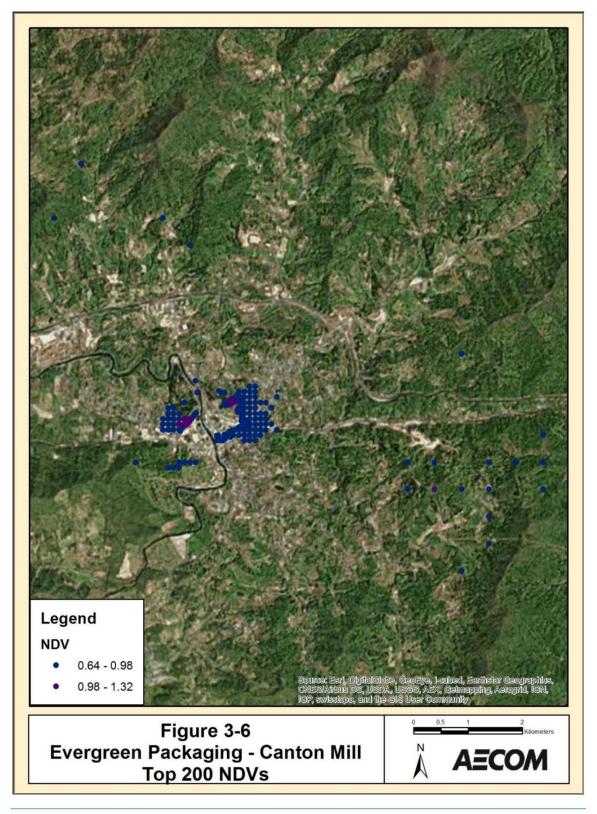

AECOM

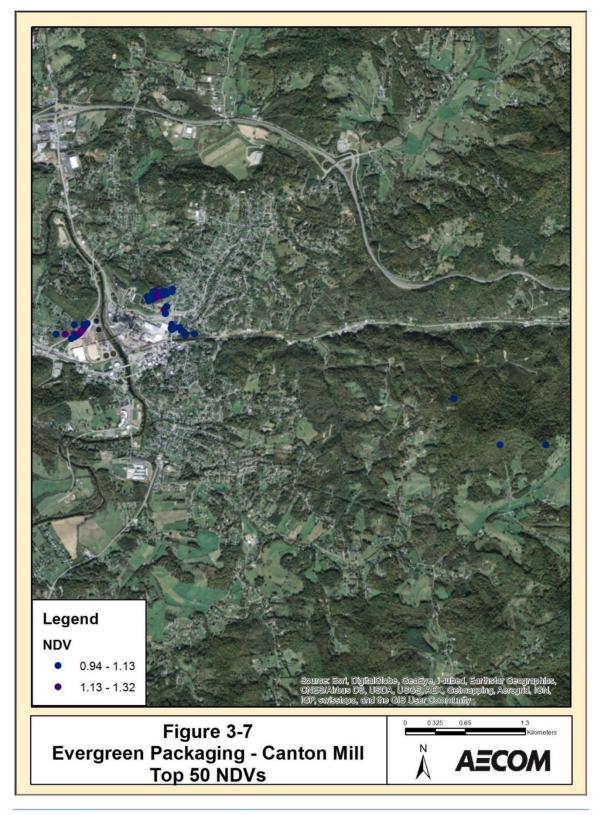

3-4

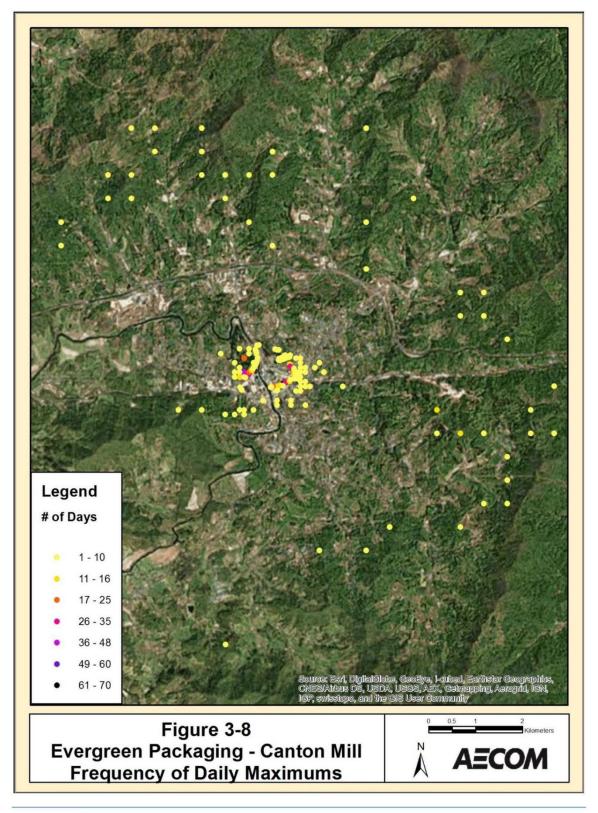

Figures

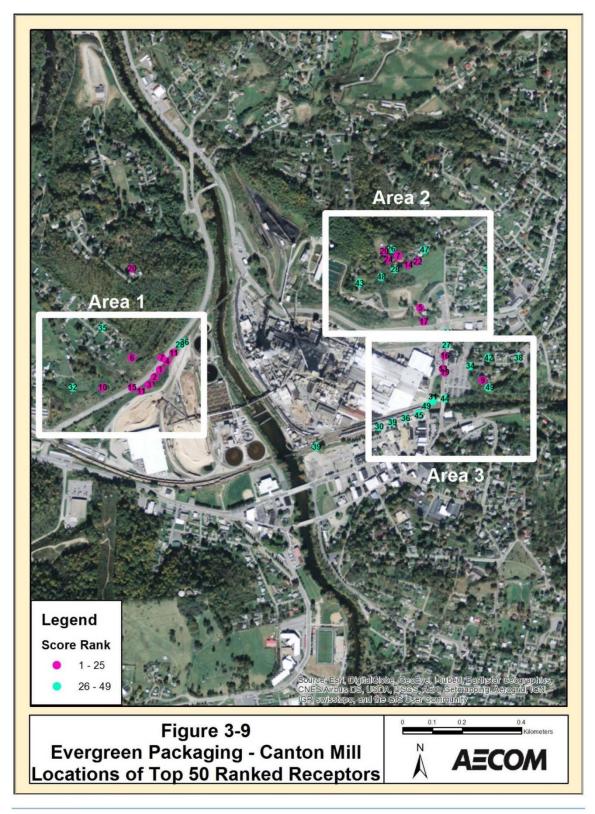
AECOM

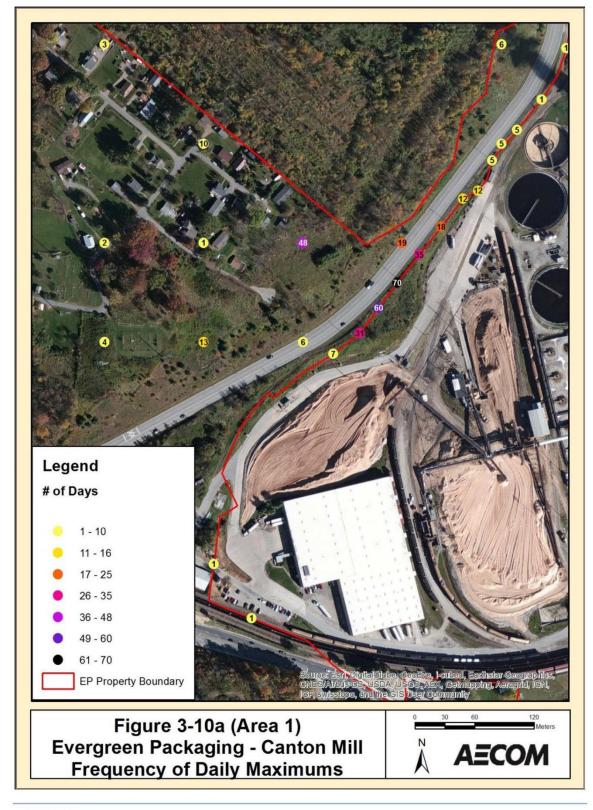


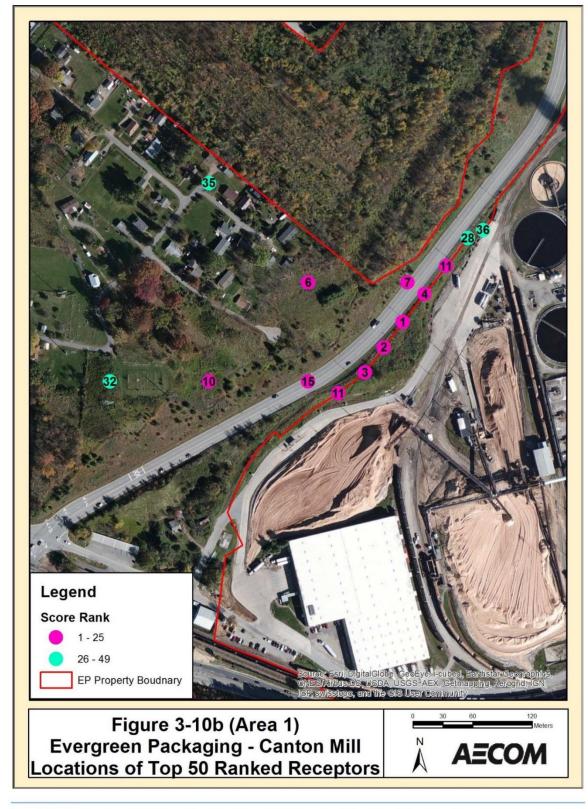


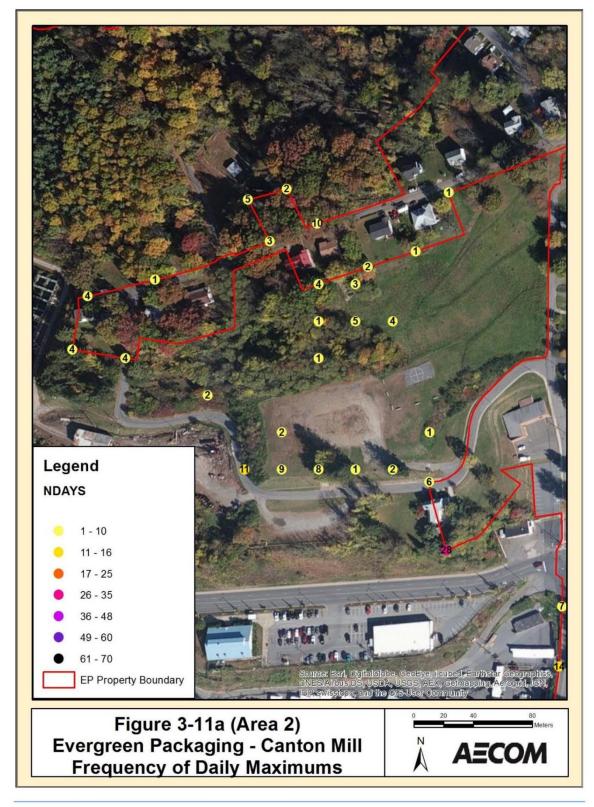


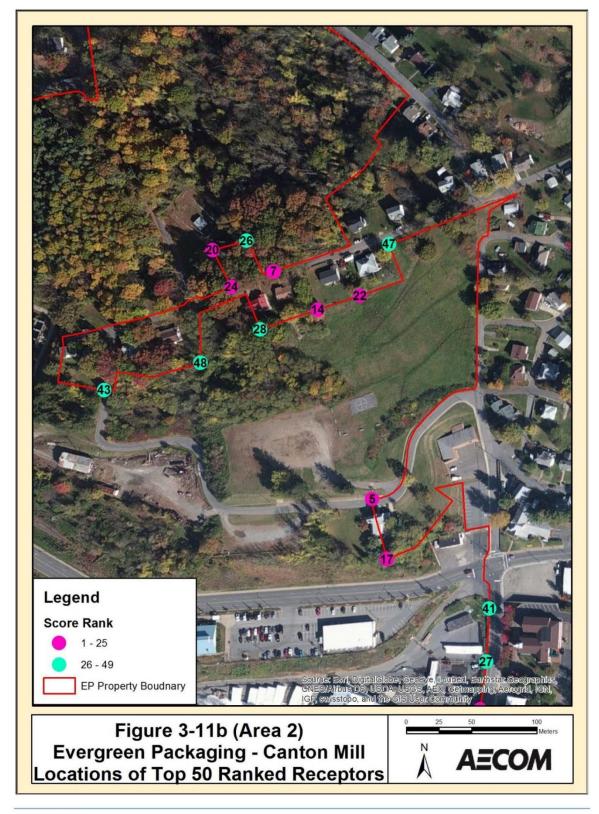


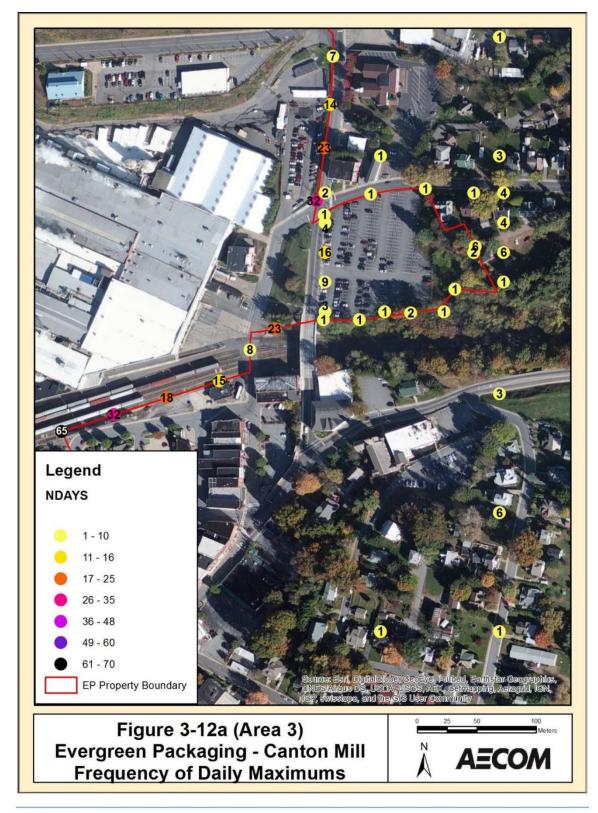


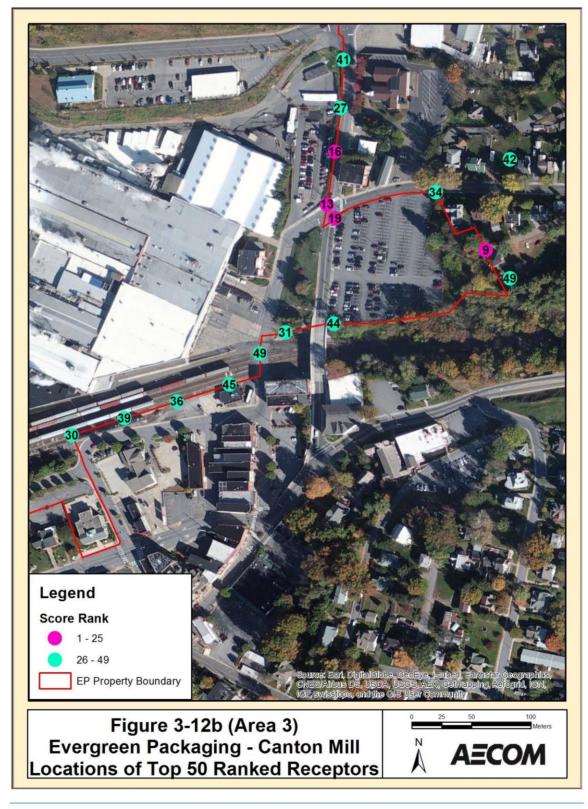




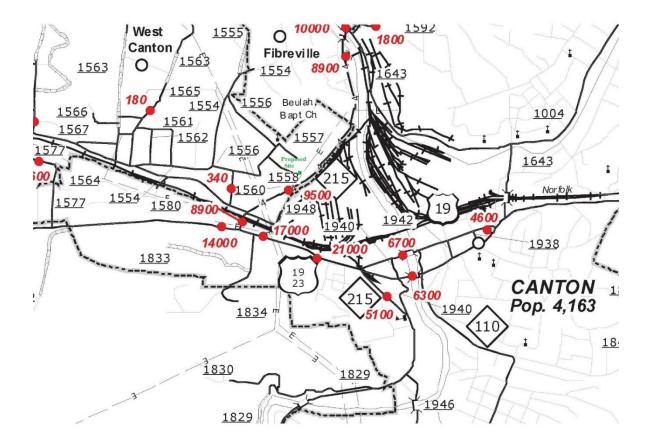








Region 4 Requested Information for the Canton DRR Site (Evergreen Packaging – Canton)


In 2015, the North Carolina Division of Air Quality, DAQ, began working with Evergreen/Blue Ridge Paper to establish a sulfur dioxide monitoring station in Canton, North Carolina, to characterize the ambient sulfur dioxide concentrations near the Evergreen/Blue Ridge Paper facility as required by the data requirements rule for sulfur dioxide.¹² The area chosen for placement of the monitor was selected using the results of modeling done as described in the technical assistance document¹³ and is reported in the body of this document. An aerial view of the Canton DRR monitoring location identified based on the earlier reported considerations is shown in Figure A-85. The facility is located to the east.

The AQS identification number for this monitor is 37-087-0013-42401-1. DAQ operates this monitor in collaboration with Evergreen to ensure the air in the Asheville area complies with the national ambient air quality standards for sulfur dioxide. The DAQ Asheville Regional Office staff operates the monitor following the DAQ quality assurance project plan and the monitor is part of the DAQ primary quality assurance organization. Figure A-86 through Figure A-94 show the Canton DRR site and views from the site looking north, northeast, east, southeast, south southwest, west and northwest.

The DAQ removed any trees or brush within 10 meters of the Canton DRR monitoring location. The nearest road is Pace Street, a dead-end road, located approximately 10 meters to the west northwest. This road does not have traffic count data; however, as shown in **Figure A-132**, Gold Street, secondary road number 1560, had an annual average daily traffic count of 340 in 2014. Thus, the annual average daily traffic count on Pace Street is probably much less than 340. The monitor is 40 meters northwest of Blackwell Drive, which had an average annual daily traffic count of 9,500 in 2014. The probe height is 3.6 meters.

¹² Data Requirements Rule for the 2010 1-Hour Sulfur Dioxide Primary National Ambient Air Quality Standard, Federal Register of Aug. 21, 2015, (80 FR 51052) (FRL-9928-18-OAR), 2015-20367.

¹³ SO₂ NAAQS Designations Source-Oriented Monitoring Technical Assistance Document, U.S. EPA, Office of Air and Radiation, Office of Air Quality Planning and Standards, Air Quality Assessment Division, December 2013, Draft.

Figure A-135. 2014 Traffic count map for Canton, from NC DOT

The Air Quality System, AQS, identification number and street address for the site is: 37-087-0013 and Pace Street Air Monitor, Evergreen Plant, Canton, North Carolina. The latitude and longitude is 35.534 and -82.853. The sampling and analysis method is AQS code 060, Thermo Electron 43i pulsed fluorescent instrument, EQSA-0486-060, and the operating schedule is hourly. The monitoring objective is source oriented. Figure A-136 shows the location of the monitoring station relative to the population center of Haywood County in the Canton area. Based on the wind roses in Figure A-137 and Figure A-138, the Canton DRR monitoring station is located downwind of the Evergreen Packaging plant. The spatial scale of representativeness for the monitor is middle scale based on the distance of the monitor from the source. The monitor is located approximately 450 meters west of the property line for the facility.

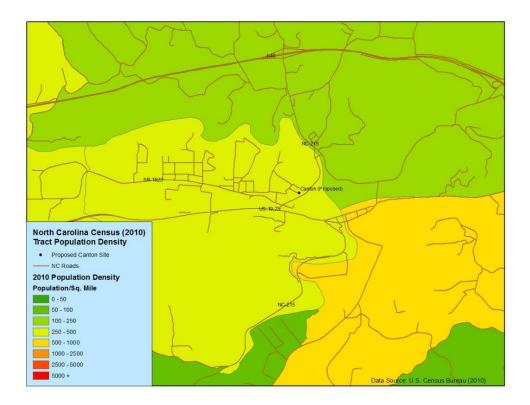


Figure A-136. Location of the Canton DRR monitoring station relative to the population of Canton in Haywood County

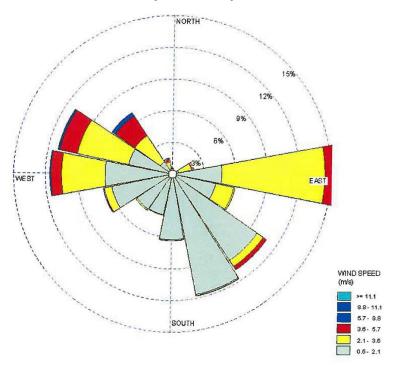


Figure A-137. Wind rose for Canton using 1993 data (from Evergreen Packaging)

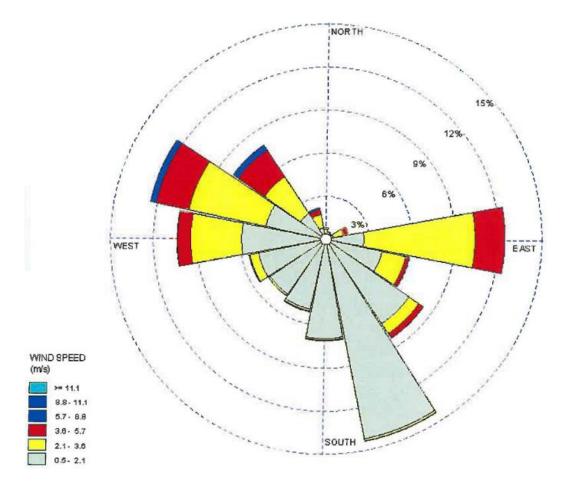


Figure A-138. Canton 2012-2014 wind rose (from Evergreen Packaging)

This monitor is in the Asheville metropolitan statistical area and is representative of the air quality downwind from the fence line of the Evergreen Packaging facility.

The monitoring site was provided to the public for comment during late May to late June 2016 as part of the 2016-2017 network monitoring plan.

Table 11 summarizes other factors DAQ evaluated when choosing the location for the monitoring station.

Factor	Evaluation
Long-term Site Commitment	The location is on right-of-way owned by NC DOT and
	NC DOT does not plan to develop the current area any
	time in the next three years
Sufficient Operating Space	Potential 20 meter by 20-meter open area free of trees
	and buildings with no obstructions to the source
Access and Security	The building is inside a fenced area so it is secured from
	possible vandalism.
Safety	Appropriate electrical permits were obtained.
Power	Overhead powerlines are located 20 meters west of the
	site.
Environmental Control	The monitoring shelter is placed with the door to the
	north so that sunlight does not shine in through the
	window and warm up the building.
Exposure	The monitoring station is at least 10 meters from the
	driplines of trees and is not near any trees or buildings
	that could be an obstacle to air flow.
Distance from Nearby	There are no other permitted facilities within 0.5 miles of
Emitters	the Canton DRR location.
Proximity to Other	The Canton DRR monitoring station is located about 10
Measurements	kilometers east of the Waynesville ozone monitoring
	station.

 Table 11. Other considerations in selection of the Canton DRR site